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ABSTRACT 

 

 Radio telemetry was used to monitor a population of male and female ring-necked 

pheasant (Phasianus colchicus; hereafter pheasant) in southwestern North Dakota to 

examine pheasant habitat selection. Study objectives were to: 1) determine preferred 

pheasant winter cover habitat;  2) develop management recommendations to increase 

pheasant abundance; 3) identify habitat use, survival, and dispersion differences between 

male and female pheasants; and 4) compare nest-searching techniques to determine most 

efficient research technique for finding pheasant nests. We captured 191 pheasants, 

assessed weekly survival using known-fate models in Program MARK and determined 

home ranges and habitat selection and preference using ArcGIS. We assessed three 

common methods of nest searching: intense ground searching, chain dragging, and 

telemetry. Averaging >2000 hectares, our home ranges estimates. Pheasant showed 

selection toward farmsteads with livestock, large wetlands, and CRP-type grasslands. 

Pheasant survival estimates for the winters of 2011 and 2012 were 91 and 84 percent, 

respectively.   
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CHAPTER 1. GENERAL INTRODUCTION 

 

Ring- necked pheasants (Phasianus colchicus), originally native to Asia, have been 

introduced throughout the world as a renowned game bird and is possibly the most studied 

species of Galliform in the world (Johnson and Knue 1989, Giudice and Ratti 2001). 

Hunters and wildlife viewers alike are attracted to this species due to the spectacular 

multicolored plumage of the males, resistance to human encroachment, and its overall 

visibility to the inexperienced birder. The pheasant has become one of the iconic symbols 

throughout the highly cultivated Midwest landscapes. The male pheasant has proven to be 

an excellent quarry for sportsmen with its swift running ability and explosive flight 

characteristics (Johnson and Knue 1989, Giudice and Ratti 2001).  

The first viable population of pheasants in North America was introduced into the 

Willamette Valley, Oregon in 1881 (Johnson and Knue 1989). The initial 100 pairs 

imported from China provided a growing population that allowed managers to capture and 

transport wild birds to other parts of the country and increase the chance of successful 

establishment into new areas. Oregon-reared pheasants were released as early as 1891 in 

South Dakota, with  over two million pheasants killed annually in the state by 1927 

(Johnson and Knue 1989). Introduced to North Dakota by 1910 with the first open hunting 

season in 1931, pheasants have flourished, making both North and South Dakota known 

internationally for great pheasant hunting opportunities (Johnson and Knue 1989). Since 

these early stocking efforts, managers have accomplished pheasant establishment across 

much of the nation. Pheasants have flourished in a variety of farmland habitats when 

adequate quantities of grain crops and uncultivated grass and shelter areas were present to 
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provide suitable habitat. The pheasant has become one of United States’ favorite game 

birds and has thrived throughout the Great Plains.   

Since the pheasant is continuously in high demand as a game bird, it has received 

large amounts of funding for habitat improvements to increase the population success and 

survivorship. Like most wildlife species, food, predation, and necessary cover from severe 

weather are important influences on pheasant demographics. Management of pheasants in 

North America has evolved around two main focuses: 1) enhancing winter survival by 

establishing woody or herbaceous cover and providing food plots and 2) enhancing 

reproduction by increasing grasslands (Leif 2005). There has been a limited amount of 

research done on pheasants in North Dakota’s primary pheasant range. This study will give 

land managers in North Dakota’s prime pheasant habitat information regarding pheasant 

habitat selection during both reproduction and winter phases of the population’s life cycle. 

Understanding pheasant biology in an area that receives substantial amounts of income 

from recreational hunting is important to the local communities and for the retention of 

high pheasant populations while record-high commodity prices are driving the loss of 

permanent cover across the landscape. The most serious limitation in most regions of 

pheasant habitat is the change in agriculture industry from small, multi-crop farms to large 

mono-crop farms with little idle cover or diversity on the landscape (Giudice and Ratti 

2001).  

The goal of this project was to provide landowners and managers with information 

to better manage ring-necked pheasants on private and public lands. This project identified 

different variables of scale associated with ring-necked pheasant selection of winter habitat 

to allow managers to adjust their strategies to include the necessary aspects of winter 
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habitat in their management plans. We also determined the most effective nest searching 

techniques for use in other pheasant nesting studies.  

The economic value of pheasants in North Dakota rationalizes the cost associated 

with this study. Landowners have potential economic gains from increased pheasant 

production on their properties through increased recreational activities. This research 

provides landowners and managers data showing the ecological value of winter habitat and 

nesting cover on the landscape to reduce pheasant losses and encourage pheasant 

population growth for potential, subsequent increases in recreational demand throughout 

North Dakota.  

 

An Explanation of Thesis Organization 

This thesis follows the format required for submission into the Journal of Wildlife 

Management. The literature review is contained within Chapter 2, while Chapters 3, 4, and 

5 represent separate submissions for journal publication. 

I used the pronoun “we” to give credit to my co-authors who provided their 

professional experience to help comprise different aspects of Chapters 3, 4, 5, and 6. 

Chapters 3, 4, and 5 are denoted with a footnote marker that explains the co-authors’ 

contributions to the proposed publication.  
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CHAPTER 2. LITERATURE REVIEW 

 

Species Description 

There are four main groups of pheasant in North America: 1) the ring-necked 

pheasant, common to Europe, Asia, and North America, 2) the white-winged pheasant from 

Afghanistan, 3) the green pheasant from Japan, and 4) the European pheasant from Eastern 

Europe (Sibley 2003). Females from each of these species are all similar in appearance 

with a drab, sandy-brown color, a long, pointed tail, and barred flight feathers (Sibley 

2003). Males of each species are denoted by specific characteristics. The ring-necked 

pheasant is known for the white ring around their neck, white-winged pheasant have white 

secondary and primary feathers along their wings; green pheasants have many green 

iridescent feathers along their breast and sides. The European pheasant lacks the white ring 

of feathers around the neck that the ring-necked pheasant has, but is otherwise similar with 

red plumage around cheeks and iridescent brown, green, red, olive, gray, orange, and black 

feathers covering the body that make the male pheasants unmistakable when combined 

with their long, pointed, perpendicularly striated tail (Johnson and Knue 1989, Sibley 

2003). Ring-necked pheasants range in size, but are typically about 53 cm long and have a 

wing span of about 79 cm (Sibley 2003). Trautman (1982) recorded weights from 13,124 

male and 2,071 female pheasants in South Dakota with average masses of 1,263 and 917 g, 

respectively.  

 

Distribution and Abundance 

Ring-necked pheasants are found throughout much of the world. In the United 

States, sustained populations have occurred throughout much of the nation with the 
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exception of the southeastern states (Sibley 2003). The data on true distribution of viable 

pheasant populations is obscure due to widespread release efforts across the country, 

especially in areas where the local population is not self-sustaining (Giudice and Ratti 

2001). Pheasants are located throughout North Dakota with the greatest densities in 

southwestern North Dakota in the Missouri Slope Region (Martison and Grondhal 1966). 

There are relatively stable populations throughout the state, but demographics vary 

depending upon annual winter intensity (Johnson and Knue 1989). In southwestern North 

Dakota, pheasants are commonly in larger flocks of 15 to 1000 during fall and winter; 

respectively, but tend to be more solitary during spring and summer. However, they will 

concentrate, to a lesser degree, on areas of adequate nesting cover and appropriate thermal 

cover for roosting during spring and summer months (Johnson and Knue 1989). 

 

Diet 

Pheasant are opportunistic and a very adaptive bird in the aspect of forage behavior. 

Although there are subtle differences in forage selection seasonally, the basic food sources 

remain constant throughout the year. Pheasants primarily consume seeds, grasses, roots, 

insects, and wild fruits and nuts, but in proportions based on location and seasonality of 

food availability (Trautman 1952, Olsen 1977, Hill and Robertson 1988, Johnsgard 1999). 

Waste grain is a common food for pheasants throughout much of their range, but access 

can be limited by snow depth during winter months (Olsen 1977, Trautman 1982, Guidice 

and Ratti 2001). Pheasants have also been recorded by Gates and Hale (1974) acquiring 

waste grain from livestock manure, which is commonly available around farmsteads even 

in deep snow conditions. Many land managers provide food plots for pheasants to offset 
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potential energy losses during extreme winter conditions to increase survival and 

subsequent populations for hunter harvest.  

 

Habitat 

 Pheasant habitat is generally associated with agricultural lands primarily used for 

small grains, interspersed with permanent grass cover (Snyder 1985, Johnson and Knue 

1989, Giudice and Ratti 2001, Geaumont 2009). Self-sustaining pheasant populations 

require portions of the landscape to be in a form of permanent grass cover for reproduction. 

Many populations also require additional cover types for protection from severe weather 

conditions. Populations of pheasants in northern latitudes, like North and South Dakota, 

often require some form of woody cover to provide thermal relief from severe weather 

conditions (Perkins et al. 1997, Homan et al. 2000, Leif 2005).  

 

Winter Habitat 

Extended snow cover and minimum temperatures affect pheasant survival (Leptich 

1992, Perkins et al. 1997, Gabbert et al. 1999, Homan et al. 2000, Leif 2005). Due to 

severe North Dakota weather, winter cover is often the limiting factor on pheasant survival 

(Martison and Grondhal 1966, Johnson and Knue 1989). Primary pheasant range in North 

Dakota is south and west of the Missouri River (Martison and Grondhal 1966). The 

ecoregion associated with the highest densities of pheasants is the Slope Region of the 

Missouri Plateau including but not limited to Adams, Bowman, Grant, Hettinger, and Stark 

counties. Agricultural land in southwestern North Dakota is primarily used for small grain, 

sunflower, canola, corn, pea, grazing, and hay production (Martison and Grondhal 1966). 
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Tree growth is slow and most often requires multiple plantings and watering to establish 

viable tree-rows. Since woody cover is hard to establish, the few available wetlands can 

provide valuable winter cover for pheasants in the region.   

Since areas of North and South Dakota lack adequate winter cover for pheasants in 

the form of shelterbelts, cattail (Typha sp.) wetlands are commonly the best available 

thermal cover (Gabbert et al. 1999, Homan et al. 2000). Gabbert et al. (1999) studied 

pheasant utilization of cattail wetlands (more than 50% emergent vegetation) and open 

wetlands (less than 50% emergent vegetation) in South Dakota. They found that during 

most winter conditions pheasants showed preference to tall grass, food plots, and cattail 

wetlands. Their study showed that pheasants preferred wetlands that had greater than 50% 

emergent vegetation such as cattails. If managers are interested in encouraging pheasant 

populations in areas that lack available thermal cover, removal of Typha and other dense 

wetland vegetation was not recommended. 

 During periods of heavy snow and blizzards, pheasants showed strong preference 

to shelterbelts. Linear arrangements of shrubs and trees (shelterbelts) have been planted 

throughout the nation to reduce climatic effects on rural housing, farmsteads, livestock, and 

crops (Gabbert et al. 1999). Severe weather concentrated pheasants and predators in the 

same habitat type, increasing pheasant mortality (Perkins et al. 1997, Gabbert et al. 1999). 

This was especially true in areas with widely-spaced patches of winter cover. Gatti et al. 

(1989) noted that corn fields, retired croplands, and marshes were used more in the fall 

than winter by female pheasants in Wisconsin; while thick, woody brush was used more in 

the winter than fall. Pheasant habitat selection in southeastern North Dakota followed a use 

sequence from idle uplands, to large Class IV wetlands, to shelterbelts as weather 
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conditions became increasingly worse (Homan et al. 2000). This trend is common in other 

states including Wisconsin, Iowa, and South Dakota (Homan et al. 2000). Therefore, 

pheasant managers are encouraged to develop thick shelterbelts adjacent to cattail wetlands 

when possible to aid pheasant survival during the harshest winter conditions.   

Pheasants can show high preference to cattail wetland habitats during portions of 

harsh winters (Gatti et al. 1989, Leptich 1992, Gabbert et al. 1999, Homan et al. 2000). 

Researchers have found that wetlands overgrown with monotypic stands of cattail have 

lower biodiversity and an altered ecological function (Homan et al. 2000). Current wetland 

managers are interpreting ways to reduce the encroachment of cattail into wetland areas to 

encourage native species and natural function of wetlands throughout the Prairie Pothole 

Region. This management practice is beneficial to waterfowl and other native avian 

species; however, if pheasants are the targeted management species, sediment and cattail 

removal from wetlands is not the best management option (Gabbert et al. 1999, Homan et 

al. 2000).   

Although pheasants often inhabit the same cover-type throughout the winter, 

pheasants form a stronger bond with upland breeding sites than lowland wintering areas 

(Homan et al. 2000). Pheasants will remain in the vicinity of their breeding sites until 

forced to leave due to lack of cover. Homan et al. (2000) reported that once pheasants left 

their upland areas due to snow depths reaching 30 cm they moved into large Class IV 

wetlands that were a minimum of 10 hectares in size. In other studies, it has been noted that 

snow depths greater than 38 cm are a threshold that drives pheasants away from the 

preferred cattail wetlands to emergency woody-cover habitats (Gatti et al. 1989, Gabbert et 

al. 1999).   
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Pheasant winter-related casualties and the need for more suitable winter cover are 

common in the western states. In southern Idaho, Leptich (1992) found winter cover as the 

limiting factor on pheasant populations. Idaho vegetation of bunchgrasses and big 

sagebrush (Artemisisa tridentata) do not provide effective thermal cover; however, 

sagebrush can be very important to pheasants for loafing and escape cover. Leptich (1992) 

suggests that current managers of roadsides, irrigation ditch banks, and odd farm corners 

should stop mowing, spraying, and burning these herbaceous areas and allow them to 

persist as herbaceous cover for pheasant use. Old, overgrown farmsteads are known in 

southern Idaho for their pheasant holding capacity. The tall, erect herbacious cover and 

cluttered landscape of abandoned farmsteads provide great microclimates for pheasants, 

especially during the winter as they avoid snow and search for food. In all, pheasants often 

seek areas of dense cover as previously discussed, but the importance of woody cover 

depends greatly on winter severity (Gates and Hale 1974, Hill and Robertson 1988, Leptich 

1992, Gabbert et al. 1999, Homan et al. 2000, Geaumont 2009).  

 

Spring Dispersal 

Winter mortality is significant in many parts of the country, but the highest 

mortality can occur during spring dispersion in some cases. Snyder (1985) found the lowest 

hen survival occurred during dispersal, pre-laying, and laying periods in northeastern 

Colorado. The lowest survival was in April associated with the annual spring influx of 

avian predators and lack of vegetation with appropriate height-density for hen concealment. 

Once new growth wheat reached a 1 dm. height, hen survival increased, followed by nest 

initiation and brood rearing.  
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Seasonal movements of pheasants generally range in distance from 0.8 to 3.2 km 

from wintering areas to summer home ranges (Olsen 1977). Male pheasants leave 

wintering grounds up to a month before hens because they reach mating condition earlier 

and establish territories before hens begin searching for nesting sites (Gates and Hale 

1974). Male pheasants are polygamous and claim their territories by crowing at the 

boundaries (Leif 2005). Gates and Hale (1974) noted that roosters tended to have 

established breeding territories and finish dispersing by early April, while most hens were 

still dispersing from wintering areas by early May in Wisconsin. Male pheasants tend to 

concentrate in areas interspersed with heavy or thick cover and an open, relatively flat area 

so they are close enough to nesting cover for hens and open enough so they can show their 

impressive mating plumage to be seen by the hens (Hill and Robertson 1988). Non-

territorial males are often found in small bachelor groups during the breeding season, 

farther from potential breeding cover than other males (Hill and Robertson 1988).  

Warner et al. (2000) reported that survival of pheasants, independent of sex and age 

class, is usually lowest during the winter months; however, the greatest proportion of 

deaths during the growing season was related to older hens during the incubation period. 

Both male and female pheasants showed high return rates to past breeding sites with no 

difference between distances traveled in Wisconsin. Juvenile hens showed the lowest levels 

of natal site fidelity at 26 percent followed by juvenile roosters at 52 percent (Gates and 

Hale 1974).  Pheasant exhibit different use patterns in response to local habitat conditions 

wherever found (Leptich 1992). Cover, cultivation, and the distribution of both in relation 

to each other are important to provide food, safety from predators, and protection against 

harsh environmental conditions for pheasants. 
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Several research projects have reported differences in body condition, movement, 

and habitat use between adult and juvenile pheasants (Gates and Hale 1974, Snyder 1985, 

Gatti et al. 1989, Homan et al. 2000, Warner et al. 2000). Survival for juveniles is typically 

less than that of adults due to lower body weights and increased movement. Homan et al. 

(2000) found that juveniles made considerably longer linear movements than those made 

by adults, averaging 299 m and 183 m, respectively. Gatti et al. (1989) found home range 

size, interval, and net moves were all greater for juveniles than adults, supporting other 

such findings from past studies. Warner et al. (2000) found that home ranges for adults 

were about twice that of adolescents in Illinois; however, there was no difference of 

survival between age classes in their study. Increased movement tends to be strongly 

correlated to increased mortality of ring-necked pheasants, but varies by region.   

 

Reproduction 

Behavior 

 Male pheasants display agnostic behavior and establish breeding territories after 

spring dispersal. This is the time of the most aggressive encounters between pheasants. 

Fighting among pheasants usually entail physical interaction of males fluttering up 

together, pecking, spurring, and beating each other with their wings until one bird is 

established as the dominant male and remains in his territory as the loser retreats (Cramp 

and Simmons 1980). Territories are maintained by crowing, boastful displays, and 

physically chasing of intruding males. Seasoned adult males usually reestablish previous 

territories, whereas young males breeding for the first time tend to fill vacancies (Grahn et 

al. 1993). Territories are not strictly defined, and may overlap (Gates and Hale 1974).  
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After leaving wintering sites, females form harems (groups) that move into male 

territories and create a mating system called harem-defense polygyny where males fend off 

other males from their group of females (Oring 1982, Hill and Robertson 1988). Males 

defend and guard their harems as they defend and guard their territories to reduce the 

chances of forced copulation from outside males (Hill and Robertson 1988). As males 

guard, and watch for predators and intruding males into their territories, females are able to 

increase food intake from the decreased need of vigilance since the male is watching over 

the entire harem (Hill and Robertson 1988). Because harems have individual females 

leaving and entering the group throughout the breeding season, breeding readiness of 

females tends to be asynchronous (Oring 1982) thus one male in a wild population can 

sufficiently cover fertility needs of 10 females (Dale 1956). Females within a harem have a 

seasonal monogamous bond to the territorial male (Cramp and Simmons 1980), and 

females in England have been recorded remaining loyal to their previous territorial male in 

successive years (Hill and Robertson 1988). Territories and agnostic behavior of males 

begins to diminish as the last hens leave to initiate nests and open female presence within 

their territories decreases.  

 

Nesting 

Due to its high popularity as a game bird, much research has been conducted 

regarding pheasant ecology (Warner 1981, Trautman 1982, Whiteside and Guthery 1983, 

Snyder 1984, Johnson and Knue 1989, Robertson 1996, Geaumont 2009). Perhaps the most 

investigated aspect of ring-necked pheasant biology is the species reproductive behavior 

(Linder et al. 1960, Jarvis and Simpson 1978, Dumke and Pils 1979, Leif 1994). Leif 
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(1996) recorded hens forming breeding harems as early as April to meet with males on the 

landscape. Initial nesting of pheasant hens after spring dispersal typically falls within land 

uses with residual, herbaceous cover to provide visual obstruction from predators and 

thermal cover for the sitting hen (Hill and Robertson 1988, Camp and Best 1994). Areas 

with large expanses of permanent nesting cover are often preferred when available, but any 

areas providing residual, herbaceous cover can be used by nesting pheasants, including but 

not limited to: road ditches, cool-season grain crops, fence lines, right-of-ways, waste 

areas, or wetlands (Snyder 1984, Camp and Best 1994, Guidice and Ratti 2001, Geaumont 

2009).  

Pheasants are persistent renesters, initiating as many as five nests or until a clutch is 

successfully hatched, leading to diverse laying and hatching dates within the same year 

(Wagner et al. 1965, Penrod et al. 1986, Guidice and Ratti 2001). If the first nest attempt is 

not successful and an additional nest is needed for a successful hatch, pheasants commonly 

use areas that previously lacked residual cover during the first nesting attempt, such as hay 

land, due to the increase of new herbaceous cover available to conceal a nest from the 

current year’s growth (Gates and Ostrom 1966, Dumke and Pils 1979, Guidice and Ratti 

2001, Geaumont 2009). CRP has provided much of the Northern Great Plain’s pheasant 

nesting cover since the late 1980’s, but as contracts expire and crop prices increase, 

pheasants will likely be displaced from these large expanses of permanent cover and forced 

to find other potential nest sites (Ryan et al. 1998, Geaumont 2009).  

Egg-laying typically begins around the same time every year, but the first few eggs 

are commonly dropped at random or in dump-nests (nests with eggs from more than one 

female) (Dale 1956). Dump nests are more common in areas of high pheasant densities, 
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and although they are most often abandoned and never incubated (Dale 1956), there is 

some evidence that females may adopt abandoned dump nests (Dumke and Pils 1979). If a 

nest is incubated, incubation begins after the last egg has been laid and will continue for 

approximately 23 days, but may be longer with increased levels of disturbance to 

incubating hen (Dale 1956, Cramp and Simmons 1980, Johnsgard 1999).  

 

Brood Rearing 

Clutch sizes range from 2 to >23, but if there are more than 18 eggs, it is almost 

always by 2 females (Cramp and Simmons 1980). Gates and Hale (1975) found the average 

clutch size in Wisconsin to be about 11 eggs, estimated from a total of 574 nests. Similarly, 

Trautman (1982) obtained an average clutch size of 10.6 eggs based on a sample of 4,940 

nests found in New Zealand and North America (Guidice and Ratti 2001). Clutch size can 

vary year to year, and most often decreases as the nesting season progresses (Gates and 

Hale 1975, Trautman 1982, Clark and Bogenshutz 1999, Johnsgard 1999). Clark and 

Bogenshutz (1999) recorded clutch size in Iowa declining 0.08 egg/day as a function of 

nest initiation date. If incubation is successful, 89 to 95 percent of the eggs will hatch (Dale 

1956, Johnsguard 1999) into precocial chicks that are highly susceptible to predation due to 

the inability to fly during the first 2 weeks of life (Riley et al. 1998). Prejuvenile molt 

begins on about day 10 and chicks are reliant upon the adult for an additional 60 to 70 days 

(Johnsgard 1999). Some pheasant broods will remain with the hen late into the fall and 

follow her to wintering areas (Gates and Hale 1974).  

Habitat that is desirable for nesting cover can also be used for brood rearing (Riley 

et al. 1998). Food availability is a driving force for habitat use of pheasant broods 1 to 4 
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weeks of age, and they tend to select habitats with large amounts of arthropods (Hill and 

Robertson 1988). Nelson et al. (1990) reported that cool-season grass mixtures of legumes 

and grasses provide better arthropod habitat than dense, monotypic fields of grasses with 

no forb component. Riley et al. (1998) found that landscapes with 25% grass and legume 

cover resulted in earlier hatching dates, heavier chicks, and higher survival than areas with 

10% cover.   

In Illinois, pheasant broods were recorded using hay and grass cover for feeding 

and roosting during the morning and roosting periods; respectively, but used row crops 

such as soybeans (Glycine max) and corn (Zea mays) during the afternoon (Warner 1979). 

As broods mature and increase in mobility, they exhibit increased movements and use 

greater diversity of cover types (Warner 1979). At 4 to 6 weeks of age, pheasant chicks 

tend to alter their diet from primarily arthropods to include more plant matter and grain 

(Olsen 1977, Johnsgard 1999). Food and habitat diversity are essential for broods as they 

mature and their food preferences change. For all pheasant age groups, localized food and 

cover are key aspects to attain high densities of pheasants on the landscape.  

 

Predation 

 Predation is the primary cause of mortality in wild pheasant populations (Trautman 

1960, Leif 1996, Riley et al. 1998, Hill and Robertson 1988). Most wild pheasant 

populations incur 4 main types of predation: 1) nest and brood loss, 2) hunter harvest, 3) 

winter related predation, and 4) predation during spring dispersal (Snyder 1985, Leif 1996, 

Gabbert et al. 1999, Guidice and Ratti 2001). Common predators to pheasants include 
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raptors, corvids, snakes, sciurids, mustelids, felids, canids, procyonids, and humans 

(Wagner et al. 1965, Hill and Robertson 1988, Riley et al. 1998, Geaumont 2009).  

 There have been many studies that have attempted to quantify effects of predation 

on pheasant populations through predator removal (Chesness et al. 1968, Riley et al. 1998, 

Clark and Bogenshutz 1999, Riley and Schulz 2001, Frey et al. 2003). Results from 

predator removal studies vary and the overall long-term effect of predator removal on 

pheasant populations is likely low. Frey et al. (2003) assessed the effects of predator 

removal in Utah over a four year study. In their study they had mixed results from predator 

trapping, with increased survival related to increased size of removal areas. Chesness et al. 

(1968) found that predator removal increased nest success slightly; however, they and 

others (Frey et al. 2003) reported that soon after trapping, predator populations returned to 

pre-trapping levels.  

 Many predators are successful at finding pheasant nests and broods. Often when a 

brood is found, a predator will kill >1 chick at a time (Riley et al. 1998). Clark and 

Bogenschutz (1999) reported that the majority of nest losses were attributed to predation. 

Nest success rates have been shown to increase with predator removal (Riley and Schulz 

2001), but the logistics of predator removal most often prove too time consuming and 

costly for most managers.  

Riley and Schulz (2001) suggest that the creation and maintenance of permanent 

grasslands across the landscape would prove more beneficial than predator removal efforts 

(Geaumont 2009). This suggestion is supported by Clark et al. (1999) who found higher 

nest success and lower predation rates in large undisturbed grasslands in Iowa, but did not 

hold true in Illinois where chick survival remained low despite conversion of millions of 
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row crop hectares to CRP (Warner et al. 1999). Riley (1995) reported a positive association 

between percentage of lands enrolled in CRP and pheasant numbers. Riley (1995) 

suggested that the increasing nesting habitat and winter cover provided by CRP was 

responsible for the increased population. His finding was supported by King and Savidge 

(1995) where they too reported increased numbers of pheasants in areas with 

approximately 20% of the landscape enrolled in CRP.  

The CRP not only increased nest and brood success due to a decrease in predation 

levels, but also protected pheasant nests and broods from human disturbances related to 

agricultural production (e.g. haying and crop harvest). Humans are likely the greatest 

predator to adult male pheasants in any hunted population; however, mortality related to 

agriculture is likely more significant to these populations (Guidice and Ratti 2001). Haying 

practices likely cause one of the largest habitat traps for nesting and brooding pheasants. 

Female pheasants are attracted to hay fields for nesting habitat and hay cutting often occurs 

during peak nesting periods, destroying both nests of incubating pheasants and many 

pheasant broods. Dumke and Pils (1979) reported lower success in hay land than idle 

ground and the majority of re-nesting attempts on hay lands were destroyed by haying 

practices. Warner and Etter (1989) estimated that 65 percent of sitting hens were struck by 

haying equipment and of the hens struck, only 14 percent survived, totaling 44 percent hen 

survival in areas that were hayed. Similarly, Leedy and Hicks (1945) concluded that nearly 

33 percent of hens nesting in hay fields were killed by mowers. One reason human 

influences of hunting may be less than that of agricultural practices is regulated by the “law 

of diminishing returns”, when population levels are down and hunter success is low, there 

will be less hunting pressure. However, no matter what the pheasant population, livestock 
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still need feed and grasslands still must be mowed for hay production. Human influences 

on land management have proven to have high impacts on pheasant populations.  

Human activity undoubtedly has negative effects on pheasant populations; however, 

pheasants tend to occur in areas of high human disturbance (i.e. agriculture practices). 

Pheasants have established viable populations throughout the world due to their demand as 

a game bird species, and humans continue to make sacrifices in agriculture production to 

provide pheasant habitat. The amount of lands set aside from agricultural production is 

closely tied to commodity prices, for the higher the commodity prices the higher the 

opportunity cost to exclude those lands from production. Therefore, when commodity 

prices are high, lands set aside for wildlife habitat often diminishes and when priced are 

low, hectares set aside for wildlife habitat tend to increase. Pheasant survival varies from 

region to region and year to year; however, survival tends to increase when lands of 

permanent cover are set aside for all life stages of pheasant reproduction and survival. 

Although individual populations of pheasants may decrease in viability and disappear 

without population supplementation, the overall pheasant population of North America 

appears to be stable and the pheasant will remain a popular game bird for future American 

generations.  
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CHAPTER 3. EVALUATION OF THREE NEST SEARCHING METHODS FOR 

RING-NECKED PHEASANT
1
 

Abstract 

 Management of ring-necked pheasants (Phasianus colchicus) is enhanced by 

knowledge of the relationship between habitat nest selection and habitat composition. 

Numerous models have been created to estimate nesting densities and preferred cover types 

for pheasant nests. These models require the initial location of nests on the landscape and 

appropriate nest searching methods must be chosen to locate pheasant nests. We utilized 

and compared 3 different nest searching methods in the summer of 2011. We assessed 

chain dragging, intensive ground searching, and radio telemetry to locate pheasant nests in 

herbaceous cover. We located 63 pheasant nests on our research sites and were able to 

develop detection rates for each method (nests/man-hour spent searching). Chain dragging 

had a nest detection rate of 0.14, intensive ground searching of 0.19, and telemetry of 1.11. 

Overall, telemetry was the most efficient method for finding pheasant nests. Timing of 

capture and subsequent collaring of pheasants for telemetry greatly influences rate of 

capture and return to research sites. Understanding the goals, research design, and 

resources available is necessary to determine the most efficient nest searching method for 

any research project.   

 

 

                                                 
1
 This chapter is co-authored by Jeffery Stackhouse, Kevin Sedivec, and Benjamin Geaumont. Jeffery 

Stackhouse (graduate student) was the main co-author responsible for collecting data, statistical analysis, 

interpreting statistical outputs, and comprising the information presented in this chapter. Benjamin Geaumont 

provided insight on study design and helped with overall organization and writing of the chapter. Both 

Benjamin Geaumont and Kevin Sedivec helped with editing the chapter and added professional insight into 

the discussion and management suggestion sections.  
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Introduction 

Introduced to North America in 1881, ring-necked pheasant are a highly sought 

after gamebird and as such much research has been conducted regarding their ecology 

(Warner 1981, Trautman 1982, Whiteside and Guthery 1983, Snyder 1984, Johnson and 

Knue 1989, Robertson 1996). Perhaps the most investigated aspect of pheasant biology is 

the species reproductive behavior (Linder et al. 1960, Jarvis and Simpson 1978, Dumke 

and Pils 1979, Leif 1994). Many studies evaluating the reproduction of pheasant have 

focused on nesting habitat (Baskett 1947, Clark et al. 1999) and results from previous 

research have acknowledged the difficulty associated with locating pheasant nests in their 

preferred cover types (Evrard 2000). Many investigations into pheasant nesting ecology 

have been based on the research team’s ability to locate nests (Schottler et al. 2008) and as 

such, a variety of methods have been employed for locating nests (Whiteside and Guthery 

1983, Berthelsen et al. 1990, Evrard 2000). Methods used for locating pheasant nests 

include, but are not limited to: a cable chain device as described by Higgins et al. (1969) 

used by Evrard (2000), a rope drag technique as described by Duebbert and Kantrud 

(1974), radio telemetry (Dumke and Pils 1979, Whiteside and Guthery 1983), intensive 

ground searches (Stokes 1954, Labisky 1957), and spring prescribed burning to find legacy 

pheasant nests (Schottler et al. 2008). The use of numerous methods for locating pheasant 

nests suggests that one method that is useful across all research efforts has not been 

established. 

Each method has its advantages and disadvantages. The utility of each technique 

depends upon factors including: objectives of the study, area in which the study occurs, and 

the available budget. Radio telemetry is a valuable tool for many nesting studies, but may 
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have limitations when used in a study were the primary objective is to determine nest 

density and success on specific treatments applied to a limited portion of the landscape. 

Radio tagged hens may not initiate nests within research plots. Therefore, useful data 

regarding treatment effect is not provided. In these instances, searching for nests in areas in 

which treatments have been applied may be more useful. However, if researchers are 

interested in pheasant habitat selection and use on a landscape scale without the limitations 

of nests located within given treatments, telemetry-based nest searching methods may be 

the most efficient method to acquire such data. Limiting search efforts to selected plots on 

a landscape scale would likely lead to missed areas that provided potential habitat for 

nesting pheasants, and therefore a subsequent bias in the data collected.  

The cable chain device was established to facilitate the location of duck nests on a 

variety of upland habitats (Higgins et al. 1969). The device is hooked to two jeeps and 

dragged across herbaceous cover in attempt to find upland nesting waterfowl. When a bird 

is flushed, observers leave the vehicles to search for a potential nest. The cable chain 

device is dependent upon the hen being present and flushing from the nest during nest 

searching efforts. This method has been used extensively in waterfowl studies and to a 

lesser degree in pheasant trials (Higgins et al. 1969, Barker et al. 1990, Evrard 2000, 

Fondell and Ball 2004). One potential explanation for why the cable chain device has not 

been used in more pheasant studies is that unlike ducks, pheasant have potential to vacate 

their nests prior to being flushed by the chain, resulting in lower nest location rates (Evrard 

2000). Also, in contrast to ducks, pheasants spend the majority of their lives on upland 

sites. This adds potential for flushing hens that are not nesting, resulting in time spent nest 

searching areas where a nest may not be present. However, the cable chain device provides 
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an efficient tool for searching large areas of land in studies examining expansive treatment 

areas.  

Intensive ground searching has been used extensively for locating pheasant nests 

(Evans and Wolfe 1967, Gates and Hale 1974, George et al. 1979, Berthelsen et al. 1990). 

This technique requires several searchers who space themselves out at a distance based on 

where one observer’s field of vision ends and where the next searcher’s begins. Generally, 

searchers are spaced approximately 1.5 to 2.0 meters apart and use sticks to part the 

vegetation as they walk back and forth across plots. Unlike the cable chain device or use of 

telemetry, the intensive ground searching method does not require the hen to be present 

during nest searching efforts. It is assumed that the nest will be found regardless of hen 

presence or absence. Intensive ground searches are typically done on subplots within whole 

treatments due to the time required to adequately search an area. This method requires 

more laborers than telemetry or chain dragging, but does not require the initial investment 

into a chain and vehicles or radio transmitters and telemetry equipment. Given the 

multitude of techniques available for locating pheasant nests, researchers planning to 

evaluate nesting ecology of pheasant need to choose the method most suitable for their 

environment, research objectives, and budget.  

We began a research trial in southwest North Dakota with the goal of evaluating 

pheasant production on post-contract Conservation Reserve Program (CRP) lands that were 

being managed for both wildlife and agricultural outputs in 2006. Given the objectives of 

our study, the geographical location in which the study was conducted, and our available 

budget, we choose to locate nests within our treatments utilizing the chain drag technique. 

However, over time we became interested in evaluating the ability of the chain drag 
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method to locate nests on our research plots. Therefore, in 2011 we developed a field trial 

aimed at evaluating three common techniques often employed during pheasant nesting 

studies. The purpose of this paper is to report and discuss our findings regarding a 

comparison among the chain drag technique, radio telemetry, and the intensive ground 

searching technique for finding pheasant nests.  

 

Study Area 

The study was conducted on privately owned lands near Hettinger, North Dakota in 

Adams County. The study occurred on two parcels of land, 193 ha each. Prior to the 

beginning of our research, each parcel of land was enrolled in CRP for approximately 10 

years. At the onset of the CRP contract, each parcel of land was established with cool 

season grasses and legumes that included intermediate wheatgrass (Elymus hispidus (P. 

Opiz) Melderis), crested wheatgrass (Agropyron cristatum (L.) Gaertn), alfalfa (Medicago 

sativa L.), and yellow sweetclover (Melilotus officinalis (L.) Lam.) (Geaumont et al. 2010). 

The 2 study sites are composed of different management treatments using a randomized 

block design: 1) season long grazing, 2) hay land, and 3) unmanipulated CRP. The 2 sites 

total 64 ha of hay land, 64 ha of idle CRP land, and 258 ha of season long pasture 

(Geaumont et al. 2010). The season long treatment includes a 129 ha pasture for each study 

site and grazed with Angus cattle from June to December with a targeted 50 percent degree 

of disappearance. For a complete description of the original study design refer to Geaumont 

(2009).  

The study area receives approximately 40.6 cm of precipitation annually, with 87 

percent occurring from April through October (NDAWN 2012). The 20-year average 
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winter temperature (January through March) is approximately -9°C and average summer 

temperature (June through August) approximately 19°C (NDAWN 2012).  

 

Methods 

The three nest searching techniques tested were: chain dragging, intensive ground 

searching, and radio telemetry. For the purpose of this study, we defined a nest as any 

depression containing egg remnants or ≥1 intact egg. Our study was designed to coincide 

with the peak nesting period of pheasants in the region. To do so, we chose to evaluate nest 

searching methods from 26 May 2011 to 22 June 2011 (Geaumont 2009). We assessed the 

human resources needed to locate nests per unit time using each method and compared 

known nest locations among search methods to assess the ability of each searching 

techniques to locate nests that otherwise would not have been found. This was a blind 

study; searchers partaking in each technique were not aware of nests located during other 

nest searching efforts.  

 

Chain Dragging Surveys 

We conducted chain dragging surveys over the entirety of our research plots 2 times 

during the peak pheasant nesting period. The first chain dragging event occurred from 31 

May to 2 June and the second effort from 13 June to 18 June 2012. Nests were located 

using a modified chain dragging technique, similar to Higgins et al. (1969), to cover areas 

of permanent vegetation on our sites. The modifications include the use of all-terrain 

vehicles (ATVs) versus jeeps, a single chain versus a double chain, and pulling the chain 8 

to 10 km per hour versus 5 to 8 km per hour. We used two ATVs approximately 20 m apart 
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to pull a 30 m chain (0.80 cm diameter) horizontally across the vegetation until the entirety 

of our research plots with permanent cover had been explored (Geaumont 2009). The chain 

was drug at slightly faster speeds compared to those used by Higgins et al. (1969) due to 

previous observations of pheasants running prior to being flushed by the chain (Evrard 

2000). A single chain was used since the ATV’s had limited horse-power to pull the chain 

through the vegetation at a consistent speed. When a hen flushed, the operator of each ATV 

stopped and actively searched for a nest. Search efforts following the flushing of a hen 

were limited to 10 minutes. If a nest was located, its location was marked on a Global 

Positioning System (GPS). We limited chain dragging efforts to 0700 to 1300 hours. Areas 

that were covered with the chain were excluded from other search methods for ≥ 24 hours.  

 

Intensive Ground Search Surveys 

We searched 96 randomly located 0.4 ha plots (comprising approximately 10 

percent of the total permanent cover) using the intensive search method. Each sub-plot was 

searched once in its entirety. The plots were selected and searched randomly from 31 May 

to 22 June. Teams of 2 to 5 individuals actively searched the random plots. Individuals 

were spaced out at approximately 1.5 meter intervals and walked back and forth parting 

herbaceous vegetation until the entire subplot was searched. When a nest was located it 

was marked on a hand-held GPS and additional details recorded. Nest searching efforts 

were conducted primarily from 0800 to 1600 hours. Telemetry and ground searching crews 

typically alternated days at each of the two research sites to avoid possible bias in nest 

locations between the two methods.  
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Radio Telemetry 

For the duration of both the chain dragging and intensive nest searching efforts, we 

monitored breeding hens equipped with 12.5-g necklace-type radio transmitters (Riley and 

Fistler 1992, Perkins et al. 1997) on our research sites. Pheasants were captured during 3 

time intervals, using 2 different techniques. Capture techniques employed were 

nightlighting and winter bait-trapping, both previously shown to successfully capture adult 

pheasants (Labisky 1968, Gates 1971, Dumke and Pils 1979, Perkins et al. 1997). In the 

fall of 2010 and spring 2011, we captured pheasants using nightlighting techniques similar 

to those described in Labisky (1968) on our research sites. During the winter of 2011, we 

captured pheasants at winter bait sites (Gates 1971, Perkins et al. 1997). Winter bait sites 

were areas known to have large flocks of wintering pheasants located within 2.4 kilometers 

of our research sites. Following capture, we located collared hens at least once every 5 days 

during the identified 4 week period of peak pheasant nesting. Prior to the initiation of this 

study, we knew at least a portion of each monitored hen’s home range fell within the 

bounds of our study sites. Knowing the relative home range of these individuals prior to the 

study eliminated the need to spend unnecessary time searching for individuals that were 

unlikely to nest on the research sites. When a hen was found on a nest it was recorded in a 

GPS and checked approximately every 10 days in order to monitor nest status and to ensure 

that the hen had not initiated a new nest. Telemetry locations were recorded primarily from 

0500 to 1800 hours on research sites that had not experienced chain dragging or ground 

searching efforts within 24 hours.  

We evaluated the efficiency of each method for locating nests by calculating 

detection rates, specifically raw detection rates (i.e., the number of instances when a nest 
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was detected by a single survey method) and unique detection rates (i.e., the number of 

instances detection by a given method represented the only detection of the nest) 

(Campbell 2004, Long et al. 2006). We compiled a detection history based on 11 days of 

chain dragging (95 hrs.), 96 intensive search plots (172 hrs.), and data from tracking 26 on-

site, radio-collared hens (24 hrs.).  Detection rates of pheasant nests associated with each 

nest searching method were calculated using the following equation: (r) = number of hours 

spent searching for each method/total number of nests found via each method. We 

determined the total search time per pheasant nest found within each searching technique to 

assess the efficiency of each method.    

 

Results 

Pheasants captured and radio collared that did not nest within our treatments 

provided little data to answer our overall study questions. Therefore, we were interested in 

what method of capture provided the greatest number of returning birds to our sites.  We 

captured a total of 128 pheasants to be fitted with telemetry units or leg bands. Of the birds 

captured, we fitted 39 adult pheasants on our research sites during 15 hours of nightlighting 

in the fall of 2010. We quantified the efficiency of each trapping method by calculating a 

capture rate. The capture rate for fall night lighting was 0.38 hours per captured bird (Table 

3.1). In the winter of 2011, we captured 69 pheasants in 50 hours, resulting in a capture rate 

of 0.43 hours per captured bird (Table 3.1). In the spring of 2011, we spent 45 hours to 

capture 20 pheasants, resulting in a spring night lighting capture rate of 2.25 hours per 

captured pheasant (Table 3.1). 
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Table 3.1. Number of ring-necked pheasants captured, person-hours to capture pheasants, 

hours per captured bird, and percent of birds returning to study sites in southwestern, North 

Dakota, USA, September 2010 – May 2011.  
 

Capture Method  

Effort 

(person-hrs) 

Hrs/captured 

bird 

Percent return 

to site
a
 

Fall Nightlighting 

3

9 15 0.38 15% 

Winter Bait-Trapping 

6

9 30 0.43 4% 

Spring Nightlighting 

2

0 45 2.25 83% 

 

Totals:  68   
a 
Percentage of radio-collared pheasants  that returned to our specified research sites. 

 

Sixty-two pheasant nests were located from May – June, 2011. Raw detection rates 

varied among the three methods (Table 3.2). The use of the chain dragging method resulted 

in a raw detection rate of 0.14 nests per person-hour (13 nests/ 95.25 search hours; Table 

2). During our intensive searching we surveyed 96 sub-plots (0.4 ea.) resulting in a raw 

detection rate of 0.19 nests per hour (32 nests/172.45 search hours; Table 3.2). We tracked 

26 radio collared hens, known to have portions of their home ranges on our research sites. 

Considering only the time spent monitoring pheasants, radio telemetry resulted in a raw 

detection rate of 0.95 nests per hour (23 nests/ 24.2 search hours; Table 3.2). There were 6 

nests found by more than 1 search method; 1 nest by telemetry and chain dragging, 1 by 

intensive ground search and telemetry, 4 nests by intensive ground search and chain 

dragging, each of which were not included in the unique detection totals in Table 3.2. 

Although the intensive ground search method resulted in the greatest number of raw and 

unique nest detections, the use of radio-telemetry proved to be ≥5 times more efficient at 

finding nests than either of the other methods (Table 3.2).   
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Table 3.2. Number of raw detections, raw detection rates, unique detections, and unique 

detection rates for ring-necked pheasant nests in southwestern, North Dakota, USA. We 

conducted surveys May-June 2011.  

 

Search Method 

Raw 

detections
a
 

Raw detection 

rate
b
 

Unique 

detections
c
 

Unique detection 

rate
d
 

Intensive Ground 

Search 32 0.19 27 0.16 

Telemetry 23 0.95 21 0.87 

Chain-drag 13 0.14 8 0.08 

Totals: 68  56  
a
Sum of nests detected with each nest searching method. 

b
Raw detection rates calculated as the total number of nests detected by each survey 

method divided by person-hours. 
c
Sum of nests found by each nest searching method that were not found by another method. 

d
Unique detection rates calculated by total number nests detected by a single method and 

only by that method divided by person-hours. 
 

Although the telemetry method was 5 times more efficient at locating pheasant 

nests than the other nest searching techniques, we did not originally consider time and 

effort spent trapping pheasants. When the total trapping time is added from all three 

trapping occasions (68 hours) to the time we spent searching for telemetry-related nests, the 

raw detection rate of telemetry nests is decreased to 0.25, still making it the most time-

efficient method of locating nesting female pheasants when compared to intensive nest 

searching and chain-dragging methods at 0.19 and 0.14, respectively (Table 3.2).   

Since our initial research was assessing pheasant response to different treatments, 

having telemetry birds return to our specified research sites was of particular interest. To 

assess differenced in dispersal post-capture we followed and monitored pheasants from 

each trapping group to assess percentage return to the research site from fall nightlighting, 

winter bait-trapping, and spring nightlighting. We found that 15, 4, and 83 percent of birds 
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returned to the research sites, respectively (Table 3.1). Bird death and possible radio 

failures were included in the proportion of birds that did not return to the site.  

 

Discussion 

Each survey method was successfully used in locating nests of pheasants. In 

general, a greater number of nests were located using the intensive ground searching 

method than were located using the chain drag or telemetry techniques. Of the 32 nests 

located using the intensive ground searching method, 11 were previously predated and 1 

hatched prior to being located. Additionally, 10 of the unpredated nests found during the 

intensive ground searching contained eggs that were cold and/or sun bleached. These 

characteristics suggest that the nest was a “dump” nest, previously abandoned by the hen, 

or that the hen was still in the egg-laying stage (Baskett 1947, Evans and Wolfe 1967, 

Martin and Geupel 1993). Hens in the egg-laying stage generally spend less time at the nest 

than during incubation and the eggs could have felt cold as a result (Martin and Geupel 

1993). The benefit of the intensive ground searching method is the assumption that all nests 

are found, regardless of hen presence or absence. Both the telemetry and chain dragging 

methods require the hen to be present to find the nest. This method allows researchers to 

more accurately estimate nest densities. Only finding those nests where the hen is present 

during searching could potentially lead to underestimation of nest densities. 

The least productive of our 3 nest searching methods was the chain dragging 

method. We located 13 active nests using the chain dragging method, with the lowest 

detection rates per hour of the methods assessed (Table 3.2). On several occasions we 

observed hens running and flushing before the chain, similar to what Evrard (2000) 
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experienced, but were able to locate a nest regardless. The occurrence of hens running and 

flushing prior to coming into contact with the chain appeared to decrease as hens moved 

from clutch development to incubation. In general, incubating hens were more reluctant to 

leave their nests than hens in the egg laying process. We noted that locating pheasant nests 

after flushing a hen required more time and effort than finding duck nests using the same 

technique.  

The time required to search one hectare of land for nests of pheasant varied greatly 

between the intensive ground searching and chain dragging methods. During chain 

dragging we covered approximately 4.05 ha per person-hour, while intensive nest searches 

on similar habitats only covered 0.22 ha per hour of labor. The chain dragging method was 

the most efficient way to cover large expanses of land, but research planners must take into 

consideration the lower nest detection probabilities associated with this method.  

We found the most efficient nest searching method in our study to be radio 

telemetry. This method had the highest detection rates per unit time, and resulted in 

locating 23 active nests (Table 3.2). The telemetry method was approximately 5 times more 

efficient than either the intensive ground searching method or the chain dragging method 

per unit of labor time. The disadvantage of both the telemetry and chain dragging methods 

is that the hen must be present to locate a nest; therefore, a proportion of pheasant nests 

will go undetected on any given research plot. The benefit of finding nests where the hen is 

present, however, is that researchers know that the nest is active and then have the ability to 

monitor the nest for more accurate estimates of nest success without the potential of 

unknowingly using dump nests or previously abandoned nests in success or predation 

estimates. 
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Management Implications 

Research scientists interested in the nesting ecology of pheasants on specific 

research sites should consider using radio-collared hens captured in the spring due to the 

high retention of hens on capture locations despite the low capture rate. However, if the 

goals of the project were to analyze landscape-scale use of available nesting cover, we 

found winter bait-trapping was the most efficient way to capture pheasants and likely the 

best way to assess a population’s nesting ecology at the landscape scale.  

Each nest searching method has its advantages and disadvantages. For the purposes 

of a site-specific study assessing nesting ecology of pheasants, the use of telemetry from 

spring-captured nightlighted birds is the most beneficial and least disruptive way to 

monitor female pheasants. For a landscape-scale study, using telemetry with winter bait-

trapped pheasants is the most efficient way to collect data. If researchers are interested in 

surveying small areas to assess the density of pheasant nests to extrapolate to the entirety of 

a larger area, we found the intense ground searching method as the best fit. Lastly, if 

researchers are interested in studying pheasants over areas of land that are too expansive to 

cover via intense nest searches, and/or are interested in assessing upland nesting ducks as 

well, then the chain drag method is the best candidate. When designing a nesting ecology 

study on pheasant, survey objectives, availability of personnel, and the wintering and 

nesting ecology of pheasants in the region are factors that will help to determine which nest 

searching method is most appropriate for a particular study.  
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CHAPTER 4. USE OF HOME RANGE ESTIMATORS FOR EVALUATING RING-

NECKED PHEASANT (PHASIANUS COLCHICUS) HABITAT USE AT 

MULITPLE SCALES
2
 

Abstract 

 Habitat use and home range size of ring-necked pheasant (Phasianus colchicus) 

were analyzed using telemetry and GIS mapping techniques in southwestern North Dakota. 

Movement and habitat use of 191 pheasant was monitored via telemetry. Pheasant 

movements and GPS (Global Positioning System) locations were recorded weekly from 

July 2010 to April 2012. For birds that had ≥ 20 GPS locations (n= 89), we determined 

home range using two different estimators: minimum convex polygon (MCP) and kernel 

density estimation (KDE). We then compared proportions of each habitat type within the 

polygons determined by each of the home range estimators against each other and the 

habitat availability within the study area. Habitat types were delineated from 2010 NAIP 

(National Agriculture Imagery Program) imagery and  broken into 7 categories: croplands 

(Crop), farmable herbaceous cover or Conservation Reserve Program (CRP) cover 

(CRPcov), rangeland cover (RngCov), farmsteads with livestock (FarmStd), wetlands 

(WetCov), shelterbelts (WoodCov), and other areas that did not fall within these previously 

stated categories, including urban areas (Other). Upon delineation, areas where the ground 

cover was unknown were ground truthed by visiting the areas in question. We also 

analyzed proportions of edge within each home range polygon. The average home range 
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size of individuals in our population using the MCP and KDE estimates was 2583 and 2368 

hectares, respectively. Within each home range type, the average number of hectares 

needed to produce 1 kilometer of edge for MCP and KDE estimates was 209 and 200; 

respectively, as compared to the 287 ha/km that was considered available in our study area 

MCP. These estimates of animal space use and annual home range size is beneficial for 

managers attempting to improve pheasant habitat on the landscape. 

 

Introduction 

 Introduced to the United States late in the 19
th

 century, pheasants have grown to 

become one of America’s favorite game birds (Johnson and Knue 1989). Due to their 

popularity, ring-necked pheasants (Phasianus colchicus; hereafter, pheasant) are one of the 

most studied species in North America, and as such, there have been many studies 

conducted on their habitat preference and space use (Guidice and Ratti 2001). Home range 

is one of the most commonly used techniques to analyze habitat selection for wildlife 

species. Many different methods and techniques within those methods have been developed 

to assist in the creation of home range polygons in space use studies. Data on space use by 

wildlife typically consists of a series of discrete observations over time (Litchti and Swihart 

2010). Since direct observation of the home range is usually impossible, home ranges are 

usually modeled from discrete observations (Horne et al. 2007). Home ranges often model 

polygons described as utilization distributions, or estimates of the probability that an 

animal will fall within a particular area during a specific time (Worton 1995, Horne and 

Garton 2006). Estimating the probability of an animal occurring in a given area can be very 

useful for biologists assessing multiple aspects of habitat for an individual simultaneously. 
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Unlike a single point, usually with 1 habitat variable, a polygon can contain many different 

habitat types and describe necessary landscape-scale attributes required for a species’ 

existence.  

 Numerous methods for estimating home range have been developed (Horne and 

Garton 2006). With each method comes discussion of associated pros and cons of available 

estimate strategies, use, correction factors, and available computer programs associated for 

deriving each estimate. Currently, the most commonly used estimate is a variation of the 

kernel density estimator (KDE). This has been suggested as the best-available non-

mechanistic home range estimator (Kerohan et al. 2001, Horne and Garton 2006, Lichti and 

Swihart 2010). Kernel density estimation is a statistical technique for estimating an 

underlying probability density function from the data input where a kernel is placed over 

each observation and the probability density values are created by summing the 

neighboring values of that point (Horne and Garton 2006). The width of each kernel placed 

over the observed locations is called the smoothing parameter, which is chosen by the 

scientists, and therefore must be reported as a factor in establishing KDE estimates (Horne 

and Garton 2006). There are numerous smoothing parameters (i.e, bandwidths) that can be 

chosen within the KDE estimate, causing variation in data output. Likelihood Cross-

Validation (i.e., smoothed cross validation) bandwidth was used in our study because it 

generally performs better than the other methods and was found to be especially beneficial 

for small sample sizes (Horne and Garton 2006). There are numerous types of KDE 

models. We chose to use the Gaussian bivariate normal estimate because it was found to be 

least affected by both observation bias and unequal observation rates (Horne et al. 2007). 

This estimate was the recommended default of the Geospatial Modeling Environment 
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(GME) program that we used to create our initial KDE rasters (Beyer 2012). Kernel 

techniques are useful for estimating intensity of home range use and therefore the degree of 

habitat use within an animal’s home range.  

Historically, the minimum convex polygon (MCP) (Mohr 1947) was the preferred 

home range estimator and is still commonly used today. A MCP, also known as a minimum 

convex hull, is a planar polygon that contains all line segments connecting any pair of 

points (Mohr 1947). The benefit of the MCP estimator is that it is nonparametric and is 

conceptually easy to understand and create for analysis (Mohr 1947). The MCP creates a 

boundary around the furthest-most dispersed points of an individual’s observed locations, 

therefore including every known location in analysis. Unfortunately, the MCP is sensitive 

to outliers, sample size, and ignores boundaries that exclude animal movement within the 

home range polygon such as waterways, urbanization, or other uninhabitable landscapes. 

We chose to model both the KDE and MCP home range estimators so our results were 

comparable with current and historical studies of ring-necked pheasants.  

 

Study Area 

The study was conducted on a heterogeneous landscape near Hettinger, North 

Dakota in Adams County (Figure 4.1). Overall, the study area included about 23,500 ha of 

privately and publicly owned lands in both North and South Dakota. Trapping sites 

consisted of 4 privately owned tracts of land in North Dakota. Prior to the beginning of our 

research, land parcels used for nightlighting were enrolled in CRP for approximately 10 

years. At the onset of the CRP contract, each parcel of land was established with cool 

season grasses and legumes that included intermediate wheatgrass (Elymus hispidus (P. 
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Opiz) Melderis), crested wheatgrass (Agropyron cristatum (L.) Gaertn), alfalfa (Medicago 

sativa L.), and yellow sweetclover (Melilotus officinalis (L.) Lam.) (Geaumont et al. 2010). 

The 2 winter trapping sites were privately owned areas that held high densities of pheasants 

during the harsh winter of 2011.  

 

Figure 4.1. Map of North Dakota with the relative location of the research site. The red 

star indicates the center of the pheasant population’s minimum convex polygon.  

 

The study area receives approximately 41 cm of precipitation annually, with 87 

percent occurring from April through October (NDAWN 2012). The 20-year average 

winter temperature (January through March) is approximately -9°C and average summer 

temperature (June through August) approximately 19°C (NDAWN 2012). Fifty-six year 

averages and annual fluctuations in monthly precipitation and temperatures are shown in 

Figures 4.2 and 4.3, respectively. Data included in these figures was collected daily at the 

Hettinger Research Extension Center.  
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Figure 4.2.  Average monthly precipitation (cm) in Hettinger, ND for 2010/2011, 

2011/2012, and the 56 year average.  Data provided from the Hettinger Research Extension 

Center climate station. 

Figure 4.3.  Average monthly temperature (ºC) in Hettinger, ND for years: 2010/2011, 

2011/2012, and the 56 year average. Data provided from the Hettinger Research Extension 

Center climate station. 
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Methods 

Data Collection 

For the duration of our study, we monitored pheasants equipped with 12.5-g 

necklace-type radio transmitters similar to Riley and Fistler (1992) and Perkins et al. 

(1997) purchased from Advanced Telemetry Systems; Insanti, Minnesota. Radio collared 

pheasants were monitored 1 to 3 times a week using handheld three element Yagi antennas 

and model R2000 receivers (Advanced Telemetry Systems; Isanti, Minnesota). Pheasants 

were captured during 1 of 5 occasions, using 2 different techniques. Capture techniques 

employed were nightlighting and winter bait-trapping, both previously shown to 

successfully capture adult pheasants (Labisky 1968, Gates 1971, Dumke and Phils 1979, 

Perkins et al. 1997, Gabbert et al. 1999). In the summer and fall of 2010 and spring and fall 

of 2011, we captured pheasants using the nightlighting techniques similar to those 

described in Labisky (1968). During the winter of 2011, we captured pheasants at winter 

bait stations (Gates 1971, Perkins et al. 1997). Upon capture, pheasants were sexed and 

equipped with radio collars, as previously described, and their movements  monitored 

starting 1 week post-capture to allow for the individuals to get accustom to the radio 

collars.  

The radio collars were not thought to affect survival or movements of pheasants, 

therefore were assumed to have no effect on the results. We used trapping and handling 

techniques that were approved by The North Dakota State University Institutional Animal 

Care and Use committee (Protocol #A11034).  

 Pheasant trapping began in May 2010 and pheasant movements were monitored 

until April 2012. We tracked pheasant movements and recorded locations at least once a 
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week from May – December, and twice a week from January – April for the duration of the 

study. Pheasant locations were found either by homing pheasants or by using triangulation 

techniques. Resulting coordinates were derived using handheld GPS units. Pheasants that 

had not been located for ≥ 10 months were removed from the active telemetry search list. If 

an individual bird died or was considered lost prior to 20 relocations the individual was 

removed from the home range analysis (Leif 2005). Similarly, active birds with less than 

20 observed point locations were not used in calculating individual home range estimates. 

Individuals with ≤ 20 observations were added to the general population’s observed 

locations to create the study area boundary but were not used in any individual analyses.    

 

Data Processing and Analysis 

To create our home range polygons and tables required to run statistical analyses on 

those home ranges, we chose to use the Economic and Social Research Institute’s (ESRI’s) 

ArcInfo products: ArcMap 10 and ArcCatalog 10. The original dataset was created from a 

Microsoft Excel file with fields for: landowner, date, coordinates, descriptive habitat type, 

and notes. Each Excel spreadsheet was converted to comma-separated-values (csv) before 

use in ESRI’s ArcMap or ArcCatalog.  

We used the Python scripting language to convert our raw data files into the 

required format. To assist in the creation of the Python script, the program software 

WingIDE 4.0 (Wingware Python IDE, Version 4.0.2-1) was utilized to write and run the 

code that would analyze each of the 191 Excel spreadsheets in our dataset. This Python 

script converted each spreadsheet into a csv file for use in ESRI products and removed 

birds with data that spanned < 1 week. Birds that lived < 1 week were considered to have 
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potential research-related mortality and were removed from all analyses. Converted files 

were used as input into ESRI products to begin the home range analysis.  

 The purpose creating these programs was to use Chi squared analysis with SAS 

(Statistical Analysis Software) to assess selection of observed home range habitat 

proportions versus the available proportion of habitat types on the landscape scale for both 

MCP and KDE home range estimators. Habitat preference is defined as the 

disproportionate use of some resources over others (Hall et al. 1997, Gabbert et al. 1999) 

and is the reflection of the likelihood of a particular resource being chosen if offered on an 

equal basis as others (Johnson 1980). Habitat preference was analyzed by habitat type in 

our study using seven categories: CRP (Conservation Reserve Program) Cover, Range 

Cover, Shelterbelts, Wetlands, Croplands, Farmsteads, and Other. Typical crops for 

southwestern North Dakota include but are not limited to canola, sunflowers, corn, and 

small grains. CRP cover consisted of all areas of CRP-type grasses that were hayed, 

grazed, or left as idle grasslands. Range areas were those grasslands that consisted of 

primarily native grasses that were either left as idle or grazed.  

We defined the study area by mapping the 3909 locations from 184 pheasants that 

provided one or more GPS locations, creating a MCP, and then clipping the MCP to the 

2010 NAIP (National Agriculture Imagery Program) imagery for Adams County, ND 

(Sawyer et al. 2006). We used NAIP imagery to designate cover types and delineated each 

cover type in ArcMap 10, similar to Gabbert et al. (1999). Once the NAIP imagery was 

delineated into seven habitat categories the areas in question were then ground truthed and 

adjusted accordingly as to match the correct habitat type on the landscape. We then created 
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MCPs for individuals with ≥ 20 points and intersected the MCPs on the digitized maps. 

Once overlain on the maps, proportions of habitat types within the MCPs were calculated.  

 To assess each individual’s home range habitat proportions, size, and overall 

abundance of edge we used ArcCatalog 10. ArcCatalog used csv files to create MCP 

polygons and provided tools necessary to quantify all other datasets. In ArcCatalog; 

however, we were not able to create the KDE polygons that we wanted with the specified 

types and techniques discussed earlier in this chapter. Therefore, we used the program 

Geospatial Modeling Environment provided by spatialecology.com as a free data 

processing program (Beyer 2012). This program enabled us to create KDE estimates that 

use the Gaussian bivariate normal kernel type using smoothed cross validation smoothing 

parameters and a 10x10 m kernel size.  

We chose the 10 m grid size through trial and error and tried KDE estimates that 

were both larger and smaller. The 10 m cell size was the largest usable size without causing 

noticeable problems with pixelated edges as suggested by Beyer (2012). Using the 

Geospatial Modeling Environment program, we were able to create floating, grid-based 

rasters that represented each bird’s KDE that could then be imported into ArcCatalog for 

further analysis. Once imported into ArcCatalog, the floating rasters were multiplied by 

100 to make all grid values > 1 (Figure A1), converted to integer rasters (Figure A2), and 

then converted to polygons (Figure A3). The top 95 percent of the KDE were selected in 

the model represented by Figure A4 and transformed the values back to the original scale 

by dividing by 100 before importation to the general GIS (Global Information System) 

point/polygon processing sequence that eventually created required Excel spreadsheets for 

statistical analysis.  
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GIS Modeling 

 Within ArcCatalog 63 models, with numerous steps per model, were used to create 

usable output tables. After running our Python script in WingIDE, we created a model that 

made a frequency table for each GPS location recorded during our study (Model 5, Figure 

A5). We then created a model that made individual bird feature classes from the initial 

population’s feature class (Model 6, Figure A6). In model 7, we iterated through each 

feature class created by model 6, added a field for the sum of all observed points for that 

individual and calculated the individual’s total point count (Figure A7). Model 8, shown in 

Figure A8, created individual bird MCPs by iterating through each bird’s data, applying the 

points to the map, and creating a minimum bounding polygon. Model 9 took the MCPs that 

were calculated for each individual (and the total population) and created the same number 

of random points within each MCP that were found for the total point count in model 7 

(Figure A9). Upon the creation of random points in model 9, we intersected the MCPs with 

the cover types that were derived from delineating the NAIP image discussed earlier in this 

chapter, using model 10 (Figure A10). Model 11, Figure A11, created an empty append for 

a MCP cover intersect feature class to be created in model 12. Model 12 iterated through 

each individual bird’s feature class, collected the values, and then appended those values to 

the MCP attribute table (Figure A12). Model 13 was used to discard the 95 individual 

pheasants that did not have ≥ 20 observed locations (Figure A13). Model 14, Figure A14, 

generated MCP habitat frequencies to be added to the frequency tables.  

 Model 15 iterated through the observed locations for each bird and intersected the 

observed points with their associated cover (Figure A15). Models 16 and 17 iterated 

through the random points generated for each bird, added fields for the random points, and 
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filled the fields by intersecting the random points with the cover map (Figures A16 and 

A17).  Model 18 organized a datasheet that could be exported to Excel that summarized all 

point data (both observed and random) in a format that was compatible with SAS, called 

“AllBirdPoints” (Figure A18). Model 19 filled the datasheet by appending the point 

intersects into the “AllBirdPoints” table (Figure A19).  

 After creating the “AllBirdPoints” to be entered into SAS as the point data, the next 

step in our analysis was to analyze the home range polygons to a greater extent. Model 20, 

Figure A20, created an empty table called “BirdData” for outputs from the next series of 

models. Models 21 – 38 analyzed the MCP polygons for each individual bird and for the 

population. The goal of this series was to develop proportions of each habitat type, a total 

count of points, and total home range area for each individual bird and send those data to 

the “BirdData” table. Figures A21- A32 show the steps of each corresponding model: 21) 

fixed the random, intersected points and gave them a total count field in the table, 22) 

calculated the frequencies of the observed points and their associated habitat types, 23) 

calculated the frequencies of the random points and their associated habitat types, 24) 

created empty columns for observed data in the frequency table, 25) iterated through each 

bird’s table and appended all observed data points, with their associated cover, to columns 

in the table, 26) viewed the number of observations in a table and appended values that 

were greater than 19, 27) created empty columns for random data in the frequency table, 

28) iterated through each bird’s table and appended all random data points, with their 

associated cover, to columns in the table, 29) viewed the number of random points in the 

table and appended values that were greater than 19, 30) created empty columns for all (the 

population’s) MCP data in the frequency table, 31) appended all of the random and 
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observed data points generated for each bird (within each individual’s MCP) and the 

observed and random points generated for the population and the extent of the study area. 

These data (collected in a table by model 31) were then summarized in a frequency table by 

model 32.  

 Model 33, Figure A33, took the frequency table from model 32 and appended it 

with “BirdData” to create one frequency table for this series of models. Models 34 and 35 

populated point values for the “BirdData” table, as shown in their related Figures A34 and 

A35, respectively. Model 36 generated the total MCP area for each bird and the population, 

and model 37 added fields for habitat proportions that were then populated in model 38 

(Figures A36, A37, A38). This series of models finished the MCP analysis for our study. 

 The next step of our proportions-based data processing was to create similar 

summary tables for the KDE polygons that we created from models 1 – 4 described earlier. 

Models 1 – 4 created polygons from rasters. However, some of those polygons had lines 

within the outer bounds of the polygon. After matching each KDE with its associated bird 

identification in model 39, we dissolved the inner lines of the polygon using model 40 and 

added total point count values with model 41 (Figures A39, A40, and A41). We then used 

model 42 to intersect the dissolved KDE polygon with the cover map and created empty 

feature classes to be appended with models 43 and 44, respectively (Figures A42, A43, and 

A44). Model 45 took these tables and generated habitat frequencies while model 46 

calculated the total KDE areas for each polygon, model 47 added KDE fields to the 

“BirdData” frequency table, and model 48 populated those fields with the appropriate 

habitat proportions for each bird’s 95% KDE home range polygon (Figures A45, A46, 

A47, and A48).  
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 The last datasheet created in ArcCatalog and exported to Excel for further analysis 

was called “BirdTotals”. Models 49 – 63 were created to build this datasheet. Model 49 

was used to build the table by adding the appropriate fields that contained data for each 

bird and the population, including: total number of observed points, MCP and KDE total 

areas, and MCP and KDE total amount of habitat edge (Figure A49). Models 50 and 51 

were used to take data that was collected in the “BirdData” tables and append it to the 

“BirdTotals” table (Figures A50 and A51). Models 52 – 57 were constructed to calculate 

the total amount of habitat edge within a bird’s MCP and place a total edge measurement 

(km) into the “BirdTotals” frequency table. Model 52 was created to iterate through each 

bird’s MCP and generate habitat lines (edge) while model 53 was built to select only the 

inner lines of each polygon and model 54 calculated the length and the frequencies of each 

line that were then added to each bird’s frequency table by model 55 (Figures A52, A53, 

A54, and A55). Model 56 took the inner line frequencies and collected them into one 

frequency table. This table was then joined and populated by model 57, finishing the edge 

calculations for the MCPs (Figures A56 and A57).  

 Similar edge analyses were conducted for the KDE polygons by models 58 – 63 for 

the “BirdTotals” frequency table. Similar to models 52 and 53, model 58, shown in Figure 

A58, was created to generate KDE inner line values while model 59 was created to select 

only the inner lines of each polygon, representing habitat edge (Figures A58 and A59). 

Model 60 was created to calculate the frequency of each set of inner lines for each bird and 

model 61 and 62 combined those lines into one frequency table (Figures A60 and A61). 

Lastly, model 63 populated the KDE edge estimates into the “BirdTotals” table to complete 

our data analysis goals in ArcCatalog (Figure A63). Upon completion of model 63, 
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“BirdTotals”, “BirdData”, and “AllBirdPoints” were converted to dbase files to be 

exported to Excel for further manipulation and statistical analyses.  

 

Data Analysis 

In total, 89 MCPs and 89 KDEs were created from the initial 191 individual 

pheasant datasheets (See example: Figure 4.4): one for each individual pheasant with ≥ 20 

observed points and one for the population were created for comparison of each 

individual’s home range habitat proportions to available habitat as a measure of habitat 

selection. The tables that were created in ArcCatalog were refined and formatted in Excel 

and the outliers removed. Outliers included ~ 5% of the home range dataset for both the 

MCP and KDE estimated areas and were removed from the dataset. Once the data was 

formatted in Excel, we compared individual pheasant home range sizes and the proportion 

of habitat types within the home ranges against their availability on the landscape in both 

the KDE and MCP estimates. We then used 95% confidence intervals to determine relative 

significance of reported habitat preferences within each cover type.   
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Figure 4.4.  Visual representation of a pheasant hen’s (980A) minimum convex polygon 

(MCP), 95% kernel density estimation polygon (KDE), and all observed points (n=100) 

overlain on the habitat type map for our study area in southwestern North Dakota, October 

2010 – March 2012. 

 

Results 

 

The average number of points used to derive 89 annual home range estimations was 

39, and ranged from 20 to 100. Of the 89 pheasants that contained ≥ 20 locations, 31 were 

roosters and 58 hens. The total number of observations (points) in the study used to create 

the compiled population MCP estimates (i.e., study area) was 3908. The areas of high 
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observed point density is the driving factor for why the population KDE estimate was much 

smaller than the population’s MCP estimate (Table 4.1). Since the population KDE 

appeared to be biased toward trapping areas, for all comparisons we used the population 

MCP as an estimate of available habitat proportions.  We used confidence intervals to test 

the population MCP against both the MCP and KDE averages compiled from the 

individual estimates.  

Table 4.1. Summary of annual home range values estimated using minimum convex 

polygon (MCP) and kernel density estimation (KDE) techniques for a population of ring-

necked pheasant in southwestern North Dakota, July 2010 – March 2012.  

 

MCP Area 

(ha) 

KDE Area 

(ha) 

MCP Edge 

(m/ha) 

KDE Edge 

(m/ha) 

 

Individual Bird 

Average
a  

 

 

2583 

 

2368 

 

4.76 

 

4.93 

 

Median of Individual 

Bird Values
b
 

 

2195 

 

1705 

 

4.56 

 

5.06 

 

Compiled Population 

Estimates
c
 235183 13113 3.49 5.48 

a
Average of all individual bird home range estimates after removing the outliers (n= 81).  

b
Median of all individual bird home range estimates after removing the outliers (n=81). 

c
Values calculated for the entire population’s home range estimates, derived by including 

every observed point during the study from a total of 191 collared pheasants.  
 

 

The average number of points used while calculating home ranges was 41 and 38 

for roosters and hens, respectively. Hens tended to have larger home range estimates in 

areas of less edge proportion than males within the same study area (Table 4.2). From all 

sites, pheasants were able to move freely and we observed several individuals disperse over 

7.5 kilometers.   
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Table 4.2. Summary of male and female annual home range values estimated using 

minimum convex polygon (MCP) and kernel density estimation (KDE) techniques for a 

population ring-necked pheasant in southwestern North Dakota, July 2010 – March 2012. 

(SE= Standard Error) 

 

MCP Area 

(ha) 

 

SE 

KDE Area 

(ha) 

 

SE 

MCP Edge 

(m/ha) 

 

SE 

KDE Edge 

(m/ha) 

 

SE 

Male
a
 2092 

 

305 1875 

 

244 5.00 

 

0.71 5.58 

 

0.75 

Female
b
 2881 

 

285 2694 

 

323 4.70 

 

0.49 4.91 

 

0.56 
a
Average of male home range and edge density estimates (n= 25).  

b
Average of female home range and edge density estimates (n=56).  

 

 After estimating average size of pheasant home ranges, we were interested in 

assessing proportions of habitat within the average individual’s home range in comparison 

to what was available on the landscape. Habitats were considered to be selected if they 

were present within the home ranges at greater proportions than on the study area (Johnson 

1980, Perkins et al. 1997, Gabbert et al. 1999, Schmitz and Clark 1999). To make this 

comparison, we used the population MCP’s habitat composition as the available habitat 

proportions for pheasants to select from and used the average proportions from the same 81 

individual MCPs that were used to create the average and median estimates in Table 4.1. 

The proportions of used habitats for the MCP and KDE estimates are shown in Tables 4.3 

and 4.4, respectively. Table 4.3 represents the average MCP proportions for the 81 

individuals against the available proportions of all areas used by pheasants in our study. 

Table 4.4 made the same comparison of proportions with the estimated KDE polygon 

proportions for the 81 individuals to the MCP of the population. Both tables have a “Used - 

Available” value that represents the difference between what was used (i.e., proportions of 

habitats within the individual’s home range estimates) and what was available (i.e., 

proportions of habitats within the population’s MCP) to represent trends of habitat 

selection.  
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Table 4.3. Summary proportions of annual home range habitat composition estimated 

using minimum convex polygon (MCP) techniques for a population ring-necked pheasant 

in southwestern North Dakota, July 2010 – March 2012. 

 

 

Table 4.4. Summary proportions of annual home range habitat composition estimated 

using 95% kernel density estimation (KDE) techniques for a population ring-necked 

pheasant in southwestern North Dakota, July 2010 – March 2012.  

 

 MCP home range estimate areas were typically larger in size than the KDE home 

range estimates with averages of 2583 and 2368 hectares, and associated standard errors of 

211 and 222, respectively (Table 4.1). The average edge densities were greater in the KDE 

home range estimates than the MCP estimates with 4.93 and 4.76 meters of edge per 

hectare, and standard errors of 1.03 and 1.01, respectively (Table 4.1). Although the 

average size of the MCP and KDE home range sizes varied slightly and had rather large 

 Crop CRPCov FarmStd Other/City RngCov WetCov WoodCov 

Habitat        
Ind. 

Mean 

MCP 

 

0.27 

 

0.44 

 

0.10 

 

0.02 

 

0.10 

 

0.04 

 

0.02 

 

Pop 

MCP 

 

0.30 

 

0.32 

 

0.01 

 

0.01 

 

0.34 

 

0.02 

 

0.01 

 

Used - 

Available -0.03 0.12 0.09 0.01 -0.24 0.03 0.01 

 Crop CRPCov FarmStd Other/City RngCov WetCov WoodCov 

Habitat       
Ind. 

Mean 

KDE 

 

0.29 0.43 0.11 0.04 0.07 0.04 0.02 

Pop 

MCP 

 

0.30 0.32 0.01 0.01 0.34 0.02 0.01 

Used - 

Available 
-0.01 0.11 0.10 0.02 -0.27 0.03 0.02 
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standard errors, the proportions of used versus available habitat types were fairly consistent 

between the two methods (Tables 4.3 and 4.4).  

Crop and RngCov were negatively selected in proportion to their availability. 

Negative preference for the Crop habitat type was relatively low in both polygons. 

RngCov; however, showed much greater negative selection in the used versus available 

proportions in both estimations compared to its availability (Table 4.3).  The average 

individual’s home range KDE contained 27% less RngCov and 1% less Crop than the study 

area while the MCP contained 24% less RngCov and 3% less Crop than the study area’s 

estimated 30% crop and 34% RngCov estimates (Table 4.3 and 4.4).  

CRPcov, FarmStd, Other, WetCov, and WoodCov types all showed positive habitat 

preference when comparing average individual habitat proportions to the study area. 

CRPcov showed positive selection for both the KDE and MCP estimates with 11 and 12% 

increases of overall home range habitat proportions from the study area’s estimated 32% 

CRPcov. Although FarmStd only showed a 9 and 10% increase in preference from the 

study area’s habitat proportion, FarmStd only constituted 1% of the study area. Both the 

MCP and the KDE showed strong selection for FarmStd that had livestock. The Other 

cover type category showed positive selection compared to the study area availability. The 

Other classification had little variance between the three polygons.  

WetCov estimates were similar for both the KDE and MCP home range polygons. 

The available WetCov on the landscape was less than 2% while the percent contained 

within the average home range polygons was greater than 4%. Shelterbelts, or WoodCov, 

was similar to WetCov in that its proportions contained within the individual’s home 

ranges was almost 2 times that contained in the study area. For both the KDE and the MCP 
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methods, the rounded proportions of WetCov were 2% of the home range polygons while 

the proportion of WoodCov on the landscape was less than 1% of the total area.  

To express the significance of these differences, we created Table 4.5 that shows 

the 95% confidence intervals and the differences in used versus available habitat 

proportions on the landscape. This simple statistical analysis showed that there were highly 

significant differences in proportions of habitat within the average individual’s home range 

compared to the habitat proportions found within our study area for: CRPcov (positive), 

FarmStd (positive), and RngCov (negative) as shown in Table 4.5. WetCov also fell 

outside of the confidence interval, for both MCP and KDE estimates, suggesting that 

pheasants are selecting for WetCov within their home ranges in greater proportion than 

what is available on the landscape. Crop, Other and WoodCov habitat types each had 

overall differences that did not consistently fall outside of the 95% confidence interval, 

suggesting that preference toward those cover types were neither positively or negatively 

significant (Table 4.5).  
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Table 4.5. Summary of the difference in habitat proportions of average annual home range 

compositions of individual pheasants estimated using 95% kernel density estimation (KDE) 

and minimum convex polygon (MCP) techniques compared to the proportions of habitat on 

the landscape. Confidence intervals were created using the data for all individual home 

range estimates for a population ring-necked pheasant in southwestern North Dakota, July 

2010 – March 2012.  

a(+/- 95%) Confidence intervals for all MCP habitat proportions.  
b
(+/- 95%) Confidence intervals for all KDE habitat proportions.  

 

 

Discussion 

 

Compared to previous studies, our MCP and KDE estimated pheasant home ranges 

were large. Our average home range estimates were 2583 ha for the MCP method and 2368 

ha for the 95% KDE method. Most other studies that have analyzed pheasant home range 

have been interested in seasonal home range size, either summer reproduction areas or 

winter survival and associated habitats. It has been reported that home range size is 

generally smaller in the winter than in the spring for most pheasant species (Gatti et al. 

1989, Perkins et al. 1997, Gabbert et al. 1999, Xu et al. 2009). It was reported by Gabbert 

et al. (1999) and Perkins et al. (1997) that severe weather likely concentrates pheasants in 

few, widely-spaced patches of thermal cover. As a result, other studies reported home 

range sizes of: 36 ha (Hanson and Progulske 1973), 24 ha (Gatti et al. 1989), 35 – 145 ha 

(Perkins et al. 1997), 37 - 48 ha (Schmitz and Clark 1999), 55 - 73 ha (Homan et al. 2000), 

137 - 278 ha (Warner et al. 2000), and 25 ha (Gabbert et al. 2001). All these values are 

 Crop 
CRP 

Cov 

Farm 

Std 

Other 

/City 

Rng 

Cov 

Wet 

Cov 

Wood 

Cov 

Habitat       
MCP – Available 

 

-0.03 

 

0.12 

 

0.09 

 

0.01 

 

-0.24 

 

0.03 

 

0.01 

 

95% CI (MCP)
a 

0.03 0.04 0.04 0.01 0.03 0.01 0.01 

 

KDE - Available 
-0.01 0.11 0.10 0.02 -0.27 0.03 0.02 

 

95% CI (KDE)
b
 

0.03 0.04 0.03 0.02 0.02 0.01 0.01 
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much smaller than our estimated home range values of > 2000 hectares. Whiteside and 

Gunthery (1983) conducted research on a population of pheasants in Texas where they split 

home ranges by season and found home range size varied by season from 14 to 7 ha 

depending on the season and the sex. Combining these seasonal home ranges as we did, 

combines each seasonal home range and all annual movements, therefore creating the 

potential for greatly increased home range estimations as previously discussed.  

The proportions of our home range habitats were similar to other studies, despite 

their size. Homan et al. (2000) reported similar negative selection for croplands in their 

study of pheasant habitat use in southeastern North Dakota. Also, similar to previous 

studies, we found that pheasants were selecting for areas that had greater proportions of 

wetland cover and CRP-type grass than was available on the landscape (Gates and Hale 

1974, Gatti et al. 1989, Leptich 1992, and Gabbert et al. 1999, Homan et al. 2000). Our 

study also concluded that farmsteads with livestock were positively selected. We suspect 

that was due to decreased food availability during the winter months in correlation with 

increased snow depths, especially during the 2010/2011 winter. These farmsteads 

commonly had shelterbelts in close proximity that were used in correlation to the areas that 

contained livestock. The shelterbelts that contained pheasants during deep snow typically 

contained multiple rows of coniferous trees with dense underbrush, but were not quantified 

during our study (Gabbert et al. 1999).   

Similar to Homan et al. (2000), we found pheasants tended to show plasticity in 

their selection of habitats. As snow depth increased they moved from idle grasslands to 

large wetlands and finally to farmsteads with dense shelterbelts and livestock. This 

observation is also similar to reports by Gatti et al. (1989), Perkins et al. (1997), and 
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Gabbert et al. (1999). Comparison of winter 2010/2011 to 2011/2012 made this especially 

evident. The first winter was much colder with greater snowfall and accumulation than the 

average year while the second year was dryer and warmer than average (Figures 4.2 and 

4.3). We noted that individuals moved greater distances and concentrated in greater 

numbers during the cold, wet 2010/2011 winter than they did during the mild 2011/2012 

winter.  

We expect that during cold, wet winters, pheasants in the vast southwestern North 

Dakota landscape are forced to travel distances of up to 8 km to reach farmsteads that 

contain livestock and shelterbelts to provide adequate areas of winter food and cover. 

Pheasant movements were more restricted hence producing smaller home range sizes 

during the winter of 2011/2012. Since most individuals had relatively low observation rates 

(≤100) we did not attempt to split our dataset into seasons or year. We were able to make 

seasonal and yearly separations using habitats correlated to single point locations, 

discussed in greater detail in Chapter 5.  

Our measurement of edge within home range polygons compared to the study area 

showed similar results as previous studies. Pheasants were selecting for areas of greater 

proportions of edge than what was available (Schmitz and Clark 1999). The average edge 

density within the study area was 3.5 meters of edge per hectare, while the observed 

pheasant edge densities averaged 4.8 m/ha for MCP estimates and 4.9 m/ha for KDE 

estimates. This suggests that pheasants select for areas with greater proportions of habitat 

edge in our study area.  
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Management Implications 

The results presented in this chapter suggest that pheasants in southwestern North 

Dakota have much larger home ranges than other populations in the Midwest when using 

either MCP or KDE estimation techniques. The magnitude of these movements is likely 

caused by winter severity where pheasants are forced to travel greater distances in severe 

climatic conditions to find suitable thermal cover in close proximity to food.  

Since southwestern North Dakota has few, widely spaced farmsteads with adequate 

food sources and shelterbelts for thermal winter cover, pheasants are forced to move up to 

8 km in this area. In our study region, managers wishing to have viable pheasant 

populations on management areas smaller than 2000 ha should consider altering their 

landscape to contain ample amounts of CRP-type cover, large wetlands with cattails, and 

dense, coniferous shelterbelts in close proximity to livestock to provide pheasants with the 

necessary cover for their annual habitat requirements.  

 

Acknowledgements 

 

 Our project was provided partial support by the National Research Initiative of the 

USDA Cooperative State Research, Education, and Extension Service, grant number 2005-

55618-15754 and by a USDA Five State Ruminant Consortium Grant. We would like to 

thank VESTRA Resources Incorporated for their donation of resources for data analysis. 

We thank R. Fitch, J. Clement, J. Rose, Excel Industries, and J. Clement for granting 

access to their properties.—Jeffery W. Stackhouse
1,2

, Arthur Stackhouse
3
, Kevin Sedivec

2
 

and Benjamin A. Geaumont
1,4

. 
1 

Hettinger Research Extension Center, North Dakota State 

University, Hettinger, ND 58639, USA; 
2 

School of Natural Resource Sciences, North 



  

66 

 

Dakota State University, Fargo, ND 58105, USA; 
3
VESTRA Resources Inc., Redding, CA, 

96002;  
4 

Corresponding author.  

 

Literature Cited 

 

Beyer, H. L. 2012. Kernel density Estimation in Geospatial Modeling Environment. 

 <http://www.spatialecology.com/gme/kde.htm>. Accessed 5 Mar 2012. 

 

Dumke, R. T. and C. M. Pils. 1979. Renesting and dynamics of nest site selection by 

 Wisconsin pheasants. Journal of Wildlife Management 43:705-716. 

 

Gabbert, A. E., A. P. Leif, and L. D. Flake. 1999. Survival and habitat use of ring-necked 

 pheasants during two disparate winters in South Dakota. Journal of Wildlife 

 Management 63:711-722. 

 

Gates, J. M. 1971. The ecology of a Wisconsin pheasant population. Dissertation, 

 University Wisconsin, Madison, USA.  

 

Gates, J. M. and J. B. Hale. 1974. Seasonal movement, winter habitat use, and population 

 distribution of an east central Wisconsin pheasant population. Wisconsin 

 Department of Natural Resources, Madison, Technical Bulletin No. 76. 

 

Gatti, R. C., R. T. Dumke, and C. M. Pils. 1989. Habitat use of ring-necked pheasants 

 during  fall and winter. Journal of Wildlife Management 53:462-475. 

 

Geaumont, B. A., K. K. Sedivec, and C. S. Schauer. 2010. Ring-necked pheasant nest 

parasitism of sharp-tailed grouse nests in southwest North Dakota. The Prairie 

Naturalist 42:73-75.  

 

Giudice, J. H. and J. T. Ratti. 2001. Ring-necked pheasant (Phasianus colchicus).In The 

Birds of North America Online. Ithica: Cornell Lab of Ornithology; Retrieved from 

Birds of North America online. < http://bna.birds.cornell.edu/bna>. Accessed 24 

Feb 2012. 

 

Hall, L. S., P. R. Krausman, and M. L. Morrison. 1997. The habitat concept and a plea for 

 standard terminology. Wildlife Society Bulletin 25:173-182.  

 

Hanson, L. E. and D. R. Progulske. 1973. Movements and cover preferences of pheasants 

 in South Dakota. Journal of Wildlife Management 37:454-461.  

 

Homan, H. J., G. M. Linz, and W. J. Bleier. 2000. Winter habitat use and survival of ring-

 necked pheasants (Phasianus colchicus) in southeastern North Dakota. American 

 Midland Naturalist 143:463-480. 



  

67 

 

 

Horne, J. S. and E. O. Garton. 2006. Likelihood cross-validation versus least squares cross-

 validation for choosing the smoothing parameter in kernel home-range analysis. 

 Journal of Wildlife Management 70:641-648. 

 

Horne, J. S., E. O. Garton, and K. A. Sager-Fradkin. 2007. Correcting home-range models 

 for observation bias. Journal of Wildlife Management 71:996-1001. 

 

Johnson, D. H. 1980. The comparison of usage and availability measurements of evaluating 

 resource preference. Ecology 61:65-71. 

 

Johnson, M. D., and J. Knue. 1989. Feathers from the Prairie: A short story of upland 

 gamebirds. North Dakota Game and Fish Department, Bismarck, North Dakota, 

 USA.   

 

Kernohan, B. J., R. A. Gitzen, and J. J. Millspaugh. 2001. Analysis of animal space use and 

 movements. Pages 125-166 in J. J. Milspaugh and J. M. Marzluff, editors. Radio 

 tracking and animal populations. Academic, New York, New York, USA.  

 

Labisky, R. F. 1968. Nightlighting: its use in capturing pheasants, prairie chickens, 

 bobwhites and cottontails. Illinois Notational Historical Survey, Biology Notes 62:

 12.  

 

Leif, A. P. 2005. Spatial ecology and habitat selection of breeding male pheasants. Wildlife 

 Society Bulletin 33:130-141. 

 

Leptich, D. J. 1992. Winter habitat use of hen pheasants in southern Idaho. Journal of 

 Wildlife Management 56:376-380. 

 

Lichti, N. I. and R. K. Swihart. 2010. Estimating utilization distributions with kernel versus 

 local convex hull methods. Journal of Wildlife Management 75:413-422. 

 

Mohr, C. O. 1947. Table of equivalent populations of North American small mammals. 

 American Midland Naturalist 37:223-249. 

 

NDAWN. 2012. North Dakota Agricultural Weather Network, North Dakota State 

 University. <http://ndawn.ndsu.nodak.edu>. Accessed 23 Feb 2012.  

 

Perkins, A. L., W. R. Clark, T. Z. Riley, and P. A. Vohs. 1997. Effects of landscape and 

 weather on winter survival of ring-necked pheasant hens. Journal of Wildlife 

 Management 61:634-644.  

 

Riley, T. Z. and B. A. Fistler. 1992. Necklace radio transmitter attachment for pheasants.

 Journal of the Iowa Academy of Science 99:65-66.  

 



  

68 

 

Sawyer, H. R. M. Nielson, F. Lindzey, and L. L. McDonald. 2006. Winter habitat selection 

 of mule deer before and during development of a natural gas field. Journal of 

 Wildlife Management 70:396-403. 

 

Schmitz, R. A. and W. R. Clark. 1999. Survival of ring-necked pheasant hens during spring 

 in relation to landscape features. Journal of Wildlife Management 63:147-154.  

 

Warner, R. E., P. H. Hubert, P. C. Mankin, and C. A. Gates. 2000. Disturbance and the 

 survival of female ring-necked pheasants in Illinois. Journal of Wildlife 

 Management 64:663-672. 

 

Whiteside, R. W. and F. S. Guthery. 1983. Ring-necked pheasant movements, home 

 ranges, and habitat use in west Texas. Journal of Wildlife Management 47:109- 

 1104. 

 

Worton, B. J. 1995. Using Monte Carlo simulation to evaluate kernel-based home-range 

 estimators. Journal of Wildlife Management 59:794-800.  

 

Xu, J. L., X. H. Zhang, Q. H. Sun, g. M. Zeheng, Y. Wang, and Z. W. Zahng. 2009. Home 

 range, daily movements and site fidelity of male Reeve’s pheasants Syrmaticus 

 reevesii in the Dabie Mountains, central China. Wildlife Biology 15:338-344. 

 

  



  

69 

 

 

 CHAPTER 5. RING-NECKED PHEASANT (PHASIANUS COLCHICUS) WINTER 

SURVIVORSHIP AND HABITAT SELECTION
3
 

Abstract 

 Goals in management of ring-necked pheasants (Phasianus colchicus) are 

commonly directed toward increasing the survivorship of wild populations. Managers often 

attempt to alter survivorship by enhancing habitat and limiting hunting pressures. Knowing 

the survivorship of a population over time allows biologists to assess the impacts that their 

management techniques have upon the population of interest through differing time 

intervals and environmental variables. This is especially useful in understanding 

fluctuations, trends and driving factors behind those changes within a population. As 

managers begin to better understand those factors effecting survival within a population 

and what kind of habitats individual are selecting for, they can better analyze ways to alter 

the availability of those environmental components to benefit the population.  We used 

Program MARK to assess the survivorship of pheasants in southwestern North Dakota 

from January to April for 2011 and 2012. We assessed our data from 184 pheasant 

equipped with mortality-sensing necklace-style radio transmitters. These 184 individuals 

were categorized by sex for both time intervals. We trapped each pheasant during one of 5 

trapping occasions to equip each individual with a radio collar. Upon completion of testing 

each reduced parameter model from the full, we found the full time-dependent model 

including sex, time, and sex*time interactions to be the best fit for the winter 2011 dataset 
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and the model including time only to be the best fit model for the 2012 winter. Overall 

winter survival was 0.91 in 2011 and 0.85 in 2012. We used the same telemetry dataset to 

overlay GPS (Global Positioning System) points on a digitized map in ESRI’s (Economic 

and Social Research Institute) product ArcMap 10 to assess habitat selection of ring-necked 

pheasant. We categorized the habitat types into 7 categories. For each observed point, we 

generated one random point on the digitized map using ArcCatalog 10 which were used to 

define habitat availability. We then took the habitat types from an overlay of both random 

and observed points to create a spreadsheet to be used for logistic regression analysis in 

SAS (Statistical Analysis Software). Our habitat use analysis indicated a positive 

correlation for pheasant selection toward woody habitat types and farmsteads with 

livestock during the disparate winter of 2011 and during the mild winter of 2012; however, 

analysis of winter of 2012 also suggested pheasant selection toward wetland and 

Conservation Reserve Program (CRP) type grass cover. Habitat use during spring, summer, 

and fall, showed positive correlations to CRP-type grasses, wetland cover, and wood cover. 

All analyses supported negative selection of pheasants toward habitats classified as range-

type grassland cover. 

 

Introduction 

Introduced to North America in 1881, ring-necked pheasant (Phasianus colchicus) 

are a highly sought after game bird and as such much research has been conducted 

regarding their ecology (Warner 1981, Trautman 1982, Whiteside and Guthery 1983, 

Snyder 1984, Johnson and Knue 1989, Robertson 1996). Although it is likely that the most 

investigated aspect of pheasant biology is the species reproductive behavior, survivorship 
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and habitat selection are commonly assessed for populations throughout the world (Linder 

et al. 1960, Jarvis and Simpson 1978, Dumke and Pils 1979, Leif 1994). Radio telemetry 

studies, in particular, have allowed scientists to capture more precise documentation of 

mortality and related cause of death in pheasant studies in addition to providing a more 

accurate assessment of habitat use (Dumke and Pils 1973, Snyder 1985).  

Due to high winter mortality, most survival studies on galliformes have focused on 

winter survival and its relationship to cover and food plot habitat types (Dumke and Pils 

1973, Gates and Hale 1974, Hill and Robertson 1988a, Perkins et al. 1997, Gabbert et al 

1999). However, other studies have focused on spring dispersal and loss of pheasants from 

the time they disperse the wintering grounds until the end of the nesting season. Some of 

these studies have shown greater losses during this time period than occurred as a result of 

winter (Snyder 1985, Riley et al. 1994, Schmitz and Clark 1999). Low winter temperatures, 

availability of thermal winter cover, herbaceous reproductive cover, dispersal rates and 

distances, home range size, percent edge within home range, hunting pressure, population 

demographics, and fall population density have all been noted to affect pheasant 

survivorship (Dumke and Pils 1973, Snyder 1985, Hill and Robertson 1988b, Riley et al. 

1994, Gabbert et al. 1999, Perkins et al. 1999, Shmitz and Clark 1999, Homan et al. 2000, 

Warner et al. 2000, Grove et al. 2001).  

The objective of this study was to assess winter pheasant habitat use, survival, and 

movements in southwestern North Dakota. We were also interested in the differences in 

habitat use throughout the year when pheasants are not constrained by the needs of thermal 

cover. The usage of a resource is defined as the quantity of the resource that is utilized 

(Manly et al. 2002). It is assumed that species will select resources that are best able to 
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satisfy its life requirements, therefore increasing the populations’ viability (Manly et al. 

2002). This research was conducted to examine annual differences in habitat use and 

survival of radio collared pheasant to provide insight to managers attempting to alter their 

lands to increase pheasant numbers for recreational opportunities.  

 

Study Area 

The study was conducted on privately owned lands near Hettinger, North Dakota in 

Adams County (Figure 5.1). The study occurred on approximately 23,500 ha of privately 

and publicly owned lands in both North and South Dakota. Our trapping sites consisted of 

4 privately owned parcels of land in North Dakota. Prior to the beginning of our research, 

the land parcels used for nightlighting were enrolled in the Conservation Reserve Program 

(CRP) for approximately 10 years. At the onset of the CRP contract, each parcel of land 

was established with cool season grasses and legumes that included intermediate 

wheatgrass (Elymus hispidus (P. Opiz) Melderis), crested wheatgrass (Agropyron cristatum 

(L.) Gaertn), alfalfa (Medicago sativa L.), and yellow sweetclover (Melilotus officinalis 

(L.) Lam.) (Geaumont et al. 2010). The 2 winter trapping sites were privately owned areas 

that held high densities of pheasants during the disparate winter of 2011. From these sites, 

pheasants were able to disperse, and we had numerous birds move over 7.5 kilometers.   

The study area receives approximately 41 cm of precipitation annually, with 87 

percent occurring from April through October (NDAWN 2012). The 20-year average 

winter temperature (January through March) is approximately -9°C and average summer 

temperature (June through August) approximately 19°C (NDAWN 2012). Fifty-six year, 

long-term averages and annual fluctuations in monthly precipitation and temperatures are 
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shown below (Figures 5.2 and 5.3 respectively). Data included in these figures was 

collected at the Hettinger research Extension Center weather station daily.  

 
Figure 5.1. Map of North Dakota with the relative location of the research site. The red 

star indicates the center of the pheasant population’s minimum convex polygon.  
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Figure 5.2.  Average monthly precipitation in Hettinger, ND for 2010/2011, 2011/2012, 

and the 56 year average.  Data provided from the Hettinger Research Extension Center 

climate station.

 
Figure 5.3.  Average monthly temperature (ᵒC) in Hettinger, ND for years: 2010/2011, 

2011/2012, and the 56 year average. Data provided from the Hettinger Research Extension 

Center climate station. 
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Methods 

Data Collection 

For the duration of our study, we monitored both male and female pheasants 

equipped with 12.5-g necklace-type radio transmitters (Riley and Fistler 1992, Perkins et 

al. 1997). Radio collared pheasants were monitored 1 to 3 times per week using handheld 

three element Yagi antennas and model R2000 receivers (Advanced Telemetry Systems; 

Isanti, Minnesota). Pheasants were captured during 1 of 5 occasions, using 2 different 

techniques. Capture techniques employed were nightlighting and winter bait-trapping, both 

previously shown to successfully capture adult pheasants (Labisky 1968, Gates 1971, 

Dumke and Phils 1979, Perkins et al. 1997). In the summer and fall of 2010 and spring and 

fall 2011, we captured pheasants using the nightlighting techniques similar to those 

described in Labisky (1968) on our research sites. During the winter of 2011, we captured 

pheasants using bait and wire funnel traps (Gates 1971, Perkins et al. 1997). Upon capture, 

pheasants were sexed and equipped with either radio collars, as previously described, or 

banded with butt-end aluminum leg bands for identification purposes.  

Neither the radio collars nor the leg bands were thought to significantly reduce 

survival of individuals used in our research as compared to others in the general 

population. We used trapping and handling techniques that were approved by The North 

Dakota State University Institutional Animal Care and Use Committee (Protocol 

#A11034).  

We began trapping pheasants in May 2010 and monitored survival since the first 

capture. We monitored pheasant survival at least once a week from May - December each 

year, and 3 times a week from January – April. Pheasant locations were located either by 
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homing or by using triangulation techniques and resulting coordinates were derived via 

handheld GPS units. Data used in our statistical analysis was constricted to data collected 

from July 2010 – April 2012.  

 

Statistical Analyses 

 Survival estimates were derived using Program MARK known fate analysis. We 

trapped and collared birds during 5 different trapping occasions; therefore, we attempted to 

use the Pollock’s Kaplan-Meier Staggered Entry Design (Pollock et al. 1989, Riley et al. 

1994, Perkins et al. 1997, Cooch and White 2012). However, perhaps as a result of over-

abundant censorship our models and subsequent survival estimates were poor. As a result, 

we assessed our data using the original Kaplan-Meier study design and focused solely on 

survival of pheasants during the winter months (1 January – 1 April). The focus of known 

fate models is to estimate the survival probability during a specified interval(s). Known fate 

analyses assumes that the presence of a radio-collar does not affect the animal’s survival 

and that each sampling probability is assumed to be 1 since radio collars allow for 

“recaptures” regardless of the animal’s actions (Pollock et al. 1989, Cooch and White 

2012). Additionally, these methods assume that survival times are independent between 

animals, that newly tagged animals have the same survival as previously tagged animals, 

and that the censoring method is random (Pollock et al. 1989, Riley et al. 1994, Cooch and 

White 2012). It is also assumed that the status (dead or alive) is known for all collared 

animals at the end of each interval. This analysis is a product of simple binomial 

likelihoods and the precision of these types of datasets is quite high in comparison to other 

mark-recapture type studies (Cooch and White 2012).  
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 The original dataset created from the raw-field datasheets was an Excel file that had 

fields for: landowner, date, coordinates, descriptive habitat type, and notes. Program 

MARK requires text files as input, with specified encounter histories for each individual 

pheasant. In total, we had 184 pheasants that lived > 1 week after initial capture, making 

them eligible for our habitat selection and survivorship analyses. For each interval (week) 

of our study, each pheasant gets 1 of 3 possible entries: 10, 11, or 00 (Cooch and White 

2012). The input “10” implies that the animal survived the interval given that it was alive at 

the beginning of the interval. Input “11” implies that the animal died during the given 

interval, given it was alive at the beginning of that interval. Input “00” implies that the 

animal was censored (omitted) for that interval (Cooch and White 2012). Since the entirety 

our study encompassed 90 weeks, or 89 intervals, this resulted in 178 1’s and 0’s required 

for each of the 184 pheasants before they could be analyzed in Program MARK. 

Additionally, each Excel sheet needed to be converted to comma-separated-values (csv) 

before they could be used in ESRI’s ArcMap or ArcCatalog.  

In order to accomplish this task we used the program software WingIDE 4.0 

(Wingware Python IDE, Version 4.0.2-1)  to assist in writing Python scripts that would 

analyze each of the 191 Excel spreadsheets in our dataset, one for each pheasant ever 

equipped with a radio collar. This Python script needed to be able to convert each 

spreadsheet into a csv file to be imported into ESRI products, and remove any bird that did 

not have data that spanned more than 1 week for data entry into ArcMap and ArcCatalog. 

Additionally, this program needed to have logic to group each pheasant into 7 categories: 

sex, age, cohort 1, cohort 2, cohort 3, cohort 4, cohort 5. For each pheasant captured, there 

were records of the sex and age of the individual, and of the date captured. The program 



  

78 

 

needed to have logic that placed each pheasant into the correct cohort based on when it was 

initially captured. Also, the program needed to censor each bird for all weeks preceding 

initial capture. In addition to placement into these 7 groups, the program had logic that 

gave each bird the appropriate code: 10, 11, or 00 depending on either the data being 

present suggesting that the bird was either alive or dead (10 or 11) or the lack of data 

suggesting that the bird needed to be censored (00) for each weekly interval. The created 

model is able to convert our field datasheets from Excel into text files which are 

compatible with Program Mark and ESRI.  

Upon computation of habitat utilization for each bird, we combined the data for 

each bird using summary statistics in ArcCatalog and created an equivalent random point, 

within the study area’s minimum convex polygon, for each observed point in our dataset. 

These random points were considered the available habitat for pheasants and were 

intersected with the habitat feature class created in ArcCatalog. The outputs were placed on 

a frequency table with the observed values to be exported to Excel where they were then 

prepared for entry into SAS (Statistical Analysis Software). In total, over 3900 observed 

points (used) were collected during our study and an equivalent number of random points 

were generated. Each random point was also intersected with the habitat feature class map 

and recorded in a table within ArcCatalog. All processes included in the creation of the 

point habitat tables for preparation of analysis are discussed in greater detail in the GIS 

Analysis portion of the Methods section in Chapter 4 and shown in Appendices 4.4 – 4.18.   

 Habitat preference is defined as the disproportionate use of some resources over 

others (Hall et al. 1997, Gabbert et al. 1999) while habitat selection is the act of the animal 

choosing a particular resource (Johnson 1980). Habitat usage, as defined by Johnson 



  

79 

 

(1980), is the quantity of a habitat resource being utilized during a specified period of time. 

We chose to analyze habitat selection by assessing usage of habitat types in our study. 

Habitat selection was estimated using logistic regression analysis in SAS. Once habitat 

selection rates were estimated, we used a resource selection function (RSF) to estimate the 

relative probability of each habitat type being used to estimate habitat preference 

(McDonald et al. 2005). 

Habitat type was broken into seven categories: CRP Cover, Range Cover, 

Shelterbelts, Wetlands, Croplands, Farmsteads, and Other (i.e., primarily urban areas). CRP 

Cover was considered any area that has potential to be re-submitted to enrollment into 

CRP, including but not limited to hay land, grazed pastures, and idle ground composed of 

primarily introduced grass species. Range lands were areas composed by primarily native 

grasses and experiencing idled or grazed pasture uses. Shelterbelts were those areas of trees 

that were greater than 2 meters in height. Wetlands were areas along waterways that had 

potential for aquatic vegetative growth. Farmsteads were areas that over-wintered livestock 

including feedlots and homesteads. Croplands primarily consisted of corn, sunflower, 

canola, and small grain fields in commercial agricultural production. 

 We designated the population’s available habitat and general study area by creating 

a minimum convex polygon around the total selection of GPS points that were gathered 

throughout the study as depicted in Figure 5.4 (Sawyer et al. 2006). Within this polygon, 

2010 NAIP (National Agriculture Imagery Program) imagery was used to designate cover 

types and delineated each cover type in ArcMap 10. Areas where habitat type identification 

was questionable were ground truthed for accurate habitat classification. The observed data 

points (used habitat) were then overlain on the digitized map and intersected with the map, 
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quantifying observed habitat use for each bird in the population using ArcCatalog (Figure 

5.4).  

 

Figure 5.4. Pictorial representation of the minimum convex polygon of a population of 

pheasant near Hettinger, North Dakota signifying the available habitat (in blue) and the 

observed pheasant locations (green points). Data was included from July 2010 to April 

2012.  

 

 Habitat resources selection was described using 3907 observed locations of 

pheasants in our study. The complete set of these units will be referred to as the population 
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of available resource units (Manly et al. 2002). We used logistic regression for analysis of 

our single categorical habitat variable (McDonald et al. 2005, Aldredge and Griswood 

2006). Since the sampling unit is a point in this analysis, scaling our logistic regression for 

our resource selection analysis was not possible since there are an infinite number of 

possible points in our study area (Boyce and McDonald 1999, Boyce et al. 2002). Since 

scaling is not possible, we followed the guidelines in McDonald et al. (2005) and ignored 

the constant β0 from the logistic regression function equation for our RSF equation: 

Logistic Regression Function Equation:  

   (                    )

      (                    ) 
 

Resource Selection Function Equation: 

 (  )     (                 ) 

 We collected data on pheasants over a 90 week period, from July 2010 to April 

2012. We split habitat use into seasonal categories of winter (January-March) and non-

winter (April-December) for the duration of the study. These seasonal categories were then 

separated by year to allow pheasant habitat use and environmental characteristics, 

especially crop, to change through time (Sawyer et al. 2006).  

 

Second-Order Resource Selection 

Second-order resource selection pertains to the usage of various habitat components 

within the home range of a social group (Johnson 1980). Similar to Mace et al. (1996), we 

compared characteristics of telemetry coordinates of individuals to random coordinates 

within the composite MCP for the entirety of the study. Once the logistic regression 

equation was fitted to our dataset, the estimated coefficients were placed in the RSF 
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equation and numerical selection values were estimated (McDonald et al. 2005). Each data 

point was assigned to one of 7 habitat types and was coded as observed (1) and random (0). 

For the winters (January – March) of 2011 and 2012 the habitat type “Other” was set as the 

standard variable used to get estimates for the 6 remaining habitat types. For the other 

seasons (April – December), the cropland habitat types was used as the standard variable 

since there were no observed locations in the “Other” habitat type category. 

 

Third-Order Resource Selection 

 Third-order selection is typically assessed on an individual basis (Mace et al. 1996); 

however, we were unable to model our individuals in this manner due to the limited 

number of observations per habitat type. Therefore, we compiled the observations and 

locations of each bird with ≥ 20 observations and analyzed their data together to assess 

third-order selection within home range polygons (Johnson 1980). The difference between 

this data and the second-order selection is we only used birds with 20 or more observations, 

and the random points we compared the observed points with were derived from each 

individual’s MCP. Our third-order selection analysis included 89 pheasants.  

We used logistic regression to assess winter habitat for both second and third-order 

selection (1 December – 1 April), and non-winter habitat selection (1 April – 1 November) 

of ring-necked pheasants for 2010 through 2012. We choose to analyze each year 

separately to allow for annual variations in climate and annual differences in crop species 

planted within crop fields that may influence habitat use.  

After assessing differences in habitat selection for the winters of 2011 and 2012, we 

became interested in habitat use of pheasants during the remaining seasons. To assess the 
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use of pheasants for the remainder of the year, we again used logistic regression to assess 

the habitat type categorical variables for used against random (available) points. During the 

non-winter months, the habitat type “Other” did not contain observed locations so it was 

omitted from the analysis and “Crop” was used as the standard variable during analysis. 

It was reported by Gabbert et al. (1999) and Perkins et al. (1997) that severe 

weather likely concentrates predators and pheasants in the same areas, particularly in areas 

with few widely-spaced patches of cover. To evaluate if the presence of snow in depths of 

greater than 12.7 cm influenced habitat selection, we used logistic regression and all known 

bird locations (N>3900) regardless of year. We modeled those habitat locations which 

occurred when greater than 12.7 cm of snow were present against those used locations that 

occurred when less than 12.7 cm of snow blanketed the landscape. We suspected that snow 

depth was a leading factor driving pheasants to select for woody cover during winter 

months and speculated that 12.7 cm or more of snow cover was enough to drive pheasants 

from their typical, herbaceous cover to taller, lignified, thermal cover.   

Similar to the analysis for second-order selection, the habitat category “Other” was 

used as the standard variable for estimating the intercept value and a RSF was used to 

estimate habitat preference during times of snow cover. Unlike the analysis used in both 

the second and third-order selection, both the used (1) and available (0) were derived from 

observed pheasant locations, not points generated randomly by ArcCatalog.  
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Results 

Survival 

We monitored 36 and 45 birds for the winter survival estimates in 2011 and 2012, 

respectively. Surprisingly, the wet, cold winter of 2011 had higher survival estimates than 

the mild winter of 2012, as shown in Table 5.1.  

Table 5.1. Weighted-average winter survival estimates derived from the best-fit models in 

Program MARK for pheasants equipped with radio collars during the winters of 2011 and 

2012 in southwestern North Dakota, January 1 to April 1.  

 

Male Survival  

Probability 

Male Survival 

Standard Error 

Female Survival 

Probability 

Female Survival 

Standard Error 

Winter 

2011
a 

 

 

0.913 

 

0.047 

 

0.916 

 

0.079 

 

Winter 

2012
b
 0.852 0.056 0.836 0.079 

a
Winter 2011- Males (n=12); Females (n=24) 

b
Winter 2012- Males (n=16); Females (n=29) 

 

The best models used for the weighted-average survival estimates, shown in Table 

5.2, included different variables from winter 2011 to 2012, suggesting differences between 

the two years. The 3 models that best fit the data for winter 2011 were the full model, the 

reduced model without the sex*time interaction, and the constant model (Table 5.2). The 

three best models describing the data for the winter of 2012 were the reduced model 

excluding the sex and sex*time interaction, the reduced model excluding the sex*time 

interaction, and the full model (Table 5.2). The Phi model, or full candidate set consisted of 

sex, time, and sex*time interactions in program MARK (Table 5.2).  
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Table 5.2. Program MARK output tables for pheasants equipped with radio collars during 

the winters of 2011 and 2012 in southwestern North Dakota, January 1 to April 1.  

Model     AICc ΔAICc         AICc Weight Model Likelihood 

  Winter 2011
a 

  

Phi(Full) 44.01 0.00                   0.574   1.00 

Phi-(Sex*Time) 45.79 1.78                   0.235 0.41 

Phi(Constant) 46.21 2.21                   0.191 0.33 

  Winter 2012
b
   

Phi-(Sex;Sex*Time) 67.40 0.00                   0.588 1.00 

Phi-(Sex*Time) 69.35 1.95                   0.222 0.38 

Phi(Full) 69.67 2.26                   0.190 0.32 
a
Winter 2011- Males (n=12); Females (n=24) 

b
Winter 2012- Males (n=16); Females (n=29) 

 

Although the AIC values differ between the two years, the Delta AIC and the AIC 

weights are similar between the two years. For both winters, the best model is 

approximately 2.5 times as well supported as the next best model, indicated by the AIC 

weights. The general “rule of thumb” for Delta AIC interpretation is that differences in 

AIC values that are < 2 do not support a difference between two models, while AIC 

differences that are 2 < AIC < 7 show considerable support for real differences between 

models (Cooch and White 2012). Since our second and third best models in both years 

have a difference of approximately 2, their survival estimates were weighted appropriately 

and included in the averages reported in Table 5.1.  

 

Habitat Selection 

Second-Order Resource Selection 

Table 5.3 shows the coefficients for the various habitat categories which were 

generated using logistic regression for the winters of 2011 and 2012. During the 

comparatively harsh winter of 2011, pheasants showed strong selection for farmsteads and 

shelterbelts and avoidance toward CRP, crop, and range cover types compared to the 
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“other” habitat category (Table 5.3). The mild winter of 2012 revealed pheasant selection 

toward CRP, crop, farmsteads, wetlands, and shelterbelts when compared to the “other” 

category (Table 5.3).  

Table 5.3. Logistic regression output for second order selection for a population of 

pheasants equipped with radio collars during the winters of 2011 and 2012 in southwestern 

North Dakota, January 1 to April 1.  

Parameter Coefficient Standard Error Chi-Squared Prob. > X
2
 

Winter 2011
a
 

β0- 

Intercept 0.86 

 

0.319 7.23 0.0072 

CRP -0.79 0.325 5.92 0.0150 

Crop -1.47 0.332 19.54 <0.0001 

Farmstead 2.91 0.441 43.35 <0.0001 

Range -3.84 0.352 119.05 <0.0001 

Wetland 0.09 0.383 0.06 0.8129 

Shelterbelt 2.41 0.395 37.10 <0.0001 

Winter 2012
b
 

β0- 

Intercept -2.05 0.475 18.70 <0.0001 

CRP 2.45 0.481 26.05 <0.0001 

Crop 1.22 0.483 6.41 0.0114 

Farmstead 3.58 0.554 41.78 <0.0001 

Range 0.65 0.551 1.40 0.2364 

Wetland 3.49 0.520 45.21 <0.0001 

Shelterbelt 3.12 0.600 27.01 <0.0001 
a
Winter 2011- Observed (n=1863); Random (n=1863) 

b
Winter 2012- Observed (n=882); Random (n=882) 

 

 Logistic regression coefficients were positive for CRP and Shelterbelts and negative 

for Range cover during the non-winter months of 2010 (Table 5.4). Logistic regression 

coefficients were positive for CRP, wetland and shelterbelts and negative for range cover 

during the non-winter of 2011 (Table 5.4). 
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Table 5.4. Logistic regression output for second order selection of a population of 

pheasants equipped with radio collars during the non-winter months of 2011 and 2012 in 

southwestern North Dakota.   

Parameter Coefficient Standard Error Chi-Squared Prob. > X
2
 

Non-Winter 2010
a
 

β0- 

Intercept 0.01 0.138 0.00 0.9451 

CRP 0.43 0.179 5.70 0.0170 

Farmstead -0.70 0.565 1.55 0.2135 

Range -3.88 0.728 28.45 <0.0001 

Wetland 15.19 577.7 0.00 0.9790 

Shelterbelt 1.47 0.514 8.20 0.0042 

Non-Winter 2011
b
 

β0- 

Intercept -0.33 0.095 11.71 0.0006 

CRP 0.68 0.119 32.59 <0.0001 

Farmstead 16.53 486.4 0.00 0.9729 

Range -1.23 0.188 42.99 <0.0001 

Wetland 4.02 1.017 15.59 <0.0001 

Shelterbelt 1.75 0.465 14.25 0.0002 
a
Non-Winter 2010- Observed (n=342); Random (n=342): (July 18 – December 31) 

b
Non-Winter 2011- Observed (n=819); Random (n=819): (April 1 – December 31) 

 

 The results from the second-order resource selection (Tables 5.3 and 5.4) are 

summarized in Table 5.5 using the RSF equation presented above. The RSF demonstrates a 

way to convert simple selection ratios (Tables 5.3 and 5.4) into relative probability (odds) 

of selection among habitat types that are considered (McDonald et al. 2005). Table 5.5 

presents the relative probability of selection for each habitat type, for each time period, 

based on observed pheasant locations in our study.  
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Table 5.5. Estimated values for the Resource Selection Function presenting estimated 

relative probability of selection among each habitat type used (P-value < 0.05) from a 

population of pheasants equipped with radio collars in southwestern North Dakota (ns- 

refers to “not significant” at 95% confidence level). 

Habitat Type w(xi) w(xi)/∑ w(xi) w(xi) w(xi)/∑ w(xi) 

 Winter 2011
a
  Winter 2012

b
 

Other 1.00 0.032 1.00 0.009 

CRP 0.45 0.015 11.59 0.108 

Crop 0.23 0.007 3.39 0.032 

Farmstead 18.36 0.588 35.87 0.334 

Range 0.02 0.001 ns ns 

Wetland ns ns 32.79 0.306 

Shelterbelt 11.13 0.357 22.65 0.211 

Totals 31.20 1.000 107.28 1.000 

 Non-Winter 2010
c
  Non-Winter 2011

d
 

Crop 1.00 0.145 1.00 0.015 

CRP 1.54 0.223 1.97 0.030 

Farmstead ns ns ns ns 

Range 0.02 0.003 0.29 0.005 

Wetland ns ns 55.70 0.861 

Shelterbelt 4.35 0.630 5.75 0.089 

Totals 6.91 1.000 64.72 1.000 
a
Winter 2011- Observed (n=1863); Random (n=1863); (January 1 – March 31) 

b
Winter 2012- Observed (n=882); Random (n=882); (January 1 – March 31) 

c
Non-Winter 2010- Observed (n=342); Random (n=342): (July 18 – December 31) 

d
Non-Winter 2011- Observed (n=819); Random (n=819): (April 1 – December 31) 

 

When observing pheasant movements during our research, we assumed that snow 

depth was a contributing factor driving pheasants to select for woody cover during winter 

months. Logistic regression coefficients based on habitat use and the presence of snow in 

depths greater than 12.7 cm were positive for shelterbelts and negative for CRP, crop, 

range, and wetland cover in comparison to the standard, “other” category (Table 5.6). 
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Table 5.6. Logistic Regression for days of ≥ 12.7 cm of snow from a population of 

pheasants equipped with radio collars during combined winters of 2011 and 2012 in 

southwestern North Dakota, January 1 to April 1.  

Parameter Coefficient Standard Error Chi-Squared Prob. > X
2
 

Winters 2011/2012
a
 

β0- Intercept 0.15 0.321 0.23 0.6313 

CRP -1.36 0.326 17.28 <0.0001 

Crop -1.62 0.336 23.09 <0.0001 

Farmstead 0.27 0.332 0.66 0.4168 

Range -1.51 0.397 14.39 0.0001 

Wetland -1.57 0.359 19.07 <0.0001 

Shelterbelt 1.15 0.337 11.55 0.0007 
a
Winters 2011/2012- Snow (n=1415); No Snow (n=2492) 

 

 Once the selection ratios were calculated in SAS, shown in Table 5.6, we were able 

to use the RSF equation to estimate the relative probability of selection for habitat types 

during times of ≥ 12.7 cm of snow. Table 5.7 shows the calculated odds of use, indicating 

that shelterbelts were expected to be used approximately 63% of the time during periods of 

snow accumulation of 12.7 cm or more.  

Table 5.7 Estimated values for the Resource Selection Function representing estimated 

relative probability of selection among each habitat type used (P-value < 0.05) from a 

population of pheasants equipped with radio collars in southwestern North Dakota during 

times of ≥ 12.7 cm of snow depth (ns- refers to “not significant” at 95% confidence level). 

Habitat Type          w(xi) w(xi)/∑ w(xi) 

Winters 2011/2012
a
  

Other 1.00 0.198 

CRP 0.26 0.051 

Crop 0.20 0.039 

Farmstead ns ns 

Range 0.22 0.044 

Wetland 0.21 0.041 

Shelterbelt 3.16 0.626 

Totals 5.04 1.000 
a
Winters 2011/2012- Snow (n=1415); No Snow (n=2492) 

 
 

Third-Order Resource Selection 

All random points for these analyses were generated within the individual bird 

MCPs.  Based on logistic regression analysis, coefficients for categorical habitat classes 
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were positive for farmstead, wetland, and shelterbelts and negative for crop, compared to 

the other, standard category during the 2011 winter (Table 5.8).  During the winter of 2012, 

logistic regression coefficients were positive for shelterbelts (Table 5.8).  

Table 5.8. SAS output tables representing third-order logistic regression selection ratios 

from a population of pheasants equipped with radio collars during the winter and non-

winter seasons from July 2010 to April 2012 in southwestern North Dakota.   

Parameter Coefficient Standard Error Chi-Squared Prob. > X
2
 

  Winter 2011
a
   

β0- Intercept -0.44 0.223 3.80 0.0514 

CRP 0.12 0.230 0.28 0.5994 

Crop -0.55 0.240 5.31 0.0211 

Farmstead 1.41 0.240 34.72 <0.0001 

Range -1.30 0.273 22.82 <0.0001 

Wetland 0.49 0.275 3.13 0.0767 

Shelterbelt 2.72 0.267 103.46 <0.0001 

  Winter 2012
b
   

β0- Intercept -0.34 0.586 0.33 0.5655 

CRP 0.36 89 0.38 0.5376 

Crop 0.02 0.594 0.00 0.9758 

Farmstead 0.46 0.611 0.57 0.4521 

Range 0.55 0.657 0.71 0.3983 

Wetland 0.91 0.606 2.23 0.1354 

Shelterbelt 1.76 0.721 5.94 0.0148 

  Non-Winter 2010
c
   

β0- Intercept 0.08 0.142 0.32 0.5698 

CRP -0.08 0.175 0.19 0.6651 

Farmstead -0.77 0.629 1.52 0.2183 

Range -2.33 0.757 9.49 0.0021 

Wetland 0.10 0.451 0.05 0.8221 

Shelterbelt 0.53 0.386 1.85 0.1736 

  Non-Winter 2011
d
   

β0- Intercept -0.19 0.098 3.60 0.0577 

CRP 0.41 0.120 11.45 0.0007 

Farmstead -0.18 0.214 0.74 0.3898 

Range -0.28 0.212 1.69 0.1933 

Wetland 0.09 0.239 0.14 0.7054 

Shelterbelt 0.70 0.341 4.17 0.0410 
a
Winter 2011- Observed (n=1870); Random (n=1870) 

b
Winter 2012- Observed (n=861); Random (n=861) 

c
Non-Winter 2010- Observed (n=337); Random (n=337): (July 18 – December 31) 

d
Non-Winter 2011- Observed (n=821); Random (n=821): (April 1 – December 31) 
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 For the non-winter period in 2010, logistic regression coefficients were negative for 

range cover (Table 5.8).  Logistic regression coefficients were positive for CRP and 

shelterbelts for the non-winter period of 2011 (Table 5.8).  The logistic regression models 

for the third-order selection were not as strong as our second-order models when assessing 

P-values. Using RSF analysis, shelterbelts were selected 68% of the time during 2011, but 

the same analysis was not possible for the winter of 2012 due to the lack of significance 

within the analysis. We believe the differences between the second and third-order 

selection logistic regression models originated from where the random points (available 

habitat) were generated. In the second-order analysis, random points were generated on the 

entirety of the study area, while the third-order random points were generated in the 

individual’s home range polygon. Points generated randomly within individual home range 

polygons are likely too similar to the observed locations to be consistently successful at 

estimating habitat selection.  

 The dataset with the most significance in estimating third-order analysis was the 

winter of 2011. We assumed the 2011 winter worked best because pheasants were 

concentrated to shelterbelts and farmsteads with animals due to low temperatures and 

greater than average snow accumulation. Pheasants had limited access to the entirety of 

their home ranges during the winter of 2011, which created subsequent, significant 

differences between observed and random locations during that timeframe.  

 

Discussion 

 Choices related to time and scale should be strongly considered when analyzing 

large datasets relating to animal survival and space use. Thomas and Taylor (2006), in their 
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paper on study design and tests of resource use, suggest that pooling unequal number of 

locations per animal results in some individuals influencing selection inferences greater 

than others. In this portion of our study, each individual point is the experimental unit 

(Manley et al. 2002). Although it is true that individuals with more points have greater 

influences on the outcomes of selection, those individuals lived proportionately longer by 

selecting the habitats they had. Therefore, we decided that having disproportionate 

influences derived from longer-lived individuals was acceptable in our study design. Our 

goal in this research was to analyze ways for managers to increase survival of pheasants by 

altering habitats. Using selection data from long-lived individuals seems acceptable with 

these goals in mind.  

 

Survival 

When estimating survival, it is equally as important to decide the intervals and 

duration of the times being estimated. We chose to estimate survival for the winters 

(January 1 to April 1) for 2011 and 2012. These times were chosen to coincide with our 

winter resource selection analyses discussed previously.  Our survival estimates for males 

were not greater than that of females for either winter of our study. The average survival 

estimate for both sexes was approximately 0.91 for 2011 and 0.84 for 2012 during the 13-

week winter intervals from January 1 to April 1 each year. Although these estimates were 

higher than expected, survival of pheasants in southwestern North Dakota should be best 

following growing seasons with adequate rainfall (Martinson and Grondahl 1966).  

 Pheasant winter survival estimates tend to vary greatly within publications from 

different region of North America. Although it is difficult to compare survival estimates 
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between studies due to different survival intervals, study durations, and season of 

estimates, our survival estimates seemed to be on the upper end of most pheasant studies. 

Snyder (1985) estimated survival for pheasants in Colorado to be 0.651 for the spring 

season (March-May). The most comparable study to ours in both number of pheasants, and 

duration of the interval was that by Riley et al. (1994) where they estimated survival from 

January-March during three years, 1978-1980. Their estimates were 0.80, 0.52, and 0.69 

for female pheasants in Iowa; they noted that survival was less during the spring months 

than the winter, supporting our assumptions of spring survival in our study. Perkins et al. 

(1997) estimated survival over 5 years from November 27 – April 1 in Iowa. Their survival 

estimates were highly variable among years, estimates ranged from 0.964 to 0.228 between 

2 sites over the 5-year period (Perkins et al. 1997). Gabbert et al. (1999), observed survival 

rates that ranged from 0.65 to 0.16 during two disparate winters in South Dakota. Homan et 

al. (2000) observed average winter survival of 0.41 over three winter seasons ranging from 

0.86 to 0.04 during a study in southeastern North Dakota. It is evident that survival is 

highly variable among pheasant populations between years. Research described in these 

publications suggests that our observations may have fallen within two favorable winters 

for our pheasant population.  

We should note that the later storms in mid-April of 2011 caused numerous deaths 

within our population, since most individuals had already dispersed from their wintering 

grounds prior to these storm events. Since the data was not available for comparison of 

April 2012 at the time of these analyses, the data associated with this storm event was not 

included in this analysis. It is suspected that survival would have more-closely matched our 
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hypotheses of winter 2012 having increased survival over the winter of 2011 if this data 

were included.  

Another factor that may have contributed to our high survival rates was the 

availability of food plots on the landscape. Gabbert et al. (2001) estimated winter survival 

for 2 separate pheasant populations in South Dakota, 1 with access to food plots and 1 

without. In their study, survival estimates were from December 15 to March 15, 1994-1996 

for hen pheasants. Hen pheasant’s average survival in areas with food plots was 0.93 and 

survival for hens that had home ranges without food plots had average survival estimates of 

0.60. Many individuals within our study had food plots contained within their home range 

estimates. The study area contained 2 large, 80 ha, standing corn food plots that were 

grazed by cattle, supplying ample food resources to a large number of pheasants in our 

study. These large food plots could have contributing to the high survival estimates in our 

study, but has not been quantified.  

 

Habitat Selection 

 

Within our logistic regression analyses we modeled habitat selection based on 7 

habitat types for both second and third-order selection. Second-order selection models were 

more significant, hence are the estimates we chose to compare to previous research. After 

the RSF analysis was completed (Table 5.5), it was evident that there were selection 

differences between the harsh winter of 2011 and the mild winter of 2012. Our research 

(RSF results) suggests that during harsher winters, pheasants spend 95% of their time in 

shelterbelts and/or on farmsteads that are in close proximity to livestock. Although we 

observed pheasants in shelterbelts and farmsteads in 2012, the odds of their presence in 
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these habitat types decreased to 55%, while wetlands and CRP increased in relative 

probability of being selected, 11% and 30% respectively. We observed greater variability 

in our non-winter habitat use, which may be due to seasonality and differences in duration 

of data collection between 2010 and 2011. The most notable observation, however, was 

that our “Range” habitat type was negatively selected for during all time-frames of our 

analysis.  

 Past pheasant research has reported similar results using varying habitat selection 

analysis techniques. Hanson and Progulske (1973) analyzed movements and habitat use of 

13 female pheasants in South Dakota from June-October 1969 and 1970, were they 

observed 85% of all pheasant observations occurring in four habitat types: corn (33%), 

small grain (23%), alfalfa (15%), and residual cover (14%). Gates and Hale (1974) 

assessed winter habitat use by surveying pre-defined transects for signs of use (i.e., tracks, 

roosts, sightings). Through these methods, they were able to generalize population trends in 

winter cover types and concluded that wetland shrub-carr was the most essential winter 

cover type in their area of Wisconsin (Gates and hale 1974). Gatti et al. (1989) monitored 

56 hen pheasant and observed marsh habitats as the most widely used habitat type in their 

study from October-April.  Their research also indicated that habitat use was a function of 

season and the interaction of season. Corn fields, retired croplands, and marshes were used 

more in the fall while brush was used more in the winter than in the fall (Gatti et al. 1989). 

 During a study on hen pheasant in southern Idaho, Leptich (1992) observed that 

ungrazed sagebrush, wetlands, and herbaceous areas were generally preferred by pheasants, 

while grazed sagebrush and corn fields were used in proportion to their availability. Perkins 

et al. (1997) observed Iowa pheasants selecting for areas with more grass cover and less 
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crop stubble than was available on the landscape. Gabbert et al. (1999) monitored 

pheasants in south Dakota were they modeled pheasant habitat preference and found cattail 

wetlands, tall grass, and food plot areas ranking higher than all other habitat types, while 

open wetlands, row crops, pasture-hay, and roadway habitats ranked the lowest. Both 

second and third-order selection were analyzed by Homan et al. (2000) in their study in 

southeastern North Dakota. Their second-order results indicated selection for class 4 

wetlands during both years of their study and for uplands during the milder year of their 

study. Third-order habitat selection modeling showed positive selection for wetland 

boundaries during both winters, but selection for the central part of the wetlands only 

during the more severe of the two winters (Homan et al. 2000). Our results support findings 

that pheasant show plasticity in their selection of habitats that varies with increased 

weather severity and snow depth. Habitat selection of North American ring-necked 

pheasants tends to follow a sequence that went from CRP-type grasslands, to cattail 

wetlands, to dense shelterbelts in close proximity to farmsteads with livestock (Gates and 

Hale 1974, Gabbert et al. 1999, Homan et al. 2000). The results described in this chapter 

support general trends noted in past pheasant research.  

 

Management Implications 

 For areas of pheasant habitat in southwestern North Dakota, dense shelterbelts in 

close proximity to livestock or another food source is the limiting habitat-type on the 

landscape with respect to winter habitat needs of ring-necked pheasant. This combination 

of food and shelter is necessary for pheasant survival during harsh winters like the one in 

2011. Unlike much of the Midwest where trees and farmsteads are plentiful and there are 
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many outlets for pheasants to escape from harsh weather conditions, western North Dakota 

does not have volunteer trees and farmsteads are more wide spread than elsewhere within 

ring-necked pheasant distribution in North America.  

Managers interested in increasing pheasant populations should consider increasing 

available CRP-type cover, large wetlands, and shelterbelts in close proximity to farmsteads 

with livestock. The CRP cover is essential for nesting, brood rearing, and winter cover 

during years of low snow accumulation. Large wetlands and dense shelterbelts in close 

proximity to farmsteads with livestock are used during the winters with more harsh weather 

conditions. This combination of habitat types will allow for pheasant use and inhabitance 

during the full-range of climatic conditions that North Dakota has to offer.  
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CHAPTER 6. GENERAL CONCLUSIONS 

 

 

 Over the course of this study, we successfully captured and collared 191 ring-

necked pheasant in Adams County, North Dakota. We monitored these individuals weekly 

for up to 90 weeks (July 18, 2010 to April 1, 2012) before the dataset was prepared for 

analysis. During this research project we were able to analyze the best nest searching 

techniques, estimate home range size and relative proportions of habitats compared to what 

was available on the landscape, analyze second and third-order resource selection and 

habitat preference, and estimate winter survival for male and female pheasants in 

southwestern North Dakota.  

 During our nest searching study, we found that telemetry-based nest searching 

techniques were the most efficient, especially from hens captured during the spring. 

Additionally, telemetry-based nest searching was the least disruptive to nesting birds and 

allowed pheasants to be followed to whatever habitat-type they chose, hence was not 

limited to areas searched using other methods.  

 Our home range estimations were the largest estimates that we were able to find in 

published literature, averaging over 2000 ha in size for both the MCP and KDE estimation 

methods. The proportions of habitats used within the home range estimates, did, however, 

follow closely to finding from past pheasant research. We assume that our proportionately 

large home range sizes were attributed to our attempt to analyze annual home ranges while 

most studies chose a specific season, and that the landscape in southwestern North Dakota 

has few areas of dense shelterbelts that are in close proximity to food sources for pheasant 

during the cold, North Dakota winters forcing birds to travel greater distances to find 

winter habitat.  
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 Our survival estimates were on the upper end of the published literature’s estimates, 

however, they seem to follow the trends that are associated with high average rainfall that 

we were fortunate to experience during this 2 year study. Our resource selection function 

analysis, based from logistic-regression statistics from our observed pheasant locations 

were very similar to past pheasant research. Our winter resource selection function gave 

relative probabilities that favored shelterbelts, farmsteads with livestock, wetland cover, 

and CRP-type cover. All habitat selection analyses showed negative selection towards the 

range-type cover for pheasants in our area.  

Landowners wanting to increase pheasant populations should focus on providing 

different habitat types in close proximity to each other to decrease the distance required for 

pheasants to travel from one cover type to the next. Pheasants are strongly associated with 

wetlands for thermal cover throughout winter months and to dense shelterbelts during the 

harshest winter storms. The perfect thermal cover for pheasants during the full range of 

North Dakota winter weather is composed of substantial buffers of stout, residual 

vegetation planted around cattail wetlands or idle grasslands in close proximity to food 

plots or livestock operations. This cover combination allows pheasants to loaf and feed 

near their winter roosting sites in wetland basins and prevents an abundance of snow from 

drifting into those basins. If managers are interested in increasing reproduction of pheasant 

populations, resources in North Dakota should be focused towards increasing winter cover 

and Conservation Reserve Program (CRP) type grasslands for pheasants.  

 Managers interested in increasing pheasant abundance on their property should 

consider: 1) providing ample CRP-type cover to supply adequate nesting and non-winter 

cover, 2) create large wetlands with dense cattail stands, 3) provide dense shelterbelts with 
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mixed conifer and deciduous trees, and 3) provide food plots or house livestock with ample 

feed near the dense shelterbelts to provide nutritional resources for pheasants during 

periods of deep snow cover.  
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APPENDIX 

 

Figure A1. Multiply KDE floating raster values by 100. 

 

Figure A2. Convert KDE floating raster to integer raster. 

 

Figure A3. Convert KDE integer raster to polygon. 

 

Figure A4. Select top 95 percent probability of occurrence of KDE. 
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Figure A5. Created all birds and frequency table from python csv output spreadsheet. 

 

Figure A6. Make individual bird feature classes. 

 

Figure A7. Calculate individual bird total count values for observed locations. 

 

Figure A8. Generated MCPs. 
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Figure A9. Create MCP random points. 

 

Figure A10. Intersect each MCP with habitat map. 

 

Figure A11. Create empty append MCP cover intersect feature class. 

 

Figure A12. Append MCP cover feature classes. 

 

Figure A13. Select birds with greater than 19 observed locations. 
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Figure A14. Generated MCP habitat frequencies. 

 

Figure A15. Intersect observed points with habitat map. 

 

Figure A16. Add fields to random point values in table. 

 

Figure A17. Intersect random points with habitat map. 
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Figure A18. Create “AllBirdPoints” feature class. 

 

Figure A19. Append intersect feature classes into “AllBirdPoints”. 

 

Figure A20. Create “BirdData” table. 

 

Figure A21. Fix random point total count field. 

 

Figure A22. Calculate frequency of observed point cover feature classes. 
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Figure A23. Calculate frequency of observed cover feature classes. 

 

Figure A24. Create empty append for observed cover feature class. 

 

Figure A25. Append observed cover frequencies together. 

 

Figure A26. Select number of observations greater than 19. 

 

Figure A27. Create empty append for random cover feature classes. 
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Figure A28. Append random cover frequencies together. 

 

Figure A29. Select number of random points greater than 19. 

 

 

Figure A30. Create empty append for all observed and random habitat values. 

 

Figure A31. Combine observed and random cover values into one table. 

 

Figure A32. Calculate frequency values of the combined table. 
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Figure A33. Append the combined table values into “BirdData”. 

 

Figure A34. Populate random point count in “BirdData”. 

 

Figure A35. Populate observed point count in “BirdData”. 

 

 

Figure A36. Generate total MCP area values. 

 

Figure A37. Add fields in table for bird habitat proportions. 
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Figure A38. Populate MCP area proportions in “BirdData”. 

 

Figure A39. Add bird identification column to KDE 95% tables. 

 

Figure A40. Dissolve inner lines from raster to polygon conversion in KDE polygons. 

 

Figure A41. Add total count values to dissolved KDE tables. 

 

Figure A42. Intersect KDE polygons with habitat cover type map. 
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Figure A43. Create empty append for KDE cover values. 

 

Figure A44. Append KDE cover feature classes. 

 

Figure A45. Generate KDE habitat frequencies. 

 

Figure A46. Generate total KDE area values. 

 

Figure A47. Add fields to KDE tables for habitat proportions. 
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Figure A48. Populate KDE area habitat proportion values. 

 

Figure A49. Create “BirdTotals” table. 

 

Figure A50. Run frequency on “BirdData” for “BirdTotals” input. 

 

Figure A51. Append “BirdData” frequencies into “BirdTotals” table. 

 

Figure A52. Generate MCP habitat lines for edge calculations. 

 

Figure A53. Select MCP habitat inner lines. 
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Figure A54. Run frequency on MCP habitat inner lines. 

 

Figure A55. Create empty append MCP inner line frequency table. 

 

Figure A56. Append all MCP inner line frequencies together. 

 

Figure A57. Populate MCP edge values in “BirdTotals” table. 

 

Figure A58. KDE lines for habitat edge measurements. 



  

117 

 

 

Figure A59. Select KDE habitat inner lines.  

 

Figure A60. Run frequency on KDE habitat inner line measurements. 

 

Figure A61. Create empty append KDE inner line frequency table. 

 

Figure A62. Append KDE inner line frequencies together. 

 

Figure A63. Populate KDE edge values into “BirdTotals” table. 

 


