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ABSTRACT 

In the world today, asthma affects more than 235 million people. The widespread 

prescription of inhaled corticosteroids—the current gold standard of asthma control 

medication—allows many asthmatics to live symptom-free and has significantly reduced the 

number of deaths due to asthma. However, when the disease is poorly controlled, for example 

due to ubiquitous exposure to airborne fungal conidia, this chronic inflammatory disease often 

results in lung dysfunction caused by airway architectural changes.  

The role of B lymphocytes in allergic asthma has been relegated to the production of IgE 

with relatively little being known about the trafficking of these cells in the tissues or their role(s) 

in the affected tissue. As a first step in ascertaining their function, the initial aim of this project 

was to characterize the recruitment and localization of B cells in the murine lung in response to 

Aspergillus fumigatus inhalation. We found that CD19
+
CD23

+
 B2 lymphocytes were recruited to 

the lungs after fungal inhalation and that IgA-, IgE-, IgG-producing cells localized around the 

large airways. The second aim of the project was to begin defining the impact that these B 

lymphocytes have on the allergic lung. By using mice that were deficient of conventional B cells, 

we were able to demonstrate that the allergic phenotype was retained, although the impact of 

tissue B1 B cells cannot yet be ruled out. We then investigated the ability of hyaluronic acid 

(HA), a major component of the extracellular matrix (ECM) generated at sites of chronic 

inflammation, to recruit and modulate B lymphocyte functions in allergic fungal disease. We 

found that B lymphocytes undergo chemotaxis in response to LMM HA, while HMM HA had 

little to no effect on B cell chemotaxis. Furthermore, HA-mediated B lymphocyte chemotaxis 

was significantly inhibited by blocking the CD44 HA receptor. We also demonstrated that LMM 

HA fragments elicit the production of the pro-fibrotic cytokines IL-10 and TGF-β1 by B 
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lymphocytes. These observations suggest a previously unrecognized role for B lymphocytes and 

HA in the context of allergy and represent novel pathways by which B lymphocytes may 

contribute to airway inflammation and airway remodeling. 
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FRONTISPIECE 

“The important thing is not to stop questioning; curiosity has its own reason for existing. One 

cannot help but be in awe when contemplating the mysteries of eternity, of life, of the marvelous 

structure of reality. It is enough if one tries merely to comprehend a little of the mystery every 

day. The important thing is not to stop questioning; never lose a holy curiosity." 

                                                                                                                             -Albert Einstein 

 

  

 

Quotation cited fromwww.asl-associates.com/einsteinquotes.htm, June, 2012 
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GENERAL INTRODUCTION 

Significance of the research 

Asthma is a chronic disorder of the airways that affects more than 235 million people 

worldwide (1-6). Inflammation, mucus hypersecretion, and structural remodeling of the allergic 

airway wall results in wheezing, coughing, and shortness of breath that are commonly associated 

with asthma symptoms. While deaths due to asthma exacerbations are fewer than 5,000 per year 

in the United States (4), the direct and indirect economic cost of this disease is nearly 56 billion 

dollars a year (8). Of this, individuals who are sensitized to fungal allergens bear a 

disproportionately large financial burden due to increased medical provider visits to control their 

asthma and emergency center treatment and hospitalization when their symptoms are not 

controlled (9). Fungal spores, such as those produced by the saprophytic fungus Aspergillus 

fumigatus, are ubiquitous both indoors and outdoors and in many different environments making 

avoidance strategies largely ineffective. A. fumigatus is a common mold that produces several 

human allergens. While the fungus is relatively harmless to those who are non-atopic, it may 

generally exacerbate respiratory symptoms in asthmatics or cause severe asthma with fungal 

sensitization in those who are allergic to it. In instances where the immune system is 

compromised due to illness or chemotherapy, A. fumigatus can grow. If the fungal growth is held 

in check, an Aspergilloma will form. This may cause local inflammation and bleeding, but 

usually is not immediately life threatening. However, if the host cannot limit fungal growth, the 

fungus can disseminate through the circulatory system, causing a critically dangerous disease 

called Invasive Aspergillosis. Mortality rates for this disease are between 40-90% even with 

appropriate anti-fungal therapies. Our research focuses on the host’s response to A. fumigatus in 

the setting of the allergic lung, but also has practical applications in other disease states. 
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Cells from both the innate and adaptive branches of the immune system (10), structural 

cells of the lung (10, 11), and ECM components (12) have been linked to asthma pathogenesis, 

but many aspects of the disease’s pathophysiology remain unclear. For example although IgE 

antibodies (Abs) have long been recognized as important mediators of the allergic immune 

response, there is relatively little known about the other roles of B cells, which produce them, in 

the context of allergic asthma. Recent studies have shown that B lymphocytes are present in the 

sputum of asthmatic patients (13), and our laboratory’s investigators have observed B cells in 

and around the airways of allergic animals after exposure to airborne allergens. The aim of this 

doctoral work was to characterize the role that B cells may play in allergic fungal asthma.   

Experimental models are important tools to identify cellular mechanisms that initiate and 

maintain disease. In addition, they help to identify new targets for drug treatment. Most of the 

models of allergic asthma employ ovalbumin, which has little clinical relevance as an 

inhalational allergen. On the other hand, models that utilize allergens that are naturally inhaled 

such as molds, cockroach antigens, pollens, and house dust mite antigens are becoming popular 

among researchers who recognize the importance of using clinically relevant allergens in model 

systems that accurately mimic human disease. Most models that employ A. fumigatus either 

nebulize lyophilized extract (14) or inject suspended conidia directly into the trachea (15). 

Although these models provide a means to study allergy, they do not employ the natural route of 

A. fumigatus exposure and disease in humans. Our lab has developed an inhalational model 

system of fungal allergic asthma. Using this model system we can study the different cellular and 

molecular aspects associated with the host’s response to viable, inhaled fungal conidia (spores).   
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Specific aims of the dissertation project 

 The objective of this research was to determine the effect of B cells in the context of the 

allergic lung that has been sensitized and exposed to inhaled fungus. In this dissertation, we 

elucidate the spatial and temporal pattern of B lymphocyte recruitment to the lung after allergen 

challenge and explore the impact of the microenvironment of the lung on the recruited cells. In 

particular, we have begun to study the effects of pulmonary hyaluronic acid (HA) on recruited B 

cells as the HA macromolecule form changes at sites of chronic inflammation/tissue injury. The 

central hypothesis for this work is that B cells have a local role in the response to inhaled fungal 

spores. Based on our laboratory’s previous findings, research results in the course of the doctoral 

program, and literature in the field; we developed our working hypotheses for the three studies 

that are presented in this dissertation. They are as follows: 1) B cells are recruited to the allergic 

lung in response to fungal conidia inhalation, 2) B cells contribute directly to allergic airway 

remodeling, and 3) structural high molecular mass HA is cleaved by inflammatory cell egress to 

the airway at sites of chronic inflammation generating low molecular mass HA that will impact 

B lymphocyte functions. The results from these studies have been included in this dissertation as 

manuscripts that have been accepted or submitted for publication. The rationale for this research 

was to identify the role of B lymphocytes in the microenvironment of the allergic lung in 

response to fungus, in order to understand the process of pulmonary fungal responses and to 

develop new therapeutic targets. 

Specific Aim 1. Characterize the recruitment and localization of B lymphocytes in 

allergic lungs after exposure to inhaled fungal spores. Our working hypothesis is that B 

lymphocytes will be recruited to the allergic airways in response to fungal challenge with 

A. fumigatus and will perform effector functions at the site of inflammation. 



4 
 

Specific Aim 2. Determine the extent to which B lymphocytes exacerbate allergic airway 

wall remodeling. Our working hypothesis is that B lymphocytes produce Abs and 

cytokines that support the TH2-mediated transformation of the allergic airway. 

Specific Aim 3. Determine the extent to which the pulmonary extracellular matrix impacts 

B lymphocyte recruitment and function. The working hypothesis is that the degradation of 

high molecular mass hyaluronic acid at sites of chronic inflammation increases B cell 

recruitment to the allergic airways and promotes the production of pro-remodeling 

cytokines. 

Organization of the dissertation 

The dissertation has been organized to provide the reader with thorough background 

information of the current literature on allergic asthma that has guided this research. The 

literature review that follows is intended to provide a focused account of asthma pathology, 

highlighting the cellular components of the immune system that play a key role in the immune 

response in fungal asthma. Animal models of allergic asthma are presented and information 

relating to B lymphocytes and hyaluronic acid, which has been a central research focus for this 

work, is also included in the literature review section. 

The subsequent chapters provide an account of the research carried out and the 

discoveries of each of the individual research projects in the format of journal manuscripts that 

have either been reviewed and accepted for publication through the academic peer review 

process or are currently under review. Each manuscript is a stand-alone document providing a 

detailed introduction, methods, results, discussion, and references. There is a general discussion 

section that combines the findings of all the research projects at the end of the dissertation. An 
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additional list of references from the literature review and general discussion has been included 

at the end of the dissertation. 
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LITERATURE REVIEW 

Asthma 

              According to the clinical definition as recommended by the National Asthma Education 

Program Expert Panel Report, “Asthma is a lung disease with the following characteristics: (i) 

airway obstruction that is reversible (but not completely so in some patients) either 

spontaneously or with treatment, (ii) airway inflammation, and (iii) increased airway 

responsiveness to a variety of stimuli” (7, 16, 17). Asthma is a chronic inflammatory disease of 

the airways that affects around 235 million people in the world (6). In the U.S. alone, asthma 

affects approximately 20 million people (17, 18) and the annual cost associated with asthma 

treatments is $56 billion (8, 18, 19). Over the past three decades, the incidence of asthma in the 

western world has increased and is now one of the most common chronic diseases in the world 

(20). In most cases, patients with asthma have a genetic predisposition to atopy. The physiologic 

basis for atopy is currently believed to be a dysregulated cellular and humoral response to an 

allergen. In addition to genetic factors, environmental factors such as lifestyle, infections, and 

pollution also influence cellular processes of the immune system in a complex and interrelated 

manner. In addition to the atopic TH2-type immune response that characterizes allergic asthma, 

additional cellular factors such as those derived from the structural cells of the airways also play 

an important role in regulating immune responses in the lung and the development of chronic, 

self-perpetuating airway inflammation that leads to functional changes and ultimately to 

irreversible airway remodeling (21).  

 Asthma is categorized as either intrinsic and extrinsic asthma (22). Intrinsic asthma is 

known as non-allergic asthma and is triggered by other factors such as anxiety, stress, exercise, 

cold air, dry air, hyperventilation, viruses or other irritants (22, 23). Extrinsic asthma on the other 
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hand, is also known as allergic asthma and is triggered by the inhalation of allergens such as 

house dust mite or cockroach antigens, pollen, animal dander, or molds (22, 24). Most of the 

symptoms associated with allergic and non-allergic asthma are similar and may include 

wheezing, coughing, shortness of breath, and chest pain which may occur several times a day or 

week. Allergic asthma is the most common form of asthma, affecting over 50% of the 20 million 

asthma sufferers (25). More than 2.5 million children under age 18 suffer from allergic asthma 

(18).  

 The response to inhaled allergens in allergic asthma is comprised of two phases. The 

early phase, which occurs immediately after allergen exposure, and the late phase which starts 

six to nine hours following allergen provocation (26). The early-phase allergic reaction (EAR) is 

mediated by allergen which activates the IgE immunoglobulin bound to mast cells and other 

granulocytes (27). IgE binds to these cells via the high affinity receptor FcεR1, which causes 

degranulation and the release of a number of mediators such as histamine, prostaglandins, 

leukotrienes, and reactive oxygen species, which facilitate smooth muscle contraction, mucus 

hypersecretion, and vasodilation (28). As blood vessels dilate and become more permeable as a 

result of the inflammatory process, plasma proteins bypass the tight junctions of the epithelium 

and are released into the airway lumen, interfering with mucociliary clearance (29). The late-

phase allergic reaction (LAR) involves the recruitment of inflammatory cells and their 

subsequent production of cytokines that direct the late response. Monocytes; neutrophils; TH2 

lymphocytes; and eosinophils, whose production of high affinity FcεR1 and accumulation in the 

lungs is a hallmark of allergic asthma are classic examples of inflammatory cells recruited in 

response to an inhaled allergen (30). The LAR is considered to be a model system for studying 

the mechanisms of chronic inflammation (31, 32).  
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 Airway hyperresponsiveness (AHR) is one of the most prominent clinical complaints of 

asthma exacerbation and a component of the LAR. AHR is defined as an exaggerated obstructive 

response of the airways to a variety of pharmacological, chemical, or physical stimuli including 

histamine, methacholine, sulphur dioxide, fog, and cold air (33, 34). Although, a number of 

studies in humans and animals have shown the relationship between variable AHR and 

inflammation of the airways, it is uncertain whether airway inflammation directly influences 

AHR, or if both characteristics develop simultaneously in response to triggers. Despite intensive 

research, the mechanisms underlying acute and chronic AHR are poorly understood and animal 

models are indispensable to the unraveling of the mechanisms underlying AHR at the cellular 

and molecular level. 

Airway inflammation has been widely demonstrated in all forms of asthma. Many studies 

have shown an association between the extent of inflammation and the clinical severity of 

asthma (35). Animal models and human patients with asthma have demonstrated the influx of 

several key leukocytes in the lung. The main cell type that is implicated in allergic asthma is the 

eosinophil. In addition, both allergic and non-allergic asthmatic patients have the accumulation 

of neutrophils, macrophages, mast cells, and lymphocytes in the lung. In addition, structural cells 

play a critical role in reguklating the immune response in the microenvironment of the lung. The 

following section provides more insight into important cell types associated with allergic asthma. 

Cells involved in asthma 

Mast cells. Mast cells (MCs) play an important role in the pathogenesis of asthma (36). 

They are thought to be the main link between IgE and AHR (37). Mast cells are found in the 

bronchial airway connective tissue and in the peripheral intra-alveolar spaces in the lungs with 
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different profiles of chemical release, and their numbers increase after allergen exposure (38). In 

asthmatic patients, mast cells are localized within the bronchial smooth muscle bundles and 

bronchial epithelium, and infiltrate into the airway mucosal glands. Furthermore, in asthmatics, 

the number of degranulated mast cells is increased (38). Re-exposure with the sensitizing 

allergen leads to cross-linking of the FcεRI:IgE receptor complex on mast cells (39). This cross-

linking triggers the immediate activation of signaling cascades which result in mast cell 

degranulation, releasing a number of inflammatory mediators such as histamines, prostaglandins, 

leukotrienes, and TNF-α. The impact of mast cell degranulation is felt immediately in the 

respiratory tract which constricts and spasms due to nerve ending perturbation, smooth muscle 

constriction, edema, and mucus secretion (40). 

Basophils. Basophilic granulocytes share many common features with mast cells. They 

also express the high affinity IgE Fc receptor, produce TH2-type cytokines, and release histamine 

as one of their granulocytic mediators. Basophils are produced from a lineage separate from that 

of mast cells. They develop from CD34
+ 

pluripotent stem cells, differentiate, and develop in the 

bone marrow. While mast cells are tissue-associated, basophils are blood granulocytes. Upon re-

exposure, FcεRI-bound IgE binds to the sensitizing allergen, and basophils are recruited to the 

activated, bronchial mucosa, which leads to granule exocytosis and mediator release (41). 

Eosinophils. Blood and tissue eosinophilia are characteristic features of allergic 

inflammation and asthma (42). The presence of these granulocytes has been documented in 

various asthma studies, although their exact role in the disease process still remains unclear (35, 

43, 44). While the accumulation and presence of eosinophils are considered to be hallmarks of 

asthma, previous reports on allergic and non-allergic asthma have found a profound difference in 

the number of eosinophils (45). It appears that not all asthma is characterized by eosinophil 
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accumulation in the airways. The role of eosinophils in the immune response or 

immunopathology of asthma remains speculative. A number of studies suggest that eosinophils 

may contribute to airway remodeling through their actions which injure the epithelium and 

thicken the basement membrane or cause smooth muscle hypertrophy (42, 46-55). 

Neutrophils. Neutrophils play an important role in innate immunity by protecting 

individuals against infectious agents and can cause significant damage when they accumulate at 

the site of inflammation, particularly in the airways. Once neutrophils get activated in the 

peripheral blood, they undergo intravascular migration, adhesion to the endothelium, and 

migration to the site of inflammation. Neutrophils outnumber eosinophils in sputum of patients 

with acute exacerbations of asthma (56). In acute severe asthma, neutrophil-induced 

pathophysiology is induced by the release of neutrophil elastase (57), which mediates mucus 

hypersecretion, and by the release of other neutrophil mediators that increase the vascular 

permeability and promote exudation of plasma (58). 

Macrophages. Among the different cell types present in the allergic airway, macrophages 

have emerged as an important participant in disease pathogenesis because of their excessive and 

prolonged activation during both the inflammatory and repair phases (59). Alveolar macrophages 

(AMs) and interstitial macrophages (IMs) represent the 2 major populations of macrophages 

present in the lung (59). Whether these cells are functionally distinct is not known, but both serve 

as important sentinels in the lung.  

Alveolar macrophages play an important role in the activation of dendritic cells (DCs) 

since DCs rely on the cytokines secreted by macrophages to determine whether or not Ags are 

innocuous or present potentially dangerous pathogenic infection. Under inflammatory 
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conditions, recruited monocytes can replenish the AM population. These macrophages also 

exhibit a unique activation pattern upon exposure to prototypical TH1- or TH2-type cytokines. 

Those macrophages that mature in the presence of IFN-γ are categorized as “classically activated 

macrophages” denoted as M1, while the macrophages which develop in the presence of IL-4 and 

IL-13 are categorized as “alternatively activated macrophages” denoted by M2. Studies have 

shown that alveolar macrophages are capable of both enhancing or suppressing inflammatory 

responses in allergic asthma and must be programmed to implement the effector responses 

appropriate to the needs of the moment (26, 59, 60). 

 Dendritic cells. The main function of dendritic cells (DCs) is antigen presentation.  In 

addition, DCs also play a role in the chemotaxis of T cells in ongoing inflammation. Depending 

upon the stimulus, human DCs are capable of producing CCL2, CCL3, CCL4, CCL17, CCL2, 

and CXCL8 (61). Production of CCR4 ligands (CCL17 and CCL22) by myeloid DCs suggest 

that these cells can recruit TH2 cells and/or CD4
+
CD25

+
 T regulatory cells at sites of 

inflammation during the late-phase allergic reaction (62). The total number of lung-resident DCs 

is increased in asthmatics, which could be an important factor in the persistence of the chronic T 

cell-mediated allergic inflammation that contributes to remodeling and AHR in chronic asthma 

(63).  

Structural cells. Many structural cells including epithelial cells, endothelial cells, airway 

smooth muscle (ASM) cells, and fibroblasts have been shown to have pro-inflammatory roles 

(64). Injury to the airway epithelium can affect AHR in multiple ways, as the epithelium 

performs a number of different functions (60). First, the epithelium acts as a physiological barrier 

to diffusion (26). After epithelial injury, inhaled allergens, dust, irritants, agonists or gases might 

reach the underlying smooth muscle more easily (26). Second, epithelial layers protect intra-
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epithelial nerves from being stimulated by inhaled products. If this layer is damaged, the sensory 

nerves involved in the release of neuropeptides are exposed and bronchoconstriction is induced. 

Third, the epithelial cell has a metabolic function, and any dysfunction results in an increase in 

the concentration of several contractile agents. And last, the epithelial cells synthesize mucus, 

cytokines, and chemokines, which are secreted to participate in inflammatory reactions and 

releases epithelium-derived relaxin factors such as prostaglandin E2 (PGE2) and nitric oxide 

(NO). These factors may protect the airways from excessive bronchoconstriction. When the 

epithelium is damaged, the decrease in the release of these relaxing substances results in 

excessive bronchoconstriction (65). 

 Airway endothelial cells play a role in the recruitment and activation of basophils, 

eosinophils, and lymphocytes into the airways because they express adhesion molecules and 

produce chemoattractants on their luminal side (60). 

 Human ASM cells are involved in the pathogenesis of asthma, as both hyperplasia and 

hypertrophy of ASM cells contribute to AHR and airway obstruction (66). In addition, these cells 

have inflammatory surface receptors such as CD44, ICAM-1 (Intercellular adhesion molecule-1), 

VCAM-1 (Vascular cell adhesion molecule-1) and can be activated to release inflammatory 

mediators which contribute to  bronchial inflammation and airway dysfunction (66). 

 Fibroblasts play a role in maintaining tissue integrity and are also involved in the repair 

process in response to inflammation. In addition, they have been shown to contribute to airway 

remodeling. Myofibroblasts are the key source of collagen in asthma, and their numbers are 

increased in asthma, correlating with the extent of collagen deposition (67). Sub-epithelial 

fibrosis at the level of the reticular lamina is thought to be an early and fundamental change 
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within the airways that can be observed even in newly diagnosed asthma (68). This fibrosis is 

characterized by an increased deposition of collagens I, II, and V, glycoproteins (fibronectin and 

tenascin), and proteoglycans (lumican, versican, and biglycan) (68-70). This increase in the 

deposition of macromolecules may also form a compartment where adhesion molecules, 

cytokines, and other inflammatory mediators are stored, perpetuating the inflammation (71). 

T lymphocytes. There are various subsets of CD4
+ 

T cells: TH1, TH2, TH9, TH17, Tregs, and 

TFH. Polarization of each TH subset is dictated largely by the cytokines produced by the 

activating DC. The DC cytokine profile is, in turn, dictated by the type of antigen and the 

microenvironment in which the DC was activated. CD8
+
 T cells are cytotoxic and target cells 

that present their cognate Ag on MHC I for apoptosis.  

The dependence of allergic immune responses on thymus-derived lymphocytes has been 

known since the late 1960s, shortly after the description of IgE (72). In the late 1980s, the 

phenotype of asthma was suggested to be due to chronic activation of helper T cells sustained by 

allergen exposure which perpetuated an inflammatory response in and around the bronchi 

through the release of lymphokines (73). The T cell hypothesis of asthma developed around 

observations of a TH2 type T cell cytokine profile in acute severe asthma and LAR that seemed 

to initiate and maintain the disease (74). Clinical and experimental data have provided 

considerable evidence to show that TH2 cells impact atopic, non-atopic, and occupational asthma 

(75); however, if and how T cells instigate the immunopathology associated with the clinical 

features of airway hyperresponsiveness, airway obstruction, and airway wall remodeling are not 

yet fully understood. T helper cells’ interaction with either other immune cells or with structural 

cells in the lung may influence the development of clinical symptoms, and some studies have 

shown that the number of activated T lymphocytes correlates with the number of blood 
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eosinophils in allergic disease (74). In addition, it is well known that allergen-specific IgE 

synthesis by B cells is T cell-dependent through cognate activation of B lymphocytes and the 

TH2 cell-derived cytokines, IL-4 and IL-13 (76). 

 There is much current interest in the regulatory T cells. Regulatory T 

cells (Treg) play an important role in regulating TH2 responses to allergens and maintaining 

functional tolerance (77). These cells have been described in both mice and humans, including 

the naturally occurring CD4
+
CD25

+ 
T cells, IL-10-producing T cells, and TR1 cells (78). 

Whether, such cells can be induced therapeutically in asthma remains to be established. 

B lymphocytes. Human B lymphocyte development begins in the fetal liver during mid to 

late gestation, then continues after birth and throughout the lifetime of the individual in the bone 

marrow, albeit at a reduced rate as the person ages (79). B lymphocytes are unique in that they 

are the only cells in the immune system that produce Abs. Five isotypes of Ab (IgM, IgD, IgG, 

IgE, and IgA) may be produced after activation of a B lymphocyte. With the exception of IgD, 

which is not secreted, all Abs may either be surface-bound to effect cell functions on the B cell 

or secreted as effector molecules for the humoral immune response. The functions of the 

different isotypes are largely dependent upon their ability to bind antigen via their variable 

region. They may do nothing more than neutralize the effect of a toxin by binding to it or they 

may activate the classical complement pathway or be bound by Fc receptors specific for an 

individual isotype on effector granulocytes or phagocytes to elicit tissue responses. In addition, 

some isotypes have particular jobs in unique developmental stages (IgG in fetal and neonatal 

protection) or anatomical sites (IgA at mucosal surfaces). 

There are two main populations of B lymphocytes present in the body, referred as B-1 

and B-2 B cells. B-1 B cells are considered part of the innate immune system, while B-2 B cells 
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function in adaptive responses. Beyond functional differences, the development of B-1 and B-2 

cells is also distinct (80).  

During postnatal development, B-2 cells are derived from hematopoietic stem cells 

(HSCs) in the bone marrow (81-84). This process results in the development of cells that express 

IgM on their surfaces. These cells then migrate to the spleen where they undergo maturation into 

either follicular or marginal-zone B cells (85). The majority of the B lymphocytes present in the 

secondary lymphoid organs are comprised of B-2 lymphocytes (80, 86, 87). Following exposure 

to antigen and signals from helper T cells, follicular B cells can undergo immunoglobulin class 

switching, somatic hypermutation, and differentiation into plasma and memory B cells (88).  

B-1 B cell development occurs primarily during the perinatal period during late gestation 

and during the first month after birth (89). These cells persist throughout the life of the individual 

by self-renewal. Approximately half of the B cells present in the pleural and peritoneal cavities 

are B-1 B cells (90, 91). They are innate-like lymphocytes that respond rapidly to infection. 

However, in contrast to B-2 cells, B-1 B cells respond to a limited range of T-independent 

antigens. The B-1 and B-2 cell populations both express the pan B cell marker CD19. However, 

they can be identified based on the differential expression of additional cell-surface determinants 

that include CD23, CD9, CD21, CD5 (87, 89, 92, 93). B-1 B cells can be further subdivided 

based on the differential expression of CD5, as B-1a B cells are CD5+ and B-1b B cells do not 

express this surface marker. 

 With the abundant IL-4 cytokine production that accompanies allergic diseases, B cells 

produce and secrete IgE upon activation. This IgE plays an important effector function in both 

the EAR and LAR phases, as it mediates the degranulation and activation of mast cells (94). 
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However, the cellular role of B cells in the development and maintenance of allergic asthma may 

exceed the production of IgE, and this was a main focal point of the work that will be discussed 

in detail in the later sections of this dissertation. 

The cytokine network in asthma   

Cytokines play a key role in orchestrating the chronic inflammation and structural 

changes of the respiratory tract in asthma by recruiting, activating, and promoting the survival of 

various inflammatory cells in the respiratory tract (7). To date, about 50 different cytokines have 

been identified in asthma, but their role in the pathophysiology of this complex disease syndrome 

remains unclear. 

The different cytokines released are classified as lymphokines (cytokines that are 

released by T cells and regulate immune responses), pro-inflammatory cytokines (cytokines that 

amplify the inflammatory process), growth factors (cytokines that promote cell survival and 

result in structural changes in the airways), chemokines (cytokines that are chemotactic to 

inflammatory cells), and anti-inflammatory cytokines (cytokines that negatively modulate the 

inflammatory response). Some of the important cytokine classes are discussed in detail in the 

following section. 

Lymphokines. In asthma, lymphokines are produced by TH2 cells and are more commonly 

referred to as TH2 cytokines. In patients with asthma, there is an increase in the number of CD4
+ 

TH cells in the airways, which are predominantly of the TH2 subtype (16), as there is an increase 

in the GATA3
+ 

transcription factor that regulates the differentiation of naïve T cells into TH2 

cells (95). These TH2 cells are characterized by the secretion of cytokines IL-4, IL-5, IL-9, and 

IL-13. IL-4 supports the differentiation of TH0 cells to a TH2 phenotype and may also be 
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important in the initial sensitization to allergens. In addition, it is important for isotype switching 

of B cells from IgG-producers to IgE producing cells [Fig 1 (7) {Figure modified from 

reference}].  IL-4 and IL-13 may share receptor component, and some of their functions overlap.  

For instance, IL-13 mimics IL-4 in inducing IgE secretion and causing structural changes in the 

airways, but it does not play a role in the differentiation of TH0 cells. IL-13 has attracted 

particular attention in asthma as a therapeutic target as it not only induces airway 

hyperresponsiveness but also exacerbates the development of the structural changes seen in 

chronic asthma, including goblet cell hyperplasia, airway smooth muscle proliferation, and sub-

epithelial fibrosis (96).  

IL-5 is critically involved in the differentiation of eosinophils from bone marrow 

precursor cells and it also prolongs eosinophil survival (7). Systemic and local administration of 

IL-5 to asthmatic patients results in an increase in CD34
+
 eosinophil precursors (97). In 

experimental models, blockade of IL-5 reduces eosinophil numbers in the lungs and inhibits 

allergic responses (98, 99). In humans, blocking IL-5 reduces circulating and sputum 

eosinophils, but has no effect on either allergic responses or AHR (100). 

IL-9 overexpression has been associated with eosinophilia, mucus hypersecretion, 

mastocytosis, AHR, and increased expression of TH2 cytokines and IgE (101). IL-9 blockade  

inhibits pulmonary eosinophilia, mucus hypersecretion, and AHR after allergen challenge in 

sensitized mice (101). Many of the effects of IL-9 in mice (eosinophilic inflammation and mucus 

hypersecretion) are mediated via the increased release of IL-13 (102), whereas its effects on mast 

cell expansion and B cells seem to be direct (101). IL-9 plays an important role in differentiation 

and proliferation of mast cells and works synergistically with stem cell factor (SCF) (103). 
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Over the past few years, IL-17’s role in allergic asthma has been studied widely. Research using 

an intratracheal model of Aspergillus fumigatus-induced disease demonstrated a central role for 

IL-17 in driving eosinophilia in TH2-mediated airway inflammation (104, 105). In other work, 

IL-17 was shown to induce eotaxin-1 expression in human airway smooth muscle cells (106).  

Pro-inflammatory cytokines. Increased NF-κB leads to the increased expression of 

multiple inflammatory genes in asthma, and pro-inflammatory cytokines, such as TNF-α, IL-1β, 

and IL-6, are found in increased concentrations in the sputum and BAL fluid of asthmatic 

patients (7). Blocking these cytokines has been of clinical benefit in other chronic inflammatory 

diseases, therefore there has been considerable interest in determining whether the same 

approach might also be useful in asthma. 

 
Figure 1. Cytokines involved in asthma. Epithelial cells play an important role in 

orchestrating the immune response in asthma by releasing a number of cytokines. TH2 cells 

orchestrate the inflammatory response by producing a number of cytokines like IL-4, IL-13, 

IL-5, and IL-9. Mast cells are thus orchestrated by several interacting cytokines and play an 

important role in asthma by releasing a number of mediators (1).  
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 Many cells have the capacity to produce TNF-α, including mast cells, T cells, epithelial 

cells, and airway smooth muscle cells. Inhaled TNF-α induces AHR and airway inflammation 

mediated by neutrophils in asthmatic subjects (107). TNF-α directly acts on human airway 

smooth muscles to increase the contractile response to spasmogens and thus may play a role in 

AHR. Blocking TNF-α with etanercept reduced AHR and improved lung function in a small 

study which included asthmatic patients (108). Larger studies are now underway in patients with 

severe asthma. 

Another inflammatory cytokine, IL-1β, is elevated in asthmatic airways and has been 

shown to activate a number of inflammatory genes. IL-1 receptor antagonists reduce AHR 

induced by allergens in mice, but human recombinant IL-1Ra is not effective in the treatment of 

asthma (109). 

IL-6 often works in concert with other cytokines and it provides a link between the innate 

and the adaptive immune system. IL-6 is present in higher amounts in patients with asthma and 

may play a role in the expansion of TH2 and TH17 cells. 

Thymic stromal lymphoprotein (TSLP) is increased in asthmatic patients (110). TSLP is 

released by airway epithelial cells and its synergistic interaction with IL-1β and TNF-α results in 

the release of TH2 cytokines from mast cells independent of T cells (111). It also plays a key role 

in programming DCs and in recruiting TH2 cells in the airways (112). Blocking Abs to this 

receptor have showed considerable promise as it inhibits TSLP mediated TH2 cell activation in 

mice and non-human primates (113). 

Growth factors. There are several cytokines involved in airway inflammation that 

promote the differentiation and survival of inflammatory cells or activation of structural cells, 
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contributing to airway remodeling. They are known as growth factors. Some of the growth 

factors include granulocyte macrophage colony stimulating factor (GM-CSF), stem cell factor 

(SCF), epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), and 

transforming growth factor-β1 (TGF-β1). 

 GM-CSF plays a role in the differentiation and survival of eosinophils, neutrophils, and 

macrophages. Airways of asthmatic patients strongly express GM-CSF. SCF is the ligand of the 

c-Kit tyrosine kinase receptor, which is expressed by several structural and inflammatory cells 

(114). SCF is produced by epithelial cells, airway smooth muscle cells, endothelial cells, 

fibroblasts, mast cells, and eosinophils. It is critical for the growth of mast cells and generation 

of CD34+ progenitors.  

Another set of growth factors EGF and VEGF both are upregulated in asthmatic patients.  

EGF activates EGFR tyrosine kinases that are also activated by TGF-α and may play a critical 

role in regulating mucus production in asthmatic patients while VEGF plays an important role in 

regulating the growth of new vessels and vascular leak into the asthmatic airways (115). 

Transforming growth factor (TGF)-β1 is a member of a superfamily of pleiotropic 

cytokines which participates in the phenotype of asthma. The cellular origin of TGF-β1 is not 

clear, but it is known that TGF-β1 is widely expressed throughout the body. Most of the resident 

structural and immune cells of the lung as well as those immune cells that are recruited to the 

lungs are capable of expressing and secreting TGF-β1 (116). The general understanding among 

asthma researchers is that TGF-β1 is upregulated in asthma but the overall theme of its function 

is not clear from the published literature and the cellular origin in the asthmatic lung is still in 

debate. TGF-β1, like IL-10, has immunoregulatory effects that are largely mediated by the 
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induction of FoxP3, resulting in the suppression of TH1 and TH2 cells, so it is also called an anti-

inflammatory cytokine. 

Anti-inflammatory cytokines. Although most cytokines increase or orchestrate the 

inflammatory response in asthma, some cytokines have inhibitory or anti-inflammatory effects. 

IL-12, through the release of IFN-γ, can suppress TH2 cytokine release. TGF-β1 has potential 

immunoregulatory effects through inhibition of CD4
+
 T cells. And IL-10 has anti-inflammatory 

effects that inhibit the synthesis of a number of inflammatory proteins (TNF-α, GM-CSF, IL-5) 

and chemokines. IL-10 transcription is reduced in asthmatic patients (117). However, the role of 

IL-10 in Aspergillus induced asthma is controversial, as it plays different roles at different stages 

of disease: an enhancing effect when conidia dominate and a suppressive effect during the late 

stages of the disease (118). Furthermore, increased IL-10 production has been associated with an 

increase in levels of total and specific IgE, IgG1, and IgA reflecting to a role of IL-10 in 

promoting a TH2 response to A. fumigatus Ags (119-122). 

Mouse models of allergic asthma 

 Our ability to manipulate and interrogate the genetic makeup of the mouse provides a 

very powerful means to perform controlled experiments in mammals (123). Mouse model 

systems may be altered to be either acute or chronic. In acute mouse models, animals are 

sensitized against the Ag mixed with an adjuvant, and challenged once or multiple times with the 

Ag alone prior to preselected time points for analysis (124). On the other hand, in chronic mouse 

models, animals are first sensitized with Ag mixed in alum and then challenged multiple times 

before samples are harvested for analysis (125). Therefore, the terms acute and chronic do not 

refer to the duration of sensitization or challenges, rather it refers to the outcome that needs to be 
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measured. The difference in the two modeling systems lies in the ability to mimic airway 

remodeling events such as airway fibrosis, smooth muscle cell hyperplasia, and angiogenesis. 

Chronic allergen exposure in mice appears to be now the model of choice for studying the role of 

specific cell types. 

 There are a number of murine model systems that are used to study human asthma. 

Although the allergen choice of each of the model system may be different, the basic 

sensitization and challenge procedures are similar. Most models use an adjuvant along with the 

Ag for the sensitization process, as adjuvants help to enhance the immune response against 

weekly immunogenic Ags. A defined amount of Ag is required to activate the immune response 

in laboratory animals, referred as “ window of immunogenicity” (126). A slight variation in the 

amount of Ag administered can lead to the development of immune tolerance. For this reason, 

adjuvants are used and minute amounts of Ag are co-administered along with the adjuvants to 

elicit stronger immune responses as adjuvant-free protocols require a greater number of allergen 

exposures to attain effective sensitizations (127). In all allergic asthma model systems, the type, 

load, and route of allergen delivery determines the strength of response. The most commonly 

used allergic asthma model system uses the OVA allergen (128). This OVA allergen has 

minimum human implications and new model systems like house dust mite (HDM), cockroach 

Ags, and fungi are now being used to replace OVA in the laboratory (53, 129, 130). 

 Aspergillus fumigatus induced model systems of allergic asthma. Although other fungal 

genera including Bipolaris, Curvularia, Cladosporium, Penicillium, and Alternaria are also 

suspected culprits in the growing epidemic of allergy and asthma (131-133), the airborne fungal 

pathogens that have received the greatest research attention are found in the genera Aspergillus 

(134). Based on the worldwide sampling of indoor and outdoor air, members of genus 
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Aspergillus are among the most prevalent of airborne fungal spores. The genus Aspergillus 

consists of more than 180 species of which Aspergillus fumigatus is the most common human 

pathogen and allergen (135). A. fumigatus poses a significant problem in home and hospital 

environments where it readily infects patients with various forms of immunodeficiency (134). 

This filamentous fungi has rapid growth rates and can produce millions of tiny spores known as 

conidia (135). These spores can remain airborne for long durations and humans are estimated to 

breathe in hundreds of spores each day (118, 136, 137). The size (2μm - 3μm) and shape of the 

spores allow their inhalation all the way to the alveoli (136). A. fumigatus also affects individuals 

with fully functioning immune systems. For example, the intrapulmonary growth and persistence 

of A. fumigatus elicits chronic hypersensitivity reaction in the lung that is commonly referred to 

as allergic bronchopulmonary aspergillosis (ABPA). Several features of ABPA are similar to 

asthma. Although ABPA is clinically diagnosed with confidence in only 1-2% of chronic 

asthmatics, this may be a finding related to the fact that colonization of the lung by Aspergillus is 

rarely reported in immunocompetent individuals. However, the lack of Aspergillus colonization 

in the asthmatic lung does not rule out a major exacerbating role for this fungus in the vast 

majority of other asthmatics that do not present with the clinically defined ABPA. 

 Animal models that use Aspergillus fumigatus have evolved over the past 22 years, 

initially from the utilization of extracts from A. fumigatus cultures to induce allergic airway 

disease (121, 138). As conidia are responsible for human disease, most of the models scrape 

conidia from fungal cultures grown on Sabaouraud Dextrose Agar using PBS containing tween-

80 (139). The usual model of spore-induced airway disease is to administer a specific number of 

spores in suspension by intratracheal inoculation ito animals previously sensitized with fungal 

Ags (140, 141). Although these models provide a closer representation of human airway disease, 
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they fail to take full advantage of the dispersal strategies that allow conidia to be inhaled deep 

into the lung as the suspension certainly inhibits their movement into the small airways. 

Additionally, tween-80 that is needed to prevent clumping of the spores may cause disruption of 

the spore coat, so the inoculum is even more removed from the normal inhalation exposure. 

 Our laboratory has developed an A. fumigatus murine model to study human fungal 

asthma that exploits the nature of A. fumigatus spores by exposing sensitized mice to airborne 

spores (52). In this model system, exposure to fungal spores yields the hallmark symptoms that 

are associated with allergic asthma including elevated IgE levels in serum and BAL, 

eosinophillic inflammation, AHR, and airway remodeling. This fungal murine model system 

recapitulates the acute as well as chronic features associated with allergic asthma and was 

employed for all the projects tested as part of this dissertation project. 

B lymphocytes in the development and maintenance of allergic asthma 

B cells are unique in that they are the only cells in the immune system that can produce 

Ab. As in the blood, the majority of pulmonary B cells express CD19 and CD20 and bear surface 

immunoglobulins indicating a mature phenotype (142). Of the Ab isotypes produced by B 

lymphocytes—IgM, IgD, IgG, IgE, and IgA—only IgD is not secreted. It performs the function 

of a B cell receptor (BCR) only. Each of the other Abs have specific effector functions largely 

dependent upon the availability of receptors on cells of the innate immune system.  

Resident plasma cells have been observed in the lungs of both human asthma sufferers 

and mice under experimental allergic airways protocols (143). A number of immunoglobulin 

isotypes are believed to play an important role in the pulmonary response to fungi. IgA is the 

predominant isotype present in the respiratory tract and is actively pumped across the epithelium 
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to provide innate mucosal protection (144-146). Selective IgA deficiency in clinic patients is 

associated with an increased prevalence of atopy (147, 148). The IgG subtype, IgG1, which is a 

TH2-elicited antibody, is cytophillic to mast cells (149); and IgG2a, which is produced by TH1-

activated B cells, plays a role in host protection against fungal growth (150); while IgE enables 

mast cell degranulation (151). IgE has long been recognized as a perpetrator of asthma 

exacerbations, and anti-IgE therapies have been used successfully for treatment (152-154). 

During asthma exacerbations, B cells in all stages of activation and differentiation are found in 

increased numbers in the blood of asthmatic patients (155). B cells are also present in the 

bronchial mucosa of asthmatics.  In the setting of invasive disease, Abs to Aspergillus proteins 

have been noted in patients with aspergillomas and invasive disease (156, 157), although the 

characterization and role of these Abs is not well documented (158). While allergen-specific Abs 

are recognized as contributing factors in the immunopathology of an aberrant response against an 

innocuous allergen such as pollen or animal dander (159), they have also been suggested to be 

part of the successful clearance of fungus from the airways (160, 161).  

While a strong phagocytic defense is essential for effective clearance of the inhaled 

spores and opsonization by Abs may assist this process, it is becoming clear that B cells may 

play other roles in the target tissues. In addition to Ab production, the B lymphocytes can present 

Ag to T cells in the tissue and can produce cytokines at the point of infection and/or may 

contribute to the development of immunopathology (162). Over the last 30 years, there has been 

growing evidence supporting B cell regulatory functions like Foxp3
+ 

regulatory T cells (Treg), 

which suppress Ag (Ag)- specific immune effector cells, making negative immune regulation a 

focus of work to characterize the pathogenesis of allergic inflammatory diseases (163-167). The 

absence or loss of these regulatory B cells exacerbates disease symptoms in allergic (including 
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contact hypersensitivity and anaphylaxis) and autoimmune diseases (168-171). Moreover, B cells 

have been shown to regulate immunological or allergic inflammation and T cell-mediated 

autoimmunity through the production of IL-10 (168, 169) as well as other regulatory B cell 

subsets, including TGF-β producing Br3 (172). 

 Currently, little is known about the spatial and temporal orchestration of B cells in the 

allergic lung in response to fungal allergens/pathogens. In this dissertation study, we employed a 

murine model of A. fumigatus-induced allergic lung disease that uses the inhalation of 

unmanipulated, dry spores in order to determine the recruitment of B cells into the pulmonary 

space, their localization, and their production of major Ab isotypes in the context of the fungal 

allergen-sensitized lung. This is a critical step in determining the specific function of B cells, 

Abs, and B cell-produced cytokines in the response to environmental fungal exposures in the 

asthmatic patient. In addition, we used a knockout model system to deduce the role of B 

lymphocytes in allergic asthma. 

The role of hyaluronic acid in the development and maintenance of allergic asthma 

Recent studies have shown that ECM components play an important role in the 

attachment of cells, tissue growth and repair (173), proliferation and differentiation (174), cell 

migration and activation (175), cell survival/delay of apoptosis (176), and chemotaxis (177). 

Clearly, they may have direct and significant impact of the development and persistence of 

inflammation in many disease states, including asthma. Moreover, studies have demonstrated 

that, under certain circumstances, ECM components can function in cellular signaling (178) and 

can deliver signals leading to or regulating cellular proliferation (179). ECM components have 

been reported to play an important role in regulating host response to lung injury. Accumulation 



27 
 

of ECM components can be seen in tissue injury following a variety of insults such as those that 

occur in the adult respiratory distress syndrome (ARDS), idiopathic pulmonary fibrosis, chronic 

obstructive pulmonary disease (COPD), and chronic persistent asthma (180). Among the 

different ECM components studied, the glycosaminoglycan (GAG) hyaluronan (HA) undergoes 

dynamic regulation during inflammation (181). HA, which is mainly synthesized by fibroblasts 

(182, 183), exists as a high molecular mass (HMM) polymer usually in excess of 10
6
 D in its 

native form (184). In the lungs, the HA content is 15-150mg/g dry weight which is mainly 

localized in the peri-bronchial and inter- and peri-alveolar tissue. Under disease conditions this 

HMM HA is hydrolysed into low molecular mass HA (LMM HA) (185). Recently, several 

studies have shown that LMM HA and HMM HA have opposite functions (181). Importantly, 

LMM HA has pro-inflammatory effects (186), while HMM HA can block the pro-inflammatory 

effects of LMM HA and helps to support the tissue integrity (187). 

HA binding proteins play an important role in cellular signal transduction and two of the 

most widely studied receptors of HA are CD44 and RHAMM (Receptor for hyaluronic acid-

mediated motility) (188, 189). To date, CD44 is the best characterized transmembrane 

hyaluronan receptor and is present on most cell types (190, 191). Recent studies have shown, 

CD44-expression on eosinophils and its up-regulation by IL-5 or GM-CSF (192). In addition, it 

has been reported that there is an increase in the expression of CD44 on eosinophils from late-

phase bronchoalveolar lavage fluid (BALF) of patients with asthma (193). Furthermore, CD44 

deficient mice exhibit minor abnormalities in hematopoiesis and lymphocyte circulation (194, 

195) and that CD44 undergoes dynamic regulation on eosinophils and macrophages. Whether 

CD44 impacts B lymphocyte recruitment and function in allergic diseases is still not clear. 
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However, there is growing evidence to suggest that interaction between HA and CD44 may play 

an important role in the regulation of functions of lymphoid and myeloid cells (196). 

In the studies included in this dissertation, we also examined the role of high and low 

molecular mass HA on B lymphocyte recruitment and function. The purpose of this study was to 

explore the extent to which LMM HA and HMM HA promote the recruitment of B lymphocytes 

to the lungs, to describe the role of the CD44 receptor in the migration of B lymphocytes, and to 

determine the role of LMM HA and HMM HA in the activation of B lymphocytes. 

The therapeutic potential of B lymphocytes and hyaluronic acid in allergic asthma 

B cell numbers and Ab production is altered in various diseases allowing it to be used as 

therapeutic models of many diseases. Asthma and other allergic diseases are caused by aberrant 

immune responses. Soluble IgE molecules, produced by immune cells known as B cells, are key 

immune mediators of these diseases. Therapeutic targeting of IgE in the blood can neutralize its 

effects and is an effective treatment for moderate-to-severe allergic asthma. However, this 

approach does not halt IgE production and patients need to be treated repeatedly. Recently, a 

team of researchers at Genentech Inc., South San Francisco, have developed a way to 

specifically eliminate IgE-producing B cells, providing a potential new long-lasting therapeutic 

approach for treating asthma and other allergic diseases (197). IgE-producing B cells express 

surface IgE that is slightly different than the IgE molecules that they secrete. When mice 

expressing human IgE were treated with a monoclonal antibody that blocks human IgE, the IgE 

levels in the blood decreased substantially as did the number of IgE-producing B cells (197). In 

addition to blocking the IgE receptor, other methods of exploiting the B cell therapeutic potential 

should be explored as these B cells have multiple functions. One way would be to 

http://autoimmunenews.blogspot.com/2010/05/genentech-offers-real-hope-for-ending.html
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enhance/decrease the cytokine production functions of B lymphocytes in allergic diseases. On 

the other hand, HA homeostasis is deranged in asthma and there is an increase in the 

accumulation of LMM HA in the asthmatic lung. Targeting the pro-inflammatory cycle mediated 

by LMM HA and exploring the therapeutic potential of HMM HA (HMM HA has been shown to 

inhibit acute lung injury in a sepsis model) in asthma may present novel therapeutic strategies in 

the treatment of asthma. 

Despite an enormous increase in the understanding of the immune mechanisms 

underlying allergic asthma, it is disappointing to see that only a fraction of this has been 

translated into new treatments. One possible reason is the lack of understanding of the disease 

chronicity and the environmental factors that contribute to the allergic disease in addition to the 

allergen. What is now needed is a clearer understanding of the origins of allergy and the factors 

responsible for increasing the incidence of allergic asthma with a view of developing preventive 

as well as therapeutic strategies. 
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AIRWAYS OF BALB/C MICE IN RESPONSE TO THE INHALATION OF 
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Abstract 

Fungal sensitization in patients with asthma often indicates an unusual disease course in 

which traditional asthma treatments have little effect and in which morbidity is particularly 

severe. Airway hyperresponsiveness, inflammatory infiltrates, smooth muscle increases, and 

irreversible fibrotic remodeling of the bronchial architecture are features of allergic fungal 

asthma. The systemic production of IgE has long been associated with the immunopathogenesis 

of allergic asthma; however, the role of B lymphocytes and their products in the response to 

fungal allergens remains unclear. In the present study, we hypothesize that B lymphocytes are 

recruited to the allergic lung to impact the allergic response. Using a murine fungal aeroallergen 

model to mimic the human syndrome, we tracked the recruitment of B cells into the lung after 

fungal challenge and found that CD19
+
CD23

+
 B2 lymphocytes are recruited to the allergic lung 

in a dynamic process. IgA, IgG2a, and IgE were prominent in the serum and bronchoalveolar 

lavage fluid of allergic animals. It was evident that a tissue-centric production of these Abs was 

possible, and IgA-, IgG-, and IgE-producing cells from the allergic lung were identified by flow 

cytometry. This study shows for the first time that CD19
+
CD23

+
 B2 lymphocytes are recruited to 

the lungs after inhalation of fungal conidia and their recruitment has a significant impact on the 

Ab production in the pulmonary compartment in the context of fungal allergy. 
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Introduction 

Aspergillus fumigatus is a saprophytic mold with an important environmental function in 

carbon and nitrogen cycling (1). Its hydrophobic spores are readily dispersed in the environment 

and, when inhaled, are small enough to navigate the airways of the lung far beyond the barriers 

of the ciliated epithelium (2). Cellular innate (neutrophil- and macrophage-mediated) and 

adaptive (TH1-mediated) immune responses protect against infection by Aspergillus in a normal 

lung (3-6), but A. fumigatus can induce or exacerbate allergies of the upper and lower airways, 

and its ubiquitous dissemination in indoor and outdoor environments limits the effectiveness of 

avoidance strategies. Sensitization to Aspergillus is common in atopic individuals and 

Aspergillus fumigatus is responsible for about 16-38% of Aspergillus related illness in humans 

(7, 8). In asthmatic individuals Aspergillus sensitization can herald a particularly difficult to treat 

disease termed Severe Asthma with Fungal Sensitization (9). In immunocompromised patients or 

those with previous lung damage, A. fumigatus may germinate and its growth may invade local 

blood vessels causing disseminated fungal disease with mortality rates ranging from 40-90% (1, 

10).  

A number of immunoglobulin isotypes are believed to be important in pulmonary 

response to fungi. At the earliest interface with the lung, IgA from resident B cells is actively 

pumped across the epithelium to provide innate mucosal protection (11). We have previously 

shown that IgA production is upregulated in the allergic murine bronchoalveolar lavage (BAL) 

fluid after exposure to inhaled spores (12). In the immunocompetent, non-atopic host, IgG2a 

from follicular B2 cells is associated with a TH1 response and has been shown to arrest fungal 

development, preventing germination of the fungus (13). In allergic responses, IgE functions in 

the activation/degranulation of granulocytes. While mast cell degranulation is typically 
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associated with allergic immunopathology, recent work indicates that the degranulation of 

eosinophils in the lumen may provide protection in response to fungus (14). In the setting of 

invasive disease, antibodies to Aspergillus proteins have been noted in patients with 

aspergillomas and invasive disease (15, 16), although the characterization and role of these 

antibodies is yet not well documented (17).  

While a strong phagocytic defense is essential for effective clearance of the inhaled 

spores and opsonization by Abs may assist this process, it is becoming clear that B cells may 

play other roles in target tissues where their ability to supply antibody or cytokines at the point of 

infection or to present antigen to T cells in the tissue may support the development of a 

productive immune response and/or may contribute to the development of immunopathology 

(18). 

 Currently, little is known about the spatial and temporal orchestration of B cells in the 

allergic lung in response to fungal allergens/pathogens. In this study, we employed a murine 

model of A. fumigatus-induced allergic lung disease that uses the inhalation of unmanipulated, 

dry spores in order to determine the recruitment of B2 cells into the pulmonary space, the 

localization of B cells in the allergic lung, and their production of three major Ab isotypes in the 

context of the fungal allergen-sensitized lung. This is a critical step in determining the specific 

function of B cells, Abs, and B cell-produced cytokines in the response to environmental fungal 

exposures in the asthmatic patient. 
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Materials and Methods 

Animals. BALB/c mice were purchased from Jackson Labs (Bar Harbor, ME, USA) and 

were bred and maintained in a specific pathogen-free facility for the duration of this study. 

Animals (5-9 weeks old) were fed and given water ad libitum throughout the study and housed 

on Alpha-dri™ paper bedding (Shepherd Specialty Papers, Watertown, TN, USA) in micro filter 

topped cages (Ancare, Bellmore, NY, USA). Prior approval for these studies was obtained from 

the Institutional Animal Care and Use Committee of North Dakota State University. 

Antigen preparation and conidia culture. Soluble A. fumigatus extract was purchased 

from Greer Laboratories (Lenoir, NC, USA) and fungal culture stock (strain NIH 5233) was 

purchased from American Type Culture Collection (Manassas, VA, USA). A lyophilized A. 

fumigatus was reconstituted in 5ml phosphate buffered saline (PBS) and 60-µl aliquots of the 

suspension were stored at 4˚C until use. A single aliquot of A. fumigatus was grown on 

Sabouraud dextrose agar (SDA) in a 25-cm
2
 cell culture flask for 8 days at 37°C. The use of A. 

fumigatus was approved by the NDSU Institutional Biosafety Committee. 

Allergen sensitization and conidia inhalation challenge. To elicit allergen sensitization, 

mice were injected subcutaneously (SC) and intraperitoneally (IP) with a total of 10 g of 

soluble A. fumigatus antigen (Greer Laboratories, Lenoir, NC, USA) dissolved in 0.1 ml PBS 

and 0.1 ml Imject® Alum (Pierce, Rockford, IL, USA) (12, 19, 20). Two weeks later, mice were 

started on a series of five, weekly 20-µg intranasal (IN) inoculations consisting of soluble A. 

fumigatus extract (Greer Laboratories, Lenoir, NC, USA) dissolved in 20 l of normal saline. 

One week after the final IN inoculation, mice were exposed to A. fumigatus by inhalation of 

mature, airborne conidia, as previously described (19). Briefly, mice were anesthetized using a 

cocktail of ketamine (75 mg/kg) and xylazine (25 mg/kg), and their noses were placed in the 
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inoculation chamber where they inhaled mature A. fumigatus conidia for 10 min. The 

sensitization and challenge model is detailed in Figure 2. At specified time points after allergen 

challenge, animals were anesthetized with pentobarbital (150 mg/kg) and tracheostomized for 

sample collection.  

 

 

 

 

 

 

 

 

 

Sample collection for serum, bronchoalveolar lavage (BAL), and lung tissue. Animals 

were exsanguinated under anesthesia. The blood was centrifuged at 13,000 xg for 10 min to 

obtain serum, which was stored at -20
°
C until use. One milliliter of sterile PBS was used to 

lavage the bronchoalveolar space. Cells were separated from BAL fluid by centrifugation and 

added to the single cell suspensions obtained from the lung tissue for use in flow cytometry. 

BAL fluid was stored at -20
°
C for later analysis. Right lungs were harvested and used for flow 

cytometry. Left lungs were fixed in an inflated state with 10% neutral buffered formalin and 

 

Figure 2. The Aspergillus fumigatus sensitization and inhalation model. Naïve BALB/c 

mice (N) received neither sensitization nor conidia challenge. Mice were sensitized with 

subcutaneous (SC) and intraperitoneal (IP) immunizations of soluble A. fumigatus antigen 

in alum followed by 5 intranasal (IN) inoculations with soluble antigen in saline. For 

inhalation (IH) challenge, each of the six treatment groups were exposed to airborne A. 

fumigatus for 10 min. B lymphocyte numbers along with Ab production were assessed at 

day 0 (before IH challenge) and at days 3, 5, 7, 9, 11, and 13 after conidia challenge.  
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embedded in paraffin for histological sectioning. Longitudinal 5-µm tissue sections across the 

coronal plane of the left lung were used for histological analysis. 

Quantification of serum and BAL fluid for IgE, IgG2a, and IgA. Total IgE, IgG2a (BD 

OptEIA, San Diego, CA, USA), and IgA (Bethyl Laboratories, TX, USA) were quantified via 

specific ELISA in serum and BAL according to manufacturer’s guidelines. Serum samples were 

diluted in PBS (1:100 for IgE, 1:5000 for IgG2a and 1:500 for IgA). The detection limits for the 

kits were 1.6 ng/ml for IgE, 3.1 ng/ml for IgG2a, and 15.625 ng/ml for IgA. 

Flow cytometry. Minced right lungs from animals at days 0 (sensitized, but not 

challenged), 3, 5, 7, 9, 11, and 13 were subjected to collagenase IV (Sigma-Aldrich, St. Louis, 

MO, USA) digestion and red blood cell lysis. For collagenase digestion minced lung sections 

were treated with 0.04% collagenase IV in DMEM and were incubated at 37
0
C for 1 hour. For 

antibody staining, the cells were suspended in PBS with 1% BSA (Sigma Aldrich, St. Louis, 

MO, USA) to a final cell concentration of 1 x 10
7
 cells/ml. Fc receptors were blocked with anti-

mouse CD16/CD32  (1 μg /1 x 10
6
 cells) for 10 min on ice. Samples were surface stained with a 

cocktail containing 1 µg of anti-mouse CD19 FITC and 1 µg of anti-mouse CD23 PE 

(eBiosciences, San Diego, CA, USA) for 30 min in the dark at 4
°
C. For intracellular staining, 1 x 

10
6
 cells were fixed and permeabilized using BD Cytofix/Cytoperm™kit (BD Biosciences, San 

Jose, CA, USA). These cells were then stained for intracellular and extracellular 

immunoglobulins with FITC labeled antibodies for mouse IgE, IgA (eBiosciences, San Diego, 

USA), and IgG (Invitrogen, Camarillo, CA, USA). Data acquisition was performed using the 

FACSCaliber flow cytometer (BD Biosciences, San Jose, USA) and analyzed using BD 

CellQuest Pro software (BD Biosciences, San Jose, USA). 
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Histological analysis of inflammation and IgA-, IgG-, and IgE-producing cells in the 

lung. H&E staining and immunohistochemistry (IHC) was carried out on serial sections of 

allergic lungs 5 days post conidia inhalation. For IHC, sections affixed to glass slides were 

submerged in 10-mM citric acid at pH 6.0 and microwaved in a pressure cooker for 10 min for 

antigen retrieval. Staining was performed using the HRP-AEC Cell and Tissue Staining Kit 

(R&D Systems, Minneapolis, MN, USA) following the manufacturer’s recommended protocol. 

Samples were incubated with 5 µg/ml goat anti-mouse IgA, IgG, or IgE (Southern Biotech, 

Birmingham, AL, USA) overnight at 4°C in a humidified chamber. Incubation with secondary 

antibodies was carried out at room temperature for 1h. Incubation with horseradish peroxidase 

followed by 3-amino-9-ethylcabazole yielded a red precipitate in areas of positive staining. The 

sections were counterstained, and corresponding areas of H&E-stained and IHC-stained were 

photographed using a Zeiss Axio Observer Z1 micrscope (Carl Zeiss MicroImaging, Gottingen, 

Germany). 

Statistical analysis. Results from sensitized and challenged groups were compared to the 

sensitized, but unchallenged, control group (day 0). Prism GraphPad software (San Diego, CA, 

USA) was used to analyze the data using an unpaired Student’s two-tailed t test with Welch’s 

correction, n=4-5 lungs per time point. * p < 0.05 was reported as statistically significant for 

these experiments.  
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Results 

Inhalation of fungal conidia results in a temporal increase in Ab production in mice 

sensitized with A. fumigatus extract. To determine the temporal production of Ab isotypes that 

are known mediators of fungus-induced innate, allergic, and adaptive immune responses, we 

used specific ELISAs to analyze serum levels of IgA, IgG2a, and IgE at predetermined time 

points after A. fumigatus conidia inhalation in sensitized mice. In addition, we assayed levels of 

these same Abs in pooled BAL fluid samples as an indication of their relative availability in the 

lung tissue.  

We show in this study that IgA is increased in serum (Fig 3A) and, even more noticeably, 

in BAL fluid (Fig 3B) as early as 3 days after inhalation. Production of IgG2a, an isotype 

prominent in the TH1-mediated cellular response, was not significantly increased in the serum of 

sensitized mice that had been challenged with conidia as compared to animals that had 

undergone sensitization only (Fig 3C). Although statistical significance could not be determined 

due to the pooling of BAL fluid samples, the levels of IgG2a in the lung increased from an 

undetectable level in the unchallenged, sensitized animals to nearly 5-µg/ml at day 11 after 

inhalation, suggesting a local production accompanying the inhalation of A. fumigatus conidia 

and/or significant vascular leakage at this time point (Fig 3D). IgE, the humoral effector of the 

allergic response, was significantly increased in the serum by day 3 after conidia inhalation (Fig 

3E). Serum IgE levels continued to rise throughout the study, with sensitized and challenged 

animals measuring a 900-fold increase above control animals at day 13 after conidia inhalation. 

A similar trend of increased IgE availability was noted in the BAL fluid, with peak IgE detection 

noted at day 11 after conidia inhalation as compared with levels in day-0 control animals (Fig 

3F).  
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Figure 3. Effect of the inhalation of A. fumigatus on the production of IgA, IgG2a, and 

IgE isotypes in the serum and BAL fluid of BALB/c mice. Mice were sensitized and 

exposed to A. fumigatus according to the schedule shown in figure 1. Ab isotypes were 

quantified by specific ELISA in serum and BAL fluid at days 3, 5, 7, 9, 11, and 13 and 

compared to sensitized mice that were not challenged with inhaled fungal conidia. The 

resulting data was analyzed using an unpaired, Student’s two tailed t test with Welch’s 

correction. All values are expressed as the mean ± S.E.M. n = 4-5 mice/group, * p < 0.05 was 

considered statistically significant. 
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B lymphocytes are recruited to the sensitized lungs of BALB/c mice after conidia 

inhalation. Flow cytometry was used to track the recruitment of (CD19
+
CD23

+
) B lymphocytes 

(conventional B2 cells) (21-23) into the allergic lung as a result of the inhalation of A. fumigatus 

spores to determine if B2 cells were a potential source of isotype-switched Abs in response to 

inhaled fungus. Single cell suspensions of pulmonary cells were pooled at each time point and 

stained with anti-CD19 and anti-CD23 for the detection of B2 cells. The CD19
+
CD23

+
 B2 cells 

were actively recruited to the pulmonary tissues after allergen inhalation (Fig 4). B2 cell 

recruitment increased rapidly and peaked at day 5 after conidia inhalation with an average of 1.7 

million B2 cells per lung counted in the sensitized and challenged animals. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Effect of A. fumigatus conidia inhalation on the recruitment of CD19

+
CD23

+
 

B2 lymphocytes to the allergic lung. Mice were exposed to A. fumigatus according to the 

schedule shown in figure 1. At days 0, 3, 5, 7, 9, 11, and 13 the lungs were removed and 

immediately processed into single cell suspension. Scatter properties were used to identify 

lymphocytes followed by staining with anti-CD19/anti-CD23 antibodies to identify 

conventional B2 lymphocytes. n=4-5 mice/ group and all the lung sections were pooled 

together for antibody staining. 
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IgA, IgG, and IgE are produced in the lungs of allergic mice after conidia inhalation. 

Cells expressing intracellular and extracellular IgA, IgG, and IgE were assessed by flow 

cytometry on pooled single cell suspensions of lung cells. IgA
+
 cells constituted a relatively 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. Effect of A. fumigatus conidia inhalation on Ab-producing cells in the 

allergic murine lung. Mice were exposed to A. fumigatus according to the schedule 

shown in figure 1. At days 0, 3, 5, 7, 9, 11, and 13 the lungs were harvested and 

immediately processed into a single cell suspension. Fluorescent anti-IgE, IgG and IgA 

antibodies were used to identify antibody producing cells. n=4-5 mice/ group and all the 

lung sections were pooled together for antibody staining. 
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minor population in the allergic lung. The largest population of IgA
+
 cells was noted at day 5 

after allergen challenge, but these accounted for less than 11% of the Ab-producing cells of the 

lung (Fig 5A). Resident IgA
+
 cells were clearly evident around the large airways when 

visualized on tissue sections immunohistochemically stained with anti-IgA antibodies (Fig 6A 

inset). IgG
+
 cells made up the largest population of the three isotypes analyzed, with separate 

peaks at days 5 and 9 after inhalation of conidia (Fig 5B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. Inhalation of A. fumigatus conidia increases the number of antibody 

producing cells in the allergic mouse lung. Mice were exposed to A. fumigatus 

according to the schedule shown in figure 1. Immunohistochemical staining was used 

to identify immunoglobulin producing cells in the lung tissue sections of allergic 

animals.  IgA, IgG and IgE producing cells increased after allergen challenge with 

maximum numbers at day 5. 
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Even though the IgG-producing cells outnumbered IgA- or IgE-producing cells, IgG
+ 

cells were 

rarely noted in the IHC-stained tissue sections at day 5 after conidia challenge (Fig 6B inset). 

IgE
+ 

cells were most notable in the lung 5 days after allergen challenge (Fig 5C) and were 

clearly evident in the tissues around blood vessels and large airways (Fig 6C inset). 
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Discussion 

Aspergillus species are among the most well recognized and best studied fungal 

pathogens of humans and animals. Exposure to this species can result in a range of disease states 

from allergic rhinitis to invasive aspergillosis. The innate immune system functions to bar fungal 

infection and, when that fails, both humoral and cell-mediated adaptive responses function to 

eliminate fungal pathogens (24). The contribution of humoral immune responses against fungal 

pathogens and allergens has been the topic of debate. While it is evident that cell-mediated 

responses play an important role in fungal clearance (25), the relative importance of serum and 

BAL antibodies to fungal components has been more difficult to establish (26, 27).  

B lymphocytes are the tuners of humoral immunity and they develop a specific immune 

response to A. fumigatus as they have been documented to produce A. fumigatus specific  IgA, 

IgG, and IgE antibodies (28). They perform three important functions. In addition to producing 

antibodies, B cells present antigen to T cells to indirectly support the allergic phenotype. They 

can also produce cytokines to directly impact fibrosis and other airway changes (29) suggesting 

that these cells can play an important role in the development and maintenance of allergic 

disease. 

In this study, we show the temporal recruitment of (CD19
+
CD23

+
) B2 lymphocytes to the 

allergic lung after exposure to conidia, placing these cells in a role to produce antibody isotypes 

that directly affect the immune response in the lung. Although not the focus of the current study, 

these cells could have other roles in the development and maintenance of the phenotype that is 

seen in the allergic lung. 
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The mucociliary elevator removes the majority of inhaled microbes from the surface of 

the pulmonary epithelium. B cells support the mucosal immune response by pumping IgA dimers 

of limited antigenic repertoire across the epithelium onto the luminal surface of the lung (30). In 

our study, IgA-producing cells were found to be localized around the large airways. This 

corresponds with their role as an innate defense immunoglobulin pumped across the columnar 

epithelium in an attempt to block fungal infection. IgA has been found to be critically important 

to fungal elimination and a strong immune defense against mold spores (31). The production of 

IgA after exposure to fungal conidia is important because it shows the dynamic activation of this 

cell type in response to a potential pathogen/particulate. 

When the host inhales conidia in large doses or at continuous low levels, fungal 

sensitization resulting in an aggressive pulmonary allergic response to Aspergillus antigens may 

arise. The allergic response overlaps the innate cellular component in the sensitized individual 

resulting in elevated IgE, airway hyperresponsiveness, and peribronchial inflammation. As an 

example of this collaboration of innate and adaptive immune responses recruitment of both 

innate response cells and increased IgA production coincident with lymphocyte recruitment to 

the lung suggests a coordinated strategy for fungal elimination in the lung. Persistent TH2-

mediated responses give rise to increased peribronchial smooth muscle and collagen deposition 

which characterizes the airway wall remodeling that often accompanies allergic lung disease 

(32). In this study, increased IgA levels corresponded with increased IgE in serum and BAL. In 

addition, IgE-producing cells were localized near the large airways of allergic animals. This IgE 

production is the hallmark of allergic asthma, as it has the ability to crosslink antigen to elicit 

mast cell degranulation and the activation of TH2 immune cascade. Even IgG2a, which is 

produced by TH-1-associated B cells (33), was elevated throughout the time points and IgG 
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producing cells were present near the large airways indicating its importance in host protection 

against fungal growth. Nonetheless, the enhanced recruitment of CD19
+
CD23

+
 B2 cells along 

with increased availability of IgA, IgG2a, and IgE in the serum and BAL fluid advocates for the 

investigation of humoral defenses against A. fumigatus. 

Allergic responses have been suggested as an aberrant immune response mounted against 

particulates that in many cases are not associated with pathogenic organisms (e.g., pollen, animal 

dander, and various chemicals). However, two prominent pathogens that have evolved in 

conjunction with their human hosts—helminthic worms and fungi—both of which are luminal 

pathogens that are perhaps the driving force behind a luminal immune response that has evolved 

as the allergic response. Eosinophilia is a hallmark of the allergic airway, and we have 

previously shown these cells are aptly recruited to the lungs of allergic mice after challenge with 

inhaled conidia (19). Contemporary research has revealed that B cells traffic to the lung in 

disease states (29) and that isotype switching can occur within the lung (34).  

The lower airways of the normal lung are typically considered to be sterile of bacterial 

microbes; however, this is not the case for the compact extremely hydrophobic spores of A. 

fumigatus. These tiny spores can travel well past the ciliated epithelium into small airways of the 

lung where their density is ideal for deposition. Once lodged in the alveoli, their thermotolerance 

and permissive substrate use provides the necessary characteristics for an opportunistic pathogen. 

We have shown previously that inhaled A. fumigatus spores are capable of navigating the 

airways to lodge in the very small peripheral airways of the mouse (19). Many studies previously 

have demonstrated that T lymphocytes and TH2 cytokines play an important role in the 

development of allergic lung disease and the downstream events, including inflammation, 

eosinophilia, mast cell accumulation/activation, and airway remodeling (35-38). However, very 
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little is known about the B cells which are the tuners of humoral immunity. Previous studies 

concerning B lymphocytes in allergic disease have concluded that B cells play no role in the 

development of allergic disease as characterized by eosinophilia and AHR (39, 40). Other studies 

have suggested that the contribution of B cells is primary via IgE (41). However, in our study we 

see that recruitment of CD19
+
CD23

+
 (conventional B2) cells impacts the antibody phenotype of 

allergic animals. It would be interesting to find the signals which might have evoked the 

CD19
+
CD23

+
 B2 lymphocytes to get recruited to the lungs. 

B lymphocytes are active players in host defense as shown by many in vitro studies. 

While the exact mechanism by which B lymphocytes modulate the allergic response is not 

known yet, it is possible that these cells may act in synergy with the T lymphocytes and affect 

the cytokine milieu of the lungs in addition to antibody production. This is in part supported by 

the fact that antibody production against inhaled antigens is altered by pulmonary inflammation 

resulting from diverse pathogenesis (27). However, further studies are needed to determine the 

exact role of B lymphocytes in the induction of TH2 cytokines, MHC II expression, and T cell 

activation 

In conclusion, the current report shows for the first time that A. fumigatus sensitization 

and conidia challenge can recruit (CD19
+
CD23

+
) B2 lymphocytes to the allergic lung. In 

addition to this, we show a role of CD19
+
CD23

+
 B2 lymphocytes in immunoglobulin secretion in 

the context of fungal allergy. Taken as a whole this research supports the increasing body of 

knowledge that CD19
+
CD23

+
 B2 lymphocytes impact antibody responses in allergic asthma. 

Further studies analyzing the various functions of B cells using a knockout model system will 

shed light on the intricate cellular functions of these cells in allergic asthma and may lead to 

better treatment for this devastating disease. 
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PAPER 2. μ-CHAIN-DEFICIENT MICE POSSESS B1 CELLS AND PRODUCE IgG 

AND IgE, BUT NOT IgA, FOLLOWING SYSTEMIC SENSITIZATION AND 

INHALATIONAL CHALLENGE IN A FUNGAL ASTHMA MODEL 
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Abstract 

Allergic Bronchopulmonary Aspergillosis (ABPA) is often difficult to treat and results in 

morbidity associated with chronic airway changes. This study assessed the requirement for B 

cells and their products in the allergic pulmonary phenotype in a murine model of fungal allergic 

asthma that mimics ABPA. C57BL/6 and μMT mice (assumed to lack peripheral B cells), were 

sensitized with Aspergillus fumigatus extract and challenged with two inhalation exposures of 

live conidia to induce airway disease. Airway hyperresponsiveness after methacholine challenge, 

peribronchovascular inflammation, goblet cell metaplasia, and fibrotic remodeling of the airways 

was similar between μMT mice and their wild type counterparts (C57BL/6). Surprisingly, even 

in the absence of the μ-chain, these μMT mice produced IgE and IgG antibodies, although the 

antibodies induced did not have specificity for A. fumigatus antigens. In contrast, IgA was not 

detected in either the lavage fluid or serum of μMT mice that had been exposed to A. fumigatus. 

Our findings also reveal the existence of CD19
+
CD9

+
IgD

+
 B-1 cells in the lungs of the μMT 

animals. These data show the μMT mice to have a developmental pathway independent of the 

canonical μ-chain route that allows for their survival upon antigenic challenge with A. fumigatus 

conidia, although this pathway does not seem to allow for the normal development of antigen-

specific repertoires. Additionally, the study shows that IgA is required for neither clearance nor 

containment of A. fumigatus in the murine lung, since fungal outgrowth was not observed in the 

μMT animals after multiple inhalation exposures to live conidia. 
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Introduction 

Allergic asthma is characterized by reversible airway obstruction due to the recruitment 

of leukocytes to the lung in response to an inhaled allergen (1). Increased mucus production in 

the airways, smooth muscle mass around the large airways, and peribronchial collagen 

deposition further narrows the airway lumen and restricts normal airway compliance contributing 

to airway obstruction (2-6). Sensitization to fungi with production of IgE and/or colonization by 

fungal species often signals a disease course that is particularly difficult to treat and results in 

chronic architecture changes in the lung causing long-term morbidity (7).  

Aspergillus fumigatus has a number of characteristics that make it an ideal aeroallergen 

and opportunistic pathogen of humans. Its small conidia are ubiquitous in indoor and outdoor 

environments and can remain airborne for long periods of time (8). The size and shape of the 

conidia are such that they may be inhaled deep into the lung tissue, past the mucociliary elevator 

that clears many particulates from the airways (9). Holding an environmental niche as a carbon 

and nitrogen recycler in compost piles, it can take advantage of a wide range of substrates and 

can grow at the high internal body temperature that discourages most fungal species (10).  

Resident plasma cells have been observed in the lungs of both human asthma sufferers 

and mice under experimental allergic airways protocols (11). Secretory IgA is recognized as an 

integral part of the innate mucosal response that protects the upper respiratory tract (12-14), and 

selective IgA deficiency in clinic patients is associated with an increased prevalence of atopy 

(15, 16). The IgG subtype IgG1, which is a TH2-elicited antibody, is cytophillic to mast cells 

(17); and IgG2a, which is produced by TH1-activated B cells, plays a role in host protection 

against fungal growth (18). As instigators of humoral immunity, B lymphocytes provide 

specificity to allergens in the production of IgE Abs that enable mast cell degranulation (19). IgE 
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has long been recognized as a perpetrator of asthma exacerbations, and anti-IgE therapies have 

been used successfully for treatment (20-22). During asthma exacerbations, B cells in all stages 

of activation and differentiation are found in increased numbers in the blood of asthmatic 

patients (23). B cells are also present in the bronchial mucosa of asthmatics (24). While allergen-

specific antibodies (Abs) are recognized as contributing factors in the immunopathology of an 

aberrant response against an innocuous allergen such as pollen or animal dander (25), they have 

also been suggested to be part of the successful clearance of fungus from the airways (26, 27). 

The aim of the current study was to determine the extent to which B cells impact the 

development and maintenance of the phenotype of the allergic lung. We used mice that, due to a 

homozygous targeted disruption of the membrane exon of the Ig μ-chain, are deficient of 

peripheral B cells, known as μMT (28). Using an Aspergillus fumigatus murine inhalation model 

developed in our laboratory to mimic human fungal asthma (29), we compared the effects of 

repeated A. fumigatus inhalation in C57BL/6 wild type controls and μMT animals. We found that 

the absence of the μ-chain did not alter the pulmonary pathology that results from inhalation of 

A. fumigatus in allergic animals: AHR, peribronchial inflammation, epithelial changes, and 

collagen deposition were equivalent to wild type controls. Surprisingly, we found that repeated 

A. fumigatus conidia exposure resulted in elevated IgE, IgG1 (in bronchoalveolar lavage, BAL), 

and IgG2a production in sensitized μMT mice, although IgA was undetectable in the μMT 

animals. This has implications both for the role of the B cell in the allergic lung and for IgA in 

the response to fungal allergens. We report for the first time that, even in the absence of the 

immunoglobulin μ-chain, IgG1 (only in BAL), IgG2a, and IgE isotypes were produced in 

animals after exposure to fungal antigens, but IgA was not made. The Abs produced after fungal 

exposure showed no antigen specificity for A. fumigatus. Our findings also reveal the previously 
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unreported presence of B-1 cells (CD19
+
CD9

+
IgD

+
) in the lungs of μMT mice, even in the 

complete absence of B-2 cells. Taken together, we show for the first time that μMT mice have B-

1 cells in the lungs and that these animals produce selected isotypes through a μ-independent 

pathway in the context of the fungal allergen-exposed lung. 
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Materials and Methods 

Experimental animals. C57BL/6 and μMT mice (5-9 weeks of age) were obtained from 

Jackson Laboratory (Bar Harbor, ME, USA). Animals were housed on Alpha-dri
TM

 paper 

bedding (Shepherd Specialty Papers, Watertown, TN, USA) in micro filter-topped cages 

(Ancare, Bellmore, NY, USA) in a specific pathogen-free facility with ad libitum access to food 

and water. The study described was performed in accordance with the Office of Laboratory 

Animal Welfare guidelines and was approved by the North Dakota State University Institutional 

Animal Care and Use Committee. 

Antigen preparation and A. fumigatus culture. Soluble A. fumigatus antigen extract was 

purchased from Greer Laboratories (Lenoir, NC, USA) and fungal culture stock (strain NIH 

5233) was purchased from American Type Culture Collection (Manassas, VA, USA). The A. 

fumigatus culture was reconstituted in 5ml PBS, and 60-μl aliquots were stored at 4°C until use. 

All experiments that utilized A. fumigatus were conducted with prior approval of the Institutional 

Biological Safety Committee of North Dakota State University.  

Allergen sensitization and challenge by airborne delivery system. Animals were 

sensitized per Hogaboam’s published protocol (30), with the exception that alum was used as the 

adjuvant. Mice were sensitized globally with 10 μg of A. fumigatus antigen (Greer Laboratories) 

in 0.1 ml normal saline (NS) mixed with 0.1 ml of Imject Alum ( Pierce, Rockford, IL, USA) 

which was injected subcutaneously (0.1 ml) and intraperitoneally (0.1ml). After two weeks, mice 

were given a series of three intranasal, weekly 20-μg doses of A. fumigatus antigen in 20 μl of 

NS. Animals were challenged as previously described with a 10-min nose-only aerosol exposure 

to live A. fumigatus conidia (29). Each anesthetized mouse was placed supine with its nose in an 

inoculation port inhaling the live fungal conidia for 10 min. Two weeks after the first allergen 
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challenge, mice were subjected to a second 10-min aerosol fungal challenge. Naïve animals from 

both the groups were neither sensitized nor challenged. After the second allergen exposure, the 

mice were separated into groups of five for analysis at day 0 (sensitized, but not challenged) or 

days 7 or 28 after the second aerosol challenge. Day 7 after challenge had been previously 

determined to be the peak of B cell recruitment into the allergic lungs, and leukocyte 

inflammation was assessed at this time point. Airway wall remodeling can be seen as early as 7 

days after the second aerosol challenge in this model, and the changes to the lung architecture 

continue to accrue through at least day 28 after the second inhalation of fungal conidia. The day-

28 time point was chosen to assess epithelial changes, as well as peribronchial fibrosis. The 

experimental protocol is depicted in Figure 7.  

Airway hyperresponsiveness measurement. Mice were anesthetized using sodium 

pentobarbital (Butler, Columbus OH; 0.1mg/0.01kg of mouse body weight), intubated, and 

ventilated with a Harvard pump ventilator (Harvard Apparatus, Reno, NV, USA) to assess 

allergic airway responses. Restrained plethysmography (Buxco, Troy, NY, USA) was used to 

assess airway hyperresponsiveness. Before performing readings, the system was first calibrated 

and the stroke volume set at 225 with the stroke/min set at 150. The value for baseline airway 

resistance was measured for each animal before an intravenous injection of acetyl-β-

methacholine (420μg/kg) was administered to determine AHR at each time point. 

Sample collection. Approximately 500 μl of blood was removed from each mouse via 

ocular bleed and centrifuged at 13,000 xg for 10 min to yield serum. Serum was stored at -20°C 

until use. Bronchoalveolar lavage (BAL) was performed on each mouse with 1.0 ml sterile 

normal saline (NS). The BAL contents were centrifuged at 2000 xg for 10 min to separate cells 

from fluid. The BAL fluid was stored at -20°C until use, and cells were used immediately for 
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morphometric analysis. Left lungs were harvested and fixed in 10% neutral buffered formalin for 

histological analysis. 

 

 

 

 

 

 

 

Morphometric and histological analysis. BAL cells were cytospun (Shandon Scientific, 

Runcorn, UK) onto microscope slides and differentially stained (Quick-Dip stain, Mercedes 

Medical, Sarasota, FL, USA). Cells from five, random high-powered fields (HPFs) were counted 

to determine the mean number of each cell type per HPF in the airway lumen of each mouse. 

Formalin-fixed, paraffin-embedded lungs were cut longitudinally across the coronal plane 

in 5-μm sections and stained with hematoxylin and eosin (H&E) to assess inflammation and with 

periodic acid Schiff’s (PAS) stain (Richard-Allan Scientific, Kalamazoo, MI, USA) for the 

analysis of goblet cells.  

Evaluation of collagen thickness. Gomori’s trichrome (Richard-Allan Scientific, 

Kalamazoo, MI, USA) was used to stain histological sections to assess collagen deposition in 

naïve and allergic mice as described previously by Hoselton et al. (29). For each sample, at least 

 
Figure 7. Sensitization, challenge, and analysis schedule for the A. fumigatus murine 

model of allergic asthma. Mice are first sensitized with immunizations and intranasal 

inoculations of fungal antigens. They are then exposed to 2 nose-only inhalation doses of 

live Aspergillus conidia 2 weeks apart. Groups of animals are assessed at various time 

points after allergen challenge (by convention, time points are named for their day after 

challenge, represented here by days 7 and 28 time points). Day 0 denote sensitized animals 

that did not receive the inhalation exposure to fungus. 
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50 discrete points were measured at 50-μm intervals along the largest lateral bronchiolar branch 

visible on the histological section (the second or third lateral branch). A perpendicular line was 

drawn from the point on the basement membrane through the full thickness of the collagen 

immediately below. The mean collagen thickness was reported for each sample, and the mean of 

the means was reported for each group. 

Quantification of serum and BAL IgE, IgG1, IgG2a, and IgA. The total IgE (BD OptEIA, 

San Diego, CA, USA), IgG1 (Immunology Consultants Laboratory, Portland, OR, USA), IgG2a 

(BD OptEIA, San Diego, CA, USA), and IgA (Bethyl laboratories, TX, USA) in serum and BAL 

were quantified via specific ELISA according to manufacturer’s guidelines. Serum samples were 

diluted in PBS 1:100 for IgE, 1:500 and 1:5000 for IgG1 and IgG2a, and 1:500 for IgA. BAL 

samples were pooled and diluted 1:5 for IgE and IgG2a, 1:2 for IgG1, or undiluted for IgA. The 

detection limits for the kits were1.6 ng/ml for IgE, 6.25 ng/ml for IgG1, 3.1 ng/ml for IgG2a, and 

15.625 ng/ml for IgA. 

A. fumigatus-specific antibody detection. ELISA plates were coated with 100 µl/well of a 

20-µg/ml sample of A. fumigatus antigen (Greer Laboratories) diluted in coating buffer (pH 9.6, 

15 mM Na2CO3, and 35 mM NaHCO3) and incubated overnight at 4°C.  The next day, the plates 

were washed three times with PBS containing 0.05% tween-20, and 200 µl of blocker (3% BSA 

in coating buffer) was added to each well. Plates were incubated in the dark for 2 h at room 

temperature and washed 3 times with PBS-tween. After blocking, 100 µl/well of serially diluted 

serum or BAL from C57BL/6 and μMT mice diluted in PBS-tween/1% BSA (10
-1 

to 10
-8

 for 

serum and 1:2 to 1:64 for BAL fluid) was added to each well and incubated for 1 h. Plates were 

washed 5 times with PBS-tween, and 100 µl/well of diluted goat anti-mouse Ig-HRP (Southern 

Biotech, Birmingham, AL, USA) secondary antibody was added. Following a 1-h incubation, the 
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plates were again washed 5 times, and 100 μl per well of TMB substrate (BD Biosciences, San 

Jose, CA, USA) was added. The absorbance was read at 650 nm using a Synergy HT microplate 

reader (BioTek, Winooski, VT, USA). In addition, serum and BAL samples were tested to check 

the specificity of individual subclasses of antibody (IgG1 and IgE) for A. fumigatus. For this, rat 

anti-mouse IgG1-AKP (1:5000 dilution, BD Pharmingen, San Jose, CA, USA) and goat anti-

mouse IgE-HRP (1:500 dilution, Thermo Scientific, Rochester, NY, USA) secondary Abs were 

used in place of Ig-HRP. The absorbance was read at 650 nm when TMB was used as a substrate 

and at 405 nm when p-Nitrophenyl phosphate disodium salt hexahydrate was used as a substrate 

(Sigma-Aldrich Corp., St. Louis, MO, USA) using a Synergy HT microplate reader. 

Flow cytometry. Minced lungs from naïve animals and at days 0 (sensitized, but not 

challenged) and 7 were subjected to collagenase IV (Sigma-Aldrich, St. Louis, MO, USA) 

digestion and red blood cell lysis. For collagenase digestion, minced lung sections were treated 

with 0.04% collagenase IV in DMEM and were incubated at 37°C for 1 h with gentle agitation.  

For flow cytometry analysis, the cells were suspended in PBS with 1% BSA (Sigma Aldrich, St. 

Louis, MO, USA) to a final concentration of 1 x 10
7
 cells/ml. Fc receptors were blocked with 

anti-mouse CD16/CD32  (1 μg /1 x 10
6
 cells) for 10 min on ice. The following Abs were used 

for phenotypic characterization of B lymphocytes using flow cytometry: PerCP-Cy5.5-Anti-

CD19, PE-anti-CD23, Alexa flour 647-Anti-CD9, FITC-anti-IgD, FITC-anti-IgM, FITC-anti-

IgG, FITC-anti-IgE, FITC-anti-IgA, (all Abs were purchased from eBiosciences, San Diego, CA, 

USA). The samples were pre-incubated with combinations of directly labeled Abs for 30 min in 

the dark and then washed with PBS 1% BSA twice before the samples were analyzed using an 

Accuri
®
 C6 Flow Cytometer (Accuri Cytometers Inc., Ann Arbor, MI, USA) or a FACSCalibur 

flow cytometer (BD Biosciences, San Jose, CA, USA). A minimum of 50,000 events were 
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acquired and the data was analyzed using Flowjo
TM

 software (Tree Star, Inc., Ashland, OR, 

USA). 

Statistical analysis. Allergic C57BL/6 wild type and μMT animals were compared to 

each other and to their respective naïve controls at each time point. An unpaired, Student’s two 

tailed t test with Welch’s correction was used to determine statistical significance with Prism 

Graph Pad software (San Diego, CA, USA). p=0.01-0.05 (*), p = 0.001-0.01(**), and p <0.001 

(***) indicates statistical difference when each of the mouse strains were compared to their naïve 

controls. Where appropriate, # indicates statistical difference between the C57BL/6 and μMT 

mice. p < 0.05. All results are expressed as the mean ± SEM. 
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Results 

Airborne fungal challenge results in airway hyperresponsiveness in μMT mice after 

sensitization to A. fumigatus. In the present study, airway physiology of both murine groups (i.e. 

C57BL/6 and μMT animals) was monitored before allergen challenge at day 0 and at days 7 and 

28 post second conidia inhalation (Fig 8). Airway response measurements from all study animals 

were used to determine the baseline mean for airway hyperresponsiveness prior to methacholine 

challenge (Fig 8, dotted line, 1.78 ± 0.05 cm H20/ml/s).  

 

 

 

 

 

 

 

 

Sensitized animals from wild type and μMT groups that were not challenged with spore 

inhalation showed no difference in airway resistance values when compared to naïve animals in 

their respective groups. At day 7 after 2 conidia challenges, airway hyperresponsiveness was 

significantly increased in both murine groups as compared to naive controls (Fig 8); however, 

there was no difference in the AHR values of μMT animals as compared to the C57BL/6 wild 

 
Figure 8. Inhalation of A. fumigatus increases airway hyperresponsiveness (AHR) in 

C57BL/6 and μMT mice. Baseline response was obtained prior to methacholine challenge 

(mean value of 1.78 ± 0.05 cm H2O/ml/s is indicated by the dotted line). Peak increases in 

airway resistance were recorded after i.v. methacholine injection (420 μg/kg). AHR was 

increased following allergen challenge and the trend was quite similar in both the murine 

groups throughout the course of the study. Data analyzed using an unpaired, Student’s two 

tailed t test with Welch’s correction. All values expressed as the mean ± S.E.M. n = 3-5 

mice/group, *p < 0.05was considered as statistically significant when compared to the 

respective naïve controls. 
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type animals. By day 28 after the second conidia challenge, AHR values for both murine groups 

returned to baseline, irrespective of the presence or absence of the μ-gene. 

Leukocytes are recruited to the allergic airways after fungal conidia challenge in μMT 

mice. Leukocyte recruitment to the lungs of allergen-sensitized animals that had inhaled conidia 

was evaluated using H&E-stained lung sections and morphometric analysis of BAL cells. Naïve 

animals from both groups exhibited no pulmonary inflammation (Fig 9A & B). Similarly, 

sensitized C57BL/6 and μMT animals that did not inhale spores (day 0) showed no evidence of 

inflammation (Fig 9C & D, respectively). However, upon allergen challenge, both C57BL/6 and 

μMT animals actively recruited inflammatory cells to the lungs. Allergic animals exhibited 

prominent perivascular and peribronchial leukocyte inflammation 7 days after the second spore 

challenge (Fig 9E & F). The pattern of perivascular and peribronchial inflammation was similar 

in the C57BL/6 and μMT animals at day 7, and inflammation was largely resolved in both strains 

by day 28 post challenge (Fig 9G & H).  

Morphometric analysis of monocyte/macrophage lineage cells, neutrophils, eosinophils, 

and lymphocytes was performed to estimate the relative makeup of the cellular inflammation and 

to monitor leukocyte egress into the airway lumen (Fig 10). In naïve and sensitized animals that 

were not challenged (day 0), alveolar macrophages were the dominant cell type (Fig 10A). 

Neutrophils, lymphocytes, and particularly eosinophils were prominent cell types identified in  

the BAL 7 days after the second conidia challenge (Fig 10B, C, & D). Eosinophils were the most 

numerous cell type counted (Fig 10C) in the BAL of both C57BL/6 and µMT mice at day 7 after 

the second conidia exposure, emphasizing the polarization of the immune response in favor of 

allergy after multiple inhalations of conidia. 
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Figure 9.  Inhalation of A. fumigatus conidia increases pulmonary inflammation in 

C57BL/6 and μMT mice. Representative photomicrographs of H&E stained lung sections 

of allergen-challenged C57BL/6 (left column) and μMT (right column) mice. Naïve and day 

0 mice in both the groups did not show inflammation (Fig. 3A-D). Peribronchovascular 

inflammation was prominent at day 7 post second conidia challenge in both groups (Fig. 

3E&F) and subsided well into day 28 (Fig.3G&H). Scale Bar = 100µm. 
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At day 28 post challenge, macrophages were again the major cellular component of the BAL 

compartment with very few neutrophils (Fig 10A & B).The inflammation pattern was similar 

between C57BL/6 and μMT animals, with eosinophils dominating at day 7 in both murine 

groups when they were compared to their naïve controls. 

Inhalation of fungal conidia changes the airway architecture in allergic C57BL/6 mice 

and allergic μMT mice.  In the present study, goblet cells were assessed by counting PAS-stained 

cells and representing them as a percentage of total epithelial cells lining the second or third 

Figure 10. Effect of A. fumigatus conidia inhalation on inflammatory leukocytes in the 

allergic lung. Airway inflammation was marked by the presence of (A) macrophages, (B) 

neutrophils, (C) eosinophils, and (D) lymphocytes in naïve, allergic C57BL/6, and μMT 

mice. The inflammation pattern was similar in both C57BL/6 and μMT mice throughout the 

course of the study. Data analyzed using an unpaired, Student’s two tailed t test with Welch’s 

correction. All values expressed as the mean ± S.E.M. n =4 - 5 mice/group, * p< 0.05; ** p < 

0.01; ***p <0.001 was considered as statistically significant when compared to the 

respective naïve controls. 
#
 p <0.05 was considered statistically significant when μMT were 

compared to C57BL/6 animals. 
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lateral airways in each histological section. Goblet cell metaplasia was not observed in the day 0 

(sensitized, but not challenged) animals of either the C57BL/6 or μMT groups (Fig 11C). 

Challenge with A. fumigatus conidia resulted in a marked increase in the percentage of goblet 

cells lining the airways (Fig 11C). As compared to sensitized animals that did not receive 

inhaled conidia, the number of goblet cells was increased dramatically (~65% of total) but 

equally in both groups 7 days post challenge (Fig 11A, B, & C).  

 

 

 

 

 

 

 

 

By day 28 after the second conidia challenge, fewer goblet cells were noted in the allergic 

lungs of both the C57BL/6 and the μMT group as compared to the day-7 time point, although 

there was no difference in the number of goblet cells between the wild type and the μMT groups 

(Fig 11C, ~27% of the total epithelial cells for each). Collagen accumulation in the peribronchial 

space of allergic C57BL/6 or μMT animals was significantly increased at both day 7 and day 28 

after the second conidia inhalation as compared to sensitized animals that had not been exposed 

to inhaled conidia (Fig 12). In contrast to the pattern seen in goblet cell metaplasia, collagen 

 
Figure 11. Inhalation of A. fumigatus conidia increases goblet cell metaplasia in 

C57BL/6 and μMT mice. Representative photomicrographs of PAS stained whole 

lung sections of C57BL/6 and μMT mice show that goblet cells (GCs) and mucus were 

evident in the airways at Day 7 post second conidia challenge (Fig 5A & B). GC 

numbers were reported as the percent of total epithelial cells along segments of airway 

epithelium lining the large lateral branches of the bronchi (Fig 5C). Scale bars in A and 

B = 100μm. 
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accumulation did not diminish over the time course of this study. This phenomena has been seen 

and extended in other studies by our laboratory in both BALB/c and C57BL/6 mice (29, 31). 

 

 

 

 

 

 

 

 

 

 

Fungal inhalation resulted in increased serum IgA, IgG1, IgG2a, and IgE levels in 

allergic C57BL/6 mice, while μMT mice exhibited elevated IgG1 in BAL, IgG2a and IgE in 

serum. In the present study, inhalation of A. fumigatus conidia resulted in an increase in the BAL 

IgA from C57BL/6 mice at day 7 after 2 conidia inhalations. IgA Abs were not detected in either 

serum or the BAL fluid of μMT mice (Fig 13A & B). IgG1 was detected in the BAL fluid of 

allergic μMT mice 7 days after 2 exposures to conidia, but was not found in the serum (Fig 13C 

& D). Although serum IgG2a levels in naïve μMT animals were significantly lower than wild 

type, sensitization with fungal antigens stimulated its production to levels equivalent to those of  

 
Figure 12. Effect of A. fumigatus conidia inhalation on peribronchial collagen 

thickness. Gomorri’s trichome stain was used to visualize subepithelial collagen 

deposition in histological sections. Peribronchial collagen thickness was similar in both 

C57BL/6 and μMT mice throughout the course of the study. Approximately 50 discrete 

points were measured at 50-μm intervals along the largest lateral bronchiolar branch 

visible on the histological section (L2 or L3). A perpendicular line was drawn from the 

point on the basement membrane through the full thickness of the collagen immediately 

below. The mean collagen thickness was reported for each sample. Data analyzed using 

an unpaired, Student’s two tailed t test with Welch’s correction. All values expressed as 

the mean ± S.E.M. n =3-5 mice/group, * p< 0.05; ** p < 0.01; was considered as 

statistically significant when compared to their respective naïve controls. 
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Figure 13. Inhalation of A. fumigatus conidia induces μMT mice to produce IgG1 (only in 

BAL), IgE and IgG2a in serum and bronchoalveolar lavage (BAL) fluid. The Ab levels of 

C57BL/6 and μMT mice were compared to naïve animals and to each other at each time point. 

ELISA’s indicated that the μMT mice produced antibodies in response to A. fumigatus allergen 

challenge. Data analyzed using an unpaired, student’s two tailed t test with Welch’s correction. 

All values expressed as the mean ± S.E.M. n = 4-5 mice/group, * p< 0.05; *** p <0.001 was 

considered significant as compared to naïve controls. 
#
 p <0.05 was considered statistically 

significant when μMT were compared to C57BL/6 animals. No statistics are shown for Ig 

ELISAs for BAL fluid as the samples from each time point were pooled and run as a single 

sample. 
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wild type, and the μ-deficient animals matched IgG2a levels throughout the rest of the study (Fig 

13E). IgG2a was also detected in the BAL fluid of the μMT mice (Fig 13F). IgE was elevated in 

A. fumigatus-sensitized and challenged C57BL/6 and μMT animals (Fig 13G & H). Even though 

there was a significant difference in the IgE levels of C57BL/6 and μMT mice, the production of 

IgE was significantly higher at day 7 post second conidia challenge in both the murine groups 

when they were compared to their respective naïve controls, suggesting that isotype switching to 

an allergic phenotype was possible even in the μMT mice. However, IgE production in C57BL/6 

mice was 4X higher than μMT levels at day 7 after the second inhalation.  

To investigate the extent to which the antibodies produced as a result of fungal 

sensitization and inhalation exposure were specific to A. fumigatus, serial dilutions of serum and 

BAL samples from C57BL/6 and μMT mice were collected at day 7 after the second conidia 

exposure and analyzed against the sensitizing antigen. The specificity of antibodies to A. 

fumigatus at day 7 post second conidia challenge (when the antibody levels are higher in serum 

and BAL) of both C57BL/6 and μMT mice are shown in figure 8. The serum and BAL 

antibodies produced in the C57BL/6 mice were specific to A. fumigatus (filled square), while the 

ones produced in  μMT  mice (filled circle) appeared to be non-specific and the values were 

comparable to those of naïve control animals (Fig 14A & B). When the specificity of individual 

subclasses of Abs (IgE and IgG1) for A. fumigatus was tested, we observed similar results (data 

not shown). 

CD19
+
CD9

+
IgD

+
 B-1 cells are present in the lungs of μMT mice despite a lack of the Ig 

µ chain. It has previously been shown that  μMT mice on the BALB/c, but not C57BL/6 

background, display an incomplete block in B cell development and harbor mature B cells in 

secondary lymphoid organs (32, 33). 
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Although all μMT animals used here were on the C57BL/6 background, we considered 

the possibility that A. fumigatus exposure might overcome the B cell developmental block (28, 

33). In the present study, after inhalation with A. fumigatus conidia, CD19
+
 B cells were detected 

in the lungs of μMT  mice at day 7 after the second conidia inhalation and their numbers were 

 
Figure 14. Inhalation of A. fumigatus conidia induces specific serum and BAL 

antibody production in C57BL/6 mice, but not in μMT mice. Serum and BAL samples 

from the C57BL/6 and μMT mice were pooled and serial dilution was used to evaluate 

antibody titers. (A) The specificity of total serum antibody from C57BL/6 (Day 7 WT) 

and μMT (day 7 μMT) for A. fumigatus was evaluated against A. fumigatus Ag. (B) The 

specificity of total BAL antibody from C57BL/6 (Day 7 WT) and μMT (day 7 μMT) for 

A. fumigatus Ag. C57BL/6 mice produced specific antibodies for A. fumigatus, while 

none were detected in μMT mice. 
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fewer than the WT controls (Fig 15C, D, E & F). When evaluated, CD19
+ 

B cells were also 

detected in the lungs of naïve μMT mice (data not shown). 

Given the fact that Abs produced in the μMT mice were not specific for A. fumigatus, we 

looked for the presence of B-1 lymphocytes in the lungs as these cells are known to produce Abs 

in a non-specific manner and they predominate in the pleural and peritoneal cavities (34). In 

addition to B-1 cells, we also looked for B-2 cells in the lungs of  μMT  mice as these 

conventional B-2 cells form a major population of lymphocytes which is present in the body (35, 

36). The CD19
+ 

B cell population in the lungs of C57BL/6 WT mice expressed either CD9 (as B-

1 cells are CD9
+
) (34, 37) or CD23 (as B-2 cells are CD23

+ 
and have low to no expression of 

CD9) (36, 38), showing the presence of both B-1 and B-2 B cells (Fig 15C & E). On the 

contrary, CD19
+
 B cells that were present in the lungs of μMT mice did not express CD23 

indicating the absence of B-2 lymphocytes (Fig 15F). Similar to the B-1 population in C57BL/6 

WT mice, the  μMT  CD19
+
 B cells expressed CD9, illustrating the presence of B-1 lymphocytes 

(34) (Fig 15D).  

It has been shown that IgD can substitute for IgM if it is expressed early in the B cell 

development process (39). As such, we looked for the expression of IgD on the CD19
+
CD9

+
 

cells that were present in the lungs of C57BL/6 WT and μMT mice using flow cytometry. IgD 

was expressed on the CD19
+
CD9

+
 cells present in the lungs of C57BL/6 and μMT  mice at day 7 

post second conidia challenge (Fig 15G & H). As expected, IgM positive cells were not detected 

in either naïve or A. fumigatus challenged μMT mice (data not shown). These data demonstrate 

that in the μMT  mice, IgD can substitute for IgM early in B-1 cell development. 
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Figure 15. CD19

+
CD9

+
IgD

+
 B-1 cells are present in the lungs of μMT mice despite a 

sustained block in B cell development. Lungs harvested from C57BL/6 and μMT mice at 

day 7 post second conidia challenge were analyzed for the presence of B-1, B-2, and IgD
+
 

B-1 cells. (A and B) The forward scatter (FSC) and side scatter (SSC) plot of the cells 

isolated from the lungs of C57BL/6 and μMT mice. (C and D) The percentage of 

CD19
+
CD9

+
 B-1 cells in the lungs of C57BL/6 and μMT mice (gated on population P1 in 

the FSC-SSC plot). (E and F) The percentage of CD19
+
CD23

+
 B-2 cells in the lungs of 

C57BL/6 and μMT mice (gated on population P1 in the FSC-SSC plot). (G and H) 

Histogram overlay of CD19
-
CD9

+
 (non B1 cells, open histogram) and the CD19

+
CD9

+
 

(B1 cells, filled histogram) cell populations showing the presence of IgD on the surface of 

B-1 cells in the lungs of C57BL/6 and μMT mice. 
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Discussion  

In the current study, we show that the localized production of IgG1, IgG2a, and IgE is 

elicited in μMT mice in response to systemic fungal sensitization and inhalational challenge in 

an experimental allergic asthma model. In addition to the localized production, our work 

demonstrates that μ-deficient mice produced systemic IgG2a and IgE Abs after exposure to A. 

fumigatus extract antigens followed by inhalation of A. fumigatus conidia. However, when tested 

in binding assays with the Aspergillus antigens that were used to sensitize the animals, the Ab 

isotypes from the μMT animals proved to be non-specific, while the antibodies produced by the 

μ-sufficient controls were specific.  

In the present work using a fungal trigger to elicit allergic airways disease, the 

characteristic signs and symptoms of allergic airway disease were present. AHR, pulmonary 

inflammation, excessive mucus production, and serum IgE in μMT mice were comparable to 

C57BL/6 controls. In contrast, studies using a repeated aerosol exposure to OVA showed 

reduced lung inflammation and mucus hypersecretion in μMT mice as compared to controls (40, 

41). In addition, OVA-challenged mice failed to develop AHR, suggesting a possible role of B 

cells in the development of AHR in response to OVA (40, 41). So, in addition to the type of Ab 

that can be elicited in μMT animals, the type of immune response is also different with different 

antigenic stimuli, dissecting further the role of B cell activation in response to fungal 

pathogens/allergens.  

IgM and IgA immunoglobulins share a number of similarities. IgA is related more closely 

to IgM than other isotypes, with the μ and α chains sharing a characteristic long secretory 

segment (42). In addition, both IgA and IgM can form multimers in conjunction with the J chain 
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and both can be secreted at the mucosal surfaces coupled to the polymeric Ig receptor (43). Some 

investigators have speculated that expression of IgA may act as a surrogate for membrane IgM in 

B cell development in some instances (43). Secretory IgA has been recognized as an integral part 

of the innate mucosal response that protects the upper respiratory tract (12, 13), and selective 

IgA deficiency in clinic patients has been associated with an increased prevalence of atopy (15, 

16). In experimental conditions, μMT mice infected with Salmonella did produce IgA (43), and 

we expected that, if any isotype was made in the μMT mice in response to fungal stimulation, 

IgA would be that isotype. However, we found no IgA in the serum or the BAL of μMT mice. 

This suggests that: 1) other Ab isotypes can substitute for IgM in B cell development, 2) that the 

type of antigenic stimulus dictates isotype development in the μMT mouse, even when the 

context of the exposure (mucosal delivery) is similar (although not identical), and 3) that IgA is 

not necessary for fungal containment in this model. 

In previous work using μMT mice on a C57BL/6 background, a very sensitive method to 

detect low levels of FcεRI-bound IgE on basophils showed that IgE was made in μMT mice after 

prolonged exposure to Heligmosomoides polygyrus, Tricuris muris, or Schistosoma mansoni gut 

parasites (44). In fungal sensitization and challenge, our results show a similar capacity for an 

IgE response in μMT mice after treatment with Aspergillus Ags. In the current study, a robust 

IgE response was readily quantified by ELISA, and elevated IgE levels were sustained 

throughout the study. Our findings show for the first time that a conserved mucosal humoral 

response, which is not mediated through IgM, may significantly impact the response to, not only 

gut parasites, but inhaled fungal pathogens as well. Interestingly, in studies in which ovalbumin 

(OVA) was used as a surrogate for clinically relevant inhaled allergens, no IgE was produced in 

μMT mice (3, 40). 
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In addition to IgE, we report for the first time IgG1 production in the BAL and IgG2a 

production in the serum and BAL of μMT mice on a C57BL/6 background. IgG1, which is 

associated with TH2-type responses elicited by IL-4, was elevated only in the BAL and only after 

fungal challenge, suggesting a localized production of this Ab isotype. IgG2a, which plays an 

important role in fungal opsonization and clearance (18), was elevated throughout the study in 

both C57BL/6 and μMT mice. This further supports the fact that antigenic stimulus dictates 

isotype development in the μMT mice and that without the benefit of the μ gene a small 

percentage of pre-B cells can escape elimination, switch to downstream immunoglobulin heavy 

chains, and respond to antigens (33, 45). 

The canonical pathway of B cell ontogeny requires surface expression of the μ Ig chain at 

an early pre-B cell stage (46). Indeed, until recently only B cells which express IgM were 

believed to migrate from the bone marrow to the peripheral lymphoid organs (33), and 

membrane-bound IgM expression was thought to be essential for B cell maturation and 

differentiation to Ab-producing cells. However, recent research using μMT mice has shown that 

the expression of the μ Ig chain is not an absolute requirement for B cell survival (33, 43, 44, 

47). These genetically altered animals have been useful tools in understanding the complex 

biological processes associated with different diseases.  

Although Ab-binding ELISAs were not attempted in the helminth infection study, the IgE 

was functional in that it elicited IL-4 production by basophils (44). In their study, the Ab was 

produced at a low concentration and Ab-producing B cells could not be detected in the central or 

peripheral lymph organs. In the current study, while μMT mice were able to produce Abs after 

sensitization to and challenge with fungal Ags, our results show that the Abs produced by the μ-

deficient animals had no affinity for A. fumigatus Ags as compared to wild type. Together, these 
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results suggest a tissue-centric Ab production, which mandated the assessment of B cell 

populations in the lung.  

In investigating the potential source of Abs in μMT mice, no other study has examined 

the presence of CD19
+
IgD

+
 cells in the lungs. Since we did not find CD19

+
IgD

+
 or CD19

+
IgM

+
 

cells in the bone marrow or spleens of naïve mice (data not shown), we hypothesized that tissue-

resident B-1 cells act as the source of Abs in μMT mice. We were able to detect IgD-expressing 

CD19
+
CD9

+
 B-1 cells in the lungs of μMT mice using flow cytometry, supporting a tissue 

resident B-1 cell as a source for localized Ab production. These observations are consistent with 

the notion that B cells can receive switching signals in peripheral sites (43, 44, 48, 49), a process 

that may occur in the allergic lung. 

In summary, we provide conclusive evidence that B-1 cells can impact asthma 

pathophysiology in the absence of conventional B-2 lymphocytes. From these studies, we report 

two significant conclusions. First, the route of the pathogenic/allergenic challenge as well as the 

type of antigen has a significant impact on the generation of Ab responses in μMT mice lacking 

the normal pathway for B-2 cell maturation, as different types of antigen yield very different 

outcomes. The second major finding is that as a B-2 cell KO mouse, μMT animals may be very 

useful to determine the role of B-1 cells in response to various pulmonary insults. Future studies 

may include elucidating the mechanism for B-1 isotype switching in the lung and B-1 cells’ 

contribution to protective responses, which would have important implications for experimental 

analysis and for understanding normal B-1 and B-2 cell activation in health and disease.  
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PAPER 3. THE IMPACT OF HYALURONIC ACID ON B LYMPHOCYTE 

RECRUITMENT AND FUNCTION IN A MURINE FUNGAL ALLERGIC ASTHMA 

MODEL 
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Abstract 

Allergic Bronchopulmonary Aspergillosis (ABPA) is a particularly severe form of 

allergic asthma that is difficult to treat and results in morbidity associated with chronic airway 

changes. B lymphocytes are well recognized in the development of IgE responses which 

exacerbate asthma symptoms, but may also be important in a protective response against inhaled 

fungi. Further, these lymphocytes may play a direct role in the maintenance of airway wall 

fibrosis as they can produce cytokines. Recent studies have shown that extracellular matrix 

components participate in cell attachment, chemotaxis, cellular activation and differentiation, 

tissue growth and repair, and cell survival indicating that they may play an important role in the 

development and persistence of both inflammation and fibrosis in ABPA. In the present study, 

we investigated the ability of hyaluronic acid, a major component of the extracellular matrix 

(ECM) generated at sites of inflammation, to recruit and modulate B lymphocyte functions in 

allergic fungal disease. Using an Aspergillus fumigatus murine inhalation model to mimic human 

asthma, we compared the effects of low and high molecular mass HA (LMM HA and HMM HA) 

on B lymphocyte chemotaxis and function. We found that B lymphocytes undergo chemotaxis in 

response to LMM HA while HMM HA had little to no effect. LMM HA-mediated B lymphocyte 

chemotaxis was significantly inhibited by blocking the CD44 receptor. Furthermore, we 

demonstrated that LMM HA fragments elicit the production of pro-fibrotic/pro-remodeling 

cytokines IL-10 and TGF-β1 by B lymphocytes. These observations suggest previously 

unforeseen interactions between B lymphocytes and LMM HA in the context of allergy and 

response to fungi. They represent novel pathways by which B lymphocytes may contribute to 

airway remodeling. 

 



85 
 

Introduction 

Asthma is a debilitating disease of the airways that affects over 235 million people 

globally (World Health Organization, 2011). Asthmatic airways sensitized to a particular 

allergen respond violently to subsequent exposures, resulting in asthma attacks which can be 

fatal (1). Some of the hallmarks of chronic airway inflammation of patients with severe or 

persistent asthma include the accumulation of activated eosinophils (2-4), neutrophils, 

lymphocytes (5), and extracellular matrix (ECM) components in the airways (1). 

 Many studies have shown that T lymphocytes and TH2 cytokines play an important role 

in the development of allergic lung disease and the downstream events, including inflammation, 

eosinophilia, mast cell accumulation/activation, and airway remodeling (6-9). However, much 

less is known about the mechanisms that govern the development and maintenance of B 

lymphocytes, and their role in allergic asthma remains unresolved. Previous studies have shown 

that B cells play no role in the development of allergic disease (10, 11); while other studies have 

shown the primary contribution of B cells is via IgE production (12, 13). On the contrary, some 

studies have shown that a significant number of B cells are recruited during chronic allergic lung 

disease (14) suggesting that they may have a role to play in allergic asthma, although their exact 

role in asthma still remains unclear. 

Recent studies have shown that ECM components play a role in the attachment of cells, 

tissue growth and repair (15, 16), proliferation and differentiation (17), cell migration and 

activation (18), cell survival/delay of apoptosis (19), and chemotaxis (20), indicating that the 

ECM may play an important role in the development and persistence of inflammation. Moreover, 

studies have demonstrated that ECM components can function in cellular signaling under certain 

circumstances (21) and can deliver signals leading to or regulating cellular proliferation (22). 
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The ECM components have been reported to play an important role in regulating host response 

to lung injury. Accumulation of ECM components can be seen in tissue injury following a 

variety of insults such as those that occur in the adult respiratory distress syndrome (ARDS), 

idiopathic pulmonary fibrosis, and chronic persistent asthma (23). Among the different ECM 

components studied, the glycosaminoglycan (GAG) hyaluronan (HA), which is a non-sulfated 

GAG polymer made of repeating disaccharide units and a major component of ECM, undergoes 

dynamic regulation during inflammation (24). HA is mainly synthesized by fibroblasts (25, 26) 

and it exists as a HMM HA polymer usually in excess of 10
6
 D in its native form (27). In the 

lungs, the HA content is 15-150mg.
g-1

 dry weight which is mainly localized in the peri-bronchial 

and inter-alveolar/peri-alveolar tissue and under diseased conditions this HMM HA is broken 

down into LMM HA (15, 28, 29). More recently, several studies have shown that LMM HA, but 

not HMM HA, exhibits pronounced biologic effects on cells and in tissues (24). Most 

importantly, LMM HA has multiple pro-inflammatory effects not observed for HMM HA (30). 

In fact, HMM HA can block the pro-inflammatory effects of LMM HA and helps support tissue 

integrity (31). 

HA fragments of low MM (<5 X 10
5
 D), but not high MM (> 5 X 10

6
 D), have been 

shown to stimulate the murine alveolar macrophage cell line MH-S and macrophages recruited to 

the sites of inflammation to produce chemokines and cytokines macrophage inflammatory 

protein (MIP)-1α, MIP-1β, tumor necrosis factor (TNF)-α and IL-12 (32, 33). In addition, LMM 

HA and has been shown to induce nitric oxide synthase through a nuclear factor- κB (NF-κB) 

dependent mechanism, (34) suggesting LMM HA may be an important regulator of 

inflammatory cell activation at sites of chronic inflammation. Apart from macrophages, LMM 
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HA has been shown to stimulate gene expression in eosinophils, endothelial cells, and some 

epithelial cells (32). 

HA binding proteins play an important role in cellular signal transduction and two of the 

most widely studied receptors of HA are CD44 and RHAMM (Receptor for Hyaluronan - 

mediated motility) (35, 36). Of these two receptors, CD44 is a structurally variable and 

multifunctional glycoprotein of the cell surface which is the most widely studied receptor for 

HA. To date, CD44 is the best characterized transmembrane hyaluronan receptor and is present 

on most cell types (37, 38). Recent studies have shown, CD44-expression on eosinophils and its 

up-regulation by IL-5 or GM-CSF (39). In addition, it has been reported that there is an increase 

in the expression of CD44 on eosinophils from late-phase bronchoalveolar lavage fluid (BALF) 

of patients with asthma (40). Additionally, CD44 deficient mice develop and exhibit minor 

abnormalities in hematopoiesis and lymphocyte circulation (41, 42). Although, it is known that 

CD44 undergoes dynamic regulation on eosinophils and macrophages very little is known about 

CD44 expression on B lymphocytes and its role in B lymphocyte interaction with hyaluronic 

acid, cell recruitment, and activation. However, there is growing evidence to suggest that 

interaction between HA and CD44 may play an important role in the regulation of functions of 

lymphoid and myeloid cells (43). 

The aim of this study was to determine the extent to which hyaluronic acid fragments 

generated at sites of inflammation/tissue injury impact B lymphocyte recruitment and function. 

The purpose of this study was (a) To identify whether LMM HA and HMM HA play a role in the 

recruitment of B lymphocytes to the lungs; (b) to identify the role of the CD44 receptor in the 

migration of B lymphocytes; (c) and to determine the role of LMM HA and HMM HA in the 

activation of B lymphocytes. We found that LMM HA had a pronounced effect on B lymphocyte 



88 
 

recruitment, and activation. We also report that the hyaluronan binding protein CD44 is 

responsible for B lymphocyte migration in response to LMM HA. In addition, we have found 

that LMM HA impacts production of pro-fibrotic/pro-remodeling cytokines TGF-β1 and IL-10 

from B cells. These observations suggest a previously unforeseen role of B lymphocytes and 

LMM HA, and thus novel pathways by which B lymphocytes may contribute to the regulation of 

chronic airway inflammation and airway remodeling in asthma. 
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Materials and Methods 

Experimental animals. C57BL/6 male and female mice (5-9 weeks of age) were obtained 

from Jackson Laboratory (Bar Harbor, ME, USA). Animals were housed on Alpha-dri
TM

 paper 

bedding (Shepherd Speciality Papers, Watertown, TN, USA) in micro filter-topped cages 

(Ancare, Bellmore, NY, USA) in a specific pathogen-free facility with ad libitum access to food 

and water. The study described was performed in accordance with the Office of Laboratory 

Animal Welfare guidelines and was approved by the North Dakota State University Institutional 

Animal Care and Use Committee. 

Antigen preparation and A. fumigatus culture. Soluble A. fumigatus antigen extract was 

purchased from Greer Laboratories (Lenoir, NC, USA) and fungal culture stock (strain NIH 

5233) was purchased from American Type Culture Collection (Manassas, VA, USA). The A. 

fumigatus culture was reconstituted in 5 ml PBS, and 60-μl aliquots were stored at 4°C until use. 

All experiments that utilized A. fumigatus were conducted with prior approval of the Institutional 

Biological Safety Committee of North Dakota State University.  

Allergen sensitization and challenge by nose only inhalational model. Animals were 

sensitized as per Hogaboam’s published protocol (44), with the exception that alum was used as 

the adjuvant. Mice were sensitized globally with 10 μg of A. fumigatus antigen (Greer 

Laboratories) in 0.1 ml normal saline (NS) mixed with 0.1 ml of Imject Alum ( Pierce, Rockford, 

IL, USA) which was injected subcutaneously (0.1 ml) and intraperitoneally (0.1 ml). After two 

weeks, mice were given a series of three, weekly 20-μg doses of A. fumigatus antigen in 20 μl of 

NS. Animals were challenged as previously described with a 10-min nose-only aerosol exposure 

to live A. fumigatus conidia (45). Each anesthetized mouse was placed supine with its nose in an 

inoculation port inhaling the live fungal conidia for 10 min. Two weeks after the first allergen 



90 
 

challenge, mice were subjected to a second 10-min aerosol fungal challenge. Naïve animals from 

both the groups were neither sensitized nor challenged. After the second allergen exposure, the 

mice were separated into groups of 15-18 for analysis at days 5 and 28 after the second aerosol 

challenge. Day 5 after challenge had previously been determined to be the peak of B cell 

recruitment into the allergic lungs, and this time point was chosen to assess leukocyte 

inflammation and hyaluronic acid levels. The day-28 time point was chosen to represent chronic 

stages of asthma. 

Sample collection. Approximately 500 μl of blood was removed from each mouse via 

ocular bleed and centrifuged at 13,000 Xg for 10 min to yield serum. Serum was stored at -20°C 

until use. Bronchoalveolar lavage (BAL) was performed on five mice/group with 1.0 ml sterile 

normal saline (NS). The BAL contents were centrifuged at 2000 Xg for 5 min to separate cells 

from fluid. The BAL fluid was stored at -20°C until use, and cells were used immediately for 

morphometric analysis. Left lungs were harvested and fixed in 10% neutral buffered formalin for 

histological analysis. 

Quantification of hyaluronic acid in serum and BAL. The total hyaluronic acid levels in 

undiluted serum and BAL were quantified via specific competitive ELISA according to the 

manufacturer’s guidelines (Echelon Biosciences, Salt Lake City, Utah, USA). The detection limit 

of the kit was 50 ng/ml. 

Tissue harvest and staining. Left lungs were harvested following a bronchoalveolar 

lavage with 1 ml of saline. Lungs were inflated and fixed in 10% neutral buffered formalin and 

paraffin-embedded. Hematoxylin and Eosin (Richard-Allan Scientific, Kalamazoo, MI, USA) 

staining was performed on 5-m sections across the coronal planes of the lungs to determine 
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inflammation. Immunostaining for HA was performed as previously published (46). Briefly, 

sections were incubated overnight at 4
o
C in 3 g/ml of HA-binding protein (Seikagaku 

Corporation, Japan) diluted in phosphate buffered saline with 1% bovine serum albumin. 

Washed sections were then incubated for one hour in avidin conjugated horseradish peroxidase 

(Vector Labs, Irvine, CA, USA) and developed in 3,3’-diaminobenzidine tetrahydrochloride 

(Sigma, St. Louis, MO, USA) for 10 min and counterstained in hematoxylin. Controls that were 

not incubated in HA-binding protein did not yield brown precipitate. The same locations within 

the lung and staining from serial sections were photographed.  

Characterization and purification of B lymphocytes. Mice were first anesthetized using 

sodium pentobarbital (Butler, Columbus OH; 0.1 mg/0.01 kg of mouse body weight), and 

spleens and lungs were removed aseptically. To prepare the single cell suspension lungs and 

spleen were pooled together. Lungs from six different animals and spleens from three different 

animals were pooled together to prepare the single cell suspension. Minced lungs from naïve 

animals and animals at days 5 and 28 post second aerosol challenge were subjected to 

collagenase IV (Sigma-Aldrich, St. Louis, MO, USA) digestion in complete medium (DMEM 

containing penicillin/streptomycin/fungizone [PSF] and 10% fetal bovine serum [FBS]) at 37°C 

for 1 hr with mild agitation. The cells were then dispersed through a 40-μm cell strainer (BD 

Biosciences, San Jose, CA, USA) using a 10-ml syringe. The cells were then washed with 

sterile-PBS twice before they were treated with ammonium chloride cell lysis buffer to remove 

the red blood cells. Syringe perfusion with DMEM and a sterile 22-gauge needle was used to 

prepare a single cell suspension of spleen. These spleen cells were first washed with sterile PBS 

and then treated with ammonium chloride lysis buffer to lyse red blood cells. Before antibody 

staining, the lung and spleen cells were first counted using a hemocytometer and re-suspended in 



92 
 

PBS with 1% BSA (Sigma Aldrich, St. Louis, MO, USA) to get a final cell concentration of 1 x 

10
7
 cells/ml. Fc receptors were blocked with 1 μg anti-mouse CD16/CD32 per 10

6
 cells 

(eBiosciences, San Diego, CA, USA) for 10 min on ice. Before the spleen and lung cells were 

sorted for B lymphocytes using magnetic activated cell sorting (MACS), we aliquoted 10 million 

cells from each tube for the extracellular flow cytometry analysis. The following Abs were used 

for phenotypic characterization of B lymphocytes using flow cytometry: FITC-anti-CD19, PE-

anti-CD44, PE-Anti-CD49d (All Abs were purchased from eBioscience, San Diego, CA, USA) 

and PE-Cy
TM 

7 Anti-CD11a (BD Biosciences, San Jose, CA, USA). The samples were pre-

incubated with combinations of directly labeled antibodies (1 μg/million cells) for 30 min in dark 

at 4°C and then washed with PBS 1% BSA twice before the samples were analyzed using BD 

FACSCalibur (BD Biosciences, San Jose, USA). A minimum of 50,000 events were acquired 

and the data were analyzed using FlowJo software (Tree Star, Ashland, OR, USA). 

For the purification of B lymphocytes, spleen and lung cells were first incubated with 

0.0625 μg of FITC-anti-CD19 antibody per million cells for 30 minutes in dark at 4°C 

(eBioscience, San Diego, CA, USA) (47).  The cells were then washed with sterile-PBS to 

remove unbound antibodies before sorting using magnetic beads. The cells were then incubated 

with 10 μl of anti-FITC Microbeads  per 10
7
 cells (Miltenyi Biotec, Auburn, CA, USA), and 

CD19-positive B lymphocytes were positively selected using the quadro MACS system with LS 

columns (Miltenyi Biotec, Auburn, CA, USA) according to the manufacturer instructions. After 

sorting, the B lymphocytes were re-suspended in complete medium (DMEM with 10% FBS, 

PSF, Glutamine, 2-ME) to get a final concentration of 2 x 10
7 
cells/ml. The purity of sorted B 

cells was between 90-95% when analyzed by flow cytometry, and these cells were further used 

for the chemotaxis assay and cell culture experiments. All the samples were analyzed with a BD 
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FACSCalibur (BD Biosciences, San Jose, USA) and data analyzed using FlowJo software as 

mentioned above. 

Chemotactic activity of low and high molecular mass hyaluronic acid and ex vivo culture 

of B lymphocytes. To assess chemotactic activity of LMM HA (40 kDa) and HMM HA (500 

kDa) (Lifecore Biomedical LLC, Chaska, MN, USA), isolated B lymphocytes from spleen and 

lungs were subjected to an in vitro chemotaxis assay in a 96-well modified Boyden chamber 

appropriate for the evaluation of lymphocyte chemotaxis (ECM515, Millipore Corporation, 

Billerica, MA, CA, USA). Sorted B lymphocytes were re-suspended at 2 x 10
7
 cells/ml in 

complete medium (Dulbecco’s modified Eagle’s medium with 10% FBS, PSF, Glutamine, 2-

ME) and each well was seeded with one million B cells. Blocking of CD44 was done by pre-

incubating B lymphocytes with 50 μg/ml anti-CD44 neutralizing Ab (48, 49) (clone IM7; BD 

Biosciences Pharmingen, San Diego, CA, USA) for 2 h. In vitro assays were then performed in a 

96-well polycarbonate filter plate appropriate for leukocyte/lymphocyte chemotaxis (ECM515, 

Millipore Corporation, Billerica, MA, CA, USA). Purified B cells (1 x 10
6
 cells) were added to 

each well in the top filter plate portion of the assembly, and 150 μl of 400 μg/ml solution of 

LMM HA and HMM HA  (50, 51) was added to the respective bottom feeder wells. The whole 

setup was kept in a 37
0
C incubator (5% CO2, constant humidity) for 16 h. The migrated cells 

were then detached, lysed, and labeled with a fluorescent dye that exhibited strong fluorescence 

when bound to cellular nucleic acids. Sample fluorescence was measured with a Synergy HT 

fluorescence microplate reader (BioTek, Winooski, VT, USA) using 480/520nm filter set. 

For B lymphocyte ex vivo culture experiments, sorted B lymphocytes (1 million cells/ 50 

μl) were seeded in a 96 well cell culture cluster (Corning, New York, USA). Blocking of CD44 

was done as mentioned above with 50 μg/ml anti-CD44 (48). LMM HA and HMM HA (0.5 
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mg/ml) (43) in complete medium were then added to the respective wells containing B 

lymphocytes so that the total volume in each well was 200 μl. The whole setup was kept in a 

37°C incubator for 48 hrs. IL-10 and TGF-β1 were then quantified in the supernatant via specific 

ELISA’s according to the manufacturer’s guidelines (eBiosciences, San Diego, CA, USA). 

Quantification of TGF-β1, IL-10 in serum, BAL and cell culture supernatants. The total 

TGF-β1 and IL-10 levels in serum, BAL, and cell culture supernatants were quantified via 

specific ELISA’s according to manufacturer’s guidelines (eBiosciences, San Diego, CA, USA). 

The serum samples were diluted 1:7 for the TGF-β1 ELISA, while undiluted serum samples 

were used for IL-10 ELISA. Cell culture supernatants and BAL fluid were diluted 1:1.4 for TGF-

β1 ELISA, while undiluted samples were used for IL-10 ELISA. The detection limits of the kit 

were 7.8 ng/ml for TGF-β1 and 31.2 ng/ml for IL-10. 

Statistical analysis. Allergic C57BL/6 wild type animals were compared to their 

respective naïve controls at each time point and B cells cultured in the presence of LMM HA 

were compared to control B cells (media alone). Results are expressed as mean ± SEM. Data 

were evaluated using an unpaired, student’s two tailed t test with Welch’s correction to 

determine statistical significance with GraphPad Prism software (San Diego, CA, USA). *p < 

0.05  indicates statistical difference when allergic animals were compared to their respective 

naïve controls and when B cells cultured in the presence of LMM HA were compared to control 

B cells (media alone). # represents the statistical difference when B cells cultured in the presence 

of blocking antibody (CD44) and LMM HA were compared to B cells that were cultured in the 

presence of LMM HA alone. 
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Results 

Inhalational fungal challenge with A. fumigatus results in airway hyperresponsiveness, 

increased IgE production, and inflammation in allergen challenged mice. In the present study, 

airway physiology of C57BL/6 mice was monitored before allergen challenge in naïve animals 

and at days 5 and 28 post second conidia inhalation (Fig 16A). Airway response measurements 

from all study animals were used to determine the baseline mean for airway hyperresponsiveness 

prior to methacholine challenge (Fig 16A, dotted line, 1.89 ± 0.09 cm H20/ml/s). At day 5 after 

2 conidia challenges, airway hyperresponsiveness was significantly increased in C57BL/6 mice 

as compared to naive controls (Fig 16A). By day 28 after the second conidia challenge, AHR 

values returned to the baseline level. In addition, IgE which is the hallmark of allergic asthma, 

was elevated in BAL and serum at days 5 and 28 post second conidia inhalation (Fig 16B & 

16C). 

We also examined the temporal and spatial recruitment of leukocytes in tissue sections of 

naïve and allergic animals at days 5 and 28 after allergen challenge. Morphometric identification 

of monocytes/macrophages, neutrophils, eosinophils, and lymphocytes was performed to 

estimate the relative makeup of the cellular inflammation and to monitor leukocyte egress into 

the airway lumen (Fig 16D-G). Lymphocytes, and particularly eosinophils, were prominent cell 

types identified in the BAL 5 days after the second conidia challenge with very few neutrophils ( 

Fig 16E, 16F & 16G) emphasizing that multiple inhalations of conidia polarize the immune 

response in favor of allergy and that lymphocytes form a major percentage of cells along with 

eosinophils in the allergic lung. By day 28 post challenge, macrophages were only the major 

cellular component of the BAL compartment with very few lymphocytes (Fig 16D-G). 
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Figure 16. Effect of A. fumigatus conidia inhalation on AHR, IgE production, and 

inflammation in allergic C57BL/6 mice. (A) Peak AHR after 420 μg/kg methacholine 

provocation (baseline 1.89 ± 0.09 cm H2O/ml/s indicated by the line). (B & C) IgE Ab levels 

in the BAL and serum of naïve (N) and allergic animals after conidia inhalation. Airway 

inflammation marked by the presence of macrophages (D), neutrophils (E), eosinophils (F), 

and lymphocytes (G) in naïve and allergic mice. Representative photomicrographs of H&E 

stained lung sections of naïve (H) and allergen-challenged (I & J) mice. Data analyzed using 

an unpaired, Student’s two tailed t test with Welch’s correction. All values expressed as the 

mean ± S.E.M. n = 3-5 mice/group, *p < 0.05 as compared to naïve. Scale bars=100 μm 
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Similarly, perivascular and peribronchial tissue inflammation was increased in allergic animals at 

day 5 post second conidia challenge (Fig 16H-J).  

HA levels were elevated in the BAL, serum, and lungs of allergen challenged mice. HA in 

asthma and COPD has a lower molecular mass because under diseased conditions, HMM HA is 

generally broken down into LMM HA (28, 29, 52) and often lung injuries are associated with 

increased concentrations of hyaluronic acid (HA) in the BALF (53, 54). In the present study, 

inhalation of A. fumigatus conidia resulted in an increase in the concentration of HA in both 

BAL and serum of C57BL/6 mice at day 5 post the second conidia challenge (Fig 17A & 17B). 

By day 28 after the second aerosol challenge, the HA levels go back to naïve levels in both 

serum and BALF (Fig 17A & 17B) which also coincides with the resolution of inflammation in 

our murine fungal allergy model system (Fig 17D-J). 

We also examined HA deposition in perivascular and peribronchial spaces in naïve and 

allergic animals. Naïve lungs had minimal evidence of HA around airways and blood vessels 

(Fig 17C & 17F). HA deposition increased after second conidia challenge and localized to the 

perivascular and peribronchial areas where inflammatory cells are present (Fig 17D & 17G). 

After conidia inhalation, intense HA deposition was observed around the distal airways and 

blood vessels of conidia-challenged allergic lungs (Fig 17D). While HA localization was 

reduced by day 28, intense staining was still clearly evident surrounding the blood vessels and in 

the peribronchial areas (Fig 2D & 2G).  There was a significant correlation between the severity 

of asthma as measured by airway hyperresponsiveness, IgE Ab levels, and eosinophilia (Fig 16) 

and the HA levels in BAL, serum, and lung tissue sections (Fig 17A-H) indicating significant 

pulmonary damage in response to fungal challenge.
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Figure 17. Effect of inhalation of A. fumigatus conidia on the levels of hyaluronic acid 

(HA) in bronchoalveolar lavage (BAL) fluid, serum, and lung tissue sections. ELISA’s 

were carried out to measure HA levels in C57BL/6 mice after fungal challenge. (A) HA 

levels in BAL fluid of naïve and allergic animals. (B) HA levels in serum of naïve and 

allergic animals. (C-H) Immunostaining of HA in lung sections of naïve and allergic mice. 

Data analyzed using an unpaired, student’s two tailed t test with Welch’s correction. All 

values expressed as the mean ±S.E.M. n = 3-5 mice/group, * p < 0.05; was considered 

statistically significant when compared to the respective naïve controls. Scale bars =100 

μm (C,D,E) and 50μm (F,G,H) 
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CD19
+
 B cell numbers are increased in the allergic lung and spleen. We next examined 

whether B lymphocytes were a significant component of the inflammation associated with 

allergic disease when HA levels are elevated in the BAL, serum, and lungs of allergic animals. 

To investigate this, mice were sensitized and challenged with A. fumigatus and at days 5 and 28 

following the second conidia challenge the numbers of CD19
+
 B cells, in the lung and spleen 

were determined by flow cytometry and were compared to the respective naïve controls. The 

percentage of lung CD19
+
 B cells (in the lymph+ gate) increased at day 5 after second conidia 

challenge. (Fig 18E & 18G) at day 5 post second conidia challenge. A similar phenomenon was 

observed in the spleen of allergic animals. The percentage of CD19
+ 

B cells (in the lymph+ gate) 

increased in the spleen of allergic animals from (34.02% ± 2.48) to (46.05% ± 1.93) at day 5 

after second conidia challenge (Fig 18L & 18N). By day 28, the number of B lymphocytes 

decreased in the lung (Fig 18F & 18G) suggesting a resolution of inflammation which also 

coincides with a decrease in the HA levels in BAL of allergic animals. However, the number of 

B cells in the spleen did not decrease by day 28 (Fig 18M & 18N). This data demonstrates that B 

cells are a major component of the pulmonary and splenic environment associated with allergic 

asthma when the HA levels are higher in the BAL and serum of allergic animals.   

CD19
+
CD44

+
 B cells are elevated in lung and spleen of allergen challenged mice. We 

characterized the role of CD44 in the initiation, progression, and cellular inflammation in a 

murine model of allergic asthma at different time points after two fungal challenges as CD44 is 

the most widely studied receptor for HA. To determine changes in the CD44 numbers in the lung 

and spleen lymphocyte population after A. fumigatus conidia challenge, we first isolated the lung 

and spleen cells from naïve and allergic mice and analyzed the B lymphocyte populations by a 

flow cytometer for CD44 expression. 
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Figure 18. Effect of inhalation of A. fumigatus conidia on inflammatory CD19

+
 B cells in 

the allergic lung and spleen. The lung and spleen cells from naïve and allergic animals were 

analyzed by a flow cytometer to determine the percentage of total CD19
+
 B cells. (A-C) The 

forward scatter (FSC) and side scatter (SSC) plot of the cells isolated from the lungs of 

C57BL/6 mice. (D-F) Change in the percentage of CD19
+
 B cell population of the lung 

(gated on population lymph+ in the FSC-SSC plot) in naïve and allergic mice. (G) Represents 

the percentage of total CD19
+
 B cells present in the lung of naïve and allergic mice. (H-J) 

The FSC and SSC plot of the cells isolated from the spleens of C57BL/6 mice. (K-M) 

Change in the percentage of CD19
+
 B cell population of the spleen after conidia challenge. 

(N) Represents the percentage of total CD19
+
 B cells present in the spleen of naïve and 

allergic mice. Data analyzed using an unpaired, student’s two tailed t test with Welch’s 

correction. All values expressed as the mean ±S.E.M. n = 4-5 mice/group. * p < 0.05; was 

considered statistically significant when compared to the respective naïve controls. No 

statistics are given for the lung CD19
+
 B cell population as the samples were pooled together 

for FACS analysis. 
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We found that CD44 expressing CD19
+
 lung B cells were increased at day 5 after two conidia 

challenges (Fig 19E & 19G) when they were compared to their respective naïve controls. 

However, by day 28 post second conidia challenge CD44 expressing CD19
+
 decreased when 

compared to naïve controls and this timepoint coincides with the resolution of inflammation and 

low HA levels in BAL (Fig 19F & 19G). CD44 expressing CD19
+
 B cells were also increased in 

the spleen of allergic animals (Fig 19L & 19N). This data suggests that B cells present in allergic 

lungs and spleen have the receptor for HA and they may interact with HA via CD44. 

 CD19
+
CD49d

+
 and CD19

+
CD11a

+
 numbers are increased in the lung and spleen of A. 

fumigatus challenged mice. The up-regulation/expression of activation markers CD49d and 

CD11a is considered one of the mechanisms by which B lymphocytes mediate immune 

responses. These molecules play an important role in accumulating infiltrating cells at allergic, 

inflammatory sites as they can interact with ligands on endothelial cells and impact cell 

migration. In our study, we determined whether B cells in the lung and spleen up-regulate or 

express the integrin molecules CD49d and CD11a as these molecules are required for interaction 

with its ligands on the endothelial surface and extravasation to the site of infection/tissue injury. 

To study this, B cell populations of naïve and allergic animals were analyzed using flow 

cytometry. After allergen challenge, at day 5 post second conidia challenge, the number of 

CD49d and CD11a expressing B cells was increased in the lung (Fig 20E, 20H, 20J & 20K). 

Similarly, there was an increase in the number of CD19
+
CD49d

+
 and CD19

+
CD11a

+
 B cells in 

the spleen (Fig 20P, 20S, 20U & 20V). These results suggests that after allergen challenge the 

number of B cells expressing the activation markers CD49d and CD11a are increased in the 

allergic lung suggesting that these integrin molecules may be playing a role in B cell migration to 

the site of tissue injury. 
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CD44 is necessary for low molecular mass HA-mediated chemotaxis of B lymphocytes. 

To investigate the role of HA and CD44 in HA-mediated motility of B lymphocytes, spleen B 

lymphocytes were isolated and a modified Boyden chamber assay was performed using LMM  

Figure 19.  Effect of A. fumigatus conidia inhalation on inflammatory CD19
+
CD44

+
 B 

cells in the allergic lung and spleen. The lung and spleen of naïve and allergic animals were 

analyzed by flow cytometer for percentage of total CD19
+
CD44

+
 B cells. (A-C) The FSC 

and SSC plot of the cells isolated from the lungs of C57BL/6 mice. (D-F) Change in the 

percentage of CD19
+
CD44

+
 B cell population of the lung (gated on population lymph+ in the 

FSC-SSC plot) (G) Change in the percentage of total CD19
+
CD44

+
 B cell population of the 

lung. (H-J) The FSC and SSC plot of the cells isolated from the spleen of C57BL/6 mice. 

(K-M) Change in the percentage of CD19
+
CD44

+
 B cell population of the spleen (gated on 

population lymph+ in the FSC-SSC plot) (N) Change in the percentage of total CD19
+
CD44

+
 

B cell population of the spleen after conidia challenge. Data analyzed using an unpaired, 

student’s two tailed t test with Welch’s correction. All values expressed as the mean ±S.E.M. 

n = 4-5 mice/group. * p < 0.05; was considered statistically significant when compared to the 

respective naïve controls. No statistics are given for the lung CD19
+
CD44

+
 B cell population 

as the samples were pooled together for FACS analysis. 
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Figure 20.  Effect of A. fumigatus conidia inhalation on trafficking of inflammatory 

CD19
+
 B cells in the allergic lung and spleen. Lung and spleen derived CD19

+
 B cells were 

evaluated for the integrin molecules CD49d and CD11a which play an important role in 

leukocyte transmigration. (A-C) The FSC and SSC plot of the cells isolated from the lungs of 

C57BL/6 mice. (D-I) Change in the percentage of CD19
+
CD49d

+
 and CD19

+
CD11a

+
 cells of 

the lung (gated on population lymph+ in the FSC-SSC plot). (J&H) Percentage of total 

CD19
+
CD49

+
 and CD19

+
CD11a

+
 B cells in the lung of naïve and allergic mice. (L-N) The 

FSC and side SSC plot of the cells isolated from the spleen of C57BL/6 mice. (O-T) Change 

in the percentage of CD19
+
CD49d

+
 and CD19

+
CD11a

+
 cells of the spleen (gated on 

population lymph+ in the FSC-SSC plot). (U&V) Percentage of total CD19
+
CD49

+
 and 

CD19
+
CD11a

+
 B cells in the spleen of naïve and allergic mice. Data analyzed using an 

unpaired, student’s two tailed t test with Welch’s correction. All values expressed as the mean 

±S.E.M. n = 4-5 mice/group. * p < 0.05; was considered statistically significant when 

compared to the respective naïve controls. No statistics are given for the lung CD19
+
 CD49d

+
 

and CD19
+
CD11a

+
 cell populations as the samples were pooled together for FACS analysis. 
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HA (40kDa) and HMM HA (500kDa) as the chemoattractant. LMM HA significantly increased 

the chemotactic activity of isolated B lymphocytes from naïve and allergic animals at day 5 and 

day 28 post second conidia challenge (Fig 21A, 21B & 21C). On the contrary, high molecular 

mass HA had no effect on the chemotactic activity of B lymphocytes (Fig 21A, 21B & 21C). 

 
Figure 21. Ex vivo CD44-dependent CD19

+
 B lymphocyte migration. Using a 

modified Boyden chamber chemotactic activity of isolated spleen CD19
+
 B lymphocytes 

towards LMM HA and HMM HA was measured. (A) Chemotactic activity of CD19
+
 B 

lymphocytes isolated from naïve animal towards LMM HA and HMM HA. (B) 

Chemotactic activity of CD19
+
 B lymphocytes isolated from an allergic animal at day 5 

post second conidia challenge towards LMM HA and HMM HA. (C) Chemotactic 

activity of CD19
+
 B cells isolated from a day 28 mice post second conidia challenge 

towards LMM HA and HMM HA. Alternatively, HA’s action was blocked by CD44-

neutralizing Ab. Data analyzed using an unpaired, student’s two tailed t test with Welch’s 

correction. All values expressed as the mean ±S.E.M. n = 3, * p < 0.05; was considered 

statistically significant when B cells + LMM HA were compared to B cells only controls. 

# <0.05 was considered statistically significant when B cells + LMM HA + anti-CD44 

were compared to B cells + LMM HA. 
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CD44 is considered the best characterized receptor for HA which plays an important role in cell-

cell interaction, cell adhesion, and migration. To determine whether CD44 has an impact on B 

lymphocyte chemotaxis in response to LMM HA we blocked the CD44 receptor using an anti-

CD44 neutralizing Ab. Blocking of CD44 decreased the chemotaxis of spleen B lymphocytes 

isolated from naïve mice towards LMM HA (Fig 21A). Furthermore, chemotaxis of B 

lymphocytes isolated from allergic mice was decreased when CD44 receptor was blocked (Fig 

21B & 21C). These results demonstrate that that LMM HA provides a signal for B lymphocyte 

chemotaxis that may be acting via CD44. 

LMM HA mediated IL-10 and TGF-β1 production by B lymphocytes. B cells have been 

shown to produce IL-10 which promotes a TH2 /pro-remodeling phenotype (55). In our murine 

model system, IL-10 was elevated at day 5 post second conidia challenge in the BAL (Fig 22A) 

of allergic animals and this time point coincides with increased CD19
+
B lymphocyte numbers in 

the lung and the spleen (Fig 18G & 18N) and increased HA concentrations in BAL and serum 

(Fig 17A & 17B). To determine whether HA impacted IL-10 cytokine production by B cells we 

isolated B cells and cultured them with LMM HA and HMM HA and IL-10 production was 

examined using ELISA. As shown in Figure 22C, LMM HA stimulated naïve spleen B cells to 

produce IL-10 after 48 hours of HA incubation. However, blocking CD44 returns IL-10 

production to that of cells alone (statistically) (Fig 22C). This data indicates that LMM HA and 

B lymphocyte interaction may be involved in IL-10 production by B lymphocytes at the site of 

chronic inflammation which is independent of CD44 receptor. Another cytokine, which 

promotes a Th2 and pro-fibrotic phenotype like IL-10, is the pleiotropic growth regulatory factor 

TGF-β1 (56). Like IL-10, the levels of TGF-β1 were elevated at day 5 post second conidia 

challenge, when HA levels are elevated in the BAL and lung tissue sections of allergic animals. 
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To determine whether the HA- B cell interaction stimulates TGF-β1 production we cultured B 

cells isolated from naïve animals with LMM HA and HMM HA and proteins synthesis was 

measured in the culture supernatant using ELISA. Like IL-10, LMM HA stimulated spleen B 

cells to produce TGF-β1 (Fig 22D). Even B cells isolated from naïve lungs produced TGF-β1 

when cultured with LMM-HA (Data not shown). However, blocking CD44 returns TGF-β1 

production to that of cells alone (statistically) (Fig 22D). 

  

 
Figure  22. Effect of A. fumigatus conidia challenge and hyaluronic acid fragments on IL-

10 and TGF-β1 production. (A) Change in IL-10 levels in the BALF of naïve and allergic 

animals (B) Change in TGF-β1 levels in the BALF of naïve and allergic animals. Spleen B 

lymphocytes were harvested from wild-type C57BL/6 mice. Equal concentrations of isolated B 

lymphocytes were treated with LMM HA and HMM HA. Supernatant was harvested and 

analyzed for levels of IL-10 and TGF-β1. (C) Represents the IL-10 production by B 

lymphocytes in response to LMM HA and HMM HA. (D) Represents the TGF-β1 production 

by B lymphocytes in response to LMM HA and HMM HA. Alternatively, HA’s action was 

blocked by CD44-neutralizing Ab. Data analyzed using an unpaired, student’s two tailed t test 

with Welch’s correction. All values expressed as the mean ±S.E.M. n = 2-5, * p < 0.05; was 

considered statistically significant when compared to the respective naïve controls and when B 

cells + LMM HA were compared to B cells only controls.  
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Discussion 

 In the current study, we show that LMM HA, but not HMM HA, has a pronounced effect 

on B lymphocyte recruitment in a murine model of allergic asthma. In addition, we show that 

LMM HA can stimulate B lymphocytes to produce the pro-fibrotic/pro-remodeling cytokines IL-

10 and TGF-β1. These results are in agreement with previous data in which LMM HA but not 

HMM HA has been shown to activate the murine alveolar macrophage cell line MH-S or 

macrophages recruited to the sites of tissue injury to produce a panel of cytokines (24, 32, 33), 

and eosinophils to produce TGF-β1 (24). Although, the mechanisms responsible for these 

different functions of HA based on the different molecular sizes are still unclear. A possible 

explanation is that that LMM HA may bind firmly to induce receptor crosslinking than does the 

HMM HA, although, this possibility needs further investigation (24). 

HA has been shown to exert direct effects on cells and on the extracellular matrix 

components suggesting a role of HA in wound repair. The pro-inflammatory cytokines, TNF-α 

and IL-1β, have been shown to induce cell surface expression of HA (57). Furthermore, HA has 

been shown to stimulate the migration and proliferation of a number of cell types including 

smooth muscle cells (58), fibroblasts (59), immune cells (60), and endothelial cells (61). HA also 

activates monocytes to macrophages (62) and increases cytokine gene expression by 

macrophages (32) and fibroblasts (63). Increased accumulation of HA has been associated with 

inflammation associated with acute injury to several organ systems including the lungs. Recent 

studies have suggested that  LMM HA and HMM HA have opposite functions and that LMM 

HA promotes inflammation and that interaction of HA and its receptors preceded and promotes 

the inflammatory response to injury (50). Even in our murine fungal model of allergic asthma we 

report similar findings of increased HA concentrations in serum and BALF of allergic animals 
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indicating a diseased state. In addition, we show that HA fragments not only impact the functions 

of macrophages, eosinophils, and fibroblasts it can also affect the function of B lymphocytes 

suggesting that LMM HA can impact the functions of different cell types in the context of 

mucosal immunity. 

 CD44, one of the well characterized HA receptors which has different functions on 

different cell populations, has been shown to play a vital role in lymphocyte homing, 

lymphopoiesis, T cell activation, and metastasis (64-70). Studies using CD44-deficient mice 

challenged with non-infectious lung injury have shown sustained infiltration of inflammatory 

cells within the alveolar interstitium, increased mortality, and LMM HA accumulation at 14 

days, as well as impaired clearance of neutrophils in association with decreased TGF-β1 

activation (50) suggesting a role of CD44 in cytokine production. However, very less is known 

about the functional regulation or expression of CD44 on B cells (43, 71, 72). Previous studies 

have shown that normal B cells bind to HA to a lower degree than activated B cells, particularly 

those stimulated by IL-5 (64, 73), and that interferon-γ (IFN-γ) inhibits CD44-Hyaluronan 

interactions in normal human B lymphocytes (74). In fungal sensitization and challenge, our 

results show a similar capacity for a CD44-HA interaction by B cells after treatment with 

Aspergillus fumigatus conidia. A possible explanation can be that elevated IL-5 and IL-4 levels 

in allergic animals which inhibit the production of IFN-γ may promote B lymphocyte – HA 

interaction via CD44. However, in our model, LMM HA stimulated naïve B cells to undergo 

chemotaxis indicating that it may directly activate B cells by binding to CD44 (Fig 23). In our 

fungal model system, production of IL-10 and TGF-β1 cytokines by B lymphocytes was not 

dependent on CD44 suggesting that other receptors may be involved in regulating this process 

(Fig 23). It is probable that toll like-receptors 2 and 4 (TLR-2 and TLR-4) present on B cells (75) 
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may provide the signals for cytokine production as TLR-2 and TLR-4 have been shown to 

interact with fragmented hyaluronic acid which are increased in the setting of severe trauma and 

acute lung injury (76), but this remains to be determined. 

Studies using repeated aerosol exposure to OVA showed reduced AHR, lung 

inflammation, and mucus production in muMT mice (77, 78). Alternatively, it has been 

demonstrated that B lymphocytes mainly contribute in allergic asthma via IgE (79, 80). While 

allergen-specific antibodies are recognized as contributing factors in the immunopathology of an 

aberrant response against an innocuous allergen such as pollen or animal dander (81), they have 

also been suggested to be part of the successful clearance of fungus in the airways (82). 

However, whether B lymphocytes exacerbate pulmonary inflammation or contribute to lung 

fibrosis remains unknown. In our murine model of allergic asthma, A. fumigatus challenge 

resulted in an increase in the concentration of HA in the BAL and serum when B cell numbers 

are elevated in lung and spleen. LMM HA appeared to play a role in the migration of B 

lymphocytes to the site of tissue injury which was dependent on the CD44 receptor and the 

activation markers CD49d and CD11b, indicating a possible activation mechanism in B cells 

through ECM-cell modes at sites of chronic inflammation, including asthma, as it has been 

suggested for other cell leukocytes. In addition, the LMM HA stimulated B cells to produce the 

pro-fibrotic/pro-remodeling cytokines IL-10 and TGF-β1. These results suggest that: 1) CD44 on 

B cells can interact with LMM HA and mediate downstream signaling pathways. 2)  B cells may 

switch to a pro-fibrotic profile when they interact with LMM HA at the site of tissue injury. 

Collectively, these results support a novel mechanism of localized immune modulation mediated 

by B lymphocytes when they interact with LMM HA.  
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An important outcome of this study is the increased release of TGF-β1 and IL-10 by B 

lymphocytes, which is crucial in the maintenance of TH2 responses and crucial in the 

development of airway remodeling and fibrosis in allergic asthma in response to LMM HA. 

TGF-β1 has long been established to play a role in airway remodeling (83-85). It has been shown 

to be associated with epithelial changes, subepithelial fibrosis, airway smooth muscle 

remodeling, and mucus upregulation (85). While the role of IL-10 in Aspergillus induced asthma 

is controversial, it plays different roles at different stages of disease: an enhancing effect when 

 
Figure 23. Hypothetical model for LMM HA regulation of B lymphocyte recruitment and 

function in the allergic lung. (A) At sites of chronic inflammation in the lung LMM HA 

would promote the preferential recruitment of B cells in a CD44 dependent manner. These B 

cells in addition to CD44 express the activation markers (CD49d and CD11a) which would 

promote the extravasation of B cells to the site of tissue injury. (B) In the allergic lung these B 

cells further interact with LMM HA which stimulates the production of pro-fibrotic/pro-

remodeling cytokines IL-10 and TGF-β1. 
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conidia dominate and a suppressive effect during the late stages of the disease (86). Furthermore, 

increased IL-10 production has been associated with an increase in levels of total and specific 

IgE, IgG1, and IgA reflecting to a role of IL-10 in promoting a TH2 response to A. fumigatus 

antigens (87-90). 

In conclusion, we identified that LMM HA generated at sites of inflammation in the lung 

in response to fungal challenge may serve to recruit B lymphocytes to the lungs and that this 

migration is partly dependent on CD44 (Fig 23). In addition, we identified that LMM HA can 

function as an important signaling molecule for B lymphocytes and can impact the cytokine 

function of B lymphocytes by inducing the production of IL-10 and TGF-β1 which are critical to 

the maintenance of allergic inflammatory responses and the development of tissue fibrosis/ 

airway remodeling (Fig 23). Further characterization of the lineage and the impact of LMM HA 

on B lymphocyte antibody production and Ag presentation may yield important insights into the 

function of B lymphocytes and LMM HA in mediating allergic airway responses. 
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GENERAL DISCUSSION 

Of the estimated 3.5-5.1 million fungal species that are predicted from high throughput 

environmental screening (198), Aspergillus species are among the most well recognized and best 

studied fungal pathogens of humans and animals. Exposure to Aspergillus can result in a range of 

disease states from allergic rhinitis to invasive aspergillosis. The growth habit and physical 

characteristics of A. fumigatus make it an ideal aeroallergen and opportunistic pathogen of 

humans. Allergic fungal asthma is a chronic disease that is important from both a personal and 

public perspective. Sensitization and colonization by this fungal species often signals a disease 

course that is particularly difficult to treat and results in chronic architecture changes in the lung 

causing long-term morbidity (199, 200), reduced productivity and quality of life, as well as 

increased burden for medical treatment.  

In hosts with competent immune systems that encounter low-level airborne Aspergillus, 

the innate immune system bars fungal infection and, when it fails to fully arrest the fungus, 

adaptive responses function to eliminate fungal pathogens (201). While it is evident that cell-

mediated responses are critical to successful fungal clearance (202), the relative importance of 

Ab-mediated responses to fungal pathogens has been more difficult to establish (203, 204). 

Research has shown that B cells contribute to the phenotype of allergic asthma through the 

production of IgE Abs (205), although this seems to have little impact on the eosinophilia or 

AHR that accompanies allergic asthma (206, 207). Most of the research on B cells in asthma has 

dealt with Ab production, and little is known about the role of these cells in the allergic lung. 

B lymphocytes mediate humoral immunity and can perform three important functions. In 

addition to producing Ab, B cells present Ag to T cells to indirectly support the allergic 

phenotype. They can also produce cytokines to directly and indirectly exacerbate airway wall 
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remodeling (94) and impact the function of other cells in the local environment, suggesting that 

these cells can play an important role in the development and maintenance of allergic disease. 

During the early and late-phase asthmatic reaction, B cells in all stages of activation and 

differentiation are found in increased numbers in the blood of asthmatic patients (155). B cells 

are also present within the alveolar spaces and pulmonary parenchyma of asthmatics (143, 208).  

Secretory IgA has been shown to play a role in the innate mucosal response that protects 

the upper respiratory tract (144-146), and selective IgA deficiency in clinic patients is associated 

with an increased prevalence of atopy (147, 148). The IgG subtype, IgG1, which is a TH2-elicited 

antibody, is cytophillic to mast cells (149); and IgG2a, which is produced by TH1-activated B 

cells, plays a role in host protection against fungal growth (150). While, IgE Abs have been 

shown to induce mast cell degranulation (151). IgE has long been recognized as a perpetrator of 

asthma exacerbations, and anti-IgE therapies have been used successfully for treatment (152-

154). While allergen-specific Abs are recognized as contributing factors in the immunopathology 

of an aberrant response against an innocuous allergen such as pollen or animal dander (159), they 

have also been suggested to be part of the successful clearance of fungus from the airways (160, 

161). 

The results presented in this dissertation show for the first time that A. fumigatus 

sensitization and inhalation triggers the recruitment of CD19
+
CD23

+
 B2 lymphocytes to the 

allergic lung and that they secrete immunoglobulins, placing them in the appropriate context for 

participation in the development and maintenance of allergic responses (Fig 24). We 

demonstrate that IgA- and IgE-producing cells are localized around the large airways. The 

secretion of IgA is triggered after allergen challenge with inhaled fungal spores, which supports 
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its role as a mucosal defense molecule that is pumped across the columnar epithelium in an 

attempt to block fungal infection. 

 

 

 

 

 

 

 

 

 

 

 

 IgE levels corresponded with increased IgA in serum and BAL in these studies. While 

IgE+ cells were very rare in naïve lung samples, IgE-producing cells were localized around the 

large airways of allergic animals. IgE is a hallmark of TH2-mediated allergic sensitization in the 

adaptive immune response and has the ability to crosslink Ag to elicit granulocyte activation and 

degranulation. IgG2a, which is produced by TH1-associated B cells (150), was elevated 

throughout the studies indicating its importance in host protection against fungal growth.  

 
Figure 24. B2 cell recruitment in allergic animals. This rationale was formulated to explain 

the impact of B2 cell recruitment on Ab responses in the pulmonary compartment of allergic 

animals based on personal data and the pertinent literature. Schematic by Sumit Ghosh 
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This research on the determination of the recruitment of B2 cells in the lungs makes an 

important contribution to the literature. The spatial and temporal availability of B cells in the 

lung is the first step in elucidating their function in potentially interacting with T lymphocytes at 

the point of infection or affecting the cytokine milieu of the lungs, in addition to Ab production 

(204). The cellular interplay between cells in allergic asthma is sufficiently complex that it will 

require examining this syndrome with a number of strategies. One of these strategies would be to 

identifying the signals that differentiate which lymphocytes are recruited to various areas of the 

lungs in an intact mouse system. Other elements that will help to address the potential 

contributions of B cells to the overall phenotype of asthma will include an evaluation of MHC II 

and cytokine expression that may impact T cell clones’ activation in the tissues and activation of 

other immune cells or structural cells in the development of immunopathologies associated with 

fungal asthma. 

Knockout animals are a time-honored method of demonstrating the importance of a gene 

product or cell type in a disease process. We attempted this strategy using a µMT B cell KO 

system. It is important to note that a knockout system does not have all of the components of 

normal development. As such, the muMT system was employed to give a general idea of the 

requirement of B cells in the generation and maintenance of allergic fungal asthma, but there is 

always the variable of system artifact that is an inherent with a KO system to be considered. This 

was very evident when using the muMT “B cell KO” mouse. We discovered that, not only did 

the mouse have B-1 B cells, but these cells produced Abs in significant quantities.  
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Figure 25. Immunoregulation by B1 cells in the absence of B2 cells in µMT mice. The 

rationale was formulated to explain the differences between the C57BL/6 and µMT animals 

based on personal data and the pertinent literature. Schematic by Sumit Ghosh. 
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The canonical pathway of B cell development requires the surface expression of the µ Ig 

chain at an early pre-B cell stage (209) and mice lacking this µ chain, known as µMT mice, have 

been useful tools in understanding the complex biological processes associated with B cell/Ab  

deficiency in different diseases. Using µMT mice in our fungal allergy model system, we report 

for the first time the existence of only CD19
+
CD9

+
IgD

+
 B-1 cells in the lungs of the µMT 

animals and that even in the absence of B-2 cells the lung pathophysiology can be maintained in 

µMT mice (Fig 25). We also report a tissue centric IgG1, IgG2a, and IgE Ab production in µMT 

mice after sensitization and challenge with fungal Ags in a non-specific manner. Additionally, 

the study shows that IgA, which plays an important role in protecting mucosal surfaces, is not 

required for either clearance or containment of A. fumigatus in the murine lung, since fungal 

outgrowth was not observed in the muMT animals after multiple inhalation exposures to live 

conidia.  

Using µMT mice in our inhalation fungal asthma system has two important implications. 

First, the type of Ag and the route of infection have a significant impact on the generation of Ab 

responses in µMT mice lacking the normal pathway for B-2 cell maturation, as different types of 

Ag yield very different outcomes (210, 211). The second major finding of this study is that, as a 

B-2 cell KO mouse, µMT animals may be useful to determine the role of B-1 cells in response to 

pulmonary insults. Further research is necessary for elucidating the mechanism for B-1 isotype 

switching in the lung and their contribution to protective responses, which would have important 

implications for experimental analysis and for understanding normal B-1 and B-2 cell activation 

in health and disease.  
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One of the important benefits of using an experimental animal system to model a 

complex disease syndrome like asthma is that you can recreate a similar environment to that of 

the human allergic lung. This has been very important in the research we are doing with HA in 

the activation of B cells in the allergic lung. Over the past few years, a number of studies have 

shown that ECM and ECM degradation products may be associated with airway fibrosis and a 

decline in lung function (24, 173, 212). An accumulation of ECM components can be seen in 

tissues following a variety of insults such as those that occur in the adult respiratory distress 

syndrome (ARDS), chronic asthma, and idiopathic pulmonary fibrosis (180). Among the 

different ECM components studied, HA undergoes dynamic regulation resulting in accumulation 

of lower molecular mass species during tissue injury and inflammation (22, 24, 181, 185, 212, 

213). We envision the waves of granulocytes (neutrophils and eosinophils) hydrolyzing HA as 

they enter the lumen of the airway as having a major impact on this process. LMM HA has been 

shown to exhibit pronounced biologic effects on specific cells and tissues (213, 214). The 

mechanisms that dictate the different functions of HA based on the different molecular size are 

still being determined, but a possible explanation for LMM HA’s role in inflammation is that it 

may bind more firmly than does the HMM HA, inducing receptor crosslinking and allowing 

signaling (181). 

CD44, the most widely studied HA receptor, has different functions on different cell 

populations and has been shown to play a vital role in lymphocyte homing, lymphopoiesis, T cell 

activation, and metastasis in certain situations (215-221). Its expression and functional regulation 

on B cells is less well understood (196, 222, 223). Previous studies have shown that normal B 

cells bind to HA to a lower degree than activated B cells, particularly those stimulated by IL-5 

(215, 224), and that IFN-γ inhibits CD44-HA interactions in normal human B lymphocytes 
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(225). Additionally, CD44-deficient mice develop and exhibit minor abnormalities in 

hematopoiesis and lymphocyte circulation (194, 195). However, there is growing evidence to 

suggest that interaction between HA and CD44 may play an important role in the regulation of 

functions of lymphoid and myeloid cells (196).   

 

 

 

 

 

 

 

 

 

 

 

While allergen-specific Abs are recognized as contributing factors in the 

immunopathology of an aberrant response against an innocuous allergen such as fungi, pollen or 

animal dander (159), they have also been suggested to be part of the successful clearance of 

fungus in the airways (160). Whether B lymphocytes exacerbate pulmonary inflammation or 

 
Figure 26.  Immunomodulatory role of B lymphocytes and Hyaluronic acid in a murine 

model of allergic asthma This model explains the potential impact of hyaluronic acid on B 

lymphocyte recruitment and function based on personal data and the pertinent literature. 

Schematic by Sumit Ghosh. 
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contribute to lung fibrosis remains still unknown. The data presented in this dissertation imply 

that LMM HA generated at sites of chronic inflammation may serve to recruit B lymphocytes to 

the lungs in a CD44 dependent manner (Fig 26). In addition, we report that LMM HA can 

function as an important signaling molecule for B lymphocytes and can impact the cytokine 

function of B lymphocytes by inducing the production of IL-10 and TGF-β1 which are critical to 

the development of tissue fibrosis/airway remodeling (Fig 26). Further studies, on how LMM 

HA mediates cytokine production by B lymphocytes would be of great interest. Emerging 

evidence shows that TLR signaling plays an important role in mediating immune responses to 

HA (24, 226). 

TGF-β1 has long been established to play a role in airway remodeling (227-229). It has 

been shown to be associated with epithelial changes, sub-epithelial fibrosis, airway smooth 

muscle remodeling, and mucus upregulation (229). The role of IL-10 in Aspergillus-induced 

asthma has not been established definitively, as it seems to play different roles at different stages 

of disease; an enhancing effect when conidia dominate and a suppressive effect during the late 

stages of the disease (118). Furthermore, increased IL-10 production has been associated with an 

increase in levels of total and Ag-specific IgE, IgG1, and IgA, probably reflecting its role in 

promoting a TH2 response to A. fumigatus Ags (119-122). Further characterization of the lineage 

of B lymphocytes, the receptors involved in cytokine production, and the impact of LMM HA on 

B lymphocyte antibody function and Ag presentation may yield important insights into the 

function of B lymphocytes and LMM HA in mediating allergic airway responses. 
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CONCLUSIONS 

Our aim for this dissertation was to begin to elucidate the role of B lymphocytes in the 

initiation and maintenance of allergic asthma. Our studies reveal that B2 cells are recruited to the 

lungs in response to fungal challenge and that B-1 cells are triggered to produce Ab even in the 

absence of conventional B-2 lymphocytes. Further, our studies reveal the role of LMM HA (a 

component of ECM) generated at the sites of chronic inflammation/tissue injury in facilitating B 

lymphocyte recruitment. Further, LMM HA induces B cell activation through the production of 

the pro-fibrotic/pro-remodeling cytokines IL-10 and TGF-β1, which are critical to the 

maintenance of the allergic inflammatory responses. Collectively, these results indicate that both 

different B cell subsets and LMM HA may contribute to the development and maintenance of the 

allergic phenotype. Further studies using a total B cell knockout mouse, characterizing the 

lineage of B cells, and exploring the impact of LMM HA on B lymphocyte Ab production 

function and Ag presentation may yield important insights into the function of B lymphocytes in 

mediating allergic airway responses and may help to develop new therapeutic targets for diseases 

of the mucosa such as asthma. Beyond allergic asthma research, this work may also provide 

important information about anatomical and functional aspects of general B cell development 

that are currently not known. 
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