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ABSTRACT 

 

 Spatial characterization of surface microtopography is important in understanding the 

overland flow generation and the spatial distribution of surface runoff. In this study, fractal 

parameters (i.e., fractal dimension D and crossover length l) and three hydrotopographic 

parameters, random roughness (RR) index, maximum depression storage (MDS), and the number 

of connected areas (NCA), have been applied to characterize the spatial complexity of 

microtopography. Clear and meaningful relationships have been established between these 

parameters. The RR was calculated as the standard deviation of the processed elevation, and the 

fractal parameters were calculated with the semivariogram method. The puddle delineation 

program was applied in this study to spatially delineate soil surface and to accurately determine 

MDS and NCA. It has been found that fractal parameters can better characterize surface 

microtopography. More importantly, fractal and anisotropic analyses can help to better 

understand the overland flow generation process.   
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CHAPTER 1. INTRODUCTION 

Surface microtopography plays an important part in overland flow generation and the 

spatial distribution of surface runoff. Therefore, it is necessary to spatially characterize surface 

microtopography. Various methods and parameters have been applied to characterize surface 

topography. In this study, the spatial complexity of microtopography was characterized by the 

fractal parameters (i.e., fractal dimension D and crossover length l) and hydrotopographic 

parameters, such as random roughness (RR) index, maximum depression storage (MDS), and the 

number of connected areas (NCA). It has been found that there exist clear and meaningful 

relationships between these parameters to quantify surface microtopography from hydrologic 

point of view. The RR index was calculated as the standard deviation of the processed elevation 

data, and the fractal parameters were calculated using the semivariogram method. The MDS and 

NCA are determined using the puddle delineation (PD) program, which was applied in this study 

to spatially characterizing surface microtopography. Surface anisotropy was analyzed by 

directional semivariogram method and a modified index (a), which helps to better understand the 

overland flow generation process. 

1.1 The Effect of Microtopography on Overland Flow Generation 

Soil surfaces generally exhibit spatial irregularity. The complexity of surface topography 

relates to the spatial pattern of surface roughness, which is one of the intrinsic properties of the 

surface. This property has a significant influence on the behavior of the hydrologic and 

geomorphologic systems (Western et al. 2001), such as overland flow generation, infiltration, 

and sediment transport processes. Soil surface microtopography affects hydrologic processes due 

to the existence of topographic features such as mounds, ridges, channels, and depressions. 

Among those topographic features, depressions affect surface runoff by retaining a certain 
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amount of water during the rainfall-runoff process (Huang and Bradford 1990; Hairsine et al. 

1992; Hansen 2000; Kamphorst et al. 2000; Kamphorst and Duval 2001; Darboux and Huang 

2003, 2005; Abedini et al. 2006). Thus, surface depressions delay the initiation of surface runoff 

(Darboux and Huang 2005). It has been observed that runoff could occur even prior to the full 

filling of the MDS of a surface (Moore and Larson 1979; Hairsine et al. 1992; Darboux et al. 

2001). MDS is determined as the maximum amount of water that can be retained in depressions 

on a surface. Onstad (1984) also found that more excess rainfall than the MDS is necessary in 

order to fill all the depressions. However, the effect of depression storage on runoff reduction 

decreases gradually as rainfall progresses (Onstad 1984; Helming et al. 1998). In addition, 

depressions affect the spatial distributions of water on a soil surface by storing water, and thus 

dominate the overall connectivity of the topographic surface and break the surface into a number 

of well connected areas (CAs) that have independent and localized hydrologic mass balance 

(Hayashi et al. 2003). Each localized CA consists of a depression and its contributing area. Thus, 

the number of CAs (NCA) can represent the complexity of surface microtopography. A higher 

NCA indicates stronger irregularity in surface topography (i.e., more depressions /puddles). Thus, 

the NCA can be used to help understand overland flow process on rough surfaces. 

The spatial distribution of overland flow is greatly affected by surface microtopography, 

e.g., spatial variation of roughness (Zhang and Cundy 1989; Helming et al. 1998, Darboux et al. 

2001). From a hydrologic point of view, surface roughness can be related to hydraulic roughness 

(Hairsine et al. 1992; Helming et al. 1998) that resists water flow on the soil surface and affects 

the velocity of overland flow (Govers et al. 2000; Darboux and Huang 2005). Helming et al. 

(1998) studied the effects of surface roughness and slope on surface runoff generation by 

conducting nine laboratory experiments with three surface characteristics (i.e., rough, medium, 
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and smooth) at three slopes (i.e., 17%, 8%, and 2%). Each experiment was subjected to four 

successive rainfall events with decreasing rainfall intensities. They found that during the first two 

rainfall events, flow was more apt to flow in pathways between clods on the rough surface, while 

surface runoff was quite uniformly distributed on the smooth surface. However, as rainfall 

progresses, the smooth surface also showed concentrated flow. As to the total surface runoff 

amount, surface roughness had a minor effect (Helming et al. 1998). In addition, they found that 

at the beginning of rainfall event, runoff was delayed significantly on rougher soil surface, but 

this topographic effect decreased as rainfall accumulates. Similarly, Moore and Singer (1990) 

concluded that surfaces with greater roughness led to greater infiltration rate, but this effect 

weakened due to the surface sealing as rainfall continued. Jester et al. (2001) examined the 

effects of soil microtopography and rainfall intensity on surface runoff by comparing three soil 

surfaces with different roughness conditions in the laboratory under various rainfall intensities. 

They found that the smoother surface generates higher runoff rate at the beginning of the rainfall 

event, and the steady-state runoff rate can be achieved earlier.  

Thus, characterization of surface microtopography is important in understanding the 

overland flow generation and the spatial distribution of surface runoff. Furthermore, surface 

characterization can be helpful to analyze the hydrologic processes and conduct hydrologic 

modeling on rough surfaces. 

1.2 Characterization of Microtopography  

Digital elevation models (DEMs) are commonly used to quantify surface topography. 

The variation of elevations in a soil surface is often expressed in terms of surface roughness 

(Hairsine et al. 1992; Govers et al. 2000). Römkens and Wang (1986) categorized soil surface 

roughness into four types: (1) microtopography variation due to particle size (0 to 2 mm); (2) 
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random roughness due to cloddiness (around 100 mm); (3) oriented roughness that is mainly 

caused by tillage (up to 200 mm); and (4) higher order roughness at a larger scale. Similarly, 

Helming et al. (1998) illustrated that soil surface roughness can range from 1 mm to 100 mm on 

cultivated soil surfaces, which is primarily caused by secondary tillage. Over the past several 

decades, various techniques have been developed to obtain DEM data and quantify surface 

roughness for laboratory or field soil surfaces. At the early stage, a contact profile meter was 

used for this purpose (Kuipers 1957; Allmaras et al. 1966; Currence and Lovely 1970; Mitchell 

and Jones 1976; Moore and Larson 1979; Podmore and Huggins 1981). Since the late 1980s, 

automated non-contact microrelief meters have been developed (e.g., Römkens and Wang 1986; 

Huang et al. 1988). Later on, the instantaneous-profile laser scanner that can obtain high-

resolution DEMs has been developed and widely used (Huang et al. 1988; Huang and Bradford 

1990, 1992; Darboux and Huang 2003). This type of instantaneous-profile laser scanner has been 

used in the current study to acquire high-resolution DEMs of soil surface microtopography, and 

the random roughness of soil surfaces was studied. 

With high resolution DEMs, a variety of index methods have been developed to further 

quantify surface roughness, such as random roughness (RR) index (Allmaras et al. 1966), 

tortuosity (T) (Kamphorst et al. 2000), microrelief index and peak frequency (MIF) (Römkens 

and Wang 1986), limiting slope (LS) and limiting difference (LD) (Linden and Van Doren 1986), 

mean upslope depression (MUD) (Hansen et al. 1999), and fractal dimension (Bertuzzi et al. 

1990). The effectiveness of these indices in quantifying surface roughness was tested (Bertuzzi et 

al. 1990; Hansen et al. 1999; Kamphorst et al. 2000), and different conclusions were reached. 

Kamphorst et al. (2000) suggested that based on their study the RR index is highly correlated 

with MDS compared with other methods. Darboux et al. (2002) found that the RR index 
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proposed by Allmaras et al. (1966) was able to characterize soil surface roughness if the system 

is larger than 1 m
2
. Since the RR values of various tilled soil surfaces can be easily obtained 

(Toy and Foster 1998), the RR index is the most widely used method (Govers et al. 2000) to 

quantify surface roughness. The one proposed by Allmaras et al. (1966) has been considered the 

standard procedure to calculate RR (Zobeck and Onstad 1987). Therefore, the RR index method 

was selected in this study as one of the methods to quantify soil surface roughness. 

1.2.1 Random roughness method 

Allmaras et al. (1966) proposed four-step procedure to calculate RR index based on the 

tillage surfaces. The DEM data were discretized into a number of rows (i) and columns (j). First, 

the logarithm of the DEM data was used so that the transformed data would exhibit a normal 

distribution using 

)( ,, jiji ZLnZ   (1) 

where jiZ , = original elevation at row i and column j; and jiZ ,
  = logarithmic elevation at row i 

and column j. Then the slope and oriented tillage effects were removed using the equations 

)(,, ZZZZ ijiji
  (2) 

)(,, ZZZZ jjiji
  (3) 

where jiZ ,
 = elevation at row i and column j after slope removal; iZ  = averaged logarithmic 

elevations at each row i; Z  = averaged logarithmic elevations for the entire surface; jiZ ,
 = 

elevation at row i and column j after tillage removal; jZ  = mean value of elevations (after slope 

removal) at each column j; and Z  = mean value of elevations (after slope removal) for the entire 

surface. Afterwards, the processed elevation data were sorted so that the upper 10% and lower 10% 
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of the data were removed. Finally, the RR index was calculated as the standard deviation of the 

processed data multiplied by the mean value of the original elevations.  

  ZZZ
N

RR
i jN

i

N

j

ji 


 
 1 1

2

,
1

1
 (4) 

where Ni = number of rows; Nj = number of columns; N = total number of grids (all data points); 

Z  = mean value of elevations (after tillage removal) for the entire surface; and Z = mean value 

of the original elevations for the entire surface. However, it is unclear why the mean value of the 

original elevations for the entire surface was multiplied to calculate the RR value. One possible 

reason is that it might be used to transfer the RR value back to represent the original surface 

roughness because the processed DEM data were logarithmically transformed. 

Currence and Lovely (1970) provided five different ways to calculate RR index and 

compared their performance. They suggested that for different research or application purposes 

(e.g., include or exclude tillage marks), different roughness indices should be selected. For 

example, by calculating a plane of the best fit, the overall slope of the surface could be removed, 

and the RR index was calculated as the standard deviation of the residuals of the elevation. This 

RR index method took into consideration of the tillage effect. However, both slope and tillage 

effects can be removed by correcting elevations for each row and column of a DEM, and the 

resulting RR value represents surface roughness without slope and tillage effects (Currence and 

Lovely 1970). Planchon et al. (2001) argued that Allmaras et al. (1966) did not provide enough 

detailed information on how to remove tillage effects. Thus Planchon et al. (2001) developed 

another method to calculate RR index as the standard deviation of elevations after removing the 

slope and tillage effects. Overall, it has been well accepted that the rougher the surface is, the 

higher the RR value.  
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Usually a rough surface can store a certain amount of water in depressions. The 

relationship between roughness indices and MDS of a rough surface has been examined by a 

considerable amount of research. To derive this relationship, MDS is often expressed as the 

maximum equivalent water depth that can be stored on a rough soil surface (Govers et al. 2000). 

Since the 1980s, various regression equations have been suggested to estimate MDS based on 

surface roughness indices, such as RR index (Onstad 1984; Mwendera and Feyen 1992), LD and 

LS (Linden et al. 1988), and MUD (Hansen et al. 1999). The performances of these indices for 

quantifying soil surface roughness, estimating MDS, and describing surface changes from 

rainfall-induced soil erosion have been examined and evaluated (Bertuzzi et al. 1990; Huang and 

Bradford 1992; Hansen et al. 1999; Govers et al. 2000; Kamphorst et al. 2000). Among these 

indices, RR index has been proven to be the one that has the highest correlation with MDS 

(Kamphorst et al. 2000).  

As to the RR index-based method, MDS is also a function of slope besides the RR index 

(Onstad 1984; Mwendera and Feyen 1992). Thus, slope is another important factor in estimating 

MDS. Onstad (1984) proposed a regression equation relating MDS with RR and slope based on 

microrelief data from over 1000 plots with slopes ranging from 2% to 12%. Similarly, Mwendera 

and Feyen (1992) studied MDS based on surfaces with slopes from 1% to 15%. Hansen et al. 

(1999) further extended slopes up to 20% for MDS estimation. It has been found that surfaces 

with higher RR values have larger depression storage values for the same slope (Onstad 1984; 

Mwendera and Feyen 1992). Given a rough surface at various slopes, a milder slope retains more 

water in depressions than a steeper slope does (Onstad 1984; Huang and Bradford 1990; Hairsine 

et al. 1992; Mwendera and Feyen 1992). Thus, in this study, the slope effect was taken into 

consideration when calculating the RR and MDS values. 
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The past studies to calculate RR index for soil surfaces were mostly carried out on the 

tillage surfaces. However, according to Chu et al. (2012), for the random roughness surfaces 

without tillage marks, a modified RR calculation method provides better estimation of RR and 

MDS values to quantify soil surface roughness at mild slopes. This method was modified from 

Allmaras et al. (1966), but only included removing the slope effect of the DEMs and the upper 

and lower 10% of the data before calculating RR index, while the other two steps (i.e., 

logarithmic transformation of the data and tillage removal) were not involved (Chu et al. 2012). 

In this study, surfaces without tillage marks were selected to analyze surface microtopography; 

thus, the RR calculation method provided by Chu et al. (2012) was employed. 

1.2.2 Fractal method 

Huang and Bradford (1992) suggested that RR index was inadequate to describe surface 

roughness because this single index was efficient to capture the variance in vertical elevations 

but unable to describe the spatial correlation of the soil surface. Two surfaces with the same RR 

value may exhibit completely different surface characteristics (Huang 1998). Therefore, Huang 

and Bradford (1992) proposed a combination of fractal and Markov-Gaussian model to represent 

complex surface roughness.  

Fractal analysis has been widely used to characterize the spatial complexity of soil 

surfaces (Mark and Aronson 1984; Klinkenberg and Goodchild 1992; Quattrochi et al. 1997; 

Huang 1998; Vázquez et al. 2005, 2007). The typical characteristic of fractal is being self-similar. 

Objects can be self-similar in the following different ways: being self-similar (i.e., identical at all 

scales), being quasi self-similar (i.e., exhibits the same pattern at different scales), being 

statistical self-similar (stochastically repeats a pattern), and being qualitatively self-similar (i.e., 

in a time series) (Falconer 2003). Theoretically, a surface can be considered as statistically self-



9 

similar when enlargements of any subsets of the surface have a statistical distribution identical to 

that of the whole surface (Feder 1988). In practice, self-similarity can be determined by 

evaluating the linearity of the best-fit curve of semivariance [(h)] and lag distance (h) on the 

log-log plot of (h) vs. h during the calculation of fractal dimension (D) using the semivariogram 

method (Yokoya et al. 1989; Klinkenberg and Goodchild 1992). If the curve is approximately 

linear for all lags, the surface is consistent with the concept of self-similarity (Mark and Aronson 

1984), and mono-fractal analysis can be applied. In reality, however, such a surface rarely exists. 

Most surfaces may be partially self-similar, so a fractal model can be applied only within a 

limited range or distance (Mark and Aronson 1984; Yokaya et al. 1989; Xia 1993; Huang 1998; 

Vázquez et al. 2007; Abedini and Shaghaghian 2009). Out of the range, different D values may 

exist for the surfaces (Mark and Aronson 1984). Thus, many studies have been conducted to 

examine the multifractal property of surface topography, which involved identification of 

breakpoints and determination of multiple linear segments and the corresponding D values (e.g., 

Mark and Aronson 1984; Klinkenberg 1988; Lovejoy et al. 1995; Gagnon et al. 2006; Abedini 

and Shaghaghian 2009). Mark and Aronson (1984) found that most of their selected geographic 

surfaces showed varying D values at different scales. D values derived from the middle scale 

were always greater than those from the smaller scale. 

One of the major fractal parameters is D. Generally, D ranges from 2 to 3 for a 

topographic surface (Mark and Aronson 1984; Roy et al. 1987; Huang and Bradford 1992; Sun et 

al. 2006). A surface with fractal D can be considered as its capability to “fill” the space in which 

it resides (Abedini and Shaghaghian, 2009). Thus, the more a surface fills the space, the higher D 

it has (Sun et al., 2006). Therefore, surfaces with high D values appear more disordered or 

display a rapid succession of peaks and valleys in a short distance, but show slow variability at a 
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large distance (Sung et al. 1998). On the contrary, surfaces with low D values have greater 

variations in elevation (e.g., large and deep depressions), and thus more space is left “unfilled.” 

Based on the fractal analysis of some agricultural soil surfaces, Huang (1998) concluded that a 

relatively lower D value of a surface indicated higher contrast of aggregates/clods on the surface, 

while a higher D value denoted overall gradual/minor changes in surface elevations. It has been 

observed that a surface with D value greater than 2.5 implies a negative spatial autocorrelation 

between two points at the scale where D is derived (Burrough 1983; McClean and Evans 2000), 

so detailed topographic information may be lost at a sampling interval larger than that scale. In 

contrast, surfaces with D values smaller than 2.5 are less rugged and show positive spatial 

autocorrelation within the scale associated with D (Burrough 1983). Thus, elevations can be 

interpolated from their neighboring points without losing too much information for this type of 

surface (Mark and Aronson, 1984).  

Different methods have been used to calculate D. Xia and Clarke (1997) summarized 

seven methods, among which three widely used methods are the semivariogram method, the 

box-counting method, and the walking dividers method. The reliability of the three methods in 

calculating D value has been evaluated, and the semivariogram method has been widely accepted 

to calculate D (Klinkenberg and Goodchild 1992; Xia 1993). A semivariogram is the plot of (h) 

as a function of h along the specified direction, since h is a separation vector that has both 

magnitude and direction. Therefore, the semivariogram technique is a geostatistical method that 

can describe the change of spatial continuity with the distance and direction (Isaaka and 

Srivastava, 1989). When applying semivariogram to characterize surface topography, it 

represents the variations in elevations as the distances between two data points increase along 

certain direction. Usually, as the separation between two points increases, the (h) value at the 
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corresponding distance (h) generally increases, which indicates that there exists correlation 

between those points. However, this increase in variance gradually slows down and finally 

reaches a plateau or quasi-plateau at certain distance (Isaaka and Srivastava, 1989), indicating no 

correlation between two points exists beyond that distance. Due to the spatial distribution of data, 

the semivariogam curve may show some dips, which are often expressed as “Hole effect” (Isaaka 

and Srivastava, 1989). This “Hole effect” suggests that two points separated further away show 

more similar features than those at shorter distance. This phenomenon exists in the datasets 

where natural cyclicity occurs (Isaaka and Srivastava, 1989), such as the cycles of sedimentary 

faces change and the reoccurrences of depressions on surfaces. It has been verified that 

semivariogram was able to characterize the spatial patterns of the soil surface (Linden and Van 

Doren 1986; Helming et al. 1993). One of the major advantages of the semivariogram method 

for fractal analysis is that it can quantify not only overall (i.e., omnidirectional) variability of 

surface topography, but also the directional variability (i.e., anisotropy) (Xia 1993; Vázquez et al. 

2005). One property of the semivariogram is that the (h) values calculated along any two 

opposite directions are identical (Isaaka and Srivastava, 1989), resulting in the symmetric 

distribution of (h) about the origin. For an omnidirectional semivariogram, at each distance h, 

all pairs that fall into that distance along any direction are included for calculating (h). However, 

this does not mean that along all directions, the spatial continuity is the same (Isaaka and 

Srivastava, 1989). The anisotropy of surface topography suggests that the variability of the 

surface is different along various directions. This anisotropy can be captured by the directional 

semivariogram method. Along any specific direction, (h) values can be calculated at the 

corresponding h. Vázquez et al. (2005) applied the semivariogram method to capture the tillage 

direction of agricultural fields since the D value is much higher along the tillage direction. 
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Klinkenberg (1988) calculated angular variograms to quantify surface anisotropy and detect the 

dominant directions of surface roughness.  

In the application of the semivariogram method for fractal analysis, however, it is critical 

to determine the breakpoint distances (dB) to find the best-fit linear regression lines of the 

semivariogram curve at different scales in the calculation of D. The dB is the maximum distance, 

at which the best regression line can be fitted (Xia and Clarke 1997; Sung et al. 1998). In other 

words, the dB is a “boundary” scale, within which a single D can be applied for the 

corresponding linear segment. Thus, within the distance of two neighboring breakpoints, it can 

be considered as a homogeneous region unit (Pentland 1984; Abedini and Shaghaghian 2009). 

However, the only limitation of applying the semivariogram method in fractal analysis is that the 

determination of dB to find the best-fitting curve is a quite subjective procedure, which is the sole 

determining factor of the D calculation. A controversial problem may exist in determining which 

segment of the semivariogram is linear. McClean and Evans (2000) found that the least-square 

regression method yielded a smaller slope for the log-log semivariogram, resulting in a higher D 

value. Especially when no perfect linear scatters exist, the least-square method can be biased due 

to the denser points for longer distance lags (McClean and Evans 2000). Thus, McClean and 

Evans (2000) fitted the linear curve by visual decision that any points starting from the curved 

transition sections should be excluded from the linear part. In other words, the dB for linear part 

is determined when any point starts to deviate from the linear line (McClean and Evans, 2000). 

Their method is similar to that of Mark and Aronson (1984) and Pentland (1984), who also fitted 

the best linear line by visual estimation. According to Klinkenberg and Goodchild (1992), when 

using the least-square method to fit the best linear segment of the semivariogram, a dB is 

generally selected so that the scatter of points was not too curved, and that the coefficient of 
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determination R
2
 is greater than 0.9. Until now, there is no common criterion on how to 

determine the dB. 

D may not be a unique parameter for characterizing surface topography. Two surfaces of 

dissimilar topographic features may have the same D value (Klinkenberg 1988; Huang and 

Bradford 1992). Together with D, the ordinate intercept (Ic) of the best-fit linear segment of the 

semivariogram also has been used to characterize surface topography (Klinkenberg and 

Goodchild 1992; Abdini and Shaghaghian 2009). Alternatively, crossover length (l), which is 

derived from Ic, is often combined with D to characterize soil surface microrelief (Huang and 

Bradford 1992; Vázquez et al. 2005, 2007). D represents the horizontal variability in surface 

roughness with scale while Ic or l reveals the degree of vertical topographic variations at a 

reference scale (Klinkenberg 1988; Klinkenberg and Goodchild 1992; Huang and Bradford 1992; 

Vázquez et al. 2007). “In other words, D is an index for the proportional distribution of different-

sized elements in a relative scale, and l is the scaling parameter transforming the relative size to 

actual scale.”(Huang and Bradford 1992). For the same scale, a rougher surface has a greater l 

value (Eltz and Norton 1997). Huang and Bradford (1992) observed that l is more sensitive than 

D to represent soil roughness changes. 

In applications of the semivariogram method, any data trend (e.g., slope) should be 

removed to satisfy the major assumption introduced in this method (Perfect and Kay 1995). 

Because the sample semivariogram can estimate its theoretical semivariogram only when the 

sampling data are stationary, which implies that the sampling data have zero expected value 

(SAS Institute Inc. 2009). However, Armstrong (1986) found that removal of periodic 

components had no substantial effect on the computation of semivariance, and hence the D value. 

Abdini and Shaghaghian (2009) also found that surface detrending methods (e.g., linear, 
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quadratic, and cubic fitting plane methods) had a minimal effect on D. Armstrong (1986) and 

Klinkenberg and Goodchinld (1992) suggested that for fractal analysis of surfaces topography, it 

is not necessary to remove the non-stationarity of the data in the semivariance calculation since 

surface slope is a part of the topographic properties. However, Vázquez et al. (2010) removed the 

slope of soil surface microrelief by finding a best fitting plane (linear, quadratic or cubic fitting 

plane), and concluded that trend removal did affect the fractal indices (D and l). Thus, further 

studies are needed to evaluate the effect of surface trend removal on fractal analysis.  

1.3 Objectives 

Now that the fractal parameters (D and l), RR, MDS, and NCA all can be used to 

characterize surface microtopography, it should be of importance to examine their relationships, 

which will further improve our understanding of the effect of surface microtopography on 

overland flow processes. However, both the random roughness method and the fractal method 

quantify microtopography statistically, regardless of the spatial distribution of surface 

characteristics, such as the location and size/depth of the depressions, which are critical in 

controlling the overland flow initiation. Thus, spatially delineating surface depressions and 

determining their properties are necessary to understand the mechanism of surface runoff and 

help develop more physically based hydrologic models. The objectives of this study are to (1) 

characterize surface microtopography by fractal analysis and three hydrotopographic parameters 

(RR, MDS, and NCA) and examine the relationships of these hydrotopographic parameters with 

the fractal parameters D and l; (2) evaluate the effect of surface slope removal on fractal analysis; 

(3) analyze the anisotropic properties of surfaces by using the directional semivariogram method 

and a modified anisotropic index to identify the dominant roughness direction; (4) investigate the 

possibility to use the fractal parameter D and l, and the anisotropy analysis results to improve the 
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understanding of the overland flow generation process; and (5) spatially delineate topographic 

surfaces to accurately determine hydrotopographic properties (i.e., MDS and NCA) of a soil 

surface.   
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CHAPTER 2. STATISTICAL CHARACTERIZATION OF SURFACE TOPOGRAPHY 

This chapter focuses on surface microtopography characterization using statistical 

methods, e.g., random roughness method and fractal method. First, the procedures of how to 

calculate RR index and fractal parameters (D and l) are detailed. Then applications of these 

methods in analyzing surface microtopography are performed. Eight surfaces that were created 

in the laboratory and field were selected for this purpose. The RR index was used to quantify 

overall variation of a DEM. The fractal method was applied to characterize surface spatial 

properties at different scales as well as the vertical variation in elevations. The anisotropic 

property of surfaces was also investigated using the fractal method. The fractal D, l, and the 

anisotropy results were analyzed to improve the understanding of overland flow generation. In 

addition, two more hydrotopographic parameters (MDS and NCA) have been determined from 

the puddle delineation (PD) program (Chu et al. 2010). The detailed information on how to 

calculate MDS and NCA are described in Chapter 3. Efforts have been made to examine the 

relationships of fractal D and l with RR, MDS, NCA.  

2.1 Calculation of Random Roughness (RR) Index 

Two procedures are implemented to process the DEM data in the application of the 

random roughness method (Allmaras et al. 1966) in this study. First, the overall slope of a 

surface is removed:  

)(,, ZZZZ ijiji   (5) 

The processed elevation data are then sorted to remove the upper 10% and lower 10% extreme 

data points. Finally, the RR of a surface can be expressed as standard deviation (SD) of the 

processed elevation data:  
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2.2 Calculation of Fractal Parameters (D and l) 

As mentioned previously, the semivariogram method was used to calculate fractal 

parameters in this study. Based on the DEM data, semivariance is given by: 


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where γ(h) = semivariance; is  = location i; h = lag distance has both magnitude and direction; 

)( isZ  = elevation at location is ; )( hsZ i   = elevation at location )( hsi  ; and N (h) = number 

of pairs spaced at h.  

Based on the calculated semivariance γ(h), D and intercept (Ic) can be determined. For a 

fractal Brownian motion (fBm) model, the elevation change Z(h) and the structural function are 

respectively given by (Huang and Bradford 1992):  

  )10(  HhhZ H  (8) 

and 

Hhh 2)(   (9) 

where H = Hurst exponent; and Z(h) = difference in elevations at distance h. Thus, the 

semivariance γ(h) can be expressed as: 

HKhh 2)(   (10) 

or 

  )log()log(2)(log KhHh   (11) 
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where K = proportionality factor. Eq. (11) shows a linear relationship between log [γ(h)] and log 

(h) with a slope (S) of 2H and Ic of log(K). That is, H = S/2. Given the Hurst exponent H, the 

fractal dimension D of a topographic surface (Euclidean dimension d = 3) is given by: 

SHD 5.033   (12) 

Following Huang and Bradford (1992), K in Eq. (10) can be expressed as a function of 

crossover length l, and Eq. (10) can be rewritten as: 

HH hlh 222)(   (13) 

Thus, l can be determined by K and H from the best-fit linear line of the semivariogram 

in the log-log plot. Here, the term “crossover length” is used because based on Eq. (13), it is a 

special length that when l = h, γ(h) = l
2
. Fig. 2.1 schematically shows the procedure for 

determining D, Ic, and dB by using the semivariogram method.  

Fig. 2.1 Determination of fractal dimension D, ordinate intercept Ic, and breakpoint distance dB 

As mentioned previously, the key step to calculate D is to find the best-fit linear segment 

of the semivariogram curve; but it is inappropriate to determine the dB based on R
2
 only. Personal 

judgment based on the real condition is another important factor. Firstly, on the log-log plot of 
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the semivariogram, the turning points will be identified by visual decision, and the first linear 

segment of the semivariogram curve can be fitted by the least-square regression method. The 

higher the R
2
 value, the better the linear line is fitted to the curve. Secondly, adjustment can be 

performed to make sure that points starting from the curved transition section should be excluded 

from the linear part. In addition, the fitted linear line must be close to the first few points of the 

semivariogram curve, because the first linear segment captures the detailed surface 

characteristics, and two points at closer distance show more detailed spatial information of a 

surface than those further away. If this condition has not been satisfied, go back to the first step, 

exclude the points around the curved transition section, and then fit the linear segment again so 

that the fitting line can be close to the first few points. In this way, the first dB can be determined. 

For some surfaces, more linear lines can be fitted starting from the curved section. Thus, multiple 

linear lines can be fitted to the corresponding linear segments, if applicable, to analyze the fractal 

properties of the surfaces at different scales. The fitting point of the second linear segment starts 

from the point next to the last point of the first fitted curve. The dB for the second or third linear 

segment can be determined based on the same criteria as those of for the first linear segment. The 

goodness of fit of the least-square regression can be evaluated by: 
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where R
2
 = coefficient of determination; γi = actual semivariance at i

th
 distance; i̂  = estimated 

semivariance at i
th

 distance;   = average value of the actual semivariance for all distances; and n 

= total number of lag distances h for semivariance calculation.  
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A Windows-based fractal analysis program has been developed in this study by using C# 

(Microsoft 2005) to facilitate the computation of omnidirectional and directional semivariance 

γ(h), D, and Ic. This program was developed to calculate fractal parameters (i.e., D and l) in 

addition to semivariogram. The main Windows interface includes a map area and a control panel, 

which are used for importing DEM data, inputting the parameters for semivariance calculation, 

computing the semivariance, plotting the semivariogram in either a normal plot or a log-log plot, 

and fitting the first linear segment of the semivariogram curve for the computation of D and Ic 

(Fig. 2.2). The angles are described as follows: 0º is defined as east and angles proceed in a 

counter-clockwise direction where 90º is north, 180º is west and 360º returns to the east direction. 

Using the fractal analysis program, directional semivariance for any angles ranging from 0º to 

360º can be calculated. The input parameters include the number of lags, lag distance (h), lag 

tolerance, angle, angle tolerance, and bandwidth (Fig. 2.2). An omnidirectional semivariance can 

be calculated by setting the angle tolerance greater than or equal to 90º. The outputs include the 

semivariance, semivariogam, the number of pairs for the corresponding lag distance, and D and 

Ic from the first linear segment of the semivariogram. 

In order to verify the accuracy of the fractal analysis program in calculating the 

semivariance, the semivariance from this program was compared with that from the GSLIB 

software package (Deutsh and Journel 1998). A series of surfaces with various topographic 

characteristics were selected for this purpose. Specifically, both omnidirectional and directional 

semivariance (along any directions) were computed by using both software packages and the 

results were evaluated. Fig. 2.3 shows the comparison of the semivariogram calculated by the 

fractal analysis program and GSLIB for omni direction, x direction (0º), and 75º direction. The 

semivariograms from the two software packages match perfectly for all three directions, 
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indicating that the fractal analysis program is accurate in calculating the semivariance, and the 

resultant fractal parameters are valid.  

Fig. 2.2 Windows interface of the fractal analysis software 

Fig. 2.3 Comparison of semivariograms calculated by the fractal analysis program and GSLIB 

for omni-direction, 0º direction, and 75º direction 
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2.3 Surface Data 

Six laboratory-scale soil surfaces (S1 – S6) and two field plot surfaces (S7 – S8) were 

created (Fig. 2.4). Surfaces S1 – S6 (Figs. 2.4a – 2.4f) were created in the lab by randomly 

distributing the soil aggregates across the area (i.e., no oriented roughness). The sizes of major 

aggregates increase gradually from S1 to S6. Those aggregates were collected in the field that is 

to the west of North Dakota State University campus without any vegetation. Since these 

aggregates were used to create surface topography, the texture of the soil has not been tested. 

The aggregates were broken down to small ones to create the surface with small aggregates (e.g., 

S1 and S2). The area of S1 – S6 was 0.6 m × 2.0 m. The two field plot surfaces of an area of 6.0 

m × 3.2 m, S7 and S8 (Figs. 2.4g and 2.4h), respectively represented rough and smooth field 

surfaces. The rough surface (i.e., S7) was created with mounds and depressions using hand tools, 

and the smooth surface (i.e., S8) that was characterized without any obvious depressions was 

also created by hand tools. Both two surfaces were graded to a 2.5% slope. The laboratory and 

field surfaces were scanned by using an instantaneous-profile laser scanner (Darboux and Huang 

2003). The scanned data were then processed and high resolution digital elevation model (DEM) 

data were generated. The roughness of the eight surfaces were quantified using the RR method, 

and the MDS and NCA of each surface were calculated by the PD program. Surface S8 was used 

for evaluating the effect of slope removal on the computation of semivariance and consequently 

D and l. The anisotropy of the surfaces (S1 – S8) was analyzed to identify the dominant 

roughness directions. Moreover, Surfaces S1 – S6 were utilized to examine the relationships 

between D and RR, MDS, and NCA, which were further used to interpret how surface 

microtopography might affect the overland flow process on rough surfaces. 
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Fig. 2.4 Six laboratory surfaces (S1 – S6) and two field surfaces (S7 – S8) 

2.4 Anisotropy of Surface Microtopography 

Anisotropy was analyzed for the eight surfaces (Fig. 2.4) by calculating D values along 

different directions. Anisotropy of the surface microtopography is defined when the D values of 

a surface vary among those directions, while isotropy refers to the situation where D values 

along any direction are identical. In this study, besides omnidirectional semivariograms, 

directional semivariograms were calculated for angles from 0º to 360º with an interval of 15º for 
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these surfaces. D and l were then determined for all directions and plotted in rose plots to show 

their directional distributions. In addition, an anisotropy index (a) was calculated to further 

quantify the anisotropic/isotropic properties of surface topography. This index was originally 

proposed by Green and Erskine (2004): 

Da 10  (15) 

where ∆D = Dmax – Dmin. This anisotropy index is “a ratio of the standard deviation between 

measurements in orthogonal directions” (Green and Erskine 2004). However, this ∆D only 

captures the maximum difference in D values by comparing them in two directions. To account 

for the anisotropy of surface topography, the variation along all directions should be considered. 

Therefore, a modified calculation of a index is proposed in this study:  

)(10 DSDa   (16) 

where SD(D) = standard deviation of D along all the directions (i.e., 24 directions in this study). 

Theoretically, a equals 1 for a perfectly isotropic surface (i.e., SD(D) = 0), and increases with the 

degree of anisotropy. 

2.5 Effect of Surface Slope Removal 

Surface S8 was used to evaluate the effects of surface slope on the calculation of fractal 

parameters (D and l). The surface slope was removed by finding a best-fit plane (linear, 

quadratic, or cubic fitting plane) based on the highest R
2
 value. Then, the effect of surface 

detrending on fractal analysis was evaluated by comparing the fractal parameters (including D 

and l) of the surfaces with and without slope removal. 

2.6 Determination of MDS and CAs 

Based on the DEM of each surface, the PD program was utilized to identify puddles and 

their relationships, determine flow directions and flow accumulations, and compute the MDS of 
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the surface. Flow directions are determined based on the D8 method (O’Callaghan and Mark 

1984) that water flows from one cell along the steepest downward slope by comparing the eight 

neighboring grid cells, in either orthogonal or diagonal directions. In addition, the CAs and NCA 

were determined through a searching process in the PD program, which identified all 

hydrologically connected cells. The detailed information of how to calculate MDS and NCA is 

provided in Chapter 3. 

In this study, we first investigated the general relationships between D and RR, MDS, 

and CA for Surfaces S1 – S6. Then, efforts were made to link these parameters to the overland 

flow generation processes. 

2.7 Applications of the RR Index for Characterizing Surface Microtopography 

For the six laboratory surfaces, the RR values increase from 0.44 cm to 1.50 cm, and the 

MDS values increase from 1370.16 cm
3
 to 3207.74 cm

3
 as soil aggregates become larger from 

S1 to S6 (Table 2.1). Note that the MDS values are calculated using the PD program that will be 

described in the following chapter. It can be inferred that the RR values can capture the overall 

roughness of the surface topography with a higher RR value representing greater contrast of 

surface elevations (e.g., S6) and a lower RR value indicating much milder variability in 

elevations (e.g., S1). RR and MDS have a direct relationship. Surfaces with a low RR value (e.g., 

S1) are usually characterized with shallow or small depressions, resulting in a low MDS; while 

the rougher surface with greater aggregates (e.g., S6) are dominated by the puddles that are 

deeper or bigger, leading to a high MDS. This conclusion is consistent with the findings by Chu 

et al. (2012) that overall, MDS has a positive relationship with RR. 

As to the two field surfaces S7 and S8 (Figs. 2.4g and 2.4h), the resultant RR values are 

1.90 cm and 0.46 cm, and the MDS values are 2.20 × 10
5
 cm

3
 and 2.47 × 10

4
 cm

3
, respectively. 



26 

The significant difference in the RR values for these two surfaces suggests dissimilar surface 

topography. Surface S7 is dominanted by depressions across the entire surface while S8 is 

relatively smooth with no obvious puddles on the surface (Figs. 2.4g and 2.4h). Similarly, the 

much greater MDS of S7 also indicates much rougher surface topography than that of S8. 

Table 2.1. Random roughness (RR) and the maximum depression storage (MDS) for the six 

laboratory surfaces (S1 – S6)  

Surfaces S1 S2 S3 S4 S5 S6 

RR (cm) 0.44 0.62 0.89 1.12 1.29 1.50 

MDS (cm
3
) 1370.16 1690.43 1863.61 2058.57 2512.35 3207.74 

 

However, the RR index cannot interpret the spatial correlation of surface topography, and 

it does not provide the scale information of the surface. For example, S1 and S8 have similar RR 

values (RR = 0.44 cm for S1 and 0.46 cm for S8), but these two surfaces are at different scales 

and appear totally dissimilar. That is, S1 is a laborary surface with an area of 1.2 m
2
, while S8 is 

a field surface with an area of 19.2 m
2
. In addition, these two surfaces show distinct surface 

features (Figs. 2.4a and 2.4h). Huang (1998) also addressed this issue that a surface may appear 

to have high random roughness at one scale but may exhibit some pattern at other scales. Again, 

S6 and S7 have similar problems. With a RR value of 1.50 cm, S6 is characterized with quite 

randomly distributed large aggregates (Fig. 2.4f), while S7 with a RR value of 1.90 cm is 

featured by spatially distributed puddles (Fig. 2.4g). Thus, the RR index may be inadequate to 

spatially describe complex topographic surfaces. Consequently, the RR index based MDS 

calculation method may not be able to provide accurate estimation of the real depression storage 

on a surface, which has been demonstrated by Chu et al. (2012). 
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2.8 Application of Fractal Analysis on Surface Microtopography 

2.8.1 Surface detrending effect on fractal analysis  

The field surface S8 (Fig. 2.4h) was selected for evaluating the surface detrending effect 

on fractal analysis. For S8, the best-fit plane is a cubic one (R
2
 = 0.999). Fig. 2.5 shows the 

comparison of omnidirectional semivariograms of the surfaces with and without surface 

detrending. It can be observed that surface slope significantly affects the computation of 

semivariance (Fig. 2.5). For a sloping surface without slope removal, the semivariance increases 

continuously with increasing h due to the overall slope-related increase in elevations. After slope 

removal, the semivariance reaches a sill beyond a distance of about 700 mm (Fig. 2.6h). 

Although the semivariograms may be similar within a short distance with and without slope 

removal, they change significantly for a larger h after surface slope removal or detrending (Fig. 

2.5). The differences in the distributions of semivariogram imply that significant changes in 

fractal parameters D and l are expected. Accordingly, the scale (i.e., dB) at which D is determined 

varies. Table 2.2 shows the D, l, and dB values calculated for surfaces with and without 

detrending or slope removal. It can be observed that the D and l values are 2.50 and 0.15 mm at 

the scale of 320.12 mm with detrending, while they are 2.43 and 0.08 mm at the scale of 

1,340.74 mm without detrending. As the scale (i.e., dB), at which D and l were derived, changes 

beyond 1,000 mm, the relative difference in D is 2.88% while the relative difference in l reaches 

up to 87.50%, inidcating that l is more sensitive to the slope removal. The larger dB value 

without slope removal indicates that two points further away (i.e., up to the distance of the dB = 

1340.74) might show certain correlation, which is due to the overall slope in this example. 

However, with slope detrending, two points beyond the distance of 320.12 mm are not related.  
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Fig. 2.5 Comparison of omnidirectional semivariograms for S8 with and without surface 

detrending 

 

Table 2.2. Fractal dimension (D), crossover length (l), and breakpoint distance (dB) values for S8 

with and without surface trend removal 

 D l (mm) Breakpoint distance (dB) (mm) 

Without 

Detrending 
2.43 0.08 1340.74 

With 

Detrending 
2.50 0.15 320.12 

Relative 

difference (%) 
2.88 87.50 76.12 

 

The preceding discussion demonstrates that surface slope removal significantly changes 

the semivariogram, and consequently affects the fractal parameters D and l. Though slope is one 

of the major attributes of surface topography, it will disturb the quantification of surface 

roughness. Therefore, surface slope should be removed before calculating semivariance and 

applying fractal analyses to characterize surface microtopography. In this study, the overall slope 

for each surface was removed before analyzing surface microtopography. However, slope effect 

should be considered during the analyses of topography related processes, such as surface runoff 

process, sedimentation process, and solute transportation process. 
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2.8.2 Monofractal and multifractal analysis of surface topography 

Figue 2.6 shows the omnidirectional semivariograms for the six laboratory surfaces (S1 – 

S6) and the two field surfaces (S7 – S8). All the eight semivariograms reach a plateau or sill at 

certain distances, which vary among surfaces (Fig. 2.6). The distance at which the 

semivariogram reaches sill is defined as the range. Both sills and ranges increase from S1 to S6 

as the size of soil aggregates becomes larger (Figs. 2.6a – 2.6f). For S1 – S6, the semivariances 

increase rapidly for small lag distances (h), which indicates a close correlation for small scale 

elevation variations. The increasing rate of a semivariogram implies how quick the influence of a 

sample drops off with distance. Then, the semivariance becomes relatively stable (sill) beyond a 

certain h, which varies slightly among surfaces (Figs. 2.6a – 2.6f).  

For both field plot surfaces S7 and S8 (Figs. 2.4g and 2.4h), the semivariance values 

increase significantly within small lag distances (h) and then approach to their sill values (Figs. 

2.6g and 2.6h). However, the variance value (sill value) for S7 reaches up to about 1,200 mm
2
 

and the sill value of S8 is only approximately 70 mm
2
, which indicates that S7 exhibits much 

greater variations in elevations than S8 does. The semivariogram of S8 show an asymptotic sill 

beyond the lag distance (h) of around 700 mm, implying that beyond this lag distance no spatial 

correlation exists. Oscillation in surface microtopography of S7 can be observed for the larger h 

part of the semivariogram curve of S7 (h is greater than 1,300 mm) (Fig. 2.6g). In addition, slight 

differences in the semivariograms at the short distance between S7 and S8 can be observed that a 

region of low slope near the zero distance occurs in S7 (Fig. 2.7g). This is because for S7, the 

data those within short distance vary smoothly. For example, the puddle surface is smooth (Fig. 

2.4g). However, S8 is overall smooth but show small variations in elevation at small distance 

(Fig. 2.4h), resulting in more rapid increase in the semivariance value. 
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Fig. 2.6 Omnidirectional semivariogram for the six laboratory surfaces (S1 – S6) and two field 

surfaces (S7 – S8) 

 

Fig. 2.7 shows the omnidirectional semivariograms for the eight surfaces (S1 – S8) in 

log-log plots with the fitted linear red lines that are used to derive the D and l. It can be seen that 

only one linear segment is observed for the semivariograms of the six random rough surfaces (S1 

– S6) within certain distances, thus fractal analysis focuses on one linear segment for these six 

surfaces (Figs. 2.7a – 2.7f). For the two field plot surfaces (S7 and S8), however, the 
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semivariograms exhibit two distinct linear segments before reaching the sills (Figs. 2.7g and 

2.7h). Thus, multifractal analysis is performed for these two surfaces by fitting two linear 

segments on the semivariogram curves. The first linear segment characterizes the smaller scale 

surface topography, while the second segment reveals larger scale topographic variability.  

 
Fig. 2.7 Omnidirectional semivariogram for the six laboratory surfaces (S1 – S6) and two field 

surfaces (S7 – S8) in log-log plot 
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Table 2.3 shows the results of omnidirectional fractal parameters for S1 – S6. D values 

decrease gradually as soil aggregates become larger (Table 2.3). S1 with the smallest soil 

aggregates shows rapid changes in mounds and depressions on the surface, indicating more 

irregularity and thus resulting in a higher D value. This result is consistent with the findings by 

Zribi et al. (2000) and Sun et al. (2006). In contrast, S6 with the largest soil aggregates has the 

lowest D value since the change of elevations is more gradual and smoother at local scales. The 

D values for the six surfaces (S1 – S6) decrease from 2.95 to 2.65. The l values vary from 5.86 

mm for S1 to 11.30 mm for S6 (Table 2.3). However, surfaces with dissimilar topographic 

characteristics may have similar D values. For example, the difference in D values between S2 

and S3 is small (0.05), but their difference in l values is as high as 2.59 mm (Table 2.3). This is 

due to the distribution of aggregates on both surfaces. S2 and S3 both are characterized with 

randomly distributed soil aggregates, but the average clod size of S3 is greater that of S2 (Figs. 

2.4b and 2.4c). A similar D value suggests that the proportions of aggregate size distribution are 

similar for both surfaces, while a higher l value indicates greater variability in surface elevations 

at the actual scale. Thus, a rougher soil surface (i.e., with bigger size of clods) has a higher l 

value. Hence, D and l should be jointly used to quantify surface topographic properties.  

Table 2.3. Omnidirectional fractal dimension (D), and crossover length (l) for the six laboratory 

surfaces (S1 – S6) 

Surfaces S1 S2 S3 S4 S5 S6 

D 2.95 2.89 2.84 2.72 2.69 2.65 

l (mm) 5.86 7.46 10.05 10.31 10.31 11.3 

 

Table 2.4 shows the omnidirectional fractal parameters for S7 and S8 at the two scales. 

S7 has much smaller D and l values for the small scale (D = 2.20, l = 0.0005 mm, and dB = 

419.89 mm) than those for the large scale (D = 2.63, l = 1.97 mm, and dB = 700.77 mm) (Table 
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2.4). This low D value of S7 at the small scale captures the characteristics of local depressions 

and mounds on the surface. Because the sizes of major depressions on S7 are about 400 – 500 

mm in diameter (Fig. 2.4g), and the scale at which D and l are derived is within this range (i.e., 

dB = 419.89 mm). Note that a D value close to 2 implies that less volume of the surface is 

“filled”; while a high D value close to 3 suggests that the surface is almost “filled” to reach the 

3D dimension. This conclusion can be verified based on the microtopographic characteristics of 

S7. Within the scale of the depressions (i.e., h = 400 – 500 m), more space is “unfilled”, and the 

vertical variation of elevations is small, resulting in low D and l values. In addition, a low D 

value indicates that the surface is “smooth” at the corresponding scale. The elevation points 

within this scale are correlated so that the elevation of any point can be interpolated by its 

neighboring points. However, beyond this scale, the detailed information of the surface is 

missing, resulting in a sharp change in the semivariogram curve. This break at the horizontal 

scale leads to the fractal D changes. Elevations may change significantly at a larger scale (a 

larger h) (Sung et al. 1998). In this study, D and l from the secondary segment reveal large scale 

topographic features, such as the distribution of depressions across the entire surface. D and l 

values from the second segment are much greater than those for the first segment (Table 2.4), 

implying that at a larger spatial scale (h = 419.89 – 700.77 mm) more significant changes in 

elevations dominate the surface topography for Surface S7. 

Table 2.4. Omnidirectional fractal parameters for two field surfaces (S7 – S8) at two scales 

Surfaces Segments 
Fractal 

Dimension (D) 

Crossover 

Length (l) (mm) 

Breakpoint 

Distance (dB) (mm) 

S7 
1

st
 segment 2.20 0.0005 419.89 

2
nd

 segment 2.63 1.97 700.77 

S8 
1

st
 segment 2.50 0.15 320.12 

2
nd

 segment 2.79 1.65 680.10 
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Similar results can be observed for S8. That is, D and l values from the secondary 

segment are higher than those of the first segment (Table 2.4). The D value of 2.79 at the scale of 

320.12 - 680.10 mm indicates that the auto covariance of surface elevations at this scale is low. 

In other words, the surface is relatively disordered. In spite of the overall smoothness of S8, 

small variations in surface elevations are random (Fig. 2.4h). Overall, S8 has greater D values 

than S7 for both segments, indicating much more rapid local changes in surface elevations for S8 

(Table 2.4). Based on D and l values, it can be concluded that at a small scale S7 shows 

significant topographic variations with spatial scales along the horizontal direction (low D), and 

smaller vertical variability in elevations (low l) at the reference scale. S8 looks smooth (high D), 

but the local variability in elevations is greater (higher l). Thus, multifractal analysis can be a 

useful way to identify the scale, at which the dominant topographic characteristics of surfaces 

change. This critical scale is determined based on the obvious change in the semivariogram 

curve and the calculated D value. Thereafter, the dB (i.e., critical scale) should be another 

important parameter in fractal analysis in that the variation of D and l for any surface is 

dependent on the dB value. 

2.8.3 Analysis of anisotropic properties of surface topography 

Anisotropy of microtopography was analyzed for the eight laboratory and field surfaces 

by using directional fractal parameters. Fig. 2.8 shows the rose plots of D and l for S1 – S6 along 

the 24 selected directions. The circular shape of the D and l curves indicates the isotropic 

property of those surfaces; while the noncircular curves represent the anisotropic property of 

topographic surfaces. As has been mentioned previously, the (h) values calculated along any 

two opposite directions are identical (Isaaka and Srivastava, 1989). Therefore, the derived D and 
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l values are symmetrical about the origin, which can be observed from Fig. 2.8. Accordingly, the 

following discussions of anisotropy analyses will focus on the upper portion (0º – 180º).  

For S1 – S6, soil aggregates are randomly distributed, and there are no slope and oriented 

tillage marks (Figs. 2.4a – 2.4f). Since it has been verified that D and l should be jointly used to 

analyze surface topography in Section 2.8.2, D and l are examined side by side to study the 

surface anisotropy. The variation of D and l values along different directions indicates that these 

surfaces are not uniform, and exhibit anisotropy. However, only minor directional variations in D 

and l can be observed for all the six microtopographic soil surfaces (Fig. 2.8). Particularly, S1 

with the smallest aggregates show quite uniform distributions of D and l values, indicating that 

S1 is close to isotropy (Fig. 2.8). As soil aggregates become larger, the variations of D and l are 

more significant from S1 to S6, which means that S6 shows more obvious anisotropy (Fig. 2.8). 

Generally, D decreases and l increases from S1 to S6 as the sizes of aggregates increase (Fig. 

2.8). These decreasing or increasing patterns are consistent with the results from the 

omnidirectional fractal parameters. 

Fig. 2.8 Distributions of fractal dimension D and crossover length l for S1 – S6 along the 24 

selected directions 
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Fig. 2.9 Distributions of fractal dimension D and crossover length l for S7 – S8 along the 24 

selected directions at two scales 

 

Fig. 2.9 shows the distributions of fractal D and l for the two field surfaces S7 and S8 

along the 24 selected directions at two scales. For S7 at the small scale (first segment), D 

captures the detailed topographic information within the local depression scale of the surface. 

The D values range from 2.17 (along 45°) to 2.23 (along 165°) with small variation, which 

shows slight anisotropy (Fig. 2.9a). This is because the shapes of the depressions on S7 do not 

have any directionally distributed patterns (Fig. 2.4g). However, l values of S7, ranging from 

0.0002 mm to over 0.002 mm (Fig. 2.9a), exhibit obvious anisotropic properties. The l values 

depict the vertical elevation changes along different directions. Even though the change in l 

seems great, the changing magnitude actually is of an order of 10
-3

 (Fig. 2.9a). Thus, the vertical 

variation in surface elevations at the small scale is small. On the contrary, the D values of S7 at 

the large scale (second segment) show more anisotropic properties. The D values along 90° – 
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120° are the smallest among all directions (Fig. 2.9b). This can be attributed to the surface 

microtopography of S7. Along 90° – 120°, surface microtopography exhibits more undulation 

because of the two major ridges across the surface, but the change in elevations is smooth and 

gradual (Fig. 2.4g). 

For S8, D and l show stronger anisotropic distributions at the small scale and more 

isotropic distributions at the larger scale, which are opposite from S7 (Figs. 2.9c and 2.9d). For 

this relatively smooth surface S8, the changes in elevation at the small scale represent the local 

variations associated with small aggregates. At the larger scale, the correlation between elevation 

points is low and the surface looks smooth. Thus, the surface had relatively uniform distributions 

of D and l along all directions (Fig. 2.9d).  

It should be noted that S7 shows more anisotropy at larger scale than S8 does at smaller 

scale (Fig. 2.9). This difference can be attributed to their distinct topographic features. The 

overall distribution of depressions across S7 can be captured by the anisotropically distributed D 

and l at the large scale, while the topographic information of each depression can be depicted at 

the small scale. For S8, the characteristic of overall smoothness can be captured by the 

distributions of D and l at the larger scale, while the minor variations in elevations at the small 

scale across the surface result in the non-uniform distributions of D and l (Fig. 2.9). Thus, the 

directional fractal parameters D and l can be useful indicators for quantifying the anisotropic 

properties of topographic surfaces. 

Table 2.5 shows the calculated anisotropy index (a) values [Eq. (16)] for the eight 

surfaces. Though the rose plots of S1 – S6 show the variations of D and l along different 

directions (Fig. 2.8), the variations are quite uniform, resulting in small SD(D). Therefore, the a 

value that is dependent on SD(D) is small. Basically, the a values for the six laboratory surfaces 
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(S1 – S6) are very close except for S1 (Table 2.5). S1 has the lowest a value, indicating that the 

surface with small aggregates possesses highly isotropic properties. As to the field plot surfaces, 

S7 and S8 show stronger anisotropy with higher a values at the large and small scales, 

respectively (Table 2.5). These findings are in accordance with those from the rose plots showing 

the directional distributions of D in Figs. 2.8 and 2.9. Thus, the anisotropy index a can be 

effectively used to quantify the anisotropic property of surface microtopography.  

Table 2.5. Anisotropy index (a) for the six laboratory-scale surfaces (S1 – S6) and the two field 

surfaces (S7 – S8) 

Surfaces S1 S2 S3 S4 S5 S6 

Anisotropy 

index (a) 
1.01 1.06 1.07 1.05 1.05 1.06 

Surfaces 

S7 S8 

  1
st
 

segment 

2
nd

 

segment 

1
st
 

segment 

2
nd

 

segment 

Anisotropy 

index (a) 
1.04 1.09 1.08 1.04   

 

2.9 Relationships between D and RR, MDS, and NCA 

For S1 to S6, the D values decrease from 2.95 to 2.65 (Table 2.3), and the NCA values 

decrease from 117 to 60, except for S3 (Table 2.6). However, the RR values increase from 0.44 

cm to 1.50 cm, and the MDS values increase from 1,370.16 cm
3
 to 3,207.74 cm

3
 from S1 to S6 

as their soil aggregates become larger (Table 2.1). Fig. 2.10 shows the relationships between D 

and RR, MDS, and NCA. Generally, a random rough surface with a greater D value (e.g., S1) 

has smaller RR and MDS values, and a higher NCA value. That is, such a surface (S1) is 

relatively smooth (low RR), has shallow and small depressions/puddles (low MDS), and consists 

of many isolated areas (high NCA). However, a surface with a smaller D value (e.g., S6) has 

greater variations in surface elevations (high RR), deeper and larger depressions/puddles (high 
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MDS), and fewer isolated areas (low NCA). These dissimilar topographic characteristics of the 

surfaces affect their responses to a rainfall event.  

Table 2.6. The number of connected areas (NCA) for the six laboratory-scale surfaces (S1 – S6) 

Surfaces S1 S2 S3 S4 S5 S6 

NCA 117 92 99 89 66 60 

 

Fig. 2.10 Relationship between fractal dimension D and random roughness (RR), maximum 

depression storage (MDS), number of connected areas (NCA) for the six random roughness 

surfaces (S1 – S6) 

 

In summary, a rougher soil surface of a smaller D value has a higher RR, which results in 
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number of depressions/puddles on the surface. A complex surface that consists of more puddles 

has a higher D value. Since RR, MDS and NCA are able to characterize surface 

microtopography, one of the essential factors that control hydrologic processes; it is of interest to 

relate these hydrotopographic parameters to the fractal parameters D and l to explore the 

potential to apply D and l to improve the understanding of the related hydrologic processes. 

2.10 Fractal Analysis in Relation to Overland Flow Processes 

Fig. 2.11 shows the overland flow experiments conducted on S7 and S8. It can be 

observed that the distributions of water on the surfaces are controlled by their topographic 

conditions. At the small scale (first segment), S7 with a smaller D is featured with bigger and 

deeper puddles that are capable of storing more water (Fig. 2.11a). Within each puddle, the 

elevation change between two points is small at the small spatial scale (i.e., the puddle surface is 

locally smooth), as quantified by the smaller l value (Table 2.4). Thus, water transfers easily 

within each puddle. At this small scale, the effect of surface roughness on overland flow is 

minimal. In contrast, at the large scale (secondary segment), S7 is characterized with a greater D 

value and a much higher l value (Table 2.4), showing the overall rough surface features (e.g., 

distribution of puddles). At this large scale, surface topography plays an important role in the 

overland flow process since water movement is greatly affected or controlled by the “larger scale” 

puddles. Similarly, S8 with larger D and l values at the large scale (secondary segment) shows an 

overall higher roughness, which affects surface runoff.  

S8 is characterized with smaller and shallower puddles and a greater number of small 

CAs than S7 (Fig. 2.11b). The difference in overland flow between these two surfaces is 

determined by the overall difference in their topographic conditions. S7 with a lower D value has 

the potential to retain more water in depressions of the surface, which in turn redistributes 
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surface runoff water, enhances infiltration in the depressions, and delays surface runoff 

generation. In contrast, S8 with a greater D value has smaller depression storage and surface 

runoff occurs earlier than S7 with a lower D value.  

Fig. 2.11 Pictures from field experiments to demonstrate the hydrologic processes for S7 and S8 

Another important factor that controls the drainage system is the anisotropic/isotropic 

properties of surface microtopography. According the fractal parameters D and l, the six lab 

surfaces (S1 – S6) show relatively isotropic properties (Fig. 2.8). For an anisotropic surface, the 

dominant roughness exists along the directions of lower D values. For example, S7 shows 

anisotropy in D at the large scale (secondary segment) (Fig. 2.9b). The D values are small in the 

directions of 90° – 120° (i.e., north to northwest) (Fig. 2.9b), along which surface runoff is 

hindered/blocked by continuously distributed ridges (Fig. 2.11a). For other directions, more 

puddles can be hydrologically connected (Fig. 2.11a). For S8, its small and shallow puddles are 

distributed more evenly, resulting in stronger isotropy, and thus no obvious directional runoff 

process exists (Fig. 2.11b). Attention should be paid that the above analyses were based on 

surfaces with slope effects removed. Slope affects the surface runoff direction, but it is not the 

focus of this study. 

From the above analyses, it can be concluded that the spatial complexity of the overland 

flow processes is highly dependent on the surface topographic conditions. The fractal parameters 

(a) Surface S7 with water (b) Surface S8 with water 

E
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D and l can provide useful information that helps understand the related hydrologic processes. It 

is of great importance to examine the mechanisms of overland flow generation and surface 

runoff processes under the influence of surface microtopography. 

2.11 Summary 

In this study, six laboratory surfaces and two field plot surfaces were created; and the 

random roughness (RR) index and the fractal analyses were conducted for quantifying the 

surface microtopography. The semivariogram method was applied for calculating the fractal 

parameters. A semivariogram is the plot of (h) as a function of h along the specified direction. 

The linearity of the (h) curve suggests the fractal behavior of the surface topography. By 

plotting the semivariogram on a log-log plot and fitting a linear line to the linear segment of the 

(h) curve, the D and l values can be derived from the slope of this fitted line and the ordinate 

intercept. It has been demonstrated that RR index can capture the overall surface roughness, with 

higher RR value indicating rougher surface topography and lower RR value representing 

relatively smooth surfaces. However, the RR index cannot account for the spatical correlation of 

surface topography, and it does not provide scale information of the surface. Thus, two surfaces 

at different scales may result in the same RR value.  

However, the fractal dimension D combined with crossover length l are able to quantify 

the spatial and vertical variance of surface topography. The fractal D value is scale dependent, 

which describes horizontal roughness, and l represents vertical variability in elevations at the 

reference scale. Particularly, anisotropy/isotropy of surface microtopography was examined for 

the selected surfaces by directional fractal analysis, and further was quantified by introducing a 

modified anisotropy index. It was found that surface slope removal had a significant effect on the 

calculation of fractal parameters. Since overall surface slope adds the correlation between two 
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upstream and downstream points, it will disturb the quantification of surface roughness. 

Therefore, surface slope should be removed before calculating semivariance and applying fractal 

analyses to characterize surface microtopography. However, being an important topographic 

attribute, slope effect should be considered during the analyses of topography related processes, 

such as surface runoff. It was demonstrated that multifractal analysis was able to capture surface 

topographic features at different scales. Fractal dimension D and crossover length l at smaller 

scales depicted more details on surface microtopography, while the overall topographic features 

were characterized by D and l at larger scales. This study showed that D was inversely correlated 

with random roughness RR and maximum depression storage MDS, and was directly related 

with the number of connected areas NCA. Since surface microtopography affects the distribution 

of runoff water and development of the drainage system, the parameters that are able to 

characterize surface topography (e.g., RR, MDS, NCA, and the fractal parameters D and l) can 

be effectively used to help understand the overland flow generation process. A surface with a 

smaller D value has the potential to retain more water on the surface (in depressions), which in 

turn redistributes surface water, enhances infiltration in the depressions, and delays surface 

runoff generation. The dominant surface roughness exists along the directions of smaller D 

values. Along those directions, surface runoff is prone to be hindered/blocked by continuously 

distributed ridges. Other directions possess better hydrologic connectivity.  



44 

CHAPTER 3. DELINEATION OF PUDDLES AND DETERMINATION OF THEIR 

HYDROLOGIC PROPERTIES 

As has been stated in the previous chapter, fractal parameters (D and l) and the 

hydrotopographic parameters (RR, MDS, NCA) were able to effectively characterize surface 

microtopography, which is important and necessary for hydrologic modeling since more accurate 

surface characterization can help develop more realistic hydrologic models. However, it is 

difficult to accurately calculate MDS and NCA. Thus, the PD program was applied in this study 

to overcome this problem.  

Many studies have been done in the past to calculate the maximum depression storage 

(MDS) of a soil surface, but those researches calculated the MDS indirectly from roughness 

indices, and averaged the MDS as the maximum equivalent water depth that can be stored on a 

surface (Onstad 1984; Mwendera and Feyen 1992; Hansen et al. 1999; Kamphorst et al. 2000). 

As more and more high-resolution DEM data are available these days, various methods have 

been developed to estimate more accurate MDS directly by using DEMs (Ullah and Dickinson 

1979; Huang and Bradford 1990; Martz and Garbrecht 1993; Hansen et al. 1999; Kamphorst and 

Duval 2001; Planchon and Darboux 2002). Except for Planchon and Darboux (2002), other 

researchers implemented a similar algorithm to calculate MDS. That is, the local minima were 

first located based on DEM, and then the depressions were gradually filled with water until the 

spilling point has been reached. In this way, the MDS of a rough surface was calculated by 

summing the amount of water that fills all depressions on a surface. However, Planchon and 

Darboux (2002) described their method of first submerging the entire surface with a thick layer 

of water and then draining all the excess water that overflows the depressions. The remaining 

water on the surface is determined as the MDS. 
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3.1 Introduction to the Puddle Delineation (PD) Program 

The Windows-based puddle delineation (PD) program (Chu et al. 2010) is one of the 

programs using numerical methods, developed to characterize surface microtopography, 

delineate puddles and their relationships, calculate MDS, and determine topographic and 

hydrologic properties such as slope, aspect, flow directions, flow accumulations, and 

contributing areas. It has been verified by Chu et al. (2010) that the PD program provides 

accurate MDS not only for an individual puddle/depression, but also for the entire surface. The 

NCA of a soil surface was determined based on the flow directions. The main Windows interface 

of the PD software includes a map area, the data input area, and result displaying area (Fig. 3.1). 

The main interface shows the summarized puddle delineation results, including the MDS of the 

entire surface and the contributing area for any user specified cell (Fig. 3.1). The detailed results 

can also be accessed in the formats of text documents and 2D figures. 

Fig. 3.1 Interface of the Windows-based Puddle Delineation Software 

Map area Detailed results 

Summarized 

results 

Puddle 

delineation, 
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flow directions 

and flow 

accumulations 

 

Data setting and 

input 
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Prior to calculating the MDS of a surface, all puddles have to be delineated. To identify 

puddles with any size on a surface, the PD program first identifies the center(s) of each puddle. 

The center is the cell with the lowest elevation compared with the elevations of its surrounding 

eight cells. Then the puddle searching/expansion process starts from the identified center(s). 

Following a set of criteria, all cells belong to each puddle are included in the puddle. The 

searching process continues until threshold cell(s) has been met. The threshold cell is the one 

through which water in the puddle can flow out. Thus, puddles are then determined for the entire 

surface. 

3.1.1 Determination of flow directions and contributing areas  

Flow directions are determined for all cells based on the D8 method (O'Callaghan and 

Mark 1984). In this program, numbers 1 to 8 represent the flow directions of east, south, west, 

north, southeast, southwest, northwest, and northeast, respectively. For boundary cells along the 

entire study area, water flows out of the boundary if those boundary cells have a lower elevation 

than their neighboring cells. That is, an open boundary condition is assumed. For puddle centers, 

the concept of “no flow direction” has been introduced. That is, a zero flow direction value is 

given to all puddle centers. Based on flow directions, the contributing area of any specified cell 

can be determined. Since puddles break the connections on the surface, water accumulated in the 

local minima (i.e., puddles). Thus, each cell within the puddle has a unique contributing area, 

with the puddle centers having the largest contributing area.  

3.1.2 Calculation of MDS and NCA 

After all puddles have been identified, the MDS of the entire surfaces as well as for any 

individual puddle can be calculated. Within each puddle, the elevation difference between the 

threshold cell and each cell of that puddle is the maximum depth of water that cell can retain. 
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Then the volume of water that each cell can hold can be calculated as the maximum depth 

multiplied by the area of that cell. The summation of the volume of water calculated for each cell 

within a puddle is the MDS of that puddle. The MDS for the entire surface can be expressed as 

(Chu et al. 2010):  

 
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1 1

,  (17) 

where MDS = maximum depression storage of the entire surface; n = number of puddles; mi = 

number of cells in puddle i; zti = elevation of the threshold of puddle i; zi,j = elevation of cell j 

within puddle i; x = size of a cell along x direction; and y = size of a cell along y direction. 

The scheme of calculating the MDS is shown in Fig. 3.2. 

 

Fig. 3.2 Scheme of calculating maximum depression storage (MDS) of a puddle 

Similarly, the NCA of a surface can be calculated. To determine the CAs, the puddle 

centers and outlet cells have to be located first, which can be obtained from the puddle 

delineation results and the calculated flow directions. Then, the contributing cells to each puddle 

center and outlet can be tracked by the flow directions. Thus, the NCA of a surface equals the 

number of puddles plus the number of outlets of that surface. Each CA consists of a puddle or an 

outlet and the contributing cells to that puddle or the outlet. 

3.1.3 Calculation of terrain parameters 

Many terrain parameters, such as slope, aspect, and curvature can be derived from DEMs 

directly or indirectly. These computed parameters could be used to describe topography and 

zti 
Δx = Δy 

zi,j 
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quantify the effect of topography on redistributing surface water, which may have significant 

hydrological and topographical consequences. The PD program is designed to calculate local 

slope and aspect of any DEM. In addition, those parameters are shown in 2D figures for better 

visualization. 

Local slope is computed using the steepest downhill slope to one of the eight nearest 

neighbors (i.e., the D8 method), which is similar to determining flow directions. Local slope can 

be calculated as: 

%100
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max 0
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

 ih
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S i
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where S = local slope (%), Z0 = elevation at the center, Zi = elevation at the neighboring eight 

cells, h(i) = grid size (dx) for cardinal (north, south, east, and west) neighbors (i = 1, 2, 3, 4), and 

h(i) = 2  × grid size (dx) for diagonal neighbors (i = 5, 6, 7, 8). Fig. 3.3 shows the ordering of 

the grids for slope calculation. 

Fig. 3.3 The ordering of the grids for slope calculation 

Aspect is the direction of the downhill gradient, which is calculated by the D8 method in 

the PD program. Aspect is measured clockwise in degrees from 0 to 360 coming full circle, 

which can also be described in eight directions as flow directions. Therefore, aspect is the same 

as flow direction in the PD program. The PD program shows aspect in eight distinct colors 

representing eight directions.  

Z3 Z0 Z1 

Z6 Z2 Z5 

Z7 Z4 Z8 
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3.2 Applications of the Puddle Delineation (PD) Program 

Since the eight surfaces in this study are characterized with hundreds of puddles with 

different sizes, a surface (S9) with few puddles (Fig. 3.4a) was selected here to show how the PD 

program calculates the MDS and NCA with more ease and clarity. Fig. 3.4b shows the puddle 

delineation results for S9. It can be observed that all four puddles are individually distributed as 

shown in Fig. 3.4a, and each puddle has one center and one threshold (Fig. 3.4b). Therefore, the 

MDS of each puddle can be calculated based on Eq. (17) in the PD program. Table 3.1 shows the 

MDS values for each puddle and the entire surface of S9. Puddle P2 that has the highest MDS 

value of 9.33 cm
3
 (Table 3.1) is the puddle with the largest size and depth as shown in Fig. 3.4a. 

Similarly, the relatively shallow and small puddle of P3 shows the lowest MDS value of 0.77 cm
3
. 

The MDS of the entire surface is 17.20 cm
3
 by summing the MDS values of all puddles (Table 

3.1). 

Fig. 3.4 Puddle delineation results for surface S9 

Table 3.1. The calculated MDS values for S9 

 
P1 P2 P3 P4 Entire surface 

MDS (cm
3
) 2.86 9.33 0.77 4.24 17.20 

 

(b) Delineated puddles  (a) Surface S9 with four puddles 

P1 

P2 

P3 

P4 

Puddle cell 

Puddle center 

Puddle threshold 

P1 

P2 

P3 

P4 



50 

As has been mentioned previously, the flow directions have to be determined before 

calculating the NCA. The calculation of flow directions has been detailed in Section 3.1.1. For 

better visualization, the flow directions are displayed in a 2D figure in blue lines with arrows 

indicating eight distinct directions. Fig. 3.5 shows the flow directions of each cell for S9. It can 

be seen that no flow direction is assigned to puddle centers as described in Section 3.1.1 (Fig. 

3.5). The flow direction of the threshold cell can either flow into or out of the puddle based on 

the D8 method (Fig. 3.5).  

Fig. 3.5 Flow directions of S9 in 2D figure 

Based on the flow directions, contributing areas for any cell can be calculated. Fig. 3.6a 

shows the contributing area of a puddle center for S9. It can be observed that the selected puddle 

center receives the water contributing from the surrounding upstream cells based on the flow 

directions (Fig. 3.6a). In addition, all the outlets of a surface as well as the cells that have the 

potential of contributing water to each outlet can be identified. In the PD program, the outlets of 

a surface are defined as the boundary cells with flow directions pointing out of the boundary. As 

has defined in section 3.1.2, each CA consists of a puddle or an outlet and the contributing cells 

Puddle cell 

Puddle center 

Puddle threshold 

Flow directions 
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to that puddle or the outlet. Thus, the NCA can be determined. For example, the NCA of S9 is 5 

(i.e., 5 polygons) (Fig. 3.6b). 

Fig. 3.6 Contributing area and the number of connected areas of S9 

The local slope and aspect, which determine the initial flow velocity and direction on the 

surface when rainfall occurs, are two of the basic surface topography parameters. They are the 

major factors that affect how water flows on the surface and how the drainage patterns develop 

on the surface. In addition, they are also important in topography related environmental and 

hydrologic modeling. Therefore, local slopes and aspects have been calculated to analyze surface 

topography in the PD program. Slope is calculated in percent rise, and aspect is measured in 

degrees. Since water cannot flow to anywhere else in the puddle centers, “zero” slope is assigned 

to the puddle centers in the PD program (Fig. 3.7a). Similarly, aspect at the puddle centers is also 

“zero.” The PD program shows aspects in eight distinct colors representing eight directions and 

additional grey color indicating the cell with “zero” aspect (Fig. 3.7b). 
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(b) Connected areas (CAs) and the 
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Fig. 3.7 Local slopes and aspects for S9  

3.3 Summary 

The PD program was applied in this study to delineate surface topography, focusing on 

identifying puddles with any size. After puddle delineation, the MDS of each puddle as well as 

for the entire surface were calculated directly based on the DEM in the PD program. In addition, 

some of the hydrologic properties, such as flow directions and contributing areas, as well as 

topographic parameters such as local slopes and aspects have been computed to further analysis 

of surface microtopography. The NCA was determined based on the delineated puddles and the 

flow directions. It has been provided in this study that the PD program can effectively determine 

the MDS and NCA to examine surface microtopography. 
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CHAPTER 4. OVERALL CONCLUSIONS AND FUTURE WORK 

This thesis presents results of research on the characterization of surface topography. 

Eight soil surfaces including six laboratory surfaces with the same area of 0.6 m × 2 m and two 

field surfaces with an area of 6 m × 3.2 m were selected for this research. Random roughness 

(RR) index and fractal parameters (D and l) were computed to characterize microtopography of 

those eight surfaces. The commonly-used hydrotopographic parameters, such as RR, maximum 

depression storage (MDS), and the number of connected areas (NCA), as well as fractal analysis 

provide a useful way to characterize the spatial complexity of surface microtopography.  

It has been found that the RR index can quantify the overall surface roughness. The 

higher the RR index value, the rougher the surface is, and vice versa. Basically, the RR index is 

the standard deviation of the elevation changes. Therefore, the RR index lacks information on the 

scale effects and the spatial correlation of surface topography. To account for this issue, the 

fractal method has been implemented to analyze surface topography. The fractal dimension D 

describes horizontal roughness, which is proven to be scale dependent, and the crossover length l 

represents the vertical variance in elevations at the reference scale. Anisotropic properties of the 

surfaces were examined by using the directional semivariogram method and a modified 

anisotropy index (a). Furthermore, multifractal analysis was performed to identify the dissimilar 

changing patterns of fractal dimension (D) and crossover length (l) for the soil surfaces at 

different scales. It has been found that D and l at small scales describe topographic surfaces in 

more detail; while the overall topographic feature of the surfaces can be captured by D and l at 

larger scales. Surface slope removal has a great effect on the fractal calculation using the 

semivariogram method. This study also demonstrated that fractal parameters D and l have clear 

and meaningful relationships with the hydrotopographic parameters, such as RR, MDS, and 
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NCA. It has been found that a rough surface with a greater D value would have smaller RR and 

MDS values, and a higher NCA. Thus, the inception of surface runoff usually is delayed on the 

rough surface (i.e., surface with a high RR value), due to the greater MDS to be filled and more 

CAs (i.e., high NCA) to be hydrologically connected to contribute water to the outlet. More 

importantly, fractal and anisotropic analyses enable one to better understand the overland flow 

generation process. A surface with a small D value has the potential to retain more water on the 

surface (in depressions), which in turn redistributes surface runoff water, enhances infiltration in 

depressions, and delays surface runoff initiation. The dominant roughness exists along the 

directions of smaller D values. Along those directions, surface runoff is prone to be 

hindered/blocked by ridges, while better hydrologic connections occur along other directions, 

along which depressions appear to be more hydrologically connected so that the drainage 

networks can develop more easily.  

The scale problem is critical and important in analyzing topographic surfaces. Fractal 

analysis can address the scale issue of a topographic surface; but this is not the focus of this 

thesis. Future work may further investigate the application of multifractal application in surface 

characterization. And efforts should be made to link the surface quantification to the modeling. 

Both RR index and the fractal parameters can quantify surface microtopography 

statistically, but they cannot provide detailed spatial information of surfaces, such as the 

locations of the depressions or mounds, which is critical to hydrological analysis and modeling. 

The puddle delineation (PD) program applied in this study is able to spatially delineate surface 

microtopography. With the PD program, puddles with any size on the surface can be identified. 

After puddle delineation, the hydrologic properties of the surface can be determined. First, the 

MDS of each puddle as well as for the entire surface can be calculated. Then flow directions, and 
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contributing areas are determined, based on which the NCA can be effectively calculated. In 

addition, topographic parameters such as local slopes and aspects can be computed for further 

hydrologic analysis.  
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