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ABSTRACT 

Classification can be used to predict unknown functions of proteins by using known 

function information. In some cases, multiple sets of data are available for classification where 

prediction is only part of the problem, and knowing the most reliable source for prediction is also 

relevant. Our goal is to develop classification techniques to find the most predictive of the 

multiple data sets that we have in this project. We use existing classification techniques like 

linear and quadratic classifications and statistical relevance measures like posterior and log p 

analysis in our proposed algorithm, which is able to find the data set that is expected to give the 

best prediction. The proposed algorithm is used on experimental readings during cell cycle of 

yeast and it predicts the genes that participate in cell-cycle regulation and the type of experiment 

that provides evidence of cell cycle involvement for any particular gene. 
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CHAPTER 1. INTRODUCTION 

Databases are used to store large amounts of data and allow flexible retrieval of that 

information. Data-mining techniques can be utilized for gaining useful information from 

particularly large or complex data residing in such databases. Techniques for predicting 

categorical attributes are called classification. Classification uses existing information about the 

objects of interest for making predictions [1]. Protein function prediction has been a vast field of 

study in bioinformatics for the past few years. This field involves input and knowledge of 

biology, computer science and statistics. In the context of the thesis, the objective can be divided 

into two main parts - to predict the function of proteins associated with an unknown set of genes 

and to identify the data source which helps in the most reliable prediction of the protein function. 

The data used in this thesis involves multiple sources of data. We observed that using the data 

sources separately in our training for classification gave us different prediction results for the 

protein function of unknown genes.  Hence, we infer that the reliability of our prediction results 

is dependent on the data source we use for training in our classification techniques.     

In this study we have used a microarray analysis of four gene time-series datasets 

(temperature sensitive mutant methods alpha arrest, arrest by cdc15, cdc28 and elutriation) of 

Saccharomyces cerevisiae (yeast) from the Stanford Microarray Database [2, 3] originally posted 

by Spellman [4]. Microarray analysis is the study of gene expression while time-series analysis is 

studying those expressions at different time points. To analyze how different experimental 

methods affect the ability to predict of the protein function of from gene expression data, we 

divided the entire data source into four subsets of data as per the mutant methods. Within each of 

these data sources, half of the genes were put into a training set, and the other half were put in a 

test set. The division of training and test sets could be done in other ways as well, for example, 
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keeping more data in training than test set or by leaving a few records out of training set but in 

the scope of this thesis, we have not done so. The reason is we would like to predict the most 

reliable data source for every record and not leave any record out of classification. At this point, 

we saw that for any particular unknown gene, the protein function behavior would be differently 

predicted while using the various data sources separately for training in the classifiers. Therefore, 

we introduced a statistical relevance measure which would find out the most reliable data source 

for each gene. Using the statistical measure along with classification techniques, we were able to 

predict unknown protein function as well as find the most reliable data source.   

The knowledge of the protein function of an unknown gene and the most reliable data 

source to predict the function can give us information of biological significance. In the current 

context, prediction of unknown protein function tells us which genes participate in cell cycle 

regulation and finding the most reliable data source for a particular gene signifies the mutant 

method that provides evidence of cell cycle involvement.  

1.1. Problem Statement for Thesis 

The study of protein function prediction has been helped substantially through gene 

expression experiments and their analysis using data-mining techniques. The techniques allow 

simultaneous measurement of expression levels of a certain number of genes [4]. 

Many algorithms exist for prediction based on individual sets of experiments. In this 

thesis, we focus on prediction from multiple sets of experiments and identify, which data set 

would be best for the said classification. By using multiple data sets for classification we, by 

means of the algorithm presented in this thesis, are able to identify the data source that gives the 

best prediction. Our focus in the thesis is specifically to construct a set of rules (equivalently 

prepare one single algorithm) that would help us identify the data set for each gene that would 
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give the best prediction.  At this point, the following Table 1.1 would be a good a representation 

of the way the data look. 

 

Table 1.1. Toy example showing a few genes with their respective expression level ratio at 

various time intervals for different cycles. The class label for the gene is also mentioned 

 

Gene Alpha Cdc 15 Cdc 28 Elu Class 

Label T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 

G1 0.07 0.12 0.03 1 0.12 0.54 -0.31 .. .. .. .. .. 0 

G2 -.09 0.24 0.19 1.2 -.15 0.15 1.3 .. .. .. .. .. 1 

G3 0.65 0.54 0.03 1.39 0.23 1 0.1 .. .. .. .. .. 1 

: 

: 

             

G2000 .. .. .. .. .. .. .. .. .. .. .. .. 0 

G2001 .. .. .. .. .. .. .. .. .. .. .. .. 0 

: 

: 

             

G7000 .. .. .. .. .. .. .. .. .. .. .. .. 1 

 

 

We have four data sets here: alpha, cdc 15, cdc 28 and elu. Each data set has many time-

series-based microarray readings, and each row signifies a particular gene. Each gene in the 

training data belongs to a particular class label. The class labels in this project can have two 

values 0 and 1. Class label 1, mentioned in bold in the table, indicates that a particular gene 

participates in cell-cycle regulation. Class label 0 signifies that the gene did not participate in 

cell-cycle regulation [2, 3]. Also, there are very few items with class label 1 in the data that we 

use. Hence, it is of more significance to correctly predict those items with class label 1. By using 

this information and the proposed algorithm, we are going to find that data set for each gene 

which, when used for training, gives the best prediction. Using the above data sources separately, 

we run various classifiers using MATLAB 7 against each data source. We also compute a 

statistical relevance measure, discussed later in the thesis, analysis for each data source 
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separately and store the results. Using these data in our proposed algorithm, we try to find that 

data source which gives the highest statistical-relevance measure value. The algorithm then goes 

on to find the class label predicted for the most reliable data source for each gene. We use this set 

of prediction results against the ones we got by using the MATLAB classifier function and 

compare them. The data sources that we mention correspond to the different phases or mutant 

methods during cell cycle regulation of yeast. Cell-cycle regulation could happen in any of these 

phases. For example if gene x (gene x being any random gene in the test set) gets regulated in 

alpha phase, using the data source alpha should be sufficient for classification for gene x. On the 

other hand, if gene y (gene y being any random gene in the test set different than gene x) gets 

regulated in the elu phase, using the data set alpha will give a wrong prediction as the gene 

would not have regulated by then. Therefore, by using the proposed algorithm, we are finding the 

most reliable data source for each gene and this data source signifies the phase in which 

regulation has most likely happened for the same gene. 

The following Table 1.2 shows values of the statistical relevance measure for each gene. 

The measures given in bold represent the highest value for a particular gene. We are proposing 

that, because a particular data set gives a higher relevance measure than the others, this data set, 

if used in training, is more likely to predict correctly than others. Hence, we use the prediction 

result corresponding to the data set with highest relevance measure for each gene. We will be 

using only that data source for prediction of each record that gave a higher statistical relevance 

measure value than others. Hence, unlike the other experiments that use the same data source for 

all records, using the proposed algorithm, we use the most reliable data source for each record. 
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Table 1.2. Toy example showing a few genes with their respective log p and posterior values. 

The proposed algorithm helps to identify the data source with the highest log p and posterior 

values for each gene 

 

Gene 

Alpha Cdc 15 Cdc 28 Elu 

Most 

Predictive 

data source 

Statistical 

Relevance 

Measure 

Statistical 

Relevance 

Measure 

Statistical 

Relevance 

Measure 

Statistical 

Relevance 

Measure 

Statistical 

Relevance 

Measure 

G1 0.67 0 0.89 1 0.88 0 0.74 1 cdc 15 1 

G2 0.22 1 0.99 0 1.00 0 0.85 0 cdc 28 0 

G3 0.89 0 0.98 0 0.99 0 0.94 0 cdc 28 0 

:  :  :  :  : : : 

G2000  :  :  :  :  : 

G2001  :  :  :  :  : 

:  :  :  :  :  : 

G7000  :  :  :  :  : 

 

 

We use the results obtained from our algorithm with both these relevance measures and 

finally compare the results. The results show the value of the proposed algorithm.   

The objectives of this thesis can be summarized as (i) classifying and predicting class 

label of genes present in test set for each data set separately, (ii) calculating the statistical 

relevance measure for each record and finding the most reliable data source for every record, (iii) 

predicting class label of genes in test set by using the most reliable data source for classification, 

and (iv) comparing the prediction results of objective (iii) with the prediction result of objective 
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(i). The objectives have been explained pictorially below in Figures 1.1, 1.2 and, 1.3. Objective 

(i), as shown in Figure 1.1, is splitting data from the raw data source into training data set and 

test data set. Figure 1.1 starts with a raw set of data that we attained from Spellman Microarray 

Database [2, 3] and then we split this raw data into normalized training and test data. The 

objective is to predict correctly the class label of the genes present in test data by studying the 

genes present in training data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. A pictorial representation of the data splitting done in this thesis. 

 

 

 

Objectives (ii) and (iii) are shown together in Figure 1.2 is the classification part by 

implementing the proposed algorithm and finding the statistical relevance measure for each 

record. Objective (iv) is shown in Figure 1.3, is the comparison part between all the experiments 

done in this thesis, and to find the best predictive data source. 

Classifying unknown genes from known ones 

Available data source: Spellman Microarray Database 

Data split 

Training data set Test data set 
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Figure 1.2. A pictorial overview of the classification algorithm used in this thesis. 

 

 

 
 
 
 

 

 

 

 

 

 

Figure 1.3. A pictorial overview of comparison metrics used for finding the most predictive data 

source. 

Classification procedures 

Linear classifier Quadratic classifier 

Statistical relevance measure 

Log p analysis Posterior analysis 

Comparison of the two classifiers using different data sets each time 

Accuracy Error rate Specificity Sensitivity Precision 
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The purpose of this thesis is that by virtue of a computer science algorithm we are able to 

find the most reliable data source which will have a significant biological significance which in 

the case of this thesis is finding the phase in which cell-cycle regulation has most likely 

occurred. Future work may show how suitable the algorithm is for data sources that are not 

biological in nature.  

1.2. Organization of the Thesis 

This thesis is organized according to the format that is recommended by the university. 

An overview for each chapter is given below.  

Chapter 2 first explains Classification and its different types, along with its significance 

with respect to the thesis. It then goes on to present the Classification Algorithm used here. It 

gives an overview of the various prediction techniques used in this thesis and their significance. 

The ones that are used in the project are linear classification using the four data sets separately, 

quadratic classification using the four data sets separately, linear classification using log p and 

posterior and quadratic classification using log p and posterior. This chapter also defines log p 

and posterior, their usage and their significance.        

Chapter 3 initiates discussion on the significance of the data that were chosen for this 

particular thesis. It talks about how the data were normalized so that the thesis used a fair data 

set. It talks in detail about microarray analysis and time series analysis. It explains the four stages 

or cycles that forms the crux of this research: alpha, cdc15, cdc 28 and elu. Then, it goes on to 

talk about classification and its different types. Various prediction methods are discussed, and 

their significance is categorized. The ones that are discussed are linear and quadratic 

classification. A specific method that has been described is the decision-tree classification 

method. 
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Chapter 4 talks about the results that each prediction technique has given and their 

corresponding plots. The metrics which would be helpful in evaluating the results have been 

defined, and their significance has been discussed. The metrics that have been used for results 

are mainly accuracy, error rate, specificity, sensitivity and precision. The plots that have been  

used for comparison between the metrics are specificity vs sensitivity. 

Chapter 5 discusses the results given in the prior chapter and talks about their 

significance. It compares the results given in the plots and talks about which prediction technique 

was able to give the best results and why. It also talks about the most predictive data source in 

biological data according to this study. Finally, it talks about possible future work in this field.  
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CHAPTER 2. CLASSIFICATION ALGORITHM 

In this chapter, we first explain what classification is, the various types of classifiers used 

in the present thesis, how we use multiple data sets and then the classification algorithm that the 

thesis proposes. Thereafter, we will explain how the multiple data sets are used in this algorithm. 

2.1. Classification      

Classification means identifying which group an unknown entity belongs to on the basis 

of observing some unique attributes [5]. Linear classification involves doing the same based on 

the value of a linear combination of attributes while quadratic classification does this based on a 

quadratic surface. 

In two dimensions, linear classifier is a line. Figure 2.1 shows two types of classes 

represented by light dots and dark dots. Linear classification would segregate the two classes 

with straight lines. This type of classification might be simpler and faster than quadratic 

classification. However, if the members of all classes are intermingled, it is difficult to separate 

such classes using straight lines. As per the quadratic classification function used in MATLAB, 

quadratic classification fits multivariate normal densities with covariance estimates stratified by 

group. The quadratic classifier may not be a line. Figure 2.2 shows two types of classes 

represented by light dots and dark dots. Quadratic classification would segregate the two classes 

with any quadratic representation, which may be a line, circle, parabola, ellipse or hyperbole. 

Usually, quadratic classifiers give better results than linear classifiers. Our prediction results are 

also better in the case of quadratic classification than linear classification. The Figures 2.1 and 

2.2 will help to explain why quadratic classifier is more likely to do a better classification and 

give better prediction results.   
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Figure 2.1. Linear classification.                      Figure 2.2. Quadratic classifcation. 

 

As discussed in Chapter 1, let us take the example of the classification of animals into 

groups of mammals and non-mammals. Some important parameters to talk about when doing 

classification would be class label and attributes. We defined classification in the beginning of 

this section as grouping a set of unknown things into similar groups. In classification terms, we 

refer to those groups as being identified by a class label. Attributes are used to assign a class 

label to an object.  We shall discuss class label and attribute in details in sections 2.1.1 and 2.1.2 

respectively.   

Classification can be based on several kinds of classifiers. Examples could be rule-based 

classifiers, Bayesian classifiers, nearest-neighbor classifiers or artificial neural network. Rule-

based classifiers, as the name suggests, classify unknown entities into groups or classes based on 

certain rules or if-then scenarios [1]. Nearest-neighbor classifiers group unclassified objects 

based on the categorization of the nearest of a set of previously classified objects [6]. Bayes 

theorem can be expressed by the following equation: 

P (Y|X) = (P (X|Y) * P (Y))/P (X). 
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The equation means that the probability, rather the conditional probability of Y when X is 

given, is directly proportional to the Bayes theorem and can be derived from conditional 

probability. The probability of Y occurring when X is true is equal to the quotient of the 

probability of X and Y both being true and only X being true. 

P (Y|X) = P (Y∩X) / P(X) 

Similarly, we can say 

P (X|Y) = P (Y∩X) / P(Y). 

From the above equations, we can say 

P (Y∩X) = P (Y|X) * P(X) = P (X|Y) * P(Y), 

which brings us to Bayes theorem [1] 

P (Y|X) = (P (X|Y) * P (Y))/P (X). 

Neural networks are a technique of artificially mimicking or replicating the biological neural 

networks and then using the result as the base of study to solve classification problems. 

2.1.1. Class Label 

Class label identifies the group, in which the unknown entity will be placed after 

prediction based on studying its characteristics. The class label in this thesis is cell-cycle 

regulation, and the purpose of the experiments is to identify those genes that participate in cell-

cycle regulation. As mentioned in Chapter 1, let us take the example of the classification of 

animals into groups of mammals and non-mammals. Now based on the study of the behavior of 

mammals and non-mammals, we keep some of those important behaviors in mind and check for 

them among the animals that we need to classify. As discussed before, we evaluate on the basis 

of body temperature and the ability to give birth, and based on the results, we classify the 

animals to their corresponding groups. This method is often known as the decision-tree 
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approach. For making a prediction, we should have our classes or class labels ready and then 

observe for any unique trait in the unknown entity which will help in the decision about which 

class label to which it belongs. For instance, in the example mentioned here, a unique trait would 

be “whether the body temperature of the animal is warm or cold?” Observing this trait helps us 

towards our prediction about whether the animal is a mammal or not. A tree has three types of 

nodes: a root node, internal nodes and the leaf nodes. The leaf nodes are the class labels while 

the root node and the internal nodes are those decision-making questions, or as Tan, Steinbach 

and Kumar [1] call them, the test attribute conditions. Starting from the root node, the test 

conditions are applied and follow the answers to either the appropriate internal nodes that leads 

to further decisions or to the leaf nodes that specify the desired class label. 

2.1.2. Attributes 

Attributes are those characteristics that the test set has that help us to successfully classify 

them. They are defined as a property or characteristic of an object that may or may not be in 

another object [1]. Attributes are very important with respect to classification as they become the 

crux, or deciding factor behind classifying objects under a certain class label. Continuing on the 

example mentioned in Section 2.1.1 body temperature and the ability to give birth are the two 

deciding factors, characteristics or attributes. These attributes vary from one object, or in this 

case animal, to another. The attribute of one animal can be cold body temperature and does not 

give birth while another can have a hot body temperature and has the ability to give birth. Based 

on these attributes, we are able to decide into which class label, for example mammals or non-

mammals, we can put the animals. With respect to the thesis, the attribute collections and their 

analysis have been pretty challenging. First, the attribute analysis involved learning and 

understanding the cell-cycle process explained more elaborately in Chapter 3. Second, the 
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attributes in this case involved the study of multiple data sets which is explained in the next 

section.  The attributes in this thesis are the data readings at various time points made during the 

experiments.  

2.1.3. Multiple Data Sets 

As mentioned before, there were multiple data sets used, which made the problem more 

complex. The data sets used were collected at various stages in a cell cycle and the 

corresponding readings at multiple time intervals. The stages studied were alpha, cdc-15, cdc-28 

and elu, the stages are explained in Chapter 3. Collecting data across stages in cell cycles and 

analyzing them to apply data mining and statistical methods were challenging because the 

change in function of proteins could be either because of a change in the stage of cell cycle or 

because of participation in regulation. The difference between the two situations is difficult to 

gauge and could cause a few discrepancies in the results.  

2.2. Significance of Combining Classifiers and Using Multiple Data Sources 

Using multiple data sources for prediction or for training, where the different data sources 

describe the same information, is a common data-mining technique. Finding which data source 

would be most reliable is the problem we have set out to solve. For a data source to be reliable 

for a particular record or gene in the context can be dependent on the record itself. The data that 

we used for this thesis are huge, and for a few records, data are not available. Reliability of the 

data source in the case of that particular record can be affected by such a thing. Because the data 

that we use involve more than one data source, if one data source has no information, for a 

particular record, there could be another data source which can be used for the training data for 

classification. With a large amount of data, the proposed algorithm uses the statistical relevance 
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measure to identify that data source for each record, which can be more reliable as compared to 

others.  

A combination of classifiers can be very useful when one particular classifier is unable to 

give the most predictive information. In the literature, a lot has been discussed about the 

combination of classifiers [7, 8, 9], and there are some common classifier fusion methods, such 

as majority voting and evaluating statistical significance of each record.   

Majority voting is a good technique when the number of data sources is odd. It has been 

used successfully in the classification of gene expression data [10], pattern recognition [11] and 

handwriting recognition [12]. Because we have four data sources, we have not used the majority 

voting technique in this thesis.  

The other technique is to evaluate the statistical significance of each record. It has been 

used with respect to confidence-based classification of a poorly-differentiated tumor [13] and 

speaker-identification problem [14, 15]. This technique is a measurement-level [7] type of 

classifier fusion. Using such techniques typically improves the prediction results from earlier 

results based on running classifiers separately for each data source. 

Coming back to the problem of missing data discussed at the beginning of this section, 

for genetic data, it is a very common issue, and then, classification for this type of data requires 

multiple data sources. We have incorporated two techniques from the techniques mentioned 

previously in this thesis: using multiple data sources and using the statistical significance of a 

record for classification. To validate that the better results that we get by using a statistical 

relevance measure would hold true generally, we also use different types of classifiers to do the 

same problem. Figure 2.3 will help explain the different types of classifiers: linear classifier, 

quadratic classifier, and support vector machine, used in this thesis.  
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Figure 2.3. A pictorial representation of the different types of classifiers used in this thesis. 

 

The Figure 2.3 shows the different types of classifiers used in this thesis and the different 

methods used for each one of them. We begin with raw data straight from a data source and then 

normalize them. The normalization process is explained in Chapter 3. Then, the data are broken 

into multiple data sets for running the quadratic and linear classifiers while the entire data are 

used together for analysis using support vector machines. For quadratic and linear classifiers, the 

statistical relevance measure (log p and posterior analysis for this thesis) is calculated for each 
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record. For the support vector machine, the MATLAB function for running svm classify was run, 

and results were generated and compared with the ones obtained using the proposed algorithm. 

2.3. Related Work 

The significance of classifiers [16, 17, 18] is a topic where a lot of work has been done. 

However, most of these approaches are based on an assumption that input data may have 

different or higher classification accuracy for one data set (which is a part of the input data) as 

compared to others. In the perspective of the thesis, such is not the case. We are trying to find 

that data set that would give higher classification accuracy as opposed to others for an individual 

object. One of the often-used methods to differentiate between class labels on the basis of 

attributes is discriminant analysis [19]. We use linear and quadratic classifiers for our thesis. 

Linear discriminant analysis is supposed to have lower accuracy results for multi-class 

classification [20] and component analysis [21]. The poorer results are because of the 

assumptions on the covariance matrix. With quadratic discriminant analysis, on the other hand, 

the input data are assumed to have a normal distribution [22], resulting in more accurate results. 

In regard of this thesis, we see that, using quadratic classifier, we always get better results as 

compared to a linear classifier. Another method that is used often is support vector machines 

[23]. Support vector machines are utilized to create models based on learning or studying the 

training data to analyze data and recognize patterns. Support vector machines construct a hyper 

plane in infinite dimensional space. The distance between the hyper plane and training data 

points forms the basis for classification study [24, 25]. Distance from hyper plane using support 

vector machine implementation, SVM
perf

 [26], is also considered for classification. Another 

method used is conformal prediction where results are compared using a nearest-neighbor 

approach [27]. It is quite similar to the approach that we have undertaken. It involves using 
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information from a prediction for a future prediction. Conformal prediction has many 

applications in data mining [28, 29]. In the thesis, we use statistical relevance measures for each 

gene and its corresponding data to generate a matrix. We choose the record with the highest 

statistical relevance measure and use this information for our prediction. 

2.4. Introduction to Algorithm 

Classification algorithms are used extensively to predict protein function [30]. However, 

the idea here is not only to predict protein function, but also to find the most predictive data 

source for each record.  

2.4.1. Predictive Data Source Algorithm  

As mentioned in section 2.2, that the motive for this algorithm is to find the most 

predictive data source for the purpose of predicting from multiple sources. To do so, we calculate 

a statistical relevance measure for each record and each data set. We claim that using the data set 

that gives us the highest relevance measure for our prediction will give us better results. The 

relevance measures that we have calculated here are log p and posterior analysis values for each 

gene separately for each data set. Gene x will have different log p and posterior analysis values 

for alpha, cdc 15, cdc 28 and elu. We use the algorithm to find the maximum log p and posterior 

analysis value as well as the corresponding data set that gives us that result for each gene. We 

now use this data set for our prediction for gene x. Figure 2.4 explains pictorially what the 

algorithm strives to do. The figure is made for any particular gene and for posterior analysis 

results. The same pattern is followed for log p results. It shows that the multiple data sets are run 

with the various classifiers and for each data set the posterior values are calculated. Thereafter, 

the algorithm calculates the maximum posterior value for each record and returns the 

corresponding data set. This data set is then used for further prediction.  
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Figure 2.4. A pictorial representation of the Predictive Data Source Algorithm. 

 

 

2.4.2. Outline of Algorithm 

Before the algorithm was run, we first ran a quadratic classification for each data set 

separately using MATLAB classifiers. We had predictions for each data set. We then used the 

MATLAB function to find out log p and posterior values for each gene and for each data set 

separately. These values were stored as Microsoft Excel datasheets or .csv files. For example, the 

datasheet having posterior values was called posterior.csv and was used as input data for our 

proposed algorithm.  We used Excel macros to find the maximum log p or posterior value as well 

as the corresponding data set for it. The proposed algorithm finds the initial prediction result by 
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using the quadratic classifier for the data set that gives the highest log p and posterior value for a 

particular gene.  Instead of using same data set while predicting the class label, by finding the 

data set that gives highest log p or posterior value, we use only that dataset while predicting 

results. 

2.4.2.1. Algorithm: Predictive Data Source  

1. StreamReader sr = File.OpenText("posterior.csv"); 

2. String tmp; 

3. String[] tmpArr; 

4. while ((tmp = sr.ReadLine()) != null) 

5. { 

6. if (!tmp.StartsWith("Largest Class")) 

7. { 

8. tmpArr = tmp.Split(','); 

9. tw.WriteLine(tmpArr[0] + '\t' + tmpArr[1] + '\t' + tmpArr[2] + '\t' + tmpArr[3] + '\t' +       

tmpArr[4]+'\t'+tmpArr[col[tmpArr[0]]]);             

10. } 

11. } 

2.4.3. Linear Classification Using Data Sets Separately  

The four data sets are used separately for these predictions. Linear classification was 

explained in Section 2.1. Also, as discussed earlier, the data sets are taking part in four different 

cycles: the alpha factor arrest, arrest of cdc15, cdc28 temperature-sensitive mutants and 

elutriation [2, 31]. Instead of using all the data together, i.e., including the expression level of the 

genes in every time series in each cycle, the data were separated with respect to each cycle. We 
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obtained different training and test sets for the alpha, cdc 15, cdc 28 and elu cycles. Each of these 

data sets was used separately in the MATLAB 7.0 statistical toolbox. 

The classify function in MATLAB uses three arguments: sample, training and group. It 

classifies each record of the data in the sample into one of the groups in training. Sample and 

training must be matrices with the same number of columns. Group is a grouping variable for 

training. Training and group must have the same number of rows. In this thesis, the sample 

would be the test set (alpha test set, cdc 15 test set, cdc 28 test set and elu test set): training 

would be the training set (alpha training set, cdc 15 training set, cdc 28 training set and elu 

training set); and group would be the class label for the training set. The output class indicates 

the class label to which each row of the test set has been assigned, and is of the same type as the 

class label. The function would give a matrix with same number of rows as the group or class 

label which would be the predicted group or class label for the sample or the test set.  Usually, 

the classify function in MATLAB treats NaNs or empty strings in the group as missing values 

and ignores the corresponding rows of training. However, in this thesis, all the missing values, or 

NANs, were replaced with 0. The reason for this is that, in microarray experiments, the 

expression levels are deciphered on the basis of the logarithmic ratio of red by green expression. 

In the case of NAN, we can be neutral and assume that the red and green expression level is 

same, and hence their ratio would be 1. The logarithmic value of 1 is 0, and hence all NAN 

values were replaced with 0.  

The Figure 2.5 shows us a graphical representation of how a sample training class label 

plot looks. A sample result plot or test class label plot is shown in Chapter 3. There are very few 

genes which participate in the cell cycle regulation or have class label 1.   
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Figure 2.5. A sample training class label plot. The X-axis represents the gene number, and the 

Y-axis represents expression level. 

 

 

For the first technique, a linear classifier was used for each of the data sets separately. As 

mentioned in the help text of the statistical toolbox in MATLAB, a linear classifier “fits a 

multivariate normal density to each group, with a pooled estimate of covariance” [32, 33]. In 

MATLAB, this sort of classification is done by default with the classify function. 

2.4.4. Quadratic Classification Using Data Sets Separately 

As also implied in section 2.2, in most cases, quadratic classification gives better results 

than linear classification. Hence, the classify function in MATLAB was used as a quadratic 

classifier. In this case, the classify function has four arguments. In addition to the arguments 
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Various types could be diaglinear, quadratic, diagquadratic or mahalanobis. If the type is not 

mentioned, by default, the type is taken as linear.  

In this technique, we have used the type as quadratic. As mentioned in the help text of the 

statistical toolbox in MATLAB, a quadratic classifier “fits multivariate normal densities with 

covariance estimates stratified by group” [32, 33]. Once again, all the data sets have been used 

separately. As explained in Section 3.1, the rest of the arguments remain the same, hence the 

output is also test class label. It will be seen in Chapter 4 and 5 whether we get better results, as 

expected, from this type of classification. 

2.4.5. Linear and Quadratic Classification Using Log p and POST 

After using linear and quadratic classifiers on the test set, log p and posterior probability 

calculations were used for both linear and quadratic classification. To define the terms log p and 

posterior, let us see what the help text in the discriminant analysis chapter of the statistical 

toolbox in MATLAB says about them.  

     “[class,err, POSTERIOR] = classify(...) returns a matrix POSTERIOR of estimates of the 

posterior probabilities that the jth training group was the source of the ith sample observation, 

i.e., Pr(group j|obs i).” [32, 33]    

“[class,err,POSTERIOR,logp] = classify(...) returns a vector logp containing estimates of the 

logarithms of the unconditional predictive probability density of the sample observations, p(obs 

i) = p(obs i|group j)Pr(group j) over all groups.” [32, 33] 

In simpler language and in the context of this thesis, posterior probability can be 

explained as the probability of any random gene participating in cell-cycle regulation, which is 

the conditional probability that a particular training set has been used for the classification. Log p 

can be explained as the summation of the product of conditional probability of a random training 
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set being used for a particular gene and the probability of using the training set. From the 

explanation and using Bayes theorem as explained in Section 2.2, we can mathematically 

describe posterior probability and log p as follows. 

 

Posterior Probability = Probability{gene y | training set x } 

= (Probability{ training set x |gene y}*Probability{gene y})/Probability{ training set x } 

 

Log P = ∑ Probability{ gene y|training set x}*Probability{training set x} 

Posterior analysis has been conducted in microarray experiments before [34, 35] for other 

types of biological data. However, because the challenge of this thesis is using multiple data sets, 

predicting a gene, y, also depended on which data sets were being used. In some case while, say 

gene y was predicted right when we used the alpha data set, it was predicted wrong when we 

used the cdc-15 data set. By using the posterior probability, we developed a matrix of these 

probabilities for the occurrence of gene y in regulation, and we used the data set which gave the 

maximum probability. 

Linear and quadratic classifiers were both used separately for result analysis. The 

differences between linear and quadratic classifiers are covered in Sections 3.1 and 3.2, and they 

hold the same significance in these experiments, too. 
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CHAPTER 3. BIOLOGICAL DATA 

In this thesis, the initial goal was to predict whether a set of genetic data participated in 

cell-cycle regulation based on given data by using classification techniques. The next part of the 

objective was to analyze the prediction results and to find the most predictive data source.  

The four datasets that were retrieved from the Stanford Microarray Database (SMD) were 

organized in a single table in such a way that, at one glance, we could find the expression-level 

measure at a specific time for a specific gene in a specific cycle. This table, as mentioned before, 

had data of all genes of yeast synchronized by four different methods (alpha, cdc15, cdc28 and 

elu) and their expression levels at various time points of the Saccharomyces cerevisiae cell cycle. 

The data that were obtained from the SMD were raw data and had huge disparities, so the data 

were normalized. Normalization was done by calculating the row mean and row standard 

deviation of the entire data set. Then, each value was normalized by subtracting the row mean 

from it and then dividing by the row standard deviation. After this, two separate tables were 

made from the main table. All the even-numbered rows in the main table (that was of the form of 

an Excel spreadsheet) were kept in one spreadsheet and were called the Training Set while the 

rest of the rows, or the odd-numbered rows were put in a separate spreadsheet and named the 

Test Set. The Training Set and Test Set had expression-level measures of genes taking part in all 

the four cycles.  

At this point, we retrieve another table from the Stanford Microarray Database, the class 

label. The class label table tells us the names of those genes that take part in the microarray 

hybridization and are regulated in yeast cell cycles. The class label is also divided into two tables 

with respect to our existing tables, i.e., Training Set and Test Set. The genes that are a part of the 

class label and take part in microarray hybridization to show the regulated behavior in yeast cell 
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cycles as well as a part of the Training Set now are put into table called Training Set Class Label. 

Likewise, the genes that are a part of the class label and take part in microarray hybridization to 

show regulated behavior in yeast cell cycles as well as a part of the Test Set now are put in a 

table called Test Set Class Label. 

To summarize what was discussed above, we had four tables: the Training Set, the Test 

Set, the Training Set Class Label and the Test Set Class Label. Apropos to our objectives 

mentioned in Section 2.1 and the beginning of this chapter, our prime objective was to predict 

the names of the genes present in the Test Set Class Label. To do such a prediction it was 

necessary to study the Training Set and the Training Set Class Label. The studying of the 

training and test sets were done by overall by all techniques mentioned in Sections 3.1, 3.2 and 

3.3. However, each of those techniques had different prediction results, as we will see in Chapter 

4. Let us discuss each technique that was implemented for this prediction.  

In bioinformatics, microarray analysis plays an important role. Microarray analysis is a 

high-throughput process which tells us how different genes are relatively expressed in an 

organism [2, 4]. In the microarray process, the ribonucleic acid (RNA) of an organism is 

extracted. Its complementary deoxyribonucleic acid (cDNA) is prepared and fluorescently 

labeled. It is later hybridized to a slide where small oligonuclotides are present. If a respective 

gene is present and expressed, the fluorescence levels of these genes are measured, and later, this 

microarray data can be used to find the relative presence and expression of particular genes in an 

organism [4].   

3.1. Material and Methods 

In the present project, initially four gene time-series data sets (alpha, cdc15, cdc28 and 

elu) of Saccharomyces cerevisiae (yeast) from the Stanford Microarray Database [3, 36] were 
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retrieved, originally posted by Spellman [2]. To know more about the data sets, a brief 

description of the cell-cycle regulation in yeast is needed. The cell cycle of yeast is a process 

where a parent yeast cell produces two daughter cells which contain similar genetic information 

as in the parent cell [37]. The cell cycle includes a DNA replication process where there are two 

main steps: a DNA synthesis step called the S-phase and a mitosis step (M-phase).  These two 

steps in DNA replication are separated by two gaps, known as G1 and G2 [38]. Various genes in 

Saccharomyces cerevisiae are regulated at different time points of their cell cycle. Thus, there 

may be different genes and expression patterns in yeast which need to be studied for a better 

understanding of the cell-cycle regulation of yeast. Proper regulation of the genes will help the 

yeast to function normally.  

Synchronization is a method that can be performed on yeast cells to understand their cell- 

cycle events where cells are sorted either at a particular time point in their life cycle or by their 

size and temperature sensitivity. Alpha factor arrest, elutriation, and arrest of cdc15 and cdc28 

temperature-sensitive mutants are some of the synchronization methods available [31, 2]. 

Elutriation is a one cell-cycle synchrony method; two-cycle synchrony is by alpha; and three-cell 

cycle synchrony is by cdc15 method.  Spellman et al. [2] extracted the RNA from yeast cells 

synchronized by different methods (alpha, cdc15, cdc28 and elu) at various time points in their 

life cycles. They later used the RNA in microarray hybridization, and analyzed the data to 

identify genes regulated in yeast cell cycles. The data were made available in the Stanford 

Microarray Database.  

Microarray data include information related to genes of various species and may also 

include data at various time points of cell-cycle regulation in an organism [2]. However, 

predicting genes and their behavior in the organism after microarray analysis is extremely 
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difficult, especially when the data are enormous and include repeated measurements [39]. 

Classification can help understand the data by using a supervised learning method where the data 

are divided into training and test sets. A training set generally includes classes (characteristics or 

gene functions and behaviors) that are known, and a test set includes data where classes are 

unknown. Thus, the goal of classification is to predict the unknown data using information from 

known attributes, in this case, prediction of test set using training set details using a decision-tree 

algorithm. Discriminant analysis with MATLAB or other software can later be used to evaluate 

how significant the predictions are.  

Many algorithms, such as the decision-tree algorithm, k-nearest-neighbor analysis, 

artificial neural networks and support vector machines (SVM) help us in classifying data [40, 41, 

42].  There are binary (two classes involved) and multi-class type methods available in 

classification. Cross validation becomes an important aspect in classification, where multiple 

ways of breaking up data sets in different ways are used to derive training and test sets.  

The main objectives of the present project were (i) dividing gene expression data in yeast 

which have been synchronized by four methods as described earlier (alpha, cdc15, cdc28 and 

elu) into training and test sets, (ii) classifying the data to know which genes were being 

expressed that help in cell-cycle regulation and (iii) finding the best possible 

classification/prediction. The cell-cycle gene regulators were the primary classifiers. A decision-

tree algorithm (using MATLAB) was used to decide which genes were being expressed in the 

yeast samples that were synchronized by various methods.  

Four data sets originally posted by Spellman et al. [2] were retrieved from the Stanford 

Microarray Database, and they were organized in a single table. That table had data for all yeast 

genes synchronized by four different methods (alpha, cdc15, cdc28 and elu) and their expression 
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levels at various time points of the Saccharomyces cerevisiae cell cycle. The time series data sets 

included genes and their expression microarray data collected at 7-minute intervals up to 140 

minutes for the alpha method, 10-minute intervals up to 300 minutes for the cdc15 and cdc28 

methods, and 30-minute intervals up to 6.5 hours for the elutriation method (Spellman et al. [2]). 

Later, these gene data were divided into two categories, training and test sets (Figures 3.1 and 

3.2).  

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Training gene dataset of yeast. The X-axis represents gene number, and the Y-axis 

represents gene expression level or logarithmic ratio of red by green. 

 

 

The Figure 3.1 is a MATLAB generated plot for the training data set combining the 

multiple data sets. There are a total of more than 7000 genes in the entire data set, and the 

training and test sets each have more than 3000 genes as the figures 3.1 and 3.2 show. From the 

figures, it is clear that there are some large disparities in expression level or logarithmic ratio of 

red by green among the genes because the graphs were plotted from raw data. While some genes 
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give expression levels as high as 6, there are some genes that have expression levels as low as -4. 

Using these data would not be good for prediction. Hence, the data were normalized, and the 

normalization process was explained at the beginning of this chapter. 

 

Figure 3.2. Test gene dataset of yeast. The X-axis represents gene number, and the Y-axis 

represents gene expression level or logarithmic ratio of red by green. 

 

 
Figure 3.2 is a MATLAB generated plot for the test data set combining the multiple data 

sets. Here, too, we see a lot of disparity in the expression-level. Hence, the test data have been 

normalized for the experiments.  

The normalization was done for each time-point for the microarray results for all the 

genes taken together, so for one particular time-point, the mean and standard deviation for the 

microarray readings for all the genes at that time-point were calculated. Then, each reading was 

normalized by subtracting the mean from it and dividing by the standard deviation. This was 

done so that the comparison between genes would be fair. The reading of one gene at a time-
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point and for another gene at the same point should be made under similar circumstances to 

lessen any kind of outside interference in the results. 

 

Figure 3.3. Training gene normalized dataset of yeast. The X-axis represents the gene number, 

and the Y-axis represents gene expression level or logarithmic ratio of red by green. 

 
 

The Figure 3.3 shows a plot based on readings of the logarithmic ratio of red by green of 

the normalized training data. We can that the disparity between readings for each gene is less 

compared to Figure 3.1. However, it is imperative to mention that the normalization process has 

just ensured fair comparison but has not been involved in difference in the pattern of the results. 

Another thing to note here is that, for this data set, all the readings that were unreadable, or NaN, 

have been assumed to be 0. The reason why these readings have been assumed to be 0 is 

because, if the red by green ratio is assumed to be 1the logarithmic value of red by green would 

then be 0.  
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CHAPTER 4. RESULTS AND PLOTS 
 

In my analysis of the results, I have focused on some known and often-used parameters to 

compare the prediction results. These parameters are accuracy, specificity, sensitivity, precision 

and F1 measure [1]. The plot mainly used for comparison and other analysis is the specificity vs 

sensitivity plot. A detailed explanation of said parameters is given below.   

4.1. Comparison Metrics in Detail  

The comparison parameters used here are dependent on, mostly, four values for each 

experimental result. These values are True Positive (TP), True Negative (TN), False Positive 

(FP) and False Negative (FN). The explanation of each is given as follows.  

 TP = the number of times when the prediction of a gene expression in the training set is 

1, while expression of the same gene in the testing set is 1 

 TN = the number of times when the prediction of a gene expression in the training set is 

0, while expression of the same gene in the testing set is 0 

 FP = the number of times when the prediction of a gene expression in the training set is 0, 

while expression of the same gene in the testing set is 1 

 FN = the number of times when the prediction of a gene expression in the training set is 

1, while the expression of the same gene in the testing set is 0 

Table 4.1, more commonly known as the confusion matrix, summarizes the above 

definitions. We will be using this table commonly to compare all our results while running to 

various classifiers on various data sets and while using log p and posterior analysis on the 

classifiers. The tables presented in this chapter will tell us at a glance how many True Positives 

and True Negatives were predicted by each of the classifiers. Using the data in the tables we 

shall find accuracy, specificity, sensitivity and precision for the experiments. 
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Table 4.1. General confusion matrix of cell-cycle regulation gene presence in yeast 

Actual Result Predicted Result 

 

Cell-Cycle Regulated Gene 

Present 

Cell-Cycle Regulated Gene 

Absent 

Cell-Cycle Regulated 

Gene Present 
True Positive (TP) False Negative (FN) 

Cell-Cycle Regulated 

Gene Absent 
False Positive (FP) True Negative (TN) 

 

        

So with respect to the values used in the confusion matrix, we can define and explain our 

parameters. Accuracy is the measure of how correct our predictions are. It can be defined by 

using the above-mentioned values as follows. 

Accuracy = (TP + TN) / (TP +TN + FP + FN) 

It is often believed that, the higher the accuracy, the better the prediction is and a very 

high accuracy can result only because of a good prediction. Even though that is true in most 

cases, a high accuracy might not always mean a great prediction. Consider a case where we 

trying to predict the N genes where N = 1000. From the 1000 genes, only 10 participate in cell-

cycle regulation, or have class label value, 1. Hypothetically, say our prediction predicts only 2 

of those 10 genes correctly, or as a value 1, and are the rest are predicted as without expression, 

or value 0. The accuracy measure measurement of such a prediction would be 

Accuracy = (2 +990) / 1000 = 0.992 or 99.2% 

That is a very high accuracy rate for a prediction which could only correctly identify 20% 

of the expressing genes. This parameter does not reflect the true correctness of prediction in the 

case of a large number of data, especially if the data have a very large number of expressionless 

genes compared to expressing genes as in this case. Here we are trying to predict the function of 
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3090 genes, of which only 384 genes actually show the said expression which amounts to only 

12% of the total genes. Only measuring the accuracy would not give us a clear idea about our 

predictions in this case. 

Specificity is the measure of how correctly we have predicted the under-expressed genes 

as under-expressed. Specificity can be defined by using the above mentioned values as follows. 

Specificity = TN / (TN + FP) 

A high specificity ensures that the prediction recognizes all the true negatives. In our 

prediction, it is imperative that we get a very high specificity because the number of genes that 

are under-expressed is very large. We have 2706 under-expressed genes in the test set of the total 

3090 genes. Hence, it is natural for the classify function to predict a high number of under-

expressed genes, but the specificity value measures how correct this prediction is. 

Sensitivity, or Recall, is the measure of how correctly we have predicted the over-

expressed genes as over-expressed. Sensitivity can be defined by using the above-mentioned 

values as follows. 

Sensitivity = TP / (TP + FN) 

A high sensitivity ensures that the prediction recognizes all the true positives. In our 

prediction, the validity of the prediction mainly depends on the sensitivity, and hence it is 

necessary that we get that high sensitivity because the number of genes that are over-expressed is 

very few in number. We only have 384 under-expressed genes in the test set with 3090 genes. 

Hence, the comparison between the different predictions and the strength of the prediction lies in 

how close the classifier predicts the over-expressed genes because the number of such genes is 

very low, hence this prediction is tough. 
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Precision is the measure of how correct the prediction of over-expressed genes has been.  

This can be defined by using the above-mentioned values as follows. 

Precision = TP / (TP + FP) 

The success of a prediction lies in a high TP and low FP. In an ideal case, a low FP and a high 

TP would result in high precision.  

The F1 measure, or F-measure, gauges the accuracy of the prediction. F1 measure can be 

defined by using the above mentioned values as follows. 

F1 measure = (2*Precision*Sensitivity) / (Precision + Sensitivity) 

F1 measure can be also said to be the harmonic mean of precision and sensitivity [1].  The F1 

measure will be discussed in Chapter 5. 

4.2. Results 

As discussed earlier, the predictions were first done for each set of data, alpha, cdc 15, 

cdc 28 and elu, separately and using a linear classifier. Next, the test was performed using a 

quadratic classifier on each of the data sets. After that, the log p value was taken for the data sets, 

and the test was performed once using a linear classifier and once using a quadratic classifier. 

Thereafter, the posterior value was taken for the data sets, and the test was performed using a 

linear classifier as well as a quadratic classifier. Finally, all the data sets were combined into one 

and the quadratic classifier was run with the combined data. Also the combined data was used to 

run support vector machine classifiers and results were generated. The confusion matrix 

presented for each of these experiments help us to compute the comparison metrics (mentioned 

in section 4.1 easily and ultimately find which experiment gave the best results.  
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4.2.1. Alpha Set Using Linear Classify 

In this experiment, the training set and the testing set contain microarray analysis results 

of gene expressions at different time intervals for the alpha cycle. After running the linear 

classify function in MATLAB 7.0, Table 4.2 gives us an idea about the number of TP, TN, FP 

and FN that occurred.  

 

Table 4.2. Confusion matrix of cell-cycle regulation gene presence in yeast synchronized by the 

alpha method for a linear classifier 

Actual Result Predicted Result 

 

Cell-Cycle Regulated Gene 

Present 

Cell-Cycle Regulated Gene 

Absent 

Cell-Cycle Regulated Gene 

Present 
TP = 194 FN = 190 

Cell-Cycle Regulated Gene 

Absent 
FP = 483 TN = 2223 

 

From Table 4.2, we can compute the comparison metrics for prediction involving a linear 

classifier on the alpha data set as follows. The metric results will be used to compare with metric 

results from other experiments that explained in later sections. 

 

Accuracy = (TP + TN) / (TP + TN + FN + FP) = 78.2% 

Error Rate = (FP + FN) / (TP + TN + FN + FP) = 21.7% 

Sensitivity = (TP) / (TP + FN) = 0.50 

Specificity = (TN) / (TN + FP) = 0.82 

Precision = (TP) / (TP + FP) = 0.29 
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4.2.2. Cdc 15 Set Using Linear Classify 

In this experiment, the training set and the testing set contain microarray analysis results 

of gene expressions at different time intervals for the cdc 15 cycle. After running the classify 

function in MATLAB 7.0, Table 4.3 gives us an idea about the number of TP, TN, FP and FN 

that occurred.  

 

Table 4.3. Confusion matrix of cell-cycle regulation gene presence in yeast synchronized by the 

cdc15 method for a linear classifier 

Actual Result Predicted Result 

 

Cell-Cycle Regulated Gene 

Present 

Cell-Cycle Regulated Gene 

Absent 

Cell-Cycle Regulated Gene 

Present 
TP = 207 FN = 177 

Cell-Cycle Regulated Gene 

Absent 
FP = 815 TN = 1891 

 

 
From Table 4.3, we can compute the comparison metrics for prediction involving a linear 

classifier on the cdc 15 data set as follows. The precision results are very low for this 

experiment. The other metrics values are average. 

 

Accuracy = (TP + TN) / (TP + TN + FN + FP) = 67.89% 

Error Rate = (FP + FN) / (TP + TN + FN + FP) = 32.11% 

Sensitivity = (TP) / (TP + FN) = 0.54 

Specificity = (TN) / (TN + FP) = 0.70 

Precision = (TP) / (TP + FP) = 0.20 
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4.2.3. Cdc 28 Set Using Linear Classify  

In this experiment, the training set and the testing set contain microarray analysis results 

of gene expressions at different time intervals for the cdc 28 cycle. After running the classify 

function in MATLAB 7.0, Table 4.4 gives us an idea about the number of TP, TN, FP and FN 

that occurred.  

 

Table 4.4. Confusion matrix of cell cycle regulation gene presence in yeast synchronized by the 

cdc28 method for a linear classifier 

Actual Result Predicted Result 

 

Cell-Cycle Regulated Gene 

Present 

Cell-Cycle Regulated Gene 

Absent 

Cell-Cycle Regulated Gene 

Present 
TP = 225 FN = 159 

Cell-Cycle Regulated Gene 

Absent 
FP = 780 TN = 1926 

 

From Table 4.4, we can compute the comparison metrics for prediction involving a linear 

classifier on the cdc 28 data set as follows. The precision results are very low for this 

experiment. The other metrics values are average. 

 

Accuracy = (TP + TN) / (TP + TN + FN + FP) = 69.6% 

Error Rate = (FP + FN) / (TP + TN + FN + FP) = 30.4% 

Sensitivity = (TP) / (TP + FN) = 0.58 

Specificity = (TN) / (TN + FP) = 0.71 

Precision = (TP) / (TP + FP) = 0.22 
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4.2.4. Elu Set Using Linear Classify 

In this experiment, the training set and the testing set contain microarray analysis results 

of gene expressions at different time intervals for the elu cycle. After running the classify 

function in MATLAB 7.0, Table 4.5 gives us an idea about the number of TP, TN, FP and FN 

that occurred.  

 

Table 4.5. Confusion matrix of cell-cycle regulation gene presence in yeast synchronized by the 

elu method for a linear classifier 

Actual Result Predicted Result 

 

Cell-Cycle Regulated Gene 

Present 

Cell-Cycle Regulated Gene 

Absent 

Cell-Cycle Regulated Gene 

Present 
TP = 228 FN = 156 

Cell-Cycle Regulated Gene 

Absent 
FP = 803 TN = 1903 

 

From Table 4.5, we can compute the comparison metrics for prediction involving a linear 

classifier on the elu data set as follows. The precision results are very low for this experiment. 

The other metrics values are average. 

  

Accuracy = (TP + TN) / (TP + TN + FN + FP) = 68.96% 

Error Rate = (FP + FN) / (TP + TN + FN + FP) = 31.04% 

Sensitivity = (TP) / (TP + FN) = 0.59 

Specificity = (TN) / (TN + FP) = 0.70 

Precision = (TP) / (TP + FP) = 0.22  
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4.2.5. Log p Using Linear Classify 

In this experiment, the training set and the testing set contain microarray analysis results 

of gene expressions which give the best results for log p at different time intervals. After running 

the classify function in MATLAB 7.0, Table 4.6 gives us an idea about the number of TP, TN, 

FP and FN that occurred.  

 

Table 4.6. Confusion matrix of cell-cycle regulation gene presence in yeast synchronized using a 

linear classifier and log p analysis 

Actual Result Predicted Result 

 

Cell-Cycle Regulated Gene 

Present 

Cell-Cycle Regulated Gene 

Absent 

Cell-Cycle Regulated Gene 

Present 
TP = 144 FN = 240 

Cell-Cycle Regulated Gene 

Absent 
FP = 147 TN = 2559 

 

From Table 4.6, we can compute the comparison metrics for prediction involving a linear 

classifier and log p analysis as follows. The precision results are considerably better for this 

experiment as compared to those when not using log p analysis with a linear classifier. However, 

the sensitivity is low. 

Accuracy = (TP + TN) / (TP + TN + FN + FP) = 87.47% 

Error Rate = (FP + FN) / (TP + TN + FN + FP) = 12.53% 

Sensitivity = (TP) / (TP + FN) = 0.38 

Specificity = (TN) / (TN + FP) = 0.94 

Precision = (TP) / (TP + FP) = 0.49 
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4.2.6. Posterior Using Linear Classify 

In this experiment, the training set and the testing set contain microarray analysis results 

of gene expressions which give the best results for POST at different time intervals.  After 

running the classify function in MATLAB 7.0, Table 4.7 gives us an idea about the number of 

TP, TN, FP and FN that occurred.  

 

Table 4.7. Confusion matrix of cell-cycle regulation gene presence in yeast synchronized using a 

linear classifier and posterior analysis 

Actual Result Predicted Result 

 

Cell-Cycle Regulated Gene 

Present 

Cell-Cycle Regulated Gene 

Absent 

Cell-Cycle Regulated Gene 

Present 
TP = 270 FN = 115 

Cell-Cycle Regulated Gene 

Absent 
FP = 328 TN = 2378 

 

From Table 4.7, we can compute the comparison metrics for prediction involving a linear 

classifier and posterior analysis as follows. The precision results are considerably better for this 

experiment as compared to those when not using posterior analysis with a linear classifier. The 

sensitivity is better here too. 

Accuracy = (TP + TN) / (TP + TN + FN + FP) = 85.69% 

Error Rate = (FP + FN) / (TP + TN + FN + FP) = 14.31% 

Sensitivity = (TP) / (TP + FN) = 0.70 

Specificity = (TN) / (TN + FP) = 0.88 

Precision = (TP) / (TP + FP) = 0.45 
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4.2.7. Alpha Set Using Quadratic Classify 

In this experiment, the training set and the testing set contain microarray analysis results 

of gene expressions at different time intervals for the alpha cycle. After running the classify 

function with the type as quadratic in MATLAB 7.0, Table 4.8 gives us an idea about the number 

of TP, TN, FP and FN that occurred.  

 

Table 4.8. Confusion matrix of cell-cycle regulation gene presence in yeast synchronized by the 

alpha method for a quadratic classifier 

Actual Result Predicted Result 

 

Cell-Cycle Regulated Gene 

Present 

Cell-Cycle Regulated Gene 

Absent 

Cell-Cycle Regulated Gene 

Present 
TP = 250 FN = 134 

Cell-Cycle Regulated Gene 

Absent 
FP = 248 TN = 2458 

 

From Table 4.8, we can compute the comparison metrics for prediction involving a 

quadratic classifier on the alpha data set as follows. The metrics are better with the quadratic 

classifiers as compared to when using linear classifiers. 

 

Accuracy = (TP + TN) / (TP + TN + FN + FP) = 87.63% 

Error Rate = (FP + FN) / (TP + TN + FN + FP) = 12.37% 

Sensitivity = (TP) / (TP + FN) = 0.65 

Specificity = (TN) / (TN + FP) = 0.91 

Precision = (TP) / (TP + FP) = 0.50 
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4.2.8. Cdc 15 Set Using Quadratic Classify 

In this experiment, the training set and the testing set contain microarray analysis results 

of gene expressions at different time intervals for the cdc 15 cycle. After running the classify 

function with the type as quadratic in MATLAB 7.0, Table 4.9 gives us an idea about the number 

of TP, TN, FP and FN that occurred.  

 

Table 4.9. Confusion matrix of cell-cycle regulation gene presence in yeast synchronized by the 

cdc 15 method for a quadratic classifier 

Actual Result Predicted Result 

 

Cell-Cycle Regulated Gene 

Present 

Cell-Cycle Regulated Gene 

Absent 

Cell-Cycle Regulated Gene 

Present 
TP = 206 FN = 178 

Cell-Cycle Regulated Gene 

Absent 
FP = 141 TN = 2565 

 

From Table 4.9, we can compute the comparison metrics for prediction involving a 

quadratic classifier on the cdc 15 data set as follows. We get high accuracy and specificity, 

average precision and low sensitivity. 

Accuracy = (TP + TN) / (TP + TN + FN + FP) = 89.67% 

Error Rate = (FP + FN) / (TP + TN + FN + FP) = 10.33% 

Sensitivity = (TP) / (TP + FN) = 0.54 

Specificity = (TN) / (TN + FP) = 0.95 

Precision = (TP) / (TP + FP) = 0.59 
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4.2.9. Cdc 28 Set Using Quadratic Classify 

In this experiment, the training set and the testing set contain microarray analysis results 

of gene expressions at different time intervals for the cdc 28 cycle. After running the classify 

function with the type as quadratic in MATLAB 7.0, Table 4.10 gives us an idea about the 

number of TP, TN, FP and FN that occurred.  

 

Table 4.10. Confusion matrix of cell-cycle regulation gene presence in yeast synchronized by 

the cdc-28 method for a quadratic classifier 

Actual Result Predicted Result 

 

Cell-Cycle Regulated Gene 

Present 

Cell-Cycle Regulated Gene 

Absent 

Cell-Cycle Regulated Gene 

Present 
TP = 243 FN = 141 

Cell-Cycle Regulated Gene 

Absent 
FP = 248 TN = 2458 

 

From Table 4.10, we can compute the comparison metrics for prediction involving a 

quadratic classifier on the cdc 28 data set as follows. We get high accuracy and specificity, lower 

precision and better sensitivity than before.  

Accuracy = (TP + TN) / (TP + TN + FN + FP) = 87.40% 

Error Rate = (FP + FN) / (TP + TN + FN + FP) = 12.60% 

Sensitivity = (TP) / (TP + FN) = 0.63 

Specificity = (TN) / (TN + FP) = 0.91 

Precision = (TP) / (TP + FP) = 0.49 
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4.2.10. Elu Set Using Quadratic Classify 

In this experiment, the training set and the testing set contain microarray analysis results 

of gene expressions at different time intervals for the elu cycle. After running the classify 

function with the type as quadratic in MATLAB 7.0, Table 4.11 gives us an idea about the 

number of TP, TN, FP and FN that occurred.  

 

Table 4.11. Confusion matrix of cell-cycle regulation gene presence in yeast synchronized by 

the elu method for a quadratic classifier 

Actual Result Predicted Result 

 

Cell-Cycle Regulated Gene 

Present 

Cell-Cycle Regulated Gene 

Absent 

Cell-Cycle Regulated Gene 

Present 
TP = 150 FN = 234 

Cell-Cycle Regulated Gene 

Absent 
FP = 298 TN = 2408 

 

From Table 4.11, we can compute the comparison metrics for prediction involving a 

quadratic classifier on the elu data set as follows. We get high accuracy and specificity, but very 

low precision and sensitivity.  

Accuracy = (TP + TN) / (TP + TN + FN + FP) = 82.78% 

Error Rate = (FP + FN) / (TP + TN + FN + FP) = 17.22% 

Sensitivity = (TP) / (TP + FN) = 0.39 

Specificity = (TN) / (TN + FP) = 0.89 

Precision = (TP) / (TP + FP) = 0.33 
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4.2.11. Log p Using Quadratic Classify 

In this experiment, the training set and the testing set contain microarray analysis results 

of gene expressions which give the best results for log p at different time intervals. After running 

the classify function with the type as quadratic in MATLAB 7.0, Table 4.12 gives us an idea 

about the number of TP, TN, FP and FN that occurred. 

 

Table 4.12. Confusion matrix of cell-cycle regulation gene presence in yeast by running a 

quadratic classifier and using log p analysis 

Actual Result Predicted Result 

 

Cell-Cycle Regulated Gene 

Present 

Cell-Cycle Regulated Gene 

Absent 

Cell-Cycle Regulated Gene 

Present 
TP = 147 FN = 237 

Cell Cycle Regulated Gene 

Absent 
FP = 145 TN = 2561 

 

From Table 4.12, we can compute the comparison metrics for prediction involving a 

quadratic classifier and log p analysis as follows. We get high accuracy, very high specificity, 

average precision and low sensitivity.  

Accuracy = (TP + TN) / (TP + TN + FN + FP) = 87.63% 

Error Rate = (FP + FN) / (TP + TN + FN + FP) = 12.37% 

Sensitivity = (TP) / (TP + FN) = 0.38 

Specificity = (TN) / (TN + FP) = 0.95 

Precision = (TP) / (TP + FP) = 0.50 
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4.2.12. Posterior Using Quadratic Classify 

In this experiment, the training set and the testing set contain microarray analysis results 

of gene expressions which give the best results for POST at different time intervals. After 

running the classify function with the type as quadratic in MATLAB 7.0, Table 4.13 gives us an 

idea about the number of TP, TN, FP and FN that occurred.  

 

Table 4.13. Confusion matrix of cell-cycle regulation gene presence in yeast by running a 

quadratic classifier and using posterior analysis  

Actual Result Predicted Result 

 

Cell-Cycle Regulated Gene 

Present 

Cell-Cycle Regulated Gene 

Absent 

Cell-Cycle Regulated Gene 

Present 
TP = 269 FN = 116 

Cell-Cycle Regulated Gene 

Absent 
FP = 164 TN = 2542 

 

From Table 4.13, we can compute the comparison metrics for prediction involving a 

quadratic classifier and posterior analysis as follows. We get high accuracy, specificity, 

comparatively higher precision and sensitivity. We get the best results for sensitivity and 

precision here. 

Accuracy = (TP + TN) / (TP + TN + FN + FP) = 90.97% 

Error Rate = (FP + FN) / (TP + TN + FN + FP) = 9.03% 

Sensitivity = (TP) / (TP + FN) = 0.70 

Specificity = (TN) / (TN + FP) = 0.94 

Precision = (TP) / (TP + FP) = 0.62 
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4.2.13. Combined 

In this experiment, the training set and the testing set contain microarray analysis results 

of gene expressions for all the data sets combined together. After running the classify function 

with the type as quadratic in MATLAB 7.0, Table 4.14 gives us an idea about the number of TP, 

TN, FP and FN that occurred.  

 

Table 4.14. Confusion matrix of cell-cycle regulation gene presence in yeast synchronized by 

the data combined together 

Actual Result Predicted Result 

 

Cell-Cycle Regulated Gene 

Present 

Cell-Cycle Regulated Gene 

Absent 

Cell-Cycle Regulated Gene 

Present 
TP = 183 FN = 73 

Cell-Cycle Regulated Gene 

Absent 
FP = 201 TN = 2633 

 

From Table 4.14, we can compute the comparison metrics for prediction involving a 

quadratic classifier on the data combined together as follows. We get better results here as 

compared to most experiments presented in above sections. However, we have a lower precision 

here. 

Accuracy = (TP + TN) / (TP + TN + FN + FP) = 91.13% 

Error Rate = (FP + FN) / (TP + TN + FN + FP) = 8.87% 

Sensitivity = (TP) / (TP + FN) = 0.71 

Specificity = (TN) / (TN + FP) = 0.93 

Precision = (TP) / (TP + FP) = 0.48 
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4.2.14. Support Vector Machine 

In this experiment, the training set and the testing set contain microarray analysis results 

of gene expressions for all the data sets combined together. After running the support vector 

machine (svm) classifier function in MATLAB 7.0, Table 4.15 gives us an idea about the 

number of TP, TN, FP and FN that occurred.  

 

Table 4.15. Confusion matrix of cell-cycle regulation gene presence in yeast synchronized by 

the svm classifier using all data together 

Actual Result Predicted Result 

 

Cell-Cycle Regulated Gene 

Present 

Cell-Cycle Regulated Gene 

Absent 

Cell-Cycle Regulated Gene 

Present 
TP = 7 FN = 14 

Cell-Cycle Regulated Gene 

Absent 
FP = 7 TN = 165 

 

From Table 4.14, we can compute the comparison metrics for prediction involving a 

quadratic classifier on the data combined together as follows.  

Accuracy = (TP + TN) / (TP + TN + FN + FP) = 86% 

Error Rate = (FP + FN) / (TP + TN + FN + FP) = 14% 

Sensitivity = (TP) / (TP + FN) = 0.33 

Specificity = (TN) / (TN + FP) = 0.92 

Precision = (TP) / (TP + FP) = 0.33 

To classify data using support vector machines, MATLAB provides two functions: 

svmtrain, which prepares the svm model by the training data, and svmclassify, which does 
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classification based on this training on test data. However, an issue with the svmtrain function in 

MATLAB is that it cannot handle a very large data set and that the memory runs out in such 

cases. Our data are also very huge, and the svmtrain function could not be run by using the entire 

data source. Therefore, the first 200 records were taken from the training data set used for other 

classifiers, and these 200 records were used for training with the two mentioned functions. The 

results provided in Table 4.15 are based on the 200 records. We see a very high specificity, but 

low sensitivity and precision. The prediction results that we obtained by using posterior analysis 

for classification have given the best results for the experiments conducted in this thesis.  

4.3. Plots 

In this experiment, the main plot that has been drawn for comparison purposes is the 

sensitivity vs specificity Plot. We discuss the plots below. 

4.3.1. Sensitivity vs Specificity                                                              

The sensitivity vs specificity plot can also be called true positive rate (TPR) vs true 

negative rate (TNR). Higher specificity and sensitivity indicate better prediction. Hence, we have 

plotted the TPR vs TNR for four sets of tests to compare them. The four sets of tests and their 

corresponding plots are given in the next sections. We compare the plots in such a way that it is 

easier to see that using the statistical relevance measure and the proposed algorithm gives us a 

higher specificity and sensitivity than when the classifiers are used without them. The goal is to 

have the data points on the graph to farthest right corner of the first quadrant. That would mean 

aiming for a specificity and sensitivity close to 1. 

4.3.1.1. Linear Classify with Data Sets Treated Separately      

Figure 4.1 shows TPR vs TNR for the test results when a linear classifier is used on each 

data set separately.                                               
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Figure 4.1. Specificity vs sensitivity graph for linear classification results. The X-axis represents 

the specificity measure of our predictions, and the Y-axis represents the sensitivity measure of 

our predictions. 

 

 

The plot shows that the specificity and sensitivity are pretty average for predictions made 

using the linear classifier. While the alpha data set gives better specificity, it has lower sensitivity 

than the other three data sets. Cdc 15, cdc 28 and elu data-set prediction results are very close to 

each other and can been seen in the plot. 

4.3.1.2. Quadratic Classify with Data Sets Treated Separately      

Figure 4.2 shows TPR vs TNR for the test results when a quadratic classifier is used on 

each data set separately. It can be interpreted that the test results are better in this case compared 

to using the linear classifier for the same data sets. The data points appear to have shifted 

towards more right as compared to the data points on Figure 4.1 implying better specificity. 
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Figure 4.2. Specificity vs sensitivity graph for quadratic classification results. The X-axis 

represents the specificity measure of our predictions, and the Y-axis represents the sensitivity 

measure of our predictions. 

 

 

Figure 4.2 shows better plots as compared to Figure 4.1 which means that, in general, we 

obtain higher specificity and sensitivity while using a quadratic classifier. All data sets show 

considerable improvement for the prediction specificity in this plot. While the alpha data set 

gives the highest sensitivity, the cdc 15 data set gives the highest specificity, and the elu data set 

has the lowest prediction results. 

4.3.1.3. Linear Classify Using Log p and Posterior 

Figure 4.3 shows TPR vs TNR for the test results when a linear classifier is used after 

finding the best classifier for the log p and posterior predictions. It can be interpreted from the 

plots that the test results are better using log p and posterior (POST) despite using a linear 

classifier. 
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Figure 4.3. Specificity vs sensitivity graph for linear classification results using log p and POST. 

The X-axis represents the specificity measure of our predictions, and the Y-axis represents the 

sensitivity measure of our predictions. 

 

 

We have used two types of statistical relevance measure, introduced in Chapter 1, in this 

thesis, and those measures are log p and posterior analysis. Both measures are used for a linear 

classifier as well as a quadratic classifier. We see very good improvement in the specificity for 

both log p and posterior analysis. However, sensitivity is lower for log p analysis as opposed to 

when using the data sets separately. From Figure 4.3, we could, however, conclude that for a 

linear classifier, when using posterior analysis, we get better specificity as well as sensitivity. 

Using our data sets separately for both the classifiers, we have noticed that the sensitivity is 

always much lower. Figure 4.3, however, shows a very good (0.70) sensitivity when the most 

predictive data source is utilized by using the posterior analysis measure. 

 



54 

 

4.3.1.4. Quadratic Classify Using Log p and Post 

The following plot shows TPR vs TNR for the test results when a quadratic classifier is 

used after finding the best classifier for log p and posterior predictions. It can be interpreted that 

the test results are much better in this case compared to a using linear classifier or a quadratic 

classifier separately for each data set. 

 

 
 

Figure 4.4. Specificity vs sensitivity graph for quadratic classification results using log p and 

POST. The X-axis represents the specificity measure of our predictions and the Y-axis represents 

the sensitivity measure of our predictions. 

 

 

Comparing Figure 4.2 where we use a quadratic classifier with the data sets separately 

and Figure 4.4 where we utilize the most predictive data set by using first the log p analysis 

measure and then the posterior analysis measure, we can say that we, again, have comparatively 

better specificity for both log p and posterior analysis. We, however, get lower sensitivity while 

using log p analysis but the best sensitivity (in comparison to Figure 4.2) when we use posterior 
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analysis. From what we concluded in Section 4.3.1.3 and from what we see in Figures 4.2 and 

4.4, we can say that, irrespective of the two classifiers (linear and quadratic), we can find the 

most predictive data source when we use the posterior analysis measure. Using the 

corresponding data set for our predictions, we obtain very high specificity and sensitivity, which 

is, on average, higher than what we get when we obtain the data sets separately. We have more 

discussions about the results and plots presented in this chapter in the next chapter.   
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CHAPTER 5. DISCUSSIONS AND FURTHER WORK 

 
In this chapter, we go in depth with the comparison between the various results that we 

obtained. This project’s main objective was to find the best predictive data source. For that, 

various prediction techniques were used so that comparisons could be made on more than one 

level. In this thesis, we predicted using linear and quadratic classifiers with different data sets 

separately once without using log p or posterior analysis and once using log p and posterior 

analysis. The comparison metrics helps us to understand whether, using log p or posterior 

analysis, we are in better shape to find the most predictive data source.  

5.1. Result Analysis  

In this experiment, it was pretty much expected that the quadratic classifier would 

produce better prediction results than the linear classifier. However, the real challenge was to see 

how we could use the log p and posterior analysis results in our predictions and to find the most 

predictive data source for each prediction. After finding the most predictive data source by virtue 

of the proposed algorithm, we used those results against the ones we already had. The results are 

given in Tables 5.1 and 5.2. 

  

Table 5.1. Results at a glance for linear classification using the data sets separately 

Linear Error rate Accuracy Specificity Sensitivity Precision 

Alpha 21.70% 78.20% 0.82 0.50 0.29 

Cdc 15 32.11% 67.89% 0.70 0.54 0.20 

Cdc 28 30.04% 69.60% 0.71 0.58 0.22 

Elu 31.04% 68.96% 0.70 0.59 0.22 

Log p 12.53% 87.47% 0.94 0.38 0.49 

POST 14.31% 85.69% 0.88 0.70 0.45 
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Table 5.2. Results at a glance for quadratic classification using data sets separately 

Quadratic Error rate Accuracy Specificity Sensitivity Precision 

Alpha 12.37% 87.68% 0.91 0.65 0.50 

cdc15 10.33% 89.67% 0.95 0.54 0.59 

cdc28 12.60% 87.40% 0.91 0.63 0.49 

Elu 17.22% 82.78% 0.89 0.39 0.33 

Log p 12.37% 87.63% 0.95 0.38 0.50 

POST 9.03% 90.97% 0.94 0.70 0.62 

 

As we see, the accuracy, the specificity, the sensitivity and the precision are higher when 

using posterior analysis for both set of experiments: quadratic classification and linear 

classification. Using log p analysis, we obtain better results for accuracy, specificity and 

precision but not for sensitivity. 

5.2. Log p and Posterior 

The final comparison in results to find the most predictive data source would be using log 

p and posterior values in the classifiers. Tables 5.3 and 5.4 would give us the comparisons. 

 

Table 5.3. Results at a glance for linear classification using log p and posterior analysis 

Linear Error rate Accuracy Specificity Sensitivity Precision 

Using log p 12.53% 87.47% 0.94 0.38 0.49 

Average 

without using 

log p or POST 

28.81% 71.16% 0.73 0.55 0.23 

Using posterior 14.31% 85.69% 0.88 0.70 0.45 
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Table 5.4. Results at a glance for quadratic classification using log p and posterior  

Quadratic Error rate Accuracy Specificity Sensitivity Precision 

Using log p 12.37% 87.63% 0.95 0.38 0.50 

Average 

without using 

log p or POST 

13.13% 86.88% 0.91 0.55 0.48 

Using posterior 9.03% 90.97% 0.94 0.70 0.62 

 

Tables 5.3 and 5.4 compare results of three predictive techniques: (i) using log p; (ii) 

using a classifier without using log p or posterior; this value is an average of the values used in 

tables 5.1 and 5.2 for linear and quadratic classifiers respectively; and (iii) using posterior. In 

case of both linear and quadratic classifiers, using log p has better specificity and precision, but 

lower sensitivity. When using log p and posterior, predicting True Negative has been better than 

predicting True Positives for both sets of experiments. Using log p along with the classifier has 

given a lot of False Negatives, i.e., this technique has not been able to predict the genes with 

class label 1 as compared to when not using this technique. 

However, using posterior analysis, we get better results with every comparison metric. 

While using log p gives high accuracy, specificity and precision, using posterior gives us the 

highest sensitivity. While the specificity has been above 70% for all of the tests with the best 

being a very high 94% (using log p analysis), predicting high sensitivity has been a challenge 

throughout with the average being 55% (results without using log p or posterior). While 

predicting the True Negatives is important, the real challenge is to correctly predict the True 

Positives. The reason for this challenge is that the total number of genes used in the test set is 

3090, from which 388 genes have class label 1. Only 12.5% of the total genes are a class label 1, 
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which is a small number. This reason is why predicting the True Positives is much more 

challenging than predicting the True Negatives. Hence, considering the kind of data set that we 

used, a high sensitivity indicates a very good prediction. In the case of using posterior analysis 

on a quadratic classifier, the sensitivity is 70%, the highest that has been seen until now.  This 

technique correctly predicts 269 class label 1 genes from 384 genes, the best we got. Also using 

posterior analysis with quadratic gives very high accuracy, specificity and precision even though 

they were not the best.  

The reason why using posterior probability and log p calculation gave us better results 

was explained briefly in section 2.4.5. Using these two measures helped us to narrow down the 

best predictive data set. In this thesis, it has been repeated that a big challenge was handling 

multiple data sets. While, in case of certain genes, using one data set may have given a correct 

prediction, utilizing another may have given an incorrect one. By using the two measures, the 

data set that had a higher probability of a better prediction was identified and was used for final 

prediction results. While, earlier, we would predict say, gene x and gene y, using the same data 

set, say alpha, now as per the matrices given by the posterior probability calculations, we could 

be using alpha for gene x and elu for gene y simply because alpha gave highest posterior 

probability for gene x and elu gave the highest for gene y.  

In Chapter 4, we discussed the F1 measure as a measure of quality of the prediction. In 

Table 5.5 we compare the F1 measures of the three main prediction techniques that we tested in 

this thesis. Even in this comparison, we see that using the posterior analysis on the quadratic 

classifier gives the highest F1 measure. As mentioned before, our data have very low number of 

genes which participate in cell-cycle regulation or have class label 1. So predicting the sensitivity 

for this thesis has been a greater challenge than predicting the specificity. F1 measure involves 
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precision and sensitivity and posterior analysis results giving the best F1 measure as compared to 

when not using it proves that we have, indeed, been able to find the most predictive data source 

and have used it for better results. 

 

Table 5.5. Comparison between various prediction techniques with respect to the F1 measure  

Using Quadratic F1 Measure 

All test samples using log p 0.43 

Average without using log p and posterior 0.51 

All test samples using posterior 0.66 

 

5.3. Conclusions and Further Work 

From the objectives that we summarized at the end of Section 1.1, we can say that we 

have been able to complete each of them. The results presented in Chapter 4 talk about how we 

went about performing tasks for the objectives (i), (ii) and (iii) where we classified and predicted 

class label for genes present in test data by using linear and quadratic classifiers; then computed 

a statistical relevance measure and by using the proposed algorithm predicted the most reliable 

data source for each gene. The comparison of results between the two methods mentioned as 

objective (iv) in Section 1.1 have been listed in Tables 5.1 through 5.5.  

After completing all the tasks with respect to the objectives of the thesis, we can conclude 

the following: (i) using posterior analysis we are more successful in predicting the most reliable 

data source when there are multiple datasets involved, (ii) real challenge is to correctly predict 

the True Positives: the total number of genes used in the test set is 3090, from which 384 genes 

have class label 1. In the case of using posterior analysis on a quadratic classifier, the sensitivity 

is 70%, the highest that has been seen until now, (iii) this technique, i.e., using posterior analysis, 
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correctly predicts 269 class label 1 genes from 384 genes, the best we got whereas on an average 

using the data sets separately correctly predicts about 211 genes, and (iv) F1 measure is 0.62 

when using posterior analysis as opposed to when using the data sets separately, the average F1 

measure is 0.5. 

Referring back to the end of Section 1.1, where we talk about the significance of our 

finding, which is being able to find the most predictive data source in the given biological data 

and subsequently find the biological significance of this finding which is the phase in which the 

regulation has most likely happened for a gene. The algorithm that is proposed in this thesis can 

now be taken back to the biologists and applied in such kinds of experimental data where 

multiple subsets of data have a biological significance. The algorithm in such a case is successful 

in finding the most reliable data source for each record and its corresponding significance for the 

record.   

The thesis demonstrated the benefit of using multiple data sets in the prediction of protein 

function.  Analysis on further data sets and comparison with other alternative approaches would 

further establish it as an important data mining approach for addressing classification based on 

multiple data sets.   
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