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ABSTRACT 

 
 Cold spray, also known as the gas dynamic spray process, was first 

discovered in the 1980s while doing high speed two phase wind tunnel 

experiments. The principle underlying this process is that if a metal particle is 

accelerated to a velocity above a certain critical velocity, upon impact on a 

substrate the particle and substrate will undergo rapid plastic deformation and form 

a “splat”. This process is currently being used for coatings applications. In this 

process, metal particles of diameter 5 µm to 50 µm are accelerated to a very high 

velocity (>500 m/s) and are deposited on substrates. Based on principles similar to 

cold spray process, we have developed a novel direct write process known as the 

Micro Cold Spray Direct Write (MCS-DW) process. Initial results from our 

experimental study have shown that conductive patterns of copper, tin and 

aluminum can be printed on flexible and rigid substrates using this process. The 

smallest feature size that can be printed using this process is 50 µm. 

 In order to improve the deposition efficiency of the MCS-DW process, 

numerical studies were carried out to simulate the flow of aerosol particles through 

different nozzle geometries. It was found that a convergent capillary nozzle with a 

linear converging section of length 19 mm and a straight capillary of length 14 mm 

can be used to accelerate and focus silver particles of diameter 2 µm. Copper 

particles of diameter 3 µm can accelerate to their critical velocity by using a longer 

straight section of length 30 mm. 
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1. INTRODUCTION 

1.1. Manufacturing of Electronic Devices 

 
As we emerge into the 21st century, electronic devices have found a place in 

every aspect of our lives. Communication, health care, defense, renewable energy 

and agriculture are just a few fields in which electronic devices are being used, and 

yet, the possibility to further improve our lives with these devices is endless. 

Therefore, there is enormous effort to improve manufacturing processes of these 

devices in order to improve its reliability, efficiency, cost and simplicity. Due to the 

complexity of manufacturing electronic devices, the processes are studied and 

categorized into four levels of packaging. The function of this packaging science is 

to ensure an systematic way to provide paths for flow of electrons between 

components, dissipate heat, provide mechanical support and environmental 

protection to the device[1-5]. Figure 1 illustrates the four levels of packaging used 

for manufacturing of electronic devices[6].   

At the zero level or wafer level of packaging, silicon wafer is doped using an 

appropriate impurity in order to improve its’ semiconducting property. Nano scale 

features are printed on the wafer using lithography process after which the 

individual bare dies are singulated using a precision saw or laser micromachining. 

These bare dies are encapsulated using injection molding processes in level 1 of 

packaging. More than one die can be encapsulated together to form a multi-chip 

module.  These integrated circuits (ICs) are assembled on a Printed Circuit Board 

(PCB) or Printed Wire Board (PWB) along with other passive components (like 

resistors and capacitors). The process of fabrication of the PCB substrates and the 



 

2 
 

process of assembly of components on the PCBs fall under the category of level 2 

of packaging. The assembly of components on substrates is can be done using 

stochastic as well as deterministic methods. Finally the PCBs are integrated to 

produce the final device in level 3 of packaging. Each one of these levels are 

widely researched areas. 

 

 
Figure 1. Hierarchy of packaging levels. 

 

1.2. Methods for Printing PCBs 

 

PCBs or PWBs play the role of a building block for all of the active and 

passive components assembled on it. Its primary functions are to act as a structure 

to support all components, provide electrical interconnections between 

components and to dissipate heat[7]. Conductive trace patterns are printed on 

substrate using different printing processes and components are assembled on the 

Electronics 
Manufacturing 

Level 0/Wafer Level 

Level 2 

Level 1 

Level 3 
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PCB using stochastic as well as deterministic methods. The PCBs can be flexible 

and rigid depending on the application, the materials and processes used[8]. The 

advantage of using flexible substrates instead of rigid ones is that flexible 

substrates can be integrated into a roll to roll process which can reduce the cost of 

the final electronic product. As drive towards miniaturization of electronic devices 

increases, there is a need to develop processes that are capable of printing small 

size conductive features on flexible and rigid substrate. At the same time the 

processes must be inexpensive and the reliability of the device should not be 

compromised. 

 
Figure 2. Classification of printing process at level 2 packaging. 

 
 

As illustrated in figure 2 the processes used for printing conductive traces 

on PCBs can be broadly classified into maskless processes and masked 

processes. The masked processes in level 2 packaging use a mask to either 

Printing Processes 

Maskless Processes 

Direct Write 
Processes 

(size~10 µm) 

Masked Processes 

Screen Printing 
(size~100 µm) 

Copper Etching 
(size~100 µm) 

Hybrid Process 
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selectively add or remove conductive materials on substrates. Masked processes 

are more commonly used to manufacture PCBs compared to the maskless ones 

due to their high throughput and simplicity. Most electronic devices today are 

manufactured using copper etching process and screen printing process. The 

copper etching process utilizes a copper cladded substrate to selectively etch 

copper from the substrate using a masked chemical process. The mask prevents 

the chemicals from coming in contact with selected parts of the copper cladded 

substrate, therefore, the copper surface coming in contact with the chemicals is 

etched while the surface protected by the mask is not etched. In the screen 

printing process, conductive ink is selectively deposited through a masked screen 

using a squeegee. This ink comprises of a polymeric binder, a solvent and metal 

particles making if a paste of very high viscosity(~12 kcP)[9]. After deposition the 

ink undergoes a thermal process in which the solvent gets evaporated and the 

polymer gets cross-linked forming a metal polymer composite. Upon the 

completion of the thermal process the metal particles reach their percolation 

threshold making the traces conductive. Although these processes have high 

throughput, they cannot produce feature sizes smaller than 100 µm. Furthermore, 

the copper etching process involves use of chemical which are not environment 

friendly. Tredinnick et al. have been able to print 50 µm wide lines using a very 

complicated screen printing process in which mask for printing was created using 

thin film lithography[10]. However, introducing additional steps in a printing process 

increases the cost of production and makes the process more complicated.  
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In order to reduce the feature size of conductive lines hybrid processes 

were developed in which the use of masks for selective conductive ink deposition 

can be completely eliminated. In one such hybrid process the substrate is first 

made hydrophobic using a chemical process. Trenches are made on the substrate 

using laser micromachining of hot embossing as a result of which the surface of 

the substrate inside the trenches are hydrophilic and surface of the substrate 

outside the trenches is hydrophobic.  These trenches were later filled with polymer 

thick film based conductive ink using a squeegee. The hydrophobicity of surface of 

substrate outside the trenches prevents the ink from being deposited outside the 

trenches. Conductive features as small as 40 µm could be fabricated using this 

process[11]. The inks used in this process uses silver particles with size ranging 

from a 500 nm to 15 µm. Due to large size of particles features smaller than 40 µm 

were not conductive[5].   

 

 
Figure 3. Traces printed using hybrid process[11]. 
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To overcome the feature size limitations of the masked processes and 

hybrid processes, maskless material deposition processes have been developed. 

Maskless processes, also known as direct write processes do not use masks for 

deposition of conductive inks on the substrate. As the name suggests, direct write 

processes use robots or translational stages for “direct” deposition of conductive 

inks on substrates. The inks used in direct write processes are different in those 

used in masked processes and have lower viscosity (~3 cP)[12]. Unlike the inks 

used in masked processes, the inks used in direct write processes have two 

components, a solvent and a metal nanoparticulate suspension.  Once the ink is 

deposited on the substrate using direct write process the ink undergoes a thermal 

curing process consisting of the following steps. First, the solvent absorbs the 

required latent heat and evaporates from the deposited droplet. After that heat 

causes the dispersants surrounding the nano particles to break down following 

which the metal nanoparticles undergo a thermal sintering process leading to 

improvement in electrical conductivity. 

 

As illustrated in figure 4 direct write processes can be classified into four 

broad categories and can be described as follows[13]:  

 

1) Flow based processes: Flow based processes use very high precision such 

as nScrypt micro dispensing pumps for dispensing small volumes of inks on 

substrate[14]. Some process also use extrusion of conductive material 

through micro pens for small volume disposition. The advantage of this kind 
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of process is that it is able to deposit conductive inks with varying range of 

viscosity[13]. 

 

 
Figure 4. Classification of Direct Write Methods (Maskless Processes)[15]. 

 
 

2) Tip based processes: Tip based deposition processes such as dip pen 

lithography or fountain pen lithography use tip of an Atomic Force 

Microscope to deposit molecule which have chemical affinity towards the 

substrate material. As shown in figure 5 below, molecules with chemical 

affinity towards the gold substrate are deposited through a water meniscus 

using the tip based process[16]. This process is capable of printing very 

small nanoscale features. 

 

Direct Write Process 
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3) Energy based processes: Energy based processes use energy of a laser or 

ion beam to deposit conductive material on substrates[17]. Figure 6 shows 

an illustration of Matrix Assisted Pulsed Laser Evaporation (MAPLE) direct 

write process. A transparent ribbon coated with conductive material is 

pulsed with a laser beam causing the conductive material to evaporate. This 

evaporated material is transferred to a receiving substrate hence forming 

conductive trace patterns on the substrate.  

 
Figure 5. Dip pen nanolithography process[16]. 

 
 

 
Figure 6. MAPLE direct write process[17]. 

 



 

9 
 

 

4) Droplet based processes: Droplet based deposition processes use droplets 

of conductive ink to print conductive trace patterns on substrates. These 

inks have low viscosity (~1 cP) and contain nano scale metal particles 

suspended in a solvent. Again, droplet based deposition process can be 

further classified into inkjet printing and aerosol based deposition process.  

 

       
Figure 7. Inkjet direct write process (a) is continuous ink-jet mode; (b) is drop-on-

demand mode[13]. 
 

Schematics of the ink jet direct write process is shown in shown in 

figure 7. This printing process is operated in the following two modes: a) 

Continuous mode; b) Drop on demand mode. In a continuous mode inkjet 

printer, a jet of low viscosity ink is converted into stream of droplets when 

the jet breaks down due to surface tension. This stream of droplets is then 

charged using charging electrodes following which the charged droplets are 

guided either into the gutter of on the substrate using field plates. The 

droplets falling in the gutter are used for recycling the ink. The inkjet printers 

using drop on demand mode for deposition use timed pressure pulses 

a b 
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generated using an actuator to create the droplets. Inkjet printing can print 

features with width as small as 25 μm[10].  

 

1.3. Aerosol Based Direct Write Processes 

 

Aerosol jet direct write process uses aerosols of nano particle based inks to 

print conductive trace patterns on substrates. The low viscosity ink is first 

converted into an aerosol using an aerosol generator. The diameter of these 

aerosol particles used in aerosol deposition processes vary between 1 to 5 µm. 

The aerosol particles can be generated with either ultrasonic waves (1.6 to 2.4 

MHz) of using pneumatic methods. Use of ultrasonic waves to generate the 

aerosol particles limits the process to low viscosity inks only. The aerosol particles 

are then entrained in a carrier gas which carries the particles to the deposition 

head. The deposition head for aerosol deposition processes are designed to use 

another stream of sheath gas to help focus the particles. Figure 8 below illustrates 

the setup of an aerosol jet direct write deposition process. The focusing and 

collimation of particles is achieved by the use of combination of converging, 

diverging and straight section of nozzles[18].   

 

The Maskless Mesoscale Material Deposition (M3D®) was the first aerosol 

jet direct write process developed in 2003[19]. In this process, an ink containing 

silver nano particle suspension is converted into aerosol using an aerosol 

generator. These aerosol particles are focused deposited on a substrate using a 

specially designed deposition head. From our experience in using this method we 
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know that features as small as 50 µm can be printed using this process. A variant 

of this process, the Collimated Aerosol Beam Direct Write Process (CAB-DW) 

uses a combination of converging and diverging micro nozzles to improve the 

collimation of aerosol particles. 

 

 
Figure 8. Aerosol jet deposition system[18]. 

Features as small as 10 µm can be printed using CAB-DW process[20].  

 

In another aerosol based deposition system, aerosol particles are focused 

with the help of aerodynamic lenses[21]. The schematic of a deposition system 

using aerodynamic lenses to focus particles is shown in figure 9. The process 

involves the aerosol particles travelling through a series of aerodynamic lenses in 

a vacuum chamber and then deposited on a substrate placed on translational X-Y 

stage. This process is capable of printing features smaller than 10 µm however, 

the use of vacuum for this process makes it very complicated[18].  

Atomizer

xy

z

Deposition Head

Nozzle
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Figure 9. Focusing of aerosols using aerodynamic lenses[21]. 

 

 

Aerosol based direct write processes are capable of printing very small 

micro scale features (<10 µm). At the same time they are capable of printing very 

complex geometries in 2D and 3D. Aerosol deposition has been successfully used 

to print features on flexible and rigid substrates. One of the challenges in aerosol 

deposition process is the generation of monodispersed aerosols at the constant 

rate from inks throughout the deposition process. Also use of ultrasonic waves for 

aerosol generation limits the process to the use of low viscosity inks only. Sono-

Tek and other private companies have developed ultrasonic horn aerosol 

generators for generation of aerosol particles of mean diameter ~10s µm [22, 23]. 

However, the size of the aerosol droplets generated using these processes have a 

Gaussian distribution. Special surface acoustic wave aerosol generators have 

been developed in order to generate aerosols for direct write application[24, 25]. 

The deposited features are not electrically conductive immediately after the 

deposition. Therefore, the inks need to be sintered using a laser of by bulk 

sintering in order to make the traces conductive[26]. 
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1.4. Cold Spray Deposition Process 

 

 

Cold spray process also known as the gas dynamic spray process was first 

discovered and developed in the 1980s while performing two-phase wind tunnel 

experiments. In this process metal particles are accelerated to a very high speed 

(500-1000 m/s) in a supersonic jet of nitrogen or helium and deposited in a 

substrate. If the velocity of the particle is larger than a certain critical velocity, the 

particle as well as substrate undergo rapid plastic deformation making the particle 

form a “splat” instead of bouncing off or eroding the substrate[27, 28].  

 
Figure 10. Schematic of cold spray deposition system[29]. 

 
 

Figure 10 illustrates a schematic of the cold spray deposition system used 

by Pattison et al[29]. In this setup, gas passes through a powder feeder at high 

pressure generating an aerosol of metal particles and then carries these aerosol 
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particles to the nozzle. A preheated gas enters the nozzle through another inlet 

thereby increasing the pressure to about 3 MPa at the inlet of the nozzle. As the 

gas carrying the aerosol particles reaches the throat of the nozzle, its velocity is 

equal to speed of sound and as it passes through the diverging part of the nozzle, 

accelerates to supersonic speed. The high velocity of the gas at the diverging part 

of the nozzle causes the particles to accelerate to their critical velocity. As the 

aerosols emerge out of nozzle at very high velocity, upon impaction they form a 

high quality coating. This setup has a unique recycling system which enables it to 

recycle the gas therefore reducing the cost of coating. The use of helium as well as 

nitrogen has been reported in this system.  

 

The cold spray process is being used for corrosion resistance coating 

(aluminum and zinc), dimensional restoration and repair (nickel, stainless steel, 

titanium, aluminum) and wear resistant coatings (tungsten carbide and tungsten 

copper). Coatings have been produced using metals such as Aluminum, Copper, 

Silver, Titanium, Nickel, Tin and alloys such as Stainless Steel and 2024 

Aluminum. Coatings have also been produced using a number of metals and 

metal-ceramic combinations in which one of the components undergoes significant 

plastic deformation to form a coating matrix. Mixed coatings made with carbon 

nanotubes and copper [30], Aluminum and Aluminum oxide[31], Copper and 

Tungsten[32], and Tungsten Carbide and Cobalt [33] have been reported. 
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 Due to the numerous applications of this process, it has been numerically 

and experimentally studied for the last two decades. The cold spray process was 

earlier studied by using flow visualization with experimental methods[27, 34] as 

well as analytical quasi one dimensional isentropic expressions[35, 36]. The 

equations used for the study are discussed in more detail in section 3.1 of this 

dissertation. Studies have been conducted to optimize the expansion ratio of the 

nozzle diverging section using these analytical equations. However, this method 

does not provide an insight on the effect of viscosity and heat transfer on the flow 

field. Also, the effect of oblique, normal, bow shock waves as well as turbulent 

eddies cannot be explored using this method.  

 

When a supersonic jet strikes a stagnant wall, the gas molecules bouncing 

off the surface are not able to convey the presence of the wall upstream causing a 

bow shock to occur. Figure 11 illustrates the details of the bow shock in a 

supersonic jet. The effect of distance between nozzle exit and substrate on shock 

bow phenomena was investigated in detail by Pattison et al[29].  

 
Figure 11. Bow shock phenomenon in a supersonic jet[29]. 
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Results obtained from Schlieren imaging indicated a decrease in bow shock 

layer thickness with increase in distance between nozzle exit and substrate. The 

inflight particle velocities obtained using PIV indicated an  increase of the velocity 

of copper and titanium particles outside the nozzle suggesting that there is a 

tradeoff between the acceleration cause due to the acceleration of particle in the 

supersonic core outside the nozzle vs the deceleration cause due to the presence 

of bow shock present close the substrate. Figure 12 below illustrates a better 

explanation of the effect of standoff distance on deposition efficiency. Up to a 

certain distance from the exit of the nozzle, represented by region 1, the velocity of 

gas is greater than the particle velocity due to which particles continue to 

accelerate. However, low deposition efficiency is observed due to presence of a 

large bow shock. Region 3 represents the distance from the nozzle where the 

velocity of gas is less than particle velocity leading to low deposition efficiency. 

Optimal deposition efficiency is obtained at region  2 where the bow shock is either 

absent or very small and  the particle velocity is less than gas velocity leading to 

high deposition efficiency. 

 

Li et al pointed out that the critical velocity of deposition of copper can be 

affected by particle temperature and the oxide content of the powder[37]. The 

critical velocity of copper is 310, 290 and 250 m/s when the particle temperature is 

27, 300 and 600 °C respectively. Also, when the weight % of oxygen in the copper 
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powder was increased from 0.01% to 0.38%, an increase in critical velocity from 

310 m/s to 610 m/s was reported. 

 

 
Figure 12. Deposition efficiency vs standoff distance. Fd is drag force, Mc is 

centerline Mach number of gas, Vg is gas velocity, Vi is particle impact velocity and 
Vp is in-flight particle velocity[29]. 

 
 

It can also be noted that since the heat transfer between the particle and its 

surrounding is defined by particle size, the critical velocity of particles is also 

affected by the size distribution. Jen et al investigated the flow of helium and 

nitrogen through a De-Lavel type converging diverging nozzle of length  24.73 mm 

and an expansion ratio of  followed by a straight capillary of  length  50.27 

mm and a plenum of length 17.7 mm[38]. Here,  is the area of cross section of 

the nozzle at the exit and  is the area of cross section of the nozzle at the throat. 

The inlet pressure of =2 MPa and temperature of =773 K were defined as inlet 

boundary conditions and k-ε turbulence model was used to model the turbulence in 

the domain. A bow shock wave was observed just before the gas strikes the 

substrate after which the velocity of gas around the centerline is opposite of the 

direction of gas in the jet. Due to this the particles of diameter 500 nm and smaller 
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are unable to penetrate the bow shock wave. Particles of diameter larger than 500 

nm had enough inertia to penetrate the shock wave and deposit on the substrate. 

Also it was observed that helium gas was able to accelerate to twice the velocity of 

nitrogen thereby making helium a preferred gas for the cold spray process.  

 

In another study, a convergent-barrel nozzle was used to deposit copper 

powder instead of a converging diverging nozzle[39]. Numerical simulations were 

performed to compare the flow of copper particles through a convergent-barrel and 

converging-diverging nozzles. Results indicated that the velocity of particles in the 

convergent-barrel was smaller compared to converging-diverging. On the other 

hand the temperature of copper particles coming out of the convergent-barrel 

nozzle was found to be higher than converging-diverging nozzle. Due to this, good 

quality copper coatings were obtained when using the convergent-barrel nozzle. 

Use of an additional gas dynamics algorithm in conjunction with commercial CFD 

software has been reported in order to determine the concentration of particles 

bouncing off the substrate[40].  

1.5. Micro Cold Spray Direct Write Process 

 

 

Micro Cold Spray Direct Write (MCS-DW) process is a novel aerosol based 

direct write process which is being developed in our laboratory. The principle 

underlying the traditional cold spray process and the MCS-DW process is same 

[41]. Metal particles of size 1 µm to 5 µm are accelerated to above their critical 

velocity and are deposited on a substrate placed on a translational stage. however, 
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unlike the conventional cold spray process, MCS-DW process involves focusing or 

collimation of the metal particles to enable it to print thin features.  Therefore, the 

choice of nozzle geometry has must involve consideration of acceleration as well 

as collimation of particles.   

 
Figure 13. Schematic diagram of MCS-DW process: a) MCS-DW overview; b) 

MCS-DW deposition head [41]. 
 

Figure 13 illustrates the schematics of the MCS-DW system installed in our 

laboratory. Helium is used in the deposition system because of its inert nature and 

the high speed of sound (970m/s at room temperature). Metal powders  are 

aerosolized in the powder feeder, entrained in a carrier gas and transferred into 

the deposition head. The size of the metal powder used was in the range of 1 to 5 

µm in diameter. Additional accelerator gas is added into the deposition head in 

order to increase the pressure into the nozzle so that the choked condition is 

achieved at the throat of the nozzle. The deposition head contains a heater which 

preheats the powder and gas before it passes through the nozzle. The heating of 
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the gas has two advantages 1) the thermal softening of the particles reduces the 

critical velocity to form a splat; 2) the cooling down of gas when the gas 

accelerates can be compensated by preheating the gas. The accelerated particles 

are deposited on a substrate placed on an X-Y stage. 

 

The MCS-DW system has several advantages over conventional aerosol 

based direct write processes. The MCS-DW process uses dry metal powders for 

deposition and the kinetic energy of the metal particles is sufficient enough to have 

good adhesion between metal particles and the substrate. This process does not 

require any addition thermal process to improve its electromechanical properties. 

Similar to traditional direct write processes, the resistivity of traces printed using 

the MCS-DW process is 2-3 times the theoretical resistivity of metal. An additional 

advantage of using dry powders is that it can be used to fill via holes. Traditional 

direct write processes cannot fill via holes as they use liquid based inks. 

Experiments conducted in our laboratory have demonstrated that the MCS-DW 

process can be used to fill via holes with good adhesion to the substrate. It has 

been demonstrated that the MCS-DW process can print features using relatively 

inexpensive metals such as copper, tin and aluminum when conventional aerosol 

based deposition processes use nano particle inks made from silver as well as 

gold. Also, MCS-DW can be used to print on a large number of flexible and rigid 

substrates.  

Initial development of the MCS-DW process was carried out using 

experimental methods which were first published in 2012[41]. The experimental 
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studies had three objectives: 1) determine the printability of different metal 

powders on flexible and rigid substrates, 2) determine the smallest feature size 

that can be printed using the MCS-DW process and 3) determine and minimize the 

bulk resistivity of printed features. A 50 µm wide line printed using copper powder 

on a glass substrate is shown in Figure 14. This line was printed using a nozzle 

with throat diameter 100 µm, carrier gas flow rate of  400 cm3/min, standoff 

distance of 0.5 mm, x-y translational speed of 1mm/s, and inlet pressure and 

temperature of 760 kPa and 200 °C respectively. The bulk resistivity of this line 

was determined to be 1.9 µΩ-cm which is very close to the theoretical bulk 

resistivity of pure copper. In addition to conductive traces, This process has been 

shown capable of filling via holes of diameter 75 to 150 µm. Figure 15 shown 

below illustrates the sapphire via holes filled using the MCS process. The image 

on the top is taken from the “bottom” side of the  via placed on a glass slide. The 

metal deposit demonstrated good adhesion to the substrate. 

 
Figure 14. 50 µm wide line printed on glass substrate using the MCS-DW 

process[41]. 
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Experiments were carried out to deposit tin, copper and aluminum particles 

on different substrates. Table 1 gives all combinations of metals and substrates 

that have been tried to-date. A “Yes” indicates that deposition of a mechanically 

continuous line was successful, but the line may not have been conductive.  A “No” 

indicates that this combination has not yet yielded a mechanically continuous line. 

Tin exhibited good adhesion with glass and silicon substrates; however, it 

displayed poor deposition efficiency to most flexible substrates. Aluminum and 

copper displayed good compatibility and high deposition efficiency with most 

flexible and rigid substrates. The average bulk resistivity of copper, tin and 

aluminum were 4.4 µΩ-cm, 28 µΩ-cm and 4.08 µΩ-cm respectively.   

Table 1. Substrate and metal compatibility[41] 

Substrate 
material 

Tin Aluminum Copper 

Glass Yes Yes Yes 
Silicon Yes Yes Yes 

BT1 Yes Yes No 
PEEK2 No Yes Yes 
Kapton Yes Yes No 
Teflon No Yes Yes 
PES3 No Yes Yes 
LCP No Yes Yes 

Teslin No No Yes 
FR45 No Yes No 
Mylar No Yes Yes 

1Fiberglass-reinforced Bismaleimide Triazine 
Epoxy 
2Polyether ether ketone 
3Polyethersulfone 
4Liquid crystal polymer 
5Glass-reinforced epoxy laminate 
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Figure 15. (Left) 150 µm diameter via hole filled with copper; (Right) 150, 100 and 

75 µm via holes filled with aluminum[41]. 
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2. PROBLEM  DEFINITION 

 

Conventional aerosol based deposition direct write systems only require the 

particles to be collimated before deposition. Perhaps conventional direct write 

processes may be able to deposit aerosols with high particle velocity, but it is not a 

necessity.  Conversely, cold spray deposition process is only concerned with the 

acceleration of particles and not its focusing. Moreover, the methods used to study 

cold spray process may not be applicable to MCS-DW process. This dissertation 

explores the possibility of acceleration and collimation of metal aerosol particles in 

micro-nozzles. 
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3. MODELNG OF AEROSOLS 

 

The flow of aerosols through nozzles was studied in two steps. In the first 

step, the flow of helium was determined by solving Navier-Stokes equations using 

commercial software ANSYS CFX 12.1. In the second step, the trajectory and 

velocity of aerosol particles is determined using a Lagrangian algorithm. Two 

deliverables are observed from the results of simulation. The velocity of particles 

before hitting the substrate and the collimation of aerosol particles. 

 

Before designing nozzle for MCS-DW process it is important to have a 

thorough understanding of how gasses accelerate in a converging diverging 

nozzle. It is also important to compare numerical simulation results to analytical 

solutions in order to ensure the code is working correctly. 

3.1. Supersonic Flow in Converging Diverging Nozzles 

 

 

Quasi one dimensional isentropic expression for choked flow of gases was 

earlier used to design nozzles. Since the isentropic conditions have been assumed 

during the derivation of the expressions, these equations only hold true under the 

flowing two assumptions: a) the process is reversible and b) the process is 

adiabatic (Anderson, Munson et al). Although these expressions may not provide 

an accurate and complete description of the flow field it will be used to compare 

numerical results with the analytical results. Equation 1 can be used to determine 

the Mach number of the gas under choked conditions as a function of area of 

cross-section of the nozzle.  
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                       (1)  

 

here,  is the area of crosssection of the nozzle where Mach number is ,  is 

the area of crosssection at the throat of the nozzle,  is specific heat ratio of the 

gas. 

 

Furthermore, the temperature, pressure and density of the gas inside the 

nozzle can be determined as a function of Mach number using equation 2, 3 and 4 

respectively.  

                 (2) 

                 (3) 

                (4) 

where, , ,  are the stagnation temperature, stagnation pressure and 

stagnation density of the gas respectively. 

 
Figure 16. Converging diverging nozzle without plenum. 
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Figure 16 above illustrates a converging diverging nozzle with converging 

and diverging section of length 19.05 mm, inlet and outlet radius of 400 µm and 

throat radius of 100 µm. The flow of helium inside the nozzles was simulated by 

solving Navier Stokes equations using commercial software ANSYS CFX 12.1. A 

quasi one dimensional isentropic flow was simulated using the commercial 

software. A total number of 500,000 mesh nodes was sufficient to provide accurate 

simulation results. The inlet total pressure of 175 kPa was chosen because, if the 

pressure is increased further the flow starts to become transient. The details of 

boundary conditions used in the simulation are given in table 2.  

 

Table 2. Boundary conditions used to simulate isentropic flow through converging 
diverging nozzle. 

Inlet Total pressure = 175 kPa 
Total temperature = 523 K 

Nozzle Wall Free- slip wall 
Adiabatic 

Nozzle Outlet Static pressure = 305 Pa (Adjusted) 

 

 

The result of this simulation was compared to analytical solutions obtained 

from equation 1, 2, 3 and 4 discussed earlier. The simulation was repeated after 

viscosity and heat transfer was introduced into the system. A comparison between 

the centerline Mach number and centerline pressure along the nozzle from the 

analytical equations, numerical simulation of isentropic flow and numerical 

simulation of viscous flow is illustrated in figure 17. The results obtained from the 

numerical simulation of isentropic flow was a perfect match with analytical results 

confirming that the commercial software was working correctly. It may be noted 
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that the pressure indicated in the figure is the relative pressure with respect to 1 

atmosphere. Introduction of viscosity and heat transfer indicated a very large 

deviation from the analytical results. The Mach number in the diverging part of the 

nozzle is lower than what was predicted by the analytical models. A comparison 

between the centerline temperature number and centerline density along the 

nozzle from the analytical equations, numerical simulation of isentropic flow and 

numerical simulation of viscous flow is illustrated in figure 18. A rise in temperature 

in the diverging part of nozzle is observed indicating that the decrease in gas 

velocity is due to viscous heating and presence of small oblique shock waves. 

Since the thickness of viscous boundary layer is significantly large therefore effects 

of viscosity cannot be ignored while designing micro-nozzles. Therefore classical 

analytical approach cannot be used for study of gas flow through micro-nozzles.  
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Figure 17. A comparison of analytical solution, numerical isentropic solution and 
numerical solution when viscosity is introduced: (Top) Centerline Mach number; 

(Bottom) Centerline pressure relative to 1 atm. 
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Figure 18. A comparison of analytical solution, numerical isentropic solution and 
numerical solution when viscosity is introduced: (Top) centerline temperature; 

(Bottom) centerline density.    
 

For the rest of the study the flow field inside the nozzle and plenum was 

calculated by solving Navier-Stokes equations using ANSYS CFX 12.1. A more 

realistic scenario of the simulation is when a plenum is present at the exit of the 

nozzle and a substrate with no slip boundary condition is present 3 mm from the 

nozzle exit. Figure 16 illustrates the geometry of the nozzle when a plenum is 



 

31 
 

introduced. Also in order to study the effect of a supersonic jet striking the 

substrate the length of the diverging part of the nozzle has been shortened to 2 

mm. The boundary conditions used in both of the nozzles is shown in table 3. 

 

 
Figure 19. (Top) Converging-diverging nozzle with plenum; (Bottom) Converging-

diverging nozzle with reduced diverging section. 
 

Table 3. Boundary conditions used to simulate flow of helium through different 
nozzles. 

Inlet Total pressure:  = 175 kPa 
Total temperature: = 523 K 

Nozzle Wall No-slip wall 
Adiabatic 

Substrate wall No-slip wall; Isothermal with temperature = 300 K 

Opening Entrainment;Relative static pressure = 0 Pa 
(Absolute pressure = 1 atm.)  
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Figure 20. (Top) Mach contour in converging diverging nozzle; (Bottom) Pressure 

contour and velocity streamlines of converging diverging nozzle near the substrate.  
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Figure 21. (Top) Mach contour of converging diverging nozzle with reduced 
diverging section; (Bottom) Pressure contour and velocity streamline near the 

substrate of converging diverging nozzle with reduced diverging section. 
 

 

Figure 20 illustrates the Mach contour of the converging diverging nozzle. It 

also illustrates the pressure contour and velocity stream lines very close to the 
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substrate. Analysis of flow field indicated that if total pressure of 175 kPa is applied 

to the inlet of the nozzle, the gas accelerates to speed of sound at the throat of the 

nozzle and further accelerates to supersonic speed. However, due to viscous 

heating and presence of oblique shock waves the gas decelerates to subsonic 

speed inside the nozzle. It is important to note that since helium has a high speed 

of sound (960 m/s at room temperature), although the velocity of jet impacting the 

substrate is subsonic, it’s axial velocity is still very high (>800 m/s). No bow shock 

waves are observed near the substrate and the velocity contours indicated that the 

direction of the jet changes only in the last 50 µm before the jet hits the substrate. 

In order to study the effect of a supersonic jet striking the substrate, the length of 

the diverging part of the nozzle was reduced to 2 mm and flow field was again 

calculated. The number of nodes near the substrate was increased in order to 

capture the effect of bow shock  and boundary layer. Figure 21 illustrates the Mach 

contour and pressure contour of the converging diverging nozzle with a reduced 

diverging section. Careful examination of the pressure contour reveals the 

presence of a bow shock as the supersonic jet hits the substrate.  Under more 

turbulent conditions, the presence of a vortex has been reported between bow 

shock and substrate by Jen et al and this vortex is shown in figure 22 below[38]. It 

was also reported that copper and platinum particles of 500 nm diameter will be 

significantly decelerated and platinum particles of 100 nm diameter will not be able 

to penetrate the shock bubble due to the presence of this vortex. However, 

examination of stream traces between the bow shock and substrate in the 

converging diverging nozzle with reduced diverging section did not indicate the 
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presence of a vortex. The flow of gas in our nozzles is in the laminar regime while 

Jen et al are simulating flow of gas using  two equation model for turbulence. 

The turbulent dissipation of the gases kinetic energy may have been the cause of 

vortex being formed. The conventional cold spray process uses particles as large 

as 50 µm in diameter and therefore is not significantly affected by the presence of 

such a vortex. The goal of the MCS-DW process is to print microscale lines using 

metal particle with diameters less than 5 µm. Therefore, the presence of such a 

vortex would be contrary to the MCS-DW process which further supports the 

argument that it is important for the flow to be in the laminar regime so that the 

particles are not scattered due to the presence of turbulent eddies. 

 
Figure 22. Vortex reported between bow shock and substrate by Jen et al[38]. 
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3.2. Forces Acting on Aerosol Particles 

 

The motion of aerosol particles can be determined using Newton’s second 

law as shown in equation 5. 

 

                            (5) 

 where,  is particle radius, is particle density and  is particle acceleration, 

 is the sum of forces acting on the particle. The sum of all forces acting the 

particles is given by equation 6. 

 

              (6) 

 

where is Stokes drag force ,  is Basset force,  is virtual mass force ,   

is the pressure gradient force,  is the buoyancy force,  is the Magnus lift 

force, and   is the Saffman lift force [18, 42-49].  

 

The particle viscous relaxation time, , after which the particle velocity is 

almost equal to the fluid is given by . If we assume a particle diameter of 2 

µm,  (dynamic viscosity) for helium is 1.94 x 10-5 Pa·s and  (density) for helium 

is 0.16 kg/m3 the relaxation time is calculated to be 120 µs.  Average magnitude of 

difference between velocity of gas and particle has been estimated to be 390 m/s. 

Therefore the distance travelled by the particles during the characteristic time 

would be 46.6 mm, more than the nozzle length of 38.1 mm. Further description of 
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the nozzle dimensions used in this study is shown in figure 10. It is therefore 

necessary to examine the magnitude of different forces acting on the particles. 

Table 4 illustrates the approximate magnitude of these forces using preliminary 

simulation results and some reasonable estimations. The assumptions made for 

the calculations are listed as follows: 

 ~389 m/s (this was estimated using preliminary simulation results) 

 = 1.94x10-5 Pa·s  

 = 10-6 m 

 = 0.16 kg/m3 

 ~ 108  (this if the averaged axial velocity gradient with respect to radial 

distance at the throat of the nozzle) 

 ~ 3.2x106 m/s2 (This is determined from averaged particle acceleration) 

 ~ 108 (averaged pressure gradient at the throat of the nozzle) 

 ~ 10500 kg/m3 

 = 9.8 m/s2 
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Table 4. Approximate magnitude of forces acting on aerosol particles[50]. 

Force Relation Magnitude of force, 
N 

Drag  ~1.4x10-7 

Saffman 

 

~1.5x10-8 

Virtual mass 
 

~6.6x10-12 

Magnus 
 

0 (Because there is 
no rotational velocity 

between gas and 
particle) 

Pressure 
gradient  

 
~7.8x10-10 

Buoyancy  ~4.3x10-13 

 

 
It was found that the two forces that have a significant effect on the particles 

are Stokes drag force and Saffman lift force. All other forces are several orders of 

magnitude smaller compared to these two forces. The drag force and Saffman 

force have been calculated using equation 7 and 8. 

               (7) 

 

                      (8) 

here, is dynamic viscosity of fluid,  is fluid density,  is relative velocity of 

the particle with respect to the fluid,  is relative axial velocity vector of the 

particle with respect to the fluid, is the radial velocity gradient of the fluid, and  
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 is the unit vector directed along the y-axis.  The equation for Saffman force has 

been derived under the following three assumptions. , ,  

and . ,  and  are given by equations 9, 10 and 11 

respectively. 

                             (9) 

 

               (10) 

 

                (11) 

where,  is the rotational velocity of the aerosol particle. Due to the high speed of 

aerosol particles, the particle Reynolds number, , is very large due to which 

Saffman equations for lift force and Stokes equation for drag force cannot be used 

as it is. Corrections for the drag coefficient for higher Reynolds number cases were 

proposed by Schiller and Naumann in 1935[51], is shown in equation 12 and 13. 

Here, the corrected drag force, , is is a function of drag coefficient, , and the 

drag coefficient is a function of . 

 

              (12) 

 

              (13) 
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Correction for Saffman lift force was suggested by Dandy and Dwyer in 

1990, which is applicable when the fluid is incompressible, the particle is a rigid 

sphere with no rotational velocity [52, 53]. The lift coefficient  is expressed as a 

function of shear rate   and particle Reynolds number  is described in 

equation 14. This correction applicable when  and 

. Although this correction is only applicable if the fluid is incompressible, the 

effect of this correction on the trajectory and velocity of particles will be 

investigated for the sake of comparison. 

 

        (14)  

 

where, dimensionless shear rate is given by  ,  is the corrected lift force 

and  is the lift force calculated from Saffman force described in equation 8.  

 
Another correction for Saffman force was suggested by McLaughlin in 1991 

and is applicable when  and for any value of [54]. This correction is 

applicable when  and for any value of . 

 

15) 

where,  is another dimensionless parameter given by . 
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3.3. Comparison of Saffman Force Corrections 

 

Matlab 7.1 was used to calculate particle velocities and trajectories through 

a converging diverging nozzle using an in-house developed Lagrangian particle 

tracking algorithm. More details of nozzle geometry and gas flow is discussed in 

section 3.1 of this dissertation. It was assumed that the aerosol consisted of 

perfectly spherical silver particles of 2 µm diameter and the velocity of the particles 

was equal to the velocity of gas at the inlet of the nozzle. The computations used a 

combination of forces and corrections discussed in the previous section of this 

paper. Figure 23 illustrates the trajectory and velocity of silver particles in the 

nozzle. When only Stokes force is used in conjunction with the Schiller-Naumann 

correction, the particle trajectories (green lines) are consistent to the paths 

calculated using both Stokes force with Schiller-Naumann correction and Saffman 

force with McLaughlin’s correction (red lines). The trajectories of silver particles 

calculated with the Schiller-Naumann correction for drag force and with Dandy-

Dwyer correction for lift force (cyan lines) are different from the trajectories 

calculated with Schiller-Naumann correction and Saffman force without any 

corrections (blue lines). However, as illustrated in figure 23, the corrections do not 

have a significant effect on the axial velocities of silver particles. This can be 

explained by the fact that Saffman force is only directed towards the radial 

component of the particle velocity. All particles are accelerated to a velocity greater 

than the critical velocity of silver (365 m/s)[55].  
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Figure 23. (a)Trajectory followed by silver particles in the nozzle; (b) Axial velocity 

of silver particles as they travel through the nozzle: (Green line) when Schiller-
Naumann correction Stokes force is used; (Blue line) when Schiller-Naumann 

correction Stokes along with Saffman equation are used; (Cyan line) when 
Schiller-Naumann correction for Stokes force and Dandy-Dwyer correction for 

Saffman force are used; (Red line) when Schiller-Naumann correction for Stokes 
force and McLaughlins correction for Saffman force are used. 

 
Among the cases discussed above, the trajectories and velocities of silver 

particles predicted using Schiller-Naumann correction for drag force are most 

appropriate, and accurate. This can be explained from the figure 24 and 25 which 

illustrate the particle Reynolds number, , and the shear rate, ,of the silver 

aerosol particles as they travel through the nozzle. Although the issue of higher 

a 

b 
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is already addressed by Dandy-Dwyer correction for Saffman force, this 

correction is based on the assumption that the fluid around the spherical particle is 

incompressible. Due to the high speed of the fluid, this assumption will not hold 

true.  

 
Figure 24. Particle Reynolds number relative to the fluid as particles travel through 

the nozzle[50]. 
 

 
Figure 25. Shear rate of fluid acting on the particles as they travel through the 

nozzle. 
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3.4. Experiments with Aerosol Jets 

 

 

In another approach to study the flow of aerosols, flow of nitrogen as gas 

was simulated through a linear converging nozzle. The nozzle has an inlet 

diameter of 820 µm, outlet diameter of 220 µm and a length of 19.05 mm. Flow of 

aerosols through the nozzle was calculated using the Lagrangian algorithm under 

two cases a) when only Schiller-Naumann equation for drag force is used and b) 

when  only Schiller-Naumann equation for drag force along with Dandy-Dwyer 

correction for Saffman force is used. The particles used for these simulations are 

made of silica and have a mean diameter of 3.8 µm with a standard deviation of 

0.2 µm. The density of the silica particles was assumed to be 1800 kg/m3. Both the 

velocity of particles and width of the beam of aerosol particles was determined at 

different distances from the exit of the nozzle. In order to verify that the model is 

working correctly, micro shadowgraphy method was used.  

 
Figure 26. Micro Shadowgraphy Experimental Setup[15]. 
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The experimental set up of the micro shadowgraphy method is shown in 

figure 26. The particles are illuminated by incoherent light from a high efficiency 

diffuser pumped with a pulsed laser and collimated with a Fresnel lens. Two 

successive picture frames of the shadow of particles are captured with the help of 

a high speed camera. The initial and final position of the individual particles enable 

us to determine the planar velocity component. Also, the width of the beam is 

determined by illuminating the particles with a continuous wave laser. The width of 

the beam is measured half way between the minimum intensity of the beam and 

maximum intensity of the beam using the law of full width half max (FWHM). 

 

 
Figure 27. A comparison between shadowgraphy, CW lasers experiments and  

numerical simulations[15]. 
 

For the sake of comparison, exactly similar conditions are used for both 

experimental measurements and theoretical simulations. Figure 27 illustrates the 
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comparison of beam width between numerical simulations when  a) when only 

Schiller-Naumann equation for drag force is used and b) when only Schiller-

Naumann equation for drag force along with Dandy-Dwyer correction for Saffman 

force is used, and when the beam width is measured using a CW laser and 

shadowgraphy for exactly the same boundary conditions.  The comparison 

suggested that numerical results from using Schiller Naumanns drag for equations 

is in agreement with experimental results upto 5 mm from the exit of the nozzle. 

Beyond 5 mm, the results from numerical simulations and experiments start 

deviating for reasons which are not known yet. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 28. A comparison between axial velocity of particles measured using 

shadowgraphy vs axial velocity of particles predicted with numerical simulations 
are carried out using Schiller Naumann equation for drag force[15].  
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Figure 28 illustrates a comparison between axial velocity of particles 

measured using shadowgraphy vs axial velocity of particles predicted with 

numerical simulations are carried out using Schiller Naumanns equation for drag 

force. This is complementary to the previous argument that Schiller Naumann 

equation for drag force can sufficiently predict the behavior of particles upto 5 mm 

from the exit of the nozzle. The reason for divergence of experimental  results from 

the predicted model after the particles travel 5 mm from the exit of the nozzle is not 

well known. This may be caused due to experimental error of due to presence 

turbulent dissipation.  In most direct write processes the distance between nozzle 

and substrate is less than 3 mm. Therefore, what happens to the particles after 

they travel 5 mm from the exit of the nozzle is beyond the scope of this research 

study. For our research, since the plenum is only 3 mm from the substrate, 

Schiller-Naumann equation for drag force will be accurate for predicting the 

trajectory and velocity of particles for MCS-DW process. 
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4. MICRO-NOZZLE DESIGN 

 

 
Figure 29. Geometry of nozzles (a) Converging-diverging nozzle with plenum; (b) 
Converging-diverging nozzle with reduced diverging section; (c) Linear converging 

nozzle; (d) Converging-capillary nozzle. 
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The different geometries of nozzles proposed for the MCS-DW process are 

illustrated in figure 29. The linear-converging nozzle has inlet radius of 400 µm, 

outlet radius of 100 µm and length 19.05 mm. This is the nozzle which is being 

used in our current experimental research. In order to improve deposition 

efficiency collimation of the beam, three additional nozzle geometries have been 

computationally studied. These geometries have been chosen considering the 

manufacturability of the nozzles. The details of the converging diverging nozzles 

have already been discussed in the previous sections of this dissertation. The 

converging capillary nozzle is a linear converging nozzle described above with a 

capillary of radius 100 µm and length 14 mm attached in front of the linear 

converging nozzle. The objective of introducing a long capillary in front of a linear 

converging nozzle is to explore the possibility of accelerating and collimating 

aerosol particles without accelerating the gas to supersonic speed. As seen in 

section 3.2 of this dissertation, gas cannot be accelerated to supersonic speed 

using the converging diverging nozzle without making the gas flow turbulent. In all 

of the cases it has been assumed that the substrate is 3 mm from the exit of the 

nozzle. The flow field inside the nozzle and plenum was determined by solving 

Navier-Stokes equations using ANSYS CFX 12.1. With the exception of 

convergent capillary nozzle, in each of the nozzle designs described in figure 29, 

the total pressure at the inlet was increased till the Reynolds number was close to 

2000. The threshold inlet pressure for the convergent capillary nozzle was 

determined based on the maximum Mach number. If the inlet total pressure of 
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convergent capillary nozzle is increased beyond 200 kPa, the flow becomes 

supersonic. The boundary conditions used in the nozzles is listed in table 5 below. 

 
Table 5. Boundary conditions used to simulate flow of helium through different 
nozzles. 

Inlet Total temperature = 523 K 

Converging-diverging nozzle:  = 175 kPa 
Converging-diverging nozzle with reduced diverging section: = 
175 kPa 

Converging nozzle: = 200 kPa 
Converging capillary nozzle: = 200 kPa 

Nozzle Wall No-slip wall 
Adiabatic 

Substrate 
wall 

No-slip wall 
Isothermal with temperature = 300 K 

Opening Entrainment  
Relative static pressure = 0 Pa 
(Absolute pressure = 1 atm.)  

 

Figure 30 illustrates the Mach contour and pressure contour of the plenum 

of the linear converging nozzle. Since there is not diverging part in the linear 

converging nozzle, the velocity of gas does not accelerate to very high speed. The 

speed of the jet is still supersonic when it hits the substrate causing a bow shock to 

form just ahead of the substrate. Figure 31 illustrates the Mach contour and 

pressure contour of the plenum of convergent capillary nozzle. The speed of jet is 

subsonic before it strikes the substrate therefore causing a very small rise in 

pressure near the substrate. The flow field of the converging diverging nozzle and 

the converging diverging nozzle with reduced diverging section have been 

discussed in the previous sections of this dissertation. Out of the four nozzle 

designs in this study, two nozzles have a subsonic jet coming out of the nozzle and 

two have a supersonic jet exiting from the nozzle.  
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Figure 30. (Top) Mach contour of linear converging nozzle; (Bottom) Pressure 

contour of linear converging nozzle. 



 

52 
 

 
Figure 31. (Top) Mach contour convergent capillary nozzle; (Bottom) Pressure 

contour of convergent capillary nozzle. 
 

After that flow of silver particles of diameter 2 µm and copper particles of 

diameter 3 µm is calculated from a Lagrangian algorithm using MATLAB 7.1. The 

density of copper and silver is assumed to be 9300 kg/m3 and 10500 kg/m3 
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respectively. The diameter of metal powders have been selected based on the 

metal powders available in stock. The velocity of particles at the inlet of the nozzle 

is equal to the velocity of gas and particle beam has a radius of 200 µm at inlet. 

Figure 32 show the axial velocity of particles inside the converging diverging 

nozzle with reduced diverging section and the linear converging nozzle, where the 

red lines represent the velocity of copper particles and blue lines represent velocity 

of silver particles in the nozzle. The velocity of copper particles is accelerated to 

325 m/s and silver particles are accelerated to over 400 m/s in the linear 

converging nozzle.  Obviously, adding a small diverging section of 2 mm length 

increases the speed of copper and silver particles to 350 m/s and 450 m/s 

respectively. It may be however noted that the copper particles in either of the 

nozzle are not fast enough to form a splat since the critical velocity for copper with 

0.38% oxygen (by weight) is 610 m/s. This is contrary to the results of experiments 

conducted in our laboratory with the linear converging nozzle and with similar 

boundary conditions. This can be explained by the fact that the linear converging 

nozzle is only able to deposit metal if the temperature of deposition head is 

increased to  very high temperatures (>200 °C). The high temperature in the 

deposition head increase the temperature of the copper particle before they hit the 

substrate. Research has shown that increase in temperature of metal particles 

before impact can significantly reduce its critical velocity. Figure 33 illustrates the 

trajectory followed by the particles, where red lines represent the copper particles 

and blue line represents the silver particles. In either case the beam does not 
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appear collimated. Neither of the nozzles with supersonic jet at the exit of the 

nozzle are suitable for MCS-DW process.  

 

 
Figure 32. Axial velocity of particles where, blue lines represent silver particles and 

red lines represent copper particles: (a) Linear converging nozzle is used; (b) 
Converging diverging nozzle with reduced length is used. 
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 Figure 33. Trajectory followed by particles inside the nozzle where blue lines 
represent silver particles and red lines represent copper particles: (a) Linear 

converging nozzle is used; (b) Converging diverging nozzle with reduced length is 
used. 
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Figure 34. Axial velocity of particles where, blue lines represent silver particles and 

red lines represent copper particles: (a) Linear-convergent nozzle is used; (b) 
Converging diverging nozzle is used. 
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 Figure 35. Trajectory followed by particles inside the nozzle where blue lines 
represent silver particles and red lines represent copper particles: (a) Linear 

convergent nozzle is used; (b) Converging diverging nozzle is used. 
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particles are unable to do so because the straight section of the convergent 

capillary is not long enough to accelerate copper particles to its critical speed. 

Figure 35 also illustrates the velocity of copper and silver particles in the 

converging diverging nozzle. Similar to the results of the convergent capillary 

nozzle, the converging diverging nozzle is able to accelerate the silver particles to 

its critical velocity but is unable to accelerate the copper particles to make a splat 

when it hits the substrate. Furthermore, the velocity distribution of particles coming 

out of the converging diverging nozzle is wider compared to the convergent 

capillary nozzle. This can be explained from figure 35 which illustrates the 

trajectory followed by silver and copper particles in both of the nozzles. Beam of 

aerosol particles coming out of the convergent barrel nozzle is more collimated 

and focused near the axis of the nozzle causing the particles to have a more 

uniform velocity distribution. Particles in the converging diverging nozzle and not 

collimated because of which particles further away from axis of the jet have a lower 

velocity when compared to the particles close to the axis. Although the velocity of 

silver particles in converging diverging nozzle is higher than the convergent 

capillary nozzle, the convergent capillary nozzle will work better for MCS-DW 

process since the particles are more focused.  

 

The acceleration of copper particles to its critical velocity is not achieved 

using converging diverging nozzle and convergent capillary nozzle. Although 

copper has lower density than silver, the size of the copper particles in stock is 

larger due to which more drag force is required to accelerate the particles. 
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Figure 36. Convergent capillary nozzle for copper particles. 

 
 

Figure 36 illustrates a convergent capillary nozzle in which the length of the 

straight section is 30 mm. The increase in length of the nozzle will enable the 

copper particles to accelerate to critical velocity. The boundary conditions used is 

shown in table 6. The change in Mach number with increase in inlet total pressure 

is shown in figure 37. Inlet pressure of 225 kPa accelerates helium enough so that 

the jet is subsonic when it strikes the substrate while an inlet pressure of 475 will 

accelerate the gas to supersonic speed. As illustrated in figure 37 the Reynolds 

number remains below 2000 indicating the for both of the inlet conditions the flow 

remains laminar. Although a supersonic jet at the exit of the nozzle is not 

preferred, in order to accelerate the copper particles to their critical velocity, it 

becomes necessary to explore the possibility to use higher inlet pressure without 

transitioning into turbulent flow. 
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Table 6. Boundary conditions used in the convergent capillary with longer straight 
section.  

Inlet Total Pressure : 225, 475 kPa 
Total Temperature : 523 K  

Opening Relative static pressure = 0 Pa 

Nozzle Wall No-slip boundary condition 523 K 

Substrate Wall No- Slip with temperature 300 K 

 

 

 
Figure 37. (Top)Change in Mach number with increase in inlet pressure; (Bottom) 

Change in Reynolds number with increase in inlet pressure. 
 

As shown in figure 38, the copper particles are accelerated to a velocity of 

450 m/s when inlet pressure of 225 kPa is used and >550 m/s when an inlet 

pressure of 475 kPa is used. in either of the cases, the copper particles are more 
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collimated than the converging diverging nozzle. Although a supersonic jet at the 

exit of the nozzle is not preferred, due to the large size of copper particles it may 

be necessary increase the inlet pressure enough to accelerate the copper 

particles.  

 
Figure 38. Red lines indicate the inlet pressure was 225 kPa and blue lines 

indicate inlet pressure of 475 kPa: (Top) Velocity of copper particles; (Bottom) 
Trajectory followed by copper particles.  
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6. CONCLUSIONS 

 

Initial experimental studies have demonstrated that the MCS-DW process 

can be successfully used for printed microelectronics applications. The advantage 

of the MCS-DW process over other direct write processes is that it can use less 

expensive metal powders such as tin, aluminum and copper to print conductive 

trace patterns on substrates. The kinetic energy of the particle is sufficient enough 

to make the particles stick to the substrate. While other direct write processes 

require thermal post processing, MCS-DW process does not require another 

processing step. Unlike other direct write processes, MCS-DW can print patterns 

as well as fill via holes. The use of MCS-DW process has been demonstrated to 

print over a wide variety of flexible and rigid substrates. Using an off-the-shelf 

converging nozzle it is possible to print conductive features smaller than 50 µm. 

Via holes as small as 75 µm can also be filled using this process. The off the shelf 

converging nozzles being used is capable of printing features with the MCS-DW 

deposition head, however, due to low deposition efficiency design of new nozzles 

was explored.  

 

Before designing nozzles for aerosol particle collimation and acceleration it 

was important to identify the correct equations for calculation of forces acting on 

aerosol particles. Approximate estimations of forces acting on aerosols indicated 

that the important forces acting on aerosols passing through micro nozzles are 

drag force and Saffman lift force. Experiments were carried out in which mono 

dispersed silica particles emerging out of a nozzle of known geometry were 
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studied. The velocity of aerosol particles was determined using the Shadowgraphy 

process and the beam width of the particles was determined using CW laser 

scattering. A comparison of the results from experiments and theoretical modeling 

indicated that the Schiller Nawmann equation for drag force could predict the 

behavior of aerosol particle up to 5 mm from the exit of the nozzle. This equation 

for the calculation of the drag force was later used to design micro nozzles for the 

MCS-DW process. 

 

Initial results of numerical simulations indicated that the use of classical 

quasi one dimensional isentropic equations does not provide an accurate 

description of the flow field in the nozzle. Due to the presence of a large viscous 

boundary layer inside micro nozzles, the adiabatic and reversible assumptions 

used to derive the equations do not hold true. The flow field inside the nozzle was 

determined by solving Navier Stokes equations using commercial software ANSYS 

CFX 12.1. The trajectory and velocity of copper particle of 3 µm diameter and 

silver particles of 2 µm diameter was determined using a Lagrangian algorithm.  

   

The low deposition efficiency of the linear converging nozzle currently being 

used in the MCS-DW deposition system is because the velocity of particles is not 

fast enough. The preheating of the gas and particles inside the deposition head 

leads to thermal softening of the particles causing them to form splats on the 

substrate. A converging diverging nozzle was studied using numerical methods 

and it was found that although the nozzle is capable of accelerating particles to 
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their critical velocity, the focusing of the particles was not good. A convergent 

capillary nozzle, which has a linear converging section followed by a straight 

section, was able to accelerate and focus the particles better. The proposed 

convergent capillary nozzle has a linear converging section of length 19 mm and a 

straight section of length 14 mm. This nozzle is capable of accelerating and 

focusing silver particles of diameter 2 µm. Another convergent capillary has been 

proposed for accelerating and collimating copper particles of diameter 3 µm. This 

capillary has a straight section length of 30 mm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

65 
 

7. FUTURE RESEARCH 

 

The use of MCS-DW process has been successfully demonstrated for 

printed electronic applications. A lot of effort has been put in in the last few years 

for the development of this process and we have found encouraging results in both 

numerical and experimental studies. Hereon, a two pronged approach for the study 

of MCS-DW process is being proposed in which continuous engineering 

modifications can be made in the deposition head to further improve the process. 

At the same time it is important to understand how the particles behave for higher 

particle Reynolds number problems. 

7.1. Engineering Modification of Deposition Head 

 

1) In order to further improve the MCS-DW process engineering modifications must 

be made so that the flow of gas and aerosol particles into the nozzle is more 

symmetric. A schematic of the parts inside the deposition head is shown in figure 

39. The current experimental prototype has the flow cone attached to a pipe 

carrying the carrier gas. This flow cone is not symmetrically aligned to on top of the 

nozzle. Use of spacers around the flow cone will improve the symmetry of the flow 

and may lead to better deposition of particles.    

 

2) The design of the current deposition head does not enable a smooth transition gas 

and aerosol particles from the deposition head to the nozzle. Due to this, there is 

accumulation of metal powder at the bottom of deposition head below the flow 

cone. A smoother transition between the deposition head and nozzle will decrease 

nozzle clogging.  
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Figure 39.  suggested modification of deposition head. 

 
 

3) The linear converging nozzle being used currently has low deposition 

efficiency because of the particles are unable to accelerate to the required 

critical velocity. The gas and metal particles have to be preheated to high 

temperatures so that thermal softening of the particles will help them splat 

on the substrate. Using the convergent capillary nozzle instead of the linear 

converging nozzle will increase the velocity of particles striking the substrate 

and therefore will enable operating the deposition head at lower 

temperature. Lowering the operating temperature will reduce some of the 

engineering difficulties in the MCS-DW deposition system. 

 

7.2. Flow of Aerosols Through Micro Nozzle 

 

Numerical simulations are able to predict the behavior of aerosols 

upto 5 mm from the exit of the nozzle. The reason for deviation of numerical 
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results from experiments is not yet known. The study of aerosols can be 

carried out in the following ways: 

 

1) The flow field is being calculated assuming that there is no turbulence 

and the flow in steady state. Presence of unsteady state disturbances or 

turbulent dissipations may be the reason for the difference in results 

between numerical simulation and experiments. The flow field must be 

simulated using unsteady state assumption to find the reason behind the 

difference between numerical results and experiments. 

 

2) The appropriate correction for Saffman lift force applicable to our flow 

regime is not known. Numerical simulations can be carried out to 

determine the correct correction factor for Saffman force applicable for 

aerosol deposition process.  
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