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ABSTRACT

Plasma-assisted processing and deposition of raEtégian important component of
modern industrial applications, with plasma reacgiraring 30% to 40% of manufacturing steps
in microelectronics production [1]. Developmeniefv flexible electronics increases demands
for efficient high-throughput deposition methodsl aall-to-roll processing of materials. The
current work represents an attempt of practicaigtesnd numerical modeling of a plasma
enhanced chemical vapor deposition system. Themystilizes plasma at standard pressure and
temperature to activate a chemical precursor fotggtive coatings. A specially designed linear
plasma head, that consists of two parallel plaiés @ectrodes placed in the parallel
arrangement, is used to resolve clogging issuesioéntly available commercial plasma heads,
as well as to increase the flow-rate of the praag@sfhemicals and to enhance the uniformity of
the deposition. A test system is build and disadigsehis work. In order to improve operating
conditions of the setup and quality of the depadsitaaterial, we perform numerical modeling of
the plasma system. The theoretical and numericdefs@resented in this work
comprehensively describe plasma generation, regmatibn, and advection in a channel of
arbitrary geometry. Number density of plasma s ¢heeir energy content, electric field, and
rate parameters are accurately calculated andzethly this work. Some interesting
engineering outcomes are discussed with a conmeictithe proposed setup. The numerical
model is implemented with the help of high-perfonoa parallel technique and evaluated at a
cluster for parallel calculations. A typical perftaince increase, calculation speed-up, parallel

fraction of the code and overall efficiency of fherallel implementation are discussed in details.



ACKNOWLEDGEMENTS

First and foremost, | would like to express myr@ggation to my academic adviser Dr.
Iskander Akhatov for his mentoring throughout myeation at North Dakota State University. |
would like to thank him for his support, advisingdeencouraging that helped me to grow as a
research scientist and complete my research.

| would also like to thank my committee members Eardad Azarmi, Dr. Yechun Wang,
and Dr. Orven Swenson for guiding and assistingmmy research when it was necessary as
well as for their brilliant comments and suggestioif heir expertise was of a great help in the
completion of this thesis.

There is no doubt that | would not accomplish #gtigly without the expertise, assistance,
and support of different professionals within therfi Dakota State University and outside. |
would like to thank members of Center for Nanos&eence and Engineering for collaboration,
experience exchange and providing theoretical hagsoceed with my research. My special
thanks to Dr. Martin Ossowski for his contributiomo the theoretical part of my work and the
financial support that helped me to accomplish pinigect.

And finally, | thank to my family who supported rireeverything and encouraged me

throughout my experience.



TABLE OF CONTENTS

N ST I ¥ O P i
ACKNOWLEDGEMENTS ... et e e e e e e e e ar e e e e aaa s v
LIST OF TABLES ... ottt e e e e e e e et e e e et naeeeaa e e e eaa e e e eaaneeeees Vil
LIST OF FIGURES ...ttt ern e e et e e et e e e aaa s Viii
LIST OF APPENDIX TABLES ... .ot e e e e e eaanes Xii
LIST OF APPENDIX FIGURES. ... .coot ittt a e e e e e Xili
NI @ 1 1 L @ I 1\ PP 1
GENEIAI OVEIVIEW ...t eee e e ettt e e e e e e e e e e e e e et e e e et tb b e s nnnnasesnn e e eeeas 1
Experimental EStIMAatIONS .........iiiii e ee e e e eeeeeee 15
MODEL OF PLASMA GENERATION ...cuuiiiiii ettt e ea e e e ennnns 24
TheoretiCal MOUE ........oo e e e e e e e e e e e e eeeeeeeeees 24
General DESCIPLION ....uuueiiiiiiae e eeee e e e e e e e e e e e eeeeeeb e ennnnneee 24
GOVErniNg EQUALIONS ......uuuuiiiiiiiiee et 28
Rate PArameters .........oou i eeemm e e 37
Boundary CONAItIONS .......cooiiiiiiiiiiiiiimmmmmm e ee e e e 39
INItIAl CONAITIONS ..o e e e e e e e ee e e e 41
Temperature and Energy EStimation ..........ccocceeiiiiiiiini s 2.4
Numerical TECANIQUE .......coiiie e 43
Solution for NUMDBEr DENSILY .........uuuuuuiii et 46
Parallel APProach.........oooo oo ceccee - 59
Solution for EIeCtric Field............. e 62
Solution for I0NS’ TEMPEIALUIe.........uueeimmmm et 64

\Y



Estimation of Parallel EffiCIENCY ............ceameeiiiiiie e 65

RESUItS aNd DISCUSSION .....iiiiiieiiiiiiie et e e 68
Estimation of Voltage Range ............uiieceeeiiiiiieeeeeee 69
Time-Averaged RESUILS .......oooiiiiiiiiiiemmm e 70
TranSIENt RESUIES.....ccoo et 79
Engineering INSIGNLS .........oooiiiiiiii e 83

MODEL OF PLASMA CONVECTION ....uuiiiii i eem et ea e e e eennas 87

GeNEral DESCHIPLION .euiiiiiii ettt e e e e 87

Numerical TECANIQUE ..... .o 96
Interpolation iN the MeSh .............. e 97
FluXesS iN the MESN ... 101
Integration Path in the Mesh’s Triangles ... ..o, 40
Boundary CONAItIONS .......cooiiiiiiiiiiiiiiiceemmm e e e e 111
UPWINA DESCHLIZATION ...t 115
2] =T o o 1o Vo SRR PPRURRRPPPRPPPI 118
Solution of POISSON EQUALION .........uuueiieeeieiiiiiiiee e 121

ReSUItS aNnd DISCUSSION .....coiiiieeiiiieeeeeeee e e e e e 135

CONCLUSION ...ttt ettt e e ettt e aaaaaaaaaaaasassaasasssssbnannneaeeeeaeaaessssannnnnnns 139
e N [ 142
AP P EN D X A et e —ar et e e e e e eas 152
APPENDIX B oot s ettt ar et a e e e e eas 155
N e e = 1 T G PP 156

Vi



LIST OF TABLES

Table Page
1. Work function and secondary emission for someenas [6] ............cccceeeeevvivieeeiiivicenennns 9
2. Schottky correction factor for Fowler-Nordheiguation ................oovviiiiiieeeee e o 10
3. The variables used in the model with charadterteefficients and physical units......... 45..
4. Comparison of Parallel and Single Performance..............oooooviiiiiiiiiiiiiiiiineeenn 66

Vil



LIST OF FIGURES

Figure Page
1. Schematics of processes in plasma at atomiC.leve............cccoooiiiiiiiiiicceeeeis 4
2. Electrons avalanChe ............. oo 11
3. Voltage-current characteristic of dc plasmaltsge at low pressure. [33]................ 12..
4. Plasma operated in (a&)-mode and (b} -mode [31].......ccccurimriiiiiiiiiiiieiee e 13
5. Relation between thermal and non-thermal regimeBC plasma [37] .......coevvvviiiiennnnn. 14
6. Non-uniformity of materials deposition with ptaa flow in (a) longitudinal direction,
(b) transverse dir€CtION [4L] ....oooei i e e e e e e e e e e e e e e e e e e ee e e e eeeaeeereranna 15
7. General sketch of the proposed LAPPD reactor. Theahdesign may feature different
configuration and placement of the injectors andlifired geometry of the channel for
optimized fluidic behavior of the plasma gas. cccee...vvveveiiiiiieee 16
8. A proposed linear plasma head: (a) the unitydadtesting, (b) the unit generating
helium-based plasma, (c) general design of the.unit................ccccoeei e, 19
9. Coating formation on the c-Si substrate: (ahwitle injection (b) with injection to the
centerline Of PlasmMa SIrEAM .........uuiiiiieee e e e e e e e ee e e e e e eeeeeerenne 21
10. Computational domain for simulation of mixinigptasma-gas and injected chemical
precursor. The left image shows volume fractioplabma gas, the right image shows
volume fraction of the chemical PreCUISOr ..o iiveeeeeeccre e 22
11. SchematiCs Of PlasSM@a FEACION ..........caummmmm e eeeeeeei et e e e e e e e e e e e eeeeaeeees 25
12. Typical rate parameters used in the modek (@iffusion (D, ), cnf/s; (b) helium
ionization (@), 1/cm; (c) @and Hé mobility (y,, x, ), cnf/V.s; (d) € mean energy
(0mean)» €V. The horizontal axis shows reduced electaldfEe/N), Td.........ccceeeieeennene 38
13. Upwind numerical scheme for 1D computationahdm .................cooovvriiiiiiiiininniiiaes a7
14. System of linear equations divided into bloftkscalculation on parallel processors....... 51
15. System of linear equations — dependent vasable..............ccccoiiiiiiiiiiii i 56
16. Diagram of the parallel algorithm.......cc i 60



17.

18.

19.

20.

21.

22.

23

24,

25,

26.

27.

28.

20,

30.

31

32

33

34.

General representation of parallel algorithmlfo plasma simulation. Symbols M, S, P
denote Master, Solver, and Printer, corresSpondingly..........cccceeveieeeiieeeeieeieeieeieeeen, 62
Parallel integration of Poisson equation: l@)electric field before the adjustment;

(b) the electric field after the adjustment.............coovvrrieeiiicicii e, 63

Electrodes’ temperature estimated from tempegaif ions calculated for a range of
VOIAQES 38OV — 700 V. oerieiiiiii ittt e e ne e e e s s e e e e e e e e e e e eeeees 64

Performance of parallel computations for défegrnumber of grid-nodes in comparison
to a single machine. The horizontal bars with numl@licate computation time of a
single machine. The vertical lines connect singhetvalues with the optimal point of
the corresponding parallel cComputation. .....cccceeieeeeeiiiiiiiiiii e 65

Averaged calculation time (solid) and commutiicatime (dashed) of the simulation.
The circle indicates the point of optimal perforrmanThe vertical axis shows
calculation/communication time relative to the totall time of the simulation. ............. 67

Minimal voltage search. The main plot showsegahbehavior of a characteristic
function f(g) of the electric field plotted versus the appli@itage. The inset shows a

magnified portion of the curve, where the minimaltage is found. ...........cc.evvvvvnnnnnn. 1.7
Stability of plasma diSCharge. ... 71

Mean number density achieved in the stable medexternally applied electric
10 =7 01U F= | RS 73

pistribution of time-averaged number density of gtmes and Heions over the gap ...... 73

Distribution of time-averaged reduced electricdieler the gap. .........cccoeeieviiiviiiiiinn 74

Time-averaged i0NIZAtiON CUINVE. ......coooi ettt e e e e e e e e e e eeeeeeeeeeeeeeeeennnne 74
Time-averaged generation teIMN. ... ... ... eeeeeiiiiiiier e e e e e e e e e e e e e eeeeeeeeeaeeeeeeeernnnn 75
Time-averaged recombination term...........ooooeeiiiiiiiiiiii e 76
Time-averaged power diSSIPALION. .........oi e 76
Distribution of time-averaged current density iR thap. ..........cooeeeeiiiieiiiiiiiiiieeee, 77

Distribution of temperature of electrons in the .gap........ccccoov e 78
Distribution of ions temperature in the gap. ccccccvveeiiiii 79
Evolution of plasma. The vertical axis is dimen$ssx along the gap. The horizontal

AXIS IS AIMENSIONIESS TIMIE. ..o e e et e e e e e e e e eenns 80
iX



35.

36.

37.

38

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Generation term aligned with the species numbesitderhis is a cross-section taken

from surface plots (Figure 34) at the peak of gaten, right after=14.3...................... 82
Sheath thickness within oscillation when plasmat ithe steady mode. ...........ccccceeeeeennn.. 83
Phase shift of current at the electrodes relatvibé applied voltage (600 V) in plasma

at the steady MOAE. ... 84
Plasma fade estimation when electric field turrfisabthe 108 RF-cycle. ........coceveee..... 85
Typical geometry of the channel proposed fonerical investigation ........................ 87.
The developed software module for triangulatiod processing of ANSYS results

prior to input to the NUMETrICal COAE .......uuuiiiiiiiii e 89
Typical channel geometry with velocity field, iais seen in the numerical code ............. 90
Unstructured mesh with finite elements (orarage) normal vectors (blue) ...........ccc....... 91
Typical mesh triangles and indexing of georoatrelements...............cccoeeveevevivivieenees 92
Initial number density Of €IECIIONS .....ceeeee i 94
Initial number density Of POSITIVE I0NS . cooceeevveeiiiceee e 94
Initial distribution of recomMbINAtION tEIM v 94
Initial distribution of reduced electric field..............cccoiiii 95
Initial distribution of electric potential ................iiiiiiiiiii e 95

A typical finite volume on the unstructured Mes.........cccooeeeiiiiieiiiiiieeeeeeeeeee e 98
Triangle with locally indexed vertices, centefshe edges, and normal vectors. ........... 102
Integration paths iN @ tranNgle. ... e e iiii e e e e e e e e e 107
Convective transport of plasma species usingaedifference scheme only................. 114
Convective transport of plasma species usingngdifference scheme only................ 117
Blending of the numerical schemes with difféfgending coefficientst...................... 118
Calculation of dynamic blending factor ...............oooiiiiiiiiiii e 119
Dynamic DIENING rESUILS ......coo i eeeeaeees 120



57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

The shortest distance in a triangle from théexeof interest to: (a) the opposite edge,

(b) the closest vertex on the opposite edge, (dxbiotal edge, (d) vertical edge ........... 122
Cross-pattern for finite difference represemtiaplace operator in Poisson equation ....125
Finite difference for Poisson equation on wrettired mesh. .............ccciiiiiiiiiii s 127
The left-hand side (left) and the right-hardkqright) of Poisson equation.............. 132
Electric potential (left) and reduced electigtd (right) ..........oooviiiiiiiiiiiiiiii e, 132
Electric field component&; (left) andEy (right) ... 133
Electric potential at the INlet..... ..o 134
Convective flux of species at the steady State.............cooovviiiiiiiiiiiiiiiiiee e 136
Typical profiles of advected plasma at diffédecations along the channel.............. 317.1
Average blending coefficient for dynamic blerglof 2D numerical scheme................. 137

Xi



LIST OF APPENDIX TABLES
Table Page
A.1. Typical Hé ions’ rate parameters found in [64].......ccceeceeeeeeceeiieeieeeeee e 521
B.1. Typical electrons’ rate parameters calculat@t BOLSIGH ... 155

Xii



LIST OF APPENDIX FIGURES

Figure Page
C.1. Area of the fiNite VOIUMES ............im e eeeeeieeetitr e e e e e e ee e e e e e e eeeeeeeeeenaae 156
C.2. Initial distribution ofx-component of electric field .............ooi e, 156
C.3. Initial distribution ofy-component of electric field .............ooi e, 157
C.4. Initial distribution of electrons MODIITY .ccc......eeiiii 157
C.5. Initial distribution of positive iI0NS MODIlILY..............uuiiiiiiiii e, 157
C.6. Initial distribution of electrons diffusion €ficient................ccooviiiiiiiiiiiiiimmn e 158
C.7. Initial distribution of electrons KiNetiC ElI........ccovvveiiiieiiiiiiiiieeei e 158
C.8. Initial distribution of ionization COeffiCIeNt.............uuuiviiiiiiii e, 158
C.9. Initial distribution of generation term ... 159
C.10. Initial distribution ok-component of electrons drift velocCity .......ccceoceiiieiininennnnn. 159
C.11. Initial distribution of;-component of electrons drift velocCity .......ccceeoveiiiiinnnnennnnn. 159
C.12. Initial distribution ok-component of positive ions drift velocity .............ccccevvnnnnees 160
C.13. Initial distribution of;-component of positive ions drift velocCity .............ccccevvnnnnes 160

Xiii



INTRODUCTION

General Overview

Chemical deposition and coating methods are viadgans for an effective
manufacturing of electronic parts and componengs, (ICs [2] and photovoltaic cells [3]),
modification of material properties (i.e., wettipgrameters [4], surface modification/coating [5],
and etching [2], [5]-[7]), deposition of thin film&], [3], [5]-[7] etc.

There are two general concepts that are useddtgrials processing. The first concept
assumes the deposition at low pressure of thewwualing gas, usually in vacuum. Obvious
advantages of such an approach are extreme cleaohte final product, safe use of hazardous
chemicals in the sealed system, and substanteabfathemical reactions in the absence of
contamination from atmospheric gases. On a gebasas$, the low pressure process provides the
best quality of the deposition result, at the séime there are certain limitations that complicate
and/or restrict the use of low-pressure processbtustrial production, especially in the areas
where high throughput and low cost are the printdmjgctives. The restrictions of the low-
pressure units are related to their overall compjegue to the requirements for sealed
chambers, loading/unloading ports, vacuum pumps$sapplementary equipment needed for
system operation and control [3]. Not only the tapiost of such a setup is significantly high,
but also maintenance of the system poses certalienges. The setup has to be scaled up to
accommodate specimens of larger size. The scatoweps requires enlargement of the reactor
chamber, which inevitably levels up the cost ofthé and aggravates its maintenance. The
result is the increase of the produced materialst and the decrease of demand for the product.

The scalability of the low pressure setups is campsed by the negative effects associated with
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special requirements of the production cycle, iripalar with maintaining a specific
environment in the reaction chamber. The low pnessuthe chamber requires the use of
loading/unloading ports to transition samples flambased atmosphere into the sealed unit.
This requirement severely affects the rapidnesbeproduction cycle and the maximum size of
the processed specimen. Thus, from one perspetiiyégw-pressure materials deposition is
very accurate technique that could be used facatigpplications where cleanness of the result
is crucial (e.g. manufacturing of semiconductotsirac level coatings/sputtering, and
nanofabrication). From another perspective, somd lef impurities is acceptable for the
majority of applications (for instance, photovattaells, anti-corrosion coatings, and fibers
production). Therefore, the very accurate low-puessechnique is attractive, but it is not cost-
efficient. This is why there is an active searchdieeaper and simpler alternative techniques.
The second concept of material processing oweissence to high-pressure deposition,
which usually happens at atmospheric conditionsefithe requirement for a sealed and
evacuated reaction chamber is eliminated, the isystay be constructed without expensive
vacuum pumps and chamber seals. The design oh#dreher is simplified, allowing a wide
range of adjustments for samples of different siZée energy use decreases, due to fewer
components requiring power input. The time of thedpction cycle shortens since there is no
need for load/unload procedures. The cost of tha product also decreases due to the
simplified technological process. The depositiadhteques at atmospheric pressure are often
producing similar quality of the coatings in conpan to low-pressure processes [3]. Such
systems can be developed with mobility in mind,alheéxpands their range of applicability. The
payoff for multiple positive features of the highepsure systems is a dramatic decrease in the

rates of chemical reactions which happens dueg@tbsence of chemically reactive gases in the
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surrounding atmosphere. To promote the reactides ttee high-pressure process requires
additional energy input in the form of heat flulearic actuation or catalytic assistance.

The necessary energy input may be provided inaefficient way, using plasma
assisted deposition. The supplied energy is usedetak neutral molecules into ions and
electrons with the help of kinetic reactions [8Pasma is generated in the reaction chamber; it
interacts with chemical precursors, supplying gkis of electrons and energetic ions to the
chemical reactions [10]. Plasma consists of elestrpositive or/and negative ions. These
species respond to electric fields and, being bomyeelectric forces, exhibit collective
behavior, which is an intrinsic characteristic t#gma. There are two types of plasmas usually
distinguished — thermal plasma, and non-thermalnpéa The species of thermal plasma possess
comparable quantities of energy; thus, featuringlar temperatures and kinetic velocities.
Thermal plasma may reach temperatures up & L€his feature determines the range of
applications for thermal plasmas — welding, metdiicg, deposition of molten metal particles
etc. In many coating applications, excessive Haati$ rather destructive, while energetic ions
are desirable to promote modifications of injeatbdmical precursor or to enhance surface
chemistry at a substrate. Non-thermal plasma ideal candidate for such applications. This

type of plasmas is characterized by a tremenddteseice in energy of electrons and ions. lons

are large and bulky in comparison to electronshwie mass differing by the order b8°kg

(electron mass is- 10°°kgand helium ion mass is10%'kg). Because of such bulkiness, ions

cannot efficiently accelerate in electric fieldpesially when surrounded by a gas at atmospheric
pressure. This fact is depicted by the low electrability of ions. At the same time, electrons
are small and light; they rapidly accelerate irebactric field and acquire high kinetic energy, in

the range of 5-6 eV (1 eV = 11000 K). Thus, elatérmm non-thermal plasma may be very “hot”,
3



but their total mass is negligible in comparisomotas. The temperature of plasma is determined
by ions that constitute the majority of the masshanging their energy with surrounding gas
and generating a heat flux.

In this work we consider non-thermal plasma onhyol we refer to as Atmospheric
Plasma (AP); this term is based on the fact thedmh is generated at atmospheric pressure.
Generation of plasma involves a certain numberotgsses, responsible for production of
energetic species constituting plasma. These psesdake place at the molecular level and are

described with rate constants.

(b) lonization (e

SOROEON

(c) Attachment(r) (d) Positive ion-electron recombinatidki )

~ ®
.@ @

(e) Positive ion-negative ion recomblnatl
Figure 1. Schematics of processes in plasma atlattamel

The most useful rate constants were revealed gleriperiments by Townsend [6] with

discharges in evacuated tubes, they are knowred#sh second and third Townsend
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coefficients. We explain these coefficients anddpksma processes using He-based plasma, as
this is the test gas we utilize in our theoretaradl numerical analysis. Figure 1 contains a
schematic diagram that does not truly image theshgthysical process (it would require
describing ions using a combination of elementaigles and electrons using clouds of

charges depicted with proper spin and energy ofit) provides a simple explanation which is
intuitively appealing.

Let us assume that in a plasma generation chatiméer are two electrodes arranged in a
parallel configuration, the rest of the spacelisdiwith some neutral gas — helium, for instance.
Electric potential is applied across a gap crebteédlectrodes, giving rise to an electric field in
the gap. When the strength of the electric fietdeases, the field pulls an electron out of an
electrode. The electron is accelerated by theratdetld, traveling against the field lines (from
lower electric potential to a higher one) and réaghvery high velocity. Since the space between
the electrodes is filled with a gas, there is @didistance that the electron may travel without
collisions with gas molecules. This distance, chtlee mean free path [11], is a function of gas
pressure, with higher pressure corresponding taeshdistance. For example, for air at
atmospheric pressure the mean free path is onhn6gL2]; therefore, for a 1 mm gap there
would be approximately 14700 collisions if elecsamould be able to fly over such distance.
For helium, the mean free path is in the range/@@ nm [13] to 192.7 nm [14], which is
explained by the smaller size of the helium atorcamparison to nitrogen, oxygen and water
molecules, as the main components of air. The smi@é molecule size, the lower the number
of collisions to happen on the way of an electmus, in helium per 1 mm gap, there would be
about 5460 collisions. Since the average distart@den collisions is quite large, the electron

has more time to accelerate to high velocity, tlhaould in nitrogen. Therefore, in helium,
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electrons possess more energy when a collisiondmapphis energy significantly increases the
chances of ionization. This outcome also explaihg telium has a lower breakdown voltage in
comparison to nitrogen, while ionization energyuieed for helium is higher than that of
nitrogen [3].

There are four types of collision outcomes possiblelectron-neutral molecule
interactions. The first type — excitation — is tethto exchange of energy between the particles.
Helium has seven energy levels corresponding feréifiit excited states of its atom (19.82 eV,
20.61 eV, 20.96 eV, 21.21 eV, 22.97 eV, 23.70 eM02 eV [15]). Excitation may have
different forms: increase in rotational and/or aitton energy of the molecule, change of electron
orbit; the later excitation form is schematicalhosvn in Figure 1.(a). The molecule may be
excited to a certain state for a short periodrogtiif there is no additional energy input during
that period, the molecule returns to its grountestamitting a quantum of energy in the form of
a photon [16, 17]. In our approach we do not caerstldis process; this is why we do not track
energy exchange and excited states of atoms.

The second type of a collision outcome is ion@atiFigure 1.(b)). When energy,
transferred during the collision, overcomes 24 88adirect ionizatiorHe + e —» He" +e+e
takes place. One of the electrons is released tihemolecule, at the same time the molecule
becomes a positive ion. lonization may be stepwigen the molecule gradually increases its
excited state during multiple collisiotde+e— He +e, He' + e — He* + e+ e, with the last
collision bringing enough energy to overcome th@zation limit. The last energy portion is not
necessarily large. It may be even energy absomroed & photon emitted by another molecule

He+ho — He" +e; in this case the process is called photo-iororaft]. The sufficient photon



12400A-eV _1240nm-eV
1(eV) 2458 eV

wavelength can be determined fram ~ 5045 nm, since it is

lower than 100 nm, these photons fall into ultréatioadiation range [6].

lonization is described with the first Townsene@fizienta , which determines how
many new electrons are generated per unit lenfithga path of an electron. According to
previous calculations, an electron may travel ad@&® nm without a collision, constantly
accelerating with the help of the electric fieldokiov and Raizer [18] mention that electrons

acquire the energy necessary for ionization fagtem the current at the electrodes is higher.

ek

Electrons reach velocity, =
myv

when accelerated in electric field)with frequency of

ea

elastic collisiony,,. The ionization process takes place [19] whengnef electrons surpasses

2
the ionization energy IeV{[:-TJ]’é—e > |,. In the first collision, the electron would loggortion of

its energy; it would accelerate till the next cgithn, where another portion of energy will be lost.
If the electron collides with a positive ion or Wik wall/electrode, the electron is lost. Let os, f

instance, assume that the electron travelgeh during its lifetime and had 5 collisions. We also
assume that each collision led to generation ofr@ve electron-ion pair. The ionization
coefficient in this case would be="5 electrond um=5x10° m™. Of course, this calculation is
illustrative only, as the number of newly generagtsttrons in He-based atmospheric plasma is
only a ~ 2700m™for quite high reduced electric field @4 Td [15].

The third type of collision outcome is electromastachment. When an electron with low
energy hits a neutral molecule (Figure 1.(c)), iymattach to one of its orbits, under an
assumption that total energy of such a systemImabthe ionization level. This mechanism is
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responsible for formation of negative ions not ofityn atoms of simple gases, like helium or
argon, but also from complex molecules, ElgO+e—>H+OH. In He-based plasma
formation of negative ions is possible only at vieigh voltages and low pressures [20, 21, 22].
Since experimental conditions in an atmosphericmba setup are way beyond these limits,
formation of Hé ions in atmospheric plasmas is almost impossibles is why we do not
consider attachment process in further evaluations.

The fourth type of the collision outcomes is rebimation of the species. Recombination
is the major mechanism responsible for speciesitopkasma. It takes place when a positive ion
interacts with a negative ion [23] (Figure 1.(e))am electron (Figure 1.(d)). In either case, the
charged species are converted into neutral molec¥l#hen recombination happens with the
help of an electron, a sum of energies of sepapéeies before the collision is higher than
energy of the resultant neutral molecule. This lig/whis process often happens in the presence
of the “third body”, which could be another freeaton or emitted photon. The “third body”
acquires the excess energy in the form of increé#s kinetic energy. Neither ions nor neutral
molecules are able to change their kinetic eneapf €nough to accumulate recombination
energy, this is why these particles cannot bedtbimdy” participants in the process.

Free electrons in plasma occur due to electrossarn from the electrode material. The
emission strongly depends on the electric field tamaperature of the electrodes [24, 25]. At low
electric fields thermionic emission is the majopglier of electrons from electrode surface. The

electron flux due to emission is described (1)HeyRichardson equation [26] with the constant
in front of the temperaturk, = 4zm_e/(277)° = 1.20173<10° A/m?K 2 taken in the form

proposed by Sommerfeld

j=AT?(@1-R)exp(-W/kT) 1)



The flux of emitted electrong depends on temperature of the electrodeeflection of

electrons from a potential barrier at electrode$axe R, and work functioV of the
electrode’s material. The work function definesoteptial barrier at the metal surface that the
electron has to overcome in order to leave the maditelattice.

Table 1
Work function and secondary emission for some med$ej6]

Material Work function Secondary emission

eV electron/atom
C 4.7 0.24
Cu 4.4 0.25
Al 4.25 0.26
Mo 4.30 0.26
w 454 0.25
Pt 5.32 0.22
Ni 45 0.25

It was discovered by Walter Schottky that the wioirkction is lowered [27, 28] in the

presence of electric fiel& by the value (2)

AW = /& /4n,VE [V]=./e/4rs,E [eV] W =W, — AW )

When electric field becomes greater thafi \Lon, electron field emission becomes the prevalent
electron supplier [29]. In this case electronskfftom the electrode is determined according to
the Fowler-Nordheim equation (3), using Fermi eg@fmetal ¢ (Fridman useg. =7 eV

for calculations [6])

2 4./2m W32
j= St [F ey TR ©)
A’ W, + & | W, 3ehE

When electric field is high, the Schottky effectiso present, but it cannot be introduced into

(3) the same way as it was introduced into (1nai$2). The reason for such complication is that

the electron flux at high electric field is verynsdive to small changes in the field values, for
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example, 4x increase in electric field correspaieds®x increase in electron flux. This is why

the correction is introduced in the form of a snpaltameter:

685000N3/2
1—0062 2 (4)
W+$F /W,
The correction parameter is defined in a table f{8@j
Table 2
Schottky correction factor for Fowler-Nordheim etjoa
Quantity Values
AWM, 0 02 03 04 05 06 07 08 09 10
4 1 09 09 08 078 07 06 05 034 O

Another electron source at the electrode is seynelectron emission. This event takes
place when a positively charged ion approachesldatrode, altering electric field in the
vicinity of the electrode and pulls out an electrbhe secondary electron emission becomes
distinguishable, when ions come close to the eddes; this happens when positive plasma
column travels more than half of the sheath thisknbeing driven by oscillating electric field

[31]. This type of emission may be calculated ushegysecondary emission coefficient

y = 0.016(1 - 2W;) (5)
We calculate the coefficient for helium-based plagin= 2458 eV)in the vicinity of aluminum
(W, = 425eV)electrode, the result is ~ 0.016(1,,, — 2W,, ) = 02572,

Thermal emission of electrons, electric pulling oluia cold metal and ionization of
neutral molecules are the major sources of elestoplasma; they provide electrons’ cloud for
plasma igniting and sustainment. During their iifed, electrons participate in collisions with gas

molecules and generate more free electrons. Thieeps resembles an avalanche (Figure 2) —

10



one electron generates another electron, two elexyenerate four etc., leading to formation of

a cloud of electrons that have random directiomms\ahocities.

e © ©ee ©© ©

Figure 2. Electrons avalanche
Each collision leading to electron generation gismluces a positive ion. Thus, emission
and ionization are the main sources of plasma spgwaihile recombination is the main loss
mechanism in pure plasmas.
An important characteristic of plasma is the degykionization (6), which shows the
relation between charged particles and total nurabparticles constituting plasma-gas. Degree
of ionization is an important parameter to deteerpnoper processing of chemicals. Most

industrial plasmas are weakly ionized with degre®ization [32] in the order dbol =107*.

Dol = (6)
n +n

Charged particles readily respond to electricfeahd constitute a displacement current
for atmospheric plasmas. Due to increase in nurmbplasma species, the current also increases,

which, in turn, raises plasma temperature throdghio heating mechanism.
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Figure 3. Voltage-current characteristic of dc ptas discharge at low pressure [33]

Raised plasma temperature not only results irefatgermionic currents, but also
promotes the secondary emission. With the increasatber of electrons due to the emission
processes, the plasma loses stability and is gmagcing. Since arcing is an unfavorable mode
for industrial deposition systems, the degree pization is usually kept low to not compromise
plasma stability.

Figure 3 shows a current-voltage plot of a typmlasma unit. As it is shown in the plot,
there are four modes of plasma generation coultidiemmguished [34]. The first region
corresponds to initial plasma generation wheretelas are emitted from electrodes, form an
avalanche, and generate the necessary amountib¥@asns. This process is not very stable,
because conductivity of plasma is very low with matny species generated. It requires a
substantial voltage to support electric currenbdigh hardly conductive plasma. When voltage
increases, plasma transfers into the glow mode;iwikithe second region on the plot. In the
glow mode, plasma is almost self-sustained,; itireguonly small power input to compliment the

difference between species produced in bulk pleamilaspecies required for plasma
12



sustainment. This is why voltage-current curvddasfor this region. The glow mode allows for a
wide range of electrical settings for the plasntagseln particular, the current could be
increased, pumping more energy into plasma spaa@seating them up. If the process
continues, thermal instability transfers plasma umistable glow discharge when secondary
emission significantly increases. This processasponds to the third section on the plot. The
last section is arc discharge mode that is enetdigesecondary electron emission [35]. In this
mode plasma becomes extremely conductive, allovangery high currents to be passed
through the discharge gap. While this mode is fabler for welding, cutting, and melting

applications, for industrial coatings it is betterdefer from this mode into the stable glow

discharge.

Figure 4. Plasma operated in (@) -mode and (b) -mode [31]

There are two regimes distinguished in plasmaaimer that are related to the level of
electrons’ emission. When emission is low with setayy emission almost absent, plasma is
said to be ine-mode. The increased emission, with most of thetea flux produced by
secondary emission process, turns the plasmay/intmde [36]. Iny -mode, the plasma is very

unstable with arcs being a frequent event (Figjre 4



Plasma is generated with electric field applied toeutral gas. In the simplest case, the
electric field is driven by direct current. Thidge offers an ease of operation and control, but

modern technologies have specific requirementsdduanot be fulfilled as easily.

Temperature (K)

|°2 1 1 1 1 1 1

10°* 10°% 1072 10" 10' 102 10°%
Pressure (kPa)

Figure 5. Relation between thermal and non-therragimes for dc plasma [37]

The usual DC plasma setup can be operated inlmeymal regime only at low pressures,
when pressure increase, stability of the dischaufiers and plasma switches to thermal regime
(Figure 5). Hence, plasma driven by AC currenh&sanly suitable candidate for processing of
materials at atmospheric pressure.

Plasma driven by AC current is known as RF (R&tteguency) plasma. There is a lower
limit of frequency when RF plasma still can be aurstd; the limit is 100 kHz [5]. RF plasmas
also suffer from instabilities, mainly due to sigrant increase of electron flux due to thermionic
emission. A successful method to resolve this issugroduction of dielectric boundary layers.
The layers prevent electron flux from entering pheesma when high power input is applied to
electrodes. The loss of species into the electnoakerial is also eliminated. This method helps
to increase power content of plasma, at the samegtabilizing the discharge. Thus, RF plasma
has multiple advantages over DC plasma when betkb@npared at atmospheric pressure — it

can be sustained in the glow mode, it providesdmngmergy content to the species, and its
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stability may be improved by dielectric boundarydes. Thus, our work focuses on RF plasma

as the potential enhancement method for materegdssition.

Experimental Estimations

The problems associated with the CVD systems aecome by implementation of
plasma-assisted deposition. The deposition tecleriqsed on the atmospheric pressure plasma
(APP) becomes a prevalent choice for everyday mahfgocessing [38-40]. With enhanced
scalability and portability, the APP based devieegploy stable precursors, low temperature

processing, and significant reductions in operatiost.

= 3 WO GIanjc SHican axXide

High organic silicon oxide Intermediate organic silicon oxide High organic silicon oxide

Low erganic silicon oxide Intermediate organic silicon oxide

Figure 6. Non-uniformity of materials depositiortlwplasma flow in (a) longitudinal direction,
(b) transverse direction [41]

The APP-based deposition systems that are avaitabthe market feature a common
trend in design resembling a “shower-head” geomatrigh allows the flow of plasma species

and modified chemical precursor through multiphy toutlets. The “shower-heads”, when
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assembled into arrays for large-scale processasgltrin non-uniformity of the coatings, as well
as exhibit significant problems with clogging oétbutlet channels [3].

The design of a plasma head proposed in this vgacklled a “linear plasma head”; it
represents a slot between two parallel plates,ifggra channel. The width of the head is
adjustable depending on demands of a particuldrcapipn. Plasma is generated inside of the
head and exits the slot in a form of a wide “bladéfiemical species requiring modification are
injected right into the blade, having no contadtwhe head components, thus preventing the
clogging. This unit is targeted for advanced cagiaver large areas.
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Figure 7. General sketch of the proposed LAPPD t@ad he actual design may feature
different configuration and placement of the inggstand modified geometry of the channel for
optimized fluidic behavior of the plasma gas
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Practical testing of a linear plasma head develdpeother research groups revealed
that, in general, these units lack uniformity andusacy of deposition (Figure 6). Because of
these complications, we started a theoretical tny&tgon looking for an improvement of the
APP reactor design. The primary objectives of thgearch are applicability of the reactor for

large size specimens (in particular, for roll-td-pyocessing of materials), ease of maintenance
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(no clogging), and ability to optimize the flow thfe chemical agents and plasma species using
fluidic tools. The Linear Atmospheric Pressure RladDeposition (LAPPD) system has been
developed to address these issues.

The LAPPD head (Figure 7) consists of two pargdlates made of non-conducting
material (Teflon) to form a channel for the flowtbe carrier gas (helium). At a certain location
in the channel, there are two electrodes (aluminplaged in a parallel arrangement which
induce capacitive plasma discharge, ionizing tbeithg neutral gas. The setup is logically split
into four sections for gas entrance, plasma geioerdtuids mixing, and material deposition. In
the first section, the carrier gas enters the sahgbdevelops a laminar flow profile. Solution for
this section does not include plasma species adeésisribed with fluidic equations only. The
result of the flow simulation is represented byasgpolic velocity profile. In the second section,
the carrier gas passes through the space betweetetttrodes where it becomes ionized due to
the RF electric field and leaves the generatiotiaed the form of weakly ionized plasma.

With the help of gas advection, plasma proceeaisgaihe channel into the third section,
where a chemical precursor is being injected. Tleeyrsor activation takes place in the mixing
chamber, with subsequent propagation of the chdsniceards a substrate. The fourth section
encloses an open space starting from the plasnthamebfinishing with the substrate, in order to
track the deposition process. The channel georngetrld be altered to influence the advection
rate and to concentrate plasma species in thefgpa@a, enhancing the activation of the
chemicals.

Plasma is generated at atmospheric pressureamwithdratures close to 300 K. We utilize
an RF-type of plasma as it provides a potentiatifelectric layers implementation, leading to

improved stability of the glow discharge. In thegented model we consider bare electrodes (no
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dielectric layer). The frequency of 13.56 MHz i®shn for RF electric field as this is the
internationally accepted industrial standard [3], [42]. Bogaerts et al. [5] provide an
estimation of minimal RF frequency for a stablevgltischarge as 100 kHz; hence, our
operation mode exceeds the minimal requirements.glip size between the electrodes is in the
millimeter range, setting low demands for input powl he typical gap used for our model is 1.6
mm, this size well correlates with the one usefd8] and provides an opportunity for results
comparison. In order to determine the proper op@ratinge, we estimate the gas breakdown
voltage (7) forL = 016cmgap, according to [2], [6], and [33]

v BpL
max — |n(ApL)—|n(|n(1+]7/739))

=174229V )

We assumed the multiplier constafits= 28cm*Torr* and B=77V-cm*Torr?) are taken
for Helium [2]; the secondary electron emissionsiant(ySe = 026) is for Aluminum [6]; and

the gas pressure is 1 dtp= 760Torr). Thus, in the proposed operation mode of 400-7@GV
expect a smooth plasma glow (tbemode). Transition to the -mode is possible in the real
setup [3], [31] when excessive electrons are puliech the electrodes due to the secondary
emission process [2], [42]. This regime is chanaotel by formation of sparks across the gap
and by rapid growth of plasma temperature due tessive electric currents in plasma. The
material of electrodes has a little influence om glow discharge when the plasma is operated in
the o -mode, but its effect becomes quite pronounced vitzgrsition to the, -mode occurs

[44]. This fact leads to exact specification of ghectrode material for our theoretical and
numerical models. Young and Wu [45] mention thaitdiic model of plasma is capable of
catching the, — y transition, though we do not account for such &ocein our approach,

keeping the voltage relatively low.
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The developed plasma model and acquired numesdsalts, presented in this work, are
based on the design similar to the one used ireperimental evaluation. The proposed setup is
based on a plasma head, featuring a generationbegratuaned for capacitive plasma discharge

and injection units for input of a chemical preaurs

Figure 8. A proposed linear plasma head: (a) thé teady for testing, (b) the unit generating
helium-based plasma, (c) general design of the unit

Figure 8 represents the proposed linear plasma reage (a) shows the assembled
plasma head prepared for experimental evaluatiims white Teflon walls are assembled with a
thin gap between them. The gap forms a chann¢héflow of neutral gas. Electrodes are
placed about 1 cm before the outlet. Image (b) shin plasma head at work, generating
helium-based plasma, which can be seen in the ehdetween the walls. Image (c) shows the
general view of the plasma head, with the top clerpboviding connectors for neutral gas and
uniformly distributing the gas at the channel inlEte sides of the head are covered with quartz

glass with an intension of optical analysis of pteesma bulk and sheath. For instance, the
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plasma content can be accurately investigated eptital spectrometry, as it was done in the
work of Lepkojus et al.[46] for Helium-based plaasnSome other methods of optical
characterization of plasmas, like laser-inducedr#scence, spontaneous and stimulated
Raman, and multi-photon spectroscopy [17] are eialptions as well .On the right bottom side
there is a BNC connector to supply AC current edlectrodes.

The experimental investigation of the plasma healided tests with different plasma

regimes, in particular, dependence between elatiriput anda/y -modes of plasma operation

was explored, as well as voltage-current charatiesiwere recorded in order to determine the
power efficiency of the setup. A total gas flowldr-40 liters per minute (LPM) was assumed for
these preliminary examinations. The plasma eleesddhd the following size: the length is 2.54
cm and the width is 7.6 cm with inter-electrodecspg of 1 mm. The gap between the electrodes
is designed to be adjustable, in order to accomieatifferent experimental settings.

Two designs for injection units were tested with tinear plasma head. The first design
featured an injection unit for sidewise injectidrchemicals. The injection was perpendicular to
the flow of plasma. The interaction between plasmé chemical precursor was poor, mainly
due to inability of the chemical flow to penetradethe central portion of the plasma stream — the
part of the plasma with the most active species. ddposition results (Figure 9.(a)) appear
scattered with quality of the coating strongly degent on the strength of coupling between
chemical precursor and plasma species.

As a result of this test the location of the imges was changed, leading to the second
design concept. The concept assumes the injector o a form of a thin plate that is installed
between electrodes, splitting the flow of neutras$ gnto two portions — above the injector and
below the injector. As the further improvementlod design, the plate was proposed to be
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conductive and to serve as a third electrode wédhkrpa generation above the injector and below

the injector and chemicals injection between twaspla “blades”.

(a)

(b)

ey o

Figure 9. Coating formation on the c-Si substrgsg: with side injection (b) with injection to the
centerline of plasma stream

Deposition made with the second design is showkigure 9.(b). As it can be seen there
are two lines of the modified precursor depositedh® c-Si substrate. The uniformity of the
deposition is improved in comparison to the unttwvgidewise injection. At the same time, the
quality of the deposition (indicated by color charaj the coating on the substrate) was not very
high. This result was explained with fluidic moahgjiof two immiscible liquids using the
geometry of the plasma head.

Figure 10 shows a calculation domain for simukaté mixing for two fluids. The
simulation is done with ANSYS CFX. The horizontakfon of the domain represents a channel
between two parallel sides of the head. The opéely bbthe center of the channel is a flat
injector, which serves as the third electrode. I@nright side of the injector, there is an injectio

port; it has a shape of a slot in 3D; in the atttad2D simulation, the injector is represented by
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a thin channel, as it can be seen on the rightcfitlee left image in Figure 10. Plasma electrical

properties are not taken into account in this satioih; we focused on fluidic properties only.
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Figure 10. Computational domain for simulation akimg of plasma-gas and injected chemical
precursor. The left image shows volume fractioplasma gas, the right image shows volume
fraction of the chemical precursor

The right image in Figure 10 represents volumetioa of a gas substituting plasma with
red being the highest concentration. The figurenshihhe second fluid — chemical precursor —
which is injected from the injector body into thgasing between two streams of plasma-gas. In
the original design we expected efficient mixinglué two fluids. The simulation shows that the
central portion of the precursor did not engagé wie plasma, only edges of the stream come
into interaction and become modified. The modifiedcursor may be seen as yellow-green
portion of the precursor stream. Since unmodifiegtprsor does not attach to the substrate well
enough and does not leave distinguishable coatiag;an visually examine only those areas of
the substrate that are covered with modified prmujthe yellow-green region at the substrate in
Figure 10). According to simulation results, thamned concept of the plasma head would
produce two parallel coated lines on the substidies result we found in the actual sample

(Figure 9.(b)).
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Fluidic simulation proves to be a useful tool &mralysis of material deposition with APP.
At the same time, the information on distributidrfloids is not sufficient to estimate the final
results. In addition to fluidic investigation, wave to add distribution of plasma species in the
flow, as well as their interaction with chemicaépursor and, more important, distribution of
modified precursor in the stream of plasma prodespecially in the vicinity of the substrate.
This knowledge would allow us to estimate concdiuneof material that is ready for deposition.
Simulation of surface chemistry could provide ptabstic approach to the actual distribution of
the modified precursor, based on physical and ct&mroperties of the substrate material.

Investigation of plasma behavior in the flow ofeutral gas was started in order to answer these

guestions.
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MODEL OF PLASMA GENERATION

Theoretical Model

General Description

Experimental evaluation of a plasma system isaguing task, especially when such
parameters as electron energy distribution fundtigiDF) [47] or species density and velocity
are in question. In order to deeply examine théesyswe perform theoretical and numerical
modeling. It not only provides the properties denest, but also allows us to predict plasma
behavior when we change a certain parameter aedndiee the optimal range for the system
operation.

The general approaches to model plasma behawddvialecular Dynamics, Fluidic
Theory, and Kinetic Theory. Molecular Dynamics isIMguitable for plasma problems at small
scales, especially when the problem may be resdiydchcking a small number of separate
particles. When the number of particles increasesstill is low for continuous approaches,
Particle-in-Cell technique comes into use; it tsasknall volumes that contain a number of
separate particles, using electromagnetic equatmresolve the dynamics of the volumes. The
Fluidic Theory relies on a continuous definitionptéisma density, species velocity, temperature,
and other physical parameters. Fluidic Theory ug@alsumes that the energy of electrons
follows a Maxwellian distribution; hence, the acaey of this theory is generally an issue. This
issue is resolved by introduction of the Boltzmatettron energy distribution function. In the
general case, this approach is applied in Kinelieory, where species properties are functions
of time, spatial coordinates, and velocity coortesaEven though Kinetic Theory is the most

accurate of continuous methods, its evaluatioss®eated with significant computational
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overhead; this is why a compromise solution of larttyFluidic/Kinetic model was devised. T
hybrid model utilizes an approachthe Fluidic model at the same time featg EEDF and rat
parameters typical for Kinetic moc This model is used in our simulation and is thordy
discussed in this work.

The theoretical model of plasris qualitatively described in terms gbverning
equations and major derivations in such fundamesatatces a[2] and [48].Nevertheless, somr
details of this model are usually omittectheliterature under an assumption of their obvi

nature. Thus, the current wopkirsueshe following goals:

. Modeling of plasma@eneratio in a capacitive RF discharge
. Estimation of convetive plasma transport a variety of geometrical configuratic
o Explanation osome elementaiplasma propertielsardly available in the literatt

In order to fulfill these goals, we consider a ptasreactor that has parallel arrangements o
electrodes (Figure 11)There are three sections distingable in the reactor: a generatic
chamber, a mixing chamber, and an open space hetiveaeactor and a substr
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Figure 11. Schematics of plasma reactor
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The plasma generation chamber consists of twolphedctrodes separated by a gap
filled with carrier gas at atmospheric pressurees €lectrodes are connected to the AC power
source. It is possible to include the dielectriahadary layer for electrodes, even though it affects
the gas breakdown [49]. The dimensions of the eldet are sufficiently larger than the gap
size; hence, we assume that the model can be ¢eduwerlD where a computational domain is
represented by the shortest line connecting twallghelectrodes. The characteristic times of

plasma generatio(l =1/1356MHz ~ 74x10° s) and characteristic time of carrier gas flow

gen

(t fow = 0.0254m/10m/s~ 254x10™° s) differ by four orders of magnitU((ie;,ow Mgen = 34x 10“),

gen
with the plasma generation time being the sma(leste we assume the electrode dimensions of
254cmx 2.54cm and gas mean velocitm/s). Such a difference allows us to neglect the

plasma advection effects along the channel andsfpdmarily on plasma distribution within the
1D domain. We also neglect edge effects of thetrtefteld and changes in temperature of the
carrier gas, which is kept constantly at 300 K. irtfleience of the magnetic field is usually
assumed to be negligible for this type of probléad.

We employ fluidic theory as the main approach tweling plasma behavior. This
approach provides results with accuracy compatafbtieat of kinetic models [50]. It is an
intuitively appealing method with parameters thateasy to measure experimentally, in
opposition to experimental investigations of EEDIah is the main component of the kinetic
theory. Kinetic models provide too much informatibat unnecessarily raises the requirements
for the computing environment [51]. Fluidic modelsrk with only three spatial dimensions
instead of the six spatial-velocity dimensions iofgtic models, which is extremely

advantageous for computation process. As the 2Dehaidhe LAPPD head bears fluidic
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features, it is natural to use fluidic approach¥brplasma generation as a part of the larger
model.

The atmospheric pressure plasma is characterizémhboverall temperature, usually in
the range of 300-1000 K; at the same time its ggecarry high energy content. Such occurrence
is possible due to the significant difference resnf electrons and ions in the plasma. According
to Suplee et al [52], the average ion size is 2086s larger than that of an electron. The size of
the species determines their mobility in an eledtald, as well as their acceleration and inertia.
Smaller electrons are easier to accelerate: traghrhigh velocities (200 times higher than ions,
according to our observations) which is an indaawof the electrons’ high kinetic energy. This
energy is expressed in terms of temperature o$pleeies and reaches 5-6 eV for electrons (1 eV
corresponds to 11605 K), while the helium ions terafure is close to the room value of 300 K.
The fluidic model essentially contains two tempearatenergy levels [37]; therefore, both types
of species have to be modeled separately.

We do not include negative helium ions in our madethey are extremely hard to
achieve. Researchers [20-22] have to utilize aigpwchnique at high vacuum with energies of
the species in the range of 3-70 keV, in order¢ate the negative ions [21, 22]. Even at high
vacuum the yield of Heés measured as 1.2% of that of H21], with a lifetime in the order of
10° s. In atmospheric pressure plasma the lifetimbedge species would be significantly shorter
with much lower yield due to the shorter mean fvath. Thus, we exclude Heom our model.

A dramatic difference in velocities between ionsl &lectrons in APP determines its non-
equilibrium state. Under such circumstances, EEB$eld on a Maxwellian distribution cannot

properly describe plasma kinetics. In fact, Meyyappt al. [53] mention that Maxwellian EEDF
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provides overestimated rate constants and plasmatgein comparison to Boltzmann-based

EEDF. This fact clarifies the use of rate constéaised on Boltzmann EEDF in our model.

Governing Equations

Following the general approach [2, 43, 48] we abgrsmoments of Boltzmann equation
(8) in order to build a set of governing equatioBsltzmann equation, being fundamental for
plasmas, is not solved directly in our model. ladtewe make a connection to kinetic effects

through the use of rate constants.

a _d vy i+Fv s :(ﬂj ®)
dt ot m ot ).

In this equationf stands for EEDFtis time, vis velocity of speciesk is a force acting on the

species,mis the species mass, arﬁ%) is a collision term. The number of particles in the

C

vicinity of the point (x,v) with spatial coordinates in the range ©fx+ dx)and velocity
coordinates in the range 0, v + dv)is described by the following relation
f (t, %, v)dxdv 9)
The number density of the species can be found/esaging the EEDF over velocity space
n(t, x):_[ f(t,x,v)dv (10)
Any velocity moment®d(v)may be averaged to the mean value using the iniegraver

velocity space

(o(v)) = n(t,x)jq)(v)f (t, %, v)dv (11)

The momentum of the flow dyadi, is defined through the second order momentum ef th

EEDF
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I, = mJ.(I)(v)f (t.x, Vv, dv =mr{vv, )

1, =mnuu; + P, (12)
In this equationu;,u, are the components of the mean velagifyyx), m is the mass of the
specie, andP, is the component of pressure tensor.

We calculate the first three moments of the Bo#mm equation to form a fluidic
representation of plasma. Very detailed derivabbthe moments can be found in [2, 48]. We
follow [54] in order to find the moments. Boltzmamguation may be multiplied by some

function ®(v)and integrated with respect to velocity components

j%cpdwjv-v,fcpdv+j%-vvfcpdv=j(g—‘;lcbdv (13)

Because the first term on the left-hand side do¢slepend orxort, the order of integration and

differentiation could be exchanged. The integratgooarried out using the average va{@a(v))

of functiond(v).

R o

The second component on the left-hand side isuthgst to similar approach

[v-v, fadv=]y -a%(cpf )av == Ia%(q)vi f)dv =V, (n(®v)) (15)

The third term on the left hand side representsef@xerted on particles. We assume that EEDF
rapidly decreases when the velocity of the padiepproaches infinity. This assumption sets the
modified integral of the term to zero with only teecond term having non-zero value. We also

assume thar is divergence free with respect to velocity, tlisws bringing the components of
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the force vector under the differential with regpecvelocity. The last assumption is suitable for
the electromagnetic force. With all the mentionssuanptions, the term modifies as follows
jf-vquwv:ij iFifq) dv—2 Fi@ = Lrv,0) (16)
m m-<{ ov m\ oV, m
The integrated collision terrhc(t, x) becomes a function of time and space coordinatigs thins

is why it modifies in the following way

[ (ilcbdv = (Ml (17)

ot ot

We combine the integrated terms into a general forenmoment of Boltzmann equation

A0, o) 2w, 1401 @9

C
We would like to derive the moments of Boltzmanmatgpn. Since the considered problem is
1D, we switch from the general form of the equatiorparticular vector components. The first

moment of the Boltzmann equation is the continagyation, it can be derived setting= 1

a(r(;<t1>) N % (n<v>)_%<|:i 6£)> _ [a(r;tﬁ) J

on + 0 (nu):(é’nj (19)

ot ox ot
We write this equation for the speciesand substitute the collision term on the rightdhaide

with a sum of separate effects of ionization armbnebination processes.
.0
_+_X(nivi)=ZRij (20)

The second moment of Boltzmann equation is conervaf momentum, it can be derived

setting® = mv
30



omnuu. oP;
8(nml«) N Hu, el +n<Fi>+ M (21)
at 8X 6X at c
M+i(nimivivi)=—£+qini|§_nimiViVi
ot ox %

The third moment of Boltzmann equation describeseovation of energy. It can be derived

settingd = mv?/2

M+i(n<mv3 /2>)_£<Fi a(mv?/ 2)> _ [8(n<mv2/ 2>)J (22)
ot oX m ov ot .
Define the following entities
<v2>:u2+ﬂ <viv2>:u2ui +ﬂui +£F’ijui +£qi (23)
mr mr mr mr

Here pis scalar pressure is heat flux. Substitute the entities into (22)

n<F a<mv2/z)> : a[m«“z ' m

16[mr<u2+i$1>] 10 3 2 2
+[m;’(u2ui +—pui +—P; +qiD—

mn mn mn m\ ' ov ot

6(mnu2) + 3a—p + g(mnuzui +3puy; + 2P, u; + 2q; )— 2nFu = (6(mnu2+3p)J (24)
ot ot ox ‘ ot c

a(mnu?) . a(mnuy, )+ 3a(pui ) . 26(P”. u )+ 200 Q0P 5o a(mnu? +3p)
ot Ox OX ox Ox ot ' ot c

Denote kinetic energy of specieas w, = mn,u?/2
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o0, o), 3o(py) oRY) o0 3ep 1(6(rnmi+3p)J (25)

ot oX 2 0oX OoX ox 2 ot 2 ot
oT
We useF, =g Eand Hooks lawg, = —K; e

. UL P
o0, , doy)__ ol ,Ju,)+nqu+i(K ﬁj_Ea(pui)_§8p , 1( almne +3p) (26)
ot OX oX OX OX 2 OX 20t 2 ot c

The last three terms on the right are represergedsam of energy rate terms

ow, 0 0 0
E-i_&(a)i\/i):_ax( )+q,nvE+8—KVT ZR“ (27)

The moments are written for the specijeshereiindicates electrons or positive helium

ions. Then stands for number density of the specisis,a spatial coordinatey is velocity of

the speciesz R, is a generation/recombination teridjs partial pressure of the speciefis
j

the sign of the species chardeis electric field, ®, is the species kinetic energlis

temperature of the specids; is thermal conductivity of the species, @d}i H, is energy rate
j

term. Since our problem is one-dimensional, in {&TF) we used only first components of the
vector terms.

The moment (20) is an essential equation for pleeies distribution. The moment (21) is
required for coupling of the species’ velocity andmber density. We follow an approach of [43,
45, 50, 55], introducing the drift-diffusion apprmation (28) to our model. This approximation
renders useless the moment (21), as the couplimgeba number density of species and their

velocity is conveniently represented in the fornflox.
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The drift-diffusion approximation is written in tes of species flux, according to [50].
The flux is formulated with drift (due to force ptided by electric field) and diffusion (due to
number density gradient) terms.

J =nv=sign(q)unE—DVn (28)

m2 m2

Herey is the mobility I{V_s} andD is the diffusivity w{?} Usually a ratio of electrons’
diffusion to mobility is found from the Townsendpetiment. Electrons motion is analyzed in an
evacuated tube, where electrons are emitted freauece and their radial distribution is
measured at certain distance from the emitter [BBjusive flux of electrons is found from
Fick’s law by substitution of diffusion coefficigrglectrons charge, and gradient of the number
density

dn
J.« =——e)D—=D_Vn 29
diff ( ) dX e e ( )

When an electric field is applied to a conductingdm, the charge carriers move at a velocity

that is proportional to the magnitude of the fiéltlis velocity is called the drift velocity

Vg =u-E (30)
This definition is used to constitute drift curtelue to applied electric field

Jyin = VyNn.€ (31)
At the equilibrium drift current and electrons difon are equal

Joiw = Ja (32)
At non-equilibrium conditions their superpositioielgs the total electrons’ flux

J= NV, =V, — Devne (33)
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{— 1fore a4

0
v =nv'——(nD 9 _quE =
n i i Vi ax(l |) Vi i &, q +1,f0rHe+

Equation (34) contains a drift term (the first teomthe right-hand side) with drift velocity’
(where &; denotes the species mobility) and diffusion terine @ term on the right hand side)

with a diffusion coefficienD, .

Since ions are bulky and slow, they cannot effitiediffuse in the time-frame of one
RF-oscillation; therefore, the diffusion term fons is negligibly small and omitted in our
simulation [43]. The drift-diffusion approximatidB84) substitutes into the mass conservation

equation (20) modifying its second term on the-tefbd side

on, 0 ¢ O B
E-"&(nivi _&(niDi)j—Zj:Rij (35)

Mobility, diffusion, and generation/recombinaticates are determined based on values
of the local electric field. Even though there arethods to avoid solution of Poisson equation
[57], we use the classic approach. The electrld feecalculated by means of Poisson equation
(36). There is a cloud of charged particles betwherelectrodes that distort the external electric

field generated by electric potentihl:os(a)t). The right-hand side of (36) accounts for an impac

of each particular charge to properly estimatediktortion.

2 & __9¢
V2g = go(n n,) E=—— (36)

In this equationgis an electric potentiak= 1.6 x10"*° Cis elementary charge, and
£, = 885x10™ C/V -cmis vacuum permittivity constant.

The Poisson equation has a simple form in thedd2 cThis is why we directly integrate

it in (37), following [43] and [58]. The right-harglde integral in (37) represents the
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accumulated field distortion that compliments te éxternal electric field to yield the local value

of E(x).
E(X)= E, +-2 [ (n, (2)-n,(&)-n, () @7

E,is a constant of integration that is determinedniftbe boundary condition (38). The boundary

condition binds the electric field at the domairl dine voltag(iJ)externaIIy applied to the

electrodes.
L
j E(x)dx=-U codat) (38)
0

The common definition of plasma assumes thaoted tharge is somewhat neutral. In
reality, the charge of APP could be slightly offSéte boundary condition (38) has to account
for non-neutral charge of APP which is done byraagral terml  in the expanded form of the
boundary condition (39). This elementary fact isally not mentioned in the literature, though it

is crucial for accurate modeling of plasma.

X

[ERx=EyL+ | & [ (1, (6)-n,(6)-n, (e lox=

0 0L€0 0

= E,L+1 =-U, codat)
E, = —%(u codat)+1 | (39)

The parametet in (39) stands for the gap size.
In our model, we employ the concept of the Logald=Approximation (LFA). It

assumes that all plasma parameters depend omjlaadtulated reduced electric fielgN , with

number density of neutral ghis= 2.6871x10" cm™. This assumption allows us to use rate
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coefficients based on solution of the Boltzmannagigum from the kinetic approach [45]. LFA is
not very applicable in the cathode fall region lafgma [58]; nevertheless, it is common practice
to apply the concept over the whole domain, aetha is usually negligible.

The system of the governing equations (40) is &mtrof modified mass conservation
equations (35), written for each of the speciesssply, and integrated Poisson equation (37)

which connects the plasma charge distribution ¢oeflectric field

on, 0 on d
C+—| u.En —D,—% |=(a—-n)n V.| -k °n.n
8[ 5 (#e ne e a J ( 77) el e e e 'p
on Pl
p d rec
—+—(,upEnp)—0me vo[-kengn, (40)

The general form of the collision terﬁ R, on the right-hand side of (35) is expanded in
J

(40) with species generation (the first) and recmton (the second) terms. The ionization

parametefx), the electric mobilit{(,ue,,up), and the diffusion coeﬁicier(ﬂi)e)are functions of

the local reduced electric field. In the ideal cabey have to be evaluated through experiment in
Townsend discharge tube [59]. We simplify the pagtars evaluation and calculate them over
EEDF that is provided from the solution of the Batann equation. The solution technique for
the Boltzmann equation requires deep insight ifgoteons interactions [60-62]. We do not
attempt such a detailed investigation, insteadyseca freeware package the BOLSIG+ [63] that
solves the Boltzmann equation for special casdsilledes EEDF, and derives rate parameters,

which are used in our model.
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Rate Parameters

We provide an example of rate parameters derivatging the BOLSIG+ package. As an
input, the BOLSIG+ requires cross-sections of sah events for the gas of interest, physical
conditions of simulation (such as temperature efghs, electric field values etc.), and
parameters controlling the numerical process otiation. We use cross-sections for helium gas
that are provided in the package by default. Fer'ew Run” we choose “Linear E/N (Td)”
option where the initial (1 Td) and the final (100) values are specified. The number of runs is
set to 100 and temperature of neutral gas to 300 e “Numerics” section the number of
energy levels is changed to 500, as it providesosimand accurate result. The rest of the options
are left at their default values. The output datsaved as “Separate tables vs. E/N”. We
assemble a table of the rate data in a spreadgtametssing package. All the parameters in the
output file have self-explanatory names, exceptHerionization coefficient which is referred to
as “C9 He lonization 24.58 eV; Townsend coefficieNt(m2)”.

On a request, the BOLSIG+ fits most of the outmrtables with a polynomial; this
option has to be selected when saving the dataAdean example, the fit data provide non-zero
ionization values for a low (less than 5 Td) reduekectric field, whereas the original data
contain zero in these positions. We found thataigke fit data (ionization fit data is shown in

Appendix A forE/N < 5) improves the plasma stability at low externatagéU, as well as in

the region of weak electric field. Appendix A cantaan example of typical data retrieved from
the BOLSIG+ and used in our model.

Figure 12 represents the behavior of typical pat@meters which are converted into a
suitable form used in our model. The mobility pletgure 12.(c)) includes ions’ data in addition
to that of electrons’. As it can be seen from i, the mobility of electrons and ions has two
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orders of magnitude difference. This happens becatithe larger size of ions which leads to

lower drift velocity, according to (34). For He+h®the rate parameters are taken from atomic

data tables [64], where experimentally acquired imobility ., is represented as a function of

reduced electric field/N . These data are presented in Appendix B.
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Figure 12. Typical rate parameters used in the nho@de e diffusion(De), cnf/s; (b) helium

ionization (), 1/cm; (c) €and HE mobility (u,, ., ), cnf/V.s; (d) € mean energy@, ...), eVv.
The horizontal axis shows reduced electric {&aN ), Td

The rate coefficients found from BOLSIG+ and atomhta tables are crucial for

modeling generation, drift and diffusion proces3é®e recombination process calls for a

recombination constart which is responsible for loss of species due teractions between

electrons and ions (as well as interactions betvpesitive and negative ions, when the later are
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present). In our model, the recombination coeffitis set tok, =107 cm®/sand kept constant
throughout the simulation [43], [58].

The rate parameters estimated in this sectionvallss to cover a wide range of possible
interactions between helium and electrons. A ssuoh interactions could be found in Kong and

Deng work [65].

Boundary Conditions

The boundary conditions for the system (40) aseiied in terms of fluxes. Following
the general approach [43, 45, 58], electrons dogvad to penetrate the electrodes without a
reflection. The equivalent notations for this cdiwh would be “perfect absorption” [43] or
“zero reflection coefficient” [50]; Wester et albalso mention recombination of electrons with
the material of the electrodes. The flux of elentrat the boundary is formed by the drift-
diffusion process and thermal motion of electrons tb their high kinetic energy. The thermal
flux is significantly larger than drift-diffusiorudx [43], therefore we ignore the latter and specif
electrons flux (41) through thermal motion only.

kinetic
Ve Ne

Je= Vkinéﬁcn (41)
+ e e
4

x
Il
-

kinetic

Kinetic velocity of electrons;™"is determined through the electrons’ energy. Among
the rate coefficients, the BOLSIG+ provides meattebn energyw,,...(last column of the table
in Appendix A). Temperature of electrons is estiedaasT, = 20, ,,/3KS" [6], with
ks’ =8617x10° eV/K being the Boltzmann constant. This data is tabdlfiea range of

reduced electric field. Kinetic velocity is calctdd as/<™" = /8T, /zm, , with
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m, = 9.1x10* kgbeing a mass of an electron &id= 138x107° J/Kbeing the Boltzmann

constant.
Let us estimate the difference between kineticdniftivelocities of electrons. As a

reference, we assume reduced electric field val&& N = 1Td with corresponding electric field
E=2687V . Mean energy i$,,.,,= 0.5641eV (taken from Appendix A); electrons’
temperature i, ~ 4364K , and kinetic velocity is/"* ~ 410405 m/s . Just for comparison,

drift velocity (34) at the same conditionsv$ ~ 4836 m/s - two orders of magnitude smaller

than kinetic velocity. This is why kinetic flux efectrons is prevalent at the boundary.

In some cases, absolute absorption of electrottegsanumber density to be set to zero
at the boundary [45, 53]. We do not implement #uslitional condition, because kinetic flux
alone is sufficient to keep electrons’ number dignat very low level in the vicinity of the
electrodes. The secondary emission is often assuragligible [66] for well-sustained glow
discharges, thus we ignore its effect in this model

For the positive ions, we specify only the drifbd towards the boundary (42). According
to recent studies, helium ions are able to pereeiné the material of electrodes [67] and to
become absorbed in this material [68]. In our magdeldo not account for such effect and use
non-penetration condition for ions at the electsodeundary. The drift flux of positive ions is
reflected from the electrodes by the means of appflaxes specified at virtual nodes. The
virtual fluxes have the same magnitude as thermalgines, but the opposite direction. Such an

approach results in zero total transfer of iong ¢the boundary.

_ {vpnp ,if vpn, >0 42)

Ip 0 ,ifvyn,>0 Iolier

={vpnp Jif von, <0
x=0 o if vph, < 0
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Physically, this process resembles the no-pematrabndition for ions. A numerical
scheme provides a connection between real andal/fitixes at the boundary; this is why we do

not specify additional details in this section.

Initial Conditions
The initial condition for the mass conservationa&ipns is specified as a uniform

distribution of the number densify, = 10 m )over the computational domain. Number

density is set to the same value for all the sgeaieorder to maintain a neutral overall charge at
the beginning of the calculation. The same typmitill condition is proposed by Young and

Wu [45]. Meyyappan and Govindan [53] suggest theeafszero velocity and uniform mean
energy, in addition to uniform number density dsition. We find this step excessive as species
velocity and energy are unequivocally determinednfthe specified initial number density. The
researchers also mention that the same converdgigiitbeccan be obtained regardless of the

initial condition. We could not confirm this statent in our tests. Additionally, in the Results
and Discussion section, we discuss a range of paesisthat lead to stable plasma generation.
For initial conditions out of the range (speciflgafor lower external voltage) we could not find
stable plasma modes.

The initial distribution of the species over ttenthin affects the feasibility of the stable
mode. If the species initially occupy only a pdrthee domain, the fast electrons are quickly lost
into the nearest walls, leaving only the slow ionghe domain. The positive ions have no
opportunity to decay as the electrons density besomsufficient, because there is only one
species generation mechanism through ionizatiopl®gpby electrons and the only loss
mechanism through recombination with electronssTaise scenario has no interest for us. We

also do not include field emission that could gateeadditional electrons to supplement an
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avalanche process. Therefore, according to oumedisens, the only reasonable initial condition
consists of uniform distribution of all the specieish number density sufficient for starting the

ionization process when electric field is applied.

Temperature and Energy Estimation

The third moment of Boltzmann equation (27) iscus®inly for estimations of energy of
the species and their temperature. The BOLSIG+igesvthe mean energy of electrons (last
column of the table in Appendix A) which allows thkectrons temperature calculation. The
temperature of the ions is changing slowly, respamtb the time-averaged electric field. This is
why, it is sufficient to calculate ions’ temperatwnce per oscillation [43], solving heat

diffusion equation (43).

82T t+27r/-cu
ve 5= | i(E()dr (43)
OX t

In this equation, k,,, =1.6x10* W/cm-Kis thermal conductivity of helium at standard

temperature and pressure=1356MHzis frequency of alternating electric potential apglto

the electrodes, andl(t)is current density calculated gt )= e(npvg -n.v¢ )at a pointx.

Since temperature and energy of the species &entdaed by workaround methods, the
moment (5) can be excluded from further considenatin the case of ions, the workaround
method significantly improves the performance. |gdime fact that rate parameters are
calculated for constant temperature 300 K, the mdaes not catch the effect of temperature
change of the neutral gas. Therefore, ions’ tempezaan be calculated only at the last

oscillation, when plasma is in the steady mode.
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Numerical Technique

In order to efficiently construct a numerical mqdeé perform undimensionalization of
plasma parameters and properties. Some charaictpasameters are chosen based on geometry
of the problem and physical properties of the sefinus, characteristic timeis the time
required for one RF oscillation, characteristictie potential is equal to the amplitude of the
applied voltage =U,,, and characteristic length is equal to the sizdaefgyapX = L. The other
characteristic parameters are determined as deegadf the defined ones.

We consider the continuity equation to find tharateristic parameter for number
density of the species. The continuity equatiorelectrons is explored below. For positive ions
all the derivations remain valid, yielding with siar result. This is why we do not show here

derivations for the continuity equation of positieas.

on, 0 on d
E Cl=(lad—n)n VS| -k n.n
5‘t ax[ﬂe ne e axj ( 77) el e e e p
AN 12 (o X NN ) Ly )My - L,
t OT XoX\|t t X 8X x
N, a (N VA aNejz(A—@)Ne = Kg®NN (44)
oT ax OX

Regardless the form of the characteristic numbesitle the continuity equations remain valid.

Next, we explore Poisson equation.
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Tex?

Vo =———(N,-N,) (45)
&P

The form of this equation can be simplified if wendte the characteristic number density as

follows

&P _ €Yo

A= -
ex? el?

v =—(N, -N,) (46)

We define characteristic electric field using knovatues for characteristic electric

potential and characteristic len@h- /x = U, /L . We also define characteristic current using a

simple relatiory = env = ¢,U, /tL . The last equation to consider is the heat distion

aZT C() t+2”/€” _|: azQ 1 1T+2ﬂ/a} ~
Kie =5 =—7— 7 )E(r)dz Kie =5 =-—= | jI(&)EE()dE
H 8X2 272_ !J( ) ( ) He )A(z axz 27Z'f 1_[] (6) (5) 6
629 )A(zA-E T+27/w
=— — | J(E)E(E ) 47
- _ X’JE e :
Thus, the characteristic temperaturé is ok The heat diffusion equation becomes
He
629 T+27/w
vl j J(€)E()ds (48)

The 1D problem considered in this article is omlyart of a larger system that represents
the whole LAPPD head. The plasma generation pateo$ystem can be well described with 1D
approximation, but the rest of the system has teifnellated in 2D with inclusion of additional
effects. Such a simulation requires significant patational resources; this is why we found a
parallel computational approach to be helpful Fos problem. Application of parallel code to
plasma generation provides us with a good oppdstioievaluate implementation and

performance details, as well as to establish tineige approach to the whole problem using the
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simplicity of 1D representation. This approach barexpanded for the 2D case and used for
simulation of the LAPPD head, although some modifans may appear necessary due to the
geometrical reasons.

The solution process is performed on a clustepé&vallel computations, that features
distributed memory access [69]. We use OpenMPatip[70] to provide parallel capabilities to
our code. In accordance to MPI-approach, the coatiomial job is explicitly distributed and

synchronized between MPI-nodes at the stage ofranoging [71].

The variables used in the model V\-/Ii-;b:;zractertsmﬁicients and physical units
Variable Charact. Unit Variable Charact. Unit
Time t = const [s] Recombination k =1/At [ms/sJ
Length Xx=L [m] lonization a=1L [1/m]
El. potential p=U, V] Diffusion D=L%/t [mz/s]
El. field E=U,/L [V/m]  Temperature T =eU¢/ 27k, K]
Number density A =¢&U,/el? []/m3] Current density J=eU,/tL [A/mz]
Velocity v=x/t [m/s] Power W = JE = g,U2/tL? [W/m3]

We provide a general description of the solutiozcpdure in this section. We assume
that number density of species is specified eififtzen initial conditions or from the previous
time step of the simulation. Based on number dgnsilues, we formulate and solve the Poisson
equation to update the electric field. The redusledtric field is calculated using the number
density of the neutral gas; the field is furtheedi$or interpolation through tables of rate
parameters for electrons and positive ions to uplteial values at the grid-nodes. The next step
evaluates species’ fluxes at the boundary anditiaé $tep calculates some additional parameters

that are required for characterization of plasma.
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When electric field, velocities, rate parametars] boundary fluxes are updated, they are
used in the formulation of the System of Linear &tpns (SLE) which is solved for new values
of species’ number density. There is a plethoralgdrithms available for the solution of the
system on a single machine. For solution carriest awcluster of parallel computers, the
problem must be decomposed. Each parallel macbo®ves its local portion of the domain.
Based on this portion, it formulates and solvescall part of the SLE. In this case, a numerical

method requires a modification.

Solution for Number Density

We use Finite Volumes method [72] as a numericiaése for continuity equations.
Additionally, we apply Scharfetter-Gummel schem@, [85, 73] to reduce “saw effect” that
appears due to instability developed due to comx@terms in the governing equations (40).
SLE that is derived from the governing equations &#i-diagonal matrix. Using advantages of
such a matrix shape, we implement Thomas methodhaikiknown to be efficient in solution of
tri-diagonal systems.

The upwind numerical scheme is applied for equati@sponsible for convective
transfer of fluids. When regular finite volume apach is used, the convective term of the
considered equation is descritized with finite @iéinces based on the averaged value of a
function at the boundary between two finite volumEss approach is not sufficient for
convective flow as it yields with instability whicdppears as a “saw” effect. The upwind scheme
(Figure 13) modifies the descritization to accdiantdirection of major change of the function

due to imposed velocity field.
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Figure 13. Upwind numerical scheme for 1D compotsi domain

Let us consider a typical differential equationfiaid convection/diffusion (49)

M — i[rd_(/’j (49)
dx dx\ dx
This equation is integrated over a finite volufmee) which is shown in Figure 13.
¢ d(pUgo td d d
J O fd—( &j (pup). - (pup), = (Fd—ij —(Fd—ij
Pe —Pp Pe — Pw
- =T -TI 50

(m )e(pe (IOu )W(DW e §Xe w 5)(W ( )

The right-hand side of the equation is defineaulgh the values of the domain nodes,
while the left-hand side is defined in terms ofemediate values which have to be
approximated through the nodes. The regular firdiference would assume a linear

interpolation between the nodes and result with

0. = (0o +0c)/2 1)
(Dw = ((DP +%)/2

To correct this result, the upwind numerical sceesuggests to not linearly interpolate
the values of function at intermediate nodes, lbutise the value of the function from that

neighbor node which is placed upstream, considehag/elocity of fluid. The general rule is as

follows
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_{qop,ue>0

U, <0
Pe (52)

_|ow.u, >0
P = ®p,U, <0

For the case shown in Figure 13 the differentialagipn would descritize as follows

et o s o Bl [l 9

28
The governing equations can be descritized usiegupwind numerical scheme. Let us

consider the continuity equation for electrons,dositive ions the approach is similar. We write

step-by-step descritization, so that each modiboat easy to track.

%_{_i[vgne_ De aar:;j=(a_77)ne

Ve
ot OXx

—kn,n, (54)

e

Write it in terms of fluxes

ane +@
ot oX

d
szene_De

on

€ 55
ax (55)
— kg ngn,

R= (a_n)ne Vg

Integrate the equation over a finite volume atrtbdei

HJ]./Z LY iT@ dx= i+JJ./ZRdx (56)

i-1/2

We apply the mean integral theorem and assuméhéatodes are equally spaced

(aarle j X+Q .y~ Q4 = ROX (57)

The fluxes are written using upwind numerical sceem
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n,..,—n,.
d e,i+l e,
Qi+:l/2 = (Ve N, )i+:|/2 - De,i+:l/2 S5 =
d
— Vd- ne,i ) Ve,i+],/2 >0 -D. ne,i+1 - ne,i
ez ne,i+1’ Vgi+:l/2 <0 e X
r]e,i B rle,i—1
Q| -2 — (Ve ne)| -12 De,i—]/z X = (58)
d
_ Vd- ne,i—l’ Ve,i—:I/Z >0 _ _ ne,i - ne,i—1
ei-12 ne’i’ Vgi_]/g <0 ei-12 S5X

Substitute fluxes back into the equation and gatmeterms in front of number density

Id d
n:,iew B n:,i S5 d r]e,i ) Ve,i+:l/2 >0 D ne,i+l - Iﬂle,i
S X+ Veiiy2 n Ve <0 — Heity2 T
i i ei+l/2 X

ei+l? (59)
d nel -11 e| ]/2>O nei_nei—l
-V, +D ———— =R
e,IJ/Z{ ne,” Ve| 2 <0 ei-12 S5X R|
D_. D D . D
ﬁne,i - oYz ne,i+l + oLz ne,i + oLy ne,i _L]/Zne,i—l
ot OX X X oX
d d
Vei+ ’Vei+ >O O V|+ >O
+ ne,i ’01/2 d ’ 1/2 0 + ne,i+1 d :(11/2 0 (60)
’ Ve,i+]/2 < Ve,i+]/2' Ve,i+]/2 <
d d d
Vei vz Veiyz >0 0, Vg 4, >0
- rle,i—l 6’6]/2 d e 0 - r]e,i d Y ZZ é‘x Old + R&X
' Ve,i—]/2 < Ve,i—]/2’ Ve,i—],/z < 0 ét
Finally, the numerical scheme may be written itmarter form (61)
Ane,i—l +Ci Ne; + Blne,i+l = Fi
A— Del 1/2 gl 1/2’ gi 1/2>O
OX 0, V¢, 42<0
_ De,i+]/2 + 0 V ei+l/2 >0
| X ng/z, V:,i+],/2 <0 (61)

C Q_l_{vgwl/b V:i+1/2 > O}_{ O V e, ]/2 >0 }-l— De,i+1/2 + De,i—l/z
B

= 0, V¢ 2 <0 Ve,i—1/2’ e,i—1/2 <0 OX X

5 old
F= + RoX
e TR
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The same approach is applied to positive ions,galediffusion coefficients are zero, because

there is no diffusion for ions in the model.

Based on the method proposed in [74] we develamaenical scheme that could be
applied for the efficient solution of the plasmadabusing a cluster for parallel computations.
The 1D governing equations describing the modetleseritized based on the three nodes
pattern. This pattern results in a tri-diagonalnmawhich is relatively easy to solve on a single
machine; the most advantageous method in thisisdd®wmas method. When we transfer the
model to the cluster for parallel computationsgbhkition method is not directly applicable.
Thus, the parallel model requires a special appreath additional derivations in order to
transform the matrix and apply one of the numeragbrithms designed for the solution of
system of linear equations (SLE).

There are few numerical methods that are ofted tmeevaluation of SLEs. There is one
approach that allows implementation of Thomas neftbothe parallel problems with a
modified system matrix. We would like to considecls a modification and develop the
necessary theoretical understanding. The followi@igvations are self-consistent; they can be
applied to any tri-diagonal system, as long assirstem is not singular and is positive defined.
Thus, the notation used in the derivation is spetif this part of the work only; it has no
relation to plasma parameters. The initial matisded between 3 processors (3 blocks) has the

following form

Here Vv, are vectors that represent rows of the system xnatriare unknowns that need

to be found, coefficient®),B,,C,,F, are the coefficients of the descritized goverreggation

calculated for the node
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Axi—l_l_(:l)g +B|)§+1=Fi (62)

Figure 14 shows a matrix corresponding to thisesystThe matrix is split between parallel

processes.

v,=(C, B, 0 0 0 0 0 0 0 0 0 O O 0 0)(x) (Ff
v=|A C B 0 0 0 0 0 O 0O O O O O O||x]||F
v,=|0 A C, B, 0O 0O 0O OO O 0 O O 0 O0||x]|]|F
v,=/0 0 A C, B, 0O 0 0O O 0 0 O O O||x]|]|F
v,=[0 0 0 A C, B, O OO O 0 0 O 0 O||x]||F
w=/0 0 0 0 AC B 0 0 O 0 O O 0 Of|x]|]|F
v,=|0 0 0 0 0 A C, B O O O O O 0 O||x]||F
v,=|0 0 0 0 0 0AC B O 0 0 O 0 O0||lxl|=F
v,=/0 0 0 0 0 0 0 AC B O O 0 0 O0||x]|]|F
vw,=/0 0 0 0 0 0 0 0 AC B O 0 0 O||x]|]|F
V=0 0 0 0 0 0 0 0 O A, Co B, O 0 O ||x| |Fy
v,=|0 0 0 0 0 0 0 0 0O O A, C, B, 0 0/||x,]||F,
v,=|0 0 0 0 0 0 0 0 0 O O A, C, B, O/|x,]| |Fs,
Va=|0 0 0 0 0 0 0 0 0 O 0 O A, C, B.||Xs| |Fas
v,={0 0 0 0 0 0 0 00O 0 0 0 0 A, C,\x,) \Fu

Figure 14. System of linear equations divided liticks for calculation on parallel processors
Following the algorithm proposed by [74] we deterenthe major parameters required

during the derivation — size of a blagknumber of processorg, and index of the first row of

each block in the system matijix
n= 5,np =3
jy =kn, k=0.n, -1 jo=0 jp=5 j, =10

We switch from the global coordinate system to llaweordinates of each block (index

I =0.n-1 would represent a row within a block), denoting tiock with index = 0..n, - 1.

The parameterj, is determined af = kn and determines the relation between local andaglob
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coordinate systems in the system matrix. The imsdae start from 0 and finish with—1 to
replicate the index notation of C-language. Thet rs®ctions describe the algorithm taking a
blockk as an example.

The general idea of the modification is to remdependence between neighbor blocks.
Since the blocks become independent, they canltedson a local processor in parallel with the
same solution done on other processors for othmkbl of the system matrix. In tridiagonal

matrix the dependence is implemented in two fingt o last rows of each block. For example,

the blockskand k+1share variables,,X,.,; the variablex, enters the rows - 2,n-10f the
block kand row O of the blockk+1. The same way, the variabbe , enters rowm—1of the

blockkand rows),1of the blockk+1. The modification algorithm passes through bloaksl
assembles two “boundary equations” for each blogskaalinear combination of the rows
constituting the block. The boundary equations freech block are assembled into a system of

linear equations, which has smaller size equaptq, because there ane blocks with two

boundary equations each. This system of boundargtems (SBE) has the tridiagonal form and
can be solved with Thomas method. Since the SBEahamall size it can be solved very
efficiently. For instance, a SLE of 10000x10000msd&its may be split between 100 processors,
then each bock would have 100x10000 elements arkel &&Bild be 200x200 elements. Next,
using the fact that the matrix is tridiagonal, vea ceduce the size of the blocks to 100x100, as
the rest of the block is filled with zeroes. Thiaywthe initial 100000x100000 system transforms

into 100 smaller systems of 100x100 elements aedSBE of 200x200 elements.
The solution of SBE represents the exact valuethefvariable, , X,,,for each block.

When these values are known, each block is modifid¢td transformation of two first rows and
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two last rows, with onlyn—2variables requiring the solution. Thus insteadal¥isg 100x100
SLE from the previous example, we need to solveO88XLE. The solution of the local SLEs is
done in parallel mode, utilizing the advantagewoied by parallel approach.

Now, we would like to explain the modification rmet in more detail. Let’'s consider the
blockkas the current block that is sent for modificativie define an upper boundary as the
interface between blockandk —1 and a lower boundary as the interface betweerkbl&and

k+1. We initialize the upper and lower boundary vesifr)and right hand side elemem§+).
In the global coordinates these entities are writte follows
vl(kjk+1) =V; 41 - this is the second row at each block Fnﬁjkﬂ) =F (63)

v,(kj“”_z) =V .n» - this is the ¥ row from the end of the block F"Ej“”_z) =Fj n2

The same entities in the local coordinates

vi=v,=(A, C, B, 000 0000O0O0OT OO0 FY=F (64)

v -y . =(0 0 A, C., B,, 00 00O0O0O0O0OO0 Frd=r,
For the lower boundary, iterate the summation efdlements, gathering a linear combination of

the rows 2 to1-1 within the block. The following are the elememtshe global coordinates

Vi v =7 - vl F=F -aF™ (65)

a.i =
Vi ,i-1

In local coordinates it can be written like

_||(<2) =V, —a,V; (66)

v =-(-a,A A-3C, C,-aB B, 0000000000 O
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The coefficienta, = a, is chosen such as coordinaégi_l(in this case it i\, — a,C,;) would
turn zero. The general sequence for the lower baynd

v =(-a,A A-3C, C,-aB B, 0000000000 O

\7|f(3)=(a2a3,6& 0 A;-a(C,-a,B) C;-a;B, B, 00 0000000 0)

v =(-aa,a,A 0 0 A-a,(C;—asB,) C,-a,B;, B, 00 0000 0 0 0

a2=i agzL a4=L (67)
Cl C2 - azB]_ C3 - a3BZ
R =F, -a,F, F) = Fy - agF, + aga,Fy

I:||£4) =F, —a,F; + a4a3F; —aaa,F,;

Summarizing the lower boundary condition, we caitenr

a = 0, a :#’ i=2.n-1
1. Calculate: Ciy—aBi,
F () _ 'S &S = .
Ik —Z (-1) Haj :
2. Calculate: = j=i+l

n-1
3. Calculate: Vi = Vi giocal = (= 1)”‘2(1_[ a in - see thenoteon the sign at the end
=2

Vi (ksn-1 = Vikn1 = Croa — 8,48
vlk (k+1)n = vlk,n = Bn—l
The element, .., is omitted for the last block. For the upper baanycequations, iterate the

summation of the elements, gathering a linear coatluin of the rows n-3 down to 0 within the

block. Elements in global coordinates are
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b= 9= -bul? R -F-bELY (69)

| |
Vuk,i+l
It can be written in local coordinates as follows
n-3
I:u(k ) = I:n—3 - bn—SFn—Z

VSE_g) =Vy3— bn—3\715|r<1_2) (69)

v"®=(0 A Cr3-b3Ar, Br3-bsCr, -bysB,, 0 0 000000 0 0

The coefficiently =Db,_3is chosen such as coordinaégm(in this case it i8, 3 — b, 3C,,»)

turns zero.
The general sequence for upper boundary is

g

0oA,C,, B, 0OOO0OOOOOO O 0

V=0 As Cis-bsA, Bus—b,sCop —bysB,, 000000000 O

(An—4 Cn—4_bn—4An—3 Bn—4_bn—4(Cn—3_bn—3An—2) 0 bn—4bn—3Bn—2 0000O0O )

<
c
=

Il

\_/lgE_S) = AW—S"'(Cn—S - bn—SAh—4 Bn—5 - bn—S(Cn—4 - bn—4Ah—3) 0 0 - bn—5bn—4bn—3 Bn—2 000 )

I:u(l?_?’) = I:n—3 - bn—3 I:n—2 Fu(l?_4) = Fn—4 - bn—4 Fn—3 + bn—4bn—3 I:n—2 (70)
I:u(l?_S) = I:n—5 - bn—5 I:n—4 + bn—5bn—4 Fn—3 - bn—5bn—4bn—3 I:n—2

_ B, _ B,
bn—3 =13 bn—4 = N4 bn—S = 05
Cnfz Cn—3 - bnfs An—z Cn74 - bn—4 Ah—3

We can summarize the upper boundary condition lasnfe

1. Calculate: b, ,=0Db - B i=n-3.0

Ci+l - b|+lA+2 ’
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n-2 i1
rp - {(—1)' [Hij
2. Calculate: =0 1=0

3. Calculate:  Vukkn-1 = Vuk,-tiocal = Ao
vuk,kn = vuk,O = C:0 - boA1

n—

w

Il
o

. o -2
Vuk (k+)n-1 = Vukn1 = (_ 1)n [
i

b jBn_z- see the noten sign at the end

The elementy, ., is omitted for the first block.

@ &) upper k=0
V V V
V VYV
VV V
@ ® D lower k =0
® @ @ upper k =1
V V V
A= V VYV
VV V
&) @D D lower k=1
® D @ |upper k =
V V V
V VYV
VV V
@ ® )lower k=2

Figure 15. System of linear equations — dependamndivies
We shouldhoteabout the propesign Out of n rows in the block, we skip #0 and talke #
as the initial row for the lower interface and skip-1 and take as the initial #n-2 for the upper
interface, the rest we iterate. The rest is n-Zagquas; therefore we have to make n-2 iterations

for each calculation of interface in the block. Bdd number of iterations the sign is negative; it
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is positive for even number of iteration. Thus, tluenber n-2 determines the sign of the last
element in the iteration sequence for both integac

The initial SLE is modified using the described ggeh so that the shared variables of
each block become the unknowns of the SBE. Theasabkas are schematically shown in Figure
15. The minimal size of the block is 5 rows, thenimial size of the matrix solved with Thomas
method is 3 rows. Thus, the minimal matrix that barmodified according to the described
algorithm and can generate a SBE solvable with Tdsomethod consists of 15 rows and split
between 3 processors.

If we remove the regular equations and condense#igx shown in Figure 15, leaving
only unknowns that come into the SBE, we wouldagit-diagonal system. The minimal size of
the block is determined by the fact that we skip egquation from the top of the block and one
equation from the bottom of the block, taking th&etjuation (from the top/bottom) as the initial
approximation for each interface. We rewrite thadensed system using the actual terms that

were defined in the modification algorithm

\_/uO,Z* \_/u0,3* XO Fu((()))
Vior  Vioz | Vios: Xpa | | FY
A* _ \_/ul,l* \111,2* \_iul,S* B % Xn — F(u:f )1) (7 1)
VI 11* VI 1,2 VI 1,3* X2n—1 I:I 1
\_/u 21 \_/u 2,2* \_/u 2,3* X2n Fu(g )
\_/I 21* \_/I 2,2* X3n—l I:I (2n_1)

The terms are calculated as follows (for each @alar block k)

Right side: Flﬁnl)—i{(—l)nl{ﬁajﬁ} FL0 fz{(—l)i(f_l ijFJ (72)

i=1 j=i+l

n-1
: - -2 = -
Lower: Vi = (1" [| E? JAl Vi »» = Cna—a,4B s Vs =B,, (73)
=2
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n-3
Upper: Vikas = Ao Ve = Co — Do Ay Vikar = (_1)“"2( » bj JBn—Z 7

Coefficients: a, =0, a :#, I=2.n-1 (75)
Ci—l_ai—lBl—Z
bys =0 b =— 2 i=n-3.0
Ci+1 - bi+1A+2

Solution of this systems yields with the first aheé lastX at each block. Thesg's are

sent back to the blocks where they belong, thedotsallow conversion of each local SLE into
an independent SLE and solution of the modifiedesyswithin the block.

Additionally, we should mention, the representedrapch may be used in a recursive
form. A system of equations with multi-million vahles cannot be efficiently solved using only
the described algorithm. For such large systemotfieal topology of the parallel cluster needs
to be changed into the tree-type arrangement. ditialisystem of equations is split between
groups of parallel processors. Each group is caeddo one processor that works as a master
unit for the group. This unit receives boundaryagns from the connected group and
assembles them into the SBE. All master units @aodmnsidered as a system of the second level,
each SBE is considered in the same way, as thé& bfabe initial SLE for the system of the first
level. Thus, SBEs, being the analog of the blookay be treated with the same modification
algorithm and yield with boundary equations of skeeond level. The processors of the second
level are also arranged into groups, each groapnsected to a processor of the third level. The
boundary conditions of the second level are setttddhird level processor, where the SBEs of
the third level are assembled. These SBEs have sraaher size in comparison to the second

level SBEs and, especially, in comparison to thtgalrSLE. The process is repeated to as many
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levels as necessary to significantly reduce theegysize. The structure resembles a tree; where
each level represents branches and the top-mostgsor represents a root. Starting from the
root, the SBE of the highest level is solved, thieitson is sent to SBEs of the next lower level.
The corresponding SBEs are modified to indepenfient and solved, sending their results to
the lower level. The process repeats until it readhe lowest level where blocks of initial SLE
are modified and solved independently. Each leNelva a solution of the system in parallel
regime. This recursion approach may be used fosahgion of large systems of linear equations

featuring tri-diagonal matrices.

Parallel Approach

In the parallel approach, all MPI-nodes are esaliynthe same in abilities and function;
therefore, it is up to our implementation to digtirsh the following types of MPI-nodes: Master,
Solver, and Printer; each type has a name accotdiitg assigned function. The computational
domain, containing plasma data, is divided intdieas of equal size which we refer to as sub-
domains. The sub-domains are distributed betweéreSo Each sub-domain includes a certain
number of grid-nodes that contain local data, aé agea virtual grid-node on each end of the
sub-domain. The virtual grid-nodes resemble tret &r last grid-node of the neighbor sub-
domain, when the nodes are located at an intefatveeen two sub-domains. In the case of the
boundary, they provide virtual fluxes, handling ijjeenetration of species into the electrodes.

At the beginning of the calculations, Master pssceeads initial data from input data
files. It prepares the necessary data structurésalculates some additional parameters —
derivatives of the input data. This initial datasént to all the Solvers and to the Printer. Ireord
to estimate rate-parameters for the plasma, tlotrieléield has to be calculated. Thus, the

second stage of the calculation is solving thedmisquation, estimation of reduced electric
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field and calculation of rate coefficients. Sinbe whole process can be done in parallel form

using only Solver nodes, Master and Printer aiagd|

A 2. Calculation of £(x} and other
1. Beginning of calculation
paramaters
Master{d) —» 1.1 Initialize Mastar (0} idling
data
Printer{l} - Printer{l) Idling
Solver(2) ] Solver{2)
2.1
Solver(3) - Passing Solver({3) 412:
correcki Passing
=t onsto £o
N Efx)
Solver {ntasks-1) |e Solver (ntasks-1)
Master settlesy, n, and n. for "old” time layver of Sobver ntasks-1h calouiates £, based on £(x)
solvers Cormactions

3. Caleulation and solution of boundary
system and local systems of equations

Printar {1} 1dling
34
ol 3.2.5end _ .
solver(2) | (R Send - Solver{2)
initarface
aquations
Solver{3) system " Solver{3)
to master :
solution
» Master (0} »
Solver (ntasks-1) s Solver{ntasks-1)
3.3, Master
3.1 Each solver assembles inteiface 3.5, Solvers modify
forms lower aquationsints 3 thie local system with
bovindary and upper Ioumdary system recelivied soluticn
boundary equation and solves the and solves it
System.

Figure 16. Diagram of the parallel algorithm

Solution for the electric field requires collabboa of all the Solvers; this is why
complete parallelization is not possible for thelagd algorithm. Calculation of rate parameters,
on the other hand, is based on the local valubefeduced electric field at each particular node.

This part of the calculation can be efficiently gidglized. The last step of the solution cycle is
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the calculation of the number density of speciesugh solving the system of continuity
equations. Solvers populate local parts of SLEagde refer to a diagram shown in Figure 15)
that have cross-dependence. The dependence isiprieseause the diffusion terms of (33)
require information from neighbor sub-domains.

Thus, in Figure 16, the SLE is distributed betwtdenSolvers, but the subsystems cannot
be solved locally because of the dependence. Weeudi “Memory efficient parallel tridiagonal
solver” developed by Austin et al. [74] to remolie dependence between local parts of SLE.
This algorithm is executed at Solvers building twear Boundary Equations at each Solver.
The Boundary Equations encapsulate specifics ofotted portions of the SLE. They are sent to
Master, where all such equations are assembledhat8ystem of Boundary Equations (SBE).
SBE features an interesting property: its matrialso tri-diagonal. Hence, the Thomas algorithm
is applicable for its solution. The solution of SBfpresents updated number densities at the first
and the last grid-nodes of each sub-domain. Thatepds/alues are sent to the corresponding
Solvers (Figure 16), where the subsystems beconuietband independent of their neighbors;
hence, they can be solved in a regular way.

To summarize the parallel approach, the functiodMaster is to read input parameters at
the beginning of the simulation, prepare initialadand distribute them through Solvers and
Printer. The rest of the time Master idles, waitiogSBE from Solvers. When SBE is received
(Figure 17), the solution of the system is evaldated sent to Solvers, providing a good
synchronization mechanism. At the final stage, MiaBhalizes all operations and provides
performance data.

The primary function of Printer (Figure 17) isgmvide input/output capabilities when

there is a request for result writing/plottingidkes most of the time during the simulation. At
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specific moments of simulation time, Solvers seglilts of calculations to Printer and continue
on their work. Printer processes the result, catesl additional data, and writes output to data-

files without holding Solvers. This type of arranggnt accelerates the performance of the code.

X

/’- I | | |

[ Computational Domain ]

ST sl s||s]|s

V'V"F:""F
| SLE |

o =+;+§+§+§+

T

M T
| Modified SLE |
P V. v .v.v.v
A [ Updated Domain
v . v v vy
e A

Y(}n e time-step

Figure 17. General representation of parallel algbm for 1D plasma simulation. Symbols M,
S, P denote Master, Solver, and Printer, corresjogig

Solution for Electric Field

When SLE is solved, the updated number densitgesl to renew the electric field. The
Poisson equation is integrated numerically usingdrantage of parallel computing to the full
extent. The integration is performed simultaneoaslgll sub-domains, where local integrals of
(37) are evaluated. In the process of local integmathe local electric field receives values that
effectively resemble the shape of the electridftalit lack the proper leveling (Figure 18.(a)).

In order to set the correct level, the value efldst (right) grid-node of each sub-domain
is sent to the last Solver in the group. The laat@grals are also sent to the last Solver, where

the integration constai, is estimated from the boundary condition (39). Tast Solver
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estimates the proper level and sends it to othime8oto adjust the local electric field (Figure

18.(b)).

Figure 18. Parallel integration of Poisson equatida) the electric field before the adjustment;
(b) the electric field after the adjustment

In our parallel implementation, the local integyatdata from all Solvers are collected at
one (the last) Solver, which performs the necessalgulations and distributes the result through
the rest of Solvers. As an alternative, we triegdss the integration data in the “pipeline”
arrangement. This approach was found to be legsesf, as the communication overhead was
considerably higher.

The integration of electric field could be accorsipéd with different numerical methods,
starting with rectangles’ rule and finishing withmson method. During numerical evaluation
we found that rectangular rule does not providendeessary accuracy to the solution, which
significantly distorts the resultant data. Surprigy, Simpson method, providing higher
accuracy, also yields inaccurate results. The mwipal rule was found the most efficient
algorithm for integration of electric field. Whileis simple enough to be rapidly resolved on the

provided hardware, it provides sufficient accuraog very good symmetrical result.
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Solution for lons’ Temperature

The calculation of ions temperature is done attBriby integrating (43) over the domain
and starting from the center of the domain, wid&y@x = 0. The first integration yields the first
derivative of temperature as a functiorxofWe use the temperature derivative at the walihgat
pointT,,in the inset of Figure 19) to formulate thermakfin accordance with Fourier law. The
flux is transferred through the electrode and azedyin the form of Newton’s cooling law at the

electrode/coolant interface (poify, in the inset of Figure 19) with heat convectionftioent

h, =68123x10* W/cm? -K.
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Figure 19. Electrodes’ temperature estimated fremperature of ions calculated for a range of
voltages 380V — 700 V

Temperature of the coolant is maintained at connd¢ael 300 K. From Newton’s law of

cooling we derive the temperature of the electroo@ant interfacéTWC). Next, we use Fourier
law to estimate temperature of the electrode/plaﬂmﬁace(TW), with thermal conductivity of

electrodek,,, = 237W/cm:-K. The second integration starts from the wall prapagates
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towards the center of the domain, yielding with pemature profile, and accounting for heat

exchange between plasma and electrodes, as wa#@sodes and coolant.

Estimation of Parallel Efficiency

We would like to estimate whether parallel implenagion improves the efficiency of
computations. In order to investigate an impadhefparallel paradigm, we attempt profiling of
the code performance. The calculation operatidgressMPIl-communication, and input/output
operations are subject to time logging. At the ehthe simulation, all timing data are collected

at Master, where they are averaged and furtheepsaa.
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Figure 20. Performance of parallel computations didferent number of grid-nodes in
comparison to a single machine. The horizontal vaith numbers indicate computation time of
a single machine. The vertical lines connect sitighe values with the optimal point of the
corresponding parallel computation.
The data analysis is carried out in two modesstFwe compare overall performance of
the parallel version to that of the single versiBacond, we estimate a total-share taken by each

type of parallel process (calculation, communiaatio-operations) relative to total wall time.
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The single machine used for performance meterisghmsame characteristics as the machines
at a parallel MPI-cluster. The parameters of calitoh are set to the same values for both,
parallel and single cases with the same algoritheesl, except for single/parallel differences.
Thomas algorithm is quite efficient in solutiontatdiagonal systems; hence, we assume the
single and the parallel code to be sufficientlyimted. Figure 20 represents a comparison of
parallel and single modes evaluated for differenbfem size, which results in three cases,
providing a general trend of performance changerf®mance” curve in Figure 20).

Each parallel case results in a performance divatehas a (minimum) point where the
most favorable conditions are met for the giver sizthe problem. To the left of the optimal
point, the performance curve bends up with a stgagient due to computational overhead. To
the right of the optimal point, the curve bendsdup to communication overhead. The typical
advantage of the parallel evaluation over the sieghluation is measured in terms of “speed-
up” and shown in Table IV.

Table 4
Comparison of parallel and single performance

Problem size  MPI Processds,  Speed-up%) Parallel FractionR)

100 5 2.149254 66.84 %

1000 25 5.196733 84.122 %
10.000 100 11.20303 91.994 %
100.000 400 22.81252 95.856 %

The speed-up data can be used to measure an\effegs of parallel implementation in
terms of parallel fractiorR) of the code. The maximum speed-up achievabledrptocess of
parallel computations is equal to number of usedgssors [75]. Amdahl law (76) provides a

relation between speed-tﬁﬁp), number of parallel processé’dp), and the parallel fraction of

the code(P).
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S, = 1

" [P/Np +(1-P))

The estimations of parallel fraction (th€ golumn of Table 1V) yield with approximate
range of 66% to 96%. According to Karniadakis amd¥K[76], the parallel fraction is a
function of problem size, rather than a constamloer. Therefore, we use the lowest value
(67%) as a good estimation of a parallel portioowfcode. There is a terminal value for the
parallel fraction, as the speed-up reaches theatatn point when number of processors
becomes sufficiently large. At this condition, tin@merical code cannot run faster, as the gains
from parallel execution of the code are well bathby the losses from parallel communication
[77]. We could reach such points for constant pFobsize, but not for scaling problem size, as

400 processors that we had available were not énfwgletailed investigation of the speedup

saturation.

%

Figure 21. Averaged calculation time (solid) andrsounication time (dashed) of the simulation.
The circle indicates the point of optimal perforrnanThe vertical axis shows
calculation/communnication time relative to theatotall time of the simulation

Another measure of the effectiveness of the pelraliplementation is a share of the

computation time and communication time. Figureg&dresents such a share for different
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number of grid-nodes. Interestingly, the optimater of MPI-processes for the given problem
size appears to be such that the computationaltakes about 30% of the total time, with the
rest used for communication events. This fact ared by almost linear scaling of calculation
and communication time for large problem size. ®hly exception from this trend is the
problem size 100. In this case, the number of gades and number of involved MPI nodes are
too small which makes MPI-communication to scalavilg non-linear with number of MPI-

processes.

Results and Discussion

The results presented in this section, describtmospheric Pressure Plasma behavior
in the generation chamber. The discussed 1D mdgaasma provides multiple variables
(generally functions af) for analysis, such as number density, rate paemsesnergy content,
temperature of species etc. These data are pregsaiiagut parameters for 2D model of the
plasma head. Since 2D model mainly deals with péaadvection, mixing, and delivering of
species and chemicals to the substrate, the timefd this model is determined by flow of the
neutral gas. The 1D model has a different timeesaahich is based on oscillations of the RF
electric field and is much shorter than the timalsof 2D model. Therefore, the practically
useful data are the variables collected duringammeplete oscillation of RF and averaged over
the oscillation period; these data we refer taras{averaged. Another type of averaging is
typically required for stability analysis; the tira@eraged data, as a function of locatipare

additionally averaged over the gap size. Thesewlateefer to as time-space-averaged data.
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Estimation of Voltage Range

The applicable voltage range for this model i€datned by the minimum and the
maximum voltage values. We accept the maximum gelialue calculated from gas breakdown
estimation (7). Young and Wu [45] discussed a gy of modeling thermal instability of a
glow discharge using fluidic type of a model. Thatimstability occurs when temperature of
plasma reaches high values, which is coincidert waltage increase. Thus, there is critical
voltage that gives rise to instability. This vokeagnay set the lower limit for the upper range of
applicability. We performed an estimation of theattode temperature (Figure 22) for a range of
voltages that we use in our simulation; the maximemperature rise at the electrode is found to
be 0.125 K. At such low temperature change, wedationnecessary to further investigate
thermal instability.  The lower limit of the voltagange is determined by effectiveness of the
generation process. Let us consider a general ébmmass conservation equation (77), where the
drift-diffusion term is represented in terms ol@fQ. The drift velocity of electrons in the first

term on the right-hand side of (77) is substitutgith its expanded form (34).

on,  4Q
C+—==on El - k*n.n 77
ot OX al e|/ue | ie "le''p ( )

We can ignore the convective-diffusive term, gast redistributes the existing species
over the domain, and focus on the right hand sid&® with an intention to estimate the
minimal voltage required for generation of new specWe formulate the criterion (78) which
corresponds to effective generation of plasma

a|uE|-kg*n, >0 (78)

This is a rough estimation, since it does not aotdor dynamic effects, but it provides

approximate value of the lower voltage limit.

69



Both ionization and species mobility are functiefishe electric field (Appendix A),

whereas the recombination coefficient and numbasitheof positive ions are constants

provided at initial condition. We specify typicailmes(np =10"cm>3,k,_ =10 cms/s) for

these constants and denote the first term of (F&)fanction of electric fieldi(E) = o|u,E|. We

move the second term of (78) to the right-hand artk substitute the constants into (79).
f(E)>10" Hz (79)
The function f(E) is numerically evaluated through the range of &slprovided in

Table in the Appendix A. Figure 22 represents baitayf the functionf(E)over the long range

of voltages, whereas the inset shows a magnifietiopoof a region, where the criterion (79)
takes place.

It is worth mentioning that estimation of the nmal voltage, according to the shown
method, is performed in terms of variables averamed the oscillation period. Thus, the
minimal voltage found from (79) is an RMS-valuegiiie 22 accounts for this fact and
represents the actual value of voltage in plade®RMS. The minimal voltage predicted by

criterion (79) isV,,, =3787V

Time-Averaged Results

We perform simulation of plasma generation inrageaof voltages 300-700 V. At each
voltage value we investigate the possibility of l@sma reaching the steady state. Figure 23
shows a typical result of such investigation. Tigpa&ce-averaged number density is plotted
against RF-cycles showing the trend for stabi@9Qq V) or instability (350 V). The simulation
calculated at 380 V shows a slight decrease orptbtsHowever, this voltage is validated at

2000 RF cycles, where it exhibits steady behavibthe same time, voltages equal to or lower
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than 370 V lead to permanent decrease in numbesitgeregardless the length of the

simulation. This investigation confirms the mininvaltage value of approximately 378 V
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Figure 22. Minimal voltage search. The main plobwk general behavior of a characteristic
function () of the electric field plotted versus the appliettage. The inset shows a magnified

portion of the curve, where the minimal voltagéisnd
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Figure 23. Stability of plasma discharge

71



An interesting observation is that the number dgrms electrons in Figure 23
consistently starts from a lower initial value. Waieve that this effect owes its existence to
non-physical initial condition. The species arefammly distributed over the domain. When the
electric field is suddenly applied, electrons, lgefiaster particles, escape into the nearest
electrodes. This loss immediately offsets theahitumber of electrons. lons are slow, and they
do not penetrate the electrode; this is why theiial quantity does not change so drastically.

Figure 24 provides time-space-averaged numbeitgtarielectrons and positive ions in
the range of voltages 378-700 V. Depending on pleeific process responsible for activation of
a chemical precursor, a different number of elexrand ions is required in the mixing chamber.
The data plotted in Figure 24 helps to estimatenthemal voltage that supplies sufficient
amount of the species at each particular caseaVéeaging is carried out after 3000 RF cycles
for each involved voltage.

When the averaged number density of plasma spisciesnd, it is good to know how
the species are distributed between the electrdtienber density of the species (Figure 25)
expectedly provides high values at the center @ditimain and lower values at the edges.
Electrons have zero number density at the waltesthere is absolute absorption. The quantity
of positive ions exceeds that of electrons at el@rgtion on the domain; this surplus constitutes
slightly positive total charge of plasma.

Since the total charge of the plasma is positive electric field (Figure 26) takes a
specific shape responding to the growth of distortin accordance with Poisson equation. The
absolute values of electric field are symmetridwéspect to zero level which perfectly

correlates with the symmetry of the sinusoidal viarra of the applied voltage.
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Reduced Electric Field (Td)
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Figure 26. Distribution of time-averaged reducedattic field over the gap
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Figure 27. Time-averaged ionization curve
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lonization curve (Figure 27) exhibits a good matzlelectric field. The relation between
ionization coefficienfz) and reduced electric fiekl/N) is not linear (Figure 12.(b)), which

naturally transfers into the curvy shape of ionaagt the central part of the domain, where
electric field is small and almost constant. Thghlest ionization values are observed at the
edges of the domain, which is a consequence ofdiggtric field in this region. A rather
peculiar phenomenon for ionization curve occurgwatvoltages (380 V), when the electric field
at the central part of the domain is not high etotagprovide recognizable ionization, but

ionization at the edges is sufficient to sustaaspia.
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Figure 28. Time-averaged generation term
The generation term (Figure 28) shows high vahidke center, where large number
density of electrons is multiplied by relatively alirionization coefficient resulting in moderate
number of generated species, as well as at thes€ttgepeaks are especially pronounced for

lower voltages, like 380 V and 500 V in Figure 28here not high number density is
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complimented by large ionization coefficient yelglia good number of new species. The

generation at the edges is the major electron gugipgbw voltages.
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Figure 29. Time-averaged recombination term
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Figure 30. Time-averaged power dissipation
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Recombination term (Figure 29) expectedly exhihitarge peak at the center of the
domain, where number densities of both specieatafee maximum. This is not surprising
considering the fact that recombination term cdaa$ multiplication of the two. Behavior of

recombination term generally does not change widration of applied voltage.
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Figure 31. Distribution of time-averaged currenindéy in the gap
Power dissipation (Figure 30) depends mostly orcthieent density (Figure 31) and the

electric field (Figure 26). The shape of electr@d and current density shown in this section are
not good indicators of the expected shape of theepdlissipation. The reason is that these
values are already time-averaged, whereas the pdisspation is calculated from instant values
of electric field and current density and then tiaveraged. The averaged form of power
dissipation is represented by the right-hand sfdd®). This case clearly illustrates that average

value of an integral is not equal to the integfad\eerage values.
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The values of current density (Figure 31) are meitged through time-averaging of

jt)= e(npv;,i A ) In this expression, the second term is domiraetause velocity of

electrons is few orders of magnitude larger tha ¢ ions, while their number density is in a
comparable range. Within the first half of the Rfele, electrons accelerate towards one
electrode; within the second half of the cycleythecelerate towards the opposite electrode. In
both cases, the highest time-averaged velocitgashed in the vicinity of the electrodes and the
lowest time-averaged velocity is at the center. Weocity is multiplied by number density,
which exhibits the opposite behavior, the highesult (peaks in Figure 31) is found around %

and %4 of the domain.
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Figure 32. Distribution of temperature of electranghe gap
Temperature of electrons (Figure 32) is computechfmean energy taken from
BOLSIG+. The central hill is formed due to elecsqrassing this region twice per RF-cycle,

losing their energy in the form of heat dissipati®he high temperature at the edges is due to
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high electric field at this location. Such resaleixplained by mean energy growth (Figure
12.(d)) with increase of electric field. Therefonggh electrons’ temperature is expected in the

vicinity of the electrodes.
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Figure 33. Distribution of ions temperature in thap
Temperature of ions (Figure 33) is calculatedhatlast RF-cycle of the simulation as a
solution of thermal diffusion equation (43). One cetice that the temperature at the center of
the domain may reach high values, but the actuat fhex over electrodes remains small. This is
why temperature of the electrodes (Figure 22) da¢&xperience a significant increase. Overall
temperature of APP is determined by ions with dbatron of electrons’ temperature in the form

of ohmic heating (43).

Transient Results
We found surface plots (Figure 34) helpful for arslanding of plasma transient

behavior, as they immediately highlight defects andmalies in plasma. The plots represent
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evolution of plasma parameters in time, with theigal axis corresponding to the gap betw
the electrodes and the horizontal axis correspgnidirthe simulatedme [43] Data collected ii
these plots are instantanesatherthan averaged; therefore, specific details of emthilation
are well pronounced.
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A good example of using surface plots is the invatitg of the generation proce

When the pattern of generatidrigure 4) is compared to that of number density, one c
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realize that the peak of generation does not @igelith the peak of number density. We
consider dimensionless time of 14.3 in Figure 3#e §eneration term has a peak right after this
time mark. We take a cross-section of the generatia number density when generation is at
maximum (right after time mark of 14.3) and plogiih next to each other (Figure 35). According
to Figure 34, the highest number density of elextiis aroundx = 0.6 and the highest

generation happens arouxe 0.2.
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Figure 35. Generation term aligned with the speciesber density. This is a cross-section
taken from surface plots (Figure 34) at the pealgaferation, right after=14.3

Atx= 0.2 the difference between ions’ and electrons’ nunaagsity is high leading to
significant distortion of the electric field. In@rdance with Poisson law, the distortion transfers
to the high electric field and subsequently tohifgh velocity of the species. Thus, flux of
electrons atx= 0.2is larger than that at= 0.6, where electrons have the peak population.

Another factor influencing the maximum generatisthie high ionization coefficient as a
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consequence of the high electric fielkat 0.2. The combination of these factors results in non-

correlation of the peaks of the generation termspeties’ number density.

Engineering Insights

One of the parameters that favor experimentalstgation is the sheath thickness. There
are different methods proposed for theoreticaheatiion of the sheath. For example, the
Lieberman [78] and Godyak/Sternberg [79] modelswaet correlated to experimental
measurements [80], in the case of low pressuranaasFor atmospheric pressure plasmas, the
Young and Wu [45] model suggests using 90% of maxinelectric field value as a criterion for
estimation of the sheath position. We found thest ¢hiterion provides not pleasing results with

rapid changes in the sheath curve due to distudsagenerated by moving species.
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Figure 36. Sheath thickness within oscillation wpésma is at the steady mode
Chirokov [43] proposes to set the position of shes the point where number density of

electrons is smaller than space-averaged instanianmeumber density. Figure 35 represents
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results obtained according to Chirokov’s approd@bk.found this criterion quite reasonable. It
provides smooth results and splits the domaintimee parts, two of which (shaded in
Figure 36) contain very small amount of electromih wufficiently large number of positive

ions, and one (central white in Figure 36) contanagor portion of electrons and ions.
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Figure 37. Phase shift of current at the electrodaative to the applied voltage (600 V) in
plasma at the steady mode

Another parameter that can be acquired experifigigahe phase shift (Figure 37) of
the current relative to the applied voltage. Wewlalte the current density value at the electrodes
using the boundary conditions. The electrode’senirdensity, being multiplied by the area of
the electrode, provides the current that coulddmepared to experimental results.

The phase shift observed in simulated plasmausldq ¢ ~5/4 7 at 600 V. This value
corresponds to the ratio ReactancéResistance Tan(p) = 0.938. The simulated plasma is

almost equally proportioned between capacitiverasdtive modes, with resistive mode

pronounced slightly more.
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The 1D model of plasma allows for some basic esmgimg estimation that could help in
building a real plasma setup. For example, tempezaif electrodes (Figure 22) provides
thermal mode of plasma operation at a certain geltdhese data assist in decisions on the

necessity of cooling measures for the proposedradsead.
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Figure 38. Plasma fade estimation when electrilftarns off at the 10DRF-cycle.

Another useful estimation can be done when thetriddield is turned off after plasma
reached the steady mode of operation. To bettestilite this example, we pick the external
voltage of 600 V and simulate plasma behavior i RF-cycles. According to Figure 23,
plasma at this voltage reaches the steady stataite specified number of cycles. At the 00
RF-cycle we turn off the external voltage and amundi the simulation until number density of
species falls below a certain limit. It takes ab®@®0 RF-cycles to provide data depicted in
Figure 38.

To further emphasize the essence of this testasgeime that neutral gas flows with

velocity of 10 m/s. The plasma is caught by thetragas and is advanced along the channel
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due to convective forces. Despite the absence tefrread electric potential, the electric field is
still generated in the advancing plasma becaustheoifferences in charge distribution. The
recombination process continues until electrons am$ are still present at the domain.
Additional loss of electrons occurs due to theisaption at the wall. Thus, the quantity of
electrons decreases rapidly and reaches a verynilomaber at just over 2 cm of the free flight
(Figure 37 does not show further electrons decraagbeir number density becomes too small).
It is possible to pull electrons out of plasmaltorger distance using special techniques [81], but
in regular case, electrons beam is short in corepario that of ions.

lons participate in the recombination procesag ks electrons are available. When the
guantity of electrons becomes very small, the rdmoation has almost no effect on the number
of ions remaining on the domain. Provided thatehierno other ions’ loss mechanism, these
species fly in a relatively large number for a gudng distance. Figure 38 estimates the ions’ jet
length is greater than 7 cm. This case has ancatihature, but it still can be used for a rough
estimation of plasma life when a plume of plasnaés the gap between the electrodes. From a

practical standpoint, this consideration could bieghelpful at the design stage.
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MODEL OF PLASMA CONVECTION

General Description

Plasma convection along the channel formed byllpavealls of the plasma head is
governed by convective motion of the neutral gas.d not consider motion of neutral gas in
1D model of plasma generation, because the diféereancharacteristic time of the two
processes is tremendous. While the gas moves #ientharacteristic length of the gap between
the electrodes, the generation process evolvesamals of iterations. Thus, we may assume that
plasma parameters such as the number densityletttei@field generated by the applied
potential and by charged species, the rate coeffisj energy of the species, and others can be
averaged and advected along the channel usingnteeitame of the gas flow; at the same time,

accounting for electric response of plasma, anddétucity field imposed by the flowing gas.

Straight Channel

Canverging Channel - Flat Nozzle

Straight Channel with Openning at the end (only half simulated, due to symmetry)

Figure 39. Typical geometry of the channel propdsechumerical investigation
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The velocity field of the neutral gas is calcuthtessing ANSYS, as there is no reason to
expand the numerical solver of the plasma problesotve Navier-Stokes equations. The
computational domain is constructed using ANSY SN Ehe fluidic calculation is done via
ANSYS CFX. There are two typical geometries congddor the plasma channel (Figure 39).
The geometry of the channel could be altered wighivide range. It is also possible to
implement turbulence model, as the final resulttincogtain only the velocity field, which would
account for any additional effects. Plasma spemaasbe imagined like a cloud of particles that
is driven by the gas flow, regardless of its lamimaturbulent nature, but due to the collective
behavior of the plasma particles as a reactiohgarhposed and self-generated electric field, the
trajectories of plasma species would not neceysawihcide with those of neutral molecules. At
the same time, ionization and recombination praeesentribute to a change in number density
of plasma species. The loss of the species to #tis also provides a physical mechanism
different from the behavior of neutral gas. Thisvisy, in addition to the solution of the fluidic
problem, we have to solve Poisson equation on tdpeoadvected distribution of plasma,
calculate rate parameters and adjust the numbeitger the plasma accordingly.

The velocity field is internally stored in ANSYB a specific form with some parameters
accessible to the user, and some parameters hidlderextraction of the field components
provides spatial coordinates of the nodes witheslof velocity, velocity gradient, pressure,
temperature and some other parameters specifibe given locations. Very important
information on connectivity of the nodes is missargl cannot be extracted from ANSYS. This
results in the velocity field being just a randoloud of nodes without any physical connection.
The nodes could be sorted and matched to somefygpeattern to resemble a type of a mesh,

but it is not a simple task when unstructured mssh use.
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We would like to use unstructured mesh in our estive model, as it approximates
complicated geometry [82] with much better accuridan regular mesh. The aspect ratio of the
triangles in a triangular unstructured mesh caimmpgoved significantly in comparison to that of
the regular mesh. At the same time the calculgirocess becomes more complicated as we
have to work in terms of each particular mesh el@raad not in terms of separate nodes aligned
with coordinate axis. Thus, we have to developex#ic approach to the computational domain

and to the numerical algorithm to handle this model
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Figure 40. The developed software module for tridagon and processing of ANSYS results
prior to input to the numerical code

Since the input velocity field is represented agralom cloud of nodes, we have to
construct triangular elements and find the conmigtinformation. In order to perform this task,
we develop a separate software module using M@ The primary objectives of the module

are to input the random cloud of nodes, to ordemtbdes and triangulate them utilizing the
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Delaunay [84] triangulation method, to set the latarg information to those elements that
contain a domain boundary as one of their edgeallyi to export the updated information about

the velocity field in a special data file that daused by our numerical code for advanced

calculations.

Converging Channel

Straight Channel with openning at the end

Figure 41. Typical channel geometry with veloa#yd, as it is seen in the numerical code
Figure 40 shows the main window of the developedute with loaded data for straight
channel. The data is automatically triangulatedhthie Delaunay algorithm. The different colors
of the nodes on the mesh correspond to defineddasyirconditions for Inlet, Walls, and Outlet.

The red solid line with parallel dashed lines repres a selection tool — all the nodes that fall in
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the range shown by the dashed lines would be selectd available for modification,
assignment of boundary condition, or setting thafioement information for the domain.
There are few selection tools developed to withenréange of accuracy for the selection
procedure. The software module features interacisez environment where mouse and
keyboard may be used to enter the necessary daitzh 18 depicted in the real time. Additional
components are easy to add to the module as thee woiten in Matlab, is open for further

development.
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Figure 42. Unstructured mesh with finite elementaiige) and normal vectors (blue)

The data supplied by the software module inclubdegphysical data on velocity field in
the considered geometry, as well as connectivityrimation and boundary conditions. This data
is analyzed by a numerical code writterCilanguage. The first result of such an analysibés
proper input of the geometry of the calculation d@mand proper interpretation of the velocity
data. This result can be validated by plottinghaf input data in the numerical code, as it is
shown in Figure 41, where typical geometries fer plasma channel are shown in the form of

vector-field.
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The nodes topology is brought in order by Matlativeare module, the numerical code
converts these data into a set of finite volumesh&riangle of the unstructured mesh is subject
to pre-processing, which calculated the centehefttiangle and the centers of its edges. The
edges’ centers connect to the triangle’s centes #plitting a mesh element into three parts
(Figure 42). Each part belongs to the vertex that the closest proximity. Hence, each vertex is
surrounded by such parts of the mesh trianglesp@is combined around the vertex, create a
2D finite volume which could be seen as a shap®sead with orange borders in Figure 42. For
example, the orange sectors in Figure 42 corresfmtite portion of finite volume that belongs
to the vertex ¥, the green sectors — to the vertgxand the blue sectors — to the verticgs v
There different ways to build finite volumes on tnstured 2D mesh [85, 86]. In addition to the
method we have chosen, the finite volumes coulcepeesented by the mesh triangles with the

physical properties determined at the centersef/tiumes.

T & B
— oM -

Figure 43. Typical mesh triangles and indexing @bmetrical elements
The normal vectors (the blue vectors in Figur@d@ Figure 43) are calculated at the

borders of the finite volumes, in order to projéne species fluxes to the boundary of the finite
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volume. The direction of the vectors is chosen agh follows the direction of counting the
vertices (clockwise or counter-clockwise). Wherediron of vertices counting reverses, as it is
shown in the right triangle of Figure 42 relatieethe left triangle in the same figure, the normal
vectors automatically account for the change. Bleallindexing is chosen in such a way that an
edge, a line (the border) connecting the edgedadmter of the triangle, and the corresponding
normal vector all receive an index of the oppogédex. Thus, the contribution of the fluxes —
positive or negative — for each particular partha finite volume is determined according to the
direction of the normal vector, which is constaglative to the vertex that contains the

considered part.

The local indices have the following relationsr Bee vertex, = 01,2, the other two
vertices are determined by=(i, +1)mod3andi, = (i, + 2)mod3. The same are the indices for

the edges connected to the veitexror the edges the same relations determine thedwices
forming the edge, while the index of the edge poads to the opposite vertex. Let us consider

a line connecting the center of an edge and thiecehthe triangle, e.gg,C, the two edgenot

connected to this line are also determined by (i, +1)mod3andi, = (i, + 2)mod3. This

relation would be useful when we discuss dynamendhing in the next chapters.

After the geometrical part of the computationain@an and velocity field are initialized,
we set initial number density and electric potdrétahe Inlet of the domain. In order to
accomplish this task, we use the averaged datadae@yrom 1D model of plasma generation.
The rest of the physical plasma parameters aranpirtant as they can be calculated during the

simulation based on the species’ number densitydestdbution of electric potential.
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Figure 44. Initial number density of electrons
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Figure 45. Initial number density of positive ions
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Figure 46. Initial distribution of recombinationra
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Dimensionless Reduced Electric Field

1.6
1.2

0.8

yap size, mm

04

07 01 02 03 04 05 06 07
channel length, mm

Figure 47. Initial distribution of reduced electriield
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Figure 48. Initial distribution of electric poterai
The initial data shown in Figures 44-48 is caltedieon a domain discretized with the use
of the unstructured mesh that consists of 2500 iadd 4752 triangles. The initial data
calculated on 1D domain of 1000 nodes is fit toithet of the 2D problem and interpolated
between the inlet nodes. Other plasma parametangiat moment of time could be seen in
Appendix C. The average profiles shown for 1D peablan be observed for number density of
the species (Figure 44 and Figure 45) and for réooation (Figure 46). The reduce electric

field (Figure 47) and the electric potential (Fig48) are calculated based on the initial
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distribution of the potential provided from 1D pteim. The Poisson equation is solved in order

to find electrical properties at the domain atithial moment of time.

Numerical Technique

The numerical technique applied for 2D case ofmpkaadvection can be selected from a
multitude of available models and approaches. Tastirommon are central difference
descritization and upwind numerical approximatiBegardless the numerical model, the finite
volume approach requires calculation of the speuigsber density at the interfaces between the
finite volumes. The value at the interface is ulgdietermination of the flux that is crossing the
boundary leaving one finite volume and enteringtb@oone. Tracking the fluxes and properly
inserting them into the governing equations yieldth redistribution of the species on the
domain. The interfacial value can e calculatedcitoedance with one or few numerical schemes
that are used in the problem. The central diffeeestescritization calculates the number density
based on exact interpolation at the point of irger€his approach is not beneficial when
gradients of the conserved values are high. In taetscheme leads to the saw effect which is
often referred to as instability of the centrafeliénce scheme.

In order to cure the instability, the interfacialwe of number density can be calculated
with the use of the node which is placed upwincelation to the considered point. This scheme
has a name of upwind numerical approximation. Tits¢ érder approximation is obtained by
assuming that the number density is constant evergawvithin the finite volume, including the
boundaries between the elements. The interfaclabya this case, is determined as the largest
value of the two finite volumes. The second ordéresne is based on linear interpolation of the

conserved variables around the upwind node. Attmsidered point, the velocity vectors are

96



considered, which helps to determine which nodkasupwind one. The mean gradient at the
upwind node is used to interpolate the upwind nundleasity to the considered point. In the
general case, such interpolation yields with hightarfacial value than central difference
scheme. The saw effect is completely eliminatethkyupwind approximation, but the
approximation introduces excessive numerical difimswhich is culprit of accuracy.

The advantages of the central and the upwind neadeschemes may be combined, and
the disadvantages significantly reduced, whenweschemes are used together. The
contribution of each scheme is determined by a ligig factol0< « <1. The combination of
the schemes is referred to as blending. This approwy be used with a static blending factor or
with a dynamic one. In the later case the accuuscnally increases, while the calculation time

decreases. More details on the discussed approastsbown in the next chapters.

Interpolation in the Mesh

Due to the use of unstructured mesh in our madelhave to implement special
numerical techniques for solution of both, contip@quation and Poisson equation. The
governing equations remain valid with the exceptlwat they are written in a general form

(gradients and divergence in place of partial dene).

0 rec

a n, + v(/ueEne - Devne) = ((Z - n)ne Vg - I(ie nenp (80)
a V( E )_ d krec

5np + My np =an |V, | —Kg nenp

V2¢=—£(np—ne) E=-V¢

The numerical scheme for the continuity equatiomaised on analysis of fluxes that cross

the boundaries of finite volumes. Let us considénite volume presented in Figure 49. The
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figure shows a small portion of unstructured megiere six triangles connect to a venex
Each triangle has a center at the paathich is calculated as an average of coordinatéiseof
three vertices of the triangle and represents tecefimass. The poin® represent the centers
of edges of the triangles. These centers are eabxlibs the average of coordinates of two

vertices forming the edge.

Figure 49. A typical finite volume on the unstruetlimesh

Centers of the surrounding triangles are connecidige centers of the edges; thus,
forming an enclosed volume which we call a finikengent for the unstructured mesh. The vertex
v is the center of the finite volume that is shaufethe figure; it represents physical properties
averaged over the volume of this element. The sadimg vertice¥ belong to neighbor finite
volumes. The finite volumes connect to each otheyugh common edges. We consider a
flux crossing edgese. This flux would redistribute the mass of the dluirying to equilibrate the
nodal values of number density. When the flux @esbe boundary between finite volumes, it
needs to be subtracted from one finite volume altdd to another one. This process ensures

mass conservation and provides the way for fludtistebution on the domain.
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We account for the velocity field provided from ANMS by modifying the governing

equations
%h +V(vn,—=D_Vn,)= (e —n)n [ve|—kn.n
8t e e e e/ a—1n el"e ie e’ 'p
%np +V(Vnp)=6¥ne ve|—kgnn (81)

V= Voon, t 4E

The velocity is built based on superposition of ¢tbavective flow and the flow
generated by the imposed electric field. The diffnof species may also be presented in terms
of diffusion velocity and added to the governingiatipns to keep uniformity of description, but
computationally this approach would be disadvardageThus the diffusion flux is calculated

on a separate basis.

To provide more detailed explanation of the metivedvould like to consider one of the

. . . X X X . .
mesh triangles with vertices =[yl] LV =(sz ,andv, =[y3]. Using the vertices we create a
1 2 3

local basis in the triangle, choosing one of theiees (for instance, ) as an origin and two

Xo — X Xq — X . . . X
vectorsv,v, =[ 2 l] and v, v =[ 3 1] as the coordinate axis. Any poumt{y] can be

Yo—Y1 Y3—Y1

represented through coordinates;) in the constructed basis.

X1

In order to determine the valueg®f;), we build a vectovlp=[X
1

J and represent as a linear

combination of the basis vectors
Vip=¢&-VgVy+177-VyVy (82)
We take the following dot-products of equation (82)
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VipeVgVy =&-V3VieVgV +77-VyV e VgV,

(83)
ViPeV,Vy =& VgV @ VoV +177-VoVy eV,
This system is solved f@f,7)with the following result

n=X, X+Y, - y+C,
D = (X, = X3)y1 +(Xs =X )2 + (X, = %5 )y3
ng(Y2—Y1)/D X,
Y; =(x %, )/D Y, =(xs Xl)/D
C: = (X2Y1 X1Y2 )/ C, (X1Y3 X3Y1)/D
A functionf(x,y), defined in the triangle, with known valugsf,, andf,at the vertices is
linearly interpolated within the triangle using ttelowing interpolation scheme

f= f1+(f3_ f1)§+(f2 - f1)’7 (85)

This function can be represented in terms of coatai{x, y), using relation (67)

f=f+( [X X+, - y+CJ (f2—fl)[X,]-x+Y,]-y+C,7J:FXx+Fyy+FC (86)
F :(fs - fl)X§ +(fz - f1)xz7

F,=(f;— Y. +(f, - )Y,

Fo=f,+(f,— f)C. +(f, - f,)C,

Thus, number density, velocityv=[\u/], and diffusion coefficierd of the species may be

interpolated in the considered triangle

n(x, y)=N,x+N,y+N,
u(x,y)=U,x+U, y+U,
(X, Y) =V, x+V, y+V,

D(x, y)=D,x+D,y+D,

(87)

One of important properties of the linear interpiola in the triangle is that any interpolated

function has a constant gradient within the triangl
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f=Fx+Fy+F;
88
v = of fox) _[ Fx = const (88)
of Jjoy) \Fy
This property would be helpful in further derivat®when we interpolate fluxes

Fluxes in the Mesh

A flux at any location(x, y) in the triangle is determined by the followingatébn

Q(x, y)=n(x,y)-v(x, y)-D(x y)-Vn (89)
The first term in (8) accounts for the flux duedtdt and convection, the second term accounts
for diffusive transport. Since all the functionsdsn (89) are interpolated (87) within the

triangle, we substitute their interpolated représgons into (89) and use the fact that the

gradient is constant within the triangle to resdlve negative term in (89)

=((Nxx+ Ny y+ N JU,x+U, y+U, )-(Dyx+ Dy y+ DC)Nx]

(Nyx+ Ny y+ Ng VoV y+V, )~ (Dyx+ Dy y+Dg N, (90)
Expression (90) is rearranged with respedixi9)
Q(x,y)=a,y? +a,y+agxy+a,x+asx* +ag (92)
N,U, N,U.+N.U, —D.N,
NV, N,V, + NV, —D,N,
NyUC+NcUy—DyNXJ NXUXJ
N,V + NV, =Dy N, N,V,
NyU, +N,U, N.U. -D.N,
a3 = aG =
NV, + N,V NV, - DN,

Relation (91) represents a flux at a point instdettiangle. In order to build a numerical

scheme, we need to estimate total flux over a baynaff a finite volume. Such flux would be an

integral value of fluxes taken at all the pointsrag the boundary.
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Figure 50. Triangle with locally indexed verticegnters of the edges, and normal vectors
We assign an indek=1..N to each triangle connected to the vertex of intefidse
centers of triangles receive the same index andmes;, . The centers of edges belong to two
triangles (to one triangle - only in the case wttenedge belongs to a boundary of the domain);
hence, they cannot be indexed in such a simple eramside a triangle we introduce a local
indexing of vertices. The indices of centers ofesigand normal vectora; are connected to
vertices,oppositeto that edge. The normal vectors are directetiendirection of counting of the
vertices (Figure 50).
The continuity equation for plasma can be wriiteterms of fluxes with the right-hand

side written in a general form
on
E"'V'Q: Igen/rec (92)

Here Q is the summary of all the fluxes (incoming @autcoming) in the finite volume.
Applying the concept of finite volume approach, wegrate equation (92) over the finite

volume that has an arga

[ % dA+ [V QA= [ 1ot (93)
A A A
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We assume that values of number density, and geoefrecombination term at the
vertexv are average values over the whole finite volunse@ated with the vertex. Thus, they
can be taken out of the integral. We also assumtdritegration is carried over the finite volume
which consists of combination of smaller volumestdbuted by each particular triangle. This
assumption allows us to split the integral overfthige volume into a sum of integrals over each

particular piece of a triangle.

an
at

N N
A IVonA: |gemred, A A=A (94)
v k=1

A k=1 A

HereA, is the area of the sub-volume of fetriangle. Area of any triangle could be calculated
. , 1
using Heron's formula\=§|xl(y2 —¥a)+ X (Y3 = Y1)+ Xa(y1 — ¥, ) -

According to Divergence Theorem [87] the integeaiht of equation (94) can be modified as

follows

IVonA: InonI (95)
A i,

Here the right-hand side is the integral taken ofrerboundary of thE" triangle. This integral
could be further split into the sum of integralepeach separate piece of the boundary. As the

example, let us write the integral at the vetiéor the case shown in Figure 50.

neQdl= |neQdl+ |neQdl+ |neQdl+ |neQdl (96)
| Jnequi+ [necdi+ [neQul+ |

Oy Vi€ ec ce, eV
If the edges of the triangle do not belong tolibandary of the domain, the integral

terms in (96) over the boundarieg; and e,v; would be canceled out due to double integration.

In the neighboring triangles that share the sange®ge;and e,v;, the integration would be
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taken in the opposite direction, hence, the oppasgn of the integral terms. Therefore, equation

(96) is reformulated accounting for the cancelimgris and is substituted into (94).

on

ot

A+ZN:[ jnon|+ J'non|J:|gen,rec|vA (97)
v k=1 esi

C&2

This is the continuity equation integrated overfih#&e volume and written in terms of fluxes.

Integration Path in the Mesh’s Triangles
In order to evaluate the integral term of (97)roaey set of triangles, we need to find
normal vectors and estimate the fluxes over thenBares:,c and ce, (please, refer to Figure 49.

The calculation of normal vectors is based on tilewing relations.

n;ece =0
Ini| =1 (98)

N; ®C8 mogzr1 <0
The last condition in (98) provides proper direstto normal vectors. According to relations

(98), the normal vectors for a triangle are cal@dawith the following coordinates.

X
Cn = s

ycq

1
+ - (99)
y1+Cn

Ni=_ Cn,

+

J1+Cn?

The vectorce is calculated as follows

Ximod3+1 + X(i+n)mod3+1  Xi + Ximod3+1 + X(i+1)mod3+1 Xi mod3+1 + X(i+1)modal — 2%
ce = 2 3 = 6 (100)
Yimod3+1 ¥ ¥(i+1)mod3+1  Yi + Yimod3i1 T Y(i+1)mod3+1 Yimodsr1 + Y(i+1)modar1 ~ 2Yi
2 3 6

As the general approach, we assume that integthkdfux needs to be evaluated over some

linear path in the triangle. The path is determibgdoordinates of the end points
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pth =(X‘*_Xb] (101)
y%__y%

, Xy Xa
Pointsp, = andp, =
pb [y ] pe [y

J determine the beginning and the end of the path,
b

e

correspondingly. The normal vectors to this pathdetermined as

cn=2"%
ye_yb

I (102)

n= - J1+Cn?

Cn

F__—-
VJ1+Cr?

Validation of normal vectors confirms the major jpedies, i.e. their orthogonality and unit

length. The sign of the normal vectors is deterchipased on specific conditions and depend on
the location of the path. The orientation of norwedtors has a special form at the inner
boundaries of the triangle to simplify summatiortted fluxes when contribution at each
particular vertex is estimated. It also could beemiouter normal to the triangle edge, when the

edge represents the boundary of the domain.

1
+
Xo — X
1+[ € b] Xg — X,
Ye— Yo Ze 0y, —yy)
n-pth = Xe — Xp .(Xe_xb]:i Xe = Xp $ye_Yb _
e b _ > -
YoV Yeo b 1+(Xe_xbj 1+[xe—xb]
(x ~ X jz Ye Yo Ye— Vo (103)
14| e 7B
ye_yb
Xe =X _ Xe =X 1 _
B v [ (% — % )F (%6 ~ %, )] = 0

2 2 2
1+[ Xe =X ] 1+(Xe ~% ] 1+(Xe ~% j
Ye = Yb Ye = Yo Ye = Yo
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2 Y2
Xe = Xp [Xe_xb]
Inf[=|| + 1 N T _ 1 - Ye—Yp |-
Xg — Xp 2 Xe — Xp ? Xe = Xp Xe = Xp
14| 222 1+ & 2 1+ ——— 1+ —
ye - yb ye - yb ye - yb ye - yb (104)
27Y2
s X—ij
ye_yb
s X—ij
ye_yb

In the first case, condition (100) may be appligden vertices of the triangles are
counted clockwise/counterclockwise, the normal @ewatould be always pointing to the opposite
direction, i.e. counterclockwise/clockwise. In 8exond case, the normal vector may point in the
direction similar to direction of the vector stagiat the vertex, opposite to the considered edge,
and ending at the center of the edge (dot produttecspecified vector and the normal vector
should be positive); this condition provides théeounormal. When the integration part is an
arbitrary line inside of the triangle, other comafits may apply to determine direction of the
normal, but in most cases they could be built basethe vertices of the triangle and center
points of the edges and the triangle itself.

The path, in the general case, may be formulateadfanction of x or y only.

y= ye_ybx+ybxe_yexb’ Ye = Y <1
Xe =% Xe =%, Xe =%,
:Xe_)(by+yexb_ybxe ye_yb>1

Ye= Y Ye= Yo Xo = X%

(105)
X

The flux at any point in the triangle is descrililydequation (91). This flux must be
integrated over a portion of the boundary of timédi volume to yield with the integral term of
(97). The integration could be accomplished anedyfy providing with very good accuracy and

computational efficiency, but it requires knowledgeexact path of integration.
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Figure 51. Integration paths in a triangle

We want to estimate the paths in the triangle@lwhich the integration is carried on.
Let us refer to the interpolation scheme one miane.tIn terms of interpolation coordinates)

the important points in the triangle could be veritin the following form

w=0 0 e=#2 32
v =0 1) &=@12 0
V;=(1 0) &=(0 0)y2

(106)
c=(3 Y3) &+n=1 atv,v,

Since the coordinates for all necessary point&iaogn, we can estimate a line passing through
two points and apply this methodctp, ce,, andce,. The following lines are found

L n=¢¢e0y2]
Imecel.{é::n’ ne[0y2]
(=122 [0y
linece, '{f:(l—f])/Z, nelo]
 (p=(-&)/2 zefod]
linece, -{5 =1-27, n<[0Y2]

(107)

We substitute (84) into (107) and obtain integmrapaths in terms ¢, y).
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yz_xﬂ_Xé‘ _CU_C§
linece, : :((’7 ::{(5 \C(” __\g
x=__"1 s y— U 4
Xy = Xe Xy = Xe
2X,+X; 1-2C, -C,
inece, : Y=, Y, 2Y, +2Y;
2Y,+Y;  1-2C,-C,
Co2X, X 02X, + X,

linece, :

X,+2X; 1-C,-2C,

Y, 2V, Y, +2Y;
Y,+2Y, 1-C,-2C,

COX,+2Xe T X, +2X,

(108)

Relations (108) determines path of integratiothmtriangle. There are two functions (

y(x)= kx+ bandx(y)=my+d) provided for each path, the reason is that flaegdte is randomly

oriented in space with path of integration représey a line — in some cases the line is

perfectly vertical or horizontal. The vertical casextreme fory(x) and the horizontal case is

extreme fox(y), thus one of the representations could be usest, @fientation of the

integration path is determined. The criterion fug path orientation is simple: whén-1we use

x(y)=my+d, whenk<=1we usey(x)= kx+b. The integration over the path requires not only

knowledge on the function describing the path,disb evaluation of the length element along

the path. The following formulation provides anyeasy of such an evaluation.

y=kx+b L, =y1+y? =vV1+k?
X=my+d Ly =1/1+x;,2 =

1+m?

dl = L,dx
dl = L, dy

(109)

Considering a triangle shown in Figure 51, we wdike to introduce three auxiliary

integrals, corresponding to the three paths ofymatiion. We modify integral terms in (96)

eliminating the normal vectors from the integralge to the fact that they are constants, and take

only the terms that do not cancel out when intégmgbasses through all the neighboring

triangles.
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Il_J.Qxy)dI J.Qxy x))L, dx= J.Q y)L,dy

Ye
Ye2

IZ—J.QxydI J.Qxy de—'[Q y)L,dy (110)
Ye3
I3_IQxy)dI J.Qxy x))L, dx = IQ y)L,dy
yC
Since we know the flux value at any point (91% angth element (109), and the relation
between the coordinates (108) when following thila pae can substitute all this expressions

into (110) and proceed with further evaluation. Ekaluation is done for two case&)= kx+b
andx(y)=my+d . After simple algebraic derivations, the result@nins are gathered with respect

to a; (the coefficients from (91)). The result couldvaetten as follows.

Ii =a1b1i +a2b2i +a3b3i +a4b4i +a5b5i +a6b6i, | =13 (111)
y=kix+b x=my+d

by = bPbe + 20,k;b + by by = Lx((y; —yS){s

by =libg + kb, by = L \vZ - v2)/2

b3i:bib +kib5 b3i:dib2+mib1

by =L, (x5 —xZ)/2 b, =d;bs + mb,

b =L, (x3 -x3)/3 by =d2bg +2d; mb, +m?b,

b' =L ( Xc) b6i :Lx(yei_YC)

The coefficientsh; depend only on geometry of the mesh. If the mesls dot change

during the simulation, they remain constants. Betbe simulation starts, the analysis of the
mesh takes place: for each triangle of the meséntation of the integration paths is estimated
using the described criterion. The result is theigsien on which representation of the path

should be useg(x)=kx+borx(y)=my+d. According to the used representation, a set;ofs

calculated and stored for the pgtthus, a triangle receives three such sets —amesich path.

Whenever the flux along the path needs to be ettuinéhe coefficients; are recalculated
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accounting for new values of number density, vé&yoend diffusion coefficient at the vertices of
the triangle. The relation (111) is then used twvate the fluxes along the paths.

One important note should be given. The integnadibthe fluxes proceeds from the
center of the triangle towards the edge. The sign of the flux; remains unchanged if the
coordinate of poirtused as parameter of integration is smaller tharcdinresponding
coordinate of poird, in the opposite case the signigghould be reversed. This estimation may
be performed at the initial stage of the simulaton the sign reversion could be introduced into
b; automatically providing with the proper sign wheee(111) is applied.

The fluxes (111) are associated with the patimigigration. In order to determine how
much matter passes over the boundary created lpathdines, the dot product of the auxiliary
fluxes and the corresponding normal vectors shbaltbund. Each triangle contains a sub-
volume of the finite volume element. The sub-volumhéhe vertex, is determined by two
boundariesce;, ;)moqs,; 2NACE moqs.1 - We do not account for the boundari@s. ;) ous,; ANAV; & modz1 »
because positive/negative flux contribution heneceds out by negative/positive contribution at
the neighboring triangle; unless the edge is abthendary of the domain, which is the separate

case discussed later. Thus, the contributionefltixes to the sub-volume at the verigxn the
triangle kis determined by fluxes over boundarts ,,qs., aNdee neqs.1 - Based on the direction
of the normal vectors and location of the pathdjrtae following relation takes place.
6k1:|3'”3—|2'n2
Q2 =l1en;—lzen; (112)
Quz=1lzen, =100,

In this relation, the variabl@, represents total contribution of the fluxes toshbé-

volume at the vertex in the triangl&k with s=123being a local indexing within the triangle.
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With modifications provided in (112), the continugquation (97) is transformed into simpler
version.

on

— A+ Zka gen/ rec |y

113
oty ) (113)

Equation (113) represents an explicit scheme évaitons of number density at the vertex of

interest.

Ish=
Nhe v nold|v +At£| gen/rec|V _I\ ka] (114)
k=1

Boundary Conditions
In order to properly estimate fluxes crossinglibendary of the domain, we have to
consider an arbitrary flux in a general form, basedhe derivations provided for the finite

volumes. Let us assume an arbitrary line which jiewa path for the integration.
Y +ybxe_yexb’ Ye= Y <1
Xe =%, Xe =%, Xe =%,

sze_xb +yexb_ybxe ye_yb>1
Yy

y =
(115)

e~ Y Ye= Yo X =%,

y=kx+b ELy:wll+y;(2: 1+k? dl=L,dx

x=my+d Ly =y1+ X7 =v1+m?® di=L,dy
The flux crossing this line at poi(r)i y) can be written in the following form

Q(x,y)=a,y*+a,y+a,xy+a,x+a,x* +a, (116)

This instantaneous flux is integrated along thesatered path yielding with total flux
end

J.Qxydl jQxy X)L, dx= jQ y)L dy (117)

start

Substitute flux (91) into the integrals; also suth& definition of the lines
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end
pth = j{alyz +8,Y +agXy+a,X+agX’ +a6}d| =

start

_ j{ kot )P + @, (kx+ b) + agx(kx+ b) +a,x-+ agx? + ag L, dx (118)
- J'{aly2 +a,y+a,(my+d)y+a,(my+d)+a,(my+d)y +a6}Lxdy
yb

This equation provides results for both representatof the integration patly = y(x) and

x = x(y). We simplify this integral and gather the terméramt of coefficientsa,

]e{al(kzx2 + 2bkx+ b? )+ @, (kx+ b)+ a, (k€ +bx)+a,x+agx? +a }Lydx
xb
].e{aly2 +a,y+ a3(my2 + dy)+ a,(my+d)+ as(mzy2 +2mdy+d 2)+ a, }Lxdy

yb

(119)

Since coefficients, are determined only from the nodal values and dalapend on the

coordinates, they can be taken out of the intagg@ther with the length correction which is
constant for the whole integration path.
a,L, | (k2x? + 2bkx+ b2 Jdx+a, L, [ (lox+ b)dx+
xb xb
+a,L, I (kx2 + bx)dx+ a,l, _[ xdx+agl, _[ x?dx+a,L, I dx
xb xb xb xb (120)

a,L, Tyzdy+ a,L, Tydy+ a,L, T(my2 +dy)dy+
yb yb yb

+a,L, T(my+ d)dy+a,L, j'e(mzy2 +2mdy+d? Jdy+a,L, ]'edy
yb yb vb
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We evaluate the integrals

i X3 X2 . xe X2 xe
al | K°—+2bk—+b"x| +a,L |k—+bx| +
3 2 xb 2 xb

3

X X2 xe X2 Xe X3 xe
+a,l [k+b] +a,l (] +a.l (J +agL, (X)s
’ 3 2 xb ’ 2 xb ’ 3 xb ’ (121)

y3 ve y2 ve y3 yz ve
ale(J +a2LX[J +a3Lx(m+ d] +
3 2 3 2

yb yb yb

2 ve 3 2 ye
+a4LX(my2+dyj +a5LX(m23+ 2md);+d2yJ +asL (Y
yb yb

Then, estimate the general form of the coefficient®rmulate the flux

| oin = ab +ab, +ab, +a,b, +ab, +ab,

by =L, (x)< b, = L.(y)}s
%3\ , Y° y? 2 "
_ ~ =L|m <Z+2md=+d
b =L, 3} b, =L, M 5 yj
xb yb
2\ Xe 2 ye
b, =L, X?j b, =L, my7+ dy}
xb - yb . (122)
X bx2 b,=L my3 +d Y’
=L |k—+b— = < +d=—
b, 3 2 ), X 3 2 ).
X y!
XZ xe 2\ ve
b,=L, k—+be b, =L, V_J
2 o 2
X yb

xe

X3 XZ 3 ye
Q:L@A—+%k—+ﬁﬂ _LIY
y 3 2 o b.l. X 3 "

Depending on the type of representation used mirttegration path, there are two results

obtained
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Ipth=a1bl+a2b2+a3b3+a4b4+a5b5+a6b6
=k?h. + 2bkh, + b%b 1
=k e 20 1 gy T )

b, = kb, + bh, 3
b, =Kb, +bb, b, =L, 2 (y2 - y2)
1, 2 (123)
b,=L,20¢-x)  b=mh+db,
3 b, =mb, + dh,
=bglte% b, = b, + 2mdh, + d’b,
by = Ly(xe_xb) by = Lx(ye_ Yb)

The flux crossing the considered edge is foundrojeption of the total flux on the normal

vector calculated for the edge

Qun = o ® N in (124)
The sign of the crossing flux depends on the dwaadf the normal, which could be either
positive or negative, depending on the considesztex.

Number density of electrons, [m] Number density of positive ions, [m] <1 01; 50

- 4 2.80

A AT e

= = 0.70

y (across the channel), mm

0 02 04 06 08 10 0 02 04 06 08 10
¥ (along the channel), [cm] % (along the channel), [cm]

Figure 52. Convective transport of plasma specssgicentral difference scheme only
Figure 52 shows the typical result for a calcolatbased on the central difference
scheme for convective transport of the species.“Saw” effect is severely pronounced for both

species. The peak value of the number density iin tases i53.5><1017[1/m3] which is higher

than the original maximum number density. The “salstribution of plasma species leads to
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very high peaks and very deep valleys between¢h&g The species accumulated at the peaks

result with high values of the number density.

Upwind Descritization

The method presented in the previous section relgsnabntral difference scheme, which
is known for introduction of unphysical oscillat®when convective transport is considered.
The oscillations lead to instabilities and poorengence of the solution. In order to resolve the
instability, the upwind descritization is appliedthe problem. The value of the number density
at the interface between two adjacent finite volamsedetermined based on the velocity field.
The velocity components are interpolated at therfate using simple geometric interpolation. A
triangle is considered in order to estimate therfatial parameters. The parameters (velocity,
diffusion coefficient, and number density) are a#ted at the center of the triangle and at the
centers of its edges. Next, these parameters bndaied at the centers of the lines connecting
triangle’s center and edges’ centers; the sams legresent the interfaces between adjacent
finite volumes. The number density at the interfescealculated at this time for further use in
central difference descritization. The interfasialocities are multiplied by normal vectors at the
interfaces to evaluate the overall impact of tlevfbn each of six sub-elements forming finite
elements at the triangle. The sign of this mulktgtion determines which vertex lies upwind
relative to the considered interface. The numbesitye value and gradient of number density at
the upwind vertex are used in the form of Taylaieseexpansion to evaluate the number density
at the interface. This newly evaluated number dgnsidifferent from the one previously found
in accordance with geometrical interpolation. Towrfer includes more information about

incoming flow which usually increases the interéaciumber density.
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The gradient of number density at the verticetheftriangle requires a special procedure
for accurate calculation. The method that we ussuimmodel is targeted to minimization of the
gradient error in the least-squares sense; thhasia name of Least Squares Linear
Reconstruction Method [88]. The idea of the metisoelatively simple. We consider one
computational node on the domain. In the genersg,chis node belongs to multiple triangles
and is surrounded by multiple vertices which slsam®e edge with the considered node. We may

estimate a gradient between two nodes using ().

n=—"1 (x —x) (125)
% =]

This gradient is specific for the nodevhen applied to other nodes it would result with
sufficient error. If we cycle through all the swiraling nodes and calculate algebraic average of
the gradient, we would find the first approximatiorthe gradient at the considered node. To
increase the accuracy of gradient calculation, epeaesent the error in the form of the least

squares minimization problem

2

[n —(n+Vn(x, —x))] — min (126)

Nsur ]
=[x =
In this representatiovin stands for the gradient that results in the smiadiesrall error

when applied to any surrounding node. This gradieetds to be found from the solution of the

minimization problem.

a Nsur 1 o |
a(Vn)[; o [y = (n+Vn(x, —x)) ] =0 (127)

[_ ZNZSH:% [y = (n+Vn(x; —x))Jx, - X)T] =0

% =X

116



Nsur 1

Z—Z[(ni —n)x, —x)-vn(x, —x)x, —x)T]: 0

2l A

Nsur 1 Nsur 1

> —=—(n —n)x, —x)]= Z—Z[Vn”xi —x||2] (128)
2 I

LS 1 [ —n)x, - x)]

- Nour £, -

The upwind numerical scheme improves the overablibty of the simulation, at the
same time it introduces significant numerical dsfan. This is why the upwind scheme is
usually blended with other numerical schemes (érgral difference scheme, for example). Such

combination is advantageous in both, stability diffdision domains.

Number density of electrons | [m-] Number density of positive ions,

0.96

y (across the channel), mm

0 02 04 06 08 10 0 02 04 06 08 1.0
X (along the channel}, [cm] X (along the channel), [cm]

Figure 53. Convective transport of plasma specssgiupwind difference scheme only
Figure 53 represents the effect of upwind schemmervapplied to 2D convective
transport problem. In this simulation, a parabplicfile of longitudinal velocity and zero
transverse velocity were applied. The speciesgreaed to fill the whole domain using the
initial distribution as a pattern. The numericdfulion can be noticed when initial distribution
of species number density (on the left side ofegifiiot in Figure 53) is compared to that at the
end of the channel (on the right side of the plolge diffusion is so excessive, that this scheme
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yields unphysical representation of the plasmacamhot be utilized alone to produce accurate

results.

Blending

The two numerical techniques can be blended witdinging them into a linear
combination, to determine the interfacial valueéhe conserved variable, in accordance with the
following equation

N, = aMypwino + (L= & )Neenrrar O<a<l (129)
The blending coefficientx can be used as a constant for the whole simulafioa.results of
such blending are represented in Figure 54.

i Number density of electrons, [m-3] Number density of electrons, [m-?]
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'Severe Numerical Diffasion

1.28
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Figure 54. Blending of the numerical schemes wiitiei@nt blending coefficients
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Figure 54 represents static blending of Centralgwlind numerical schemes. The
following cases take placer =0 is pure central difference schenfes o <1 is blended
numerical scheme, awmd=1is pure upwind numerical scheme. In the shown tdsulx = 025
central difference scheme dominates. The distidioudif the species is significantly smoothened
by partial contribution of upwind scheme, but smaficale instabilities are still present, though
the result is not as dramatic as the one calcufated =0 (Figure 52). The case = 0.5may
be considered the best of the presented four cakednstability due to central difference
scheme is hardly noticeable; at the same timentineerical diffusion did not develop
sufficiently to excessively smoothen the data atdhtlet. In both cases = 0.75 and o =1the
domination of upwind formulation determines sigeeint smothering of the species profiles at
the whole domain; thugy > 0.5is not a good factor when physical consistencydsrecern.

As it can be concluded, the static applicatiorhefblending factor does not produce
satisfactory results. This is why we develop aneldgamic blending. In dynamic blending the
blending factorx is determined specifically for each particular prthe boundary of the

considered finite volume. The algorithm for dynarcadculation of& is relatively simple.

Figure 55. Calculation of dynamic blending factor
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Let us consider an example shown in Figure 55. ¥g¢erae that the interfacial value of

number density at the poipthas to be found, we also assume that the fluxéectlid left-to-
right with the highest value at the vertgx Next, we extrapolate the velocity vector at tbep
p following the upwind direction, until it interseabsme of the triangle’s edges. The green,

orange, and red lines in Figure 55 represent snaxaapolation, with the points, p,, p,
indicating the intersection with the edges. Theanafiges for the finite volumes at vertiogs
andv, aree, and €, specifically the portion¥,e, andV,€,. When a line intersects the edge
(the red line with the intersection poimpi, in Figure 55), the interfacial number density is
severely affected by the vertex therefore the blending factor &8=1. Intersection with the

edgee, above the center of the edge (green line withribersection poinp;in Figure 55)

indicates that the effect of the center of the adgiominant, thus the central difference scheme

is used with the blending factar=0.

160 Number density of electrons, [m3] Number density of positive ions, x1 011? i
E 128 144
E
]
5 0.96 1.08
[5]
2
*é 064 072
=
=
= 0.32 0.36
0 0
0 02 04 06 0.8 10
% (along the channel}, [cm] X {atong the channel) [em]

Figure 56. Dynamic blending results
The blending factor is between zero and one, wheiite intersects the major edge at

the proper half (the orange line with the intersetpointp, in Figure 55). In this case, the
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blending factor is determined as=| p,e,||/|v,€,| . which estimates the proper contribution of

both of the scheme, based on the proximity of ttieapolated point to the center of the edge or
the upwind vertex. The results calculated with agitablending (Figure 56) provide higher
accuracy in comparison to those calculated withegiof the numerical scheme alone.

The combination of central difference and upwindneucal schemes yields with
relatively good number density profiles. Compamthie best static caser (= 0.5) the
numerical diffusion is slightly smaller, especialynen comparing data at the outlet: orange-
yellow color in the static case (Figure 54) veredsyellow in the dynamic case (Figure 56).
The instability due to the central difference sckhamstill present. In order to estimate the work
of the dynamic blending we calculate the me&anas the average value of all the blending
factors calculated on the domain within one paldiciteration. The data presented in Figure 56
are acquired within 100000 iterations; thus, a0$d00000 alphas was recorded. The mean

blending factor fits into the rand@.3883498).3888195%, with the average of the factor being

0.388816.
The possible improvement for the dynamic blendmay be achieved by using cell-
centered finite volumes, as they provide more umfdistribution of the finite volume sixe and

orientation.

Solution of Poisson Equation

The solution of Poisson equation requires a spaciaierical algorithm that is suitable
for the unstructured meshes. There are differeptagehes used for solution of Poisson-based
problems [89, 90]. Some researchers map the nadias of the unstructured mesh to a regular

mesh, solve the problem on the regular mesh ubmcross-pattern” for descritization of the
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second derivative, and map the result back to tistructured mesh. This approach does not
provide any benefits and does not validate theofisestructured mesh, as the evaluation could
be performed on the regular mesh right away. Saimer onethods use Fast Fourier Transform
[91] which can be very well parallelized [92] orgtMulti-pole approach [90, 93]. The accuracy
of the solution may be substantially improved bgitidn of Multigrid algorithm [94-96]. In this

work we propose a novel method for descritizatibR@isson problem on unstructured meshes.

Figure 57. The shortest distance in a triangle fritva vertex of interest to: (a) the opposite
edge, (b) the closest vertex on the opposite ddybprizontal edge, (d) vertical edge

The novel method is based on involvement of @lrtbighbor nodes into the calculation
at the considered node. Each triangle connectdtetoonsidered node provides with a specific
contribution to the function evaluated at the notdee contribution coming from a connected
triangle is scaled according to the size of thengle in terms of the angle span measured from

the node of interest. The contribution of eachipaldr triangle is determined at a specific
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distancer,,from the considered node. This distance is evaduasea fraction of the smallest

distance between vertices and edges of the triamgline whole mesh.
Assume that we are located at vertgand we want to find the shortest distance between
the current vertex and the opposite edgeg. If we are currently at another vertex, let's ofpan

the local indexing and denote the current vertetk widex 1, the position of other two vertices

does not matter. The shortest distance represéimis @ither connecting, with a pointpon the
opposite edge of the triangle (Figure 57.(a)) amexting v, with one of the other two vertices

(Figure 57.(b)). There are two cases that coultdarelled without extra calculations — when the

opposite edge is horizontal (Figure 57.(c)) these& point i9=(x, y,)and when the opposite
edge is vertical (Figure 57.(d)) the closest p@nt=(x, y;).

In the general case (Figure 57.(a)) the closest gcalculated using two equations

which are determined from the fact that vectoys and v,v, are perpendicular and the pojmt
belongs to the edge,v,.

The solution (130) represents the case when the egd ; has a shallow slope. When the
slope is steep, it is reasonable to handle the edgation ag=my+d , the solution transforms
accordingly

(Xp _X1XX3_X2)+(yp—Y1XY3—Y2)=O
Y3~ Yo Y+ YoX3 —¥Y3Xp

yp:xe,—xz P X=X,
Xp :L(x1+y1k—kb)
1+ k2
yp =kx, +b (130)
kY=Y _ YoXaT¥YsXo
X3 —=Xp X3 =X
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Xp =my, +d

Yp = > (y; +x,m-md) (131)
1+m
m=1k d=-b/k

Since the orientation and the shape of the triaagdearbitrary, the distand&,, p)should be
compared to(v,,v,).
The general form of Poisson equation for electtastase reads

A¢:VOV¢:f:—p—f (132)
&

Here ¢is a scalar electric potentigh, is free charge density, ands electrical permittivity of

the media. The formulation especially useful for application is written as follows.

SHEH

Using unstructured mesh we would like to develommerical scheme for calculation of
electric potential at the node of interesiThe usual approach to equation (133) on a regular
mesh is to use cross-shaped pattern for finitefice to represent the second derivative of the
potential.

On unstructured mesh, the nodes do not automigtittaihto the cross pattern. A
common way to handle this issue is to interpolatees of electric potential from neighboring
nodes such as they lay exactly in the cross-paj@iin This method works well at the inner
parts of the computational domain, but, approachiegooundary, the interpolated values may
appear outside of the domain. This is especially when the boundary is intensively curved.
We utilize the idea of the cross-pattern and aggly the unstructured mesh at the same time
developing it even further. The cross-pattern agsutinat the lines of the pattern coincide with

the coordinate axis of the Euclidian coordinatdesys The regular differentiation is
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accomplished along the pattern lines in the dioectiorresponding to the positive direction of

the coordinate axis.

Figure 58. Cross-pattern for finite difference repenting Laplace operator in Poisson equation
Let us assume that there are some arbitrary netieh lay on a circle of radius,
around the node of interest (Figure 58). The valuglectric potential at the node of interest is

¢; , the values of the arbitrary nodes, forming thessrpattern are, ,;,¢, ;.9 1.9;.,. The cross

pattern can be written as follows

i(@_{u}ri Ap\_1(Pia—Pi Pi~%ia +i Pinj —Pj P ~ P (134)
ox\ ox ) oy\ oy Mm Mm Mm Mm Mm I'm

Now let us imagine that the coordinate systemtgteal at a small angle, becoming a coordinate
systenix', y') (Figure 58). Since the cross-pattern lines agnali with the coordinate axis, the
pattern in new coordinates appears to be rotatadgied in comparison to the original
orientation. Nevertheless, the same equation (53¢glid in new coordinates. The derivatives of
electric potential with respect tbandy are taken along the new coordinate axis. We walad |
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to generalize this case: for any angjehe cross-pattern (134) properly defines Laplgmerator
with differentiation carried out along the new/ttetd coordinate axis.
For the observer at the original coordinate systemould appear that differentiation is

taken in “radial” direction with 90difference in angular direction fayax anda/oy. Moreover,
foro=90° we have the following relations®/ax? — 62 /ay? anda?/ay'? — —02/ox? . The second
derivative does not change si@ﬁf/ax'2 = AF/AX? = Af /(- AX)? :azf/axz)when direction of
differentiation is reversed. We introduce new fimei (x, y) which represents the first derivative

of ¢(x,y) when taken to the right or to the top of the noflmterest, and the first derivative with

the negative sign when taken to the left or tolib#tom of the node of interest. Numerically, this

function is calculated like

Pi1j — Pij Pis1j — Pij
Vij T Viaj T (135)
m m
®ij_1 ~ Pjj Pij+1 — Pj
‘//ij—l:r— V/ij+1:r—

m

We substitute (135) into (134) and obtain

O(0p) O(O0p 1 1
[—] +— (—] = (l//ij +1 TV —1)+

1
axlox) oyl oy r_(‘/’iﬂi+Wi—li):r_(‘/’i+1j+l//i—1j+l//ij+1+l//ij—1) (136)

m m m

Since the sign of the function(x, y)depends on its location relative to the node of

interest, the mismatch in sign @t 90° disappears when regular derivatives are substitiite

this function. We can rewrite the Poisson equaitiaierms of the finite difference, using (136)

1
r_(V/i+1j tVia) tVia 'H//ijfl): fi (137)

m
Since the cross-pattern (137) is valid for anyl@afigwe want to summarize all such

equations taken at angkes |0, z/2]. The summation is represented by an integral veispect to
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the angledand evaluated over the inter{@k/2]. There is no reason to take larger interval, as

for 6> z/2the functiony(x, y)repeats.

7/2 7/2 7|2 7/2 72
J.‘//i+1jd0+ I‘/’i—ljde+ I‘/’ij+1d9+ I‘/’ij—ldg: mfj Idé’ (138)
0 0 0 0 0

The functiony(x, y) is determined on the circle with radiys/2and changes with angle

0. Therefore, instead af(x, y)we can writey(#).

Figure 59. Finite difference for Poisson equationunstructured mesh
Let us substitute this correction into (138) wekéhe integral terms at the same places

on the left- hand side so that the substitutiogaisy to track back to the original form.

7 27 /2 37/2
1
j w(6)d6 + j w(0)do+ j w(0)do + j v(O)d0 =2 o
/2 3r/2 0 T
2z 1

0
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Next, we assume that(¢) may be constant in some interjal,, 6, ]. If we divide the circle
wherey(0) is calculated into a set of such intervals, thegral (139) splits into a series of
integrals over the intervals of constant valuesngshe fact thai/(¢) is constant in each
interval, it can be taken out of the integral (140)

Figure 59 shows elements of an unstructured masshected to a vertex (the black point)

where electric potential should be evaluated. Tdrestant values of (6, )are taken at the circle
of radius,,/2, the angular elemern, corresponds to the angle of tiietriangle at the vertex of

interest.
2 6,

f‘//(e)de = i Jbll/(gk )de = g{w(ak)gfde}z i {V/(H_k X‘gk —ek—l)}:%mm fy

0 k=1 O 1

> W6 bt} =Sy (140)

N
k=1

It is good to place (9, )at specific coordinateg, ) in the triangle, for example on the
median connecting the vertex of intergahd the poind at the middle of the opposite edge of
the triangle (please refer to interpolation inrigke in the previous section). This way the
coordinates are fixed and Iocation;dﬁk) is approximately at the center of the angular ssgm
50, . The radiusr,, could be estimated as the half of the mean disthatteeen the vertex of
interest and all the surrounding vertices.

The advantage of such a modified numerical scHemoisson equation is that all
vertices surrounding the vertex of interest contielto the calculation process. When regular
cross-pattern is used, there are only four poimtespolated to fit the pattern. For the example

presented in Figure 59, these points would fit intngles 2, 3, 5, and-1. The other

surrounding triangledo notcontribute into the calculation process. From peespective this
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saves calculation time, because only four intepania are required. From another perspective,
the information of electrical potential distributias not complete at the vertex of interest, as
some surrounding vertices did not contribute whikirt values.

In the Poisson Scheme we assumed that the intdgi@) could be integrated over

intervals of constamd, ). In the simplest case, the constant value has taken at the median

connecting the vertex of interest with the opposige. The position of the sample point at the

median is determined by radiyjs The coordinates of the sample point are

P (Xp + X3 —2%;) Fm(Y2 + Y3 —2y;) (141)

X =X + > > Y=Vt > >
\/(X2+X3—2X1) +(y2+Y3—2y1) \/(X2+X3—2X1) +(y2+y3—2y1)

For better accuracy, the functiei¥)has to be integrated from _, tog, along the circle
with the center at, and radius,, .The integration result needs to be averaged(ayves, ,).

Such value would represent the true mean cons&né vn the triangle.

We assume that electric potenti@l, »,,»;)is known at the corners of the triangle. The valtie

the sample point could be interpolated using (86).

DXy, Vi) = D, %, +O, Y, +D,

D, =(p3—@)X: +(p2—01)X,,
Dy =(p3 - Ve + (02 -1 )Y,

O, = +(p3 -9 )C; +(p2 -1 )C,

(142)

The coefficients of the Poisson Scheme are assemoliag coefficients in front ¢, ¢,,¢;).
We expand (142) and derive the coefficients:

¢’(Xk1Yk):‘D1¢’1+q)2(02+‘Ds¢’3
O, =1-O, -

! 2 3 (143)
(DZ :'7k = XT]Xk +Y7]yk +C”

¢)3 =§k = X;Xk +Y§yk +C§

The same result could be obtained using (84) aby (8
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f= (1—§—U)f1 +(’7)f2 +(§)f3
We proceed further and calculate coefficients offiony(¢). Accounting for (135) we can

write

w(0)=2(p(0)-0;) (144)

'm

Substitute (143) into (144)

1
'//(9): r_(‘Dl(/’l + D0, + D303 — @5 ): Yo + Yo, + Waps
m (145)
1
¥ :_((Di _5ik)
rm

Here 5, is the Kronecker delta anklis the local index of the vertex of interest in tumsidered

triangle. We substitute (144) into (140) and obtawdified coefficients

1
Z (P10 + 201, +‘P3¢k3)5‘9k}257”m fy (146)

N
k=1

The indexk in equation (146) passes through all the trianglgsounding the vertex of interest.
The indexi at the coefficientsy; and electric potential, corresponds to the exact local index in

the trianglex . The coefficients; can be used only for one vertex in the trianglanibther

vertex is considered, the coefficients must belcedated, as the median would change with

consequent change in position of the sample pqiny, ).
Let us assume that the vertex of interest is sudted byN, other vertices. We can

rewrite (146) in terms of these vertices

Nv [ N
Z{chs}% =Csfj
s=1 (k=1

(247)
Cys = (\Pi 06y )}“ks Cis Z%ﬂrm
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In equation (147) the indexpasses through a number of vertices that incluteseartex
of interest and the surrounding vertices directigreected to the vertex of interest, the indtex
passes through all the surrounding triangles,riiexiis the local index of the vertexin the
triangle k, the functioniis equal to one if the vertexbelongs to the triangle, otherwise it is

equal to zero. We further simplify (146)

Nv-1

9 =C¢fy - ch% (148)
s=1

N
Herec, =%chs represents the inner summation and- c ., /c is a coefficient in front of the
k=1

free charge. Both of these coefficients accountHercoefficient in front of the vertex of
interest. It is worth to mention that all considkomefficients depend on geometry only. If the
mesh does not change, they stay constant througisimulation. Thus the coefficients could
be calculated at the initial stage and storedlistavhich order corresponds to the order of the
vertices surrounding the vertex of interest. Whalntson of Poisson equation is required the
coefficients are multiplied by corresponding el&cpotential and, according to (148),
immediately provide the proper value at the consideertex.

The implicit scheme can be easily derived from jI48ulting with a constant matrix
(unless the mesh changes). This matrix could beggssed before the simulation, in order to find
its inverse form. At the simulation, only the ridtand side vector consisting of the free charges
needs to be formed. A simple multiplication by iheerse matrix immediately yields with the

correct distribution of electric potential. Evemgier way to find the mean value gf9)is to

take the mean electric potential at the centehftm'angle% (p, + @, +p;)and to use it for any

vertex assuming that this value is actually ondhele with radius,, .
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In order to estimate the effect of the fringingattic field and the species charge on a
solution of the Poisson equation, we calculate@ati(Figure 60) the left-hand side and the
right-hand side of equation (133). According to analysis, the solution is not affected by
species charges (the right plot in Figure 60);aimty depends on the fringing electric field (the
left plot in Figure 60) from the electrodes, as iindicated by seven orders of magnitude

difference between the left and the right handssafehe Poisson equation.

Left hand side of the Poisson equation, [Vim?] «10 3 05 Right hand side of the Poisson equation, [V/m?]
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Figure 60. The left-hand side (left) and the ridpatad (right) side of Poisson equation
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Figure 61. Electric potential (left) and reduceeetric field (right)
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Figure 62. Electric field componentsy Beft) and E (right)

The left plot in Figure 61 represents the elegintential calculated with the use of the
presented numerical scheme. The electric potedititle inlet (Figure 63) is derived from the 1D
model of plasma generation. Due to significant gbation of the fringing electric field, the
highest electric potential for 2D problem is foundhe vicinity of electrodes. The further from
the inlet, the lower becomes the electric poteniibk electric potential almost does not change
during the simulation due to negligible contributiof species charge to electric potential
distribution. The x- and y-components of electigdd (Figure 62) are determined from the
gradient of electric potential.

The steep electric gradient along the inlet, eglgan the vicinity of the walls (Figure
63), is a derivative of the oscillating electrielfl between the electrodes. Tyaeomponent of
the electric field is constant, due to the straation between 2D and 1D plasma models. At the
same time, the longitudinal component of the fisldot bound to 1D problem. In 1D case, this
component was zero, because everywhere betweetettteodes, the electric field fluctuated
uniformly. At the channel with free walls, the digcfield rapidly changes ir-direction. This is

why the relaxation of electric potential along ti&nnel can be observed even at the inlet.
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Comparing orders of magnitude, the transverse coeuoof electric field is 2x larger than the

longitudinal one.

y, [mm]

05

1 1 1
0 50 100 150
Electric potential, [V]

Figure 63. Electric potential at the Inlet

The right plot in Figure 61 shows the reduced eledeld which is calculated as the
length of the electric field vector divided by thember density of the neutral gas. The reduced
electric field is not constant at the inlet: whitey-component of the field is constant, the x-
component changes accounting for electrical camutiof open channel right after the inlet.
Because the reduced electric field is determinenhfthe length of the electric field vector, its
value constantly changing, following tkecomponent of the field. The high values of the
reduced electric field in the left-top and left fomh corners correspond to similar behavioEgf
leading to well pronounced species generationestettareas of the domain.

There are analytical [93, 97] and numerical [98]1&fproaches exist to solve Poisson
equation in order to estimate the fringing effefcthe electric field at the edges of the capacitor-

type arrangement of the electrodes. Our model aatioaily accounts for the fringing effect,
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using the initial 1D distribution of the electriogential, and expanding it along the channel. Due
to this fact, there is no need for additional pohaes to implement the fringing electric field in

the 2D model.

Results and Discussion

The results acquired from 2D simulation of plasmeegtion in the channel may be
divided into three categories — convective reselestrical results, and the ones combining both,
fluidic and electrical effects. The first categoepresents plasma species advancing along the
channel due to purely convective forces with neteleal field engaged. For convective
transport, the species may be considered as aaregas which flows due to the imposed
velocity field. Species distribution due to conwveettransport is shown in Figure 56. The species
distribution follows velocity profile of the gasoilv, resembling parabolic shape. These data do
not properly represent the plasma, as there iohective behavior of the species when electric
field is taken out of the consideration. Nevertes|ehe species distribution is calculated based
on their profile taken from the 1D problem of plasgeneration. The next step is introduction of
electric field that is shown in Figure 61 and c#dtion of the species respond to the field. We
implement the recombination of electrons and pesiitons, in order to properly account for the
species losses. Electrons are present at theindetaller number than positive ions, this is why
they are completely consumed in the recombinatroggss, showing no propagation in the left
plot of Figure 64.

The right plot of Figure 64 represents propagatibpositive ions along the channel of

the plasma reactor. The recombination process coes@a majority of positive ions within a
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short distance, with the peak population fallingnfir1.8 x 10~ [J/m3] t00.4x10" [J/m3 ] , resulting
in 4x decrease in the number density at the distaftcm.

Number density of electrons, [m3] Number density of positive ions, [m] =107
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Figure 64. Convective flux of species at the stesiate
The species generation and accounting for drifbaig} introduces fluxes of few orders
of magnitude higher than those generated by comweettainsport. These fluxes require
extremely small time step to be resolved correaylgither presented numerical scheme. This
case requires additional treatment that works \githe gradients of number density.
Comparing the prediction of 1D plasma model fospia fade, we can conclude that in
1D case the remaining number density is underestan&or example, Figure 37 shows

1.776x 1015[J/m3] as the number density for remaining positive ianthe distance olcm,

which is 20x smaller than the value predicted byr2@del.

Figure 65 shows typical profiles for number densityositive ions measured with
2mm step, starting from the Inlet. The drastic decréaseuimber of ions could be immediately

seen when the profile at the Inléd Mm) and the one a2 MM are compared. The very
pronounced feature of all the profiles, exceptittigal one, is a depression at the center which is

formed due to the recombination process. Sincegb@mbination term is directly proportional
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to the number density of the species, the highmesties loss occurs at the central area where the
largest number of the species is present. Elecammsonsumed in this process entirely, while

positive ions develop a depression in their nunaegrsity profile.
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Figure 65. Typical profiles of advected plasma iffiedent locations along the channel
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Figure 66. Average blending coefficient for dynablending of 2D numerical scheme
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The data presented in this section is calculatetyuk00000 iterations on a
computational domain consisting of 2500 nodes cot@akeinto 4752 triangular elements that
compose the mesh. The dynamic blending favoredalatifference scheme spending most of
the time around = 0.378¢(Figure 66). A similar value of the blending facteas observed for
random unstructured mesh and for the mesh withglés having two sides aligned with the

coordinate axes.
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CONCLUSION

The model of plasma discussed in this work has lkeewn for few decades. However,
some features of this model were not clearly urtdeds In this work we highlighted the details
that we found important or challenging while sintuig plasma behavior, for example, we found
how the boundary conditions have to be properlystroicted for a numerical representation of
1D Poisson equation, we observed major speciegg@reat locations different from the peaks
of number density, we also developed two numedaparoaches to solution of convective
transport and the Poisson equation in 2D case.

For the 1D problem of plasma generation betweenpavallel electrodes, we discussed
time-averaged profiles of number density of thecggse the electric field, the
generation/recombination, the temperature of speaied some other parameters evaluated in
numerical simulation. These parameters providendwessary initial conditions for the 2D
model of the LAPPD system. The analysis of thesarpaters emphasized important features
and revealed previously hidden relations amonggs®es in plasma.

The surface plots presented in the work help witterstanding of some dynamic effects,
such as when and why the generation/recombinaappédns. Some results lead to interesting
outcomes. For example, it is easy to imagine teaegation of species should happen when a
large cloud of electrons passes through a neusial devertheless, the surface plots showed that
the major generation happens at the point wherebeutensity of electrons is closer to the
mean value, with high electric field generated ttueverhead of ions at that location. The
surface plots also provided visual assistance detstanding dynamics of plasma motion in the

alternating electric field.
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Plasma sheath and phase shift were considereatexstipl parameters for experimental
measurements, creating a good validation pointiflermodel of plasma generation and
sustainment. Finally, some engineering outcomeg wexde from the model of plasma
generation. Temperature of electrodes was represgesta function of applied external voltage
and analyzed with considerations on the necesskitpaing equipment. The interesting example
of plasma fade showed a potential range of pladorag The range was estimated for different
voltages in order to roughly determine the favogahbde of operation for the LAPPD setup.

In the 2D model we developed two numerical methodgder to simulate plasma on
unstructured meshes. One method addresses sobditb@mtinuity equation for plasma species,
using the concept of finite volumes and analyzingds crossing the boundaries of the finite
volumes. Analytical derivations and numerical resare present in this work to demonstrate
this method. The second method was developedfotien of Poisson equation on unstructured
meshes. When calculating electric potential atafrtbe nodes, the method naturally involve all
the surrounding nodes into the calculation, witbhemode contributing to the result according to
the angular span of the triangle that contains botles — the one that is subject for potential
evaluation and the one contributing with its poni his method requires only minor
derivations on based on the geometry of the giveshmif geometry does not change, the
method allows creation of a constant matrix andspay, finding its inverse form for very fast
and accurate solution of Poisson problem.

Numerical results acquired for 2D problem of plasmvective transport along a channel
representing the linear plasma head, showed tygistibution of plasma species for the case of
pure convection, as well as for the case of recoatlmn. The length of the plasma plume and

average number density of plasma species are ftoupel underestimated in the case of 1D
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plasma fade. The 2D model introduces correctiottstime expected profiles of number density

taken at different distance from the outlet of gemeration chamber.
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APPENDIX A

Table A.1
Typical electrons’ rate parameters calculated B@LSIG+
E/N He, De, (O Wmean
Td nmt/V.s nt/s 1/m eV
0 0.261000000 0.0488 0 0
1 0.179970972 0.079342042 0 0.5641
2 0.127274757 0.106434446 7-69%10°°" 1 0g2
3 0.105131927 0.129954226 7-185<107°°" 1 626
4 0.092962674 0.154032228 1.882E-07 2.224
5 0.08563135 0.181422351 0.002095132 2.906
6 0.081277213 0.214096982 0.176354373 3.692
7 0.079044323 0.2497488 2.42134581 4.508
8 0.078151167 0.282274571 12.6078732 5.223
9 0.077927878 0.30832496 38.210562 5.776
10 0.078039522 0.328197685 84.428682 6.186
11 0.078225596 0.34338134 153.540894 6.492
12 0.078448885 0.355364519 245.762166 6.729
13 0.07863496 0.365077593 360.34011 6.917
14 0.078821034 0.373264858 495.76995 7.074
15 0.079007108 0.380335678 650.54691 7.207
16 0.079155967 0.386662201 823.32744 7.324
17 0.079304827 0.392244427 1012.23057 7.429
18 0.079416471 0.397454505 1216.45017 7.525
19 0.079565331 0.402292434 1434.37398 7.614
20 0.079676975 0.406758215 1665.19587 7.697
21 0.07978862 0.411223996 1907.57229 7.775
22 0.079900264 0.415689777 2160.96582 7.85
23 0.079974694 0.419411261 2424.30162 7.922
24 0.080086338 0.423504894 2697.8484 7.992
25 0.080197983 0.427226378 2979.9939 8.059
26 0.080272413 0.43132001 3270.2007 8.125
27 0.080384057 0.435041495 3565.7817 8.19
28 0.080458487 0.43839083 3872.1111 8.253
29 0.080570131 0.442112314 4183.8147 8.315
30 0.080644561 0.445833799 4500.8925 8.376
31 0.080756206 0.449183134 4826.0316 8.436
32 0.080830635 0.452904618 5156.5449 8.495
33 0.080905065 0.456253954 5492.4324 8.554

152



Table A.1

Typical electrons’ rate parameters calculated B@LSIG+

(continued)

E/N

He, De, a, Wmear
Td n/V.s nf/s 1/m eV
34 0.081016709 0.45960329 5836.3812 8.613
35 0.081091139 0.463324774 6180.33 8.67
36 0.081202784 0.46667411 6532.3401 8.728
37 0.081277213 0.470023445 6889.7244 8.785
38 0.081388858 0.473372781 7249.7958 8.841
39 0.081463288 0.477094265 7615.2414 8.898
40 0.081537717 0.480443601 7983.3741 8.954
41 0.081649362 0.483792937 8356.881 9.01
42 0.081723791 0.487142272 8733.075 9.065
43 0.081835436 0.490863756 9114.6432 9.121
44 0.081909866 0.494213092 9498.8985 9.176
45 0.08202151 0.497562428 9885.8409 9.231
46 0.08209594 0.500911764 10275.4704 9.286
47 0.082207584 0.504633248 10670.4741 9.341
48 0.082319229 0.507982583 11065.4778 9.396
49 0.082393659 0.511331919 11465.8557 9.451
50 0.082505303 0.515053403 11868.9207 9.506
51 0.082579733 0.518402739 12274.6728 9.56
52 0.082691377 0.522124223 12680.4249 9.615
53 0.082803022 0.525473559 13091.5512 9.67
54 0.082877452 0.529195043 13505.3646 9.724
55 0.082989096 0.532544379 13919.178 9.779
56 0.083100741 0.536265863 14338.3656 9.833
57 0.083212385 0.539615199 14757.5532 0.888
58 0.083286815 0.543336683 15179.4279 9.943
59 0.083398459 0.547058167 15601.3026 9.997
60 0.083510104 0.550407503 16028.5515 10.05
61 0.083621748 0.554128987 16455.8004 10.11
62 0.083696178 0.557850471 16885.7364 10.16
63 0.083807823 0.561571955 17315.6724 10.22
64 0.083919467 0.565293439 17748.2955 10.27
65 0.084031112 0.569014923 18183.6057 10.33
66 0.084142756 0.572736407 18621.603 10.38
67 0.084254401 0.576457891 19056.9132 10.44
68 0.08432883 0.580179376 19497.5976 10.49
69 0.084440475 0.58390086 19938.282 10.55
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Table A.1

Typical electrons’ rate parameters calculated B@LSIG+

(continued)

E/N

He, De, a, Wmear
Td n/V.s nf/s 1/m eV
70 0.084552119 0.587622344 20378.9664 10.60
71 0.084663764 0.591715976 20822.3379 10.66
72 0.084775408 0.59543746 21268.3965 10.71
73 0.084887053 0.599158945 21714.4551 10.77
74 0.084998697 0.603252577 22160.5137 10.83
75 0.085110342 0.606974061 22609.2594 10.88
76 0.085221987 0.611067694 23058.0051 10.94
77 0.085333631 0.614789178 23509.4379 10.99
78 0.085445276 0.61888281 23960.8707 11.05
79 0.08555692 0.622976443 24412.3035 11.11
80 0.085668565 0.626697927 24866.4234 11.16
81 0.085780209 0.63079156 25320.5433 11.22
82 0.085891854 0.634885192 25774.6632 11.28
83 0.086003498 0.638978825 26228.7831 11.33
84 0.086115143 0.643072457 26685.5901 11.39
85 0.086264002 0.64716609 27139.71 11.45
86 0.086375647 0.651259722 27596.517 11.5
87 0.086487291 0.655725503 28053.324 11.56
88 0.086598936 0.659819136 28510.131 11.62
89 0.08671058 0.663912768 28966.938 11.68
90 0.086822225 0.668378549 29450.616 11.74
91 0.086933869 0.672472182 29907.423 11.79
92 0.087045514 0.676565814 30364.23 11.85
93 0.087194373 0.681031595 30821.037 11.91
94 0.087306018 0.685497376 31277.844 11.97
95 0.087417662 0.689591009 31734.651 12.03
96 0.087529307 0.69405679 32218.329 12.09
97 0.087640951 0.698522571 32675.136 12.15
98 0.087752596 0.702988352 33131.943 12.2
99 0.087901455 0.707454133 33588.75 12.26
100 0.0880131 0.711919914 34072.428 12.32

"This value is taken from fit-data. The originalutsrom BOLSIG+ is zero.

154



APPENDIX B

Table B.1
Typical HE ions’ rate parameters found in [64]
E/N Uy E/N Lo
Td x10°m?V.s Td x 107 m?IV.s
0 1.05 40 9.28
1 1.04 50 8.97
2 1.04 60 8.67
3 1.04 80 8.12
4 1.03 100 7.67
5 1.03 120 7.25
6 1.03 150 6.78
8 1.02 200 6.12
10 1.02 250 5.60
12 1.01 300 5.19
15 1.00 400 4.58
20 0.99 500 4.17
25 0.974 600 3.81
30 0.96 700 3.57
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APPENDIX C

Initial distribution of plasma parameters for 2Dvadtive transport of plasma
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Figure C.1. Area of the finite volumes
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Figure C.2. Initial distribution of x-component electric field
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Figure C.3. Initial distribution of y-component electric field
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Figure C.5. Initial distribution of positive ionsahility
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Figure C.6. Initial distribution of electrons di§ion coefficient
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Figure C.7. Initial distribution of electrons kinetenergy

Dimensionless lonization Coefficient

0 01 02 03 04 05 06 07 0B
channel length, mm

Figure C.8. Initial distribution of ionization cdfient
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Figure C.9. Initial distribution of generation term

16 Dimensionless x-Component of E

1.2

0.8

yap size, mm

0 0.1 0.2 0.3 04 U 0.6 07 08
channel length, mm

Figure C.10. Initial distribution of x-component eiectrons drift velocity
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Figure C.11. Initial distribution of y-component eiectrons drift velocity
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Figure C.12. Initial distribution of x-component pdsitive ions drift velocity
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Figure C.13. Initial distribution of y-component dsitive ions drift velocity
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