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ABSTRACT 

Plasma-assisted processing and deposition of materials is an important component of 

modern industrial applications, with plasma reactors sharing 30% to 40% of manufacturing steps 

in microelectronics production [1]. Development of new flexible electronics increases demands 

for efficient high-throughput deposition methods and roll-to-roll processing of materials. The 

current work represents an attempt of practical design and numerical modeling of a plasma 

enhanced chemical vapor deposition system. The system utilizes plasma at standard pressure and 

temperature to activate a chemical precursor for protective coatings. A specially designed linear 

plasma head, that consists of two parallel plates with electrodes placed in the parallel 

arrangement, is used to resolve clogging issues of currently available commercial plasma heads, 

as well as to increase the flow-rate of the processed chemicals and to enhance the uniformity of 

the deposition. A test system is build and discussed in this work. In order to improve operating 

conditions of the setup and quality of the deposited material, we perform numerical modeling of 

the plasma system. The theoretical and numerical models presented in this work 

comprehensively describe plasma generation, recombination, and advection in a channel of 

arbitrary geometry. Number density of plasma species, their energy content, electric field, and 

rate parameters are accurately calculated and analyzed in this work. Some interesting 

engineering outcomes are discussed with a connection to the proposed setup. The numerical 

model is implemented with the help of high-performance parallel technique and evaluated at a 

cluster for parallel calculations. A typical performance increase, calculation speed-up, parallel 

fraction of the code and overall efficiency of the parallel implementation are discussed in details.  
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INTRODUCTION 

General Overview 

 Chemical deposition and coating methods are viable means for an effective 

manufacturing of electronic parts and components (i.e., ICs [2] and photovoltaic cells [3]), 

modification of material properties (i.e., wetting parameters [4], surface modification/coating [5], 

and etching [2], [5]-[7]), deposition of thin films [2], [3], [5]-[7] etc. 

 There are two general concepts that are used for materials processing. The first concept 

assumes the deposition at low pressure of the surrounding gas, usually in vacuum. Obvious 

advantages of such an approach are extreme cleanness of the final product, safe use of hazardous 

chemicals in the sealed system, and substantial rate of chemical reactions in the absence of 

contamination from atmospheric gases. On a general basis, the low pressure process provides the 

best quality of the deposition result, at the same time there are certain limitations that complicate 

and/or restrict the use of low-pressure process for industrial production, especially in the areas 

where high throughput and low cost are the primary objectives. The restrictions of the low-

pressure units are related to their overall complexity, due to the requirements for sealed 

chambers, loading/unloading ports, vacuum pumps, and supplementary equipment needed for 

system operation and control [3]. Not only the capital cost of such a setup is significantly high, 

but also maintenance of the system poses certain challenges. The setup has to be scaled up to 

accommodate specimens of larger size. The scaling process requires enlargement of the reactor 

chamber, which inevitably levels up the cost of the unit and aggravates its maintenance. The 

result is the increase of the produced materials’ cost and the decrease of demand for the product. 

The scalability of the low pressure setups is compromised by the negative effects associated with 
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special requirements of the production cycle, in particular with maintaining a specific 

environment in the reaction chamber. The low pressure in the chamber requires the use of 

loading/unloading ports to transition samples from air-based atmosphere into the sealed unit. 

This requirement severely affects the rapidness of the production cycle and the maximum size of 

the processed specimen. Thus, from one perspective, the low-pressure materials deposition is 

very accurate technique that could be used for critical applications where cleanness of the result 

is crucial (e.g. manufacturing of semiconductors, atomic level coatings/sputtering, and 

nanofabrication). From another perspective, some level of impurities is acceptable for the 

majority of applications (for instance, photovoltaic cells, anti-corrosion coatings, and fibers 

production). Therefore, the very accurate low-pressure technique is attractive, but it is not cost-

efficient. This is why there is an active search for cheaper and simpler alternative techniques. 

 The second concept of material processing owes its existence to high-pressure deposition, 

which usually happens at atmospheric conditions. When the requirement for a sealed and 

evacuated reaction chamber is eliminated, the system may be constructed without expensive 

vacuum pumps and chamber seals. The design of the chamber is simplified, allowing a wide 

range of adjustments for samples of different sizes. The energy use decreases, due to fewer 

components requiring power input. The time of the production cycle shortens since there is no 

need for load/unload procedures. The cost of the final product also decreases due to the 

simplified technological process. The deposition techniques at atmospheric pressure are often 

producing similar quality of the coatings in comparison to low-pressure processes [3]. Such 

systems can be developed with mobility in mind, which expands their range of applicability. The 

payoff for multiple positive features of the high-pressure systems is a dramatic decrease in the 

rates of chemical reactions which happens due to the presence of chemically reactive gases in the 
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surrounding atmosphere. To promote the reactions rate, the high-pressure process requires 

additional energy input in the form of heat flux, electric actuation or catalytic assistance. 

 The necessary energy input may be provided in a very efficient way, using plasma 

assisted deposition. The supplied energy is used to break neutral molecules into ions and 

electrons with the help of kinetic reactions [8,9]. Plasma is generated in the reaction chamber; it 

interacts with chemical precursors, supplying a surplus of electrons and energetic ions to the 

chemical reactions [10]. Plasma consists of electrons, positive or/and negative ions. These 

species respond to electric fields and, being bonded by electric forces, exhibit collective 

behavior, which is an intrinsic characteristic of plasma. There are two types of plasmas usually 

distinguished – thermal plasma, and non-thermal plasma. The species of thermal plasma possess 

comparable quantities of energy; thus, featuring similar temperatures and kinetic velocities. 

Thermal plasma may reach temperatures up to 104 K, this feature determines the range of 

applications for thermal plasmas – welding, metal cutting, deposition of molten metal particles 

etc. In many coating applications, excessive heat flux is rather destructive, while energetic ions 

are desirable to promote modifications of injected chemical precursor or to enhance surface 

chemistry at a substrate. Non-thermal plasma is an ideal candidate for such applications. This 

type of plasmas is characterized by a tremendous difference in energy of electrons and ions. Ions 

are large and bulky in comparison to electrons, with the mass differing by the order of kg103

(electron mass is kg10~ 30− and helium ion mass is kg10~ 27− ). Because of such bulkiness, ions 

cannot efficiently accelerate in electric field, especially when surrounded by a gas at atmospheric 

pressure. This fact is depicted by the low electric mobility of ions. At the same time, electrons 

are small and light; they rapidly accelerate in an electric field and acquire high kinetic energy, in 

the range of 5-6 eV (1 eV = 11000 K). Thus, electrons in non-thermal plasma may be very “hot”, 
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but their total mass is negligible in comparison to ions. The temperature of plasma is determined 

by ions that constitute the majority of the mass, exchanging their energy with surrounding gas 

and generating a heat flux.  

 In this work we consider non-thermal plasma only which we refer to as Atmospheric 

Plasma (AP); this term is based on the fact that plasma is generated at atmospheric pressure. 

Generation of plasma involves a certain number of processes, responsible for production of 

energetic species constituting plasma. These processes take place at the molecular level and are 

described with rate constants.  

 
(a) Excitation 

 
(b) Ionization ( )α  

 
(c) Attachment ( )η  

 
(d) Positive ion-electron recombination ( )rec

iek  

 
(e) Positive ion-negative ion recombination ( )rec

iik  

Figure 1. Schematics of processes in plasma at atomic level 

 The most useful rate constants were revealed during experiments by Townsend [6] with 

discharges in evacuated tubes, they are known as the first, second and third Townsend 
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coefficients. We explain these coefficients and basic plasma processes using He-based plasma, as 

this is the test gas we utilize in our theoretical and numerical analysis. Figure 1 contains a 

schematic diagram that does not truly image the actual physical process (it would require 

describing ions using a combination of elementary particles and electrons using clouds of 

charges depicted with proper spin and energy orbit), but provides a simple explanation which is 

intuitively appealing. 

 Let us assume that in a plasma generation chamber there are two electrodes arranged in a 

parallel configuration, the rest of the space is filled with some neutral gas – helium, for instance. 

Electric potential is applied across a gap created by electrodes, giving rise to an electric field in 

the gap. When the strength of the electric field increases, the field pulls an electron out of an 

electrode. The electron is accelerated by the electric field, traveling against the field lines (from 

lower electric potential to a higher one) and reaching very high velocity. Since the space between 

the electrodes is filled with a gas, there is a finite distance that the electron may travel without 

collisions with gas molecules. This distance, called the mean free path [11], is a function of gas 

pressure, with higher pressure corresponding to shorter distance. For example, for air at 

atmospheric pressure the mean free path is only 68 nm [12]; therefore, for a 1 mm gap there 

would be approximately 14700 collisions if electrons would be able to fly over such distance. 

For helium, the mean free path is in the range of 173.6 nm [13] to 192.7 nm [14], which is 

explained by the smaller size of the helium atom in comparison to nitrogen, oxygen and water 

molecules, as the main components of air. The smaller the molecule size, the lower the number 

of collisions to happen on the way of an electron. Thus, in helium per 1 mm gap, there would be 

about 5460 collisions. Since the average distance between collisions is quite large, the electron 

has more time to accelerate to high velocity, than it would in nitrogen. Therefore, in helium, 
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electrons possess more energy when a collision happens; this energy significantly increases the 

chances of ionization. This outcome also explains why helium has a lower breakdown voltage in 

comparison to nitrogen, while ionization energy required for helium is higher than that of 

nitrogen [3]. 

 There are four types of collision outcomes possible in electron-neutral molecule 

interactions. The first type – excitation – is related to exchange of energy between the particles. 

Helium has seven energy levels corresponding to different excited states of its atom (19.82 eV, 

20.61 eV, 20.96 eV, 21.21 eV, 22.97 eV, 23.70 eV, 24.02 eV [15]). Excitation may have 

different forms: increase in rotational and/or vibration energy of the molecule, change of electron 

orbit; the later excitation form is schematically shown in Figure 1.(a). The molecule may be 

excited to a certain state for a short period of time; if there is no additional energy input during 

that period, the molecule returns to its ground state, emitting a quantum of energy in the form of 

a photon [16, 17]. In our approach we do not consider this process; this is why we do not track 

energy exchange and excited states of atoms.  

 The second type of a collision outcome is ionization (Figure 1.(b)). When energy, 

transferred during the collision, overcomes 24.58 eV, a direct ionization eeHeeHe ++→+ +  

takes place. One of the electrons is released from the molecule, at the same time the molecule 

becomes a positive ion. Ionization may be stepwise, when the molecule gradually increases its 

excited state during multiple collisions e+→+ *HeeHe , eeHeeHe* ++→+ + , with the last 

collision bringing enough energy to overcome the ionization limit. The last energy portion is not 

necessarily large. It may be even energy absorbed from a photon emitted by another molecule

eHeHe +→+ +ωh ; in this case the process is called photo-ionization [6]. The sufficient photon 
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wavelength can be determined from
( )

nm45.50
eV58.24

eVnm1240

eV

eV12400
≈

⋅
=

⋅Α
<

I

o

λ , since it is 

lower than 100 nm, these photons fall into ultraviolet radiation range [6].  

 Ionization is described with the first Townsend coefficientα , which determines how 

many new electrons are generated per unit length, along a path of an electron. According to 

previous calculations, an electron may travel about 180 nm without a collision, constantly 

accelerating with the help of the electric field. Mokrov and Raizer [18] mention that electrons 

acquire the energy necessary for ionization faster when the current at the electrodes is higher. 

Electrons reach velocity 
eae

e m

eE
u

ν
0=  when accelerated in electric field 0E with frequency of 

elastic collisions eaν . The ionization process takes place [19] when energy of electrons surpasses 

the ionization energy level i
ee I

um
>

2

2

.  In the first collision, the electron would lose a portion of 

its energy; it would accelerate till the next collision, where another portion of energy will be lost. 

If the electron collides with a positive ion or with a wall/electrode, the electron is lost. Let us, for 

instance, assume that the electron traveled µm1 during its lifetime and had 5 collisions. We also 

assume that each collision led to generation of one new electron-ion pair. The ionization 

coefficient in this case would be 16 m 105µm1electrons5 −×==α . Of course, this calculation is 

illustrative only, as the number of newly generated electrons in He-based atmospheric plasma is 

only 1m2700 −≈α for quite high reduced electric field of Td24 [15]. 

 The third type of collision outcome is electrons’ attachment. When an electron with low 

energy hits a neutral molecule (Figure 1.(c)), it may attach to one of its orbits, under an 

assumption that total energy of such a system is below the ionization level. This mechanism is 
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responsible for formation of negative ions not only from atoms of simple gases, like helium or 

argon, but also from complex molecules, e.g. -
2 OHHeOH +→+ . In He-based plasma 

formation of negative ions is possible only at very high voltages and low pressures [20, 21, 22]. 

Since experimental conditions in an atmospheric plasma setup are way beyond these limits, 

formation of He- ions in atmospheric plasmas is almost impossible. This is why we do not 

consider attachment process in further evaluations. 

 The fourth type of the collision outcomes is recombination of the species. Recombination 

is the major mechanism responsible for species loss in plasma. It takes place when a positive ion 

interacts with a negative ion [23] (Figure 1.(e)) or an electron (Figure 1.(d)). In either case, the 

charged species are converted into neutral molecules. When recombination happens with the 

help of an electron, a sum of energies of separate species before the collision is higher than 

energy of the resultant neutral molecule. This is why this process often happens in the presence 

of the “third body”, which could be another free electron or emitted photon. The “third body” 

acquires the excess energy in the form of increase of its kinetic energy. Neither ions nor neutral 

molecules are able to change their kinetic energy fast enough to accumulate recombination 

energy, this is why these particles cannot be “third body” participants in the process. 

 Free electrons in plasma occur due to electron emission from the electrode material. The 

emission strongly depends on the electric field and temperature of the electrodes [24, 25]. At low 

electric fields thermionic emission is the major supplier of electrons from electrode surface. The 

electron flux due to emission is described (1) by the Richardson equation [26] with the constant 

in front of the temperature ( ) 2263
0 KmA1020173.124 ×== hππ emA e  taken in the form 

proposed by Sommerfeld 

 ( ) ( )kTWRTAj −−= exp12
0        (1) 
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The flux of emitted electrons j  depends on temperature of the electrode T , reflection of 

electrons from a potential barrier at electrode’s surface R , and work function W of the 

electrode’s material. The work function defines a potential barrier at the metal surface that the 

electron has to overcome in order to leave the material’s lattice.  

Table 1  
Work function and secondary emission for some materials [6] 

Material Work function Secondary emission 
 eV electron/atom 

C 4.7 0.24 
Cu 4.4 0.25 
Al 4.25 0.26 
Mo 4.30 0.26 
W 4.54 0.25 
Pt 5.32 0.22 
Ni 4.5 0.25 

It was discovered by Walter Schottky that the work function is lowered [27, 28] in the 

presence of electric field E by the value (2)  

 [ ] [ ]eV4V4 00
3 EeEeW πεπε ==∆   WWW ∆−= 0  (2) 

When electric field becomes greater than 108 V/m, electron field emission becomes the prevalent 

electron supplier [29]. In this case electrons’ flux from the electrode is determined according to 

the Fowler-Nordheim equation (3), using Fermi energy of metal Fε  (Fridman uses eV7=Fε  

for calculations [6]) 

 













−

+
=

Ee

Wm

WW

e
j eF

F hh 3

24
exp

1

4

23
0

00
2

2 ε
επ

     (3) 

When electric field is high, the Schottky effect is also present, but it cannot be introduced into 

(3) the same way as it was introduced into (1), using (2). The reason for such complication is that 

the electron flux at high electric field is very sensitive to small changes in the field values, for 



 

10 
 

example, 4x increase in electric field corresponds to 1023x increase in electron flux. This is why 

the correction is introduced in the form of a small parameter ξ  

 
( ) 








−

+
=

E

W

WW
j

F

F
23

0

00

685000
exp062.0 ξ

ε

ε
     (4) 

The correction parameter is defined in a table form [30] 

Table 2 
Schottky correction factor for Fowler-Nordheim equation 

Quantity Values 

0WW∆  0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

ξ  1 0.95 0.9 0.85 0.78 0.7 0.6 0.5 0.34 0 

 Another electron source at the electrode is secondary electron emission. This event takes 

place when a positively charged ion approaches the electrode, altering electric field in the 

vicinity of the electrode and pulls out an electron. The secondary electron emission becomes 

distinguishable, when ions come close to the electrodes; this happens when positive plasma 

column travels more than half of the sheath thickness, being driven by oscillating electric field 

[31]. This type of emission may be calculated using the secondary emission coefficient 

 ( )02 016.0 WI −≈γ          (5) 

We calculate the coefficient for helium-based plasma ( )eV58.24=I in the vicinity of aluminum 

( )eV25.40 =W electrode, the result is ( ) 2572802 016.0 .WI AlHe =−≈γ . 

 Thermal emission of electrons, electric pulling out of a cold metal and ionization of 

neutral molecules are the major sources of electrons in plasma; they provide electrons’ cloud for 

plasma igniting and sustainment. During their lifetime, electrons participate in collisions with gas 

molecules and generate more free electrons. This process resembles an avalanche (Figure 2) – 
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one electron generates another electron, two electrons generate four etc., leading to formation of 

a cloud of electrons that have random directions and velocities.  

 

Figure 2. Electrons avalanche 

 Each collision leading to electron generation also produces a positive ion. Thus, emission 

and ionization are the main sources of plasma species, while recombination is the main loss 

mechanism in pure plasmas. 

 An important characteristic of plasma is the degree of ionization (6), which shows the 

relation between charged particles and total number of particles constituting plasma-gas. Degree 

of ionization is an important parameter to determine proper processing of chemicals. Most 

industrial plasmas are weakly ionized with degree of ionization [32] in the order of 410−=DoI .  

 
nn

n
DoI

i

i

+
=           (6) 

 Charged particles readily respond to electric field and constitute a displacement current 

for atmospheric plasmas. Due to increase in number of plasma species, the current also increases, 

which, in turn, raises plasma temperature through ohmic heating mechanism.  
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Figure 3. Voltage-current characteristic of dc plasma discharge at low pressure [33] 

 Raised plasma temperature not only results in larger thermionic currents, but also 

promotes the secondary emission. With the increased number of electrons due to the emission 

processes, the plasma loses stability and is prone to arcing. Since arcing is an unfavorable mode 

for industrial deposition systems, the degree of ionization is usually kept low to not compromise 

plasma stability. 

 Figure 3 shows a current-voltage plot of a typical plasma unit. As it is shown in the plot, 

there are four modes of plasma generation could be distinguished [34]. The first region 

corresponds to initial plasma generation where electrons are emitted from electrodes, form an 

avalanche, and generate the necessary amount of positive ions. This process is not very stable, 

because conductivity of plasma is very low with not many species generated. It requires a 

substantial voltage to support electric current through hardly conductive plasma. When voltage 

increases, plasma transfers into the glow mode, which is the second region on the plot. In the 

glow mode, plasma is almost self-sustained; it requires only small power input to compliment the 

difference between species produced in bulk plasma and species required for plasma 
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sustainment. This is why voltage-current curve is flat for this region. The glow mode allows for a 

wide range of electrical settings for the plasma setup. In particular, the current could be 

increased, pumping more energy into plasma species and heating them up. If the process 

continues, thermal instability transfers plasma into unstable glow discharge when secondary 

emission significantly increases. This process corresponds to the third section on the plot. The 

last section is arc discharge mode that is energized by secondary electron emission [35]. In this 

mode plasma becomes extremely conductive, allowing for very high currents to be passed 

through the discharge gap. While this mode is favorable for welding, cutting, and melting 

applications, for industrial coatings it is better to defer from this mode into the stable glow 

discharge. 

 

Figure 4. Plasma operated in (a) α -mode and (b) γ -mode [31] 

 There are two regimes distinguished in plasma operation that are related to the level of 

electrons’ emission. When emission is low with secondary emission almost absent, plasma is 

said to be in α -mode. The increased emission, with most of the electron flux produced by 

secondary emission process, turns the plasma into γ -mode [36]. In γ -mode, the plasma is very 

unstable with arcs being a frequent event (Figure 4). 
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 Plasma is generated with electric field applied to a neutral gas. In the simplest case, the 

electric field is driven by direct current. This setup offers an ease of operation and control, but 

modern technologies have specific requirements that cannot be fulfilled as easily.  

 

Figure 5. Relation between thermal and non-thermal regimes for dc plasma [37] 

 The usual DC plasma setup can be operated in non-thermal regime only at low pressures, 

when pressure increase, stability of the discharge suffers and plasma switches to thermal regime 

(Figure 5). Hence, plasma driven by AC current is the only suitable candidate for processing of 

materials at atmospheric pressure.  

 Plasma driven by AC current is known as RF (Radio Frequency) plasma. There is a lower 

limit of frequency when RF plasma still can be sustained; the limit is 100 kHz [5]. RF plasmas 

also suffer from instabilities, mainly due to significant increase of electron flux due to thermionic 

emission. A successful method to resolve this issue is introduction of dielectric boundary layers. 

The layers prevent electron flux from entering the plasma when high power input is applied to 

electrodes. The loss of species into the electrode material is also eliminated. This method helps 

to increase power content of plasma, at the same time stabilizing the discharge. Thus, RF plasma 

has multiple advantages over DC plasma when both are compared at atmospheric pressure – it 

can be sustained in the glow mode, it provides higher energy content to the species, and its 
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stability may be improved by dielectric boundary layers. Thus, our work focuses on RF plasma 

as the potential enhancement method for materials deposition. 

Experimental Estimations 

 The problems associated with the CVD systems are overcome by implementation of 

plasma-assisted deposition. The deposition technique based on the atmospheric pressure plasma 

(APP) becomes a prevalent choice for everyday material processing [38-40]. With enhanced 

scalability and portability, the APP based devices employ stable precursors, low temperature 

processing, and significant reductions in operation cost. 

 

Figure 6. Non-uniformity of materials deposition with plasma flow in (a) longitudinal direction, 
(b) transverse direction [41] 

 The APP-based deposition systems that are available on the market feature a common 

trend in design resembling a “shower-head” geometry which allows the flow of plasma species 

and modified chemical precursor through multiple tiny outlets. The “shower-heads”, when 
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assembled into arrays for large-scale processing, result in non-uniformity of the coatings, as well 

as exhibit significant problems with clogging of the outlet channels [3].  

 The design of a plasma head proposed in this work is called a “linear plasma head”; it 

represents a slot between two parallel plates, forming a channel. The width of the head is 

adjustable depending on demands of a particular application. Plasma is generated inside of the 

head and exits the slot in a form of a wide “blade”. Chemical species requiring modification are 

injected right into the blade, having no contact with the head components, thus preventing the 

clogging. This unit is targeted for advanced coatings over large areas.  

 

Figure 7. General sketch of the proposed LAPPD reactor. The actual design may feature 
different configuration and placement of the injectors and modified geometry of the channel for 

optimized fluidic behavior of the plasma gas 

 Practical testing of a linear plasma head developed by other research groups revealed 

that, in general, these units lack uniformity and accuracy of deposition (Figure 6). Because of 

these complications, we started a theoretical investigation looking for an improvement of the 

APP reactor design. The primary objectives of this research are applicability of the reactor for 

large size specimens (in particular, for roll-to-roll processing of materials), ease of maintenance 
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(no clogging), and ability to optimize the flow of the chemical agents and plasma species using 

fluidic tools. The Linear Atmospheric Pressure Plasma Deposition (LAPPD) system has been 

developed to address these issues.  

 The LAPPD head (Figure 7) consists of two parallel plates made of non-conducting 

material (Teflon) to form a channel for the flow of the carrier gas (helium). At a certain location 

in the channel, there are two electrodes (aluminum) placed in a parallel arrangement which 

induce capacitive plasma discharge, ionizing the flowing neutral gas. The setup is logically split 

into four sections for gas entrance, plasma generation, fluids mixing, and material deposition. In 

the first section, the carrier gas enters the setup and develops a laminar flow profile. Solution for 

this section does not include plasma species and is described with fluidic equations only. The 

result of the flow simulation is represented by a parabolic velocity profile. In the second section, 

the carrier gas passes through the space between the electrodes where it becomes ionized due to 

the RF electric field and leaves the generation section in the form of weakly ionized plasma.  

 With the help of gas advection, plasma proceeds along the channel into the third section, 

where a chemical precursor is being injected. The precursor activation takes place in the mixing 

chamber, with subsequent propagation of the chemicals towards a substrate. The fourth section 

encloses an open space starting from the plasma head and finishing with the substrate, in order to 

track the deposition process. The channel geometry could be altered to influence the advection 

rate and to concentrate plasma species in the specific area, enhancing the activation of the 

chemicals. 

 Plasma is generated at atmospheric pressure with temperatures close to 300 K. We utilize 

an RF-type of plasma as it provides a potential for dielectric layers implementation, leading to 

improved stability of the glow discharge. In the presented model we consider bare electrodes (no 
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dielectric layer). The frequency of 13.56 MHz is chosen for RF electric field as this is the 

internationally accepted industrial standard [2], [5], [42]. Bogaerts et al. [5] provide an 

estimation of minimal RF frequency for a stable glow discharge as 100 kHz; hence, our 

operation mode exceeds the minimal requirements. The gap size between the electrodes is in the 

millimeter range, setting low demands for input power. The typical gap used for our model is 1.6 

mm, this size well correlates with the one used in [43] and provides an opportunity for results 

comparison. In order to determine the proper operation range, we estimate the gas breakdown 

voltage (7) for cm 16.0=L gap, according to [2], [6], and [33] 

 
( ) ( )( )

V 29.1742
11lnlnlnmax =

+−
=

seApL

BpL
V

γ
      (7) 

We assumed the multiplier constants ( -1-1Torrcm 8.2=A  and )-1-1TorrcmV 77 ⋅=B   are taken 

for Helium [2]; the secondary electron emission constant ( )26.0=seγ  is for Aluminum [6]; and 

the gas pressure is 1 atm( )Torr 760=p . Thus, in the proposed operation mode of 400-700 V we 

expect a smooth plasma glow (the α -mode). Transition to the γ -mode is possible in the real 

setup [3], [31] when excessive electrons are pulled from the electrodes due to the secondary 

emission process [2], [42]. This regime is characterized by formation of sparks across the gap 

and by rapid growth of plasma temperature due to excessive electric currents in plasma. The 

material of electrodes has a little influence on the glow discharge when the plasma is operated in 

the α -mode, but its effect becomes quite pronounced when transition to the γ -mode occurs 

[44]. This fact leads to exact specification of the electrode material for our theoretical and 

numerical models. Young and Wu [45] mention that fluidic model of plasma is capable of 

catching the γα − transition, though we do not account for such an effect in our approach, 

keeping the voltage relatively low. 
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 The developed plasma model and acquired numerical results, presented in this work, are 

based on the design similar to the one used in our experimental evaluation. The proposed setup is 

based on a plasma head, featuring a generation chamber, tuned for capacitive plasma discharge 

and injection units for input of a chemical precursor.  

 

Figure 8.  A proposed linear plasma head: (a) the unit ready for testing, (b) the unit generating 
helium-based plasma, (c) general design of the unit 

 Figure 8 represents the proposed linear plasma head. Image (a) shows the assembled 

plasma head prepared for experimental evaluations. The white Teflon walls are assembled with a 

thin gap between them. The gap forms a channel for the flow of neutral gas. Electrodes are 

placed about 1 cm before the outlet. Image (b) shows the plasma head at work, generating 

helium-based plasma, which can be seen in the channel between the walls. Image (c) shows the 

general view of the plasma head, with the top chamber providing connectors for neutral gas and 

uniformly distributing the gas at the channel inlet. The sides of the head are covered with quartz 

glass with an intension of optical analysis of the plasma bulk and sheath. For instance, the 
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plasma content can be accurately investigated with optical spectrometry, as it was done in the 

work of Lepkojus et al.[46] for  Helium-based plasmas. Some other methods of optical 

characterization of plasmas, like laser-induced fluorescence,  spontaneous and stimulated 

Raman, and multi-photon spectroscopy [17] are viable options as well .On the right bottom side 

there is a BNC connector to supply AC current to the electrodes. 

 The experimental investigation of the plasma head included tests with different plasma 

regimes, in particular, dependence between electrical input and γα -modes of plasma operation 

was explored, as well as voltage-current characteristics were recorded in order to determine the 

power efficiency of the setup. A total gas flow of 10-40 liters per minute (LPM) was assumed for 

these preliminary examinations. The plasma electrodes had the following size: the length is 2.54 

cm and the width is 7.6 cm with inter-electrode spacing of 1 mm. The gap between the electrodes 

is designed to be adjustable, in order to accommodate different experimental settings. 

 Two designs for injection units were tested with the linear plasma head. The first design 

featured an injection unit for sidewise injection of chemicals. The injection was perpendicular to 

the flow of plasma. The interaction between plasma and chemical precursor was poor, mainly 

due to inability of the chemical flow to penetrate to the central portion of the plasma stream – the 

part of the plasma with the most active species. The deposition results (Figure 9.(a)) appear 

scattered with quality of the coating strongly dependent on the strength of coupling between 

chemical precursor and plasma species.  

 As a result of this test the location of the injectors was changed, leading to the second 

design concept. The concept assumes the injector to be in a form of a thin plate that is installed 

between electrodes, splitting the flow of neutral gas into two portions – above the injector and 

below the injector. As the further improvement of the design, the plate was proposed to be 
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conductive and to serve as a third electrode with plasma generation above the injector and below 

the injector and chemicals injection between two plasma “blades”. 

 

Figure 9. Coating formation on the c-Si substrate: (a) with side injection (b) with injection to the 
centerline of plasma stream 

  Deposition made with the second design is shown in Figure 9.(b). As it can be seen there 

are two lines of the modified precursor deposited on the c-Si substrate. The uniformity of the 

deposition is improved in comparison to the unit with sidewise injection. At the same time, the 

quality of the deposition (indicated by color change of the coating on the substrate) was not very 

high. This result was explained with fluidic modeling of two immiscible liquids using the 

geometry of the plasma head. 

 Figure 10 shows a calculation domain for simulation of mixing for two fluids. The 

simulation is done with ANSYS CFX. The horizontal portion of the domain represents a channel 

between two parallel sides of the head. The open body at the center of the channel is a flat 

injector, which serves as the third electrode. On the right side of the injector, there is an injection 

port; it has a shape of a slot in 3D; in the attempted 2D simulation, the injector is represented by 
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a thin channel, as it can be seen on the right side of the left image in Figure 10. Plasma electrical 

properties are not taken into account in this simulation; we focused on fluidic properties only. 

 

Figure 10. Computational domain for simulation of mixing of plasma-gas and injected chemical 
precursor. The left image shows volume fraction of plasma gas, the right image shows volume 

fraction of the chemical precursor 

 The right image in Figure 10 represents volume fraction of a gas substituting plasma with 

red being the highest concentration. The figure shows the second fluid – chemical precursor – 

which is injected from the injector body into the spacing between two streams of plasma-gas. In 

the original design we expected efficient mixing of the two fluids. The simulation shows that the 

central portion of the precursor did not engage with the plasma, only edges of the stream come 

into interaction and become modified. The modified precursor may be seen as yellow-green 

portion of the precursor stream. Since unmodified precursor does not attach to the substrate well 

enough and does not leave distinguishable coating, we can visually examine only those areas of 

the substrate that are covered with modified precursor (the yellow-green region at the substrate in 

Figure 10). According to simulation results, the examined concept of the plasma head would 

produce two parallel coated lines on the substrate. This result we found in the actual sample 

(Figure 9.(b)). 
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 Fluidic simulation proves to be a useful tool for analysis of material deposition with APP. 

At the same time, the information on distribution of fluids is not sufficient to estimate the final 

results. In addition to fluidic investigation, we have to add distribution of plasma species in the 

flow, as well as their interaction with chemical precursor and, more important, distribution of 

modified precursor in the stream of plasma product, especially in the vicinity of the substrate. 

This knowledge would allow us to estimate concentration of material that is ready for deposition. 

Simulation of surface chemistry could provide probabilistic approach to the actual distribution of 

the modified precursor, based on physical and chemical properties of the substrate material. 

Investigation of plasma behavior in the flow of a neutral gas was started in order to answer these 

questions. 
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MODEL OF PLASMA GENERATION 

Theoretical Model 

General Description 

 Experimental evaluation of a plasma system is an intriguing task, especially when such 

parameters as electron energy distribution function (EEDF) [47] or species density and velocity 

are in question. In order to deeply examine the system, we perform theoretical and numerical 

modeling. It not only provides the properties of interest, but also allows us to predict plasma 

behavior when we change a certain parameter and determine the optimal range for the system 

operation.  

 The general approaches to model plasma behavior are Molecular Dynamics, Fluidic 

Theory, and Kinetic Theory. Molecular Dynamics is well suitable for plasma problems at small 

scales, especially when the problem may be resolved by tracking a small number of separate 

particles. When the number of particles increases, but still is low for continuous approaches, 

Particle-in-Cell technique comes into use; it tracks small volumes that contain a number of 

separate particles, using electromagnetic equations to resolve the dynamics of the volumes. The 

Fluidic Theory relies on a continuous definition of plasma density, species velocity, temperature, 

and other physical parameters. Fluidic Theory usually assumes that the energy of electrons 

follows a Maxwellian distribution; hence, the accuracy of this theory is generally an issue. This 

issue is resolved by introduction of the Boltzmann electron energy distribution function. In the 

general case, this approach is applied in Kinetic Theory, where species properties are functions 

of time, spatial coordinates, and velocity coordinates. Even though Kinetic Theory is the most 

accurate of continuous methods, its evaluation is associated with significant computational 
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The plasma generation chamber consists of two parallel electrodes separated by a gap 

filled with carrier gas at atmospheric pressure. The electrodes are connected to the AC power 

source. It is possible to include the dielectric boundary layer for electrodes, even though it affects 

the gas breakdown [49]. The dimensions of the electrodes are sufficiently larger than the gap 

size; hence, we assume that the model can be converted to 1D where a computational domain is 

represented by the shortest line connecting two parallel electrodes. The characteristic times of 

plasma generation ( )s 104.7MHz 56.131 8−×≈=gent  and characteristic time of carrier gas flow 

( )s 1054.2sm 10m 0254.0 3−×≈=flowt  differ by four orders of magnitude( )4104.3 ×=genflow tt , 

with the plasma generation time being the smallest (here we assume the electrode dimensions of 

cm 2.54 cm 54.2 ×  and gas mean velocity sm 10 ). Such a difference allows us to neglect the 

plasma advection effects along the channel and focus primarily on plasma distribution within the 

1D domain. We also neglect edge effects of the electric field and changes in temperature of the 

carrier gas, which is kept constantly at 300 K. The influence of the magnetic field is usually 

assumed to be negligible for this type of problems [43]. 

 We employ fluidic theory as the main approach to modeling plasma behavior. This 

approach provides results with accuracy comparable to that of kinetic models [50]. It is an 

intuitively appealing method with parameters that are easy to measure experimentally, in 

opposition to experimental investigations of EEDF which is the main component of the kinetic 

theory. Kinetic models provide too much information that unnecessarily raises the requirements 

for the computing environment [51]. Fluidic models work with only three spatial dimensions 

instead of the six spatial-velocity dimensions of kinetic models, which is extremely 

advantageous for computation process. As the 2D model of the LAPPD head bears fluidic 
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features, it is natural to use fluidic approach for 1D plasma generation as a part of the larger 

model. 

 The atmospheric pressure plasma is characterized by low overall temperature, usually in 

the range of 300-1000 K; at the same time its species carry high energy content. Such occurrence 

is possible due to the significant difference in size of electrons and ions in the plasma. According 

to Suplee et al [52], the average ion size is 2000 times larger than that of an electron. The size of 

the species determines their mobility in an electric field, as well as their acceleration and inertia. 

Smaller electrons are easier to accelerate: they reach high velocities (200 times higher than ions, 

according to our observations) which is an indication of the electrons’ high kinetic energy. This 

energy is expressed in terms of temperature of the species and reaches 5-6 eV for electrons (1 eV 

corresponds to 11605 K), while the helium ions temperature is close to the room value of 300 K. 

The fluidic model essentially contains two temperature/energy levels [37]; therefore, both types 

of species have to be modeled separately.  

 We do not include negative helium ions in our model as they are extremely hard to 

achieve. Researchers [20-22] have to utilize a special technique at high vacuum with energies of 

the species in the range of 3-70 keV, in order to create the negative ions [21, 22]. Even at high 

vacuum the yield of He- is measured as 1.2% of that of He+ [21], with a lifetime in the order of 

10-5 s. In atmospheric pressure plasma the lifetime of these species would be significantly shorter 

with much lower yield due to the shorter mean free path. Thus, we exclude He- from our model. 

 A dramatic difference in velocities between ions and electrons in APP determines its non-

equilibrium state. Under such circumstances, EEDF based on a Maxwellian distribution cannot 

properly describe plasma kinetics. In fact, Meyyappan et al. [53] mention that Maxwellian EEDF 
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provides overestimated rate constants and plasma density, in comparison to Boltzmann-based 

EEDF. This fact clarifies the use of rate constants based on Boltzmann EEDF in our model. 

Governing Equations 

 Following the general approach [2, 43, 48] we consider moments of Boltzmann equation 

(8) in order to build a set of governing equations. Boltzmann equation, being fundamental for 

plasmas, is not solved directly in our model. Instead, we make a connection to kinetic effects 

through the use of rate constants. 
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In this equation,f stands for EEDF, t is time, v is velocity of  species, F is a force acting on the 
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is a collision term. The number of particles in the 

vicinity of the point ( )vx,  with spatial coordinates in the range of ( )xxx d+, and velocity 

coordinates in the range of ( )vvv d+, is described by the following relation 

 ( ) vxvx ddtf ,,           (9) 

The number density of the species can be found by averaging the EEDF over velocity space 

 ( ) ( )∫= vvxx dtftn ,,,          (10) 

Any velocity moment ( )vΦ may be averaged to the mean value using the integration over 

velocity space 
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The momentum of the flow dyad 
ijΠ  is defined through the second order momentum of the 

EEDF 
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 ( ) ( ) jijiij vvmndvvtfm =Φ=Π ∫ vvxv ,,  

 
ijjiij Pumnu +=Π          (12) 

In this equation 
ji uu , are the components of the mean velocity( )x,tui , m is the mass of the 

specie, and 
ijP is the component of pressure tensor. 

 We calculate the first three moments of the Boltzmann equation to form a fluidic 

representation of plasma. Very detailed derivation of the moments can be found in [2, 48]. We 

follow [54] in order to find the moments. Boltzmann equation may be multiplied by some 

function ( )vΦ and integrated with respect to velocity components 
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Because the first term on the left-hand side does not depend on xort , the order of integration and 

differentiation could be exchanged. The integration is carried out using the average value ( )vΦ

of function ( )vΦ . 

 
( ) ( )

t

n
d

t

f
d

t

f

∂

Φ∂
=

∂
Φ∂

=Φ
∂
∂

∫∫ vv        (14) 

The second component on the left-hand side is the subject to similar approach 
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The third term on the left hand side represents force exerted on particles. We assume that EEDF 

rapidly decreases when the velocity of the particles approaches infinity. This assumption sets the 

modified integral of the term to zero with only the second term having non-zero value. We also 

assume that F  is divergence free with respect to velocity, this allows bringing the components of 
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the force vector under the differential with respect to velocity. The last assumption is suitable for 

the electromagnetic force. With all the mentioned assumptions, the term modifies as follows 
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The integrated collision term ( )xtI c , becomes a function of time and space coordinates only, this 

is why it modifies in the following way 
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We combine the integrated terms into a general form of a moment of Boltzmann equation 
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We would like to derive the moments of Boltzmann equation. Since the considered problem is 

1D, we switch from the general form of the equation to particular vector components. The first 

moment of the Boltzmann equation is the continuity equation, it can be derived setting 1=Φ  
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We write this equation for the species I, and substitute the collision term on the right-hand side 

with a sum of separate effects of ionization and recombination processes. 
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The second moment of Boltzmann equation is conservation of momentum, it can be derived 

setting vm=Φ  
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The third moment of Boltzmann equation describes conservation of energy. It can be derived 

setting 22vm=Φ  
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Define the following entities 
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Here p is scalar pressure, iq  is heat flux. Substitute the entities into (22) 
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Denote kinetic energy of species i as 22umnii =ω  
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We use EqF ii = and Hooks law 
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The last three terms on the right are represented as a sum of energy rate terms 
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 The moments are written for the speciesi , where i indicates electrons or positive helium 

ions. The in  stands for number density of the species, xis a spatial coordinate, iv is velocity of 

the species, ∑
j

ijR is a generation/recombination term, iP is partial pressure of the species, iq is 

the sign of the species charge, E is electric field, iω is the species kinetic energy, iT is 

temperature of the species, iK is thermal conductivity of the species, and∑
j

jij HR  is energy rate 

term. Since our problem is one-dimensional, in (20)-(27) we used only first components of the 

vector terms. 

 The moment (20) is an essential equation for the species distribution. The moment (21) is 

required for coupling of the species’ velocity and number density. We follow an approach of [43, 

45,  50, 55], introducing the drift-diffusion approximation (28) to our model. This approximation 

renders useless the moment (21), as the coupling between number density of species and their 

velocity is conveniently represented in the form of flux.  
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The drift-diffusion approximation is written in terms of species flux, according to [50]. 

The flux is formulated with drift (due to force provided by electric field) and diffusion (due to 

number density gradient) terms. 

( ) nDnEqsignnvJ ∇−== µ         (28) 
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. Usually a ratio of electrons’ 

diffusion to mobility is found from the Townsend experiment. Electrons motion is analyzed in an 

evacuated tube, where electrons are emitted from a source and their radial distribution is 

measured at certain distance from the emitter [56]. Diffusive flux of electrons is found from 

Fick’s law by substitution of diffusion coefficient, electrons charge, and gradient of the number 

density 
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When an electric field is applied to a conducting media, the charge carriers move at a velocity 

that is proportional to the magnitude of the field. This velocity is called the drift velocity 

 Evd ⋅= µ           (30) 

 This definition is used to constitute drift current due to applied electric field 

 envJ eddrift =           (31) 

At the equilibrium drift current and electrons diffusion are equal 

 
diffdrift JJ =           

(32) 

At non-equilibrium conditions their superposition yields the total electrons’ flux 

 eeedee nDnvvnJ ∇−==         (33) 
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Equation (34) contains a drift term (the first term on the right-hand side) with drift velocity div

(where iµ denotes the species mobility) and diffusion term (the 2nd term on the right hand side) 

with a diffusion coefficient iD .  

 Since ions are bulky and slow, they cannot efficiently diffuse in the time-frame of one 

RF-oscillation; therefore, the diffusion term for ions is negligibly small and omitted in our 

simulation [43]. The drift-diffusion approximation (34) substitutes into the mass conservation 

equation (20) modifying its second term on the left-hand side 
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 Mobility, diffusion, and generation/recombination rates are determined based on values 

of the local electric field. Even though there are methods to avoid solution of Poisson equation 

[57], we use the classic approach. The electric field is calculated by means of Poisson equation 

(36). There is a cloud of charged particles between the electrodes that distort the external electric 

field generated by electric potential ( )tU ωcos . The right-hand side of (36) accounts for an impact 

of each particular charge to properly estimate the distortion. 
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In this equation,φ is an electric potential, C 106.1 19−×=e is elementary charge, and 

cmVC 1085.8 14
0 ⋅×= −ε is vacuum permittivity constant. 

 The Poisson equation has a simple form in the 1D case. This is why we directly integrate 

it in (37), following [43] and [58]. The right-hand side integral in (37) represents the 
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accumulated field distortion that compliments to the external electric field to yield the local value 

of ( )xE . 
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0E is a constant of integration that is determined from the boundary condition (38). The boundary 

condition binds the electric field at the domain and the voltage( )U externally applied to the 

electrodes.  
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 The common definition of plasma assumes that its total charge is somewhat neutral. In 

reality, the charge of APP could be slightly offset. The boundary condition (38) has to account 

for non-neutral charge of APP which is done by an integral term I
~

 in the expanded form of the 

boundary condition (39). This elementary fact is usually not mentioned in the literature, though it 

is crucial for accurate modeling of plasma.  
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The parameter L in (39) stands for the gap size.  

 In our model, we employ the concept of the Local Field Approximation (LFA). It 

assumes that all plasma parameters depend on locally calculated reduced electric fieldNE , with 

number density of neutral gas -319 cm 106871.2 ×=N . This assumption allows us to use rate 
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coefficients based on solution of the Boltzmann equation from the kinetic approach [45]. LFA is 

not very applicable in the cathode fall region of plasma [58]; nevertheless, it is common practice 

to apply the concept over the whole domain, as the error is usually negligible. 

 The system of the governing equations (40) is formed of modified mass conservation 

equations (35), written for each of the species separately, and integrated Poisson equation (37) 

which connects the plasma charge distribution to the electric field 
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 The general form of the collision term ∑
j

ijR on the right-hand side of (35) is expanded in 

(40) with species generation (the first) and recombination (the second) terms. The ionization 

parameter( )α , the electric mobility( )pe µµ , , and the diffusion coefficient ( )eD are functions of 

the local reduced electric field. In the ideal case, they have to be evaluated through experiment in 

Townsend discharge tube [59]. We simplify the parameters evaluation and calculate them over 

EEDF that is provided from the solution of the Boltzmann equation. The solution technique for 

the Boltzmann equation requires deep insight into electrons interactions [60-62]. We do not 

attempt such a detailed investigation, instead, we use a freeware package the BOLSIG+ [63] that 

solves the Boltzmann equation for special cases, calculates EEDF, and derives rate parameters, 

which are used in our model.  
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Rate Parameters 

 We provide an example of rate parameters derivation using the BOLSIG+ package. As an 

input, the BOLSIG+ requires cross-sections of collision events for the gas of interest, physical 

conditions of simulation (such as temperature of the gas, electric field values etc.), and 

parameters controlling the numerical process of simulation. We use cross-sections for helium gas 

that are provided in the package by default. For the “New Run” we choose “Linear E/N (Td)” 

option where the initial (1 Td) and the final (100 Td) values are specified. The number of runs is 

set to 100 and temperature of neutral gas to 300 K. In the “Numerics” section the number of 

energy levels is changed to 500, as it provides smooth and accurate result. The rest of the options 

are left at their default values. The output data is saved as “Separate tables vs. E/N”. We 

assemble a table of the rate data in a spreadsheet processing package. All the parameters in the 

output file have self-explanatory names, except for the ionization coefficient which is referred to 

as “C9 He Ionization 24.58 eV; Townsend coefficient / N (m2)”. 

 On a request, the BOLSIG+ fits most of the output variables with a polynomial; this 

option has to be selected when saving the data-file. As an example, the fit data provide non-zero 

ionization values for a low (less than 5 Td) reduced electric field, whereas the original data 

contain zero in these positions. We found that use of the fit data (ionization fit data is shown in 

Appendix A for 5<NE ) improves the plasma stability at low external voltage U, as well as in 

the region of weak electric field. Appendix A contains an example of typical data retrieved from 

the BOLSIG+ and used in our model. 

 Figure 12 represents the behavior of typical rate parameters which are converted into a 

suitable form used in our model. The mobility plot (Figure 12.(c)) includes ions’ data in addition 

to that of electrons’. As it can be seen from this plot, the mobility of electrons and ions has two 
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orders of magnitude difference. This happens because of the larger size of ions which leads to 

lower drift velocity, according to (34). For He+ ions the rate parameters are taken from atomic 

data tables [64], where experimentally acquired ions mobility pµ  is represented as a function of 

reduced electric field NE . These data are presented in Appendix B. 

 

Figure 12. Typical rate parameters used in the model: (a) e- diffusion ( )eD , cm2/s; (b) helium 

ionization ( )α , 1/cm; (c) e- and He+ mobility ( )pe µµ , , cm2/V.s; (d) e- mean energy ( )meanω , eV. 

The horizontal axis shows reduced electric field( )NE , Td 

 The rate coefficients found from BOLSIG+ and atomic data tables are crucial for 

modeling generation, drift and diffusion processes. The recombination process calls for a 

recombination constantiek  which is responsible for loss of species due to interactions between 

electrons and ions (as well as interactions between positive and negative ions, when the later are 
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present). In our model, the recombination coefficient is set to scm10 37−=iek and kept constant 

throughout the simulation [43], [58]. 

 The rate parameters estimated in this section allows us to cover a wide range of possible 

interactions between helium and electrons. A set of such interactions could be found in Kong and 

Deng work [65]. 

Boundary Conditions 

 The boundary conditions for the system (40) are specified in terms of fluxes. Following 

the general approach [43, 45, 58], electrons are allowed to penetrate the electrodes without a 

reflection. The equivalent notations for this condition would be “perfect absorption” [43] or 

“zero reflection coefficient” [50]; Wester et al [58] also mention recombination of electrons with 

the material of the electrodes. The flux of electrons at the boundary is formed by the drift-

diffusion process and thermal motion of electrons due to their high kinetic energy. The thermal 

flux is significantly larger than drift-diffusion flux [43], therefore we ignore the latter and specify 

electrons flux (41) through thermal motion only. 
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 Kinetic velocity of electrons kinetic
ev is determined through the electrons’ energy. Among 

the rate coefficients, the BOLSIG+ provides mean electron energy meanω (last column of the table 

in Appendix A). Temperature of electrons is estimated as eV
Bmeane kT 32ω= [6], with 

KeV 10617.8 5−×=eV
Bk being the Boltzmann constant. This data is tabulated for a range of 

reduced electric field. Kinetic velocity is calculated as ee
J
B

kinetic
e mTkv  8 π= , with 
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kg 101.9 31−×=em being a mass of an electron and J/K 1038.1 23−×=J
Bk being the Boltzmann 

constant. 

 Let us estimate the difference between kinetic and drift velocities of electrons. As a 

reference, we assume reduced electric field value of Td 1=NE with corresponding electric field

V 26871=E . Mean energy is eV  0.5641=meanω  (taken from Appendix A); electrons’ 

temperature is K 4364≈eT , and kinetic velocity is sm 410405≈kinetic
ev . Just for comparison, 

drift velocity (34) at the same conditions is sm 4836≈d
ev  - two orders of magnitude smaller 

than kinetic velocity. This is why kinetic flux of electrons is prevalent at the boundary. 

 In some cases, absolute absorption of electrodes allows number density to be set to zero 

at the boundary [45, 53]. We do not implement this additional condition, because kinetic flux 

alone is sufficient to keep electrons’ number density at very low level in the vicinity of the 

electrodes. The secondary emission is often assumed negligible [66] for well-sustained glow 

discharges, thus we ignore its effect in this model. 

 For the positive ions, we specify only the drift flux towards the boundary (42). According 

to recent studies, helium ions are able to penetrate into the material of electrodes [67] and to 

become absorbed in this material [68]. In our model we do not account for such effect and use 

non-penetration condition for ions at the electrodes boundary. The drift flux of positive ions is 

reflected from the electrodes by the means of opposite fluxes specified at virtual nodes. The 

virtual fluxes have the same magnitude as the original ones, but the opposite direction. Such an 

approach results in zero total transfer of ions over the boundary. 
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 Physically, this process resembles the no-penetration condition for ions. A numerical 

scheme provides a connection between real and virtual fluxes at the boundary; this is why we do 

not specify additional details in this section. 

Initial Conditions 

 The initial condition for the mass conservation equations is specified as a uniform 

distribution of the number density ( )-317 m 10=in over the computational domain. Number 

density is set to the same value for all the species, in order to maintain a neutral overall charge at 

the beginning of the calculation. The same type of initial condition is proposed by Young and 

Wu [45]. Meyyappan and Govindan [53] suggest the use of zero velocity and uniform mean 

energy, in addition to uniform number density distribution. We find this step excessive as species 

velocity and energy are unequivocally determined from the specified initial number density. The 

researchers also mention that the same converged solution can be obtained regardless of the 

initial condition. We could not confirm this statement in our tests. Additionally, in the Results 

and Discussion section, we discuss a range of parameters that lead to stable plasma generation. 

For initial conditions out of the range (specifically, for lower external voltage) we could not find 

stable plasma modes. 

 The initial distribution of the species over the domain affects the feasibility of the stable 

mode. If the species initially occupy only a part of the domain, the fast electrons are quickly lost 

into the nearest walls, leaving only the slow ions on the domain. The positive ions have no 

opportunity to decay as the electrons density becomes insufficient, because there is only one 

species generation mechanism through ionization supplied by electrons and the only loss 

mechanism through recombination with electrons. This case scenario has no interest for us. We 

also do not include field emission that could generate additional electrons to supplement an 
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avalanche process. Therefore, according to our observations, the only reasonable initial condition 

consists of uniform distribution of all the species with number density sufficient for starting the 

ionization process when electric field is applied. 

Temperature and Energy Estimation 

 The third moment of Boltzmann equation (27) is used mainly for estimations of energy of 

the species and their temperature. The BOLSIG+ provides the mean energy of electrons (last 

column of the table in Appendix A) which allows the electrons temperature calculation. The 

temperature of the ions is changing slowly, responding to the time-averaged electric field. This is 

why, it is sufficient to calculate ions’ temperature once per oscillation [43], solving heat 

diffusion equation (43). 
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In this equation, KcmW 106.1 4 ⋅×= −
Hek is thermal conductivity of helium at standard 

temperature and pressure, MHz 56.13=ω is frequency of alternating electric potential applied to 

the electrodes, and ( )tj is current density calculated as ( ) ( )d
ee

d
pp vnvnetj −= at a point x. 

 Since temperature and energy of the species are determined by workaround methods, the 

moment (5) can be excluded from further consideration. In the case of ions, the workaround 

method significantly improves the performance. Using the fact that rate parameters are 

calculated for constant temperature 300 K, the model does not catch the effect of temperature 

change of the neutral gas. Therefore, ions’ temperature can be calculated only at the last 

oscillation, when plasma is in the steady mode. 
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Numerical Technique 

In order to efficiently construct a numerical model, we perform undimensionalization of 

plasma parameters and properties. Some characteristic parameters are chosen based on geometry 

of the problem and physical properties of the setup. Thus, characteristic time t
)

is the time 

required for one RF oscillation, characteristic electric potential is equal to the amplitude of the 

applied voltage 0U=ϕ) , and characteristic length is equal to the size of the gap Lx =
)

. The other 

characteristic parameters are determined as derivatives of the defined ones. 

 We consider the continuity equation to find the characteristic parameter for number 

density of the species. The continuity equation for electrons is explored below. For positive ions 

all the derivations remain valid, yielding with similar result. This is why we do not show here 

derivations for the continuity equation of positive ions. 
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Regardless the form of the characteristic number density, the continuity equations remain valid. 

Next, we explore Poisson equation. 
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The form of this equation can be simplified if we denote the characteristic number density as 

follows 
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We define characteristic electric field using known values for characteristic electric 

potential and characteristic length LUxE 0==
)))

ϕ . We also define characteristic current using a 

simple relation LtUvnej
))))

00ε== . The last equation to consider is the heat distribution 
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Thus, the characteristic temperature is
Hek

Ejx
T

π2

2
)))

)
= . The heat diffusion equation becomes 
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2 T
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dEJ
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        (48) 

 The 1D problem considered in this article is only a part of a larger system that represents 

the whole LAPPD head. The plasma generation part of the system can be well described with 1D 

approximation, but the rest of the system has to be simulated in 2D with inclusion of additional 

effects. Such a simulation requires significant computational resources; this is why we found a 

parallel computational approach to be helpful for this problem. Application of parallel code to 

plasma generation provides us with a good opportunity to evaluate implementation and 

performance details, as well as to establish the general approach to the whole problem using the 
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simplicity of 1D representation. This approach can be expanded for the 2D case and used for 

simulation of the LAPPD head, although some modifications may appear necessary due to the 

geometrical reasons. 

 The solution process is performed on a cluster for parallel computations, that features 

distributed memory access [69]. We use OpenMPI library [70] to provide parallel capabilities to 

our code. In accordance to MPI-approach, the computational job is explicitly distributed and 

synchronized between MPI-nodes at the stage of programming [71]. 

Table 3 
The variables used in the model with characteristic coefficients and physical units 

Variable Charact. Unit Variable Charact. Unit 

Time constt =
)

 [ ]s  Recombination tnk
)))

1=  [ ]s3m  

Length Lx =
)

 [ ]m  Ionization L1=α)  [ ]m1  

El. potential 0U=ϕ)  [ ]V  Diffusion tLD
))

2=  [ ]s2m  

El. field LUE 0=
)

 [ ]mV  Temperature tkUT He

))
πε 22

00=  [ ]K  

Number density 2
00 eLUn ε=

)  [ ]3m1  Current density LtUj
))

00ε=  [ ]2mA  

Velocity txv
)))

=  [ ]sm  Power 22
00 LtUEjW

))))
ε==  [ ]3mW  

 We provide a general description of the solution procedure in this section. We assume 

that number density of species is specified either from initial conditions or from the previous 

time step of the simulation. Based on number density values, we formulate and solve the Poisson 

equation to update the electric field. The reduced electric field is calculated using the number 

density of the neutral gas; the field is further used for interpolation through tables of rate 

parameters for electrons and positive ions to update local values at the grid-nodes. The next step 

evaluates species’ fluxes at the boundary and the final step calculates some additional parameters 

that are required for characterization of plasma. 
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 When electric field, velocities, rate parameters, and boundary fluxes are updated, they are 

used in the formulation of the System of Linear Equations (SLE) which is solved for new values 

of species’ number density. There is a plethora of algorithms available for the solution of the 

system on a single machine. For solution carried over a cluster of parallel computers, the 

problem must be decomposed. Each parallel machine receives its local portion of the domain. 

Based on this portion, it formulates and solves a local part of the SLE. In this case, a numerical 

method requires a modification. 

Solution for Number Density 

 We use Finite Volumes method [72] as a numerical scheme for continuity equations. 

Additionally, we apply Scharfetter-Gummel scheme [43, 55, 73] to reduce “saw effect” that 

appears due to instability developed due to convective terms in the governing equations (40). 

SLE that is derived from the governing equations has a tri-diagonal matrix. Using advantages of 

such a matrix shape, we implement Thomas method which is known to be efficient in solution of 

tri-diagonal systems. 

 The upwind numerical scheme is applied for equations responsible for convective 

transfer of fluids. When regular finite volume approach is used, the convective term of the 

considered equation is descritized with finite differences based on the averaged value of a 

function at the boundary between two finite volumes. This approach is not sufficient for 

convective flow as it yields with instability which appears as a “saw” effect. The upwind scheme 

(Figure 13) modifies the descritization to account for direction of major change of the function 

due to imposed velocity field. 
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Figure 13. Upwind numerical scheme for 1D computational domain 

Let us consider a typical differential equation for fluid convection/diffusion (49) 
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This equation is integrated over a finite volume ( )ew,  which is shown in Figure 13. 
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 The right-hand side of the equation is defined through the values of the domain nodes, 

while the left-hand side is defined in terms of intermediate values which have to be 

approximated through the nodes. The regular finite difference would assume a linear 

interpolation between the nodes and result with  

 
( )
( ) 2

2

WPw

EPe

ϕϕϕ

ϕϕϕ

+=

+=
         (51) 

 To correct this result, the upwind numerical scheme, suggests to not linearly interpolate 

the values of function at intermediate nodes, but to use the value of the function from that 

neighbor node which is placed upstream, considering the velocity of fluid. The general rule is as 

follows 
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For the case shown in Figure 13 the differential equation would descritize as follows 
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 The governing equations can be descritized using the upwind numerical scheme. Let us 

consider the continuity equation for electrons, for positive ions the approach is similar. We write 

step-by-step descritization, so that each modification is easy to track. 
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Write it in terms of fluxes 
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Integrate the equation over a finite volume at the node i 
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We apply the mean integral theorem and assume that the nodes are equally spaced 
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The fluxes are written using upwind numerical scheme 
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Substitute fluxes back into the equation and gather the terms in front of number density 

 

xR
x

nn
D

vn

vn
v

x

nn
D

vn

vn
vx

t

nn

i
ieie

ied
ieie

d
ieied

ie

ieie
ied

ieie

d
ieied

ie

i

old
ie

new
ie

δ
δ

δ
δ

δ

=
−

+












<

>
−

−
−













<

>
+









 −

−
−

−

−−
−

+
+

++

+
+

1,,
21,

21,,

21,1,
21,

,1,
21,

21,1,

21,,
21,

,,

0,

0,

0,

0,

   

(59)
 

 

xRn
t

x

vv

v
n

v

vv
n

vv

v
n

v

vv
n

n
x

D
n

x

D
n

x

D
n

x

D
n

t

x

i
old

ied
ie

d
ie

d
ie

ied
ie

d
ie

d
ie

ie

d
ie

d
ie

d
ie

ied
ie

d
ie

d
ie

ie

ie
ie

ie
ie

ie
ie

ie
ie

ie

δ
δ
δ

δδδδδ
δ

+=












<

>
−













<

>
−













<

>
+













<

>
+

−++−

−−

−

−

−−
−

++

+
+

+

++

−
−−+

+
+

,
21,21,

21,
,

21,

21,21,
1,

21,21,

21,
1,

21,

21,21,
,

1,
21,

,
21,

,
21,

1,
21,

,

0,

0,0

0,0

0,

0,

0,0

0,0

0,

  

(60)
 

Finally, the numerical scheme may be written in a shorter form (61) 
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The same approach is applied to positive ions, except all diffusion coefficients are zero, because 

there is no diffusion for ions in the model. 

Based on the method proposed in [74] we develop a numerical scheme that could be 

applied for the efficient solution of the plasma model using a cluster for parallel computations. 

The 1D governing equations describing the model are descritized based on the three nodes 

pattern. This pattern results in a tri-diagonal matrix which is relatively easy to solve on a single 

machine; the most advantageous method in this case is Thomas method. When we transfer the 

model to the cluster for parallel computations the solution method is not directly applicable. 

Thus, the parallel model requires a special approach with additional derivations in order to 

transform the matrix and apply one of the numerical algorithms designed for the solution of 

system of linear equations (SLE).  

 There are few numerical methods that are often used for evaluation of SLEs. There is one 

approach that allows implementation of Thomas method for the parallel problems with a 

modified system matrix. We would like to consider such a modification and develop the 

necessary theoretical understanding. The following derivations are self-consistent; they can be 

applied to any tri-diagonal system, as long as the system is not singular and is positive defined. 

Thus, the notation used in the derivation is specific to this part of the work only; it has no 

relation to plasma parameters. The initial matrix divided between 3 processors (3 blocks) has the 

following form 

Here iv are vectors that represent rows of the system matrix, ix  are unknowns that need 

to be found, coefficients iiii FCBA ,,,  are the coefficients of the descritized governing equation 

calculated for the node i  
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iiiiiii FxBxCxA =++ +− 11         (62) 

Figure 14 shows a matrix corresponding to this system. The matrix is split between parallel 

processes. 
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Figure 14. System of linear equations divided into blocks for calculation on parallel processors 

Following the algorithm proposed by [74] we determine the major parameters required 

during the derivation – size of a blockn, number of processors
pn , and index of the first row of 

each block in the system matrixkj  

 3,5 == pnn   

 1..0, −== pk nkknj     00 =j   51 =j   102 =j  

We switch from the global coordinate system to local coordinates of each block (index

1...0 −= ni  would represent a row within a block), denoting the block with index 1...0 −= pnk . 

The parameter kj is determined as knjk =  and determines the relation between local and global 
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coordinate systems in the system matrix. The indices are start from 0 and finish with 1−n  to 

replicate the index notation of C-language. The next sections describe the algorithm taking a 

block k as an example. 

 The general idea of the modification is to remove dependence between neighbor blocks. 

Since the blocks become independent, they can be solved on a local processor in parallel with the 

same solution done on other processors for other blocks of the system matrix. In tridiagonal 

matrix the dependence is implemented in two first and two last rows of each block. For example, 

the blocks kand 1+k share variables 1, +kk xx ; the variable kx enters the rows 1,2 −− nn of the 

block kand row 0 of the block 1+k . The same way, the variable 1+kx enters row 1−n of the 

blockkand rows 1,0 of the block 1+k . The modification algorithm passes through blocks and 

assembles two “boundary equations” for each block as a linear combination of the rows 

constituting the block. The boundary equations from each block are assembled into a system of 

linear equations, which has smaller size equal to 
pn2 , because there are 

pn blocks with two 

boundary equations each. This system of boundary equations (SBE) has the tridiagonal form and 

can be solved with Thomas method. Since the SBE has a small size it can be solved very 

efficiently. For instance, a SLE of 10000x10000 elements may be split between 100 processors, 

then each bock would have 100x10000 elements and SBE would be 200x200 elements. Next, 

using the fact that the matrix is tridiagonal, we can reduce the size of the blocks to 100x100, as 

the rest of the block is filled with zeroes. This way, the initial 100000x100000 system transforms 

into 100 smaller systems of 100x100 elements and one SBE of 200x200 elements.  

 The solution of SBE represents the exact values of the variables 1, +kk xx for each block. 

When these values are known, each block is modified with transformation of two first rows and 
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two last rows, with only 2−n variables requiring the solution. Thus instead of solving 100x100 

SLE from the previous example, we need to solve 98x98 SLE. The solution of the local SLEs is 

done in parallel mode, utilizing the advantages provided by parallel approach. 

 Now, we would like to explain the modification method in more detail. Let’s consider the 

blockkas the current block that is sent for modification. We define an upper boundary as the 

interface between blockskand 1−k  and a lower boundary as the interface between blocks kand 

1+k . We initialize the upper and lower boundary vectors ( )kj
lkv and right hand side elements( )kj

lkF . 

In the global coordinates these entities are written as follows 

( )
1

1
+

+ =
k

k
j

j
lk vv  - this is the second row at each block  ( )

1
1

+
+ =

k

k
j

j
lk FF

 
(63) 

( )
2

2
−+

−+ = nj
nj

lk k

k vv  - this is the 2nd row from the end of the block ( )
2

2
−+

−+ = nj
nj

lk k

k FF  

The same entities in the local coordinates 

( ) ( )0000000000001111
1 BCAvvlk ==    ( )

1
1 FFlk =   (64) 

( ) ( )000000000000 2222
2

−−−−
− == nnnn

n
uk BCAvv  ( )

2
2

−
− = n

n
uk FF  

For the lower boundary, iterate the summation of the elements, gathering a linear combination of 

the rows 2 to n-1 within the block. The following are the elements in the global coordinates 

1,

1,

−

−=
ilk

ii
i v

v
a  ( ) ( )1−−= i

lkii
i

lk vavv  ( ) ( )1−−= i
lkii

i
lk FaFF     (65) 

In local coordinates it can be written like 

( )
122

2 FaFFlk −=  

( )
122

2 vavvlk −=          (66) 

( ) ( )00000000000212212212
2 BBaCCaAAavlk −−−=  
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The coefficient 2aai = is chosen such as coordinate ( )i
ilkv 1, − (in this case it is 122 CaA − ) would 

turn zero. The general sequence for the lower boundary is 

( ) ( )00000000000212212212
2 BBaCCaAAavlk −−−=  

( ) ( )( )00000000000 323312233132
3 BBaCBaCaAAaavlk −−−=  

( ) ( )( )00000000000 4344233441432
4 BBaCBaCaAAaaavlk −−−−=
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(67) 

( )
122

2 FaFFlk −=  ( )
123233

3 FaaFaFFlk +−=  

 ( )
1234234344

4 FaaaFaaFaFFlk −+−=  

Summarizing the lower boundary condition, we can write 
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2. Calculate: 
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3. Calculate: ( ) 1

1

2

2
0,, 1 Aavv

n

j
j

n
locallkknlk 








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−== ∏
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=

−  - see the note on the sign at the end 

( ) 2111,11, −−−−−+ −== nnnnlknklk BaCvv  

( ) 1,1, −+ == nnlknklk Bvv  

The element ( )nklkv 1, +  is omitted for the last block. For the upper boundary equations, iterate the 

summation of the elements, gathering a linear combination of the rows n-3 down to 0 within the 

block. Elements in global coordinates are 
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It can be written in local coordinates as follows 
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We can summarize the upper boundary condition as follows 
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2. Calculate: 
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Figure 15. System of linear equations – dependent variables 

We should note about the proper sign. Out of n rows in the block, we skip #0 and take #1 

as the initial row for the lower interface and skip #n-1 and take as the initial #n-2 for the upper 

interface, the rest we iterate. The rest is n-2 equations; therefore we have to make n-2 iterations 

for each calculation of interface in the block. For odd number of iterations the sign is negative; it 
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is positive for even number of iteration. Thus, the number n-2 determines the sign of the last 

element in the iteration sequence for both interfaces. 

The initial SLE is modified using the described approach so that the shared variables of 

each block become the unknowns of the SBE. These variables are schematically shown in Figure 

15. The minimal size of the block is 5 rows, the minimal size of the matrix solved with Thomas 

method is 3 rows. Thus, the minimal matrix that can be modified according to the described 

algorithm and can generate a SBE solvable with Thomas method consists of 15 rows and split 

between 3 processors. 

If we remove the regular equations and condense the matrix shown in Figure 15, leaving 

only unknowns that come into the SBE, we would get a tri-diagonal system. The minimal size of 

the block is determined by the fact that we skip one equation from the top of the block and one 

equation from the bottom of the block, taking the 2nd equation (from the top/bottom) as the initial 

approximation for each interface. We rewrite the condensed system using the actual terms that 

were defined in the modification algorithm 

 

( )

( )

( )

( )

( )

( ) 

























=



























×



























=

−

−

−

−

−

−

1
2

0
2

1
1

0
1

1
0

0
0

13

2

12

1

0

*2,2*1,2

*3,2*2,2*1,2

*3,1*2,1*1,1

*3,1*2,1*1,1

*3,0*2,0*1,0

*3,0*2,0

*

n
l

u

n
l

u

n
l

u

n

n

n

n

n

ll

uuu

lll

uuu

lll

uu

F

F

F

F

F

F

x

x

x

x

x

x

vv

vvv

vvv

vvv

vvv

vv

A   (71) 

The terms are calculated as follows (for each particular block k) 

Right side: ( ) ( )∑ ∏
−

=

−

+=

−−−























−=

1

1

1

1

11 1
n

i
i

n

ij
j

inn
lk FaF  ( ) ( )∑ ∏

−

=

−

= 




















−=

2

0

1

0

0 1
n

i
i

i

j
j

i
uk FbF   (72) 

Lower:  ( ) 1

1

2

2
*1, 1 Aav

n

j
j

n
lk 










−= ∏

−

=

−  211*2, −−− −= nnnlk BaCv  
1*3, −= nlk Bv  (73) 



 

58 
 

Upper:  0*1, Avuk =   100*2, AbCvuk −=  ( ) 2

3

0

2
*3, 1 −

−

=

−











−= ∏ n

n

j
j

n
uk Bbv  (74) 

Coefficients: 1...2  ,  ,0
211

1 −=
−

==
−−−

ni
BaC

A
aa

iii

i
i      (75) 

0...3,,0
211

2 −=
−

==
+++

− ni
AbC

B
bb

iii

i
in      

Solution of this systems yields with the first and the last ix  at each block. These ix ’s are 

sent back to the blocks where they belong, the found x’s allow conversion of each local SLE into 

an independent SLE and solution of the modified system within the block. 

Additionally, we should mention, the represented approach may be used in a recursive 

form. A system of equations with multi-million variables cannot be efficiently solved using only 

the described algorithm. For such large systems the logical topology of the parallel cluster needs 

to be changed into the tree-type arrangement. The initial system of equations is split between 

groups of parallel processors. Each group is connected to one processor that works as a master 

unit for the group. This unit receives boundary equations from the connected group and 

assembles them into the SBE. All master units can be considered as a system of the second level; 

each SBE is considered in the same way, as the block of the initial SLE for the system of the first 

level. Thus, SBEs, being the analog of the blocks, may be treated with the same modification 

algorithm and yield with boundary equations of the second level. The processors of the second 

level are also arranged into groups, each group is connected to a processor of the third level. The 

boundary conditions of the second level are sent to the third level processor, where the SBEs of 

the third level are assembled. These SBEs have much smaller size in comparison to the second 

level SBEs and, especially, in comparison to the initial SLE. The process is repeated to as many 
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levels as necessary to significantly reduce the system size. The structure resembles a tree; where 

each level represents branches and the top-most processor represents a root. Starting from the 

root, the SBE of the highest level is solved, the solution is sent to SBEs of the next lower level. 

The corresponding SBEs are modified to independent form and solved, sending their results to 

the lower level. The process repeats until it reaches the lowest level where blocks of initial SLE 

are modified and solved independently. Each level allows a solution of the system in parallel 

regime. This recursion approach may be used for the solution of large systems of linear equations 

featuring tri-diagonal matrices. 

Parallel Approach 

 In the parallel approach, all MPI-nodes are essentially the same in abilities and function; 

therefore, it is up to our implementation to distinguish the following types of MPI-nodes: Master, 

Solver, and Printer; each type has a name according to its assigned function. The computational 

domain, containing plasma data, is divided into sections of equal size which we refer to as sub-

domains. The sub-domains are distributed between Solvers. Each sub-domain includes a certain 

number of grid-nodes that contain local data, as well as a virtual grid-node on each end of the 

sub-domain. The virtual grid-nodes resemble the first or last grid-node of the neighbor sub-

domain, when the nodes are located at an interface between two sub-domains. In the case of the 

boundary, they provide virtual fluxes, handling (non)penetration of species into the electrodes.  

 At the beginning of the calculations, Master process reads initial data from input data 

files. It prepares the necessary data structures and calculates some additional parameters – 

derivatives of the input data. This initial data is sent to all the Solvers and to the Printer. In order 

to estimate rate-parameters for the plasma, the electric field has to be calculated. Thus, the 

second stage of the calculation is solving the Poisson equation, estimation of reduced electric 
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field and calculation of rate coefficients. Since the whole process can be done in parallel form 

using only Solver nodes, Master and Printer are idling.  

 

Figure 16. Diagram of the parallel algorithm 

 Solution for the electric field requires collaboration of all the Solvers; this is why 

complete parallelization is not possible for the applied algorithm. Calculation of rate parameters, 

on the other hand, is based on the local value of the reduced electric field at each particular node. 

This part of the calculation can be efficiently parallelized. The last step of the solution cycle is 
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the calculation of the number density of species through solving the system of continuity 

equations. Solvers populate local parts of SLE (please, refer to a diagram shown in Figure 15) 

that have cross-dependence. The dependence is present, because the diffusion terms of (33) 

require information from neighbor sub-domains. 

 Thus, in Figure 16, the SLE is distributed between the Solvers, but the subsystems cannot 

be solved locally because of the dependence. We utilize a “Memory efficient parallel tridiagonal 

solver” developed by Austin et al. [74] to remove the dependence between local parts of SLE. 

This algorithm is executed at Solvers building two linear Boundary Equations at each Solver. 

The Boundary Equations encapsulate specifics of the local portions of the SLE. They are sent to 

Master, where all such equations are assembled into the System of Boundary Equations (SBE). 

SBE features an interesting property: its matrix is also tri-diagonal. Hence, the Thomas algorithm 

is applicable for its solution. The solution of SBE represents updated number densities at the first 

and the last grid-nodes of each sub-domain. The updated values are sent to the corresponding 

Solvers (Figure 16), where the subsystems become modified and independent of their neighbors; 

hence, they can be solved in a regular way. 

 To summarize the parallel approach, the function of Master is to read input parameters at 

the beginning of the simulation, prepare initial data and distribute them through Solvers and 

Printer. The rest of the time Master idles, waiting for SBE from Solvers. When SBE is received 

(Figure 17), the solution of the system is evaluated and sent to Solvers, providing a good 

synchronization mechanism. At the final stage, Master finalizes all operations and provides 

performance data. 

 The primary function of Printer (Figure 17) is to provide input/output capabilities when 

there is a request for result writing/plotting. It idles most of the time during the simulation. At 
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specific moments of simulation time, Solvers send results of calculations to Printer and continue 

on their work. Printer processes the result, calculates additional data, and writes output to data-

files without holding Solvers. This type of arrangement accelerates the performance of the code. 

 

Figure 17. General representation of parallel algorithm for 1D plasma simulation. Symbols M, 
S, P denote Master, Solver, and Printer, correspondingly 

Solution for Electric Field 

 When SLE is solved, the updated number density is used to renew the electric field. The 

Poisson equation is integrated numerically using an advantage of parallel computing to the full 

extent. The integration is performed simultaneously at all sub-domains, where local integrals of 

(37) are evaluated. In the process of local integration, the local electric field receives values that 

effectively resemble the shape of the electric field but lack the proper leveling (Figure 18.(a)).  

 In order to set the correct level, the value of the last (right) grid-node of each sub-domain 

is sent to the last Solver in the group. The local integrals are also sent to the last Solver, where 

the integration constant E0 is estimated from the boundary condition (39). The last Solver 
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estimates the proper level and sends it to other Solvers to adjust the local electric field (Figure 

18.(b)).   

 

Figure 18. Parallel integration of Poisson equation: (a) the electric field before the adjustment; 
(b) the electric field after the adjustment 

 In our parallel implementation, the local integration data from all Solvers are collected at 

one (the last) Solver, which performs the necessary calculations and distributes the result through 

the rest of Solvers. As an alternative, we tried to pass the integration data in the “pipeline” 

arrangement. This approach was found to be less efficient, as the communication overhead was 

considerably higher. 

 The integration of electric field could be accomplished with different numerical methods, 

starting with rectangles’ rule and finishing with Simpson method. During numerical evaluation 

we found that rectangular rule does not provide the necessary accuracy to the solution, which 

significantly distorts the resultant data. Surprisingly, Simpson method, providing higher 

accuracy, also yields inaccurate results. The trapezoidal rule was found the most efficient 

algorithm for integration of electric field. While it is simple enough to be rapidly resolved on the 

provided hardware, it provides sufficient accuracy and very good symmetrical result. 
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Solution for Ions’ Temperature 

 The calculation of ions temperature is done at Printer by integrating (43) over the domain 

and starting from the center of the domain, where 0=∂∂ xT . The first integration yields the first 

derivative of temperature as a function of x. We use the temperature derivative at the wall (at the 

point wT in the inset of Figure 19) to formulate thermal flux in accordance with Fourier law. The 

flux is transferred through the electrode and analyzed in the form of Newton’s cooling law at the 

electrode/coolant interface (pointwcT in the inset of Figure 19) with heat convection coefficient

KcmW 1023.681 24 ⋅×= −
airh .  

 

Figure 19. Electrodes’ temperature estimated from temperature of ions calculated for a range of 
voltages 380V – 700 V 

 Temperature of the coolant is maintained at constant level 300 K. From Newton’s law of 

cooling we derive the temperature of the electrode/coolant interface( )wcT . Next, we use Fourier 

law to estimate temperature of the electrode/plasma interface( )wT , with thermal conductivity of 

electrode KcmW 37.2 ⋅=Alk .  The second integration starts from the wall and propagates 
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towards the center of the domain, yielding with temperature profile, and accounting for heat 

exchange between plasma and electrodes, as well as electrodes and coolant. 

Estimation of Parallel Efficiency 

 We would like to estimate whether parallel implementation improves the efficiency of 

computations. In order to investigate an impact of the parallel paradigm, we attempt profiling of 

the code performance. The calculation operations, the MPI-communication, and input/output 

operations are subject to time logging. At the end of the simulation, all timing data are collected 

at Master, where they are averaged and further processed. 

 

Figure 20. Performance of parallel computations for different number of grid-nodes in 
comparison to a single machine. The horizontal bars with numbers indicate computation time of 

a single machine. The vertical lines connect single time values with the optimal point of the 
corresponding parallel computation. 

 The data analysis is carried out in two modes. First, we compare overall performance of 

the parallel version to that of the single version. Second, we estimate a total-share taken by each 

type of parallel process (calculation, communication, i/o-operations) relative to total wall time. 
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The single machine used for performance metering has the same characteristics as the machines 

at a parallel MPI-cluster. The parameters of calculation are set to the same values for both, 

parallel and single cases with the same algorithms used, except for single/parallel differences. 

Thomas algorithm is quite efficient in solution of tri-diagonal systems; hence, we assume the 

single and the parallel code to be sufficiently optimized. Figure 20 represents a comparison of 

parallel and single modes evaluated for different problem size, which results in three cases, 

providing a general trend of performance change (“Performance” curve in Figure 20). 

 Each parallel case results in a performance curve that has a (minimum) point where the 

most favorable conditions are met for the given size of the problem. To the left of the optimal 

point, the performance curve bends up with a steep gradient due to computational overhead. To 

the right of the optimal point, the curve bends up due to communication overhead. The typical 

advantage of the parallel evaluation over the single evaluation is measured in terms of “speed-

up” and shown in Table IV. 

Table 4  
Comparison of parallel and single performance 

Problem size MPI Processes (Np) Speed-up (Sp) Parallel Fraction (P) 
100 5 2.149254 66.84 % 
1000 25 5.196733 84.122 % 

10.000 100 11.20303 91.994 % 
100.000 400 22.81252 95.856 % 

 The speed-up data can be used to measure an effectiveness of parallel implementation in 

terms of parallel fraction (P) of the code. The maximum speed-up achievable in the process of 

parallel computations is equal to number of used processors [75]. Amdahl law (76) provides a 

relation between speed-up ( )pS , number of parallel processes ( )pN , and the parallel fraction of 

the code ( )P . 
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 The estimations of parallel fraction (the 4th column of Table IV) yield with approximate 

range of 66% to 96%. According to Karniadakis and Kirby [76], the parallel fraction is a 

function of problem size, rather than a constant number. Therefore, we use the lowest value 

(67%) as a good estimation of a parallel portion of our code. There is a terminal value for the 

parallel fraction, as the speed-up reaches the saturation point when number of processors 

becomes sufficiently large. At this condition, the numerical code cannot run faster, as the gains 

from parallel execution of the code are well balanced by the losses from parallel communication 

[77]. We could reach such points for constant problem size, but not for scaling problem size, as 

400 processors that we had available were not enough for detailed investigation of the speedup 

saturation. 

 

Figure 21. Averaged calculation time (solid) and communication time (dashed) of the simulation. 
The circle indicates the point of optimal performance. The vertical axis shows 

calculation/communnication time relative to the total wall time of the simulation 

 Another measure of the effectiveness of the parallel implementation is a share of the 

computation time and communication time. Figure 21 represents such a share for different 
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number of grid-nodes. Interestingly, the optimal number of MPI-processes for the given problem 

size appears to be such that the computational time takes about 30% of the total time, with the 

rest used for communication events. This fact is explained by almost linear scaling of calculation 

and communication time for large problem size. The only exception from this trend is the 

problem size 100. In this case, the number of grid-nodes and number of involved MPI nodes are 

too small which makes MPI-communication to scale heavily non-linear with number of MPI-

processes. 

Results and Discussion 

 The results presented in this section, describe the Atmospheric Pressure Plasma behavior 

in the generation chamber. The discussed 1D model of plasma provides multiple variables 

(generally functions of x) for analysis, such as number density, rate parameters, energy content, 

temperature of species etc. These data are prepared as input parameters for 2D model of the 

plasma head. Since 2D model mainly deals with plasma advection, mixing, and delivering of 

species and chemicals to the substrate, the timeframe of this model is determined by flow of the 

neutral gas. The 1D model has a different time-scale, which is based on oscillations of the RF 

electric field and is much shorter than the time-scale of 2D model. Therefore, the practically 

useful data are the variables collected during one complete oscillation of RF and averaged over 

the oscillation period; these data we refer to as time-averaged. Another type of averaging is 

typically required for stability analysis; the time-averaged data, as a function of location x, are 

additionally averaged over the gap size. These data we refer to as time-space-averaged data.   
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Estimation of Voltage Range 

 The applicable voltage range for this model is determined by the minimum and the 

maximum voltage values. We accept the maximum voltage value calculated from gas breakdown 

estimation (7). Young and Wu [45] discussed a possibility of modeling thermal instability of a 

glow discharge using fluidic type of a model. Thermal instability occurs when temperature of 

plasma reaches high values, which is coincident with voltage increase. Thus, there is critical 

voltage that gives rise to instability. This voltage may set the lower limit for the upper range of 

applicability. We performed an estimation of the electrode temperature (Figure 22) for a range of 

voltages that we use in our simulation; the maximum temperature rise at the electrode is found to 

be 0.125 K. At such low temperature change, we found it unnecessary to further investigate 

thermal instability. The lower limit of the voltage range is determined by effectiveness of the 

generation process. Let us consider a general form of mass conservation equation (77), where the 

drift-diffusion term is represented in terms of a flux Q. The drift velocity of electrons in the first 

term on the right-hand side of (77) is substituted with its expanded form (34). 
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 We can ignore the convective-diffusive term, as it just redistributes the existing species 

over the domain, and focus on the right hand side of (77) with an intention to estimate the 

minimal voltage required for generation of new species. We formulate the criterion (78) which 

corresponds to effective generation of plasma 

 0>− p
rec
iee nkEµα          (78) 

This is a rough estimation, since it does not account for dynamic effects, but it provides 

approximate value of the lower voltage limit.  



 

70 
 

 Both ionization and species mobility are functions of the electric field (Appendix A), 

whereas the recombination coefficient and number density of positive ions are constants 

provided at initial condition. We specify typical values ( )scm10,cm10 37311 −− == iep kn  for 

these constants and denote the first term of (78) as a function of electric field ( ) EEf eµα= . We 

move the second term of (78) to the right-hand side and substitute the constants into (79). 

 ( ) Hz 104>Ef            (79) 

 The function ( )Ef  is numerically evaluated through the range of values provided in 

Table in the Appendix A. Figure 22 represents behavior of the function ( )Ef over the long range 

of voltages, whereas the inset shows a magnified portion of a region, where the criterion (79) 

takes place.  

 It is worth mentioning that estimation of the minimal voltage, according to the shown 

method, is performed in terms of variables averaged over the oscillation period. Thus, the 

minimal voltage found from (79) is an RMS-value. Figure 22 accounts for this fact and 

represents the actual value of voltage in place of the RMS. The minimal voltage predicted by 

criterion (79) is V 7.378min =V  

Time-Averaged Results 

 We perform simulation of plasma generation in a range of voltages 300-700 V. At each 

voltage value we investigate the possibility of the plasma reaching the steady state. Figure 23 

shows a typical result of such investigation. Time-space-averaged number density is plotted 

against RF-cycles showing the trend for stability (600 V) or instability (350 V). The simulation 

calculated at 380 V shows a slight decrease on this plot. However, this voltage is validated at 

2000 RF cycles, where it exhibits steady behavior. At the same time, voltages equal to or lower 
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than 370 V lead to permanent decrease in number density, regardless the length of the 

simulation. This investigation confirms the minimal voltage value of approximately 378 V 

 

Figure 22. Minimal voltage search. The main plot shows general behavior of a characteristic 
function ( )Ef  of the electric field plotted versus the applied voltage. The inset shows a magnified 

portion of the curve, where the minimal voltage is found 

 

Figure 23. Stability of plasma discharge 
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 An interesting observation is that the number density of electrons in Figure 23 

consistently starts from a lower initial value. We believe that this effect owes its existence to 

non-physical initial condition. The species are uniformly distributed over the domain. When the 

electric field is suddenly applied, electrons, being faster particles, escape into the nearest 

electrodes. This loss immediately offsets the initial number of electrons. Ions are slow, and they 

do not penetrate the electrode; this is why their initial quantity does not change so drastically. 

 Figure 24 provides time-space-averaged number density of electrons and positive ions in 

the range of voltages 378-700 V. Depending on the specific process responsible for activation of 

a chemical precursor, a different number of electrons and ions is required in the mixing chamber. 

The data plotted in Figure 24 helps to estimate the minimal voltage that supplies sufficient 

amount of the species at each particular case. The averaging is carried out after 3000 RF cycles 

for each involved voltage.  

 When the averaged number density of plasma species is found, it is good to know how 

the species are distributed between the electrodes. Number density of the species (Figure 25) 

expectedly provides high values at the center of the domain and lower values at the edges. 

Electrons have zero number density at the wall, since there is absolute absorption. The quantity 

of positive ions exceeds that of electrons at every location on the domain; this surplus constitutes 

slightly positive total charge of plasma. 

 Since the total charge of the plasma is positive, the electric field (Figure 26) takes a 

specific shape responding to the growth of distortion, in accordance with Poisson equation. The 

absolute values of electric field are symmetric with respect to zero level which perfectly 

correlates with the symmetry of the sinusoidal waveform of the applied voltage.  
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Figure 24. Mean number density achieved in the stable mode vs. externally applied electric 
potential 

 

Figure 25. Distribution of time-averaged number density of electrons and He+ ions over the gap 
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Figure 26. Distribution of time-averaged reduced electric field over the gap 

 

Figure 27. Time-averaged ionization curve 
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 Ionization curve (Figure 27) exhibits a good match to electric field. The relation between 

ionization coefficient( )α   and reduced electric field ( )NE  is not linear (Figure 12.(b)), which 

naturally transfers into the curvy shape of ionization at the central part of the domain, where 

electric field is small and almost constant. The highest ionization values are observed at the 

edges of the domain, which is a consequence of high electric field in this region. A rather 

peculiar phenomenon for ionization curve occurs at low voltages (380 V), when the electric field 

at the central part of the domain is not high enough to provide recognizable ionization, but 

ionization at the edges is sufficient to sustain plasma. 

 

Figure 28. Time-averaged generation term 

 The generation term (Figure 28) shows high values at the center, where large number 

density of electrons is multiplied by relatively small ionization coefficient resulting in moderate 

number of generated species, as well as at the edges (the peaks are especially pronounced for 

lower voltages, like 380 V and 500 V in Figure 28), where not high number density is 



 

76 
 

complimented by large ionization coefficient yelding a good number of new species. The 

generation at the edges is the major electron supply at low voltages.  

 

Figure 29. Time-averaged recombination term 

 

Figure 30. Time-averaged power dissipation 
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 Recombination term (Figure 29) expectedly exhibits a large peak at the center of the 

domain, where number densities of both species are at the maximum. This is not surprising 

considering the fact that recombination term consists of multiplication of the two. Behavior of 

recombination term generally does not change with alteration of applied voltage. 

 

Figure 31. Distribution of time-averaged current density in the gap 

 Power dissipation (Figure 30) depends mostly on the current density (Figure 31) and the 

electric field (Figure 26). The shape of electric field and current density shown in this section are 

not good indicators of the expected shape of the power dissipation. The reason is that these 

values are already time-averaged, whereas the power dissipation is calculated from instant values 

of electric field and current density and then time-averaged. The averaged form of power 

dissipation is represented by the right-hand side of (43). This case clearly illustrates that average 

value of an integral is not equal to the integral of average values.  
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 The values of current density (Figure 31) are determined through time-averaging of

( ) ( )d
ee

d
pp vnvnetj −= . In this expression, the second term is dominant, because velocity of 

electrons is few orders of magnitude larger than that of ions, while their number density is in a 

comparable range. Within the first half of the RF-cycle, electrons accelerate towards one 

electrode; within the second half of the cycle, they accelerate towards the opposite electrode. In 

both cases, the highest time-averaged velocity is reached in the vicinity of the electrodes and the 

lowest time-averaged velocity is at the center. When velocity is multiplied by number density, 

which exhibits the opposite behavior, the highest result (peaks in Figure 31) is found around ¼ 

and ¾ of the domain.  

 

Figure 32. Distribution of temperature of electrons in the gap 

 Temperature of electrons (Figure 32) is computed from mean energy taken from 

BOLSIG+. The central hill is formed due to electrons passing this region twice per RF-cycle, 

losing their energy in the form of heat dissipation. The high temperature at the edges is due to 
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high electric field at this location. Such result is explained by mean energy growth (Figure 

12.(d)) with increase of electric field. Therefore, high electrons’ temperature is expected in the 

vicinity of the electrodes. 

 

Figure 33. Distribution of ions temperature in the gap 

 Temperature of ions (Figure 33) is calculated at the last RF-cycle of the simulation as a 

solution of thermal diffusion equation (43). One can notice that the temperature at the center of 

the domain may reach high values, but the actual heat flux over electrodes remains small. This is 

why temperature of the electrodes (Figure 22) does not experience a significant increase. Overall 

temperature of APP is determined by ions with contribution of electrons’ temperature in the form 

of ohmic heating (43). 

Transient Results 

 We found surface plots (Figure 34) helpful for understanding of plasma transient 

behavior, as they immediately highlight defects and anomalies in plasma. The plots represent 



 

 

evolution of plasma parameters in time, with the vertical axis corresponding to the gap between 

the electrodes and the horizontal axis corresponding to the simulated ti

these plots are instantaneous rather 

are well pronounced.  

Figure 34. Evolution of plasma. The vertical axis is dimensionless x along the gap. The 
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Figure 34. Evolution of plasma. The vertical axis is dimensionless x along the gap. The 
horizontal axis is dimensionless time

 A good example of using surface plots is the investigation of the generation process. 

When the pattern of generation (Figure 3
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realize that the peak of generation does not correlate with the peak of number density. We 

consider dimensionless time of 14.3 in Figure 34. The generation term has a peak right after this 

time mark. We take a cross-section of the generation and number density when generation is at 

maximum (right after time mark of 14.3) and plot them next to each other (Figure 35). According 

to Figure 34, the highest number density of electrons is around 6.0=x  and the highest 

generation happens around 2.0=x .  

 

Figure 35. Generation term aligned with the species number density. This is a cross-section 
taken from surface plots (Figure 34) at the peak of generation, right after 3.14=t  

 At 2.0=x  the difference between ions’ and electrons’ number density is high leading to 

significant distortion of the electric field. In accordance with Poisson law, the distortion transfers 

to the high electric field and subsequently to the high velocity of the species. Thus, flux of 

electrons at 2.0=x is larger than that at 6.0=x , where electrons have the peak population. 

Another factor influencing the maximum generation is the high ionization coefficient as a 
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consequence of the high electric field at 2.0=x . The combination of these factors results in non-

correlation of the peaks of the generation term and species’ number density. 

Engineering Insights 

 One of the parameters that favor experimental investigation is the sheath thickness. There 

are different methods proposed for theoretical estimation of the sheath. For example, the 

Lieberman [78] and Godyak/Sternberg [79] models are well correlated to experimental 

measurements [80], in the case of low pressure plasmas. For atmospheric pressure plasmas, the 

Young and Wu [45] model suggests using 90% of maximum electric field value as a criterion for 

estimation of the sheath position. We found that this criterion provides not pleasing results with 

rapid changes in the sheath curve due to disturbances generated by moving species. 

 

Figure 36. Sheath thickness within oscillation when plasma is at the steady mode 

 Chirokov [43] proposes to set the position of sheath at the point where number density of 

electrons is smaller than space-averaged instantaneous number density. Figure 35 represents 
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results obtained according to Chirokov’s approach. We found this criterion quite reasonable. It 

provides smooth results and splits the domain into three parts, two of which (shaded in 

Figure 36) contain very small amount of electrons with sufficiently large number of positive 

ions, and one (central white in Figure 36) contains major portion of electrons and ions. 

 

Figure 37. Phase shift of current at the electrodes relative to the applied voltage (600 V) in 
plasma at the steady mode 

 Another parameter that can be acquired experimentally is the phase shift (Figure 37) of 

the current relative to the applied voltage. We calculate the current density value at the electrodes 

using the boundary conditions. The electrode’s current density, being multiplied by the area of 

the electrode, provides the current that could be compared to experimental results.  

 The phase shift observed in simulated plasma is equal to πϕ 45≈  at 600 V. This value 

corresponds to the ratio of ( ) 938.0ResistanceReactance == ϕTan . The simulated plasma is 

almost equally proportioned between capacitive and resistive modes, with resistive mode 

pronounced slightly more. 
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 The 1D model of plasma allows for some basic engineering estimation that could help in 

building a real plasma setup. For example, temperature of electrodes (Figure 22) provides 

thermal mode of plasma operation at a certain voltage. These data assist in decisions on the 

necessity of cooling measures for the proposed plasma head. 

 

Figure 38. Plasma fade estimation when electric field turns off at the 100th RF-cycle. 

 Another useful estimation can be done when the electric field is turned off after plasma 

reached the steady mode of operation. To better illustrate this example, we pick the external 

voltage of 600 V and simulate plasma behavior for 100 RF-cycles. According to Figure 23, 

plasma at this voltage reaches the steady state within the specified number of cycles. At the 100th 

RF-cycle we turn off the external voltage and continue the simulation until number density of 

species falls below a certain limit. It takes about 5000 RF-cycles to provide data depicted in 

Figure 38.  

 To further emphasize the essence of this test, we assume that neutral gas flows with 

velocity of 10 m/s. The plasma is caught by the neutral gas and is advanced along the channel 
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due to convective forces. Despite the absence of external electric potential, the electric field is 

still generated in the advancing plasma because of the differences in charge distribution. The 

recombination process continues until electrons and ions are still present at the domain. 

Additional loss of electrons occurs due to their absorption at the wall. Thus, the quantity of 

electrons decreases rapidly and reaches a very low number at just over 2 cm of the free flight 

(Figure 37 does not show further electrons decrease as their number density becomes too small). 

It is possible to pull electrons out of plasma for longer distance using special techniques [81], but 

in regular case, electrons beam is short in comparison to that of ions. 

 Ions participate in the recombination process as long as electrons are available. When the 

quantity of electrons becomes very small, the recombination has almost no effect on the number 

of ions remaining on the domain. Provided that there is no other ions’ loss mechanism, these 

species fly in a relatively large number for a quite long distance. Figure 38 estimates the ions’ jet 

length is greater than 7 cm. This case has an artificial nature, but it still can be used for a rough 

estimation of plasma life when a plume of plasma leaves the gap between the electrodes. From a 

practical standpoint, this consideration could be quite helpful at the design stage. 
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MODEL OF PLASMA CONVECTION 

General Description 

 Plasma convection along the channel formed by parallel walls of the plasma head is 

governed by convective motion of the neutral gas. We did not consider motion of neutral gas in 

1D model of plasma generation, because the difference in characteristic time of the two 

processes is tremendous. While the gas moves along the characteristic length of the gap between 

the electrodes, the generation process evolves thousands of iterations. Thus, we may assume that 

plasma parameters such as the number density, the electric field generated by the applied 

potential and by charged species, the rate coefficients, energy of the species, and others can be 

averaged and advected along the channel using the time-frame of the gas flow; at the same time, 

accounting for electric response of plasma, and for velocity field imposed by the flowing gas. 

 

Figure 39. Typical geometry of the channel proposed for numerical investigation 
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 The velocity field of the neutral gas is calculated using ANSYS, as there is no reason to 

expand the numerical solver of the plasma problem to solve Navier-Stokes equations. The 

computational domain is constructed using ANSYS ICEM, the fluidic calculation is done via 

ANSYS CFX. There are two typical geometries considered for the plasma channel (Figure 39). 

The geometry of the channel could be altered within a wide range. It is also possible to 

implement turbulence model, as the final result must contain only the velocity field, which would 

account for any additional effects. Plasma species can be imagined like a cloud of particles that 

is driven by the gas flow, regardless of its laminar or turbulent nature, but due to the collective 

behavior of the plasma particles as a reaction to the imposed and self-generated electric field, the 

trajectories of plasma species would not necessarily coincide with those of neutral molecules. At 

the same time, ionization and recombination processes contribute to a change in number density 

of plasma species. The loss of the species to the walls also provides a physical mechanism 

different from the behavior of neutral gas. This is why, in addition to the solution of the fluidic 

problem, we have to solve Poisson equation on top of the advected distribution of plasma, 

calculate rate parameters and adjust the number density of the plasma accordingly. 

 The velocity field is internally stored in ANSYS in a specific form with some parameters 

accessible to the user, and some parameters hidden. The extraction of the field components 

provides spatial coordinates of the nodes with values of velocity, velocity gradient, pressure, 

temperature and some other parameters specified at the given locations. Very important 

information on connectivity of the nodes is missing and cannot be extracted from ANSYS. This 

results in the velocity field being just a random cloud of nodes without any physical connection. 

The nodes could be sorted and matched to some type of a pattern to resemble a type of a mesh, 

but it is not a simple task when unstructured mesh is in use. 
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 We would like to use unstructured mesh in our convective model, as it approximates 

complicated geometry [82] with much better accuracy than regular mesh. The aspect ratio of the 

triangles in a triangular unstructured mesh can be improved significantly in comparison to that of 

the regular mesh. At the same time the calculation process becomes more complicated as we 

have to work in terms of each particular mesh element and not in terms of separate nodes aligned 

with coordinate axis. Thus, we have to develop a specific approach to the computational domain 

and to the numerical algorithm to handle this model. 

 

Figure 40. The developed software module for triangulation and processing of ANSYS results 
prior to input to the numerical code 

 Since the input velocity field is represented as a random cloud of nodes, we have to 

construct triangular elements and find the connectivity information. In order to perform this task, 

we develop a separate software module using Matlab [83]. The primary objectives of the module 

are to input the random cloud of nodes, to order the nodes and triangulate them utilizing the 
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Delaunay [84] triangulation method, to set the boundary information to those elements that 

contain a domain boundary as one of their edges, finally, to export the updated information about 

the velocity field in a special data file that can be used by our numerical code for advanced 

calculations. 

 

Figure 41. Typical channel geometry with velocity field, as it is seen in the numerical code 

 Figure 40 shows the main window of the developed module with loaded data for straight 

channel. The data is automatically triangulated with the Delaunay algorithm. The different colors 

of the nodes on the mesh correspond to defined boundary conditions for Inlet, Walls, and Outlet. 

The red solid line with parallel dashed lines represents a selection tool – all the nodes that fall in 
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the range shown by the dashed lines would be selected and available for modification, 

assignment of boundary condition, or setting the confinement information for the domain.  

 There are few selection tools developed to widen the range of accuracy for the selection 

procedure. The software module features interactive user environment where mouse and 

keyboard may be used to enter the necessary data, which is depicted in the real time. Additional 

components are easy to add to the module as the code, written in Matlab, is open for further 

development. 

 

Figure 42. Unstructured mesh with finite elements (orange) and normal vectors (blue) 

 The data supplied by the software module includes the physical data on velocity field in 

the considered geometry, as well as connectivity information and boundary conditions. This data 

is analyzed by a numerical code written in C-language. The first result of such an analysis is the 

proper input of the geometry of the calculation domain and proper interpretation of the velocity 

data. This result can be validated by plotting of the input data in the numerical code, as it is 

shown in Figure 41, where typical geometries for the plasma channel are shown in the form of 

vector-field. 
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 The nodes topology is brought in order by Matlab software module, the numerical code 

converts these data into a set of finite volumes. Each triangle of the unstructured mesh is subject 

to pre-processing, which calculated the center of the triangle and the centers of its edges. The 

edges’ centers connect to the triangle’s center, thus splitting a mesh element into three parts 

(Figure 42). Each part belongs to the vertex that is in the closest proximity. Hence, each vertex is 

surrounded by such parts of the mesh triangles. All parts combined around the vertex, create a 

2D finite volume which could be seen as a shape enclosed with orange borders in Figure 42. For 

example, the orange sectors in Figure 42 correspond to the portion of finite volume that belongs 

to the vertex v2, the green sectors – to the vertex v1, and the blue sectors – to the vertices v0. 

There different ways to build finite volumes on unstructured 2D mesh [85, 86]. In addition to the 

method we have chosen, the finite volumes could be represented by the mesh triangles with the 

physical properties determined at the centers of the volumes.  

 

Figure 43. Typical mesh triangles and indexing of geometrical elements 

 The normal vectors (the blue vectors in Figure 42 and Figure 43) are calculated at the 

borders of the finite volumes, in order to project the species fluxes to the boundary of the finite 
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volume. The direction of the vectors is chosen such as it follows the direction of counting the 

vertices (clockwise or counter-clockwise). When direction of vertices counting reverses, as it is 

shown in the right triangle of Figure 42 relative to the left triangle in the same figure, the normal 

vectors automatically account for the change. The local indexing is chosen in such a way that an 

edge, a line (the border) connecting the edge to the center of the triangle, and the corresponding 

normal vector all receive an index of the opposite vertex. Thus, the contribution of the fluxes – 

positive or negative – for each particular part of the finite volume is determined according to the 

direction of the normal vector, which is constant relative to the vertex that contains the 

considered part. 

 The local indices have the following relations. For the vertex 2,1,00 =i , the other two 

vertices are determined by ( ) 3mod101 += ii and ( ) 3mod202 += ii . The same are the indices for 

the edges connected to the vertex0i . For the edges the same relations determine the two vertices 

forming the edge, while the index of the edge corresponds to the opposite vertex. Let us consider 

a line connecting the center of an edge and the center of the triangle, e.g. ce0 , the two edges not 

connected to this line are also determined by ( ) 3mod101 += ee ii and ( ) 3mod202 += ee ii . This 

relation would be useful when we discuss dynamic blending in the next chapters. 

 After the geometrical part of the computational domain and velocity field are initialized, 

we set initial number density and electric potential at the Inlet of the domain. In order to 

accomplish this task, we use the averaged data provided from 1D model of plasma generation. 

The rest of the physical plasma parameters are not important as they can be calculated during the 

simulation based on the species’ number density and distribution of electric potential. 
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Figure 44. Initial number density of electrons 

 

Figure 45. Initial number density of positive ions 

 

Figure 46. Initial distribution of recombination term 
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Figure 47. Initial distribution of reduced electric field 

 

Figure 48. Initial distribution of electric potential 

 The initial data shown in Figures 44-48 is calculated on a domain discretized with the use 

of the unstructured mesh that consists of 2500 nodes and 4752 triangles. The initial data 

calculated on 1D domain of 1000 nodes is fit to the inlet of the 2D problem and interpolated 

between the inlet nodes. Other plasma parameters at initial moment of time could be seen in 

Appendix C. The average profiles shown for 1D problem can be observed for number density of 

the species (Figure 44 and Figure 45) and for recombination (Figure 46).  The reduce electric 

field (Figure 47) and the electric potential (Figure 48) are calculated based on the initial 
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distribution of the potential provided from 1D problem. The Poisson equation is solved in order 

to find electrical properties at the domain at the initial moment of time. 

Numerical Technique 

The numerical technique applied for 2D case of plasma advection can be selected from a 

multitude of available models and approaches. The most common are central difference 

descritization and upwind numerical approximation. Regardless the numerical model, the finite 

volume approach requires calculation of the species number density at the interfaces between the 

finite volumes. The value at the interface is used for determination of the flux that is crossing the 

boundary leaving one finite volume and entering another one. Tracking the fluxes and properly 

inserting them into the governing equations yields with redistribution of the species on the 

domain. The interfacial value can e calculated in accordance with one or few numerical schemes 

that are used in the problem. The central difference descritization calculates the number density 

based on exact interpolation at the point of interest. This approach is not beneficial when 

gradients of the conserved values are high. In fact, the scheme leads to the saw effect which is 

often referred to as instability of the central difference scheme.  

In order to cure the instability, the interfacial value of number density can be calculated 

with the use of the node which is placed upwind in relation to the considered point. This scheme 

has a name of upwind numerical approximation. The first order approximation is obtained by 

assuming that the number density is constant everywhere within the finite volume, including the 

boundaries between the elements. The interfacial value, in this case, is determined as the largest 

value of the two finite volumes. The second order scheme is based on linear interpolation of the 

conserved variables around the upwind node. At the considered point, the velocity vectors are 
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considered, which helps to determine which node is the upwind one. The mean gradient at the 

upwind node is used to interpolate the upwind number density to the considered point. In the 

general case, such interpolation yields with higher interfacial value than central difference 

scheme. The saw effect is completely eliminated by the upwind approximation, but the 

approximation introduces excessive numerical diffusion, which is culprit of accuracy. 

The advantages of the central and the upwind numerical schemes may be combined, and 

the disadvantages significantly reduced, when the two schemes are used together. The 

contribution of each scheme is determined by a weighting factor 10 ≤≤α . The combination of 

the schemes is referred to as blending. This approach may be used with a static blending factor or 

with a dynamic one. In the later case the accuracy usually increases, while the calculation time 

decreases. More details on the discussed approaches are shown in the next chapters. 

Interpolation in the Mesh 

 Due to the use of unstructured mesh in our model, we have to implement special 

numerical techniques for solution of both, continuity equation and Poisson equation. The 

governing equations remain valid with the exception that they are written in a general form 

(gradients and divergence in place of partial derivative).  
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The numerical scheme for the continuity equation is based on analysis of fluxes that cross 

the boundaries of finite volumes. Let us consider a finite volume presented in Figure 49. The 
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figure shows a small portion of unstructured mesh, where six triangles connect to a vertexv . 

Each triangle has a center at the point cwhich is calculated as an average of coordinates of the 

three vertices of the triangle and represents a center of mass. The points e represent the centers 

of edges of the triangles. These centers are calculated as the average of coordinates of two 

vertices forming the edge. 

 

Figure 49. A typical finite volume on the unstructured mesh 

Centers of the surrounding triangles are connected to the centers of the edges; thus, 

forming an enclosed volume which we call a finite element for the unstructured mesh. The vertex 

v  is the center of the finite volume that is shaded in the figure; it represents physical properties 

averaged over the volume of this element. The surrounding verticesv belong to neighbor finite 

volumes. The finite volumes connect to each other through common edgesce. We consider a 

flux crossing edgesce. This flux would redistribute the mass of the fluid, trying to equilibrate the 

nodal values of number density. When the flux crosses the boundary between finite volumes, it 

needs to be subtracted from one finite volume and added to another one. This process ensures 

mass conservation and provides the way for fluid redistribution on the domain.  
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 We account for the velocity field provided from ANSYS by modifying the governing 

equations  
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The velocity is built based on superposition of the convective flow and the flow 

generated by the imposed electric field. The diffusion of species may also be presented in terms 

of diffusion velocity and added to the governing equations to keep uniformity of description, but 

computationally this approach would be disadvantageous. Thus the diffusion flux is calculated 

on a separate basis. 

 To provide more detailed explanation of the method we would like to consider one of the 

mesh triangles with vertices 
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represented through coordinates ( )ηξ ,  in the constructed basis. 

In order to determine the values of( )ηξ , , we build a vector 








−

−
=

1

1

yy

xx
pv1  and represent as a linear 

combination of the basis vectors 
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We take the following dot-products of equation (82) 
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This system is solved for( )ηξ , with the following result 
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A function ( )yxf , , defined in the triangle, with known values1f , 2f , and 3f at the vertices is 

linearly interpolated within the triangle using the following interpolation scheme 

 ( ) ( )ηξ 12131 ffffff −+−+=         (85) 

This function can be represented in terms of coordinates( )yx, , using relation (67) 
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Thus, number densityn , velocity 
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v , and diffusion coefficientD of the species may be 

interpolated in the considered triangle 
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One of important properties of the linear interpolation in the triangle is that any interpolated 

function has a constant gradient within the triangle 
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This property would be helpful in further derivations when we interpolate fluxes 

Fluxes in the Mesh 

 A flux at any location ( )yx,  in the triangle is determined by the following relation 

 ( ) ( ) ( ) ( ) nyxDyxyxnyx ∇⋅−⋅= ,,,, vQ        (89) 

The first term in (8) accounts for the flux due to drift and convection, the second term accounts 

for diffusive transport. Since all the functions used in (89) are interpolated (87) within the 

triangle, we substitute their interpolated representations into (89) and use the fact that the 

gradient is constant within the triangle to resolve the negative term in (89) 
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Expression (90) is rearranged with respect to ( )yx,  

 ( ) 654321 aaaaaaQ +++++= 22, xxxyyyyx       (91) 
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Relation (91) represents a flux at a point inside the triangle. In order to build a numerical 

scheme, we need to estimate total flux over a boundary of a finite volume. Such flux would be an 

integral value of fluxes taken at all the points along the boundary. 
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Figure 50. Triangle with locally indexed vertices, centers of the edges, and normal vectors 

 We assign an index Nk ...1= to each triangle connected to the vertex of interest. The 

centers of triangles receive the same index and become kc . The centers of edges belong to two 

triangles (to one triangle - only in the case when the edge belongs to a boundary of the domain); 

hence, they cannot be indexed in such a simple manner. Inside a triangle we introduce a local 

indexing of vertices. The indices of centers of edges ie and normal vectors in  are connected to 

vertices, opposite to that edge. The normal vectors are directed in the direction of counting of the 

vertices (Figure 50). 

 The continuity equation for plasma can be written in terms of fluxes with the right-hand 

side written in a general form 
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n
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Q          (92) 

Here Q is the summary of all the fluxes (incoming and outcoming) in the finite volume. 

Applying the concept of finite volume approach, we integrate equation (92) over the finite 

volume that has an areaA . 
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 We assume that values of number density, and generation/recombination term at the 

vertexv  are average values over the whole finite volume associated with the vertex. Thus, they 

can be taken out of the integral. We also assume that integration is carried over the finite volume 

which consists of combination of smaller volumes contributed by each particular triangle. This 

assumption allows us to split the integral over the finite volume into a sum of integrals over each 

particular piece of a triangle. 
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Here kA  is the area of the sub-volume of the kth triangle. Area of any triangle could be calculated 

using Heron’s formula ( ) ( ) ( )2131323212

1
yyxyyxyyxA −+−+−= . 

According to Divergence Theorem [87] the integral term of equation (94) can be modified as 

follows 

 ∫∫ •=•∇

kk AA

dldA
δ

QnQ          (95) 

Here the right-hand side is the integral taken over the boundary of the kth triangle. This integral 

could be further split into the sum of integrals over each separate piece of the boundary. As the 

example, let us write the integral at the vertex1v for the case shown in Figure 50. 

 ∫∫∫∫∫ •+•+•+•=•
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     (96) 

 If the edges of the triangle do not belong to the boundary of the domain, the integral 

terms in (96) over the boundaries 31ev and 12ve  would be canceled out due to double integration. 

In the neighboring triangles that share the same edges 31ev and 12ve  the integration would be 
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taken in the opposite direction, hence, the opposite sign of the integral terms. Therefore, equation 

(96) is reformulated accounting for the canceling terms and is substituted into (94). 
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This is the continuity equation integrated over the finite volume and written in terms of fluxes. 

Integration Path in the Mesh’s Triangles 

 In order to evaluate the integral term of (97) over any set of triangles, we need to find 

normal vectors and estimate the fluxes over the boundaries ce3  and 2ce (please, refer to Figure 49. 

The calculation of normal vectors is based on the following relations. 
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The last condition in (98) provides proper direction to normal vectors. According to relations 

(98), the normal vectors for a triangle are calculated with the following coordinates. 
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The vector ice is calculated as follows 
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As the general approach, we assume that integral of the flux needs to be evaluated over some 

linear path in the triangle. The path is determined by coordinates of the end points 
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correspondingly. The normal vectors to this path are determined as 
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Validation of normal vectors confirms the major properties, i.e. their orthogonality and unit 

length. The sign of the normal vectors is determined based on specific conditions and depend on 

the location of the path. The orientation of normal vectors has a special form at the inner 

boundaries of the triangle to simplify summation of the fluxes when contribution at each 

particular vertex is estimated. It also could be inner/outer normal to the triangle edge, when the 

edge represents the boundary of the domain. 
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 In the first case, condition (100) may be applied, when vertices of the triangles are 

counted clockwise/counterclockwise, the normal vector would be always pointing to the opposite 

direction, i.e. counterclockwise/clockwise. In the second case, the normal vector may point in the 

direction similar to direction of the vector starting at the vertex, opposite to the considered edge, 

and ending at the center of the edge (dot product of the specified vector and the normal vector 

should be positive); this condition provides the outer normal. When the integration part is an 

arbitrary line inside of the triangle, other conditions may apply to determine direction of the 

normal, but in most cases they could be built based on the vertices of the triangle and center 

points of the edges and the triangle itself.  

 The path, in the general case, may be formulated as a function of x or y only.  
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 The flux at any point in the triangle is described by equation (91). This flux must be 

integrated over a portion of the boundary of the finite volume to yield with the integral term of 

(97). The integration could be accomplished analytically providing with very good accuracy and 

computational efficiency, but it requires knowledge on exact path of integration. 



 

107 
 

 

Figure 51. Integration paths in a triangle 

 We want to estimate the paths in the triangle along which the integration is carried on. 

Let us refer to the interpolation scheme one more time. In terms of interpolation coordinates( )ηξ ,  

the important points in the triangle could be written in the following form 
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Since the coordinates for all necessary points are known, we can estimate a line passing through 

two points and apply this method to1ce , 2ce , and 3ce . The following lines are found 
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We substitute (84) into (107) and obtain integration paths in terms of( )yx, . 
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 Relations (108) determines path of integration in the triangle. There are two functions (

( ) bkxxy += and ( ) dmyyx += ) provided for each path, the reason is that the triangle is randomly 

oriented in space with path of integration represented by a line – in some cases the line is 

perfectly vertical or horizontal. The vertical case is extreme for ( )xy  and the horizontal case is 

extreme for ( )yx , thus one of the representations could be used, after orientation of the 

integration path is determined. The criterion for the path orientation is simple: when 1>k we use

( ) dmyyx += , when 1<=k we use ( ) bkxxy += . The integration over the path requires not only 

knowledge on the function describing the path, but also evaluation of the length element along 

the path. The following formulation provides an easy way of such an evaluation. 

 
dyLdlmxLdmyx

dxLdlkyLbkxy

xyx

yxy

=+=+=+=

=+=+=+=
22'

22'

11

11
      (109) 

 Considering a triangle shown in Figure 51, we would like to introduce three auxiliary 

integrals, corresponding to the three paths of integration. We modify integral terms in (96) 

eliminating the normal vectors from the integrals, due to the fact that they are constants, and take 

only the terms that do not cancel out when integration passes through all the neighboring 

triangles. 



 

109 
 

 

( ) ( )( ) ( )( )

( ) ( )( ) ( )( )

( ) ( )( ) ( )( )∫ ∫∫

∫ ∫∫

∫∫∫

===

===

===

3 33

2 22

111

,,,

,,,

,,,

3

2

e

c

y

y

x

x

x

y

e

c

y

y

x

x

x

y

y

y

x

x

x

y

e

c

e

c

e

c

e

c

e

c

e

c

e

c

dyLyyxdxLxyxdlyx

dyLyyxdxLxyxdlyx

dyLyyxdxLxyxdlyx

QQQI

QQQI

QQQI 1

     (110) 

 Since we know the flux value at any point (91), the length element (109), and the relation 

between the coordinates (108) when following the path, we can substitute all this expressions 

into (110) and proceed with further evaluation. The evaluation is done for two cases:( ) bkxxy +=

and ( ) dmyyx += . After simple algebraic derivations, the resultant terms are gathered with respect 

to ja  (the coefficients from (91)). The result could be written as follows. 

 3...1         ,654321 =+++++= ibbbbbb iiiiii 654321i aaaaaaI     (111) 
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 The coefficients jib depend only on geometry of the mesh. If the mesh does not change 

during the simulation, they remain constants. Before the simulation starts, the analysis of the 

mesh takes place: for each triangle of the mesh, orientation of the integration paths is estimated 

using the described criterion. The result is the decision on which representation of the path 

should be used ( ) bkxxy += or ( ) dmyyx += . According to the used representation, a set of jib  is 

calculated and stored for the pathi ; thus, a triangle receives three such sets – one for each path. 

Whenever the flux along the path needs to be estimated, the coefficients ja are recalculated 
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accounting for new values of number density, velocity, and diffusion coefficient at the vertices of 

the triangle. The relation (111) is then used to provide the fluxes along the paths.  

 One important note should be given. The integration of the fluxes proceeds from the 

center of the trianglec  towards the edgeie . The sign of the flux iI remains unchanged if the 

coordinate of pointc used as parameter of integration is smaller than the corresponding 

coordinate of pointie , in the opposite case the sign of iI should be reversed. This estimation may 

be performed at the initial stage of the simulation and the sign reversion could be introduced into 

jib  automatically providing with the proper sign whenever (111) is applied. 

 The fluxes (111) are associated with the path of integration. In order to determine how 

much matter passes over the boundary created by the path lines, the dot product of the auxiliary 

fluxes and the corresponding normal vectors should be found. Each triangle contains a sub-

volume of the finite volume element. The sub-volume at the vertex iv is determined by two 

boundaries ( ) 13mod1 ++ice and 13mod +ice . We do not account for the boundaries( ) 13mod1 ++ii ev and 13mod +ii ev , 

because positive/negative flux contribution here cancels out by negative/positive contribution at 

the neighboring triangle; unless the edge is at the boundary of the domain, which is the separate 

case discussed later.  Thus, the contribution of the fluxes to the sub-volume at the vertex iv in the 

triangle k is determined by fluxes over boundaries ( ) 13mod1 ++ice and 13mod +ice . Based on the direction 

of the normal vectors and location of the path lines, the following relation takes place. 
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 In this relation, the variable ksQ represents total contribution of the fluxes to the sub-

volume at the vertex sv in the trianglek with 3,2,1=s being a local indexing within the triangle. 
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With modifications provided in (112), the continuity equation (97) is transformed into simpler 

version. 
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Equation (113) represents an explicit scheme for iterations of number density at the vertex of 

interest. 
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Boundary Conditions 

 In order to properly estimate fluxes crossing the boundary of the domain, we have to 

consider an arbitrary flux in a general form, based on the derivations provided for the finite 

volumes. Let us assume an arbitrary line which provides a path for the integration. 
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The flux crossing this line at point( )yx,  can be written in the following form 

 ( ) 654321 aaaaaaQ +++++= 22, xxxyyyyx       (116) 

This instantaneous flux is integrated along the considered path yielding with total flux 
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Substitute flux (91) into the integrals; also substitute definition of the lines 
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This equation provides results for both representations of the integration path ( )xyy = and

( )yxx = . We simplify this integral and gather the terms in front of coefficients ia  
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 Since coefficients ia are determined only from the nodal values and do not depend on the 

coordinates, they can be taken out of the integral together with the length correction which is 

constant for the whole integration path.  
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We evaluate the integrals 
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Then, estimate the general form of the coefficients to formulate the flux 
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Depending on the type of representation used for the integration path, there are two results 

obtained 
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The flux crossing the considered edge is found by projection of the total flux on the normal 

vector calculated for the edge 

 
pthpthpthQ nI •=          (124) 

The sign of the crossing flux depends on the direction of the normal, which could be either 

positive or negative, depending on the considered vertex. 

 

Figure 52. Convective transport of plasma species using central difference scheme only 

 Figure 52 shows the typical result for a calculation based on the central difference 

scheme for convective transport of the species. The “saw” effect is severely pronounced for both 

species. The peak value of the number density in both cases is [ ]317 m1105.3 ×  which is higher 

than the original maximum number density. The “saw” distribution of plasma species leads to 
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very high peaks and very deep valleys between the peaks. The species accumulated at the peaks 

result with high values of the number density.  

Upwind Descritization 

The method presented in the previous section resembles central difference scheme, which 

is known for introduction of unphysical oscillations when convective transport is considered. 

The oscillations lead to instabilities and poor convergence of the solution. In order to resolve the 

instability, the upwind descritization is applied to the problem. The value of the number density 

at the interface between two adjacent finite volumes is determined based on the velocity field. 

The velocity components are interpolated at the interface using simple geometric interpolation. A 

triangle is considered in order to estimate the interfacial parameters. The parameters (velocity, 

diffusion coefficient, and number density) are calculated at the center of the triangle and at the 

centers of its edges. Next, these parameters are calculated at the centers of the lines connecting 

triangle’s center and edges’ centers; the same lines represent the interfaces between adjacent 

finite volumes. The number density at the interface is calculated at this time for further use in 

central difference descritization. The interfacial velocities are multiplied by normal vectors at the 

interfaces to evaluate the overall impact of the flow on each of six sub-elements forming finite 

elements at the triangle. The sign of this multiplication determines which vertex lies upwind 

relative to the considered interface. The number density value and gradient of number density at 

the upwind vertex are used in the form of Taylor-series expansion to evaluate the number density 

at the interface. This newly evaluated number density is different from the one previously found 

in accordance with geometrical interpolation. The former includes more information about 

incoming flow which usually increases the interfacial number density.  
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 The gradient of number density at the vertices of the triangle requires a special procedure 

for accurate calculation. The method that we use in our model is targeted to minimization of the 

gradient error in the least-squares sense; thus, it has a name of Least Squares Linear 

Reconstruction Method [88]. The idea of the method is relatively simple. We consider one 

computational node on the domain. In the general case, this node belongs to multiple triangles 

and is surrounded by multiple vertices which share same edge with the considered node. We may 

estimate a gradient between two nodes using (). 
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This gradient is specific for the node i, when applied to other nodes it would result with 

sufficient error. If we cycle through all the surrounding nodes and calculate algebraic average of 

the gradient, we would find the first approximation to the gradient at the considered node. To 

increase the accuracy of gradient calculation, we represent the error in the form of the least 

squares minimization problem 
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In this representationn∇ stands for the gradient that results in the smallest overall error 

when applied to any surrounding node. This gradient needs to be found from the solution of the 

minimization problem. 
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The upwind numerical scheme improves the overall stability of the simulation, at the 

same time it introduces significant numerical diffusion. This is why the upwind scheme is 

usually blended with other numerical schemes (the central difference scheme, for example). Such 

combination is advantageous in both, stability and diffusion domains. 

 

Figure 53. Convective transport of plasma species using upwind difference scheme only 

 Figure 53 represents the effect of upwind scheme when applied to 2D convective 

transport problem. In this simulation, a parabolic profile of longitudinal velocity and zero 

transverse velocity were applied. The species are expected to fill the whole domain using the 

initial distribution as a pattern. The numerical diffusion can be noticed when initial distribution 

of species number density (on the left side of either plot in Figure 53) is compared to that at the 

end of the channel (on the right side of the plots). The diffusion is so excessive, that this scheme 
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yields unphysical representation of the plasma and cannot be utilized alone to produce accurate 

results.  

Blending 

The two numerical techniques can be blended with arranging them into a linear 

combination, to determine the interfacial value of the conserved variable, in accordance with the 

following equation 

 ( ) CENTRALUPWINDf nnn αα −+= 1  10 ≤≤α      (129) 

The blending coefficient α can be used as a constant for the whole simulation. The results of 

such blending are represented in Figure 54.  

 

Figure 54. Blending of the numerical schemes with different blending coefficientsα  
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Figure 54 represents static blending of Central and upwind numerical schemes. The 

following cases take place: 0=α  is pure central difference scheme, 10 <<α  is blended 

numerical scheme, and 1=α is pure upwind numerical scheme. In the shown result for 25.0=α

central difference scheme dominates. The distribution of the species is significantly smoothened 

by partial contribution of upwind scheme, but smaller scale instabilities are still present, though 

the result is not as dramatic as the one calculated for 0=α  (Figure 52). The case 5.0=α may 

be considered the best of the presented four cases. The instability due to central difference 

scheme is hardly noticeable; at the same time, the numerical diffusion did not develop 

sufficiently to excessively smoothen the data at the outlet. In both cases 75.0=α  and 1=α the 

domination of upwind formulation determines significant smothering of the species profiles at 

the whole domain; thus, 5.0>α is not a good factor when physical consistency is a concern. 

As it can be concluded, the static application of the blending factor does not produce 

satisfactory results. This is why we develop and use dynamic blending. In dynamic blending the 

blending factorα is determined specifically for each particular part of the boundary of the 

considered finite volume. The algorithm for dynamic calculation of α  is relatively simple. 

 

Figure 55. Calculation of dynamic blending factor 
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Let us consider an example shown in Figure 55. We assume that the interfacial value of 

number density at the pointp has to be found, we also assume that the flux is directed left-to-

right with the highest value at the vertex1v . Next, we extrapolate the velocity vector at the point

p following the upwind direction, until it intersects one of the triangle’s edges. The green, 

orange, and red lines in Figure 55 represent such an extrapolation, with the points 321 ,, ppp  

indicating the intersection with the edges. The major edges for the finite volumes at vertices 0v  

and 2v are 2e and 0e , specifically the portions 20ev  and 02ev . When a line intersects the edge 1e  

(the red line with the intersection point 1p  in Figure 55), the interfacial number density is 

severely affected by the vertex0v ; therefore the blending factor is 1=α . Intersection with the 

edge 2e above the center of the edge (green line with the intersection point 3p in Figure 55) 

indicates that the effect of the center of the edge is dominant, thus the central difference scheme 

is used with the blending factor 0=α .  

 

Figure 56. Dynamic blending results 

The blending factor is between zero and one, when the line intersects the major edge at 

the proper half (the orange line with the intersection point 2p in Figure 55). In this case, the 
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blending factor is determined as 2022 evep=α , which estimates the proper contribution of 

both of the scheme, based on the proximity of the extrapolated point to the center of the edge or 

the upwind vertex. The results calculated with dynamic blending (Figure 56) provide higher 

accuracy in comparison to those calculated with either of the numerical scheme alone. 

The combination of central difference and upwind numerical schemes yields with 

relatively good number density profiles. Compared to the best static case ( 5.0=α ) the 

numerical diffusion is slightly smaller, especially when comparing data at the outlet: orange-

yellow color in the static case (Figure 54) versus red-yellow in the dynamic case (Figure 56). 

The instability due to the central difference scheme is still present. In order to estimate the work 

of the dynamic blending we calculate the mean α , as the average value of all the blending 

factors calculated on the domain within one particular iteration. The data presented in Figure 56 

are acquired within 100000 iterations; thus, a set of 100000 alphas was recorded. The mean 

blending factor fits into the range ( )0.38881950.3883498, , with the average of the factor being 

0.388816.  

 The possible improvement for the dynamic blending may be achieved by using cell-

centered finite volumes, as they provide more uniform distribution of the finite volume sixe and 

orientation. 

Solution of Poisson Equation 

The solution of Poisson equation requires a special numerical algorithm that is suitable 

for the unstructured meshes. There are different approaches used for solution of Poisson-based 

problems [89, 90]. Some researchers map the nodal values of the unstructured mesh to a regular 

mesh, solve the problem on the regular mesh using the “cross-pattern” for descritization of the 
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second derivative, and map the result back to the unstructured mesh. This approach does not 

provide any benefits and does not validate the use of unstructured mesh, as the evaluation could 

be performed on the regular mesh right away. Some other methods use Fast Fourier Transform 

[91] which can be very well parallelized [92] or Fast Multi-pole approach [90, 93]. The accuracy 

of the solution may be substantially improved by addition of Multigrid algorithm [94-96]. In this 

work we propose a novel method for descritization of Poisson problem on unstructured meshes. 

 

Figure 57. The shortest distance in a triangle from the vertex of interest to: (a) the opposite 
edge, (b) the closest vertex on the opposite edge, (c) horizontal edge, (d) vertical edge 

 The novel method is based on involvement of all the neighbor nodes into the calculation 

at the considered node. Each triangle connected to the considered node provides with a specific 

contribution to the function evaluated at the node. The contribution coming from a connected 

triangle is scaled according to the size of the triangle in terms of the angle span measured from 

the node of interest. The contribution of each particular triangle is determined at a specific 
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distance mr from the considered node. This distance is evaluated as a fraction of the smallest 

distance between vertices and edges of the triangles in the whole mesh.  

 Assume that we are located at vertex 1v and we want to find the shortest distance between 

the current vertex and the opposite edge32vv . If we are currently at another vertex, let’s change 

the local indexing and denote the current vertex with index 1, the position of other two vertices 

does not matter. The shortest distance represents a line either connecting 1v with a point pon the 

opposite edge of the triangle (Figure 57.(a)) or connecting 1v with one of the other two vertices 

(Figure 57.(b)). There are two cases that could be handled without extra calculations – when the 

opposite edge is horizontal (Figure 57.(c)) the closest point is ( )21 yxp = and when the opposite 

edge is vertical (Figure 57.(d)) the closest point is ( )12 yxp = .  

 In the general case (Figure 57.(a)) the closest point is calculated using two equations 

which are determined from the fact that vectors pv1  and 32vv  are perpendicular and the point p

belongs to the edge 32vv . 

 The solution (130) represents the case when the edge 32vv has a shallow slope. When the 

slope is steep, it is reasonable to handle the edge equation as dmyx += , the solution transforms 

accordingly 
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Since the orientation and the shape of the triangle are arbitrary, the distance ( )pvl ,1 should be 

compared to( )21, vvl . 

The general form of Poisson equation for electrostatic case reads 

 
ε

ρ
ϕϕ f

f −==∇•∇=∆          (132) 

Here ϕ is a scalar electric potential, fρ is free charge density, and ε is electrical permittivity of 

the media. The formulation especially useful for our application is written as follows. 
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 Using unstructured mesh we would like to develop a numerical scheme for calculation of 

electric potential at the node of interestv . The usual approach to equation (133) on a regular 

mesh is to use cross-shaped pattern for finite difference to represent the second derivative of the 

potential.  

 On unstructured mesh, the nodes do not automatically fit into the cross pattern. A 

common way to handle this issue is to interpolate values of electric potential from neighboring 

nodes such as they lay exactly in the cross-pattern [94]. This method works well at the inner 

parts of the computational domain, but, approaching the boundary, the interpolated values may 

appear outside of the domain. This is especially true when the boundary is intensively curved. 

We utilize the idea of the cross-pattern and apply it to the unstructured mesh at the same time 

developing it even further. The cross-pattern assumes that the lines of the pattern coincide with 

the coordinate axis of the Euclidian coordinate system. The regular differentiation is 
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accomplished along the pattern lines in the direction corresponding to the positive direction of 

the coordinate axis.  

 

Figure 58. Cross-pattern for finite difference representing Laplace operator in Poisson equation 

  Let us assume that there are some arbitrary nodes which lay on a circle of radius mr

around the node of interest (Figure 58). The value of electric potential at the node of interest is 

ijϕ , the values of the arbitrary nodes, forming the cross-pattern are 1111 ,,, +−+− ijijjiji ϕϕϕϕ . The cross 

pattern can be written as follows 

 








 −
−

−
+









 −
−

−
=









∂

∂

∂

∂
+








∂

∂

∂

∂ −+−+

m

jiij

m

ijji

mm

ijij

m

ijij

m rrrrrryyxx

1111 11 ϕϕϕϕϕϕϕϕϕϕ   (134) 

Now let us imagine that the coordinate system is rotated at a small angle, becoming a coordinate 

system( )',' yx  (Figure 58). Since the cross-pattern lines are aligned with the coordinate axis, the 

pattern in new coordinates appears to be rotated at angleθ  in comparison to the original 

orientation. Nevertheless, the same equation (134) is valid in new coordinates. The derivatives of 

electric potential with respect to 'x and 'yare taken along the new coordinate axis. We would like 
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to generalize this case: for any angleθ , the cross-pattern (134) properly defines Laplace operator 

with differentiation carried out along the new/rotated coordinate axis. 

 For the observer at the original coordinate system it would appear that differentiation is 

taken in “radial” direction with 90o difference in angular direction for x∂∂  and y∂∂ . Moreover, 

for o90=θ  we have the following relations 2222 ' yx ∂∂→∂∂ and 2222 ' xy ∂∂−→∂∂ . The second 

derivative does not change sign ( )( )222222 '' xfxfxfxf ∂∂=∆−∆=∆∆=∂∂ when direction of 

differentiation is reversed. We introduce new function ( )yx,ψ  which represents the first derivative 

of ( )yx,ϕ  when taken to the right or to the top of the node of interest, and the first derivative with 

the negative sign when taken to the left or to the bottom of the node of interest. Numerically, this 

function is calculated like 
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We substitute (135) into (134) and obtain 
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 Since the sign of the function ( )yx,ψ depends on its location relative to the node of 

interest, the mismatch in sign at o90=θ disappears when regular derivatives are substitute with 

this function. We can rewrite the Poisson equation in terms of the finite difference, using (136) 

 ( ) ijijijjiji
m

f
r

=+++ −+−+ 1111
1

ψψψψ        (137) 

 Since the cross-pattern (137) is valid for any angleθ , we want to summarize all such 

equations taken at angles [ ]2,0 πθ ∈ . The summation is represented by an integral with respect to 
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the angle θ and evaluated over the interval[ ]2,0 π . There is no reason to take larger interval, as 

for 2πθ > the function ( )yx,ψ repeats. 
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 The function ( )yx,ψ  is determined on the circle with radius 2mr and changes with angle

θ . Therefore, instead of ( )yx,ψ we can write ( )θψ .  

 

Figure 59. Finite difference for Poisson equation on unstructured mesh 

 Let us substitute this correction into (138) we keep the integral terms at the same places 

on the left- hand side so that the substitution is easy to track back to the original form. 
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Next, we assume that ( )θψ  may be constant in some interval[ ]kk θθ ,1− . If we divide the circle 

where ( )θψ  is calculated into a set of such intervals, the integral (139) splits into a series of 

integrals over the intervals of constant values. Using the fact that ( )θψ  is constant in each 

interval, it can be taken out of the integral (140). 

 Figure 59 shows elements of an unstructured mesh connected to a vertex (the black point) 

where electric potential should be evaluated. The constant values of ( )kθψ are taken at the circle 

of radius 2mr , the angular element kδθ corresponds to the angle of the kth triangle at the vertex of 

interest.  
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  It is good to place ( )kθψ at specific coordinates ( )ηξ ,  in the triangle, for example on the 

median connecting the vertex of interestiv and the pointie  at the middle of the opposite edge of 

the triangle (please refer to interpolation in triangle in the previous section). This way the 

coordinates are fixed and location of ( )kθψ  is approximately at the center of the angular segment

kδθ . The radius mr could be estimated as the half of the mean distance between the vertex of 

interest and all the surrounding vertices. 

 The advantage of such a modified numerical scheme for Poisson equation is that all 

vertices surrounding the vertex of interest contribute to the calculation process. When regular 

cross-pattern is used, there are only four points interpolated to fit the pattern. For the example 

presented in Figure 59, these points would fit into triangles 2, 3, 5, and N-1. The other 

surrounding triangles do not contribute into the calculation process. From one perspective this 
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saves calculation time, because only four interpolations are required. From another perspective, 

the information of electrical potential distribution is not complete at the vertex of interest, as 

some surrounding vertices did not contribute with their values. 

 In the Poisson Scheme we assumed that the integral (140) could be integrated over 

intervals of constant( )kθϕ . In the simplest case, the constant value has to be taken at the median 

connecting the vertex of interest with the opposite edge. The position of the sample point at the 

median is determined by radiusmr . The coordinates of the sample point are 
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 For better accuracy, the function ( )θϕ has to be integrated from 1−kθ to kθ along the circle 

with the center at 1v and radiusmr .The integration result needs to be averaged over( )1−− kk θθ . 

Such value would represent the true mean constant value in the triangle. 

We assume that electric potential ( )321 ,, ϕϕϕ is known at the corners of the triangle. The value at 

the sample point could be interpolated using (86).  
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The coefficients of the Poisson Scheme are assembled using coefficients in front of( )321 ,, ϕϕϕ . 

We expand (142) and derive the coefficients: 
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The same result could be obtained using (84) and (85) 
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 ( ) ( ) ( ) 3211 ffff ξηηξ ++−−=  

We proceed further and calculate coefficients of function ( )θψ . Accounting for (135) we can 

write 

 ( ) ( )( )ij
mr

ϕθϕθψ −=
1          (144) 

Substitute (143) into (144) 
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Here ikδ is the Kronecker delta and k is the local index of the vertex of interest in the considered 

triangle. We substitute (144) into (140) and obtain modified coefficients 
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The index k  in equation (146) passes through all the triangles surrounding the vertex of interest. 

The index i  at the coefficients iΨ and electric potentialkiϕ corresponds to the exact local index in 

the trianglek . The coefficients iΨ can be used only for one vertex in the triangle. If another 

vertex is considered, the coefficients must be recalculated, as the median would change with 

consequent change in position of the sample point( )kk yx , . 

 Let us assume that the vertex of interest is surrounded by vN other vertices. We can 

rewrite (146) in terms of these vertices 

 

( ) mfskskiks

ijfs

Nv

s
s

N

k
ks

rCC

fCC

πλδθ

ϕ

2

1
1 1

=Ψ=

=












∑ ∑
= =         (147) 



 

131 
 

 In equation (147) the index spasses through a number of vertices that includes the vertex 

of interest and the surrounding vertices directly connected to the vertex of interest, the index k

passes through all the surrounding triangles, the index i is the local index of the vertex s in the 

triangle k , the function ksλ is equal to one if the vertex s  belongs to the triangle k , otherwise it is 

equal to zero. We further simplify (146) 

 ∑
−

=

−=
1

1

Nv

s
ssijf CfC ϕϕ          (148) 

Here ∑
=

=
N

k
kss C

C
C

1

1 represents the inner summation and CCC fsf = is a coefficient in front of the 

free charge. Both of these coefficients account for the coefficientC in front of the vertex of 

interest. It is worth to mention that all considered coefficients depend on geometry only. If the 

mesh does not change, they stay constant throughout the simulation. Thus the coefficients could 

be calculated at the initial stage and stored in a list which order corresponds to the order of the 

vertices surrounding the vertex of interest. When solution of Poisson equation is required the 

coefficients are multiplied by corresponding electric potential and, according to (148), 

immediately provide the proper value at the considered vertex. 

The implicit scheme can be easily derived from (148) resulting with a constant matrix 

(unless the mesh changes). This matrix could be processed before the simulation, in order to find 

its inverse form. At the simulation, only the right hand side vector consisting of the free charges 

needs to be formed. A simple multiplication by the inverse matrix immediately yields with the 

correct distribution of electric potential. Even simpler way to find the mean value of ( )θϕ is to 

take the mean electric potential at the center of the triangle ( )3213

1
ϕϕϕ ++ and to use it for any 

vertex assuming that this value is actually on the circle with radiusmr . 
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 In order to estimate the effect of the fringing electric field and the species charge on a 

solution of the Poisson equation, we calculate and plot (Figure 60) the left-hand side and the 

right-hand side of equation (133). According to our analysis, the solution is not affected by 

species charges (the right plot in Figure 60); it mainly depends on the fringing electric field (the 

left plot in Figure 60) from the electrodes, as it is indicated by seven orders of magnitude 

difference between the left and the right hand sides of the Poisson equation. 

 

Figure 60. The left-hand side (left) and the right-hand (right) side of Poisson equation 

 

Figure 61. Electric potential (left) and reduced electric field (right) 
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Figure 62. Electric field components: Ex (left) and Ey (right) 

The left plot in Figure 61 represents the electric potential calculated with the use of the 

presented numerical scheme. The electric potential at the inlet (Figure 63) is derived from the 1D 

model of plasma generation. Due to significant contribution of the fringing electric field, the 

highest electric potential for 2D problem is found in the vicinity of electrodes. The further from 

the inlet, the lower becomes the electric potential. The electric potential almost does not change 

during the simulation due to negligible contribution of species charge to electric potential 

distribution. The x- and y-components of electric field (Figure 62) are determined from the 

gradient of electric potential.  

The steep electric gradient along the inlet, especially in the vicinity of the walls (Figure 

63), is a derivative of the oscillating electric field between the electrodes. The y-component of 

the electric field is constant, due to the strict relation between 2D and 1D plasma models. At the 

same time, the longitudinal component of the field is not bound to 1D problem. In 1D case, this 

component was zero, because everywhere between the electrodes, the electric field fluctuated 

uniformly. At the channel with free walls, the electric field rapidly changes in x-direction. This is 

why the relaxation of electric potential along the channel can be observed even at the inlet. 
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Comparing orders of magnitude, the transverse component of electric field is 2x larger than the 

longitudinal one. 

 

Figure 63. Electric potential at the Inlet 

The right plot in Figure 61 shows the reduced electric field which is calculated as the 

length of the electric field vector divided by the number density of the neutral gas. The reduced 

electric field is not constant at the inlet: while the y-component of the field is constant, the x-

component changes accounting for electrical conditions of open channel right after the inlet. 

Because the reduced electric field is determined from the length of the electric field vector, its 

value constantly changing, following the x-component of the field. The high values of the 

reduced electric field in the left-top and left bottom corners correspond to similar behavior of Ey, 

leading to well pronounced species generation at these areas of the domain. 

There are analytical [93, 97] and numerical [98-100] approaches exist to solve Poisson 

equation in order to estimate the fringing effect of the electric field at the edges of the capacitor-

type arrangement of the electrodes. Our model automatically accounts for the fringing effect, 
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using the initial 1D distribution of the electric potential, and expanding it along the channel. Due 

to this fact, there is no need for additional procedures to implement the fringing electric field in 

the 2D model. 

Results and Discussion 

The results acquired from 2D simulation of plasma advection in the channel may be 

divided into three categories – convective results, electrical results, and the ones combining both, 

fluidic and electrical effects. The first category represents plasma species advancing along the 

channel due to purely convective forces with no electrical field engaged. For convective 

transport, the species may be considered as a regular gas which flows due to the imposed 

velocity field. Species distribution due to convective transport is shown in Figure 56. The species 

distribution follows velocity profile of the gas flow, resembling parabolic shape. These data do 

not properly represent the plasma, as there is no collective behavior of the species when electric 

field is taken out of the consideration. Nevertheless, the species distribution is calculated based 

on their profile taken from the 1D problem of plasma generation. The next step is introduction of 

electric field that is shown in Figure 61 and calculation of the species respond to the field. We 

implement the recombination of electrons and positive ions, in order to properly account for the 

species losses. Electrons are present at the Inlet in smaller number than positive ions, this is why 

they are completely consumed in the recombination process, showing no propagation in the left 

plot of Figure 64. 

The right plot of Figure 64 represents propagation of positive ions along the channel of 

the plasma reactor. The recombination process consumes a majority of positive ions within a 
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short distance, with the peak population falling from [ ]317 1108.1 m×  to [ ]317 1104.0 m× , resulting 

in 4x decrease in the number density at the distance of cm 1 .  

 

Figure 64. Convective flux of species at the steady state 

The species generation and accounting for drift velocity introduces fluxes of few orders 

of magnitude higher than those generated by convective transport. These fluxes require 

extremely small time step to be resolved correctly by either presented numerical scheme. This 

case requires additional treatment that works with large gradients of number density. 

Comparing the prediction of 1D plasma model for plasma fade, we can conclude that in 

1D case the remaining number density is underestimated. For example, Figure 37 shows 

[ ]315 110776.1 m×  as the number density for remaining positive ions at the distance of cm 1 , 

which is 20x smaller than the value predicted by 2D model. 

Figure 65 shows typical profiles for number density of positive ions measured with 

mm 2  step, starting from the Inlet. The drastic decrease in number of ions could be immediately 

seen when the profile at the Inlet (mm  0 ) and the one at mm 2  are compared. The very 

pronounced feature of all the profiles, except the initial one, is a depression at the center which is 

formed due to the recombination process. Since the recombination term is directly proportional 
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to the number density of the species, the highest species loss occurs at the central area where the 

largest number of the species is present. Electrons are consumed in this process entirely, while 

positive ions develop a depression in their number density profile. 

 

Figure 65. Typical profiles of advected plasma at different locations along the channel 

 

Figure 66. Average blending coefficient for dynamic blending of 2D numerical scheme 
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The data presented in this section is calculated using 100000 iterations on a 

computational domain consisting of 2500 nodes connected into 4752 triangular elements that 

compose the mesh. The dynamic blending favored central difference scheme spending most of 

the time around 3788.0=α (Figure 66). A similar value of the blending factor was observed for  

random unstructured mesh and for the mesh with triangles having two sides aligned with the 

coordinate axes.  
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CONCLUSION 

 The model of plasma discussed in this work has been known for few decades. However, 

some features of this model were not clearly understood. In this work we highlighted the details 

that we found important or challenging while simulating plasma behavior, for example, we found 

how the boundary conditions have to be properly constructed for a numerical representation of 

1D Poisson equation, we observed major species generation at locations different from the peaks 

of number density, we also developed two numerical approaches to solution of convective 

transport and the Poisson equation in 2D case. 

For the 1D problem of plasma generation between two parallel electrodes, we discussed 

time-averaged profiles of number density of the species, the electric field, the 

generation/recombination, the temperature of species, and some other parameters evaluated in 

numerical simulation. These parameters provide the necessary initial conditions for the 2D 

model of the LAPPD system. The analysis of these parameters emphasized important features 

and revealed previously hidden relations among processes in plasma. 

 The surface plots presented in the work help with understanding of some dynamic effects, 

such as when and why the generation/recombination happens. Some results lead to interesting 

outcomes. For example, it is easy to imagine that generation of species should happen when a 

large cloud of electrons passes through a neutral gas. Nevertheless, the surface plots showed that 

the major generation happens at the point where number density of electrons is closer to the 

mean value, with high electric field generated due to overhead of ions at that location. The 

surface plots also provided visual assistance in understanding dynamics of plasma motion in the 

alternating electric field. 



 

140 
 

 Plasma sheath and phase shift were considered as potential parameters for experimental 

measurements, creating a good validation point for the model of plasma generation and 

sustainment. Finally, some engineering outcomes were made from the model of plasma 

generation. Temperature of electrodes was represented as a function of applied external voltage 

and analyzed with considerations on the necessity of cooling equipment. The interesting example 

of plasma fade showed a potential range of plasma plume. The range was estimated for different 

voltages in order to roughly determine the favorable mode of operation for the LAPPD setup. 

 In the 2D model we developed two numerical methods in order to simulate plasma on 

unstructured meshes. One method addresses solution of continuity equation for plasma species, 

using the concept of finite volumes and analyzing fluxes crossing the boundaries of the finite 

volumes. Analytical derivations and numerical results are present in this work to demonstrate 

this method.  The second method was developed for solution of Poisson equation on unstructured 

meshes. When calculating electric potential at one of the nodes, the method naturally involve all 

the surrounding nodes into the calculation, with each node contributing to the result according to 

the angular span of the triangle that contains both nodes – the one that is subject for potential 

evaluation and the one contributing with its potential. This method requires only minor 

derivations on based on the geometry of the given mesh. If geometry does not change, the 

method allows creation of a constant matrix and, possibly, finding its inverse form for very fast 

and accurate solution of Poisson problem. 

 Numerical results acquired for 2D problem of plasma advective transport along a channel 

representing the linear plasma head, showed typical distribution of plasma species for the case of 

pure convection, as well as for the case of recombination. The length of the plasma plume and 

average number density of plasma species are found to be underestimated in the case of 1D 



 

141 
 

plasma fade. The 2D model introduces corrections into the expected profiles of number density 

taken at different distance from the outlet of the generation chamber. 
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APPENDIX A 

Table A.1 
Typical electrons’ rate parameters calculated with BOLSIG+ 

E/N µe, De,  α, ωmean, 

Td m2/V.s m2/s 1/m eV 

0 0.261000000 0.0488 0 0 
1 0.179970972 0.079342042 0 0.5641 

2 0.127274757 0.106434446 7.699 5810−× + 1.082 

3 0.105131927 0.129954226 7.185 1810−× + 1.626 
4 0.092962674 0.154032228 1.882E-07 2.224 
5 0.08563135 0.181422351 0.002095132 2.906 
6 0.081277213 0.214096982 0.176354373 3.692 
7 0.079044323 0.2497488 2.42134581 4.508 
8 0.078151167 0.282274571 12.6078732 5.223 
9 0.077927878 0.30832496 38.210562 5.776 
10 0.078039522 0.328197685 84.428682 6.186 
11 0.078225596 0.34338134 153.540894 6.492 
12 0.078448885 0.355364519 245.762166 6.729 
13 0.07863496 0.365077593 360.34011 6.917 
14 0.078821034 0.373264858 495.76995 7.074 
15 0.079007108 0.380335678 650.54691 7.207 
16 0.079155967 0.386662201 823.32744 7.324 
17 0.079304827 0.392244427 1012.23057 7.429 
18 0.079416471 0.397454505 1216.45017 7.525 
19 0.079565331 0.402292434 1434.37398 7.614 
20 0.079676975 0.406758215 1665.19587 7.697 
21 0.07978862 0.411223996 1907.57229 7.775 
22 0.079900264 0.415689777 2160.96582 7.85 
23 0.079974694 0.419411261 2424.30162 7.922 
24 0.080086338 0.423504894 2697.8484 7.992 
25 0.080197983 0.427226378 2979.9939 8.059 
26 0.080272413 0.43132001 3270.2007 8.125 
27 0.080384057 0.435041495 3565.7817 8.19 
28 0.080458487 0.43839083 3872.1111 8.253 
29 0.080570131 0.442112314 4183.8147 8.315 
30 0.080644561 0.445833799 4500.8925 8.376 
31 0.080756206 0.449183134 4826.0316 8.436 
32 0.080830635 0.452904618 5156.5449 8.495 
33 0.080905065 0.456253954 5492.4324 8.554 
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Table A.1 
Typical electrons’ rate parameters calculated with BOLSIG+ 

(continued) 
E/N µe, De,  α, ωmean, 
Td m2/V.s m2/s 1/m eV 
34 0.081016709 0.45960329 5836.3812 8.613 
35 0.081091139 0.463324774 6180.33 8.67 
36 0.081202784 0.46667411 6532.3401 8.728 
37 0.081277213 0.470023445 6889.7244 8.785 
38 0.081388858 0.473372781 7249.7958 8.841 
39 0.081463288 0.477094265 7615.2414 8.898 
40 0.081537717 0.480443601 7983.3741 8.954 
41 0.081649362 0.483792937 8356.881 9.01 
42 0.081723791 0.487142272 8733.075 9.065 
43 0.081835436 0.490863756 9114.6432 9.121 
44 0.081909866 0.494213092 9498.8985 9.176 
45 0.08202151 0.497562428 9885.8409 9.231 
46 0.08209594 0.500911764 10275.4704 9.286 
47 0.082207584 0.504633248 10670.4741 9.341 
48 0.082319229 0.507982583 11065.4778 9.396 
49 0.082393659 0.511331919 11465.8557 9.451 
50 0.082505303 0.515053403 11868.9207 9.506 
51 0.082579733 0.518402739 12274.6728 9.56 
52 0.082691377 0.522124223 12680.4249 9.615 
53 0.082803022 0.525473559 13091.5512 9.67 
54 0.082877452 0.529195043 13505.3646 9.724 
55 0.082989096 0.532544379 13919.178 9.779 
56 0.083100741 0.536265863 14338.3656 9.833 
57 0.083212385 0.539615199 14757.5532 9.888 
58 0.083286815 0.543336683 15179.4279 9.943 
59 0.083398459 0.547058167 15601.3026 9.997 
60 0.083510104 0.550407503 16028.5515 10.05 
61 0.083621748 0.554128987 16455.8004 10.11 
62 0.083696178 0.557850471 16885.7364 10.16 
63 0.083807823 0.561571955 17315.6724 10.22 
64 0.083919467 0.565293439 17748.2955 10.27 
65 0.084031112 0.569014923 18183.6057 10.33 
66 0.084142756 0.572736407 18621.603 10.38 
67 0.084254401 0.576457891 19056.9132 10.44 
68 0.08432883 0.580179376 19497.5976 10.49 
69 0.084440475 0.58390086 19938.282 10.55 
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Table A.1  
Typical electrons’ rate parameters calculated with BOLSIG+ 

(continued) 
E/N µe, De,  α, ωmean, 
Td m2/V.s m2/s 1/m eV 
70 0.084552119 0.587622344 20378.9664 10.60 
71 0.084663764 0.591715976 20822.3379 10.66 
72 0.084775408 0.59543746 21268.3965 10.71 
73 0.084887053 0.599158945 21714.4551 10.77 
74 0.084998697 0.603252577 22160.5137 10.83 
75 0.085110342 0.606974061 22609.2594 10.88 
76 0.085221987 0.611067694 23058.0051 10.94 
77 0.085333631 0.614789178 23509.4379 10.99 
78 0.085445276 0.61888281 23960.8707 11.05 
79 0.08555692 0.622976443 24412.3035 11.11 
80 0.085668565 0.626697927 24866.4234 11.16 
81 0.085780209 0.63079156 25320.5433 11.22 
82 0.085891854 0.634885192 25774.6632 11.28 
83 0.086003498 0.638978825 26228.7831 11.33 
84 0.086115143 0.643072457 26685.5901 11.39 
85 0.086264002 0.64716609 27139.71 11.45 
86 0.086375647 0.651259722 27596.517 11.5 
87 0.086487291 0.655725503 28053.324 11.56 
88 0.086598936 0.659819136 28510.131 11.62 
89 0.08671058 0.663912768 28966.938 11.68 
90 0.086822225 0.668378549 29450.616 11.74 
91 0.086933869 0.672472182 29907.423 11.79 
92 0.087045514 0.676565814 30364.23 11.85 
93 0.087194373 0.681031595 30821.037 11.91 
94 0.087306018 0.685497376 31277.844 11.97 
95 0.087417662 0.689591009 31734.651 12.03 
96 0.087529307 0.69405679 32218.329 12.09 
97 0.087640951 0.698522571 32675.136 12.15 
98 0.087752596 0.702988352 33131.943 12.2 
99 0.087901455 0.707454133 33588.75 12.26 
100 0.0880131 0.711919914 34072.428 12.32 

+This value is taken from fit-data. The original result from BOLSIG+ is zero. 
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APPENDIX B 

Table B.1  
Typical He+ ions’ rate parameters found in [64] 

E/N µp E/N µp 

Td 310−× m2/V.s Td 410−× m2/V.s 

0 1.05 40 9.28 
1 1.04 50 8.97 
2 1.04 60 8.67 
3 1.04 80 8.12 
4 1.03 100 7.67 
5 1.03 120 7.25 
6 1.03 150 6.78 
8 1.02 200 6.12 
10 1.02 250 5.60 
12 1.01 300 5.19 
15 1.00 400 4.58 
20 0.99 500 4.17 
25 0.974 600 3.81 
30 0.96 700 3.57 
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APPENDIX C 

Initial distribution of plasma parameters for 2D advective transport of plasma 

 

Figure C.1. Area of the finite volumes 

 

Figure C.2. Initial distribution of x-component of electric field 
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Figure C.3. Initial distribution of y-component of electric field 

 

Figure C.4. Initial distribution of electrons mobility 

 

Figure C.5. Initial distribution of positive ions mobility 
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Figure C.6. Initial distribution of electrons diffusion coefficient 

 

Figure C.7. Initial distribution of electrons kinetic energy 

 

Figure C.8. Initial distribution of ionization coefficient 
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Figure C.9. Initial distribution of generation term 

 

Figure C.10. Initial distribution of x-component of electrons drift velocity 

 

Figure C.11. Initial distribution of y-component of electrons drift velocity 
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Figure C.12. Initial distribution of x-component of positive ions drift velocity 

 

Figure C.13. Initial distribution of y-component of positive ions drift velocity 

 


