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ABSTRACT 

Interest in producing hybrid organic-inorganic (HOI) materials has increased rapidly due 

to the unique combination of properties from the organic and inorganic components. The goal of 

the research described is to develop various HOI materials and explore their applications in 

corrosion protection over aerospace aluminum alloys, impact resistant materials, and surface 

protection over thermoplastic substrates.  

As a replacement to toxic chromate inhibitors, enrivonmentally friendly magnesium-rich 

primers (Mg-rich primers) have been investigated to provide corrosion protection over aerospace 

aluminum alloys. HOI binders were produced from an alkoxy silane and silica via sol-gel 

chemistry, where the combined organic and inorganic components provide flexibility, adhesion, 

and barrier properties. The derived topcoated Mg-rich primers showed promising corrosion 

protection in a salt spray exposure test and are competitive with chromate-containing primers. 

The condensation catalyst, tetrabutyl ammonium fluoride (TBAF), played an important role in 

the performance of the HOI binders and the derived Mg-rich primers. It enabled higher crosslink 

density and better barrier properties, however, reacted with Mg particles during salt spray 

exposure and caused the formation of blisters. A non-ionic condensation catalyst, dibutyltin 

dilaurate (DBTDL), had lower catalyst strength, but was expected to eliminate the blister 

formation of topcoated Mg-rich primers. 

Perfectly alternating polycarbonate-polydimethylsiloxane (PC-PDMS) multiblock 

copolymers were produced to create transparent impact resistant materials by confining the size 

of the rubber domains. The PC-PDMS block copolymers maintained high transparency at up to 

62 wt% PDMS and shorter block length gave rise to larger partial miscibility. By incorporating 
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the PDMS blocks to dissipate energy, the PC-PDMS block copolymers had much better impact 

strength than pure PC oligomers. 

Thermoset polycarbonate-polyhedral oligomeric silsesquioxane (PC-POSS) coatings 

were investigated to serve as surface coatings on PC substrate to provide abrasion resistance. The 

covalent bonding allowed high POSS loading at up to 18 wt% without sacrificing the 

transparency. The solvent composition and curing conditions largely determined the surface and 

bulk properties of the coatings. The incorporation of POSS molecules significantly increased the 

char yield and mechanical strength of the thermoset coatings, making them promising in surface 

protection applications. 
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CHAPTER 1. GENERAL INTRODUCTION 

1.1. Hybrid Organic-Inorganic (HOI) Materials 

Hybrid organic-inorganic (HOI) materials have been gaining intense interest over the past 

few decades. HOI materials help meet the demand of fast-developing technologies by combining 

the properties of organic and inorganic phases. The appealing features of HOI materials arise 

from the combination of different properties and functions of the organic phase (low density, 

high elasticity, good processability etc.) and the inorganic phase (thermal stability, hardness, 

high strength, low permeability etc.). HOI materials are not simply physical mixtures of the two 

phases, but hybridized materials with organic and inorganic phases interacting at the molecular 

level through weak or strong bonding. With limited domain size in the nanoscale range, the 

interface plays a predominant role in determining the properties of the HOI materials. HOI 

materials can be homogeneous or heterogeneous depending on synthetic method. Homogeneous 

HOIs contain miscible organic and inorganic components, while heterogeneous HOIs are 

nanoscale phase-separated materials with domain sizes ranging from angstroms to nanometers.
1
 

Examples of homogenous and heterogeneous HOIs are displayed in Figure 1.1, in which the 

homogeneous HOI material is a uniform system with strong hydrogen bonding between two 

phases and the heterogeneous HOI material is a polymer-clay nanocomposite.
2,3

 

 

Figure 1.1. Example of a homogeneous (left) and a heterogeneous (right) HOI material. (Copied 

from Ref. 2 and 3) 
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The history of HOI materials dates back to the 8th century when Maya blue pigment, 

which is a blue indigo molecule embedded in a clay mineral, was used for painting, and it was 

found that Maya blue was able to withstand harsh environments for twenty centuries.
1
 However, 

the concept of HOI materials was not well recognized until sol-gel chemistry was developed as a 

soft inorganic chemistry to produce the hybrid materials at nanometer range in the eighties. 

Besides sol-gel chemistry, the chemical strategies to make HOI materials include hydrothermal 

synthesis, the assembly or dispersion of nano-building blocks, and self-assembly procedures.
1
  

The chemical routes for the preparation of HOIs are summarized in an excellent review by 

Cle´ment Sanchez et al., as displayed in Figure 1.2. Sol-gel chemistry is the most intensively 

investigated method to produce HOI materials due to its appealing mild reaction conditions and 

simple requirement for setups. Through sol-gel chemistry, the HOI materials are produced from 

metal alkoxide (A1) and bridged silsesquioxanes (A2).
4
 The hydrothermal synthesis (A3) 

describes a method for the preparation of crystalline hybrid materials under high pressure and 

temperature. Nano-building blocks (B1 and B2) are inorganic units dispersed into a polymer 

matrix while maintaining their integrity at the nanometer scale. The self-assembly method 

involves templated growth in the presence of surfactants (C1), bridged silsesquioxane (C2), and 

nano-building blocks (C3). The combination of the above described methods (A, B and C) allows 

the generation of HOI materials with controlled hierarchical structure, named integrative 

synthesis (D).  

The various synthesis routes allow the design of numerous versatile materials for 

different applications including optical components, sensors, catalyst supports, scratch-resistant 

coatings, barrier coatings, etc. Some of the HOI materials now are commercially available.  
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Figure. 1.2. Main synthesis routes for the preparation of HOI materials. (Copied from Ref. 1) 

1.2. Organo-Silicon Compounds 

Most silicon compounds exist in four forms depending on the number of oxygen atoms 

attached to silicon. The structures of the silicon compounds can be represented as R3SiO0.5, 

R2SiO, RSiO1.5 and SiO2 when one, two, three and four oxygen atoms are attached to the silicon 

atom, as shown in Figure 1.3.
5
 The R group can be hydrogen, alkyl, aryl or other organic 

substituents. In the scope of our study presented in the upcoming chapters, the silicon compound 

utilized as inorganic phases covered all of them, silica (SiO2) and phenethyl trimethoxysilane 

(R3SiO0.5), polydimethylsiloxane (R2SiO), and polyhedral oligomeric silsesquioxane (RSiO1.5) in 

Chapters 2-4, Chapters 5 and 6, and Chapters 7 and 8, respectively. 
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Figure 1.3. Structure of silicon-based compounds. 

1.2.1. Silica 

Silica, also known as silicon dioxide, is found to exist in various forms in nature such as 

sand, quartz and glass.  These naturally occurring materials differ in their crystalline morphology. 

Synthetically, silica were produced in amorphous form by various methods including sol-gel 

technology in solution, pyrogenic method of burning silicon tetrachloride with hydrogen and 

oxygen at high temperature, and precipitation of a silicic acid solution.
6
 Of the three methods, 

sol-gel technology is intensively utilized by researchers for making HOI materials due to the 

easy manipulation and mild reaction conditions while the other two methods are usually used in 

industry to produce more condensed silica particles. The synthesis of spherical silica 

nanoparticles with narrow polydispersity through sol-gel chemistry was first reported by Stober 
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et al in 1968.
7,8

 The aqueous solution of silicon alkoxide undergoes hydrolysis and condensation 

reactions in the presence of ammonia as a catalyst, as displayed in Scheme 1.1. 

Hydrolysis: Si-(OR)4 + H2O             Si-(OH)4 + R-OH 

Condensation: 2 Si-(OH)4             2 (Si-O-Si) + 4 H2O 

Scheme 1.1. Synthesis of silica via sol-gel chemistry. 

Colloidal silica was investigated in our study, which differs from common silica with 

respect to size. The colloidal system is a dispersion in which the particles, in the form of gas, 

liquid or gas, are dispersed in a continuous phase in the form of gas or liquid. Colloidal systems 

can be observed in our daily lives.
9
 Fog and smoke are liquid and solid particles dispersed in a 

continuous gas phase, respectively. Emulsion and sol are liquid and solid particles dispersed in a 

continuous liquid phase, respectively. The size of the dispersed particles should be within 1 to 

1000 nm to be a colloidal system. It is so-called colloidal silica because it’s sufficiently small not 

to be affected by gravitational forces and also sufficiently large to deviate from a true solution. 

The interactions between particles are dominated by short-range forces such as van der Waals 

attractions and surface charges. In colloidal systems, due to the high surface to volume ratio, the 

properties of the interface play a predominant role in the properties of the system. Colloidal 

systems have some interesting features making them different from other systems. The “Tyndall 

Effect” is an important characteristic of colloidal system, which describes the light scattering 

phenomena by colloidal particles.  

The surface chemistry and geometry determine the stability of colloidal silica sols. There 

are mostly silanol (Si-OH) groups on the surfaces allowing for chemical modifications, which 
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can be isolated, paired or hydrogen bounded silanol groups.
9
 There are also siloxane bridges on 

the surfaces of silica particles. Figure 1.4 shows a general chemical structure of a silica particle 

with a majority of silanol groups on the surface. Due to the surface silanol groups, the colloidal 

silica nanoparticles keep their stability in water or organic solvent by surface charge repulsion. 

When gelled, silica particles are linked together and form a three-dimensional network. The 

destabilization of colloid silica can be accomplished by adding salts or electrolytes to interrupt 

the electrostatic repulsion. 

 

Figure 1.4. Structure of silica particles with silanol (Si-OH) groups on the surface. 

The surface chemistry and geometry determine the stability of colloidal silica sols. There 

are mostly silanol (Si-OH) groups on the surfaces allowing for chemical modifications, which 

can be isolated, paired or hydrogen bounded silanol groups.
9
 There are also siloxane bridges on 

the surfaces of silica particles. Figure 1.4 shows a general chemical structure of a silica particle 

with a majority of silanol groups on the surface. Due to the surface silanol groups, the colloidal 

silica nanoparticles keep their stability in water or organic solvent by surface charge repulsion. 
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When gelled, silica particles are linked together and form a three-dimensional network. The 

destabilization of colloid silica can be accomplished by adding salts or electrolytes to interrupt 

the electrostatic repulsion. 

HOI materials containing colloidal silica are produced mostly by in-situ synthesis from 

tetraethylorthosilicate (TEOS) via sol-gel chemistry.
10

 The silica nanoparticles are incorporated 

into the polymer matrix by encapsulating within polymer matrix to form core-shell architecture 

or interpenetrate with polymer chains used for sensor, target labeling, compatibility improvement 

with proteins.
11

 Silica aerogel has been produced to increase the adhesion between Pt catalyst 

and carbon support to prevent catalyst leaching without decreasing the transport of solvent and 

fuels in fuel cell application.
12

 Porosity created within silica act as immobilization site for dyes 

and transport ducts of ions.
13,14

 In addition, the incorporation of silica has enabled the 

improvements in mechanical properties,
15,16

 adhesion,
12,13

 gas permeation
17

, etc. Various 

polymers have been modified with silica via sol-gel chemistry, including polyvinyl alcohol, 

polyaniline, polyimide, polyelectrolyte like polyacrylic acid and poly(sodium styrenesulfonate), 

and so on.  

1.2.2. Polydimethylsiloxane (PDMS) 

Polydimethylsiloxane (PDMS) is a polymeric organosilicon compound which is 

commonly referred to as silicone. Attributed to its inorganic siloxane backbone and organic 

methyl groups, PDMS itself is an organic-inorganic compound. It is synthesized by reacting 

dimethyldichlorosilane (Me2SiCl2) with water, or by ring opening octamethylcyclotetrasiloxane 

(D4).
18,19

 The chemical structure of PDMS is shown in Figure 1.5, in which the backbone 
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consists of repeating silicon and oxygen atoms with two methyl groups carried by each silicon 

atom. The siloxane linkage is responsible for the high flexibility of the backbone.  

 

Figure 1.5. Chemical structure of PDMS. 

Because of its unique chemical structure, the physical properties of PDMS are different 

from common thermoplastic resins. Depending on the degree of polymerization, PDMS is 

usually liquid or a viscoelastic solid at ambient conditions. It has low glass transition temperature. 

In addition to that, PDMS is chemically inert, non-toxic, biocompatible, non-flammable, 

hydrophobic, and has high oxygen permeability. Research has been carried out to improve 

properties including processability, flame retardancy, and surface hydrophobicity. The unique 

properties of PDMS allow this polymer to be widely used in various applications such as 

lubricants, contact lenses, biomedical devices, pervaporation membranes for fuel separation, 

crack-free glass, and so on.
20,21,22

  

Modifications of materials with PDMS were primarily achieved by blending, 

copolymerization, and the production of interpenetrating polymer networks (IPN).
20

 Copolymers 

containing PDMS blocks/segments are an interesting class of materials due to the unique 

characteristics of PDMS compared to other polymers. PDMS has been copolymerized with 

various polymers including commonly used polystyrene,
23

 polymethyl methacrylate,
24

 

polyamide,
25

 polycaprolactone,
26

 polyurethane,
27

 polyethylene oxide,
28

 specially metal 

complexed poly(ferrocenylsilanes),
29

 and poly(ferrocenylphenylphosphine).
30

 PDMS segments 
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may be copolymerized with other thermoplastics, forming various architectures such as 

diblock/multiblock copolymers, random copolymer, sequential copolymer, alternating copolymer, 

graft copolymer etc. 

For block copolymers, depending on the block copolymer composition f and combination 

parameter χN where χ is the segment-segment interaction energy and N is the degree of 

polymerization, the phase morphology changes accordingly.
31

 As shown in Figure 1.6, there are 

basically four types of morphologies: spherical, cylindrical, gyroid and lamellar.  

 

 

Figure 1.6. Predicted phase morphology for AB diblock copolymers: spherical (S), cylindrical 

(C), gyroid (G), and lamellar (L).
31

 

 

The phase separation of block copolymers has obtained intense attentions due to the 

interesting morphologies.  Small angle x-ray scattering (SAXS) is a powerful technique to 

determine the unique morphologies derived from the phase separation of PDMS block 

copolymers.
31-33

 By calculating the q vector ratio between the scattering maximum peaks, the 

morphology of the block copolymer can easily be determined. Transmission electron microscopy 

(TEM) technique visually provides morphological information. 

1.2.3. Polyhedral Oligomeric Silsesquioxane (POSS) 

POSS is a ~2 nm, three-dimensional cage-like molecule that has eight silicon atoms at 

each corner with organic substituents attached.
34

 The general structure of POSS is shown in 

                                                                  fA 

 

 

 

S                 C                   G                      L                     G’                  C’                   S’ 
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Figure 1.7. The three-dimensional cage serves to provide mechanical properties, while the 

organic substituents improve compatibility with polymers and allow for chemical modifications. 

POSS compounds are synthesized by hydrolytic condensation of trifunctional silane monomers 

RSiX3 where R is a chemically stable organic substituent and X is a reactive alkoxy or 

halogenate group. The reaction scheme is shown in Scheme 1.1. The reactive peripheral organic 

groups make POSS molecules ideal for incorporating into polymers by covalent bonding, 

generating homogeneous HOI materials. Because of the high functionality of POSS compounds, 

the number of reactive functional groups can be changed for different modifications or to adjust 

the reactivity of the molecule. Therefore, partially or fully substituted POSS molecules are 

incorporated into various polymers through blending, grafting and copolymerization, making 

polymer/POSS blends, polymer with POSS as side groups or in backbone, polymer-POSS 

networks, or POSS-centered star polymers.
35-37

 

 

Figure 1.7. General structure of POSS. 

 

Scheme 1.2. Synthesis of POSS by hydrolytic condensation. 
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The incorporation of POSS into polymers can result in significant enhancements of 

polymer properties, such as hardness, surface hydrophobicity, and mechanical properties and so 

on.
38

 POSS compounds have been used in biomedical applications due to its environmentally-

benign nature.
39

 Most commonly used polymers such as polyethylene (PE), polypropylene (PP), 

polystyrene (PS), polyamide (PA), polyimide (PI), and polyurethane (PU) have been modified 

with POSS derivatives.
40

 

The POSS molecule used in our study is OctaSilane POSS
®
 in which R = OSi(CH3)2H. It 

is selected for making PC-POSS thermoset coatings for its higher reactivity due to less steric 

hindrance and the lower cost as compared to OctaHydro POSS
®
 in which R = H. It has been 

applied as nanofiller, crosslinker, or core and branch of dendrimers,
41,42

 for applications in the 

areas of antimicrobial coatings, corrosion protection, positive resists, sensors and so on.
43-46

 

1.3. Synthetic Methods 

Various chemical strategies were developed to produce HOI materials, of which sol-gel 

chemistry and hydrosilylation chemistry are of interest here.  

1.3.1. Sol-Gel Chemistry 

Sol-gel chemistry is the most commonly used method to make HOI materials. It is a 

conventional so-called “soft” chemistry because of its mild reaction conditions. The reactions are 

easy to perform, and no high reaction temperature is required. It has been widely used and 

provides an alternative for preparation of ceramics and glasses since 1844 when Ebelmen 

reported the synthesis of silica from silicon alkoxide.
47

 However, the hydrolysis and 

condensation reactions were not well recognized until Mendeleyev proposed the reactions in 

1850s. Then the investigations on organosilicon compounds exploded in the 1930s. The 
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representative reaction scheme based on silicate alkoxide is described in Scheme 1.3, in which 

two reactions, hydrolysis and condensation, are involved. Usually, the metal alkoxides are not 

miscible with water, so alcohol is commonly added. The silanol groups are formed through 

hydrolysis, and then through condensation, the Si-O-Si siloxane groups are formed. Besides 

silicate alkoxide, non-silicate alkoxide based on transition metals such as Ti, V and Zr, and group 

IIIB metals such as B and Al are also important precursors. Silicon is less electropositive than 

the other metal elements, resulting in the less susceptibility to nucleophilic attack of silicon 

alkoxide and slower reaction kinetic of hydrolysis and condensation. Therefore a catalyst is 

usually added to promote the reactions. The most commonly used catalysts are mineral acids, 

ammonia, acetic acid, alkali metal hydroxide, fluoride ion for both hydrolysis and condensation 

reactions.
48

 

Hydrolysis 

 

Condensation 

 

Scheme 1.3. Hydrolysis and condensation of sol-gel chemistry. 

The sol-gel reactions are influenced by various factors including pH, type and amount of 

catalyst, water to alkoxide ratio, concentration, and temperature. Regarding the pH effect, it has 
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been reported that silica particles grow in size in basic solution, while in acidic solution or in the 

presence of flocculated salts, the particles tend to form a three dimensional network and gel. 

Base or acid also play important roles in determining the structure of the sols and gels. It has 

been reported that acid tends to catalyze hydrolysis while base tends to catalyze the condensation. 

Therefore, silicate alkoxides undergo rapid hydrolysis and tend to form a more linear structure 

leaving unreacted silanol groups when catalyzed by an acid, while rapid condensation and tends 

to form denser networks with a high degree of branches when catalyzed by a base. 

The products generated by sol-gel chemistry can be used to form fibers, films, or 

monolithic materials. The processing of sol-gel products is depicted in Figure 1.8. Sols are stable 

colloidal dispersion of solid particles in liquid. The stability derived from the negligible gravity 

and the Brownian motion of the solid particles with sizes in the nanometer range. The sol 

solution can be directly processed into solid materials of different shapes for applications in 

fibers, sensors, and catalyst supports. Gel, a three dimensional solid structure enclosing 

continuous liquid throughout the network, can be formed when sol particles are further 

condensed and linked together through chemical bonding. Further processing of gels by 

evaporating volatiles leads to the deformation and collapse of the three dimensional structure, 

resulting in the dried gel called a xerogel. A dense ceramic is produced when a xerogel is 

subjected to sintering. When a gel is dried in an autoclave under supercritical conditions, an 

aerogel without collapse of the solid structure can be formed due to the lack of capillary pressure. 

The high porosity of an aerogel and also a xerogel make them useful in various applications such 

as catalyst supports.  
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Figure 1.8. Formation and processing of sol-gel products. 

Sol gel technology has been employed as a primary method to make numerous HOI 

materials for various applications. The preparation of sol-gel derived HOI materials have been 

accomplished by either simply mixing the metal precursors M(OR)4 before sol-gel reactions with 

organic compounds or polymers where the organic and inorganic components interact through 

weak bonding, or using metal alkoxides R’M(OR)x as precursors when R’ are functional groups 

allowing the strong chemical bonding between organic and inorganic phases.
49

 The R’ group can 

be certain functional groups such as the chromophores, or they can be polymerizable groups. The 

HOI materials produced by sol-gel method have been widely studied for optical, ferroelectric, 

biological, photosensitive/photochromic applications, proton conductor, and corrosion 

protection.
50,51 
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1.3.2. Hydrosilylation Chemistry 

Hydrosilylation chemistry is a widely used chemical reaction in the preparation of 

organosilicon compounds with carbon-silicon linkages since the first discovery of this reaction 

between trichlorosilane and 1-octene reported in 1947.
52

 It is the second most important reaction 

to create the carbon-silicon linkage besides the Rochow process in which alkyl/aryl halide vapors 

react with silicon at fairly high temperature.
53

 The silicon hydride group (Si-H) is added to 

unsaturated alkene or alkyne groups in the presence of a catalyst, as is shown in Scheme 1.4.  

 

Scheme 1.4. Hydrosilylation reactions. 
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thermal decomposition and photolysis, can also enable the reactions to proceed. After initiation, 

the reaction would undergo propagation and finally be terminated by a chain transfer reaction 

with a hydrosilane. 

However, most hydrosilylation reactions occurr via a polar mechanism or heterolytic 

mechanism which involves nucleophilic attack on the silicon atom. The nucleophilic-

electrophilic catalyst such as tertiary amines, phosphines, the supported metal catalysts such as 

carbon or SiO2 supported Pt, Rh, Ru, Pd, Ni, the photo-/peroxide-initiated metal complexes such 

as Cr(CO)6, Fe(CO)5, the homogeneous transition metal complexes, and the supported transition 

metal complexes were used as catalysts for the hydrosilylation reaction proceeding in a 

heterolytic mechanism. Of these catalysts, the transition metal complexes are the most 

commonly used due to the high reactivity and selectivity.  

Platinum compounds are the most commonly used catalysts for hydrosilyation because of 

their relatively high reactivity. There are primarily two types of platinum catalysts, Karstedt’s 

catalyst and Speier’s catalyst. Karstedt’s catalyst is platinum complexed with 

divinyltetramethyldisiloxane, while Speier’s catalyst is H2PtCl6. PtO2 catalyst was also proven to 

be an efficient and versatile catalyst towards a variety of alkenes and allylamines.
54

 The Chalk-

Harrod mechanism is so far the most widely accepted mechanism of platinum catalyzed 

hydrosilyation.
55

 Four steps are involved in hydrosilylation as described by Chalk-Harrod. Firstly 

oxidative addition of R3Si-H to metal forming R3Si-[M]-H, secondly coordination of alkene with 

metal, thirdly addition of alkene to metal center, and finally reductive elimination of metal 

forming Si-C bond. Hydrosilylation of olefins with Pt catalysts mostly follows the anti-
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Markovnikov rule only leading to the terminal hydrosilylation product. With hydrosilylation, it is 

possible to modify silicone, unsaturated polymers, and to produce novel organosilicon materials.  
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CHAPTER 2. ENVIRONMENTALLY FRIENDLY HYBRID ORGANIC-INORGANIC 

(HOI) MAGNESIUM-RICH PRIMER FOR CORROSION PROTECTION OF 

ALUMINUM ALLOYS 

2.1. Abstract 

Magnesium-rich (Mg-rich) primers have been developed for corrosion protection of 

aluminum (Al) alloys by forming a galvanic couple between Mg particles and Al alloy substrates. 

Mg particles act as a sacrificial anode and corrode preferentially over Al, thus providing the 

protection. A hybrid organic-inorganic (HOI) binder based on organically-modified silica 

nanoparticles was studied to produce novel Mg-rich primers due to the the unique combination 

of both properties from organic and inorganic phases. The HOI binders were produced by 

reacting silica nanoparticles with phenethyltrimethoxysilane (PhEtTMS) via sol-gel chemistry. 

The variables investigated were the addition of a condensation catalyst, tetrabutylammonium 

fluoride (TBAF), and the curing condition. The HOI sol dispersions, HOI binders, and Mg-rich 

primers derived from HOI binders were characterized by particle size, proton nuclear magnetic 

resonance (
1
H-NMR), silicon nuclear magnetic resonance (

29
Si-NMR), fourier transform infrared 

spectroscopy (FTIR), differential scanning calorimetry (DSC), electrochemical impedance 

spectroscopy (EIS), and salt spray exposure. The condensation catalyst TBAF was found to have 

a profound impact on barrier properties and corrosion protection of the HOI binders. With TBAF, 

the organically-functionalized silica nanoparticles grew larger, and the derived HOI binder had 

higher crosslinking density and better barrier properties. However, when used in combination 

with Mg particles, severe blister formation was observed for the topcoated Mg-rich primer with 

TBAF upon salt spray exposure. This was attributed to the interaction of fluoride ion with Mg 

particles to produce hydrogen gas. In contrast, the topcoated Mg-rich primer produced without 
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TBAF cured at 80 ⁰C exhibited excellent corrosion protection after 4,400 hours salt spray 

exposure. No blister and corrosion products were found within coatings and in the scribed area.  

2.2. Introduction 

Hexavalent chromium has been recognized as the most effective corrosion inhibitor for 

metals. However, hexavalent chromium is known for its carcinogenicity and persistence in the 

environment.
1
 As a result, new strategies have to be developed to create alternatives for 

corrosion protection. Efforts have been undertaken to have new inhibitor compounds, barrier 

coatings, conductive polymers, and other surface modification techniques as a means to prevent 

corrosion.
2
 As a replacement to chromate inhibitors, novel environmentally friendly magnesium-

rich (Mg-rich) primer systems have been developed for corrosion protection of aerospace 

aluminum (Al) alloys, analogous to zinc-rich primers for protecting steel.
3,4

 In an aerospace 

coating system, the Mg-rich primer is applied between the Al alloy substrate and polyurethane 

topcoat, as illustrated in Figure 2.1. The Mg-rich primer needs to provide corrosion protection 

and adhesion between the topcoat and substrate, while the topcoat should possess good barrier 

properties. The mechanism involved in the corrosion protection by Mg-rich primers includes the 

galvanic couple established between Mg pigments and Al alloy substrates. According to the 

electrochemical half reaction, Mg has a higher standard oxidation potential and is thus, more 

electrochemically active than Al, as shown in Scheme 2.1.
5,6

 Thereby, in a galvanic cell, Mg 

particles serve as a sacrificial anode and corrodes preferentially over the Al substrate.
7
 

 

Figure 2.1. Schematic of aerospace coating systems. 
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Al          Al
3+

 + 3e
-
         1.66 V 

Mg          Mg
2+

 + 2e
-
         2.37 V 

Scheme 2.1. Half reactions and standard oxidation potential of Al and Mg.
5
 

The interest in sol-gel derived HOI coatings arose from their mild reaction conditions, 

easy processing, environmentally friendly nature, and, most importantly, the unique combination 

of properties of organic and inorganic phases.
4,8

 The organic component provides the adhesion to 

topcoat and flexibility while the inorganic component provides the adhesion to metal substrates 

and barrier properties. The appealing feature of sol-gel chemistry in producing HOI materials 

enabled the wide application of this chemistry. 

A combinatorial/high-throughput workflow was developed to produce promising HOI 

coatings for application as a binder system for Mg-rich primers.
19

 Results obtained using the 

workflow indicated that Mg-rich primers based on heterogeneous HOI binders derived from 

colloidal silica exhibited significantly better corrosion protection than Mg-rich primers based 

homogeneous HOI binders derived from TEOS. For the production of heterogeneous HOI 

binders, four different organosilanes and multiple other compositional and process parameters 

were varied using the high-throughput workflow. Based on screening results, PhEtTMS was 

identified as a useful organosilane for the production of stable colloidal silica dispersions in an 

organic medium.  Based on this previous work, PhEtTMS was used as the organosilane for 

producing Mg-rich primers based heterogeneous HOI binders.  For the Mg-rich primers based on 

heterogeneous HOI binders, the effect of using TBAF as a condensation catalyst and the effect of 

curing conditions on crosslink density and corrosion protection performance of the Mg-rich 

primers were investigated. 
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2.3. Experimental 

2.3.1. Raw Materials 

Aluminum alloy panels (AA 2024-T3) were obtained from Q-panel Lab Products, with 

the sizes of 20 cm x 10 cm x 1 mm.  Prior to use, the panels were sandblasted to remove the 

oxide layer and then cleaned with hexane. Snowtex-O, a colloidal silica dispersion, was obtained 

from Nissan Chemical. According to the manufacturer, Snowtex-O has a pH of 2-4, silica 

content of 20-21 wt%, and average particle size of 10-20 nm. Tetrabutyl ammonium fluoride 

(TBAF, 1.0 M in tetrahydrofuran), isopropyl alcohol (IPA), and propylene glycol monomethyl 

ether acetate (PMA) were purchased from Sigma Aldrich. Phenethyl trimethoxysilane (PhEtTMS) 

was purchased from Gelest. Magnesium powder was obtained from Ecka Granules and had an 

average particle size of 25 microns. AntiTerra 204, a wetting agent, was obtained from BYK 

Chemie. Bentone 38, an anti-settling agent, was obtained from Elementis Specialties, Inc. 

Aerosil R812, a viscosity modifier, was obtained from Degussa Corporation. The polyurethane 

topcoat, MIL-PRF-85285D, was obtained from Deft Chemical Coatings, which is comprised of 

the pigmented polyester resin as component A and aliphatic isocyanate resin as component B. 

Salt water used for corrosion screening by immersion testing was 3 wt% sodium chloride in 

water purified by reverse osmosis. Chromium (III) acetylacetonate and acetone-d6 for 
29

Si-NMR 

were obtained from Alfa Aesar. All reagents were used without further purification. 

2.3.2. Synthesis of HOI Binder Solutions 

To a 2000 ml Erylenmeyer flask, 75 ml Snowtex-O and 108 ml IPA were mixed, and 

then 50 g of PhEtTMS was added using rapid, magnetic stirring.  The mixture was then heated to 

reflux. After 2 hours of refluxing, the mixture was cooled to room temperature. Next, 612 g of 
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PMA was added under rapid stirring.  The mixture was then split into two equal portions (305 g 

in each portion) to two 2000 ml, one-neck, round-bottomed flasks.  To one of the two solutions, 

0.40 g of the 1.0 M TBAF solution in THF was added.  Each mixture was concentrated on a roto-

evaporator in a 70 °C water bath. 

2.3.3. Preparation of HOI Coatings 

Prior to coating application, AA2024-T3 panels were cleaned  and deoxidized by:  1) 

immersing for 10 minutes in a 45 °C aqueous detergent bath consisting of 137 g/L Oakite 

Aluminum Cleaner 164 agitated with bubbling air; 2) rinsing with deionized (DI) water; 3) 

immersing for 2 minutes in 55 °C DI water; 4) immersing in a an ambient temperature 

deoxidizer solution consisting of 25 wt% ferric sulfate, 3 wt% ferrous sulfate, 2 wt% sodium 

bifluoride, 5 wt% nitric acid, and 65wt % DI water agitated with bubbling nitrogen for 10 

minutes; and 5) rinsing with DI water.  

Table 2.1.  Description of HOI coatings produced from HOI solutions, noTBAF and wTBAF. 

HOI Coatings 

Designation 

HOI Solution 

Utilized 

Curing Temp. 

(⁰C) 

Curing Time 

(hrs) 

Dry Film 

Thickness (μm) 

noTBAF-23C/24hr noTBAF 23 24 17.3 + 4.2 

noTBAF-80C/1hr noTBAF 80 1 23.8 + 11.2 

noTBAF-80C/24hr noTBAF 80 24 20.8 + 10.7 

wTBAF-23C/24hr wTBAF 23 24 26.2 + 11.1 

wTBAF-80C/1hr wTBAF 80 1 32.7 + 11.8 

wTBAF-80C/24hr wTBAF 80 24 11.5 + 5.9 
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The HOI coatings described in Table 2.1 were produced by creating an 8.5 cm x 18 cm 

rectangular reservoir on top of a substrate panel by adhering a 508 μm thick polyethylene frame 

to the panel, pouring approximately 6 mls of a HOI solution (i.e. noTBAF or wTBAF) into the 

reservoir, allowing the solvent to flash off in a ventilation hood, and subsequently curing at 

either room temperature (~ 23 °C) for 24 hours, 80 °C for 1 hour, or 80 °C for 24 hours.   

2.3.4. Preparation of Mg-Rich Primers 

Mg-rich primers based on HOI binders were prepared using the formulation shown in 

Table 2.2. Prior to mixing with Mg particles, the solids content of the HOI dispersions were 

adjusted to be 10 wt% with PMA.  

Table 2.2.  Description of the Mg-rich primers produced from HOI solutions, noTBAF and 

wTBAF. 

 

Mg-Rich Primers 

Designation 

HOI Solution 

utilized 

Curing Temp. 

(°C) 

Curing Time 

(hrs) 

Dry Film 

Thickness (μm) 

Mg-noTBAF-23C/24hr noTBAF 23 24 277 + 46 

Mg-noTBAF-80C/1hr noTBAF 80 1 209 + 40 

Mg-noTBAF-80C/24hr noTBAF 80 24 205 + 39 

Mg-wTBAF-23C/24hr wTBAF 23 24 191 + 32 

Mg-wTBAF-80C/1hr wTBAF 80 1 189 + 42 

Mg-wTBAF-80C/24hr wTBAF 80 24 210 + 76 

 

Mg-rich primers were generated by first producing a solution blend consisting of 95.2 wt% 

of a HOI dispersion (i.e. noTBAF or wTBAF), 1.11 wt% AntiTerra 204, 2.54 wt% Bentone 38, 
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and 1.11 wt% Aerosil R812 and then dispersing Mg particles into the solution at a 63/37 wt/wt 

(HOI solution blend/Mg) ratio. Overall, Mg particles were added at 80 wt% in the primer 

formulations. Dispersion of Mg particles into the HOI dispersion blend was accomplished using 

a Speedmixer DAC 150FVZK from FlackTek Inc.  Coating solutions were applied to cleaned 

and deoxidized panels using a Devilbiss GFG516 spray gun and cured at either room temperature 

(~ 23 °C) for 24 hours, 80 °C for 1 hour, or 80 °C for 24 hours.  For salt spray exposure, panels 

were also topcoated using the Deft polyurethane and spray application.  Curing of the topcoat 

was done at ambient conditions for a minimum of 24 hours. 

2.3.5. Instrumentation 

Solids content was determined gravimetrically by comparing the weight of the materials 

before and after heating the HOI solution samples at 200 °C in a vacuum oven overnight. The 

values were calculated by the following equation, where wd and ww are the weight of dry sample 

and wet sample, respectively. 

      (   )   
  

  
                                                   Equation 2.1 

Particle size was measured using a NicompTM CW 380 Submicron Particle Sizer.  

Dilution of the colloid dispersions prior to measurement was done using IPA. Proton and silicon 

nuclear magnetic resonance spectroscopy (
1
H-NMR and 

29
Si-NMR) was done using a JEOL 

ECA 400 MHz NMR spectrometer.  
1
H-NMR spectra were collected in deuterated chloroform 

using 16 scans and a pulse width of 14.6μs, acquisition time of 2.18s, pulse angle of 45°, 

attenuation of 6dB, pulse time of 7.3μs, receiver gain of 22, relaxation delay of 4s, and repetition 

time of 6.18s. 
29

Si-NMR spectra were collected at 79.43MHz for 
29

Si, and the acquisition 

parameters were a 62.5 kHz sweep width with an offset of 0 ppm, a relaxation delay of 5 seconds, 
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and an acquisition time of 0.262 s.  Using these conditions, 14,000 scans were collected at an 

average temperature of 21.4 °C.  The sample tubes were equipped with Teflon® bottoms and the 

lock solvent was acetone-d6 with chromium (III) tris-acetylacetonate (Cr(acac)3) added at a 

concentration of 0.25 M. Cr(acac)3 was added in order to allow for complete relaxation recovery 

and quantitative spectra.  A Bruker Optics Vertex 70 FT-IR was used to collect Fourier transform 

infrared (FTIR) spectra in transmission from samples deposited on a KBr plate. Spectra were 

analyzed using OPUS software from Bruker. The raltive intensities of the FTIR peak absorbance 

were taken as the ratio of area integration to the internal standard peak absorbance. The area 

integrations were taken from 3550 – 3100 cm
-1

 for (a) 3350 cm
-1

 O-H stretching), from 1305 – 

950 cm
-1

  for (b) 1120 cm
-1

 (Si-O-CH3 stretching), from 950 – 860 cm
-1

  for (c) 905 cm
-1

 (Si-OH 

stretching), and from 500 – 400 cm
-1

 for (d) 480 cm
-1

 (Si-OCH3 bending). For the internal 

standard peak absorbance, C=C stretching in phenyl group of PhEtTMS centered at 1496 cm
-1

, 

the area integration was taken from 1510 – 1480 cm
-1

. Differential scanning calorimetry (DSC) 

experiments were carried out using a DSC Q1000 from TA instruments equipped with an auto 

sampler. The experiments were conducted using a heat-cool-heat cycle extending from -50 °C to 

100 °C at a heating/cooling rate of 10 °C/min, purged with N2 at 50 ml/min. EIS was conducted 

with a Gamry MultiEchem 8 Electrochemical Workstation and Gamry Framework software. The 

electrolyte used was 3 wt% NaCl in DI water and the frequency range was 10
4
 Hz to 0.01 Hz 

with an applied 10 mV R.M.S. voltage vs. open circuit potential.  A Ag/AgCl reference electrode 

and Pt mesh counter electrode were utilized.  Salt spray corrosion testing was done according to 

ASTM B117 using a Q-FOG SSP cyclic corrosion tester.  Before putting samples into the 

chamber, the coated panels were scribed using a Gravograph IM4 engraver and Gravostyle 

QuickClick 1.83 software  and the edges and back of the panels covered with thick plastic tape to 
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limit exposure to just the scribed face of the panel.  The salt fog was generated from a 5 % NaCl 

solution at 30 °C.  

2.4. Results and Discussion 

2.4.1. Synthesis and Characterization of HOI Solutions 

The HOI solutions were synthesized using the process is illustrated in Figure 2.2 and the 

synthetic scheme is described in Scheme 2.2. As described in Figure 2.2, aqueous colloidal silica 

and PhEtTMS were first mixed in the presence of IPA which was used to stabilize PhEtTMS due 

to its poor stability in an aqueous solution. As a result, the hydrolysis of the methoxy groups of 

PhEtTMS occurred in the acidic pH environment. Then PMA, a high boiling solvent having a 

boiling point of 145-146 °C, was added to exchange with low boiling components (i.e. methanol, 

IPA, and water). The removal of low boiling protic components is necessary due to the potential 

reaction of the protic solvents with Mg particles to be used in Mg-rich primers. Before the 

solvent exchange step, the mixture solution was split into two equal portions, and TBAF, a 

condensation catalyst, was added into one of the portions to study the effect of TBAF on coating 

performance. Flouride ion has been shown to be an effective catalyst for nucleophilic 

substitutions at a silicon atom due to the formation of a highly reactive pentacoordinate 

intermediate in which fluorine is a ligand.
9,10

 Finally, low boiling components were removed at 

reduced pressure to further drive hydrolysis and condensation reactions. As illustrated in Scheme 

2.2, the whole process involved the hydrolysis of methoxy groups of PhEtTMS, and the 

condensation of derived silanol groups with surface silanol groups from silica nanoparticles. 
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Figure 2.2.  Synthetic process used to create the HOI solutions for making Mg-rich primers. 

 

Scheme 2.2. Synthesis of organically-modified silica in HOI solutions via sol-gel chemistry. 

The solids content of the mixture produced in the absence of TBAF (noTBAF) was 

determined to be 9.5 wt% while the solids content of the mixture produced in presence of TBAF 

(wTBAF) was determined to be 8.7 wt%. Confirmed by 
1
H-NMR spectra, as shown in Figure 2.3, 

the low boiling solvents, methanol (δ = 3.49, 1.09), IPA (δ = 1.22, 4.04), and water (δ = 1.56), 

were all eliminated after the solvent exchange process.
11
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Figure 2.3. 
1
H-NMR spectra of silica sols produced both in absence (blue) and in presence (red) 

of catalyst TBAF. 

29
Si-NMR is extensively used in organosilicon research to identify the type and 

concentration of silicon bonds. The chemical shifts associated with the Si compounds are 

described in Figure 2.4. For trifunctional organosilane derivatives, four groups of peaks referred 

to as T peaks, T0, T1, T2, and T3, correspond to the trifunctional organosilicon species that 

undergo 0, 1, 2, and 3 condensation reactions, respectively. The ranges of typical chemical shift 

for the four groups of T peaks are -37 to -39 ppm for T0, -46 to -48 ppm for T1, -53 to -57 ppm 

for T2, and -61 to -66 ppm for T3.
12

 For tetrafunctional organosilanes as shown in the bottom of 

Figure 2.4, five groups of peaks referred to as Q peaks, Q0, Q1, Q2, Q3, and Q4 correspond to the 

tetrafunctional organosilicon species that undergo 0, 1, 2, 3, and 4 condensation reactions, 

respectively. The ranges of typical chemical shifts for the five groups of Q peaks are -72 to -82 

ppm for Q0, -82 to -89 ppm for Q1, -92 to -96 ppm for Q2, -100 to -104 ppm for Q3, and ~ -110 

ppm for Q4.
12
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Figure 2.4. Chemical shifts of silicon compounds in 
29

Si-NMR. 

As a result, by using 
29

Si-NMR, the extent of condensation can be determined. The 
29

Si-

NMR spectra of HOI solutions, noTBAF and wTBAF, are displayed in Figure 2.5, with 

PhEtTMS as a control. The PhEtTMS showed a primary T0 peak and a small T1 peak, indicating 

some dimers in the PhEtTMS. After hydrolysis and condensation, the T0 peak disappeared for 

both noTBAF and wTBAF solutions, indicating that all PhEtTMS had undergone at least one 

condensation reaction.  A higher T3/T1 ratio was observed for the HOI solution wTBAF, 
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indicating a higher extent of condensation resulted from the addition of the condensation catalyst 

TBAF. The huge Q4 peaks stems from the Si-O linkages in the silica nanoparticles.  

 

Figure 2.5. 
29

Si-NMR spectra of noTBAF and wTBAF HOI solutions. 

The FTIR spectra of noTBAF and wTBAF after depositon onto KBr pellets and solvent 

evaporation are shown in Figure 2.6. Due to film thickness variations, the band at 1496 cm
-1

, 

which was attributed to C=C stretching of the phenyl group of PhEtTMS, was used to normalize 

the spectra. It can be found that the bands centered at 1120 cm
-1

 and 480 cm
-1

, which are 

attributed to Si-OCH3 stretching and bending, and the bands centered at 3350 cm
-1

 and 905 cm
-1

, 

which are attributed to O-H and Si-OH stretching respectively, were all reduced when TBAF 

was used.
13-15

 This again indicates the higher extent of condensation resulted by the addition of 

TBAF catalyst. 
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Figure 2.6. FTIR spectra of thin films of noTBAF and wTBAF HOI solutions. 

The particle size of the organosilane functionalized silica nanoparticles is shown in 

Figure 2.7. Both the HOI solutions, noTBAF and wTBAF, have larger particle size than the 

unmodified colloidal silica, Snowtex-O. The condensation reactions between PhEtTMS and 

silica nanoparticles contributed to the particle size increase. The use of TBAF resulted in a 

greater particle size suggesting the higher extent of condensation, which is consistent with the 

results obtained from 
29

Si-NMR and FTIR. 

 

Figure 2.7. Particle size of colloidal silica, organosilane functionalized silica sols without, and 

with TBAF. 
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2.4.2. Characterization of HOI Coatings 

The HOI solutions were then subjected to cure into clear coatings without adding Mg 

particles and the barrier properties examined. Small molecules such as water, oxygen, and 

electrolyte are essential for corrosion to occur. For corrosion protection of metals, barrier 

properties of coatings are important in preventing the small molecules from diffusing through 

coatings. For HOI coatings, barrier properties primarily depend on the crosslinking density 

achieved during cure. Therefore, the effect of curing conditions as well as the effect of TBAF 

catalyst on the crosslinking density of HOI coatings was investigated by FTIR and DSC. EIS was 

performed to measure the barrier properties. The cure conditions studied were ambient 

conditions (~23 °C) for 24 hours, 80 °C for 1 hour, and 80 °C for 24 hours.  

Figures 2.8 and 2.9 display the FTIR spectra of HOI coatings derived from noTBAF and 

wTBAF HOI solutions, respectively, as a function of the curing condition. All spectra were 

normalized with the band at 1496 cm
-1

 which is attributed to C=C stretching in the phenyl group 

of PhEtTMS. In Figure 2.8, it can seen observed that when thermal energy applied for curing 

increased from 23C/24hr to 80C/1hr and then to 80C/24hr, the bands centered at 1120 cm
-1

 and 

480 cm
-1

, which are attributed to Si-OCH3 stretching and bending, and the bands centered at 

3350 cm
-1

 and 905 cm
-1

, which are attributed to O-H and Si-OH stretching, respectively, all 

reduced, indicating the higher extent of condensation achieved during curing. The same trend 

was observed for HOI coatings based on wTBAF solution, as shown in Figure 2.9. 
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Figure 2.8.  FTIR spectra obtained from coatings produced from noTBAF and various curing 

conditions. 

 

Figure 2.9.  FTIR spectra obtained from coatings produced from wTBAF and various curing 

conditions. 
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The relative intensities of bands derived from O-H stretching (3350 cm
-1

), Si-OCH3 

stretching (1120 cm
-1

), Si-OH stretching (905 cm
-1

), and Si-OH bending were calculated using 

C=C stretching as a standard band. The results are shown as a function of TBAF catalyst and 

curing condition in Figure 2.10. The trend that the condensation extent increased with extent of 

curing was again clearly demonstrated here. Besides, it can be found that, at a given curing 

condition, with the use of TBAF catalyst, the HOI coating tends to possess a higher extent of 

condensation. 

 

 

Figure 2.10. Relative intensity of the FTIR peak absorbance at (a) 3350 cm
-1

 (O-H stretching), (b) 

1120 cm
-1

 (Si-O-CH3 stretching), (c) 905 cm
-1

 (Si-OH stretching), and (d) 480 cm
-1

 (Si-OCH3 

bending) to the peak absorbance at 1496 cm
-1

 (C=C stretching in phenyl group of PhEtTMS).  

The DSC thermograms and the glass transition temperatures (Tgs) are displayed in Figure 

2.11 and Figure 2.12, respectively. For both noTBAF and wTBAF HOI coatings, the increased 
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Tg with the extent of curing indicates the higher crosslinking density achieved. With regard to the 

affect of TBAF, at each given curing condition, an increased Tg resulted from adding TBAF was 

observed, illustrating the effect of TBAF as a condensation catalyst. 

 

Figure 2.11. DSC curves of HOI coatings. 

 

Figure 2.12. Glass transition temperature of coatings derived from noTBAF and wTBAF cured 

using various conditions. 

The HOI clear coatings were prepared by casting the HOI solutions onto AA2024-T3 
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low frequency (0.01 Hz) impedance values determined by generating Bode plots. It can be seen 

that both TBAF catalyst and curing condition have an impact on the barrier properties. For the 

coatings prepared from the noTBAF HOI solution, low frequency impedance increased with the 

extent of curing, indicating better barrier properties. While, for the coatings prepared from the 

wTBAF HOI solution cured at 80C/24hr condition did not yield to the high low frequency 

impedance than cured at 80C/1hr, which is attributed to the low film thickness as shown in Table 

2.1. The film thickness of coating wTBAF-80C/24hr is only 1/3 of that of coating wTBAF-

80C/1hr. With regard to the effect of TBAF, both noTBAF and wTBAF coatings cured at 

23C/24hr condition showed comparably poor barrier properties due to the low crosslinking 

density. Curing at 80C/1hr or 80C/24hr, the coating barrier properties were substantially 

enhanced when TBAF catalyst was used. Overall, the addition of TBAF catalyst and high 

temperature curing gave rise to better barrier properties, due to the obtainment of higher 

crosslinking density.  

 

Figure 2.13. Low frequency (0.01 Hz) impedance of HOI coatings derived from noTBAF and 

wTBAF HOI solutions, as a function of curing conditions. 
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2.4.3. Characterization of Mg-Rich Primers Based on HOI Binders 

Mg-rich primers were prepared using noTBAF and wTBAF HOI solutions and subjected 

to corrosion protection evaluation. The high concentration of Mg particles of 80 wt% was 

necessary to ensure close contact between Mg particles and between Mg particle and Al alloy 

substrate. The Mg-rich primers were tested by EIS for impedance/conductivity comparison, and 

the topcoaed Mg-rich primers were evaluated for long-term corrosion protection behavior by 

accelerated salt spray exposure according to ASTM B117. Figure 2.14 shows Bode plots for the 

Mg-rich primers prepared under three curing conditions.  It can be clearly observed that the 

addition of TBAF caused a substantial drop in low frequency impedance, indicating the 

enhanced conductivity. This might be attributed to higher crosslinking density and thus enhanced 

Mg interparticle contact resulting from the use of TBAF condensation catalyst. The other 

possibility is the disruption of the thin surface oxide layer of the Mg particles caused by fluoride 

ion during the film preparation process. 

 

Figure 2.14. Bode plots for Mg-rich primers. 
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The long-term corrosion protection of the scribed, topcoated Mg-rich primers were 

evaluated by accelerated salt spray exposure, as shown in Figure 2.15 and Figure 2.16, for 

samples based on noTBAF system and wTBAF system, respectively. The samples were tested up 

to 4400 hours in salt spray chamber. Both the addition of TBAF and curing condtion had a 

profound impact on the salt spray performance of the topcoated Mg-rich primers. From both 

figures, increasing the curing thermal energy led to better corrosion protection performance. By 

comparing Figure 2.15 with Figure 2.16, it can be seen that the presence of TBAF caused large 

scale blistering, while in absence of TBAF, the blistering was much less. So, it was surprisingly 

that, without TBAF, no blistering and corrosion products were observed for the topcoated Mg-

rich primers cured at 80C/24hr even after 4,400 hours of salt spray exposure.  

 

Figure 2.15.  Images of scribed, topcoated Mg-rich primers derived from noTBAF system after 

B117 salt spray exposure as a function of exposure time and curing condition. 
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Figure 2.16. Images of scribed, topcoated Mg-rich primers derived from wTBAF system after 

B117 salt spray exposure as a function of exposure time and curing condition. 

 

In order to understand the mechanism of extensive blistering formation in presence of 

TBAF catalyst, the origin of the blisters were examined by slicing out the blister, as shown in 

Figure 2.17. It was found that the blisters originated from within the Mg-rich primer layer. 

 

Figure 2.17. Image of a sliced blister from a topcoated sample based on wTBAF after salt spray 

exposure.  The metallic gray material observed within the blister is the Mg-rich primer. 
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Therefore, it is believed that the blister formation was due to the interaction of fluoride 

ion of TBAF catalyst with the oxide layer of Mg particles, resulting in the disruption of the oxide 

layer and the exposure of bare Mg. Mg is a very reactive metal which oxidizes very rapidly upon 

contact with water, generating magnesium hydroxide and hydrogen gas. The hydrogen gas 

liberated is the direct source of blisters. Actually the interaction between magnesium oxide with 

fluoride ion generating magnesium fluoride has been reported elsewhere.
16-18

 Therefore, although 

TBAF was found to effectively promote the condensation reactions, leading to higher crosslink 

density and, thus, barrier properties, it reacts with the oxide layer of Mg particles, resulting in the 

rapid oxidation of Mg particles. The corrosion protection of Mg-rich primers in presence of 

TBAF was impaired and, thus, the TBAF catalyst should not be used for this application. 

However, without TBAF catalyst, the Mg-rich primers based on HOI systems provide excellent 

corrosion protection for Al alloy substrate when thoroughly cured. 

2.5. Conclusion 

Novel Mg-rich primers based on a HOI binder system were produced, and the effects of 

the addition of TBAF as a condensation catalyst and curing conditions on corrosion protection 

over Al alloy substrate, AA2024-T3, were investigated determined. It was found that higher 

thermal energy provided during curing led to higher crosslink density and better barrier 

properties. Similarly, with TBAF catalyst, greater particle size, higher crosslink density, and 

better barrier properties were achieved. However, the presence of TBAF was found to result in 

the disruption of oxide layer of Mg particles which led to the lower conductivity of the derived 

Mg-rich primers by EIS and blister formation of topcoated Mg-rich primers in salt spray 

exposure. The mechanism involved the reaction between fluoride ion and the oxide layer causing 

the exposure and comsuption of Mg particles which resulted in the hydrogen gas release forming 
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blisters. A non-ionic catalyst is therefore expected to provide desirable barrier properties and 

corrosion protection without blister formation. 
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CHAPTER 3. HYBRID ORGANIC-INORGANIC (HOI) MATERIALS DEVELOPED 

BY AUTOMATED PARALLEL SYSTEM 

3.1. Abstract 

The application of hybrid organic-inorganic (HOI) binders for making novel Mg-rich 

primers is highly desirable, thus, the synthesis of hybrid organic-inorganic (HOI) materials by 

sol-gel chemistry was further explored by using automated parallel reactor system, i.e. a 

Chemspeed Autoplant A-100TM Semi-Continuous Synthesis Station. The Chemspeed Synthesis 

Station allows the simultaneously automated synthesis of 12 reactions. The syntheses were 

accomplished by condensing silica nanoparticles with the alkoxy silane, 

phenethyltrimethoxysilane (PhEtTMS). The effects of adding the condensation catalyst, 

tetrabutylammonium fluoride (TBAF), silane content, and curing conditions were studied using 

solids content, particle size, 
29

Si-NMR, and EIS. It was found that the increased silane content 

caused a significantly increased solids content, and better barrier properties were observed for 

80⁰C/24hr cured HOI binders. However, the other properties of HOI solutions and HOI binders 

were irrelevant to the variables explored, which might be due to the batch-to-batch variation 

caused by the individual dispensing of the synthesis station.  

3.2. Introduction 

Magnesium-rich primers have been reported as an alternative replacement for toxic 

chromate inhibitors for corrosion protection of aluminum alloys. In the galvanic couple, Mg 

particles corrode preferentially over Al, providing cathodic protection and inhibiting corrosion. 

HOI materials are highly desirable binders for Mg-rich primers derived from the combined 

properties of both organic and inorganic components. Due to the complexity involved in the 
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synthesis of HOI binders, i.e. catalyst, pH, alkoxy silane type, a combinatorial workflow has 

been designed and used to study the effect of various factors on the stability of sols.
1
 It was 

reported that the phenethyltrimethoxysilane (PhEtTMS) has been proved to be a good candidate 

for making stable sol solutions. However, the mechanisms involved are not well understood.  

Combinatorial and high-throughput methods have been developed to accelerate the 

exploration and discovery of new materials in pharmaceutical application. Nowadays, 

combinatorial and high-throughput methods have been used in various applications including 

catalysts,
2
 electronics,

3
 coatings,

4
 and so on. Due to the composition and process variables 

involved in polymer synthesis and preparation, a combinatorial and high-throughput method is 

highly desirable. The Chemspeed synthesis station is an automated parallel reactor system which 

has been used to synthesize waterborne PUDs (polyurethane dispersion),
5
 triazoles,

6
 

hyperbranched polylysines,
7
 and polymer crystallization study.

8
 Here, a high-throughput method 

was applied by using a Chemspeed synthesis station to investigate the effects of variables on the 

properties of HOI solutions and binders.  

3.3. Experimental 

3.3.1. Raw Materials 

Aluminum alloy panels (AA 2024-T3) were obtained from Q-panel Lab Products, with a 

size of 20 cm x 10 cm x 1 mm.  Prior to use, the panels were sandblasted to remove the oxide 

layer and then cleaned with hexane. Snowtex-O, a colloidal silica dispersion, was obtained from 

Nissan Chemical. According to the manufacturer, Snowtex-O has a pH of 2-4, silica content of 

20-21 wt%, and average particle size of 10-20 nm. Tetrabutyl ammonium fluoride (TBAF, 1.0 M 

in tetrahydrofuran), isopropyl alcohol (IPA), and propylene glycol monomethyl ether acetate 
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(PMA) were purchased from Sigma Aldrich. Phenethyl trimethoxysilane (PhEtTMS) was 

purchased from Gelest. Salt water used for corrosion screening by immersion testing was 3 wt% 

sodium chloride in water purified by reverse osmosis. Chromium (III) acetylacetonate and 

acetone-d6 for 
29

Si-NMR were obtained from Alfa Aesar. All reagents were used without further 

purification. 

3.3.2. Automated Synthesis of HOI Solutions 

The synthesis of HOI solutions were accomplished using a Chemspeed Autoplant A-

100TM Semi-Continuous Synthesis Station which consists of 12 reactor modules. In each 

module, one of the two 100 mL vessels was used as the reactor vessel, the other as the feed 

vessel, and the 50 mL vessel was used as the trap for distillation products. Six formulations were 

designed based on two variables, the addition of the catalyst and three silane levels. Each 

formulation was replicated. The dispensing volume for each formulation was described in Table 

3.1. Each reactor vessel was charged with 6.1 mL Snowtex-O, 8.7 mL IPA, and 1.0 mL 

PhEtTMS for lowSilane formulation or 2.0 mL for medSilane formulation or 3.9 mL for 

highSilane formulation. Each feed vessel was charged with 51.105 mL PMA (and 2 mL 

TBAF/IPA solution for wTBAF formulation which contains 0.0359 mL TBAF). The reactor 

vessel was heated at 60 °C to reflux and allowed to reflux for 2 hours with rapid stirring. The 

mixture was then cooled to room temperature before the content in the feed vessel was fed into 

the reactor using two syringe pumps on the reactor module under stirring. Each mixture was 

concentrated at 84 °C, and all distillation products, including IPA, water, and methanol, were 

collected by a condenser into the 50 mL vessel. 



 

 

 

5
3 

Table 3.1. Dispensing volume of chemicals (in mL) for twelve HOI solution syntheses. 

Vessel Chemical 

noTBAF-

lowSilane 

noTBAF-

medSilane 

noTBAF-

highSilane 

wTBAF-

lowSilane 

wTBAF-

medSilane 

wTBAF-

highSilane 

Reactor vessel 

Snowtex-O 6.1 6.1 6.1 6.1 6.1 6.1 

IPA 8.7 8.7 8.7 8.7 8.7 8.7 

PhEtTMS 1.0 2.0 3.9 1.0 2.0 3.9 

Feed vessel 

PMA 51.1 51.1 51.1 51.1 51.1 51.1 

TBAF/IPA 0 0 0 2 2 2 
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3.3.3. Preparation of HOI Coatings 

Of the twelve HOI solutions synthesized in parallel, four solutions with low PhEtTMS to 

silica ratio formed a powder when subjected to heating. Thus only eight HOI solutions with 

medium and high PhEtTMS to silica ratio were applied onto aluminum substrate for curing. Prior 

to coating application, AA2024-T3 panels were cleaned  and deoxidized by:  1) immersing for 10 

minutes in a 45 °C aqueous detergent bath consisting of 137 g/L of Oakite Aluminum Cleaner 

164 agitated with bubbling air; 2) rinsing with deionized (DI) water; 3) immersing for 2 minutes 

in 55 °C DI water; 4) immersing in a an ambient temperature deoxidizer solution consisting of 

25 wt% ferric sulfate, 3 wt% ferrous sulfate, 2 wt% sodium bifluoride, 5 wt% nitric acid, and 65 

wt% DI water agitated with bubbling nitrogen for 10 minutes; and 5) rinsing with DI water.  The 

coatings described in Table 3.2 were produced by creating an 8.5 cm x 18 cm rectangular 

reservoir on top of a substrate panel by adhering a 508 μm thick polyethylene frame to the panel, 

pouring approximately 6 ml of a HOI mixture (i.e. noTBAF or wTBAF) into the reservoir, 

allowing the solvent to flash off in a ventilation hood, and subsequently curing at either room 

temperature (~ 23 °C) for 24 hours, 80 °C for 1 hour, or 80 °C for 24 hours. 

3.3.4. Instrumentation 

A Chemspeed Autoplant A-100TM Semi-Continuous Synthesis Station was used for the 

HOI solution synthesis, which consists of 12 reactor modules for parallel reactions. Each module 

contains two 100 mL stainless steel vessels and one 50 mL vessel, equipped with independent 

temperature control, mechanical stirring, N2 gas purge and reflux cooling. Chemicals were 

charged into the vessels through syringe pumps by a robotic arm controlled by a computer. 

Solids content was determined gravimetrically by comparing the weight of the materials before 

and after heating the HOI solution samples at 200 °C in a vacuum oven overnight.
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Table 3.2. Dry film thickness (μm) of the HOI binders. 

Sample 

Designation 

noTBAF-

medSilane-

23C/24hr 

noTBAF-

medSilane-

80C/1hr 

noTBAF-

medSilane-

80C/24hr 

noTBAF-

highSilane-

23C/24hr 

noTBAF-

highSilane-

80C/1hr 

noTBAF-

highSilane-

80C/24hr 

Set 1 29.8 + 11.9 14.8 + 4.9 17.1 + 9.1 12.4 + 6.4 20.3 + 9.5 23.6 + 11.1 

Set 2 13.5 + 9.5 12.6 + 6.3 14.6 + 6.4 26.2 + 11.1 13.5 + 2.8 17.9 + 5.6 

Sample 

Designation 

wTBAF-

medSilane-

23C/24hr 

wTBAF-

medSilane-

80C/1hr 

wTBAF-

medSilane-

80C/24hr 

wTBAF-

highSilane-

23C/24hr 

wTBAF-

highSilane-

80C/1hr 

wTBAF-

highSilane-

80C/24hr 

Set 1 17.3 + 4.2 9.5 + 3.6 16.4 + 5.0 31.6 + 15.1 32.7 + 11.7 24.7 + 6.6 

Set 2 7.7 + 3.7 10.8 + 6.7 11.5 + 5.9 22.7 + 8.9 23.8 + 11.2 20.8 + 10.7 
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The values of solid content were calculated by the following equation, where wd and ww 

are the weight of dry sample and wet sample, respectively. 

      (   )   
  

  
                                                   Equation 3.1 

Particle size was measured using a NicompTM CW 380 Submicron Particle Sizer.  

Dilution of the colloid dispersions prior to measurement was done using IPA. Silicon NMR (
29

Si 

NMR) spectra were collected at 79.43 MHz for 
29

Si, and the acquisition parameters were a 62.5 

kHz sweep width with an offset of 0 ppm, a relaxation delay of 5 seconds, and an acquisition 

time of 0.262 s.  Using these conditions, 14,000 scans were collected at an average temperature 

of 21.4 °C.  The sample tubes were equipped with Teflon® bottoms and the lock solvent was 

acetone-d6 with chromium (III) tris-acetylacetonate (Cr(acac)3) added at a concentration of 0.25 

M. Cr(acac)3 was added in order to allow for complete relaxation recovery and quantitative 

spectra.  A Bruker Optics Vertex 70 FT-IR was used to collect Fourier transform infrared (FTIR) 

spectra in transmission from samples deposited on a KBr plate.  Spectra were analyzed using 

OPUS software from Bruker.  EIS was conducted with a Gamry MultiEchem 8 Electrochemical 

Workstation and Gamry Framework software. The electrolyte used was 3 wt% NaCl in DI water 

and the frequency range was 10
4
 Hz to 0.01 Hz with an applied 10 mV R.M.S. voltage vs. open 

circuit potential.  A Ag/AgCl reference electrode and Pt mesh counter electrode were utilized 

3.4. Results and Discussion 

3.4.1. Synthesis and Characterization of HOI Solutions 

The variables explored were the catalyst and the silane to silica ratio, as illustrated in 

Figure 3.1. The effect of adding TBAF and without adding TBAF was compared. The silane to 

silica ratios (moles PhEtTMS per grams of silica) of 0.00325, 0.0065, and 0.013 were 
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investigated. Each formulation was replicated. Therefore, a total 12 reactions were carried out 

simultaneously by the synthesis station. All twelve formulations produced stable sol solutions.  

 

Figure 3.1. An schematic illustration of experimental design of HOI solution synthesis using 

Chemspeed. (Each formulation was replicated) 

 

The effect of the variables were evaluated by comparing the weight of the synthesized 

HOI solution products, the distillation products, and the total products (HOI solution + distillate) 

in each reactor, as shown in Figure 3.2. The reproducability using the Chemspeed Synthesis 

Station was displayed by comparing the weights of HOI solutions, distillates, and total products 

using two reactors based on the same formulation. It can be seen that the Chemspeed Synthesis 

Station reproduces well for most of the syntheses since the weight differences between two 

batches on the same formulation were minor. 
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Figure 3.2. Evaluation of Chemspeed Synthesis Station reproduction by comparing HOI solution 

synthesis by (a) product weight, (b) distillation product weight, and (c) total weight. 

 

Figure 3.3 displays the solids content of the HOI solutions. In contrast to the weight 

comparison, solid content shows a consistent increase with silane content for both HOI solutions 

without and with TBAF catalyst. And the replicated batches showed similar solid contents, 

indicating that the Chemspeed Synthesis Station reproduces very well for each formulation. By 

comparing the weight and solid content in evaluating the reproducability of the Chemspeed 

Synthesis Station, it was concluded that the dispensing volume of the reactants in each reactor 

may vary but the ratio between the reactants were consistent. Similar reaction conditions, 

temperature, stirring, reflux, etc. were provided by Chemspeed Synthesis Station. 

40

42

44

46

48

50

52

54

56

58

noTBAF

lowSilane

noTBAF

medSilane

noTBAF

highSilane

wTBAF

lowSilane

wTBAF

medSilane

wTBAF

highSilane

P
ro

d
u

ct
 W

ei
g

h
t 

(g
)

HOI Solution Component

0

2

4

6

8

10

12

14

16

18

noTBAF

lowSilane

noTBAF

medSilane

noTBAF

highSilane

wTBAF

lowSilane

wTBAF

medSilane

wTBAF

highSilane

D
is

ti
ll

a
ti

o
n

 (
g

)

HOI Solution Component

50

52

54

56

58

60

62

64

66

noTBAF

lowSilane

noTBAF

medSilane

noTBAF

highSilane

wTBAF

lowSilane

wTBAF

medSilane

wTBAF

highSilane

T
o
ta

l 
W

ei
g
h

t 
(g

)

HOI Solution Component

(a) (b) 

(c) 

HOI Solution Set 1 

HOI Solution Set 2 



 

59 

 

 

Figure 3.3. Solids content of the HOI solutions produced by Chemspeed. 

Figure 3.4 and Figure 3.5 displays the 
29

Si-NMR spectra of the HOI solutions, comparing 

the effect silane content and the addition of TBAF catalyst, respectively. The silane content did 

not seem to cause a large difference in silanol condensation when TBAF catalyst was not added 

as shown in Figure 3.4 (a) due to the similar peak intensity, however higher silane level caused 

higher silanol condensation when TBAF catalyst was added as indicated by the higher T2 and T3 

peak intensities, as shown in Figure 3.4 (b). In contrast to what has been observed in Chapter 2, 

the addition of TBAF catalyst did not lead to the increased silanol condensation as shown here in 

Figure 3.5 (a) and (b). It may due to the batch-to-batch variation caused by the individual robotic 

dispensing.  
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Figure 3.4. 
29

Si-NMR spectra of the HOI solutions produced to compare the effect of PhEtTMS 

level in absence (a) and in presence (b) of TBAF. 
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Figure 3.5. 
29

Si-NMR spectra of the HOI solutions produced to compare the effect of 

condensation catalyst TBAF at medium (a) and high (b) of PhEtTMS level. 
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Figure 3.6 displays the particle size of the HOI solutions. The particle size appeared to be 

irrelevant to the silane content. As opposed to what has been observed in Chapter 2, the effect of 

adding TBAF catalyst on the particle size is negligible here. The lack of trends may indicate 

batch-to-batch variation caused by the synthesis station.  

 

Figure 3.6. Particle size of the HOI solutions produced by Chemspeed. 

3.4.2. Characterization of HOI Coatings 

Due to the relative low extent of condensation and lack of covalent bonding between 

silica nanoparticles, the dried HOI solutions with low silane content were still individual 

particles and, thus, only the HOI solutions with medium and high silane content were subjected 

to curing onto AA2024-T3. Three curing conditions were applied, namely, room temperature for 
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24 hr (23C/24hr), 80 ⁰C for 1 hr (80C/1hr), and 80 ⁰C for 24 hr (80C/1hr). Therefore, with each 

formulation replicated, a total of 24 HOI binders were generated, as shown in Figure 3.7. 

 

Figure 3.7. An schematic illustration of experimental design of HOI binder produced. 

The barrier properties were tested using EIS. Figure 3.8 displays the low frequency (0.01 

Hz) impedance of the coatings obtained from Bode plots. Generally, as shown in Figure 3.8, the 

low frequency impedance was influenced by curing conditions. In general, when higher thermal 

energy was applied to cure the coatings, the coatings showed better barrier properties due to the 

higher crosslinking density. The exceptions are the binders generated from HOI solutions, 

noTBAF-medSilane-1, wTBAF-medSilane-1 and wTBAF-medSilane-2, which did not always 
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show the higher low frequency impedance when higher thermal energy was applied to cure the 

coatings. This anomaly is most likely due to the difference in film thickness between the coatings, 

as shown in Table 3.2.  With regard to the effect of adding TBAF catalyst and silane content, no 

obvious trend was observed.   

 

Figure 3.8. Low frequency (0.01 Hz) impedance of coatings derived from noTBAF and wTBAF 

cured using various conditions. 

3.5. Conclusion 

The HOI binders for making Mg-rich primers were automated and parallelly prepared 

using a Chemspeed Autoplant A-100TM Semi-Continuous Synthesis Station. The Chemspeed 

synthesis station reproduced very well on the syntheses based on the same formulation. The solid 
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content showed a clear trend with the increase of silane content, whereas the other properties, i.e. 

particle size, condensation extent, barrier property, did not change with the variables explored, 

which was not consistent with what was observed in Chapter 2. This may be attributed to batch-

to-batch variation when the synthesis station dispensed the reactants and the control of the 

reaction condition for individual reactors.  
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CHAPTER 4. HYBRID ORGANIC-INORGANIC (HOI) MATERIALS—THE 

EFFECT OF CATALYST 

4.1. Abstract 

Condensation catalysts were found to have a profound effect on the properties of HOI 

binders as well as the corrosion protection for aluminum alloys, as discussed in Chapter 2, which 

led to the catalyst exploration on the synthesis of HOI binders.  The non-ionic catalyst, dibutyltin 

dilaurate (DBTDL), and the ionic catalyst, tetrabutyl ammonium fluoride (TBAF), were 

compared with respect to their ability to catalyze the condensation of the HOI binders. 

Preliminary results were obtained by characterizing the HOI solutions using solid content, 

particle size, and FTIR. Both catalysts promoted the condensation reaction. But the condensation 

extent was found to be lower when DBTDL was used as a catalyst, as compared with TBAF, 

suggesting the weaker catalysis strength of the non-ionic catalyst. 

4.2. Introduction 

The catalyst plays an important role in determining the structure of the products derived 

from sol-gel technology. A basic catalyst tends to catalyze the condensation reaction leading to 

the formation of a more compact structure, while an acid catalyst tends to catalyze hydrolysis 

reactions leading to the formation of more linear structures. Besides the impact on the formation 

of structure, the catalyst also affects the corrosion protection behavior of Mg-rich primers, as 

discussed in Chapter 2. It has been found that TBAF, working as a condensation catalyst for 

synthesizing HOI binders via sol-gel chemistry, leads to the oxidation of Mg particles and 

hydrogen gas liberation during salt spray exposure, resulting in blistering formation. A non-ionic 

catalyst was proposed to replace TBAF to prevent the ion release and the interaction with Mg 
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particles. Therefore, a non-ionic catalyst, dibutyltin dilaurate (DBTDL), was studied and 

compared with TBAF.  

4.3. Experimental 

4.3.1. Raw Materials 

Snowtex-O, a colloidal silica dispersion, was obtained from Nissan Chemical. According 

to the manufacturer, Snowtex-O has a pH of 2-4, silica content of 20-21 weight percent, and 

average particle size of 10-20 nm. Tetrabutyl ammonium fluoride (TBAF, 1.0 M in 

tetrahydrofuran), dibutyltin dilaurate (DBTDL), isopropyl alcohol (IPA), and propylene glycol 

monomethyl ether acetate (PMA) were purchased from Sigma Aldrich. Phenethyl 

trimethoxysilane (PhEtTMS) was purchased from Gelest. All reagents were used without further 

purification. 

4.3.2. Synthesis and Characterization of HOI Solutions 

75 mls of Snowtex-O and 108 mls of IPA were combined in a 2000 ml Erylenmeyer flask.  

50 g of PhEtTMS was slowly added to this mixture using rapid, magnetic stirring.  The mixture 

was then heated to reflux and allowed to reflux for 2 hours.  The mixture was then cooled to 

room temperature before 612 g of PMA was added using rapid stirring.  The mixture was then 

split into three equal portions (203 g in each portion) and each portion poured into a pre-weighed, 

2,000 ml, one-neck, round-bottomed flask.  To two of the three solutions, 0.27 g of the 1.0 M 

TBAF solution in THF and DBTDL was added, respectively.  Each mixture was concentrated on 

a roto-evaporator that utilized a 70 °C water bath.  Essentially all of the isopropanol, water, and 

methanol were removed from the mixtures as indicated by the change in weight of the solution 
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and proton nuclear magnetic resonance spectroscopy.  The solids content of both mixtures was 

determined gravimetrically.   

4.3.3. Preparation of HOI Coatings 

Prior to coating application, AA2024-T3 panels were cleaned  and deoxidized by:  1) 

immersing for 10 minutes in a 45 °C aqueous detergent bath consisting of 137 g/L Oakite 

Aluminum Cleaner 164 agitated with bubbling air; 2) rinsing with deionized (DI) water; 3) 

immersing for 2 minutes in 55 °C DI water; 4) immersing in a an ambient temperature 

deoxidizer solution consisting of 25 wt% ferric sulfate, 3 wt% ferrous sulfate, 2 wt% sodium 

bifluoride, 5 wt% nitric acid, and 65wt % DI water agitated with bubbling nitrogen for 10 

minutes; and 5) rinsing with DI water.  The HOI coatings were produced by creating an 8.5 cm x 

18 cm rectangular reservoir on top of a substrate panel by adhering a 508 μm thick polyethylene 

frame to the panel, pouring approximately 6 mls of a HOI solution (i.e. noCatalyst or DBTDL or 

TBAF) into the reservoir, allowing the solvent to flash off in a ventilation hood, and 

subsequently curing at either room temperature (~ 23 °C) for 24 hours, 80 °C for 1 hour, or 

80 °C for 24 hours.   

4.3.4. Instrumentation 

Solids content was determined gravimetrically by comparing the weight of the materials 

before and after heating the HOI solution samples at 200 ⁰C in a vacuum oven overnight. The 

values were calculated by the following equation, where wd and ww are the weight of dry sample 

and wet sample, respectively. 

      (   )   
  

  
                                                   Equation 4.1 
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Particle size was measured using a NicompTM CW 380 Submicron Particle Sizer.  

Dilution of the colloid dispersions prior to measurement was done using IPA.  A Bruker Optics 

Vertex 70 FT-IR was used to collect Fourier transform infrared (FTIR) spectra in transmission 

from samples deposited on a KBr plate.  Spectra were analyzed using OPUS software from 

Bruker.   

4.4. Results and Discussion 

4.4.1. Synthesis and Characterization of HOI Solutions 

Figure 4.1 displays the solids content of the HOI solutions produced without using any 

catalyst, using DBTDL and TBAF as catalyst, respectively. The three HOI solutions showed a 

similar solids content. 

 

Figure 4.1. Solids content of HOI solutions produced without catalyst, with DBTDL and TBAF 

as catalyst, respectively. 

 

Figure 4.2 displays the particle size of the colloidal silica as a control, the HOI binders 

produced without using any catalyst, using DBTDL and TBAF as catalyst, respectively. The 

particle size increase when PhEtTMS was used to modify the colloidal silica nanoparticle surface. 
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The increase was enhanced when using condensation catalyst, DBTDL and TBAF. By 

comparing the two condensation catalysts, it clearly shows that the ionic TBAF catalyst allows 

greater extent of condensation, resulting in larger functionalized silia nanoparticles. Similar 

relatively low condensation extent caused by using DBTDL catalyst was reported elsewhere.
1
 In 

contrast, fluoride catalyst is one of the most effective condensation catalysts, the mechanism of 

which was proposed to involve the displacement of OH- by F- and thereby the reduced electron 

density and higher susceptibility to nucleophilic attack of silicon atom.
2
 It was also proposed by 

Iler that the higher condensation rate by fluoride anion catalyst resulted from the temporarily 

increased coordination of silicon from four to five or six.
3
  

 

Figure 4.2. Particle size of colloidal silica, the HOI solutions produced without catalyst, with 

DBTDL and TBAF as catalyst, respectively. 

 

4.4.2. Characterization of HOI Coatings 

FTIR was used to characterize the condensation extent of the HOI coatings. Figure 4.3 

presents the FTIR spectra of the HOI coatings produced with DBTDL catalyst under three 

different curing conditions. The results were consistent with what was observed before, the 

reduction of the band centered at 1120 cm
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bands at 3350 cm
-1

 (SiO-H), 905 cm
-1

 (Si-OH) and 480 cm
-1

 (SiO-CH3 bending) indicates a 

higher extent of condensation. 

 

Figure 4.3. HOI binders produced under different curing conditions 

Figure 4.4 (a)-(c) displays the FTIR spectra of the HOI coatings as a function of catalyst 

under different curing conditions. Under all three curing conditions, the reduction of the bands 

centered at 3350 cm
-1

 (SiO-H) and 905 cm
-1

 (Si-OH) could be observed, suggesting the higher 

extent of condensation resulted from using the condensation catalyst DBTDL and TBAF. TBAF 

caused higher curing extent than DBTDL. However, the intensity of the band centered at 1120 

cm
-1

 (Si-O-CH3 asymmetric stretching) and 480 cm
-1

 (SiO-CH3 bending) was not reduced for 

hydrolysis reaction. This may be attributed to the less extent of hydrolysis during curing with the 

condensation catalysts. 
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Figure 4.4. FTIR spectra of HOI binders produced using different catalyst and cured under (a) 

23C/24hr, (b) 80C/1hr, (c) 80C/24hr. 
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4.5. Conclusion 

The non-ionic dibutyltin dilaurate (DBTDL) catalyst and ionic tetrabutyl ammonium 

fluoride (TBAF) catalyst were compared with respect to their capability of catalyzing 

condensation reactions of the HOI binders. Preliminary results were obtained based on the 

characterization of particle size and FTIR. Both catalysts promoted the condensation reaction, 

while the DBTDL tends to have less impact on the condensation reaction than TBAF.  
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CHAPTER 5. PERFECTLY ALTERNATING POLYCARBONATE-

POLYDIMETHYLSILOXANE (PC-PDMS) MULTIBLOCK COPOLYMERS—PART I 

5.1. Abstract 

 Perfectly alternating PC-PDMS multiblock copolymers were produced using a two-step 

synthesis method, which involved the interfacial polymerization of a linear allyl-terminated PC 

and the subsequent hydrosilylation coupling of allyl-terminated PC and hydride-terminated 

PDMS. By this method, the PC-PDMS block copolymers with controlled block length and 

alternating block architecture were obtained. In the first step of the synthesis, the pure allyl-

terminated PC was synthesized by interfacial polymerization of bisphenol-A (BPA), triphosgene 

(TPG), and eugenol as an end-capping monomer.  Two different catalysts were investigated, 

triethylamine (TEA) and the phase transfer catalyst, triethylbenzylammonium chloride (TEBA).  

Other variables explored for the synthesis were BPA/eugenol mole ratio, concentration of TPG, 

and concentration of the catalyst.  The allyl-terminated PCs were characterized using proton and 

phosphorous nuclear magnetic resonance spectroscopy (
1
H-NMR, 

31
P-NMR), gel-permeation 

chromatography (GPC), and matrix-assisted laser desorption/ionization time-of-flight mass 

spectroscopy (MALDI-TOF).  Pure allyl-terminated PCs were obtained by using the phase 

transfer catalyst. In the second step of this method, the successful formation of PC-PDMS block 

copolymers was demonstrated by GPC and 
1
H-NMR.  The modulated differential scanning 

calorimetry (MDSC) results indicated the partial miscibility of PDMS phase with the PC phase 

especially for short PDMS block lengths. Phase inversion could be observed from dynamic 

mechanical analysis (DMA). Morphological characterization using atomic force microscopy 

(AFM) showed nanoscale phase separation. Significantly increased char yield of the block 

copolymers as compared to pure PC was demonstrated by thermogravimetric analysis (TGA). 
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The synthesized PC-PDMS block copolymers exhibited high optical clarity at up to 62 wt% 

PDMS content. In comparison with a commercial PC-PDMS block copolymer, the synthesized 

block copolymer showed higher optical clarity, indicating a finer morphology from the uniform 

alternating block architecture.  

5.2. Introduction 

Bisphenol-A-based polycarbonate (PC) is generally recognized as the most impact 

resistant, transparent engineering thermoplastic available.
1,2

  While PC exhibits exceptionally 

good impact strength for an engineering thermoplastic, it has a tendency to undergo brittle failure 

in notched impact tests.
3
  While rubber toughening of PC by melt blending rubber particles into 

the PC can significantly increase impact properties, the particles generally scatter visible light 

resulting in opaque materials.
4
  To overcome this deficiency, block copolymer structures have 

been investigated in which rubbery polymer segments are incorporated directly into the PC 

backbone to limit rubber domain size and produce transparent materials. Polycarbonate-

polysiloxane (PC-PSiO) block copolymers were first synthesized by Vaughn in the 1960s.
5-7

 The 

method involved reacting phosgene with bisphenol A (BPA) and a phenolic-terminated PDMS. 

The phenolic terminated PDMS can be prepared by reaction of a chloro-terminated siloxane with 

excess BPA, or, alternatively, by hydrosilation of a hydride-terminated siloxane with a 

functionalized phenolic compound. The phenol end-capped PDMS can then easily be 

incorporated into polycarbonate via interfacial polymerization.
8
 The majority of the synthesis 

strategies for PC-PSiO multiblock copolymers involve the reaction of a polydimethylsiloxane 

(PDMS) modified with nucleophilic end-groups with BPA and phosgene. As a result of the 

synthesis method, the resulting copolymers possess polydisperse block lengths which affect their 
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optical and mechanical properties.
7
 Depending on the PDMS block length and loading, the 

resulting PC-PDMS block copolymers are either a flexible elastomer, or a rigid thermoplastic. 

Various surface and bulk properties were studied and the PC-PDMS block copolymers were 

found to be more flame retardant, wear resistant, aging resistant and pure PC.
9-12 

Herein, our 

study describes a novel two-step synthesis method to generate PC-PDMS block copolymers 

which possess controlled block lengths and a perfectly alternating block architecture.  

5.3. Experimental 

5.3.1. Raw Materials 

Bisphenol-A (BPA), triphosgene (TPG), 4-allyl-2-methoxyphenol (eugenol), 2,5-

dihydroxybenzoic acid (DHB), potassium-trifluoroacetate, sodium hydroxide (NaOH), 

triethylamine (TEA), triethybenzylammonium chloride (TEBA), 1,2-phenylene 

phosphorochloridite, 2,4,6-trichlorophenol, deuterated chloroform (CDCl3, containing 0.03 % 

TMS), chromium (III) acetylacetonate, methanol,  1,1,2,2-tetrachloroethane (TCE), and platinum 

oxide (PtO2) were obtained from Aldrich. Anhydrous methylene chloride (CH2Cl2) and 

tetrahydrofuran (THF) were purchased from VWR. Hydride-terminated PDMSs with a hydride 

equivalent weight of 350 g/mole (DMS-H03), 550 g/mole (DMS-H11), 2,500 g/mole (DMS-

H21), and 6,000 g/mole (DMS-H25) were obtained from Gelest. TCE was dried with molecular 

sieves activated at 300 °C. All the other reagents were used as received. 

5.3.2. Synthesis of Allyl-Polycarboante (Allyl-PC) 

As a means to develop a process for producing allyl-PCs with high purity and controlled 

molecular weight, a series of polymerizations were conducted in which reagent concentrations 

and catalyst composition was varied.  The two catalysts investigated were TEA and TEBA.  
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Figure 5.1 displays a schematic of the experimental design.  A total of 24 unique allyl-PCs were 

prepared.   A representative procedure for synthesizing allyl-PC with TEA as a catalyst is as 

follows (A16 in Table 5.1): To a 1 L flask equipped with a high-speed overhead stirrer, nitrogen 

inlet, inlet tube for TPG addition, outlet tube connected to a NaOH scrubbing solution, and a 

thermometer, 4.79 g of BPA (21 mmol), 0.69 g of eugenol (4.2 mmol), and 5.04 g of NaOH (126 

mmol) were dissolved in 200 mL of H2O and cooled below +5 °C using an ice bath.  TPG (2.49 

g, 8.4 mmol) was dissolved in 200 mL of anhydrous CH2Cl2 in a 500 mL one-neck, round-

bottom flask inside a glove box.  To the polymerization reactor, TEA (0.30 g, 3.0 mmol) was 

added to the aqueous phase just before addition of the TPG solution.  The TPG solution was 

added to the aqueous phase under high speed stirring (900 rpm) using a syringe pump.  Reaction 

temperature was kept below +5 °C during the TPG addition.  After completion of the TPG 

addition, high-speed stirring was continued for 90 minutes at a temperature below +15 °C.  The 

CH2Cl2 phase was separated and washed with water until the pH of the aqueous phase was 7.0.  

Allyl-PC was isolated from CH2Cl2 by precipitation into methanol.  The precipitate was filtered, 

dried at 80 °C under vacuum, and characterized using proton nuclear magnetic resonance 

spectroscopy (
1
H-NMR), phosphorous-31 NMR (

31
P-NMR), gel-permeation chromatography 

(GPC), and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass 

spectroscopy.  

A representative procedure for synthesizing an allyl-PC using TEBA as the catalyst is as 

follows (B4 in Table 5.2): To a 1 L flask equipped with a high-speed overhead stirrer, nitrogen 

inlet, inlet tube for TPG addition, outlet tube connected to a NaOH scrubbing solution, and a 

thermometer, 4.79 g of BPA (21 mmol),  0.35 g of eugenol ( 2.1 mmol), and 5.04 g of NaOH 

(126 mmol) were dissolved in 200 mL of H2O and cooled below +5 °C using an ice bath.  TPG 
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(2.49 g, 8.4 mmol) and TEBA (0.68 g, 3.0 mmol) were dissolved in 200 mL of anhydrous 

CH2Cl2 in a 500 mL one-neck, round-bottom flask inside a glove box.  The organic phase was 

added to the aqueous phase under high speed stirring (900 rpm) using a syringe pump.  Reaction 

temperature was kept below +5 °C during the TPG addition.  After completion of the TPG 

addition, high-speed stirring was continued for 90 minutes at a temperature below +15 °C.  The 

CH2Cl2 phase was separated and washed with water until the pH of the aqueous phase was 7.0.  

Allyl-PC was isolated from CH2Cl2 by precipitation into methanol.  The precipitate was filtered, 

dried at 80 °C under vacuum and characterized using 
1
H-NMR, 

31
P-NMR, GPC, and MALDI-

TOF mass spectroscopy. 

 

Figure 5.1.  A schematic illustration of the experimental design used for allyl-PC synthesis. For 

each composition, 21.00 mmol of BPA was used. 
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Table 5.1.  Compositions (mmol) and summarized results for the allyl-PCs synthesized using TEA as a catalyst. For each composition, 

21.0 mmol of BPA was used. 

Entry Eug TPG TEA Mn 

(NMR) 

Mn 

(GPC) 

PDI 

(GPC) 

ppm 

OH 

Linear allyl-PC 

± std (%) 

PC molecular structure 

A1 0.70 10.5 0.50 14184 16296 2.4 188 42.6 ± 6.1 Eug-PC-Eug, Cyclic-PC 

A2 0.70 10.5 3.00 9984 8045 1.9 535 44.3 ± 7.0 Eug-PC-Eug, Cyclic-PC 

A3 0.70 8.4 0.50 17975 24115 2.7 57.55 55.2 ± 1.2 Eug-PC-Eug, Cyclic-PC, HO-PC-Eug 

A4 0.70 8.4 3.00 11303 9095 1.8 367.4 49.8 ± 4.5 Eug-PC-Eug, Cyclic-PC, HO-PC-Eug 

A5 1.0 10.5 0.50 12233 11040 4.2 104 52.0 ± 2.5 Eug-PC-Eug, Cyclic-PC 

A6 1.0 10.5 3.00 6466 6495 1.8 1523 57.6 ± 1.3 Eug-PC-Eug, Cyclic-PC 

A7 1.0 8.4 0.50 13700 18435 2.6 85.7 74.5 ± 1.5 Eug-PC-Eug, Cyclic-PC 

A8 1.0 8.4 3.00 12563 8303 1.8 165.3 69.2 ± 2.8 Eug-PC-Eug, Cyclic-PC 

A9 2.1 10.5 0.50 8269 11155 3.3 105.2 73.8 ± 2.7 Eug-PC-Eug, Cyclic-PC, HO-PC-Eug 

A10 2.1 10.5 3.00 5989 6772 1.7 1177.9 64.5 ± 3.8 Eug-PC-Eug, Cyclic-PC, HO-PC-Eug 

A11 2.1 8.4 0.50 7333 11839 2.7 77.9 78.7 ± 2.4 Eug-PC-Eug, Cyclic-PC, HO-PC-Eug 

A12 2.1 8.4 3.0 4754 5934 1.6 175.9 79.9 ± 4.5 Eug-PC-Eug, Cyclic-PC, HO-PC-Eug 

A13 4.2 10.5 0.50 5698 7216 3.2 94.2 72.7 ± 1.3 Eug-PC-Eug, Cyclic-PC 

A14 4.2 10.5 3.00 5589 5527 1.7 1267.5 72.5 ± 1.2 Eug-PC-Eug, Cyclic-PC, HO-PC-OH, HO-PC-Eug 

A15 4.2 8.4 0.50 5214 7409 2.7 60.7 83.9 ± 0.5 Eug-PC-Eug, Cyclic-PC 

A16 4.2 8.4 3.00 3543 4785 1.6 70.3 98.4 ± 1.3 Eug-PC-Eug 
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Table 5.2.  Compositions (mmol) and summarized results of the allyl-PCs synthesized using TEBA as a catalyst.  For each 

composition, 21.0 mmol of BPA was used. 

Entry Eug TPG TEBA Mn 

(NMR) 

Mn 

(GPC) 

PDI 

(GPC) 

ppm 

OH 

Linear allyl-PC ± 

std (%) 

PC molecular structure 

B1 2.1 10.5 0.50 9196 7837 1.5 NA 30.1 ± 2.1 Eug-PC-Eug, HO-PC-Eug, HO-PC-OH 

B2 2.1 10.5 3.00 9029 14246 1.5 94.2 98.0 ± 0.4 Eug-PC-Eug 

B3 2.1 8.4 0.50 7478 7047 1.5 6326 51.9 ± 3.2 Eug-PC-Eug, HO-PC-Eug, HO-PC-OH 

B4 2.1 8.4 3.00 9585 19272 1.6 44.9 97.2 ± 0.9 Eug-PC-Eug 

B5 4.2 10.5 0.50 4979 5752 1.5 10591 87.1 ± 1.1 Eug-PC-Eug, HO-PC-Eug, HO-PC-OH 

B6 4.2 10.5 3.00 5477 10176 1.5 140.6 97.4 ± 2.3 Eug-PC-Eug 

B7 4.2 8.4 0.50 4662 5444 1.5 6123 67.5 ± 0.4 Eug-PC-Eug, HO-PC-Eug 

B8 4.2 8.4 3.00 4843 9050 1.7 57.8 98.1 ± 1.3 Eug-PC-Eug 
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5.3.3. Synthesis of Polycarboante-Polydimethylsiloxane (PC-PDMS) Multiblock 

Copolymers  

Figure 5.2 shows the experimental design of the twelve PC-PDMS block copolymers 

produced using three allyl-PCs and four hydride-PDMSs with different molecular weights. The 

three allyl-PCs used had molecular weights of 3257, 4891, and 7714 g/mol, respectively, as 

determined by 
1
H-NMR, and were simply denoted as PC3K, PC5K and PC8K, respectively. The 

four PDMSs used, DMS-H03, DMS-H11, DMS-H21, and DMS-H25 had molecular weights of 

741, 1187, 5301, and 12422 g/mol, respectively, as determined by 
1
H-NMR, and were simply 

denoted as PDMS0.7K, PDMS1.2K, PDMS5.3K and PDMS12K, respectively. The PDMS 

content of the block copolymers varied between 9 and 79 wt%, as shown in Figure 5.2.   

 

Figure 5.2. A schematic illustration of the experimental design for producing PC-PDMS block 

copolymers. 
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concentration and PtO2 was used at 0.1-0.6 wt%. Twelve gram batches of each polymer were 

produced. A representative procedure of synthesizing PC-PDMS block copolymers (PC5K-

PDMS1.2K_20%) is as follows: To a 500 mL round-bottom flask equipped with a nitrogen inlet 

and condensor, 9.66 g of eugenol-terminated PC (1.97 mmol of vinyl groups) was dissolved in 

228 g of anhydrous TCE.  To the solution, 2.34 g of DMS-H11 (1.97 mmol of hydride groups) 

and 0.045 g PtO2 were added and the reaction was conducted at 120 °C under nitrogen flow for 

24 hours. The PC-PDMS block copolymer was isolated by precipitation into methanol, vacuum 

filtering to collect the precipitate, and drying for 48 hours at 80 °C under vacuum. 

Table 5.3. Composition of the twelve PC-PDMS block copolymers. 

PC-b-PDMS samples 
Mn (PC) 

g/mol 

Mn (PDMS) 

g/mol 

PDMS Content 

(wt%) 

PC3K-PDMS0.7K_19% 3257 741 19 

PC3K-PDMS1.2K_27% 3257 1187 27 

PC3K-PDMS5.3K_62% 3257 5300 62 

PC3K-PDMS12K_79% 3257 12422 79 

PC5K-PDMS0.7K_13% 4891 741 13 

PC5K-PDMS1.2K_20% 4891 1187 20 

PC5K-PDMS5.3K_52% 4891 5300 52 

PC5K-PDMS12K_72% 4891 12422 72 

PC8K-PDMS0.7K_9% 7714 741 9 

PC8K-PDMS1.2K_13% 7714 1187 13 

PC8K-PDMS5.3K_41% 7714 5300 41 

PC8K-PDMS12K_62% 7714 12422 62 
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5.3.4. Instrumentation 

1
H-NMR and 

31
P-NMR were conducted using a JEOL 400 MHz spectrometer at 25 °C.  

For 
1
H-NMR, CDCl3 was used as a solvent.  For each sample, sixteen scans were obtained with a 

relaxation delay of 4 s.  Tetramethylsilane was used as an internal standard.  
31

P-NMR was used 

to determine end-capping efficacy by measuring phenolic (OH) end-group content of the allyl-

PC samples synthesized.  The methodology utilized has been previously described by Chan et 

al.
13

   1,2-phenylene phosphorochloridite was used as the derivatizing agent and 2,4,6-

trichlorophenol was used as the internal standard.  The solvent was CDCl3 with chromium tris-

acetyl acetonate added as a shiftless relaxation agent.  For each sample one thousand scans were 

obtained with a relaxation delay of 2 s.   

Gel-permeation chromatography (GPC) was performed using a Symyx Rapid-GPC with 

an evaporative light scattering detector (PL-ELS 1000).  Samples for GPC were prepared in THF 

at a concentration of 1 mg/mL.  Molecular weights of polycarbonates were determined relative to 

polystyrene standards.   

MALDI-TOF mass spectra were recorded using a Bruker Ultraflex II spectrometer 

equipped with a 1.85 m linear flight tube and a smart beam laser.  All mass spectra were obtained 

in positive ion and reflection mode.  DHB (10 mg/mL in THF) was used as a matrix, potassium-

trifluoroacetate (2 mg/mL in THF) was used as the cationizing agent, and polymer samples were 

dissolved in THF (1-2 mg/mL).  A 10 μL portion of the matrix, 2 μL of the cationizing agent, 

and 2 μL of the polymer were mixed together, and a 2 μL sample solution was spotted on the 

target plate. All data were processed using Flex analysis.  
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Modulated DSC was carried out using a Q2000 Modulated Differential Scanning 

Calorimeter manufactured by TA Instruments. Data analysis was performed with TA Universal 

Analysis software. The calorimeter was calibrated with sapphire and indium standards. Samples 

of about 13 mg of were loaded into a Tzero aluminum pans while an empty pan was used as a 

reference. A modulation amplitude of 0.531 ⁰C and a period of 100 s was used at a heating rate 

of 2 ⁰C/min when samples were modulated at 180-0 ⁰C and 25-180 ⁰C.  

Dynamic mechanical analysis (DMA) was performed using a DMA Q800 dynamic 

mechanical analyzer over the temperature range of -150 °C to +160 °C at a heating rate of 

5 °C/min with experiment parameters of 0.01 % strain, 0.01 N preload force, and 10 Hz 

frequency. Sample films were made by hot pressing at 180 °C and cutting into strips with a 

width of 5 mm. The thicknesses of the samples were around 100 μm, and the distance between 

clamps was around 15 mm. 

Thermal gravimetric analysis (TGA) was carried using a TGA Q500 thermal analyzer in 

the temperature range of +25 °C to +800 °C at a heating rate of 20 °C/min. Samples of about 10 

mg were tested under N2 purged at 60 ml/min. 

Water contact angle measurements were carried out using an automated surface energy 

measurement unit manufactured by Symyx Discovery Tools, Inc. and First Ten Angstroms.
14,15

  

Three measurements were taken for each sample using the sessile drop method and the data 

reported as the average and standard deviation.     

Atomic force microscopy (AFM) was conducted in tapping mode at ambient conditions 

with a Dimension 3100® microscope and a Nanoscope IIIa controller from Veeco Incorporated.  

Topographical images were collected in air at room temperature using a single-lever silicon 
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probe from Nanosensors
TM

. Cantilever length, width, and thickness of the silicon probe were 225 

± 10 µm, 25 ± 7.5 µm, and 3.0 ± 1.0 µm, respectively.  The spring constant was 0.5-9.5 N/m 

with a resonant frequency of 75 kHz.  The set point ratio was 0.8-0.9. Polymer samples were 

spin coated over glass slides using 10 wt % solutions in CH2Cl2.   

5.4. Results and Discussion 

5.4.1. Synthesis of Allyl-PCs 

A series of allyl-PCs were synthesized by reacting BPA, TGP, and eugenol through 

interfacial polymerization, as shown in Scheme 5.1.  Eugenol was used as an end-capping 

monomer and TPG as the carbonate source.  TPG, a solid at room temperature, was used as a 

less dangerous substitute for the highly toxic phosgene gas typically used to prepare PCs.
16

  

Kricheldorf et al. have shown that the products of polycondensation of BPA were highly 

sensitive to reaction conditions when TPG was used.
17

  Hence, the concentration of TPG was 

considered as one of the variables to explore.  The other variables for this investigation included 

catalyst composition and concentration and BPA/eugenol mole ratio.  

 

Scheme 5.1.  Schematic representation of allyl-PC synthesis by interfacial polymerization. 
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Successful polymerizations were confirmed using FTIR and 
1
H-NMR, as shown in 

Figure 5.3 and Figure 5.4, respectively. In Figure 5.3, the disappearance of the hydroxyl bands 

centered at 3350 cm
-1

 and 3520 cm
-1

 originating from BPA and eugenol, along with the 

emergence of the carbonyl band centered at 1770 cm
-1

, demonstrated the successful interfacial 

polymerization. Similarly, in Figure 5.4, the polycarbonate retained all characteristic peaks from 

BPA and eugenol, except the reacted hydroxyl groups. Table 5.1 describes the compositional 

details and characterization data for the 16 allyl-PCs produced using TEA as a catalyst; while 

Table 5.2 describes the same information for the 8 allyl-PCs produced using TEBA as a catalyst.   

 

Figure 5.3. FTIR spectra of bisphenol-A, eugenol and allyl-PC. 
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Figure 5.4. 
1
H-NMR spectra of BPA, eugenol and allyl-PC. 

The number-average molecular weight (Mn) of the allyl-PCs was controlled by tailoring 

the relative concentration of BPA to eugenol according to the following equations: 

DP = (2 × moles of BPA)/ (moles of eugenol)     Equation 5.1 

Mn = DP × Mr         Equation 5.2 
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where DP is the degree of polymerization and Mr is the molecular weight of the repeat 

unit (254.29 g/mol).  From 
1
H-NMR spectra, the ratio of the normalized isopropylidene proton 

resonances of BPA at 1.68 ppm and 1.55 ppm to that of the normalized methoxy proton 

resonances of eugenol at 3.86 ppm was used to calculate Mn of allyl-PCs produced according to 

the following equation:  

Mn (   )   
  (    )  (    )   

  (    )  
                                            Equation 5.3 

where I is the peak integration value associated with the respective protons and 354.15 

g/mole is added for the contribution from the end groups.  The experimentally derived results of 

Mn for each allyl-PC produced are listed in Tables 5.1 and 5.2.  

The values of “ppm OH: as listed in Table 5.1 and Table 5.2 were quantitated using 
31

P 

NMR analysis. The reactive hydroxyl and carboxylic acid groups are derivatized by 1,2-

phenylene phosphorochloridite (PPC) as shown in Scheme 5.2, and could be detected by 
31

P-

NMR. Thus, the hydroxyl groups which were not end-capped with eugenol were quantified by 

calculating the peak intensity against the internal standard, as shown in Figure 5.5, using the 

following equation:  

                      
           

            
     

 

        
            Equation 5.4 

where the moles of the standard and the weight of PC were determined experimentally, 

and integral PC and integral standard were determined according to the 
31

P-NMR spectrum. 
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Scheme 5.2. Hydroxyl and carboxyl groups derivatized by 1,2-phenylene phosphorochloridite 

(PPC) for 
31

P-NMR analysis. 

 

Figure 5.5. Example of 
31

P-NMR spectra of allyl-PC for ppm OH quatification. 

The results of the amount of uncapped hydroxyl end groups are listed in Table 5.1 and 

Table 5.2. 

MALDI-TOFMS was used to characterize the molecular structure of the allyl-PCs 

produced.  Many researchers have demonstrated the utility of MALDI-TOFMS for determining 
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detailed polymer sample compositional factors such as end-group composition and the presence 

of cyclic structures in the sample.
18-21

 Figure 5.6 shows representative MALDI spectra obtained 

for the allyl-PCs produced.  The spectrum obtained from sample B4 (Table 5.2) is representative 

of an allyl-PC with very high eugenol end-capping and no cyclic structures.  The spectrum 

obtained from sample A8 (Table 5.1) is representative of an allyl-PC containing a mixture of 

linear and cyclic structures with the linear structures possessing end-groups derived from 

eugenol.  The spectrum obtained from sample A4 (Table 5.1) is representative of an allyl-PC 

possessing a mixture of linear and cyclic structures with the linear structures possessing end-

groups derived from both eugenol and BPA.  The mole fraction of each component (i.e. eugenol-

capped linear structures, cyclics, BPA end-capped structures) in the allyl-PC samples produced 

was calculated using the following equations: 

           
                 

  
                                                           Equation 5.5 

             
   

    
                                                                    Equation 5.6 

where IT1 is the total signal intensity of the component T1, Ip1 is the intensity of each 

oligomer peak of T1, Mp1 is the mass of each oligomer peak of T1, Me1 is the mass of one end 

group, Me2 is the mass of the second end group, Mc is the mass of the cation, Mr is the mass of 

the repeat unit, and ITn is the total signal intensity of the component Tn (n = 1, 2, 3…etc).  The 

results of the mole fraction of linear allyl-PC are listed in Tables 5.1 and Table 5.2. 
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Figure 5.6.  Representative MALDI spectra displaying allyl-PCs containing high eugenol end 

capping at both ends (top, B4 from Table 5.2), significant contamination with cyclic PCs (middle, 

A8 from Table 5.1), and contamination with both cyclics and linear polymers possessing a 

hydroxyl endgroup (bottom, A4 from Table 5.1).  L= Linear allyl-PCs, C= cyclic PCs, and + = 

linear PCs with a hydroxyl end group. 
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5.4.1.1. TEA as a Catalyst 

The series of PCs described in Table 5.1 were synthesized using TEA as a catalyst.  TEA 

has been used as a catalyst for interfacial phosgenation of BPA with phosgene, diphosgene, and 

TPG.
17,22-25

  The results listed in Table 5.1 show that, keeping the other variables constant, 

increasing TEA concentration produced allyl-PCs with lower molecular weights, narrow 

molecular weight distributions (PDI), and higher OH end-group concentrations (compare A9 vs. 

A10, A11 vs. A12 etc in Table 5.1). As illustrated in Scheme 5.4, TEA can activate TPG, 

phosgene, and chloroformate by forming acylammonium salts S1, S2, and S3, respectively.
17,24

  

Due to their hydrophilic nature, acylammonium salts may diffuse into the water-phase, 

enhancing the reaction rates of both condensation and hydrolysis. Condensation reactions 

generate stable carbonate linkages to form PCs via reactions 4a to 6a shown in Scheme 5.4.  

With higher TEA concentration, condensation reactions resulted in faster eugenol consumption 

and produced allyl-PCs with lower molecular weights.  Hydrolysis of acylammonium salt S3 can 

form hydroxyl groups via reaction 7a. As polymerization progresses the concentration of BPA 

and eugenol decrease and hydrolysis becomes more likely towards the end of the polymerization.  

Keeping the other variables constant, increasing the concentration of TEA resulted in higher OH 

end-group concentrations.  

The use of an excess of phosgene or TPG in the synthesis of PC using TEA as a catalyst 

has been previously reported.
17,24

 Since TEA catalyzes not only condensation but also hydrolysis, 

Brunelle et al. recommended utilizing 10%-20% excess of phosgene.
24

  Kricheldorf et al. utilized 

TPG at a concentration that corresponded to a 100% molar excess of phosgene to synthesize 
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linear and cyclic PCs.
17

 For this study, the molar ratio of TPG/BPA corresponded to either a 20% 

or 50% molar excess of phosgene. 

 

Scheme 5.3.  Activation, condensation, and hydrolysis reactions in presence of TEA as a catalyst. 
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(compare A14 to A16, A13 to A15, A10 to A12, etc. in Table 5.1).  This result can be explained 

as follows: A higher excess of TPG would be expected to result in a higher concentration of 

C

Cl

Cl

Cl

O C

O

O C

Cl

Cl

Cl + Et3N C

Cl

Cl

Cl

O C

O

NEt3 Cl3C O

Cl C

O

Cl + Et3N Cl C

O

NEt3 Cl

O C

O

Cl + Et3N O C

O

NEt3 Cl

O C

O

NEt3 Cl + HO O C

O

O

O C

O

NEt3 Cl
NaOH, H2O

O Na + CO2

S1

S2

S3

... (1a)

... (2a)

... (3a)

C

Cl

Cl

Cl

O C

O

NEt3 Cl3C O

S1

OH

O C

O

O C

Cl

Cl

Cl

O

O C

O

O

Cl C

O

NEt3 Cl

S2

S3

S3

OH

O C

O

Cl

O

O C

O

O

... (4a)

... (5a)

... (6a)

... (7a)



 

95 

 

BPA-chloroformate end-groups after the complete consumption of eugenol.  With TEA as the 

catalyst, the BPA-chloroformate can readily form acylammonium salt S3 which can be readily 

hydrolyzed toward the end of the polymerization when BPA is largely depleted.  

5.4.1.2. TEBA as a Catalyst 

The series of allyl-PCs described in Table 5.2 were synthesized using TEBA as a catalyst.  

Use of a phase transfer catalysts such as TEBA for PC synthesis has been previously 

described.
17,23,24

  Unlike TEA, TEBA cannot activate phosgene, TPG, or chloroformate groups 

which reduces hydrolysis reactions.
17,24

  The catalytic effect of TEBA is achieved by activating 

phenoxide groups through counter-ion exchange, as shown by reaction 1b in Scheme 5.5. 

O + N

Et

Et

Et

CH2

Cl

Ph O N

Et

Et

Et

CH2 Ph

O C

O

Cl + O N

Et

Et

Et

CH2 Ph O C

O

O + N

Et

Et

Et

CH2

Cl

Ph

... (1b)

... (2b)

Na
-NaCl

 

Scheme 5.4. Reactions in presence of TEBA as a phase transfer catalyst. 

Due to this activation, phenoxide ions can be more readily transferred to the organic 

phase which favors the phosgenation reaction (reaction 2b) to form carbonates.  The results listed 

in Table 5.2 show that, keeping other variables constant, increasing TEBA concentration resulted 

in allyl-PCs with higher molecular weights, lower OH end-group concentrations, and lower 

contents of cyclics (compare B3 to B4, B5 to B6, and B7 to B8 in Table 5.2).  With the use of 

TEBA as a catalyst, trends observed with respect to molecular weight and OH end-group content 

were the opposite to those observed with the use of TEA as a catalyst.  This difference most 

likely is due to the fact that higher TEBA concentration only favors carbonate formation and not 
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hydrolysis. The results listed in Table 5.2 show that, keeping the other variables constant, 

increasing TPG concentration produced allyl-PC samples with higher OH end-group contents 

(compare B6 to B8, B5 to B7, etc. in Table 5.2). 

5.4.2. Synthesis of PC-PDMS Block Copolymers 

PC-PDMS multiblock copolymers have been previously synthesized using several 

different techniques.  One of the first synthetic methods for producing PC-PDMS multiblock 

copolymers involved reaction mixtures consisting of BPA, α,ω-dichloro-terminated-

polydimethylsiloxane oligomers, and phosgene.
5,7,26

  With this synthetic method, block 

architecture could not be well controlled.  For example, the number of PC repeat units in a PC 

block could be as low as two if a single phosgene molecule reacted with two BPA-end-capped 

polydimethylsiloxanes.  In addition, successive polydimethylsiloxane (PDMS) blocks can exist 

by reaction of BPA with two α,ω-dichloro-terminated-PDMS oligomers. 

 

Scheme 5.5. Traditional PC-PDMS block copolymer synthesis. 
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The majority of the methods used to synthesize PC-PDMS multiblock copolymers 

involve the reaction of a PDMS modified with nucleophilic end-groups with BPA and phosgene. 

As shown in Scheme 5.5 and similar to the early work based on the use of α,ω-dichloro-

terminated-PDMS oligomers, these methods do not enable the formation of multiblock 

copolymers with controlled block architectures.  As a result, block lengths are extremely 

polydisperse which affects phase morphology and, thus, optical and mechanical properties.
27

 

 

Scheme 5.6. Two-step synthesis of perfectly alternating PC-PDMS block copolymer. 
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The successful production of highly pure linear allyl-PC enabled the synthesis of PC-

PDMS block copolymers with perfectly alternating structure. The perfectly alternating PC-

PDMS block copolymers had been reported to be produced through different functional end 

groups.
9
 The hydrosilylation reaction is versatile in building silicon-carbon (Si-C) linkages and 

producing organo-silicon compounds. It was utilized here to synthesize PC-PDMS block 

copolymers where the two blocks are linked by Si-C bonds. The perfectly alternating multiblock 

architectures were then built by selecting the two blocks with certain molecular weight as shown 

in Scheme 5.6. As described in Figure 5.2, twelve block copolymers were synthesized. 

A representative successful block copolymerization was demonstrated using GPC. As 

shown in Figure 5.7, hydrosilylation resulted in a loss of the low retention time shoulder of the 

physical mixture associated with hydride-PDMS and a shift in the peak retention time to lower 

retention time.   

 

Figure 5.7. GPC traces of neat PC, PDMS, a physical mixture of PC and PDMS, and a PC-

PDMS block copolymer. 

420 437 453 470 487 503 520 537 553 570 587

Retention Time/s

PC

PDMS

Physical mix of PC & PDMS

PC-PDMS block copolymer



 

99 

 

A representative successful coupling was also demonstrated using 
1
H-NMR. As shown in 

Figure 5.8, hydrosilylation resulted in almost complete disappearance of peaks associated with 

the vinyl group of the allyl-PC and the peak associated with the hydride group of the PDMS. 

 

Figure 5.8. 
1
H-NMR spectra for PC& PDMS physical mix and PC-PDMS block copolymer. 

The compositions of the block copolymers produced are described in Table 5.4, where 

the theoretical PDMS content was calculated and the experimental PDMS content was 

determined by 
1
H-NMR. It can be seen that the values of experimental PDMS content and 

theoretical PDMS content are very close. The relative molecular weight Mn and PDI were 

determined by GPC.  
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Table 5.4. Description of PC-b-PDMS copolymers. 

PC-b-PDMS samples 
Mn (PC) 

g/mol 

Mn (PDMS) 

g/mol 

Theoretical 

PDMS wt% 

Experimental 

PDMS wt% 

Mn 

(g/mol) 
PDI 

PC3K-PDMS0.7K_19% 3257 741 19 17 16493 1.7 

PC3K-PDMS1.2K_27% 3257 1187 27 26 19093 1.7 

PC3K-PDMS5.3K_62% 3257 5300 62 61 25706 1.7 

PC3K-PDMS12K_79% 3257 12422 79 76 15243 1.9 

PC5K-PDMS0.7K_13% 4891 741 13 12 14342 1.6 

PC5K-PDMS1.2K_20% 4891 1187 20 18 18327 1.6 

PC5K-PDMS5.3K_52% 4891 5300 52 50 19548 1.6 

PC5K-PDMS12K_72% 4891 12422 72 68 28348 1.7 

PC8K-PDMS0.7K_9% 7714 741 9 7 17558 1.5 

PC8K-PDMS1.2K_13% 7714 1187 13 12 28102 1.6 

PC8K-PDMS5.3K_41% 7714 5300 41 37 26633 1.6 

PC8K-PDMS12K_62% 7714 12422 62 58 29113 1.6 

 

5.4.3. Glass Transition Temperature by MDSC 

Modulated DSC (MDSC), instead of conventional DSC, was used to study to glass 

transition behavior of the block copolymers. MDSC is superior than DSC in studying block 

copolymers due to its capability of modulating the temperature and separating the kinetic and 

thermodynamic component of the heat flow.
32

 The glass transition temperature was used to 
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evaluate the phase separation of the block copolymers. Two glass transition temperatures 

indicate separate phases within the block copolymers. Thermograms showing the Tg of the PC 

phases of the block copolymers are shown in Figure 5.9 and those of the PDMS phases of the 

block copolymers are shown in Figure 5.10. 

 

Figure 5.9. PC block glass transition temperature of PC-PDMS block copolymers with PC block 

length of (a) 3K, (b) 5K, and (c) 8K by MDSC. 
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The glass transitions of the PC domains are only observable for low PDMS content 

samples. Even at 41 wt% of PDMS (sample PC8K-PDMS5.3K_41% in Figure 5.9 (c)), there is 

just a shallow step in the MDSC thermograph. The glass transition temperature of the PC hard 

phase decreased when copolymerized with PDMS as shown in Figure 5.9, indicating partial 

miscibility of PDMS with the PC. And PDMS blocks with longer block length (1.2 K) have 

better compatibility with PC domains than those with shorter block length (0.7 K). It’s worth to 

mention that even though sample PC8K-PDMS5.3K_41% showed slight glass transition of PC 

hard phases, the Tg value is 1 ⁰C higher than PC control, indicating the poor miscibility of the 

two phases. The PC phase glass transition of PC-PDMS block copolymers with high PDMS 

content (>41 wt%) could not be detected by MDSC due the low content of dispersed PC phase.  

 

Figure 5.10. PDMS block glass transition temperature of PC-PDMS block copolymers with 

PDMS block length of (a) 5.3K, and (b) 12K by MDSC. 
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glass transitions were not able to be detected, it is also of interest to compare the PDMS glass 

transition temperatures of the block copolymers. Not all data are shown here, because from 

Figure 5.9 we are sure that no glass transition would be detected for samples with low PDMS 

content (<20 wt%). The thermographs of the synthesized block copolymers were overlaid with 

respect to the PDMS block lengths of 5.3K and 12Kas shown in (a) and (b) in Figure 5.10, 

respectively. Upon block copolymerization with PC, the PDMS block glass transition 

temperatures were increased. The increases of Tg for PDMS blocks provide for their evidence of 

partial miscibility. 

5.4.4. Thermal Stability by TGA 

 

Figure 5.11. TGA curves of PC-PDMS block copolymers with PC block length of (a) 3K, (b) 5K, 

and (c) 8K under N2. 
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The thermal degradation behavior of PC-PDMS block copolymers in N2 were evaluated 

by TGA as shown in Figure 5.11. It can be seen from the degradation profiles, the PC-PDMS 

block copolymers undergo a two-stage decomposition when copolymerized with short PDMS 

chains (0.7K), and gradually shift to a one-stage decomposition when longer PDMS blocks are 

introduced. The two-stage thermal degradation profile is associated the thermal degradation 

behavior of pure PC.
28

 The one-stage thermal degradation profile is attributed to the PDMS 

thermal degradation.
29,30

 

Table 5.5. Thermal stability evaluated by TGA. 

PC-b-PDMS samples Td (⁰C) T-5wt% (⁰C) T-10wt% (⁰C) Residue (wt%) 

PC3K-PDMS0.7K_19% 531.90 458.35 470.40 8.262 

PC3K-PDMS1.2K_27% 531.12 452.41 468.09 14.71 

PC3K-PDMS5.3K_62% 526.07 451.43 468.28 4.131 

PC3K-PDMS12K_79% 523.63 447.21 469.63 5.443 

PC5K-PDMS0.7K_13% 525.52 452.18 463.86 5.487 

PC5K-PDMS1.2K_20% 530.06 459.96 476.68 14.02 

PC5K-PDMS5.3K_52% 534.68 444.47 466.28 7.418 

PC5K-PDMS12K_72% 531.97 441.48 462.89 10.67 

PC8K-PDMS0.7K_9% 494.46 457.56 468.50 5.894 

PC8K-PDMS1.2K_13% 522.24 460.86 476.15 3.495 

PC8K-PDMS5.3K_41% 530.36 431.03 455.38 5.161 

PC8K-PDMS12K_62% 521.17 446.98 469.20 5.649 
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The temperature at maximum degradation rate, 5 wt% mass loss, 10 wt% mass loss, and 

weight percent of char residue were listed in Table 5.5. The initial degradation temperature 

decreased as the PDMS concentration increased. The similar result has been reported 

elsewhere.
12

 The char yield did increase with the PDMS content, due to the complete combustion 

of PDMS under N2.
30

 

5.4.5. Viscoelastic Properties by DMA 

The viscoelastic properties of PC-PDMS block copolymers are dependent on both PDMS 

content and PDMS block length. Figure 5.12 shows the DMA curves of three block copolymers. 

As can be seen from Figure 5.12 (a), the three representative block copolymers have totally 

different response to the dynamic stimuli. Samples PC5K-PDMS1.2K_20% and PC3K-

PDMS1.2K_27% showed a clear glass transition of PC blocks while sample PC3K-

PDMS5.3K_62% only showed a glass transition of PDMS block. This indicates that at room 

temperature, samples PC5K-PDMS1.2K_20% and PC3K-PDMS1.2K_27% are in the glassy 

state while sample PC3K-PDMS5.3K_62% is in the rubbery state. The phase inversion occurs at 

a PDMS loading between 27 to 62 weight percent. The similar result has been reported that the 

elastomer type block copolymers are those with 40-70 wt% PDMS.
26

  

 

Figure 5.12. DMA curve of PC-PDMS block copolymers. 
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5.4.6. Surface Properties by AFM 

Successful block copolymerization was expected to result in bulk materials possessing a 

two-phase morphology.  On the surface, the segregation of a component with low surface energy 

occurs in multiblock copolymers. All PDMS-containing block copolymers exhibit PDMS 

segregation on the surface and even 6 wt% PDMS content can result in 95 wt% PDMS on 

surface upon annealing.
29,31

 All kinds of factors, polymer composition, architecture, as well as 

the casting solvent, play important roles in determining the surface composition and properties.
28

 

Figure 6 displays AFM images of films of allyl-PC and a PC-PDMS block copolymer produced 

using the novel two-step approach. It can be seen that the PC-PDMS block copolymer possessed 

a heterogeneous surface comprised of PDMS nanodomains.  

 

Figure 5.13. AFM images of (a) allyl-PC and (b) a PC-PDMS block copolymer. 

5.4.7. Catalyst Removal 

Due to the high level of PtO2 catalyst, the PC-PDMS block copolymers were colored 

after precipitation and drying under vacuum. PtO2 removal treatments were conducted as shown 

in Table 5.6. Four treatments were compared and  removal by passing through an Al2O3 column 

was the most effective. 

(a) (b)
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Table 5.6. PtO2 removal treatment of PC-b-PDMS copolymers. 

Treatment Charcoal RT Charcoal reflux Al2O3 column Al2O3-charcoal column 

Before 

    

After 

    

Yield (wt%) 53.2 51.7 58.8 21.5 

 

5.4.8. Optical Clarity 

After color removal, the block copolymers were compression molded into circle pellets 

and were subjected to optical clarity comparison as shown in Figure 5.14. The refractive indices 

of PC (1.586) and PDMS (1.400) are significantly different. Thus the combined effect of big 

domain size and RI mismatch leads to increased scattering that results in increased haze, and 

eventually the material becoming opaque. For block copolymers as shown, it is amazingly 

interesting that the high optical clarity could be maintained at up to 62 wt% PDMS content for 

sample PC3K-PDMS5.3K_62%. In contrast, although have less PDMS content of 52 wt% and 

41 wt% for sample PC5K-PDMS5.3K_50% and PC8-PDMS5.3K_41%, the big domain size 

resulted from long block length lead to the macroscopically phase separated morphology. It has 

been reported the clear block copolymers show PDMS domain size around 20 nm while the 

opaque samples show PDMS domains larger than 30 nm.
11
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Figure 5.14. Optical clarity of compression molded PC-b-PDMS copolymer samples after PtO2 

removal. 

 

A comparison of optical clarity was made between a synthesized PC-PDMS block 

copolymer produced using the novel synthetic method described here to a commercial PC-PDMS 

block copolymer available from SABIC.  Figure 5.15 displays images of compression molded 

films approximately 1 mm in thickness processed under same condition.  At this thickness, the 

commercial PC-PDMS block copolymer film was quite hazy while the block copolymer 

produced using the two-step method involving coupling by hydrosilylation was transparent.  The 

amber color associated with the latter block copolymer was due to the PtO2 catalyst used for 

hydrosilylation. 
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Figure 5.15. Images of approximately 1 mm thick compression molded films of a PC-PDMS 

block copolymer possessing 20 wt % PDMS and synthesized using the two-step process 

involving hydrosilylation (a) and a commercial PC-PDMS block copolymer possessing only 5 

wt % PDMS (b). 

 

5.5. Conclusion 

Interfacial polymerization conditions were identified that allowed for the synthesis of 

highly pure linear allyl-PCs.  It was found that catalyst composition, catalyst concentration, and 

TPG concentration were the primary factors that affected the purity of allyl-PCs.  The phase 

transfer catalyst, TEBA, was the catalyst that produced allyl-PCs with a low content of cyclics 

and low content of OH end-groups especially when used in conjunction with a relatively low 

TPG concentration. 

With these allyl end-functional oligomers/polymers, PC-PDMS block copolymers were 

successfully produced using commercially available hydride-PDMS and coupling the end-

functional PC and PDMS oligomers/polymers using hydrosilylation. The PDMS segments are 

partially miscible with PC hard domains, leading to the decreased PC block glass transition 

temperature. At PDMS content ranging from 27 – 62 wt%, phase inversion occurs for the 

homogeneous block copolymers. Nanoscale phase separation and surface segregation of PDMS 

segments were observed. The incorporation of PDMS blocks changed the thermal decomposition 

mechanism however did not has a big impact on the thermal stability of blocked copolymers. 

The synthesized PC-PDMS block copolymers exhibited high optical clarity up to 62 wt% PDMS 

(a) (b)
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content. And comparison of the optical properties of the a PC-PDMS block copolymer produced 

with this method to that of a commercially available PC-PDMS block copolymer showed that the 

former, which gives a perfectly alternating block copolymer architecture, provided higher optical 

clarity.  The higher optical clarity suggests smaller PDMS domains resulting from the more 

uniform block copolymer structure. 
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CHAPTER 6. PERFECTLY ALTERNATING POLYCARBONATE-

POLYDIMETHYLSILOXANE (PC-PDMS) MULTIBLOCK COPOLYMERS—PART II 

6.1. Abstract 

 Perfectly alternating PC-PDMS block copolymers were produced using a two-step 

synthesis method. Due to the high level of PtO2 catalyst used for hydrosilylation catalyst removal 

to obtain colorless materials was difficult, as reported in Chapter 5. As a result, the synthetic 

method was optimized to use lower levels of PtO2 catalyst. With only 1/10 the amount of PtO2 

catalyst, high molecular weight and much lighter color of PC-PDMS block copolymers were 

achieved. The PC-PDMS block copolymers obtained were characterized using modulated 

differential scanning calorimetry (MDSC), thermogravimetric analysis (TGA), dynamic 

mechanical analysis (DMA), water contact angle, atomic force microscopy (AFM), small angle 

X-ray scattering (SAXS), transmission electron microscopy (TEM) and Izod impact test. The 

PDMS segments were found to be partially miscible with PC hard domains, leading to a decrease 

in the PC-rich phase glass transition temperature and a slightly increased PDMS-rich phase glass 

transition temperature. At a PDMS content between 27 and 62 wt%, phase inversion occured for 

the block copolymers. Surface segregation of PDMS segments was observed resulting in 

hydrophobic surfaces. In air, the incorporation of PDMS blocks significantly increased the char 

yield and slowed down the thermal decomposition rate. The synthesized PC-PDMS block 

copolymers exhibited high optical clarity at up to 62 wt% PDMS content. As evident by SAXS, 

the lamellar morphology was confirmed. A nanophase separated morphology was observed by 

TEM and SAXS. 
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6.2. Introduction 

To reduce the notch sensitivity of polycarbonates (PCs), they are often toughened by 

impact modifiers. Block copolymer structures have been investigated to limit rubber domain size 

and produce transparent materials. Highly pure linear allyl-PCs were successfully prepared and 

coupled with hydride-terminated PDMS through hydrosilylation, as described in Chapter 5. 

These block copolymers exhibit the potential to be transparent impact resistance materials. 

Initially PtO2 catalyst was used due to its easy removal.
1
 However, the high levels of PtO2 

initially used resulted in difficulty in removal. Removal of the catalyst was time-consuming and 

resulted in significant loss of polymer. In this study, the level of catalyst, reaction concentration, 

stoichiometric ratio and other reaction parameters were optimized. 

For block copolymers, nanophase separated morphology is an interesting subject to study. 

By varying the volume ratio between components, spherical, cylinderical, gyroid, and lamellar 

morphologies can be observed.
2
 The determination of morphologies is important to 

understanding the structure-property relationships of block copolymers. Thereby, TEM and 

SAXS were performed to investigate the morphologies. Izod impact strength of the block 

copolymers were also tested. 

6.3. Experimental 

6.3.1. Raw Materials 

Highly pure allyl-PCs with molecular weights (Mn) of 3,100 g/mol, 4,800 g/mol and 

7,200 g/mol (determined by 
1
H-NMR) were synthesized using the process described in Chapter 5. 

1,1,2,2-tetrachloroethane (TCE) and platinum oxide (PtO2) were obtained from Aldrich. 

Hydride-terminated PDMS with a hydride equivalent weight of 350 g/mole (DMS-H03), 550 
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g/mole (DMS-H11), 2,500 g/mole (DMS-H21), and 6,000 g/mole (DMS-H25) were obtained 

from Gelest. The TCE was dried with molecular sieves activated at 300 ⁰C. All other reagents 

were used as received. 

6.3.2. Synthesis of PC-PDMS Block Copolymer  

Figure 6.1 shows the experimental design used to produce twelve PC-PDMS block 

copolymers based on three different PCs and four different PDMSs that differed with respect to 

molecular weight. The three allyl-PCs possessed molecular weights of 3,100, 4,800, and 7,200 

g/mol as determined by 
1
H-NMR, and were simply denoted as PC3K, PC5K and PC8K, 

respectively. The four PDMSs used, DMS-H03, DMS-H11, DMS-H21, and DMS-H25, have 

molecular weights of 740, 1,200, 5,300, and 12,400 g/mol as determined by 
1
H-NMR, and were 

denoted as PDMS0.7K, PDMS1.2K, PDMS5.3K and PDMS12K, respectively. The PDMS 

content of the block copolymers varied between 9-79 wt%.  Table 6.1 describes the compositions 

of the 12 block copolymers produced. The stoichiometry ratio between silicon hydride and vinyl 

group was kept at 1.1 : 1. The syntheses were conducted at a concentration of 20 wt%, and PtO2 

catalyst was used at 0.5 mol% relative to vinyl groups. The PtO2 catalyst solution was prepared 

by dispersing PtO2 into TCE at a 0.1 wt% concentration and sonicating for 20 min. A 

representative procedure for synthesizing a PC-PDMS block copolymer (PC5K-

PDMS1.2K_20%) is as follows: To a 250 mL round-bottom flask equipped with a nitrogen inlet 

and condensor, 15.73 g of eugenol-terminated PC (3.27 mmol) was dissolved in 80 g of 

anhydrous TCE.  To the solution, 4.27 g of DMS-H11 (3.60 mmol) and 7.42 g of the PtO2 

catalyst dispersion (contain 7.42 mg PtO2) was added and the reaction was conducted at 120 °C 

under nitrogen for 24 hours. The PC-PDMS block copolymer was isolated by precipitation into 

methanol, vacuum filtering, and drying for 48 hours at 80 °C under vacuum. 
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Figure 6.1. A schematic illustration of experimental design for PC-PDMS block copolymer 

synthesis. 

 

6.3.3. Instrumentation 

1
H-NMR was conducted using a JEOL 400 MHz spectrometer at 25 °C.  For 

1
H-NMR, 

CDCl3 was used as a solvent.  For each sample, sixteen scans were obtained with a relaxation 

delay of 4 s.  Tetramethylsilane was used as an internal standard   

Gel-permeation chromatography (GPC) was performed using a Symyx Rapid-GPC with 

an evaporative light scattering detector (PL-ELS 1000).  Samples for GPC were prepared in THF 

at a concentration of 1mg/mL.  Molecular weights of allyl-PCs and PC-PDMS block copolymers 

were determined relative to polystyrene standards.   

Thermal gravimetric analysis (TGA) was carried using a TGA Q500 thermal analyzer 

under an air atmosphere in the temperature range of +25 °C to +800 °C at a heating rate of 

20 °C/min. Samples of about 10 mg were tested using an air purge rate of at 60 ml/min. 
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Table 6.1. Composition of the twelve PC-PDMS block copolymers produced. 

PC-b-PDMS samples 
Mn (PC) 

g/mol 

Mn (PDMS) 

g/mol 

Theoretical 

PDMS wt% 

Experimental 

PDMS wt%* 

Mn (PC-b-PDMS) 

g/mol 
PDI 

PC3K-PDMS0.7K_19% 3,100 740 19 19.3 32450 1.7 

PC3K-PDMS1.2K_27% 3,100 1,200 27 27.3 33010 1.8 

PC3K-PDMS5.3K_62% 3,100 5,300 62 61.8 43730 1.7 

PC3K-PDMS12K_79% 3,100 12,400 79 78.5 49080 1.8 

PC5K-PDMS0.7K_13% 4,800 740 13 12.9 33500 1.7 

PC5K-PDMS1.2K_20% 4,800 1,200 20 19.3 39180 1.6 

PC5K-PDMS5.3K_52% 4,800 5,300 52 51.3 39840 1.6 

PC5K-PDMS12K_72% 4,800 12,400 72 70.6 43500 1.7 

PC8K-PDMS0.7K_9% 7,200 740 9 8.2 42770 1.6 

PC8K-PDMS1.2K_13% 7,200 1,200 13 13.9 44950 1.5 

PC8K-PDMS5.3K_41% 7,200 5,300 41 40.4 36100 1.5 

PC8K-PDMS12K_62% 7,200 12,400 62 61.9 39250 1.5 

*: Experimental PDMS wt% were measured by 
1
H-NMR.
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Modulated DSC was carried out using a Q2000 Modulated Differential Scanning 

Calorimeter manufactured by TA Instruments. Data analysis was performed with TA Universal 

Analysis software. The calorimeter was calibrated with sapphire and indium standards. Samples 

of about 13 mg of were loaded into a Tzero aluminum pan, while an empty pan was used as a 

reference. A modulation amplitude of 0.531 °C and a period of 100 s was used with a heating 

rate of 2 °C/min when samples were modulated between -180-0 °C and 25-180 °C. The whole 

test profile is described as following: Samples were equilibrated at 300 ⁰C for 3 min, ramped to -

180 ⁰C at 20 ⁰C/min and held for 3 min. Modulation was started from -180 to 0 ⁰C at a heating 

rate of 2 ⁰C/min using a period of 100 s and amplitude of ± 0.531 ⁰C, and then ramp again from 

0 to 25 ⁰C at 20 ⁰C/min. Finally, the sample was modulating again from 25 to 180 ⁰C at 2 

⁰C/min using a period of 100 s and amplitude of ± 0.531 ⁰C. The sample chamber was purged 

with helium at 25 ml/min. 

Dynamic mechanical analysis (DMA) was performed using a DMA Q800 Dynamic 

Mechanical Analyzer in the temperature range of -150 °C to +160 °C at a heating rate of 

5 °C/min with experimental parameters of 0.01 % strain, 0.01 N preload force, and 10 Hz 

frequency. Sample films were made by hot pressing at 180 °C and cutting into strips with a 

width of 5 mm. The thicknesses of the samples were around 100 μm, and the length between the 

clamps was around 15 mm. 

Water contact angle measurements on the block copolymer films were carried out using 

an automated surface energy measurement unit manufactured by Symyx Discovery Tools, Inc. 

and First Ten Angstroms.  Three measurements were taken for each film using the sessile drop 

method and the data reported as the average and standard deviation.     
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Atomic force microscopy (AFM) was conducted in tapping mode at ambient conditions 

with a Dimension 3100® microscope and a Nanoscope IIIa controller from Veeco Incorporated.  

Topographical images were collected in air, at room temperature, using a single-lever silicon 

probe from Nanosensors
TM

. Cantilever length, width, and thickness of the silicon probe was 225 

± 10 µm, 25 ± 7.5 µm, and 3.0 ± 1.0 µm, respectively.  The spring constant was 0.5-9.5 N/m 

with a resonant frequency of 75 kHz.  The set point ratio was 0.8-0.9. Polymer samples were 

spin coated over glass slides using 10 wt % solutions in CH2Cl2.   

SAXS experiments were performed using a Rigaku S-Max 3000 3 pinhole SAXS system 

equipped with a rotating copper anode emitting X-rays with a wavelength of 0.154 nm (Cu Kα). 

The q-range was calibrated using a silver behenate standard. Two-dimensional SAXS patterns 

were obtained using a fully integrated 2D multiwire, proportional counting, gas-filled detector, 

with an exposure time of 1 hour. SAXS data was corrected for sample thickness, sample 

transmission, and background scattering. All SAXS data was analyzed using SAXSGUI software 

to obtain radially integrated SAXS intensity versus scattering vector q (SAXS), where 

q=(4π/λ)sin(θ), θ is one half of the scattering angle and λ is the wavelength of  -ray profiles. 

Block copolymer samples were produced by compression molding at 180 ⁰C for 30 minutes. 

TEM measurements were carried out using a Hitachi HD-2300 STEM with energy 

dispersive X-ray spectroscopy (EDS) at 200 kV. Thin sample sections were prepared by 

microtoming and placed onto a 3 mm Cu TEM grid 

Izod impact strength test followed ASTM D256 standard in this study to determine 

impact strength of notched samples under 4.497 N weight and 334.949 mm radius condition. The 

tests are carried out using a Izod impact test machine by Tinius Olse. For Izod impact strength 
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testing, the block copolymers are compression molded according to the procedure described 

below. Prior to molding, the mold was cleaned by acetone. To the preheated mold at 270 °C for 2 

hours in an oven, 4 g of molding material was add to the square mold cavity with the plug on, or 

6.5 g of materials to the rectangular mold cavity. The mold system kept heating for half an hour 

at 270 °C while preheating the compression machine to 150 °C. After 1.5 hour heating, materials 

melt completely and the mold system was placed into the compression machine and stayed for 5 

minutes for cooling. Next 1 metric ton pressure was applied to the mold system and remained for 

an hour at 150 °C and for another hour after turning off the temperature of the compression 

machine. The final specimen was taken out when the mold cooled down to room temperature, 

and then cut into the dimension for required tests.  

6.4. Results and Discussion 

6.4.1. Synthesis of PC-PDMS Block Copolymers 

Through optimization of reaction parameters, high molecular weight block copolymers 

with little color were obtained. The molecular weights obtained are listed in Table 6.1. In 

comparison with the molecular weights previously obtained in Chapter 5, it was found that the 

optimized reaction conditions allowed for higher molecular weights to be produced. Due to the 

low level of catalyst, PtO2 was not removed from the block copolymers. The low level of catalyst 

had negligible influence on the appearance of the compression molded samples. The optical, 

thermal, and physical properties are discussed below. 

6.4.2. Optical Clarity 

The block copolymers were cast from chloroform to form uniform films on glass slides at 

room temperature. An image of the films produced is shown in Figure 6.2. It is interesting that 
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the transparency of the PC-PDMS block copolymers could be maintained at up to 62 wt% PDMS 

for sample PC3K-PDMS5.3K_62%. For samples PC8K-PDMS5.3K_41%, PC3K-

PDMS12K_79%, PC5K-PDMS12K_72%, and PC8K-PDMS12K_62%, the opacity of the block 

copolymers arose from the combined effect of the mismatch of refractive indices and large 

domain sizes.
3,4

 The refractive indices of PC and PDMS are 1.585 and 1.4, respectively.
22

 

Therefore, the opaque samples should have relatively large domains as a result of phase 

separation. 

 

Figure 6.2. An image of solvent cast film of PC-PDMS block copolymers on glass slides. The 

numbers below the slides indicate the weight percent PDMS in the polymers. 

 

6.4.3. Glass Transition Temperature by MDSC 

Due to the low sensitivity of conventional DSC for detecting glass transition behaviors of 

block copolymers, Modulated DSC (MDSC) was used. MDSC is superior than conventional 

DSC in its capability of separating non-reversible kinetic component heat flow (thermal history) 
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and reversible thermodynamic heat flow (glass transition, crystallization) by running a sinusoidal 

temperature modulation.
5
 The thermal properties of the allyl-terminated PCs, hydride-terminated 

PDMSs, and the PC-PDMS multiblock copolymers were characterized using MDSC.  Figure 6.3 

displays representative MDSC thermograms obtained over the temperature range of 40 to 160 °C, 

while Figure 6.4 displays representative MDSC thermograms over the temperature range of -

170 °C to -10 °C. Over the temperature range of 40 to 160 °C, MDSC measurements were 

obtained in triplicate to account for experimental error. 

Table 6.2. Tgs (°C) obtained from MDSC. 

  PDMS Mn 

  No PDMS 0.7K 1.2K 5.3K 12K 

P
C

 M
n

 

No PC ---- -143 -139 -130 -128 

3K 109 82+2.0/Not obs. 86+1.7/-136 98+3.0/-125 Not obs./-121 

5K 122 101+2.1/Not obs. 105+1.7/Not obs. 109+1.2/-126 Not obs./-125 

8K 134 116+1.4/Not obs. 117+2.9/Not obs. 135+2.5/-121 133+3.1/-121 

 

Table 6.2 lists the Tg values obtained.  For allyl-terminated PCs, Tg was dependent on Mn 

and all of the allyl-terminated PCs possessed Tgs well below that typically obtained for relatively 

high molecular weight PC.  The Tg measured by MDSC for commercially available PC with an 

Mn of 27,800, obtained by GPC and expressed relative to polystyrene standards, was determined 

to be 145 °C.These results indicate that all three of the ally-terminated PCs possessed Mns below 

the critical molecular weight required for polymer entanglement. 
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Figure 6.3. Representative MDSC thermograms obtained at temperatures between 40 to 160 °C. 

 

Figure 6.4. Representative MDSC thermograms obtained at temperatures between -170 to -10 °C. 
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For PC-PDMS multiblock copolymers possessing a PDMS content below 70 weight 

percent, the Tg of the PC-rich phase could be identified using MDSC.  For these copolymers 

possessing a PDMS content below 70 weight percent, the Tg associated with the PC-rich phase 

varied significantly with copolymer composition.  Figure 6.5 displays Tg data associated with the 

PC-rich phase as a function of the block Mns of the copolymers.  From Figure 6.5, it can be seen 

that the presence of the short 700 g/mole PDMS blocks dramatically reduces the Tgs of the PC-

rich phase compared to the pure allyl-terminated PCs.   
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Figure 6.5. Tg data associated with the PC-rich phase as a function of the block Mns of the 

copolymers. 

 

In general, the magnitude of the reduction in PC-rich phase Tg decreased with increasing 

PC block Mn as shown in Figure 6.6.  This result indicates that, despite the very large difference 

in solubility parameter between PC (δ=9.5) and PMDS (δ=7.3) of 2.2, significant partial 
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miscibility between the PC and PDMS blocks occurs and, as expected, the degree of partial 

miscibility decreases with increasing block molecular weight.  For the multiblock copolymers 

possessing the highest molecular weight PC block (i.e. 8,000 g/mole) and PDMS blocks of 5,300 

g/mole or higher, no reduction of the PC Tg was observed indicating that the block were of 

sufficient molecular weight to result in complete separation of PDMS segments from the PC 

phase.   
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Figure 6.6. The reduction in the Tg of the PC-rich phase as a function of block Mns. 

To further illustrate the influence of block Mns on the degree of partial miscibility, 

Figure 6.7 was generated which provides a comparison of multiblock copolymers with 

equivalent or similar PC/PDMS ratio but differing block Mns.  As shown in the figure, 
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copolymers with short block Mns consistently produced multiblock copolymers with a lower Tg 

for the PC-rich phase. 
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Figure 6.7. A comparison of PC-rich phase Tg at equivalent PC/PDMS ratio. 

As shown in Figure 6.4, all of the hydride-terminated PDMSs used to produce the PC-

PDMS multiblock copolymers exhibited a glass transition and melting endotherm.  With 

exception of the lowest Mn hydride-terminated PDMS, they also exhibited a crystallization 

exotherm associated with cold crystallization.  Both Tg and melting temperature were found to 

vary with molecular weight.  With regard to Tg, it increased with increasing Mn which, for this 

relatively low Mn range, can be attributed to the greater segmental mobility of the polymer chain 

ends.  With regard to the melting behavior, all four of the hydride-terminated PDMSs exhibited 

two melting peaks.  The observation of two melting peaks for PDMS has been observed by 
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others and attributed to the presence of two distributions of crystallites with different degrees of 

perfection/thickness.  As discussed by Aranguren
23

, the lower melting endotherm is associated 

with imperfect, relatively thin crystallites formed upon cooling at a rate of 2 ⁰C/min; while the 

higher temperature endotherm is associated with thicker, more perfect crystallities produced as a 

result of cold crystallization and crystal reorganization that occurs during the course of the 

MDSC heating process.  For the lowest molecular weight hydride-terminated PDMS, the melting 

temperatures of the endotherms were much lower than for the other three higher Mn hydride-

terminated PDMSs, which can be explained by the higher number of polymer chain ends that 

essentially serve as defects in the crystallites.  For the 1.2K PDMS, the two melting points were 

higher than that for the 0.7K PDMS but lower than that for the 5.3K PDMS, which can be 

attributed to an endgroup concentration effect as just discussed.  Compared to the two highest 

Mn PDMSs, the 1.2K showed a significant difference in the relative area of the lower melting 

endotherm to the higher melting endotherm.  The 1.2K PDMS displayed a higher fraction of the 

lower melting, less perfect crystallites than was observed for the higher Mn PDMSs.  Again, this 

result is a consequence of the difference in the number of polymer chain ends.   

With regard to the PC-PDMS block copolymers, none of the block copolymers based on 

the lowest molecular weight PDMS exhibited a Tg or crystalline phase associated with the 

presence of a PDMS-rich phase.  This result suggests that the short 0.7K PDMS blocks are 

unable to produce a separate phase of sufficient volume to produce these low temperature 

transitions.  For the multiblock copolymers based on the 1.2K PDMS, a very diffuse, subtle 

inflection in the range between -140 and -120 °C can be observed indicative of a PDMS-rich 

phase Tg.  However, no melting transitions were observed indicating that the presence of the PC 

blocks and interactions between PDMS and PC chain segments inhibit PDMS crystallization.  



 

130 

 

For the PC-PDMS copolymers based on the two highest Mn PDMS blocks (i.e. 5.3K and 

12K),both a Tg and a melting endotherm were observed, but no cold crystallization was observed 

for all the copolymers.  For the copolymers based on the 5.3K PDMS, Tm increased slightly with 

increasing PC block Mn and only one melting endotherm was observed with a peak temperature 

below that attributed to the more stable crystallites observed for the pure 5.3K PDMS.  The 

observation of a Tg indicates that a separate PDMS-rich phase exists for these block copolymers.  

In addition, the slight increase in Tm with increasing PC block Mn suggests less interaction of 

PDMS segments with PC segments which enables thicker, more perfect PDMS crystallites to be 

formed.  For the copolymers based on the highest Mn PDMS, the melting transition also varied 

systematically with PC block molecular weight.  For the block copolymer based on the lowest 

Mn PC (i.e. PC3K-PDMS12K_79%), a single melting endotherm was observed while the 

melting temperature for the copolymer based on 5K or 8K PDMS displayed a melting 

temperature with a shoulder on the high temperature side of the endotherm.  This result also 

suggests that increasing PC block molecular weight enables greater phase separation between 

PDMS and PC segments such that thicker, more stable PDMS crystallites can be formed.  

6.4.4. Thermal Stability by TGA 

The thermal degradation behavior of PC-PDMS block copolymers in air was evaluated 

using TGA, as shown in Figure 6.8 and Figure 6.9. It can be seen from the degradation profiles 

in Figure 6.8 that pure allyl-PCs undergo complete thermal degradation following a two-stage 

profile in air without leaving any char yield. The PC-PDMS block copolymers undergo a two-

stage decomposition when copolymerized with short PDMS chains, and gradually shifted to a 

near-one-stage decomposition when longer PDMS blocks are introduced. The two-stage thermal 

degradation profile is associated the thermal degradation behavior of pure PC under air.
7
 The 
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near-one-stage thermal degradation profile is attributed to the PDMS thermal degradation under 

air.
8
  

 

Figure 6.8. TGA curves of PC-PDMS block copolymers with PC block length of (a) 3K, (b) 5K, 

and (c) 8K in air. 

 

Figure 6.9 displays TGA curves of the block copolymers compared with pure PDMS. 

Pure PDMSs, especially the PDMSs with low molecular weights, are not thermally stable but 

yielding high amount of char residues. After being copolymerized with PC, the PC-PDMS block 

copolymers are much more thermally stable due to the restricted PDMS segments.  
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Figure 6.9. TGA curves of PC-PDMS block copolymers with PDMS block length of (a) 0.7K, (b) 

1.2K, (c) 5.3K, and (d) 12K in air. 

 

The temperature at maximum degradation rate, 5 wt% mass loss, 10 wt% mass loss, and 

weight percent of char residue are listed in Table 6.3. Figure 6.6 shows the char yield of the 

block copolymers. By comparing the T-5wt% and T-10wt% values, it can be found that the block 

copolymers with PDMS 5.3K blocks start to degrade preferentially than with other PDMS blocks. 

As compared with the thermal decomposition behavior under N2 in Chapter 5, the char yield of 

the block copolymers after heating under air is substantially higher. This is attributed the 

formation of oxidized silica on the surface preventing the residue from further decomposition. 
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Table 6.3. Thermal degradation evaluated by TGA in air. 

PC-b-PDMS samples Td (⁰C) T-5wt% (⁰C) T-10wt% (⁰C) Residue (wt%) 

PC3K-PDMS0.7K_19% 448.04 401.80 419.28 6.34 

PC3K-PDMS1.2K_27% 505.72 409.68 433.47 9.06 

PC3K-PDMS5.3K_62% 460.81 397.68 425.21 17.61 

PC3K-PDMS12K_79% 466.97 415.06 433.78 16.03 

PC5K-PDMS0.7K_13% 463.92 408.38 427.30 6.52 

PC5K-PDMS1.2K_20% 454.89 411.62 429.86 10.05 

PC5K-PDMS5.3K_52% 452.95 379.57 404.68 26.38 

PC5K-PDMS12K_72% 468.97 386.17 409.23 23.99 

PC8K-PDMS0.7K_9% 457.65 411.57 427.67 4.49 

PC8K-PDMS1.2K_13% 457.56 410.41 429.09 7.44 

PC8K-PDMS5.3K_41% 484.42 389.63 417.38 12.87 

PC8K-PDMS12K_62% 467.20 408.98 432.76 15.73 

 

In general, the overall char yield of the block copolymers increased with an increase of 

PDMS block length, as shown in Figure 6.10. This can be attributed to the greater thermal 

stability of the inorganic Si-O polymer backbone and the higher PDMS content of block 

copolymers possessing longer PDMS blocks. Correlating with the low initial degradation 

temperature, it was found the block copolymers with PDMS 5.3K blocks tends to undergo less 
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sharp decomposition. This may be attributed to the moderate domain size of the PDMS phase 

which was reported to be more flame retardant than the block copolymers with either smaller or 

bigger domain size.
9,10

 It is interesting that the char yield of block copolymers with PC 5K block 

length is higher than those with PC 3K and 8K blocks.  

 

Figure 6.10. TGA char yield of the PC-b-PDMS copolymers in air. 

6.4.5. Viscoelastic Properties by DMA 

In addition to MDSC, phase behavior was also characterized using DMA.  Due to issues 

with the ability to form free standing films with adequate mechanical properties for testing, only 

6 of the 12 samples could be characterized using DMA.  The mechanical properties of PC-PDMS 

block copolymers are strongly affected by block ratio and block molecular weights.
11

 Figure 6.11 

displays storage moduli and loss tangent data for all three multiblock copolymers possessing the 

lowest Mn PDMS blocks.  Consistent with the MDSC data, all three block copolymers exhibited 

a Tg associated with a PC-rich phase that decreased with decreasing PC molecular weight.  In 
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addition to a reduction in the Tg of the PC-rich phase with decreasing PC Mn, the transition 

broadened with decreasing PC Mn consistent with a greater extent of partial miscibility between 

the PC phase and PDMS segments.  Further, all of the block copolymers exhibit a subtle 

relaxation over the temperature range extending from about 30 °C to 70 °C.  The magnitude of 

this transition appears to increase with increasing PDMS block content suggesting that it may be 

associated with polymer chain segments located in the interphase between PC-rich and PDMS-

rich phases. 

 

Figure 6.11. Storage moduli and loss tangent data for all three multiblock copolymers possessing 

the lowest Mn PDMS blocks. 

 

Figure 6.12 provides a comparison of viscoelastic properties at approximately equivalent 

PDMS content (i.e. 20 wt. % PDMS).  As shown in Figure 7, the block copolymer based on the 

higher Mn PC and PDMS blocks exhibited a higher Tg for the PC-rich phase consistent with less 

partial miscibility between PC segments and PDMS segments. 
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Figure 6.12. A comparison of viscoelastic properties at approximately equivalent PDMS content 

(i.e. 20 wt. % PDMS). 

 

Figure 6.13 illustrates the effect of PDMS block Mn on viscoelastic properties.  As 

shown in the figure, increasing the PDMS block Mn from 1.2 Kg/mole to 5.3 Kg/mole, which 

corresponds to an increase in PDMS content from 27 to 62 weight percent, caused a dramatic 

change in viscoelastic properties.  At 62 weight percent PDMS, the storage modulus dropped by 

more than two orders of magnitude when the sample was heated beyond the Tg of the PDMS-rich 

phase.  In addition, an increase in storage modulus was observed at temperatures just above the 

PDMS-rich phase Tg.  This increase in storage modulus can be attributed to cold crystallization 
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of PDMS segments.  The large drop in storage modulus after reaching the PDMS-rich phase Tg 

clearly indicates that the PDMS segments formed the continuous phase in this sample. 

 

Figure 6.13. The effect of PDMS block Mn on viscoelastic properties of block copolymers based 

on 3,000 g/mole PC blocks. 

 

6.4.6. Water Contact Angle 

Water contact angle measurements were performed to analyze the surface energy of the 

block copolymers.  The results were plotted in Figure 6.14. Even though the water contact angle 

result of PC controls were not shown in the figure due to the low molecular weight and poor film 

formation of the PC oligomers especially when molecular weight is 3 K, the impact of PDMS 

block on the surface energy of the block copolymers was remarkable. It has been determined that 

the water contact angle was 89 ° for PC with 5 K molecular weight. In general, water contact 

angle was increase with the increase of PDMS block length, suggesting the existence of PDMS 

on the air/solid interface. However, the impact of PC block length on the surface energy of the 

block copolymers was negligible. This is attributed to the high mobility of PDMS polymer 
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chains and the freezing of PC polymer chains at room temperature. The PC segments remain in 

glassy state within bulk regardless of molecular weight, while PDMS segments migrate towards 

air/solid interface and longer PDMS block lengths allows higher extent of PDMS segregation. 

Meanwhile, it is interesting that sample PC8K-PDMS1.2K_13% showed lower surface energy 

than sample PC5K-PDMS0.7K_13%, and so as to sample PC8K-PDMS12K_62% and sample 

PC3K-PDMS5.3K_62%, suggesting surface energy is affected by block length regardless of 

PDMS content. This again illustrates the effect of PDMS block length on the surface segregation. 

The component with low surface energy in multiblock systems tends to change the surface 

property of the system. 

 

Figure 6.14. Water contact angle of PC-PDMS block copolymers (the percentage values labeled 

on bars indicate the PDMS content of each block copolymer). 
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6.4.7. AFM 

The surface morphology of the pure PC control and block copolymers was imaged by 

AFM as shown in Figure 6.15.  Since the pure PC oligomers don’t have good film formation 

property due to the low molecular weight, especially for PC 3K sample, PC 5K was coated and 

represents as control. It can be seen from the images that the surface heterogeneity increased 

when PDMS blocks were incorporated compared with PC control. PDMS block length plays an 

important role in determining the surface morphology of the block copolymers. With the increase 

of the PDMS block length, more PDMS segments segregate onto the surface making the surface 

more heterogeneous. Finally the surface is wholly covered by longest PDMS blocks, resulting in 

smooth surface again. This has been reported before that flexible PDMS chains tend to migrate 

onto solid/air interface, leading to the higher content of PDMS than bulk.
13

 And even only 6 wt% 

PDMS content could resulted in 95 wt% of PDMS concentration on surface upon annealing at 

certain temperature.
14

 

                         

Figure 6.15. AFM images of PC-b-PDMS copolymers compared with PC control. 
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6.4.8. Small Angle X-Ray Scattering (SAXS) 

PDMS-containing block copolymers form two-phase morphologies due to the difference 

in solubility parameters of the two components.
15

 SAXS is a primary technique to determine the 

phase separated morphologies. From SAXS, important characteristics, such as the mean values 

of interdomain spacing, domain boundary diffuseness and degree of microphase separation may 

be obtained.
16

 The samples were analyzed by SAXS to get more information about morphology. 

To ensure the phase separation for SAXS characterization, the block copolymer samples were 

annealed above glass transition temperature at 180 ⁰C for 30 min and quenched down to room 

temperature. Figure 6.16 shows the SAXS profiles of PC control, commercial PC-PDMS 

copolymer, and the synthesized PC-PDMS block copolymers. For pure PC, no scattering peak 

was observed. For block copolymer samples, scattering peaks appeared depending on the degree 

of phase separation, indicating the nanophase separated morphology. The samples with low 

PDMS content showed weak and broad maximum, indicating the lack of high order reflection. 

The weak and broad scattering peaks in SAXS profiles is owing to the density fluctuation in 

phase separated state.
17

 The absence of higher order of reflections is a consequence of a wide 

spread in lamellar thickness and the absence of regular stacking of lamella.
18

 However, for 

commercial PC-PDMS copolymers with only 5 wt% PDMS content, the scattering peak is more 

pronounced than that of synthesized PC-PDMS block copolymers with low PDMS content, i.e. 9 

and 13 wt%. This suggests that the commercial copolymer has a higher nanophase separated 

morphology and a higher order of the phase separated structure. The sharp scattering peak started 

to emerge from block copolymer sample with 20 % PDMS. And with the increase of PDMS 

content, the scattering peak become more pronounced and sharper, especially for samples with 

27 % and 62 % PDMS.  
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Figure 6.16. SAXS profiles of PC control, commercial PC-PDMS random copolymer, and 

synthesized block copolymers. 

 

To determine the morphology of the block copolymers, it is essential to calculate the 

ratios of the q vector of scattering peaks. However, for most of the samples up to 27 % PDMS, it 

is difficult due to the limited number of peaks. The result is not accurate if given information is 

deficient. Take sample PC3K-PDMS1.2K_27% for example, only two peaks at q vectors ratio of 

ca. 1 : 2 could be observed. There are numerous possibilities of the morphology. Enough 

information could only be obtained from sample PC3K-PDMS5.3K_62%, of which the SAXS 

profile is shown in Figure 6.17. Four scattering peaks were captured even though low order 

reflections were detected for the later three peaks. Interestingly, the ratio of q1 : q2 : q3 : q4 is ca. 

1 : 2 : 3 : 4, suggesting a predominantly lamellar morphology.  
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Figure 6.17. SAXS profile of PC3K-PDMS5.3K_62%. 

Although the morphology could not be determined for the other samples with low content 

of PDMS, the interdomain spacing could be extracted from SAXS profile. The interdomain 

spacing is an important parameter in quantifying the domain size.
19

 The interdomian spacing d is 

related to peak scattering vector qmax in the following relationship.
20
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spacing increases with PDMS content. The d values here are related to the PDMS domain size.
16

 

Longer PDMS blocks gave rise to larger interdomain spacing and larger domain size. 

Table 6.4. Interdomian spacing d of block copolymers. 

Block Copolymers d (nm) 

C-PC-PDMS 31.6 

PC3K-PDMS0.7K_19% 8.4 

PC5K-PDMS1.2K_20% 13.6 

PC3K-PDMS1.2K_27% 17.0 

PC3K-PDMS5.3K_62% 18.5 

 

6.4.9. TEM 

Figure 6.18 displays TEM images of commercial PC-PDMS random copolymers and the 

synthesized PC-PDMS block copolymers. Dark spherical PDMS domians can be observed in 

commercial copolymer containing 5 wt% PDMS. For synthesized block copolymer with 9 wt% 

PDMS, only one phase is observed, indicating the miscible two phases. This is consistent with 

MDSC result where only one Tg of PC-rich phase was observed and the Tg was significantly 

depressed compared with pure PC. With the increase of PDMS content, lamellar morphology 

was observed for samples containing 13 wt% and 19 wt% PDMS. 
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Figure 6.18. TEM images of commercial PC-PDMS random copolymer and synthesized PC-

PDMS block copolymers. 

 

6.4.10. Izod Impact Strength 

The mechanical properties of PC-PDMS block copolymers are also dependent on both 

PDMS content and PDMS block length. The block copolymer could be either an elastomer when 

PDMS content is high and block length is short, or a hard thermoplastic when PDMS content is 

low and block length is long.
21

 Only the hard thermoplastic type block copolymers were tested 

here for Izod impact strength with the commercial pure PC and commercial PC-PDMS block 

copolymer for comparison. The results are shown in Figure 6.19. The commercial PC-PDMS 

block copolymer has a much better notch resistance than synthesized block copolymers, which is 
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attributed to the low PDMS content of only 5 wt%. It is interesting that with the same PDMS 

content between sample PC5K-PDMS0.7K_13% and PC8K-PDMS1.2K_13%, the latter sample 

gave rise to better notch resistance, which may due to the higher extent of chain entanglement 

resulted from higher molecular weight and longer PC and PDMS block length. Although the 

synthesized PC-PDMS block copolymers have the Izod impact strength only comparable to 

commercial pure PC, they are definitely more notch resistant than pure allyl-PCs because the 

oligomers even shatter with hands and were not able to be processed to molded samples. 

 

Figure 6.19. Izod impact strength of commercial pure PC from Dow (C-PC), commercial PC-

PDMS block copolymer from Sabic (C-PD-PDMS), and three synthesized PC-PDMS block 

copolymers with relatively low PDMS content (PC8K-PDMS0.7K_9%, PC5K-PDMS0.7K_13%, 

PC8K-PDMS1.2K_13%). 

 

6.5. Conclusion 

Reaction conditions and parameters were optimized to get high molecular weight using 

low content of PtO2. Perfectly alternating PC-PDMS block copolymers were successfully 

produced using the new synthetic method. With low levels of PtO2, the catalyst removal is not 
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necessary in order to get high optical clarity. The PDMS segments are partially miscible with PC 

hard domains, leading to the decreased PC block glass transition temperature. Shorter PC and 

PDMS blocks tend to have better miscibility with each other. At PDMS content ranging from 27 

– 62 wt%, phase inversion occurs for the homogeneous block copolymers. Surface segregation 

of PDMS segments was observed resulting in hydrophobic surface. Especially for long PDMS 

blocks the surface are almost covered by PDMS. Under air, the incorporation of PDMS blocks 

significantly increased the char yield and slowed down the thermal decomposition rate. The 

synthesized PC-PDMS block copolymers exhibited high optical clarity at up to 62 wt% PDMS 

content. As evident by SAXS, the lamellar morphology was confirmed. Nanophase separated 

morphology was observed by TEM and SAXS. The synthesized block copolymers have much 

better notch resistance than pure allyl-PCs. 
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CHAPTER 7. POLYCARBONATE-POLYHEDRAL OLIGOMERIC SILSESQUIOXANE 

(PC-POSS) THERMOSET COATINGS—THE EFFECT OF SOLVENT COMPOSITION 

AND CURING CONDITION 

7.1. Abstract 

  Thermoset polycarbonate/polyhedral oligomeric silsesquioxane (PC-POSS) coatings with 

hydrophobic surfaces, enhanced thermal properties, and chemical resistance were prepared. A 

high purity allyl-PC was solution blended with OctaSilane-POSS® molecules, which possess 

eight silicon hydride groups per molecule.  Crosslinking/curing was accomplished by the 

addition of Karstedt’s catalyst which promotes hydrosilylation.  The variables explored in the 

study were POSS content, solvent composition, and curing conditions.  Coatings were 

characterized using water contact angle, atomic force microscopy (AFM), differential scanning 

calorimetry, and thermogravimetric analysis.  The thermoset PC-POSS coatings showed higher 

glass transition temperature, higher char formation, and higher chemical resistance compared to 

pure PC.  AFM topographical images of the coatings derived from CH2Cl2 as a solvent showed a 

nanoscopic distribution of POSS molecules at the coating/air interface, enabling the production 

of transparent, hydrophobic surfaces even at low POSS loadings 

7.2. Introduction 

  Aromatic polycarbonates (PCs), one of the most important engineering thermoplastics 

available, posses a combination of various unique properties such as high impact resistance, 

transparency, dimensional stability, electrical resistance, and high glass transition temperature.
1-4

  

Synthesis of aromatic PCs by reacting hydroquinone or resorcinol with phosgene in pyridine was 

first reported by Einhorn in 1898.
4
  A few years later, Bischoff et al. reported the synthesis of 
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aromatic PCs using a transesterification process.  However, due to difficulties in processing and 

characterization, no further development was achieved until 1953.  In 1953, Schnell and Fox 

independently discovered Bisphenol-A PCs.
5-7

  Later, in 1958, the amine catalyzed interfacial 

process became the most common route for the production of commercial PCs.
4
  Currently, 

global commercial production of PC is over 3 million metric tons/year for various applications 

such as aircraft dials, bullet-proof windows, films, and electrical parts.
8,9

 

Despite PCs exceptionally good mechanical, optical, and thermal properties, it has poor 

chemical resistance.
10-12

  Incorporation of PC into a three dimensional network structure by 

functionalization and subsequent crosslinking could improve its chemical resistance.  Synthesis 

of aromatic PCs with reactive end groups has been described in the literature.
10, 13-17

  Seow et al. 

synthesized a series of COOH-functionalized PCs via ring-opening polymerization, which were 

conjugated with aliphatic amines to form amine-functionalized PCs for gene therapy.
15

  Marks et 

al. reported the synthesis of a series of PCs with p-t-butylphenol as the nonreactive end group 

and 4-hydroxybenzocyclobutene, methacrylate, and m-ethynylphenol as reactive end groups.
16, 17

  

The reactive end groups were heat activated to produce crosslinked or long-chain-branched PCs.  

Improvements in melt strength and melt elasticity were achieved with branched-PCs compared to 

linear PCs.  Synthesis of vinylphenylcarbonate-terminated PCs and their thermal curing to form 

crosslinked polycarbonate networks was reported by Knauss et al.
10, 11

  Adelmann et al.
18

 and 

Stix et al.
19

 described the use of a chain stopper possessing a terminal double bond and 

conjugated double bonds, respectively, to synthesize functional PCs by interfacial 

polymerization with phosgene.  Use of 4-allyl-2-methoxyphenol (eugenol) as a chain stopper to 

prepare allyl-functional PCs (allyl-PCs) was reported by Kim, et al.
20

  Phosgene was used as the 
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carbonate source in making these polymers.  However, detailed structural analysis in order to 

confirm the absence of cyclic structures and effective end capping were not performed. 

Polyhedral oligomeric silsesquioxane (POSS) molecules with a unique cage-like structure 

and nanoscale dimensions (1-3 nm in diameter) have been widely used to produce novel polymer 

nanocomposites to enhance thermal, mechanical, and rheological properties of the polymer 

matrices.
21-26

  The reinforcement is provided by the rigid silica core of the POSS molecule while 

the organic functional groups provide compatibility with the matrix polymer.  If the organic 

functional groups have reactive functionalities, they can be incorporated into a polymer matrix 

by covalent bonding.  In the case of non-reactive functionalities, incorporation of POSS 

molecules into a polymer matrix can be achieved by non-covalent interactions such as dipole-

dipole, hydrogen bonding, and π-π interactions.  The effects of the incorporation of POSS into a 

PC matrix to produce PC-POSS nanocomposites have been investigated using solution- and 

melt-blending processes.
27-30

  For octaphenyl-POSS, good dispersion was achieved up to 5 wt% 

incorporation in PC.  Above this level of octaphenyl-POSS, micron-sized aggregates of 

octaphenyl-POSS was observed.
27

  When trisilanolphenyl-POSS was used, slight enhancements 

in tensile and storage modulus were reported with increasing POSS content, but ductility was 

reduced.
29

  The lack of conformational flexibility of the phenyl rings of PC was thought to 

prevent preferential π-π interactions with phenyl-substituted POSS molecules, resulting in 

limited compatibility.  Iyer et al. reported a significant decrease in glass transition temperature at 

higher levels of trisilanolphenyl-POSS due to plasticization of the PC matrix by the POSS 

molecules.
30

  Interestingly, incorporation of trisilanolphenyl-POSS into phenoxy resin, which, 

compared to PC, possesses 2-hydroxypropyl groups instead of carbonate groups, resulted in 
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enhanced thermomechanical properties suggesting the formation of specific interactions between 

the trisilanolphenyl-POSS and the phenoxy resin matrix.
30

 

Covalent bonding between POSS and PC was thought to be a potential route to 

improving compatibility and thereby preventing gross phase separation.  In addition, the 

formation of covalent bonding between PC and POSS would provide solvent resistance enabling 

new applications for PC.  This chapter describes the use of allyl-PCs in the production of 

thermoset PC-POSS materials.    These novel thermoset PC-POSS nanocomposites were 

expected to be useful as protective coatings over different substrates including PC. 

7.3. Experimental   

7.3.1. Raw Materials 

Highly pure allyl-PC with a molecular weight (Mn) of 5,000 g/mol (determined by 1H-

NMR) was synthesized using the process described in Chapter 5. Platinum (0)-1,3-divinyl-

1,1,3,3-tetramethyl disiloxane complex (Karstedt’s catalyst) and 1,1,2,2-tetrachloroethane (TCE) 

were obtained from Aldrich.  OctaSilane-POSS® was obtained from Hybrid Plastics. The TCE 

was dried with molecular sieves activated at 300 ⁰C. All other reagents were used as received. 

7.3.2. Preparation of PC-POSS Thermoset Coatings 

Thermoset PC-POSS coatings were prepared by reacting the allyl-PC with OctaSilane-

POSS® in the presence of Karstedt’s catalyst.  Stock solutions of 10 wt % allyl-PC and 2.0 wt % 

OctaSilane-POSS® were individually prepared in two different solvents, CH2Cl2 and TCE, 

respectively.  Table 7.1 describes the compositions and curing conditions of the coatings 

prepared.  Coating solutions were prepared by combining, in an 8 ml vial, the allyl-PC stock 

solution and 2.0 µL of Karstedt’s catalyst and the mixture magnetically stirred for 5 minutes 
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before adding the OctaSilane-POSS® solution.  After adding the OctaSilane-POSS® solution, 

the mixture was mixed well for 30 seconds using a vortex mixer and then 1.0 mL of the coating 

solution was deposited over a 2.54 cm X 7.62 cm glass slide using a pipette and subsequently 

cured to form a thermoset coating. 

Table 7.1.  Compositions of the thermoset PC-POSS coatings produced.  Each mixture contained 

1.0 g of 10 wt% solution of allyl-PC B8 (0.02 mmol) from Table 2 in either CH2Cl2 or TCE.  

The POSS solution was a 2 wt% solution of POSS in either CH2Cl2 or TCE.  Amount of 

Karstedt’s catalyst was 2.0 µL for each formulation.  

 

Coating 
*
 SiH:Vinyl 

POSS solution 

(g) 

POSS content  
Solvent 

 

Curing 

condition 
 mmol wt% 

PC-Control --- 0.00 0.00 0.00 CH2Cl2 RT 

PC-POSS(2.53)-S1-C1 0.5 : 1.0 0.56 0.01 2.53 CH2Cl2 RT 

PC-POSS(5.06)-S1-C1 1.0 : 1.0 1.12 0.02 5.06 CH2Cl2 RT 

PC-POSS(7.13)-S1-C1 1.5 : 1.0 1.68 0.03 7.13 CH2Cl2 RT 

PC-POSS(9.24)-S1-C1 2.0 : 1.0 2.24 0.04 9.24 CH2Cl2 RT 

PC-POSS(11.32)-S1-C1 2.5 : 1.0 2.80 0.05 11.32 CH2Cl2 RT 

PC-POSS(13.24)-S1-C1 3.0 : 1.0 3.35 0.06 13.24 CH2Cl2 RT 

PC-POSS(2.53)-S2-C1 0.5 : 1.0 0.56 0.01 2.53 TCE RT 

PC-POSS(5.06)-S2-C1 1.0 : 1.0 1.12 0.02 5.06 TCE RT 

PC-POSS(7.13)-S2-C1 1.5 : 1.0 1.68 0.03 7.13 TCE RT 

PC-POSS(9.24)-S2-C1 2.0 : 1.0 2.24 0.04 9.24 TCE RT 

PC-POSS(11.32)-S2-C1 2.5 : 1.0 2.80 0.05 11.32 TCE RT 

PC-POSS(13.24)-S2-C1 3.0 : 1.0 3.35 0.06 13.24 TCE RT 
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Table 7.1.  (continued) 

Coating 
*
 SiH:Vinyl 

POSS solution 

(g) 

POSS content  
Solvent 

 

Curing 

condition 
 mmol wt% 

PC-POSS(2.53)-S1-C2 0.5 : 1.0 0.56 0.01 2.53 CH2Cl2 RT+120 

PC-POSS(5.06)-S1-C2 1.0 : 1.0 1.12 0.02 5.06 CH2Cl2 RT+120 

PC-POSS(7.13)-S1-C2 1.5 : 1.0 1.68 0.03 7.13 CH2Cl2 RT+120 

PC-POSS(9.24)-S1-C2 2.0 : 1.0 2.24 0.04 9.24 CH2Cl2 RT+120 

PC-POSS(11.32)-S1-C2 2.5 : 1.0 2.80 0.05 11.32 CH2Cl2 RT+120 

PC-POSS(13.24)-S1-C2 3.0 : 1.0 3.35 0.06 13.24 CH2Cl2 RT+120 

PC-POSS(2.53)-S2-C2 0.5 : 1.0 0.56 0.01 2.53 TCE RT+120 

PC-POSS(5.06)-S2-C2 1.0 : 1.0 1.12 0.02 5.06 TCE RT+120 

PC-POSS(7.13)-S2-C2 1.5 : 1.0 1.68 0.03 7.13 TCE RT+120 

PC-POSS(9.24)-S2-C2 2.0 : 1.0 2.24 0.04 9.24 TCE RT+120 

PC-POSS(11.32)-S2-C2 2.5 : 1.0 2.80 0.05 11.32 TCE RT+120 

PC-POSS(13.24)-S2-C2 3.0 : 1.0 3.35 0.06 13.24 TCE RT+120 

 

* S1 = solvent CH2Cl2, S2 = solvent TCE, C1 = solvent flash and curing at ambient conditions 

(RT), and C2 = a 15 minute solvent flash followed by curing at 120 °C for 1 hour (RT+120) 

 

7.3.3. Instrumentation 

Water contact angle measurements on the coatings were carried out using an automated 

surface energy measurement unit manufactured by Symyx Discovery Tools, Inc. and First Ten 

Angstroms.
31,32

  Three measurements were taken on each coating using the sessile drop method 

and the data reported as the average and standard deviation.     
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Atomic force microscopy (AFM) studies were performed in tapping mode using a 

Dimension 3100® microscope with a Nanoscope IIIa controller from Veeco Incorporated.  

Topographical images were collected in air, at room temperature, using a single-lever silicon 

probe from Nanosensors
TM

.  Cantilever length, width, and thickness of the silicon probe were 

225 ± 10 µm, 25 ± 7.5 µm, and 3.0 ± 1.0 µm, respectively.  The spring constant was 0.5-9.5 N/m 

with a resonant frequency 75 kHz.  The set point ratio was 0.8-0.9. 

Differential scanning calorimetry (DSC) experiments were carried out using a DSC 

Q1000 from TA instruments equipped with an auto sampler.  About 5.0 mg of sample were 

measured.  The experiments were conducted using a heat-cool-heat cycle extending from +25 °C 

to +200 °C at a heating/cooling rate of 10°C/min.  Thermal gravimetric analysis (TGA) was 

carried using a TGA Q500 thermal analyzer under a nitrogen atmosphere in the temperature 

range of +25 °C to +800 °C at a heating rate of 20 °C/min, purged with N2 at 50ml/min.  

The solvent-swelling test to evaluate chemical resistance of the thermoset POSS-PC 

coatings was carried out following the method described by Nakamura and Ishida.
33

  A 

rectangular sample with length of 15 mm and width of 5 mm was immersed in CH2Cl2 at room 

temperature for 10 min. After removing from the solvent, the length, Lx (mm), of the immersed 

sample was measured.  The degree of swelling was calculated using the following equation: 

The degree of swelling (%) = [(Lx-15)/15] X 100                     Equation 7.1 

Three samples were tested for each coating composition.  Average degree of swelling and 

standard deviation was reported. 
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7.4. Results and Discussion 

7.4.1. Preparation of PC-POSS Thermoset Coatings 

Scheme 7.1 illustrates the process that was used to produce the nanocomposite coatings.  

The process consisted of solution blending an allyl-PC with OctaSilane POSS® and Karstedt’s 

catalyst. With this process, crosslinking and incorporation of POSS molecules into the PC matrix 

occurs via hydrosilylation reactions.  OctaSilane-POSS® was chosen for the study because the 

eight Si-H groups of OctaSilane-POSS® are a siloxane unit away from the inorganic cage as 

compared to OctaHydro-POSS® (H8O2Si8) which was expected to reduce issues of steric 

hindrance with respect to hydrosilylation with ally-PC.
34,35

 

 

Scheme 7.1.  A schematic illustrating the formation of crosslinked network involving allyl-PC 

and OctaSilane-POSS® to produce thermoset PC-POSS coating. 
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The variables investigated for the study were POSS content, solvent composition, and 

curing conditions.  POSS content was varied from 2.53 wt % to 13.24 wt % by changing Si-

H:vinyl ratio from 0.5:1.0 to 3.0:1.0.  The two solvents used for the investigation were CH2Cl2 

and TCE.  They are both good solvents for allyl-PC and OctaSilane-POSS®, however, their 

volatilities differ substantially.  At 20 °C, CH2Cl2 has a vapor pressure of 352.2 mm of Hg, while 

TCE has a vapor pressure of only 8.0 mm of Hg.   Curing was done using two different methods.  

One of the methods simply consisted of solvent flash and curing at ambient conditions, while the 

other method consisted of a 15 minute solvent flash followed by curing at 120 °C for 1 hour.  

Figure 7.1 displays a schematic of the experimental design used for the investigation.   

 

Figure 7.1. A schematic illustration of the experimental design used for coating formulations.  

RT is solvent flash and curing at ambient conditions, and RT+120 is a 15 minute solvent flash 

followed by curing at 120 °C for 1 hour. 
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The incompatibility between POSS molecules and PC even at 2.5 wt % loading, when 

prepared by physical blending, has been reported by Zhao et al.
27

  The nanocomposites prepared 

by these investigators were translucent or opaque indicating gross phase separation. In contrast, 

for the thermoset nanocomposites prepared as a part of this study, the PC-POSS nanocomposite 

coatings were transparent up to ~11 wt % POSS.  This result indicates that covalently bonding 

POSS molecules to the PC matrix greatly inhibits gross phase separation.  To illustrate, two PC-

POSS blends were prepared and cast onto glass slides.  The two blends were identical with the 

exception that only one of the blends received the Karstedt’s catalyst required for hydrosilylation 

to occur.  Figure 7.2 displays images of the coated glass slides.   The coating produced without 

the Karstedt’s catalyst was highly opaque while the crosslinked coating was completely 

transparent, thereby illustrating the utility of covalent bonding between the two components to 

prevent large-scale phase separation upon solvent evaporation. 

 

Figure 7.2. Images illustrating transparent, thermoset PC-POSS coating (left); and opaque, non-

crosslinked PC-POSS coating from solution blend (right) over glass slide after applying identical 

curing condition. 

 

7.4.2. Surface Properties 

Figure 7.3 displays water contact angle data for the PC-POSS coatings as a function of 

the variables investigated. The water contact angle for a film of pure allyl-PC was 89.5 °.   

Interestingly, solvent composition was found have a major effect on water contact angle. The 
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thermoset PC-POSS coatings derived from CH2Cl2 were more hydrophobic than pure allyl-PC as 

well as analogous coatings derived from TCE as the solvent.  The increase in hydrophobicity 

observed for the coatings based on CH2Cl2 as the solvent suggested greater surface segregation 

of hydrophobic POSS molecules to coating/air interface.  

 

Figure 7.3. Water contact angle data of PC-POSS coatings. 

This result may be due to the difference in volatility between CH2Cl2 and TCE.  It would 

be expected that the lower volatility solvent (i.e. TCE) would allow for greater extents of 

hydrosilylation to occur before the majority of the solvent is vaporized and the coating becomes 

vitrified.  The higher extent of hydrosilylation would inhibit diffusion of POSS molecules to the 

coating/air interface because more POSS molecules would be covalently bound to the PC matrix.  

In contrast, the higher volatility of CH2Cl2 allows less time for hydrosilylation reactions during 

film formation enabling more POSS molecules to diffuse to the coating/air interface. With regard 

to the effect of cure conditions, no significant influence of cure conditions on water contact was 

observed for the coatings based on TCE as the solvent.  In contrast, the water contact angles 
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obtained for the coatings based on CH2Cl2 as the solvent were systematically lower when curing 

was done using the two-step process (i.e. 15 minute flash at ambient conditions followed by 1 

hour at 120 °C) than those same coatings cured at ambient conditions.  Consistent with the 

discussion used to explain the variations in water contact angle observed as a function of solvent 

composition, the lower water contact angles obtained using the two-step cure most likely resulted 

from higher extents of hydrosilylation resulting from the 120 °C heat treatment which effectively 

inhibited migration of POSS molecules to the coating/air interface.   

In order to understand the trends observed for water contact angle data, AFM was used to 

characterize coating surface topography.  The AFM images displayed in Figure 7.4 were all 

obtained from coatings produced using CH2Cl2 as a solvent and cured at ambient conditions.  As 

expected, a homogeneously smooth surface morphology was obtained for the pure PC coating.  

Nanoscale surface roughness increased with increasing POSS content indicating the presence of 

POSS molecules at the coating/air interface which is consistent with the water contact angle 

data.
36,37

  The AFM images displayed in Figure 7.5 show the affects of solvent composition and 

curing conditions on surface topography.  Most of the coatings derived from TCE as the solvent 

possessed a homogeneously smooth surface topography indicating a relative lack of POSS 

molecules at the coating/air interface which is consistent with the water contact data   However, 

as shown in Figure 7.5 (d), at the relatively high POSS content of 11.32 wt % the coating based 

on TCE and cured at ambient conditions showed larger scale surface features which suggest the 

formation of POSS agglomerates at the coating/air interface.  The analogous coating cured using 

the elevated temperature cure (Figure 7.5 (h)), was smooth suggesting that the high temperature 

“locks” the POSS molecules in the PC matrix via hydrosilylation before they can migrate to the 

coating/air interface. 
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Figure 7.4. AFM images of PC-POSS coatings as a function of POSS wt %.  Ra is mean 

roughness. 

 

 

 

 

Figure 7.5. AFM images of PC-POSS coatings illustrating the effects of solvent compositions 

and curing conditions on surface topography. 
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7.4.3. Thermal Properties 

The thermal properties of PC-POSS coatings were characterized using DSC and TGA.  

Figure 7.6 displays the glass transition temperature (Tg) of the coatings as a function of the 

variables of interest.  Zhao et al. have reported that POSS molecules as viscous fluid or as 

crystalline solid, when blended with PC matrix, could act as a plasticizer by decreasing the 

packing density of the polymer matrix around the POSS molecules.
27

 As a result, polymer free 

volume increased which decreased the Tg values.  However, in this study, a sharp increase in Tg 

values were observed with POSS containing coatings.  This was due to the incorporation of rigid 

POSS molecules into the three dimensional network structures by crosslinking.  The Tg values of 

the coatings produced using CH2Cl2 as a solvent and cured at ambient conditions passed through 

a maximum at 7.13 wt % of POSS content which corresponds to Si-H:vinyl ratio 1.5:1.0.  This 

indicates that maximum crosslinking was achieved with slight excess of Si-H concentrations 

when the coatings were cured under ambient conditions.  At a higher POSS content (> 9.0 wt %), 

un-reacted residual POSS molecules could plasticized the matrix resulted in a drop in Tg values.  

The DSC curves of the second heat cycle of this series are shown in Figure 7.7 for illustration 

purpose.  With accelerated curing, the drop in Tg values above 7.13 wt % of POSS content was 

insignificant for the coatings produced using CH2Cl2 as a solvent. This might be a result of 

additional crosslinking during accelerated curing which prevented the plasticization effects of 

POSS molecules.  With TCE, slow evaporation of the solvent at ambient conditions allowed 

completion of crosslinked network structure formation.  Hence, accelerated curing did not have a 

dramatic effect on Tg values at higher POSS content.  
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Figure 7.6. Tg values of PC-POSS coatings. 

 

Figure 7.7. DSC overlay of second heating cycle of PC-POSS coatings derived from CH2Cl2 as a 

solvent and cured at ambient conditions. 
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conditions were compared.  Table 7.2 displays the results of onset of degradation temperature i.e. 

the temperature of 5 wt % weight loss (T-5%), temperature of maximum weight loss rate (Tmax), 

and the fraction of the char residue.  The T-5% and Tmax for pure PC was 431 and 525 °C, 

respectively.  With incorporation of POSS molecules, a significant increase in both T-5% and Tmax 

was observed only with highest POSS content coating.  The lack of enhancement in thermal 

stability with PC-POSS coatings might be due to complex degradation behavior of the PC which 

includes hydrolysis/alcoholysis of carbonate linkages, chain scission of isopropylidene linkages, 

branching, and crosslinking at higher temperature.
38-40

  The siloxane units attached with POSS 

molecules could degrade below 500 °C and overall thermal stability of PC-POSS coatings 

decreased.  Later, POSS converted to molecular silica and produced char residue.  However, the 

amount of char was considerably higher in PC-POSS coatings (up to 30.0 wt %) compared to the 

pure PC (1.7 wt %) and also higher compared to the wt % of POSS in the coatings. 

Table 7.2. TGA data in N2 of PC-POSS coatings derived from CH2Cl2 as a solvent and cured at 

RT. 

 

Coating T-5wt% (°C) Tmax (°C) Char Residual (wt%) 

PC-Control 
431.17 524.77 1.68 

PC-POSS(2.53)-S1-C1 
420.83 520.58 11.60 

PC-POSS(5.06)-S1-C1 
429.88 525.03 18.37 

PC-POSS(7.13)-S1-C1 
436.51 525.93 22.77 

PC-POSS(9.24)-S1-C1 
406.82 507.64 31.42 

PC-POSS(11.32)-S1-C1 
450.99 523.29 25.62 

PC-POSS(13.24)-S1-C1 
452.53 533.47 27.04 
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7.4.4. Chemical Resistance 

One of the primary disadvantages associated with the use PC in many applications is its’ 

poor solvent resistance.  PC is readily soluble in several common solvents especially chlorinated 

solvents such as CH2Cl2, TCE, and chloroform, and subjection of PC to a wide variety of 

chemicals can cause stress cracking of PC.  Since crosslinking prevents solubilization and the 

degree of swelling resulting from immersion of a crosslinked sample in a solvent of interest is 

related to the degree of crosslinking, it was of interest to conduct solvent swelling experiments.    

Figure 7.8 displays the effect of POSS content on the degree of swelling for films cast from 

CH2Cl2 and cured at ambient conditions.  The swelling solvent used was CH2Cl2. The swelling 

values passed through a minimum at approximately 7.0 wt % POSS, indicating that this optimum 

POSS content provides maximum crosslink density. This is consistent with the Tg values 

obtained from DSC which passed through a maximum at approximately 7.0 wt % POSS for this 

series of coatings. 

 

Figure 7.8. Degree of swelling of thermoset PC-POSS coatings derived from CH2Cl2 as a solvent 

and cured at ambient conditions.  Error bars represent one standard deviation. 
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Figure 7.9 shows the effect of cure conditions on solvent swelling.  Although the trend 

between solvent swelling and POSS content was the same as that observed for films cured at 

ambient conditions, films cured using a 15 minute solvent flash followed by curing at 120 °C for 

one hour consistently showed lower solvent swelling. This result indicates that curing at ambient 

conditions does not result in a fully crosslinked network. The thermal treatment at 120 °C for one 

hour drives a higher extent of cure. 

 

Figure 7.9. Degree of swelling in CH2Cl2 values illustrating the effects of curing conditions.  

Error bars represent one standard deviation. 

 

7.5. Conclusion 

A highly pure allyl-PC was used to produce a series of thermoset PC-POSS coatings 

using hydrosilylation as the crosslinking reaction.  The effects of POSS content, solvent 

composition, and curing conditions were investigated in detail. Water contact angle data and 

AFM topographical images showed that the distribution of POSS molecules in the coating was 

highly dependent on solvent composition and cure conditions.  Use of the more volatile solvent, 

Solvent=CH2Cl2, Curing=RT               Solvent=CH2Cl2, Curing=RT+120 

18.0 

18.5 

19.0 

19.5 

20.0 

20.5 

21.0 

21.5 

22.0 

7.13 11.32 13.24

D
e

gr
e

e
 o

f 
Sw

e
lli

n
g 

(%
)

POSS wt%



 

168 

 

CH2Cl2, resulted in higher water contact angles and nanoscale surface roughness indicative of 

greater segregation of POSS molecules to the coating/air interface.  In addition, curing at 120 °C 

as opposed to room temperature reduced water contact angles and nanoscale surface roughness.  

These results were explained in terms of the relative rates of hydrosilylation and solvent 

evaporation.  The allyl-PC and POSS are incompatible and as solvent is evaporated there is a 

thermodynamic driving force for phase separation and migration of the lower surface energy 

POSS molecules to the coating/air interface.  Use of the more slowly evaporating solvent (i.e. 

TCE) and the higher cure temperature enable higher extents of hydrosilylation to occur before 

the solvent is largely gone which largely inhibits phase separation and surface migration by 

covalent attachment of the POSS molecules to the PC matrix.     

Thermal analysis of the coatings showed significant increases in PC Tg as a result of 

crosslinking with POSS.  In addition, the nanocomposite films showed major increases in char 

after thermal decomposition compared to the pure allyl-PC.  At the higher POSS contents, the 

amount of char was close to 30 wt % which is much higher than the 1.7 wt % obtained for pure 

allyl-PC.  With regard to chemical resistance, an optimum POSS content of approximately 7.0 

wt % was found that minimized solvent swelling.  This result indicated that this POSS level 

enabled the high crosslink density at a given cure condition. 
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CHAPTER 8. POLYCARBONATE-POLYHEDRAL OLIGOMERIC 

SILSESQUIOXANE (PC-POSS) THERMOSET COATINGS—THE EFFECT OF POSS 

CONTENT AND CROSSLINK DENSITY 

8.1. Abstract 

ASHBY-Karstedt’s catalyst in combination with TCE as a solvent were used as a 

replacement for Karstedt’s catalyst and CH2Cl2 for preparation of thermoset PC-POSS coatings. 

With ASHBY-Karstedt’s catalyst, coating solution stays stable at ambient condition without 

crosslinking while curing occurs immediately at elevated temperature. The variables explored in 

the study were POSS content and crosslinking density.  The covalent bonding between PC and 

POSS allows up to 18 wt% POSS loading while the transparency of the thermoset coatings was 

maintained. Coatings were characterized using attenuated total reflectance fourier transform 

infrared spectroscopy (ATR-FTIR), UV-Vis spectroscopy, water contact angle, atomic force 

microscopy (AFM), differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), 

dynamic mechanical analysis (DMA), pendulum harness, and abrasion resistance.  The thermoset 

PC-POSS coatings showed higher glass transition temperature, higher char formation, and higher 

abrasion resistance compared to pure PC. The excess POSS molecules tend to act as nanofiller to 

reinforce the PC-POSS crosslinked network, giving better thermal and mechanical properties. 

Those coatings provide an alternative for the surface protection of thermoplastic PC substrates. 

8.2. Introduction 

With the development of coatings technology, the coating surfaces are sophisticatedly 

tuned to adapt to various applications. The nanostructured coatings have been designed or the 

coating surfaces have been modified to have low friction coefficient, superior hardness, wear 
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resistance, superhydrophobicity, and so on.
1-5

 The surface properties are important in 

determining the coatings interaction with the environment. And the bulk properties are essential 

in determining the overall characteristic performance of the coatings. The design of both surface 

and bulk properties by appropriate selection of coating raw materials and application process to 

achieve desired performances still remains a challenge.
6
 In Chapter 7, we were able to tune the 

surface and bulk properties of the thermoset PC-POSS coatings by changing the solvent 

composition and curing condition. The more hydrophobic surface could be obtained in a fast-

leaving solvent and low temperature curing, leaving the free POSS molecules segregating on the 

coatings surface. And the less hydrophobic surface was derived from a slow-leaving solvent with 

POSS crosslinkers stay within bulk. 

Moreover, Karstedt’s catalyst enabled immediate curing even at ambient condition, 

leading to the very limited time allowed for coating application. The time after a 2K paint 

components have been mixed and before the application onto substrates is defined as “pot life”.
7
 

Pot life is an important parameter for commercial 2K paints which allows customers to have 

enough time to apply the coatings before gelation occurs. In commercial coating operation, short 

pot life results in a significant potential waste of coating materials. Therefore, it is highly 

desirable and advantageous to improve pot life and reduce waste potential. Numerous efforts 

have been undertaken to improve the pot life of 2K coatings.
8-10

 

In order to gain better understanding of the role of POSS molecules within the 

crosslinked networks and at the same time to improve the pot life of the thermoset PC-POSS 

coating, ASHBY-Karstedt’s in combination of TCE as a solvent were used as a replacement for 

Karsted’t catalyst and CH2Cl2 for preparation of thermoset PC-POSS coatings. ASHBY-Karstedt 



 

176 

 

is a commercially available catalyst which consists of Pt-cyclovinylmethylsiloxane complex. The 

difference of ASHBY-Karstedt’s from regular Karstedt’s catalyst is that the former one only 

functions at elevated temperature. Therefore, the new combination of solvent and catalyst 

enabled the molecular dispersion of POSS molecules before gelation occurs and the well 

embedded state of POSS molecules within the crosslinked PC-POSS network. The surface and 

bulk properties were studied through various techniques. 

8.3. Experimental 

8.3.1. Raw Materials 

Highly pure allyl-PCs with molecular weights (Mn) of 3,070 g/mol, 4,600 g/mol 

(determined by 
1
H-NMR) were synthesized using the process described in Chapter 5. Platinum 

(0)-cyclovinylmethylsiloxane complex (ASHBY-Karstedt’s catalyst) was purchased from Gelest. 

OctaSilane-POSS® was obtained from Hybrid Plastics. 1,1,2,2-tetrachloroethane (TCE) was 

obtained from Aldrich.  OctaSilane-POSS® was obtained from Hybrid Plastics. TCE was dried 

with molecular sieves activated at 300 ⁰C. All other reagents were used as received. 

8.3.2. Preparation of PC-POSS Thermoset Coatings 

Pure allyl-PC oligomers with low molecular weights of 3,070 g/mol and 4,600 g/mol 

were used here, and simply represented as 3K PC and 5K PC. For PC5K-POSS coating, stock 

solutions of 20 wt % allyl-PC and 3 wt % OctaSilane-POSS® were individually prepared in TCE.  

For PC3K-POSS coating, stock solutions of 25 wt % allyl-PC and 3 wt % OctaSilane-POSS® 

were individually prepared in TCE. Table 8.1 describes the compositions of the coatings 

prepared.  Coating solutions were prepared by combining, in an 8 ml vial, allyl-PC stock solution 

and ASHBY-Karstedt’s catalyst (2 μL per 0.4 g 5K PC and 1 μL per 0.4 g 3K PC) and the 
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mixture magnetically stirred for 5 minutes before adding an OctaSilane-POSS® solution.  After 

adding the OctaSilane-POSS® solution, the mixture was mixed well for 30 seconds using a 

vortex mixer and then 1.0 mL of the coating solution was deposited over a 2.54 cm X 7.62 cm 

glass slide using a pipette and subsequently cured at 120 ⁰C to form a thermoset coating. The 

coatings were annealed at 180 ⁰C for 1 hour to completely remove solvent before 

characterization. 

Table 8.1. Compositions of the thermoset PC-POSS coatings produced.   

PC-POSS 

Coatings 
SiH:Vinyl 

POSS Content 

(wt%) 

PC-POSS 

Coatings 
SiH:Vinyl 

POSS Content 

(wt%) 

PC_5K -- 0 PC_3K -- 0 

PC5K-POSS_3% 0.5:1.0 3 PC3K-POSS_4% 0.5:1.0 4 

PC5K-POSS_6% 1.0:1.0 6 PC3K-POSS_8% 1.0:1.0 8 

PC5K-POSS_8% 1.5:1.0 8 PC3K-POSS_12% 1.5:1.0 12 

PC5K-POSS_11% 2.0:1.0 11 PC3K-POSS_15% 2.0:1.0 15 

PC5K-POSS_13% 2.5:1.0 13 PC3K-POSS_18% 2.5:1.0 18 

PC5K-POSS_15% 3.0:1.0 15 PC3K-POSS_21% 3.0:1.0 21 

 

8.3.3. Instrumentation 

The curing was evaluated by ATR-FTIR spectroscopy using Vertex 70 Fourier 

Transform Infrared Spectrometer from Bruker Optics. Zinc Selenide (ZnSe) was used as a crystal 

for the measurement. Analyses were conducted by OPUS IR software. 
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UV-Vis spectroscopy was recorded using Cary 5000 UV-Vis-NIR spectrometer (Version 

1.12) over a wavelength ranging from 200 to 800 nm with 1 nm resolution for films of thickness 

around 100μm. 

Water contact angle measurements on the coatings were carried out using an automated 

surface energy measurement unit manufactured by Symyx Discovery Tools, Inc. and First Ten 

Angstroms. Three measurements were taken on each coating using the sessile drop method and 

the data reported as the average and standard deviation.     

Atomic force microscopy (AFM) studies were performed in tapping mode using a 

Dimension 3100® microscope with a Nanoscope IIIa controller from Veeco Incorporated.  

Topographical images were collected in air, at room temperature, using a single-lever silicon 

probe from Nanosensors
TM

. Cantilever length, width, and thickness of the silicon probe were 225 

± 10 µm, 25 ± 7.5 µm, and 3.0 ± 1.0 µm, respectively.  The spring constant was 0.5-9.5 N/m 

with a resonant frequency 75 kHz.  The set point ratio was 0.8-0.9. 

Differential scanning calorimetry (DSC) experiments were carried out using a DSC 

Q1000 from TA instruments equipped with an auto sampler.  About 5.0 mg of sample were 

measured.  The experiments were conducted using a heat-cool-heat cycle extending from +25 °C 

to +200 °C at a heating/cooling rate of 10°C/min.  Thermal gravimetric analysis (TGA) was 

carried using a TGA Q500 thermal analyzer under nitrogen atmosphere in the temperature range 

of +25 °C to +800 °C at a heating rate of 20 °C/min, purged with N2 at 50ml/min.  

The gel contents were determined to evaluate the crosslinking density of the thermoset 

coatings. By measuring the weights of the dry films before (W0) and after 3 hour Soxhlet 

extraction (Wdry) in methylene chloride, the gel content could be calculated by  
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    Equation 8.1 

Three samples were tested for each coating composition, and the average value and 

standard deviation were reported. 

The solvent swelling tests were performed by measuring the lengths of the rectangular 

samples of the thermoset coatings before (L0) and after 1 hour immersion in TCE (Lwet). And the 

swelling degree could be obtained by calculating according the following equation, 

                                             Equation 8.2 

The recorded value is the average swelling degree and standard deviation based on three 

measurements. 

König pendulum hardness was measured according to ASTM D 4366 using a BYK 

Gardner, Pendulum Hardness Tester. The hardness values were recorded as time in seconds 

based on three measurements.   

The abrasion resistance was determined as the change of light transmission after the films 

were subjected to certain cycles of abrasion test. The combi-abraser controls applied force by air 

pressure and controls cycles by orbital shaker, and the abrasion was performed by the rough 

brush heads equipped inside the chamber of the combi-abraser, as shown in Fig 8.1. Air pressure 

of 2 psi was applied and the samples were abraded for 100 cycles. The light transimittance of the 

samples were recorded in UV and visible wavelength range 200-800nm. 

𝐺   𝐶       (𝑤 %) =  
𝑊 𝑟𝑦

𝑊0
 100 

 𝑤   𝑖 𝑔 (%) =  
𝐿𝑤  − 𝐿0

𝐿0
 100 
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Figure 8.1. The combi-abraser used for abrasion test. 

8.4. Results and Discussion 

8.4.1. Preparation of PC-POSS Thermoset Coatings 

In order to get most of the pot life which is an important factor in commercial 2K coating 

applications, the thermoset PC-POSS coatings were prepared by reacting allyl-PC with 

OctaSilane-POSS® in presence of ASHBY-Karstedt’s catalyst.  The ASHBY-Karstedt’s catalyst 

is Pt (0) complex with cyclovinylmethylsiloxane which functions immediately at moderate 

elevated temperature or at ambient temperature after a long period of time. Curing of the 

thermoset PC-POSS coatings were accomplished at 120 ⁰C to get the immediately cured coatings. 

Figure 8.1 illustrates the process that was used to produce the nanocomposite coatings.  The 

process consisted of solution blending an allyl-PC with OctaSilane POSS® and ASHBY-

Karstedt’s catalyst. With this process, crosslinking and incorporation of POSS molecules into the 

PC matrix occurs via hydrosilylation reactions.   
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Scheme 8.1. A schematic illustrating the formation of crosslinked network involving allyl-PC 

and OctaSilane-POSS® to produce thermoset PC-POSS coating. 

Variables investigated in this study are crosslinking density and POSS content. The 

crosslinking density was varied by using allyl-PCs with different molecular weight. High 

molecular weight of allyl-PC leads to low crosslinking density and thus poor mechanical 

properties. Thereby, allyl-PCs with low molecular weight of 3K (3070 g/mol) and 5K (4600 

g/mol) were studied here. For PC5K-POSS coatings, POSS content was varied from 3 wt % to 

15 wt % by changing Si-H:vinyl ratio from 0.5:1.0 to 3.0:1.0.  For PC3K-POSS coatings, POSS 
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content was varied from 4 wt % to 21 wt % by changing Si-H:vinyl ratio from 0.5:1.0 to 3.0:1.0.  

TCE was used as a solvent here due to the relatively low vapor pressure and thus low 

evaporation rate. If a fast-leaving solvent is used, i.e. CH2Cl2, the solvent would complete 

evaporation before curing occurs, resulting in un-reacted mixtures. Figure 8.2 displays a 

schematic of the experimental design used for the investigation. 

 

Figure 8.2. A schematic illustration of the experimental design used for coating formulations. 

Figure 8.3 (a) to (d) displays the ATR spectra of allyl-PC with Mn 5K, OctaSilane-

POSS®, and PC5K-POSS coatings with 8% and 15% POSS. The successful hydrosilylation 

coupling between Si-H and allyl functional groups are illustrated by the disappearance of the 

strong Si-H band at 2141 cm-1 in the spectrum of PC5K-POSS_8% coating (Figure 8.3 (c)) at a 

1.5:1 stoichiometry. Trace of the Si-H band could be observed when excessive OctaSilane-

PC-POSS coatings

PC MW
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POSS® were added at a 3:1 stoichiometry in the PC5K-POSS_15% coating as shown in Figure 

8.3 (d). The broadening of band region of PC5K-POSS coatings at ~1100 cm
-1

 and 860 cm
-1

 are 

attributed to the stretching vibration and bending of Si-O of the silsesquioxane cage.
11

 The 

shoulder at 1250 cm
-1

 is assigned to stretching of newly formed Si-C linkage.
12

  

 

Figure 8.3. FTIR spectrum of (a) allyl-PC, (b) Octasilane-POSS® and PC-POSS coatings with (c) 

8 wt% POSS and (d) 15 wt% POSS. 

 

The gel content and swelling degree of the thermoset coatings are displayed in Figure 8.4 

to evaluate the crosslinking density of the films. As expected, the gel content increased with 

POSS content initially and reached a plateau for both PC 5K and PC 3K coatings. At low POSS 

content (PC5K-POSS_3% and PC3K-POSS_4%), the stoichiometry of SiH:VN is 0.5:1, the PC 

chains were not fully covalently attached with POSS crosslinker. Free un-reacted PC chains were 

6008001000120014001600180020002200240026002800300032003400360038004000
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washed away by solvent, leading to the low gel content. The gel content reached the maximum at 

8 % of POSS content (1.5:1 stoichiometry) instead of 6 % (1:1 stoichiometry) for PC5K-POSS 

coatings at a 1:1 stoichiometry. This indicated there are un-reacted Si-H groups on periphery of 

POSS molecules at 1:1 stoichiometry due to the steric hindrance, and excessce POSS 

crosslinkers are needed to react with allyl groups. And the allyl functional groups were fully 

reacted at 1.5:1 stoichiometry, whereas leaving certain amount of un-reacted Si-H groups on 

POSS molecules. For PC3K-POSS coating, the maximum gel content reached at 1:1 

stoichiometry when 8 % POSS was added. This may attributed to the shorter chains of allyl-PCs 

with 3K molecular weight than those of allyl-PCs with 5K molecular weight, leading to the 

decreased steric hindrance. It is interesting that the incorporation of large excess POSS 

molecules did not cause a drop of the gel content. This may result from the lack of a large 

amount of free un-reacted POSS molecules, which means the POSS molecules were uniformly 

partially reacted.  

The swelling degree as a function of POSS content is shown in Figure 8.4. Sample 

PC5K-POSS_3% was not tested because it’s too brittle to be cut for the swelling test. However 

from the other samples clear trend is still observed. The swelling degree dropped with POSS 

content, indicating that the crosslinks prevent the dissolution of polymer chains. Comparing the 

highly crosslinked thermoset coatings, the gel content of PC3K-POSS coatings was ca. 20 % 

while PC5K-POSS coatings reached a lower swelling degree of ca. 25 % due to the lower 

crosslinking density. The effect of crosslinking density is demonstrated.  
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Figure 8.4. Gel content and swelling degree of PC-POSS coatings based on 5K PC and 3K PC. 

8.4.2. Optical Clarity 

The pictures of PC/POSS physical mixtures in absence of catalyst and thermoset PC-

POSS coatings after curing on glass slides were captured shown in Figure 8.5. The samples were 

placed on a dark green background. The PC/POSS mixtures were powdery and grossly phase 

separated after solvent evaporation. In contrast, the thermoset PC-POSS coatings were smooth 

and transparent films, indicating the small domain size and the high degree of dispersion of the 

POSS molecules. The only exception is when huge amount of POSS was added, the PC3K-

POSS_21% coating showed visible agglomerates of POSS molecules. 

 

Figure 8.5. Pictures of (a) PC5K-POSS physical mixture in absence of catalyst (top) and 

thermoset coatings (bottom) and (b) PC3K-POSS physical mixture in absence of catalyst (top) 

and thermoset coatings (bottom). 
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To determine the transparency, the thermoset coatings were subjected to UV-Vis 

measurement. Figure 8.6 displays the transmittance of the films over the range of 200 to 800 nm. 

The film thickness of PC-POSS thermoset coatings were ca. 100 μm. It has been reported that 

even though when trisilanolphenyl-POSS acts as a nanofiller for PC due to its good compatibility 

compared with other types of POSS, the transparency of the nanocomposite could only maintain 

at up to 5wt% loading.
13

 However, upon crosslinking via hydrosilylation with allyl-PC, all the 

thermoset coatings exhibited nearly 90 % transmittance to visible wavelength ranging from 400 

to 800 nm and had complete cut-off in UV range from 200 to 400 nm. The high transmittance to 

visible light causes the transparency of the thermoset coatings comparable to commercial PC.  

 

Figure 8.6. UV-Vis spectra of (a) PC5K-POSS coatings and (b) PC3K-POSS coatings. 

8.4.3. Surface Properties 

Figure 8.7 displays water contact angle data for the PC-POSS coatings as a function of 

POSS content for both sets of PC5K-POSS and PC3K-POSS coatings. Due to the low molecular 

weight, the PC 3K oligomer doesn’t possess the capability of film formation. Thus the water 
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contact angle measurement could not be performed on it. The control sample of pure PC5K 

showed a water contact angle of 88 °. The thermoset PC-POSS coatings derived from PC 5K and 

PC 3K were more hydrophobic than pure allyl-PC.  The increase in hydrophobicity observed for 

the coatings suggested surface segregation of hydrophobic POSS molecules to coating/air 

interface.  With regard to the effect of POSS content, no significant influence of POSS content 

on water contact was observed for bot PC5K-POSS and PC3K-POSS coatings, indicating the 

“locking” of excessive POSS molecules within crosslinked networks via hydrosilylation inside 

bulk films instead of migrating onto coating/air interface. 

 

Figure 8.7. Water contact angle of PC-POSS coatings. 

In order to understand the trends observed for water contact angle data, AFM was used to 

characterize coating surface topography.  Figure 8.8 displays the AFM images of PC-POSS 
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coatings produced from (a) PC5K and (b) PC3K as a function of the POSS content. Again, AFM 

image of control sample PC 3K was not displayed here due to the poor film formation property. 

As expected, a homogeneously smooth surface morphology was obtained for the pure PC coating.  

Although the heterogeneous surface morphology was observed for PC-POSS coatings, nanoscale 

surface roughness was not increased with increasing POSS content which is consistent with the 

water contact angle data. The lack of POSS molecules at the coating/air interface again suggests 

the “locking” of POSS molecules within crosslinked networks via hydrosilylation in bulk films. 

However, the agglomeration of POSS molecules was observed when high level of POSS 

molecules was incorporated, especially for PC3K-POSS coatings. 

 

 

Figure 8.8. AFM images of (a) PC5K-POSS coatings and (b) PC3K-POSS coatings. 
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8.4.4. Thermal Properties 

The thermal properties of PC-POSS coatings were characterized using DSC, TGA and 

DMA.  Figure 8.9 displays the DSC thermographs of the coating showing the glass transition 

regions. Remarkable increase in Tg values were observed for PC-POSS coatings due to the 

covalent bonding between POSS and PC matrix. Actually the enhancement of Tg was reported 

not due to the covalent bonding, and in contrast, the incorporation of POSS leads to the decrease 

of Tg via covalent interaction.
14,15

 However, the crosslinked networks play important role in 

increasing the Tg of the nanocomposites.
16

 The change of Tg values as a function of POSS 

content was different for PC5K-POSS coatings and PC3K-POSS coatingsas shown in Figure 8.9 

(a) and (b). For PC5K-POSS coatings, the Tg increased with increasing POSS content and 

reached a plateau at 151 ⁰C. While for PC3K-POSS coatings, the Tg increased initially and go 

through a maximum, and then decreased with increasing POSS content. The POSS molecules act 

as crosslinkers restricting the chain mobility of PC, thus higher temperature is required to 

provide adequate thermal energy for glass transition occurrence, raising the Tg. The maximum 

crosslinking is achieved when Tg stops increasing. When excessive un-reacted POSS molecules 

existed in polymer matrix, there are two conditions as could be explanation for PC5K-POSS 

coatings and PC3K-POSS coatings. For PC5K-POSS coatings, excessive POSS molecules tend 

to be “locked” by the crosslinekd networks, causing the constant Tg value. For PC3K-POSS 

coatings, the excessive POSS molecules tend to be “free” due to the restricted volume within the 

crssslinked networks resulted from low molecular weight between crosslinks. The “free” POSS 

molecules perform as plasticizers and decrease the packing density of the polymer matrix around 

the POSS molecules, causing the decrease of Tg.
17

 Besides plasticization, the “free” POSS 



 

190 

 

molecules tend to segregate together, forming visible agglomeration as shown in the pictures in 

Figure 8.5. 

 

Figure 8.9. DSC curves of (a) PC5K-POSS coatings and (b) PC3K-POSS coatings. 

The influence of POSS molecules on thermal degradation of coatings was evaluated 

using TGA.  Figure 8.10 displays the TGA profiles of the thermoset PC-POSS coatings 

compared with pure allyl-PC and OctaSilane-POSS®. Thermoset PC-POSS coatings undergo a 

two-stage decomposition process under N2, displaying same degradation mechanism as pure 

-4

-3

-2

-1

0

1

2

50 100 150 200

H
e
a
t 

F
lo

w
 (

W
/g

)

Temperature (⁰C)

PC5K Control

PC5K-POSS_3%

PC5K-POSS_6%

PC5K-POSS_8%

PC5K-POSS_11%

PC5K-POSS_13%

PC5K-POSS_15%

120 ⁰C

132 ⁰C

144 ⁰C

149 ⁰C

151 ⁰C

151 ⁰C

151 ⁰C

-4

-3

-2

-1

0

1

2

50 100 150 200

H
ea

t 
F

lo
w

 (
W

/g
)

Temperature (⁰C)

PC3K Control

PC3K-POSS_4%

PC3K-POSS_8%

PC3K-POSS_12%

PC3K-POSS_15%

PC3K-POSS_18%

PC3K-POSS_21%

107 ⁰C

126 ⁰C

142 ⁰C

144 ⁰C

147 ⁰C

145 ⁰C

139 ⁰C

(a) 

(b) 



 

191 

 

allyl-PC which involves the hydrolysis/alcoholysis of carbonate linkages, chain scission of 

isopropylidene linkages, branching, and crosslinking at higher temperature.
18-20

 The OctaSilane-

POSS® exhibits poor thermal stability and starts to decompose at 220 ⁰C. Thus the thermal 

stabilities of the thermoset PC-POSS coatings are significantly affected. The onset of the 

decomposition temperature shifted towards low temperature as a function of POSS content. 

However, the char yield of the PC-POSS coatings upon thermal degradation increased with 

increasing POSS content. 

 

Figure 8.10. TGA curves of PC and OctaSilane-POSS® controls, and PC-POSS coatings under 

N2. 

 

Table 8.2 shows the results of onset of degradation temperature i.e. the temperature of 5 

wt % and 10 wt% weight loss (T-5% and T-10%), temperature of maximum weight loss rate (Tmax), 

and the fraction of the char residue. The data clearly shows the decreased T-5%, T-10% and Tmax 

values, indicating the impaired thermal stability of the thermoset PC-POSS coatings due to the 

poor stability of OctaSilane-POSS®. The poor thermal stability of OctaSilane-POSS® is resulted 

from the siloxane units attached with POSS molecules.  With increase of temperature, POSS 

converted to molecular silica and produced char residue.  Therefore, the amount of char was 
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considerably higher in PC-POSS coatings compared to the pure PC, and also higher compared to 

the wt % of POSS in the coatings. 

Table 8.2. TGA results of PC3K-POSS coatings. 

Sample ID 
Tmax  

(⁰C) 

T-5% 

(⁰C) 

T-10% 

(⁰C) 

Char Yield 

(wt%) 

PC_5K 533 449 474 4.2 

PC5K-POSS_3% 523 434 462 16.5 

PC5K-POSS_6% 505 426 453 21.3 

PC5K-POSS_8% 491 409 440 21.6 

PC5K-POSS_11% 494 420 448 24.8 

PC5K-POSS_13% 498 413 445 25.8 

PC5K-POSS_15% 471 393 426 30.0 

PC_3K 540 448 479 8.4 

PC3K-POSS_4% 507 408 439 14.3 

PC3K-POSS_8% 510 425 457 22.3 

PC3K-POSS_12% 517 408 444 28.4 

PC3K-POSS_15% 485 379 415 30.8 

PC3K-POSS_18% 501 400 438 35.5 

PC3K-POSS_21% 505 393 434 39.8 

 

Figure 8.11 displays the char yield upon thermal degradation as a function of POSS 

content. Both char yield of PC5K-POSS coatings and PC3K-POSS coatings increase linearly 

with the POSS content. The incorporation of POSS into PC resulted in a significantly higher char 

yield as compared with the POSS content in PC-POSS coatings. 



 

193 

 

 

Figure 8.11. Char yield of PC-POSS coatings determined by TGA. 

Table 8.3 displays the storage modulus E’ data of the coating at 25 °C and at high 

temperature well above the glass transition (rubbery state). Control sample PC5K and PC3K, and 

coating sample PC5K-POSS_3% and PC3K-POSS_4% at stoichiometry of 0.5:1.0 were not 

tested due to the inherent brittleness. The modulus at glassy state didn’t shown clear trend, while 

the modulus at rubbery state increased with POSS content for PC5K-POSS coatings. The 

increased storage modulus at rubbery state indicated the reinforcement of the POSS molecules as 

crosslinkers and nanofillers. The crosslinked and immobilized POSS molecules restricted the 

mobility of polymer matrix through strong covalent bonding, leading to the improved 

mechanical property of the nanocomposite. For PC3K-POSS coatings, the storage modulus at 

rubbery state increased with POSS content as well, except the sample PC3K-POSS_21%. This is 

consistent with DSC result and the same trend has been observed elsewhere.
6
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Table 8.3. DMA results of PC5K-POSS coatings. 

Sample ID 
E’25⁰C 

(MPa) 

E’195⁰C 

(MPa) 
Sample ID 

E’25⁰C 

(MPa) 

E’195⁰C 

(MPa) 

PC_5K -- -- PC_3K -- -- 

PC5K-POSS_3% -- -- PC3K-POSS_4% -- -- 

PC5K-POSS_6% 1247 6.6 PC3K-POSS_8% 1401 6.9 

PC5K-POSS_8% 1547 7.3 PC3K-POSS_12% 1447 17.0 

PC5K-POSS_11% 1482 7.8 PC3K-POSS_15% 843 14.1 

PC5K-POSS_13% 2003 13.6 PC3K-POSS_18% 1162 24.4 

PC5K-POSS_15% 741 21.2 PC3K-POSS_21% 1359 20.9 

 

8.4.5. Coatings Hardness 

Pendulum hardness of the thermoset PC-POSS coatings was measured as a function of 

POSS conten, as displayed in Figure 8.12. Film produced by PC with 5 K molecular weight was 

tested as a control. PC oligomer with 3K molecular weight was not able to be processed into 

films for testing due to the low molecular weight and the lack of chain entanglement. From 

Figure 8.12 (a), a substantially increased harness of thermoset PC-POSS coatings was observed 

as compared with pure PC. The improvement is attributed to the rigidity of the crosslinked 

networks and the robust inorganic structure of POSS molecules. As shown in both Figure 8.12 (a) 

and (b), with the increase of POSS content, hardness droped which might be due to the lack of 

interactions of free POSS molecules and the increased free volume.
21
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Figure 8.12. Pendulum hardness of (a) PC5K-POSS coatings and (b) PC3K-POSS coatings. 

8.4.6. Abrasion Resistance 

The thermoset PC-POSS coatings were applied onto commercial PC substrate by spin 

coating and the abrasion resistances of the spin-coated films were compared with bare PC 

substrate as shown in Figure 8.13. The abrasion resistance is expressed as the decrease of light 

transmission after the abrasion test. Before abrasion, the PC-POSS coatings possess as high 

transparency as pure commercial PC substrate. After 100 abrasion cycles, all samples lost certain 

amount of transparency due to the light scattering from roughened surfaces. The less reduction of 

transparency of PC-POSS coatings suggested the better abrasion resistance. The better 

performances of the thermoset PC-POSS coatings are derived from the crosslinked networks and 

the incorporation of POSS molecules.
22,23

 The PC3K-POSS coatings showed even better 

abrasion resistance than PC5K-POSS coatings, due to the higher crosslinking density. 
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Figure 8.13. Abrasion resistance of PC-POSS coatings. 

8.5. Conclusion 

The thermoset PC-POSS coatings with less hydrophobicity were prepared by using 

ASHBY-Karstedt as a catalyst and TCE as a solvent. With ASHBY-Karstedt’s catalyst, coating 

solution stays stable at ambient condition without crosslinking while curing occurs immediately 

at elevated temperature, significantly improving the pot life. The slow-leaving solvent TCE 

allows the complete cure before solvent evaporation, inhibiting the segregation of POSS 

molecules onto the coating/air interface. Thus the coating surfaces are less hydrophobic. The 

covalent bonding between PC and POSS allows up to 18 wt% POSS loading while the 

transparency of the thermoset coatings was maintained. The thermoset PC-POSS coatings 

showed higher glass transition temperature, higher char formation, and higher abrasion resistance 

compared to pure PC. The excess POSS molecules tend to act as nanofiller to reinforce the PC-

POSS crosslinked network, giving better thermal and mechanical properties. The coatings with 

higher crosslinking density have better swelling resistance and abrasion resistance. Those 

coatings provide an alternative for the surface protection of thermoplastic PC substrates. 
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CHAPTER 9. OVERALL CONCLUSION 

Overall, the silicon-based HOI polymers and coatings were successfully produced by 

incorporating the organo-silicon compounds. All four types of the organo-silicon compounds 

(R3SiO0.5, R2SiO, RSiO1.5 and SiO2) were explored. The colloidal silica (SiO2) and phenethyl 

trimethoxysilane (R3SiO0.5) were used to make HOI binders via sol-gel chemistry for Mg-rich 

primers for corrosion protection. The polydimethylsiloxane (R2SiO) was coupled with 

polycarbonate via hydrosilylation to produce PC-PDMS block copolymers as an impact resistant 

material. And polyhedral oligomeric silsesquioxane (RSiO1.5) was used to crosslink PC via 

hydrosilylation generating the thermoset PC-POSS coatings which provide an alternative for 

surface protection of thermoplastic PC substrates. The synthetic method, preparation aspects, 

property characterization were explored in an effort to gain a fundamental understanding of the 

structure-property relationships. 

For the HOI binders and the derived Mg-rich primers, the addition of the condensation 

catalyst TBAF enabled higher crosslink densities by promoting the condensation reactions 

between silane and silanol, however caused blistering in Mg-rich primers due to hydrogen gas 

been released resulted from the rapid oxidation of Mg particles by fluoride ions during salt spray 

exposure. Thereby a non-ionic condensation catalyst DBTDL is highly desired and the 

preliminary results showed that DBTDL catalyzed the condensation reactions but it has lower 

catalysis strength than TBAF. 

For the perfectly alternating PC-PDMS multiblock copolymers, Figure 9.1 summerized 

the optical and mechanical properties. It was amazingly found that the excellent optical clarity 

could be maintained at up to 62 wt% PDMS content which is attributed to the partial miscibility 
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and the microphase separated morphology of PC hard domain and PDMS soft domain. In 

contrast, at high PDMS content and with long block lengths, the block copolymers appear cloudy 

and opaque due to the macroscopically phase separation. The microphase separated morphology 

was observed by TEM and SAXS and the near-lamellar morphology was confirmed as evident 

by SAXS. According to AFM and water contact angle measurement, the surface segregation of 

PDMS segments occurred and leads to the hydrophobic surfaces. Furthermore, the incorporation 

of PDMS blocks decreased the thermal decomposition rate and increased the char yield. Most 

importantly, the Izod impact strength of the synthesized block copolymers was shown much 

better than the pure PC, even though is not comparable with commercial products.  

 

Figure 9.1. The optical and mechanical properties of PC-PDMS block copolymers. 

For the thermoset PC-POSS coatings, it was found the surface could be tuned by 

selecting appropriate solvent composition and curing condition as summarized in Figure 9.2. 

With fast-leaving solvent and low temperature curing, the surface tends to be rougher and more 

hydrophobic due to the segregation of POSS molecules onto the surface, while with slow-leaving 
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solvent and high temperature curing, the surface tends to be smoother and less hydrophobic due 

to the lack of POSS molecules on surface. The excess POSS molecules beyond the 1:1 

stoichiometric ratio behave differently in two systems. Aggregating on surface, the excess POSS 

molecules plasticize the coatings, while reinforcing the coating when stay within crosslinked 

networks. In either condition, transparency of the thermoset coatings was maintained at up to 18 

wt% POSS content. The thermal decomposition temperatures were much lower due to the poor 

thermal stability of POSS, while the incorporation of POSS increased the char yield significantly. 

In addition, it has been found that the hardness and abrasion resistance were improved for the 

thermoset PC-POSS coatings. 

 

Figure 9.2. Tunable surface and bulk properties of thermoset PC-POSS coatings by varying the 

preparation condition. 

 

In conclusion, these novel silicon-based HOI materials derived from organo-silicon 

compounds are highly desirable for various applications in areas such as corrosion protection, 

impact resistance, and surface protection over thermoplastic parts. 
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CHAPTER 10. FUTURE WORK 

10.1. Novel HOI Binders for Mg-Rich Primers 

The promising corrosion protection of Mg-rich primers enabled them to be good 

candidates for aerospace coating system. To optimize the Mg-rich primers based on HOI 

materials, more characterization needs to be done. From the preliminary results of using DBTDL 

as a condensation catalyst, the intermediate catalytic strength of DBTDL for condensation 

reactions was identified. As future work, HOI colloidal solutions using DBTDL should be 

applied onto aluminum substrates and EIS tests performed to determine barrier properties. In 

addition, the HOI binders should then be mixed with Mg particles and other additives to make 

Mg-rich primers. After applying the Mg-rich primers with polyurethane topcoats on AA2024-T3 

substrates, the corrosion protection performance should be evaluated using EIS and B117 salt 

spray exposure. During the accelerated salt spray exposure, blistering of Mg-rich primers with 

DBTDL as catalyst will be monitored as compared with those with TBAF as catalyst. The use of 

DBTDL is expected to eliminate the blisters under long-term salt spray exposure, while 

maintaining good barrier properties. 

Crosslink density of coatings is of importance to provide adequate barrier properties. To 

get higher crosslink density, organosilanes with polymerizable groups, i.e. vinyl or acrylate, 

should  be investigated to make Mg-rich primers through a dual-cure mechanism. Or, through the 

polymerizable groups, polymers, i.e. acrylics, can be synthesized and incorporated into HOI 

coatings to increase the organic portion and to improve the cohesion within Mg-rich primer layer. 

With higher barrier properties, the corrosion performance will be better.  
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The organosilane, PhEtMTS, was promising in making Mg-rich primers based on 

heterogeneous HOI binders with excellent corrosion protection properties. The capability of 

using PhEtTMS in making a homogeneous HOI binder has not been investigated. Therefore, 

PhEtTMS, can be also used for making homogeneous HOI coating, in which tetraethyl 

orthosilicate (TEOS) can be used to form the inorganic component. It would be of interest to 

compare the corrosion protection performance of the homogeneous HOI coatings with 

heterogeneous HOI coatings. The effect of organosilane and inorganic TEOS on coatings 

performance should be evaluated. Homogeneous HOI coatings are expected to also have good 

adhesion to aluminum substrate as well as to the topcoat. 

10.2. Perfectly Alternating PC-PDMS Multiblock Copolymers 

To further the structure-property relationship of the PC-PDMS block copolymers, all 

twelve block copolymers should be synthesized at larger scale and processed for Izod impact 

strength testing. The effects of block length, PDMS content, and phase structure on mechanical 

properties should be studied.  

The compatibility between PC and PDMS depends on their chemical structure. As a 

result, it would be of interest to further develop the structure-property relationships by 

investigating other siloxane blocks beyond PDMS.  For example, hydride-terminated 

polymethylphenyl siloxane and polydiethyl siloxane should be synthesized and used to produce 

multiblock copolymers.    

10.3. Thermoset PC-POSS Coatings 

Higher crosslink density usually gives better chemical and abrasion resistance to coatings. 

Thus, crosslink density should be further increased by lower the molecular weight of PC 
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oligomers. Molecular weight of under 1,000 g/mol should be expected to give promising coating 

performance. Other than chemical and abrasion resistance, highly crosslinked PC-POSS 

thermosets should be measured for coefficient of thermal expansion and levaluated for 

electronics application.  

10.4. Highly Pure Allyl-PCs 

To take advantage of the highly pure allyl-PCs with well-controlled molecular weight, 

amphiphilic block copolymers with well-defined architectures should be prepared. PC serves as a 

hydrophobic segment, so hydrophilic polymers such as polyethylene glycol, sodium polyacrylate, 

polystyrene sulfonate, amine-functional polymers, and carbonxylic acid-functional polymers can 

be copolymerized to form amphiphilic structures. Those amphiphilic copolymers could be used 

as interfacial modifier and stimuli-responsive polymer systems. 

The allyl group is a versatile functional group which allows various chemical 

modifications. Besides hydrosilylation chemistry used in this research, allyl end groups allows 

other chemistries such as thiol-ene chemistry. Other possible chemical strategies include 

transformaing allyl groups into epoxy or hydroxyl functional groups and subsequently being 

cured using crosslinkers.  

 


