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ABSTRACT

A bifurcation portrait classifies the behavior of a dynamical system and how it

transitions between different behaviors. A hybrid dynamical system displays both

continuous and discrete dynamics and may display nonsmooth bifurcations. Herein,

we analyze a novel hybrid model of a spiking neuron proposed by E.M. Izhikevich

[9] that is based on a previous hybrid model with a convex spike-activation function

f(x), but modified with a conductance reversal potential term. We analyze the model

proposed by Izhikevich and obtain a bifurcation portrait for the continuous dynamics

for an arbitrary convex spike activation function f(x). Both subcritical and supercritical

Andronov-Hopf bifurcations are possible, and we numerically confirm the presence of

a Bautin bifurcation for a particular choice of spike activation function. The model is

capable of simulating common cortical neuron types and presents several possibilities

for generalizations that may be capable of more complicated behavior.
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CHAPTER 1. INTRODUCTION

Any discussion of a model spiking neuron inevitably begins with the famous

Hodgkin-Huxley model [5]. In terms of chemistry, ach ionic species in the extracellular

medium flows into and out of the cell via passive and active processes. Passive “leak”

currents tend to bring the cell toward electrochemical equilibrium while active ion

pumps work against these passive processes. The flow of each distinct ionic species

across the cell membrane contributes to the membrane current, which in turn con-

tributes to membrane voltage. Hodgkin and Huxley developed a procedure to estimate

the voltage-sensitive conductance in the neural membrane, and hence quantified the

processes contributing to membrane electrodynamics. They developed a nonlinear

system of ordinary differential equations as a continuous-time model to describe their

results.

Denoting the Nernst equilibrium potential of the i th ionic species as Ei, and

the voltage-sensitive conductance gi (V ), we have the generalized conductance-based

model of a small patch of neural membrane







CV̇ = I − I0 (V )−
∑

i gi
�

Ei − V
�

ġi = hi
�

gi, V
�

(1.1)

where V is membrane voltage, C is membrane capacitance, I is the DC input current,

I0 is the sum of currents with constant conductance. The particular form of each

hi is usually nonlinear and dependent on other dynamic variables not listed here.

Indeed, this dependence on other dynamic variables leads the original Hodgkin-Huxley

equations to be high dimensional; usually the state space is at least four dimensional.

The nonlinearity and high dimensionality of the system provides a strong incen-

tive to reduce the model. However, without at least three dimensions, spike upstroke

and downstroke behavior cannot both be simulated in a strictly smooth model [8].
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Spike downstroke behavior can be simulated by introducing a discontinuous cutoff

into an otherwise smooth, low-dimensional model; Izhikevich and others demonstrated

two-dimensional models capable of recreating a wide range of biologically plausible

behaviors. Izhikevich proposed the dimensionless hybrid model ([6],[8])























v̇ = f (v)− u+ I

u̇= a(bv− u)

v ¾ vmax ⇒ v← c, u← u+ d

(1.2)

in which f is usually a convex C k function for some k ¾ 2, I ∈ R, and a, b > 0.

The model phenomenologically describes dimensionless voltage v and some slow di-

mensionless conductance u with a spike activation function f , dimensionless current

I , and dimensionless phenomenological parameters a, b > 0. When voltage exceeds a

maximum value vmax ∈ R, a spike is said to have occurred; a discontinuous reset in

voltage and conductance with an additive gain in conductance occurs. With only two

dimensions, this model is capable of a broad range of biologically plausible behavior

and is computationally efficient. It has been extensively studied [7], [12], [13]. Izhike-

vich analyzed this model with f (v) = v2 ([8], [7], [6]), Brette and Gerstner analyzed

Izhikevich’s model with f (v) = ev − v ([1]), and Touboul analyzed Izhikevich’s model

in the general case and with f (v) = v4 + 2av ([12]). Although model 1.2 typically

appears in the literature in the dimensionless form stated here, it can be reduced by

one parameter by the change of coordinates and time v = 1
a
x , u= b

a
y, t = 1

a
T .
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Izhikevich suggested investigating the effects of voltage sensitivity on the slow

conductance term. That is, in [9], Izhikevich proposed the novel model







ẋ = f̂ (x) + y(x − Ê) + Î

ẏ = a(bx − y)
(1.3)

in which we impose a discontinuous reset just as before, and all variables and param-

eters are analogous to those above except Ê ∈ R is a conductance reversal energy.

Changing coordinates, time, and parameters

x =
a

b
v f (x) :=

b

a2 f̂
�a

b
x
�

(1.4)

y = au E :=
b

a
Ê (1.5)

t =
1

a
T I :=

b

a2 Î (1.6)

we obtain the model






















v̇ = f (v) + u (v− E) + I

u̇= v− u

v ¾ vmax ⇒ v← c, u← u+ d

(1.7)

where v is the dimensionless membrane voltage, u is the dimensionless voltage-sensitive

slow conductance of some ionic species (called the recovery variable), E is the dimen-

sionless reversal voltage for the conductance, I is the dimensionless DC input current,

and f is some convex C k function for k ¾ 2. The parameter vmax denotes the maximum

cut-off voltage to signify an action potential, c is the after-spike reset voltage, and d is

the gain in conductance due to the action potential. All parameters and variables here

are dimensionless. We can assume that f (0) = 0 since during change of coordinates,

parameters, and time, we can wrap the constant term of f into I .
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We require that f (v) scale faster than linearly for sufficiently large v in order

for membrane voltage to blow up in finite time. If this is the case, then any value

for vmax will be suitable presuming it is sufficiently large and positive. Touboul [13]

demonstrated that the condition lim
v→∞

f (v) ¾ αv1+ε for some α,ε > 0 is sufficient for v

to blow up in finite time for the original Izhikevich model 1.2. Further, unless ε > 1, the

recovery variable u may also blow up in finite time, leading to a biologically implausible

sensitivity to the cutoff voltage vmax . Model 1.7 also exhibits this behavior, which is

proven in Appendix A.

Hybrid models are popular because they are minimal with respect to computa-

tional expense while retaining the capability to reproduce most computational prop-

erties of neurons. Indeed, the original Izhikevich simple model is two orders of mag-

nitude faster to simulate than the original Hodgkin-Huxley model, and by using the

function f (v) = v4 + 2av used by Touboul, that model is capable of a very rich set

of dynamical regimes despite its computational efficiency. In contrast to model 1.2,

which did not incorporate voltage-sensitive conductance, we see that model 1.7 has

a voltage-sensitive conductance term. The role in neural dynamics played by voltage-

sensitive conductance reversal is unclear. Herein, we investigate model 1.7 and the

computational properties and bifurcations of which the model is capable.

1.1. Neurocomputational Properties and Bifurcations

Neurons capable of stable spiking cycle are referred to as excitable, and de-

termining the conditions under which neurons are excitable motivated much of 20th

century neuroscience. Researchers originally suspected that excitability was a function

of input current, and with a sufficiently strong, excitatory input, a neuron would fire a

spike. Hence, much effort has historically been put forth to determine the excitability

threshold of a spiking neuron. Excitable neurons were originally classified by Hodgkin

as either Class 1 or Class 2 [4]. Class 1 neurons ideally can exhibit an arbitrarily

4



small firing rate and smoothly increase that rate as input current increases. Class 2

neurons, on the other hand, have a minimum firing rate which is fairly insensitive to

input current above the threshold current.

Unfortunately, this picture is oversimplified. Indeed, there exist at least two

ubiquitous neurocomputational properties of excitable neurons entirely missed by this

model: resonance and bistability. Resonant neurons experience sub-threshold oscilla-

tions and have a resonance frequency. A properly timed burst of presynaptic spikes will

trigger a resonant neuron to spike; therefore, resonators act as frequency detectors.

Integrator neurons, on the other hand, act as coincidence detectors. With a sufficient

number of recent spikes, they will fire. Note all neurons transition into stable spiking

with sufficient excitatory input.

The other property is bistability. Stable spiking states are mutually exclusive

with stable resting states in monostable neurons. With a sufficiently small mean input

current, they can only fire a single spike, whereas with a sufficiently large input current,

they constantly spike. Bistable neurons can be shocked into a spiking state when at rest,

and then shocked back into rest from a spiking state without changing their mean input

current. Hence, we can categorize neurons into four distinct categories; monostable

integrators, bistable integrators, monostable resonators, and bistable resonators.

We can summarize these neurocomputational properties succinctly with a dy-

namical systems model. Indeed, the resting state of a resonator neuron is a spiral

(or focus) equilibrium, whereas the resting state of an integrator is a node. Further,

bistable neurons will exhibit the coexistence of a stable resting state and a periodic

spiking limit cycle, whereas monostable neurons can either have a stable resting state

or a stable spiking limit cycle, but not both.

Figure 1.1 (a) shows the basic fold (or saddle-node) bifurcation associated with

the transition in bistable integrators between resting state and stable spiking limit

5



(a) A fold bifurcation

(b) Fold-on-invariant-circle bifurcation

(c) subcritical Andronov-Hopf bifurcation

(d) Supercritical Andronov-Hopf bifurcation

Figure 1.1: Bifurcation transitions between stable states and spiking cycles. Figure 1.1a
illustrates bistable integrators, Figure 1.1b illustrates monostable integrators, Figure
1.1c illustrates bistable resonators, and Figure 1.1d illustrates monostable resonators.
Figure from [8] printed with permission from E.M. Izhikevich.
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cycles. Figure (b) shows the fold-on-invariant-circle bifurcation associated with monos-

table integrators. Figure (c) shows the subcritical Andronov-Hopf bifurcation associ-

ated with bistable resonators. Finally, Figure (d) shows the supercritical Andronov-

Hopf bifurcation associated with monostable resonators. Neuronal models of interest

must be capable of the four dynamical behaviors presented in Figure 1.1, and hence

must be capable of undergoing bifurcations to transition between the different regimes.

1.2. Other Neurocomputational Properties

Bistability and resonance are not the only neurocomputational properties of in-

terest, although together they can be used to recreate a very wide variety of biologically

plausible neuronal behaviors. Recreating these behaviors is one way to assess the utility

of a neural model.

Most notions of spiking can be extended to the notion of a burst. Indeed, a

neuron may be capable of tonic bursting in which a neuron fires bursts periodically. A

neuron may be capable of firing a rebound spike or burst in response to a brief inhibitory

pulses of current. A neuron may be capable of both bursting and spiking in a mixed

mode fashion. The inter-spike interval of a tonically firing neuron may grow over time

as a neuron adapts to a constant input current in the phenomenon of spike frequency

adaptation. Neurons may exhibit spike latency, in which a neuron fires a spike after

a delay in response to a super-threshold input current. A neuron may also exhibit

threshold variability, in which a particular amplitude of input current is not sufficient

to trigger a spike unless an inhibitory pulse of input current precedes it. A neuron

may also exhibit a depolarizing after-potential in which membrane voltage experiences

a post-spike hump during which time it is sensitive to firing another spike.

Finally, a neuron may be capable of accommodation, in which case a slow ramping

of input current to a particular amplitude does not elicit a spike, but a brief shock at

the same amplitude will elicit a spike. Accommodation occurs when input current is

7



changing slowly with respect to the fast active processes in the neural membrane. A

neuron may also be capable of inhibition-induced spiking or bursting in response to a

sustained inhibitory input current. Model 1.7 can reproduce many of these observed

biological behaviors, as illustrated by Figure 4.4 in Chapter 4.
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CHAPTER 2. DYNAMICAL SYSTEMS AND BIFURCATIONS

Bifurcation theory, roughly speaking, is the analysis of the topological proper-

ties of dynamical systems, how those properties change as parameters vary, and the

conditions under which a system’s behavior undergoes a transition between qualita-

tively distinct regimes. A bifurcation portrait is a partition of parameter space into

dynamically equivalent regimes, together with representative phase portraits from each

regime, including the borders between distinct dynamical regimes. In this section, we

discuss the framework for analyzing the bifurcations for an autonomous continuous-

time dynamical system. As always, we begin with a definition:

Definition 2.1. A dynamical system is a triple
�

X , T,
�

φ t	

t∈T

�

consisting of a phase

space (a manifold X , usually a complete metric space), an ordered time set closed

under addition (T , usually R or Z), and a family of evolution operators φ t : X → X

such that φ t+s (x) = φ t ◦φs x for any t, s ∈ T and x ∈ X and such that φ0 (x) = x for

any x ∈ X .

We oftentimes restrict our attention to small neighborhoods of the phase space.

We will say that the phase portraits of two systems
�

X , T,
�

φ t	

t∈T

�

and
�

Y, S,
�

ψs	

s∈S

�

are locally topologically equivalent at the respective points x0 and y0 if there exists a

pair of open neighborhoods X ′ ⊆ X with x0 ∈ X ′, Y ′ ⊆ Y with y0 ∈ Y ′, and a

homeomorphism h : X ′ → Y ′ such that h(x0) = y0 and such that h carries trajectories

within X ′ to trajectories within Y ′ preserving the direction of time.

Continuous-time dynamical systems take T = R and are governed by differential

equations whereas discrete-time dynamical systems take T = Z and are governed by

some map x 7→ f (x). Analysis of dynamical systems begins with partitions of X in

terms of invariant sets. A set S ⊆ X is invariant if for any x ∈ S, t ∈ T , φ t x ∈ S.

Particular examples of invariant sets abound. A singleton
�

x0

	

⊂ X such that

φ t x0 = x0 for any t ∈ T is invariant. In continuous-time systems, they are known as

9



equilibria, and in discrete-time systems, they are fixed points. An orbit starting at x0

is the invariant set
�

x ∈ X : x = φ t �x0

�

for some t ∈ T
	

. One can think of an orbit as

the (usually unique) trajectory passing through x0, or as the trajectory generated by x0.

A cycle is a periodic orbit. An isolated cycle is a cycle such that an open neighborhood

contains the cycle of interest but lacks other cycles. A center is a collection of non-

isolated cycles.

2.1. Equivalence Relations on Dynamical Systems

In order to compare two systems, we need a notion of equivalence; essentially

we require some abstract notion of equality that is reflexive, symmetric, and transitive.

Definition 2.2. Two dynamical systems are said to be topologically equivalent if there

exists a homeomorphism mapping the trajectories of one system onto the trajectories

of the other system preserving the direction of time.

Example 2.3. The following example demonstrates global topological equivalence.

Take both state spaces X and Y to be the punctured plane R2\(0, 0), let both time

sets be T = S = R, and consider the pair of continuous-time differential equations

models:






ẋ1 = −x1

ẏ1 = −y1







ẋ2 = −x2− y2

ẏ2 = x2− y2

(2.1)

Representative phase portraits for these two systems are illustrated in Figure

2.1(a) and (b), respectively. Notice both systems exclude the origin. Consider an orbit
�

x1(t), y1(t)
�

in X (respectively
�

x2(t), y2(t)
�

in Y ). We can represent any point in R2

away from the origin in polar coordinates. We perform the standard polar coordinate
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change

x1 = r1 cosθ1 y1 = r1 sinθ1

x2 = r2 cosθ2 y2 = r2 sinθ2

where r1, r2 > 0. We also interpret θ1,θ2 as real numbers in the interval [0,2π) with

the understanding that θ1,θ2 are equivalence classes of real numbers under the usual

equivalence relation θ ∼ θ ′ if and only if θ − θ ′ = 2kπ for some integer k. This yields

the system of differential equations:







ṙ1 = −r1

θ̇1 = 0







ṙ2 = −r2

θ̇2 = 1

Then the map Ψ : X → Y defined by

Ψ

















r1

θ1

















=









r1

θ1− ln(r1)









is a homeomorphism mapping the orbits from X into the orbits of Y .

Of course, an astute reader will notice that the map in the above example is not

differentiable (or even defined) at the origin; there is no way to connect a node equi-

librium and a spiral equilibrium with a diffeomorphism. This brings us to a stronger

version of topological equivalence:

Definition 2.4. Two systems that are topologically equivalent via a diffeomorphism h

are called smoothly equivalent.

Example 2.3 demonstrates that the equilibria in two topologically equivalent, but

not smoothly equivalent systems, may exhibit some qualitatively different behavior, i.e.

11



(a) Node equilibria

(b) Spiral equilibria

(c) Saddle equilibrium

Figure 2.1: Vector fields and representative trajectories near various equilibria. Figure
2.1a: vector field and representative trajectories near a stable (left) and unstable
(right) node equilibrium. Figure 2.1b: vector field and representative trajectories near
a stable (left) and unstable (right) spiral equilibrium. Figure 2.1c: vector field and
representative trajectories near a saddle equilibrium. Figure from [8] printed with
permission from E.M. Izhikevich.
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node equilibria as opposed to spiral equilibria. Smoothly equivalent systems are “more

equivalent” than topologically equivalent systems.

When a bifurcation occurs, we wish to find the simplest way to describe the

system as it transitions through the qualitatively different behavioral regimes. To

this end, we wish to find a smooth equivalence to a topological normal form (see

section 2.3.1). Before we discuss this, however, we must define bifurcations and

topological normal forms (see section 2.3). It must be noted that computing specific

diffeomorphisms is usually a headache. However, there are a variety of theorems at

our disposal in order to prove the existence of equivalences without the computational

nightmare involved in finding specific morphisms.

2.2. Characterizing Invariant Sets

Bifurcation analysis includes characterization of the properties of orbits near

equilibria and limit cycles. Analyzing behavior near equilibria in autonomous systems

is accomplished by considering the eigenvalues of the Jacobian matrix of the system

evaluated at that equilibrium. Analyzing behavior near limit cycles involves the method

of Poincaré cross-sections, in which we restrict our attention to a manifold intersecting

the limit cycle transversally. This induces a discrete-time dynamical system using that

manifold as the state space. Fixed points in the Poincaré cross-section are in one-to-

one correspondence with cycles of the original continuous-time system, and analyzing

the cycles of a continuous-time dynamical system will often reduce to analyzing the

fixed points of the induced discrete-time dynamical system. However, our analysis

does not use Poincaré cross-sections in the sequel; we only include this description

for completeness. Hence, in this section, we describe only the characterization of

equilibria.

The eigenvalues of the Jacobian matrix evaluated at the equilibria (or fixed points)

characterize behavior near those equilibria (or fixed points). At the risk of abusing
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vocabulary, rather than referring to the eigenvalue of the Jacobian matrix of the system

evaluated at the equilibrium, we will refer to the eigenvalue of the equilibrium. For

example, if an eigenvalue λ of the Jacobian matrix evaluated at the equilibrium satisfies

λ = 0, then we will say that the equilibrium has a zero eigenvalue (or an eigenvalue

that vanishes), and so on.

We are concerned with three traits of equilibria and fixed points: hyperbolicity,

stability, and monotonicity.

Definition 2.5. An equilibrium in a continuous-time dynamical system is hyperbolic

if none of its eigenvalues are on the imaginary axis. A fixed point of a discrete-time

dynamical system is hyperbolic if none of its eigenvalues lie on the unit circle in the

complex plane.

Hyperbolicity ensures a variety of nice, equivalent properties, including structural

stability, shadowing, and the ability to define stable and unstable manifolds. Indeed,

a bifurcation is classically considered the loss of structural stability or rather a change

of topological equivalence. We say that a local bifurcation of an equilibrium has oc-

curred as a parameter varies whenever topological equivalence changes. If a hyperbolic

equilibrium loses hyperbolicity in a generic and transversal manner, then topological

equivalence has changed and we say a bifurcation has occurred. Given a hyperbolic

equilibrium, we are also generally concerned with two properties: asymptotic stability

and oscillations so as to classify the behavior of trajectories near that equilibrium.

Definition 2.6. An invariant set S of a dynamical system with an evolution operator

φ is Lyapunov stable if for any open U containing S, there exists some open V ⊆ U

containing S such that any orbit with its initial condition in V will thereafter remain in

U for all time.
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An invariant set S has the asymptotic property if there exists an open neighbor-

hood U containing S such that, for any x ∈ U , φ t x → S. That is, orbits starting

sufficiently close to S tend toward S in the Hausdorff metric as time proceeds to infinity.

An invariant set S is asymptotically stable if it is both Lyapunov stable and has the

asymptotic property.

The eigenvalues of stable equilibria have strictly negative real parts. In two-

dimensional continuous-time dynamical systems, stability is equivalent to requiring

the trace of the Jacobian to be strictly negative with a strictly positive determinant.

Each eigenvalue is associated with an eigenvector. If all eigenvalues are real and all

eigenvectors have real components, the sign of an eigenvalue determines the stability of

the equilibrium in the direction of its associated eigenvector. If the sign is negative, then

the equilibrium is stable in the direction of the associated eigenvector, and if the sign is

positive, then the equilibrium is unstable in the direction of the associated eigenvector.

If one eigenvalue is negative and one eigenvalue is positive, the equilibrium is a saddle

point. This occurs if and only if the determinant is negative.

For example, in the first system in example 2.3, we have one equilibrium (the

origin) with the Jacobian








−1 0

0 −1









which has determinant 1, trace −2, and a (not simple) eigenvalue −1. The second

system on the other hand has Jacobian









−1 −1

1 −1









with determinant 2, trace −2, and eigenvalues −1± i. In both systems, the origin is

stable. Indeed, Figure 2.1 portrays the phase portraits of these systems.
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Finally, we are also concerned with whether trajectories monotonically approach

a stable equilibrium or whether they oscillate on their approach. Monotonic equilibria

are known as nodes (first system in example 2.3 and left phase portrait in Figure

2.1), and oscillatory equilibria are spirals (second system in example 2.3 and right

phase portrait in Figure 2.1). Although nodes and spirals are topologically equivalent

(presuming they are both stable or both unstable), they are not smoothly equivalent.

In a planar system, an equilibrium is a spiral or a center if at least one eigenvalue

has a nonzero imaginary part. Complex eigenvalues come in complex-conjugate pairs,

and we will be dealing with two dimensional systems exclusively. Hence, an equilib-

rium is a spiral if and only if both eigenvalues have a nonzero imaginary part in our

context.

2.3. Local Bifurcations of Equilibria

In practice, we wish to find the Taylor expansion of a dynamical system’s vector

field at an equilibrium and then find a suitable coordinate system in which some or all

of the linear terms of the Taylor expansion vanish. Most of the difficulty in bifurcation

theory involves verifying that these terms vanish in a generic way.

Local bifurcations of equilibria occur when an equilibrium loses hyperbolicity as

a parameter varies. Therefore, we consider parameter-dependent systems by augment-

ing our state space X with a parameter space A. Hyperbolicity is lost if at least one

eigenvalue crosses the imaginary axis. Of course, such a bifurcation must occur at

an equilibrium, satisfying an equilibrium condition. The subset A′ ⊂ A of parameter

space upon which the eigenvalue crosses the imaginary axis is the bifurcation curve

(and requiring that our parameters are in this subset is the bifurcation condition).

This is all we need to guarantee that the bifurcation occurs, although it may not

unfold completely, and it may not occur in a generic manner (i.e. more complicated

bifurcations may be occurring).
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Figure 2.2: Various conditions of the fold bifurcation. Figure from [8] printed with
permission from E.M. Izhikevich.

If the eigenvalue crosses the imaginary axis with a nonzero velocity, then we

have satisfied the transversality condition, guaranteeing that the bifurcation unfolds

completely. To guarantee that the bifurcation is occurring in a generic manner, we also

have genericity conditions. The genericity conditions are a set of inequalities ensuring

that the parameters lie upon non-degenerate regions of the bifurcation curve. If the

equilibrium, bifurcation, transversality, and genericity conditions are all satisfied, then

the system is smoothly equivalent to the topological normal form of the bifurcation

(see section 2.3.1).

We can graphically visualize these conditions as follows, using the fold bifurcation

as a starting point. The fold bifurcation (in one dimension) occurs in a parameter-

dependent system ẋ = f (x;α) when f (x∗;α∗) = 0 at some (x∗,α∗) and ∂ f
∂ x
(x∗;α∗) =

0. Indeed, in Figure 2.2 we see how f (x;α) interacts with the x-axis as we vary α in a

generic, transversal saddle-node bifurcation occurring at a non-hyperbolic equilibrium

in the left column. We see examples of how each of these fail in the right column. Non-
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(a) Fold bifurcation (b) Andronov-Hopf bifurcation (c) Bogdanov-Takens bifurcation

Figure 2.3: The behavior of eigenvalues during different bifurcations. In a fold
bifurcation, a single real eigenvalue crosses the imaginary axis (Figure 2.3a). In
an Andronov-Hopf bifurcation, a pair of complex conjugate eigenvalues cross the
imaginary axis together (Figure 2.3b). In a Bogdanov-Takens bifurcation, both of these
occur simultaneously (Figure 2.3c). Figure from [8] printed with permission from E.M.
Izhikevich.

hyperbolicity requires that an eigenvalue vanish ( ∂ f
∂ x
(x∗;α∗) = 0). Genericity requires

that f (x;α) act like a parabola crossing the x-axis near the bifurcation point (x∗,α∗).

Transversality requires that, as we vary bifurcation parameters, the bifurcation unfolds

completely (i.e. f (x;α) crosses the x-axis completely as we vary α, rather than sliding

along it, or touching it and then lifting back off).

With the idea of losing hyperbolicity in mind, there are only a few ways an

equilibrium can lose hyperbolicity since we only have two eigenvalues. Either a single

real eigenvalue can approach and cross the imaginary axis (corresponding to the fold

or the cusp bifurcations, as in Figure 2.3a), a pair of complex-conjugate eigenval-

ues approach and cross the imaginary axis (corresponding to the Andronov-Hopf or

Bautin/Generalized Hopf bifurcation, as in Figure 2.3b), or both of these can occur as

a pair of complex conjugate eigenvalues become zero and cross the imaginary axis

(corresponding to the Bogdanov-Takens bifurcation, as in Figure 2.3c). This is an

exhaustive list of all possible local bifurcations of equilibria that can occur in a two-

dimensional system.
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Our model cannot produce a cusp bifurcation because it has at most two equi-

libria. Indeed, if a cusp bifurcation occurs generically and transversally, then three

equilibria approach and annihilate as in the fold bifurcation [10]. Hence, the fold,

Andronov-Hopf, and Bogdanov-Takens bifurcations are the only local bifurcations of

equilibria that can occur in our model.

2.3.1. Topological Normal Forms

In this section, we will discuss the manner in which bifurcations are embedded

in state- and parameter-space and how we reduce systems into the simplest possible

form for analysis. Indeed, bifurcations occur on center manifolds in A× X , we measure

their complexity by their codimension, and we endeavor to find their simplest possible

representations in terms of the topological normal form.

First, let us elaborate on the center manifold. Consider a linear system of dif-

ferential equations ẋ = Lx with x ∈ Rn, L an n× n matrix, and equilibrium x∗. The

matrix L divides Rn into three distinct invariant sets which also happen to be subspaces.

The stable subspace is spanned by the generalized eigenvectors corresponding to the

eigenvalues with strictly negative real parts, the unstable subspace is spanned by the

generalized eigenvectors corresponding to the eigenvalues with the strictly positive real

parts, and the center subspace is spanned by the generalized eigenvectors corresponding

to the eigenvalues with precisely zero real part.

The Center Manifold Theorem claims that when a dynamical system ẋ = f (x)

with x ∈ Rn has equilibrium at the origin and that equilibrium has n0 eigenvalues

on the imaginary axis, there exists a locally defined smooth n0-dimensional invariant

manifold M called the center manifold that has some nice properties. First, M is locally

tangent to the center eigenspace, i.e. the space spanned by the eigenvectors associated

with the eigenvalues lying on the imaginary axis. Second, there exists a neighborhood
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U of the equilibrium such that if an orbit x(t) ∈ U for all t ¾ 0 (t ¶ 0), then x(t)→ M

in the Hausdorff metric as t →∞ (t →−∞).

Since we can always perform a change of coordinates so as to center a dynam-

ical system on any of its equilibria, the Center Manifold Theorem guarantees an n0-

dimensional center manifold for each equilibrium. Hyperbolic equilibria only have

eigenvalues off of the imaginary axis, so their center manifolds are 0-dimensional.

Nonhyperbolic equilibria are undergoing a bifurcation, on the other hand, and have

a nontrivial center manifold. Since a center manifold M is tangent to the center

subspace of the linearized version of the system, we can locally describe that manifold

by projecting the system onto the critical eigenbasis of the linearized system.

The complexity or rarity of a bifurcation is determined by its codimension, defined

as the difference between the dimensionality of the parameter space and the dimen-

sionality of the center manifold; for our purposes, the codimension is precisely the

number of equality conditions we require to meet the bifurcation conditions.

Finally, we wish to find the simplest (say, polynomial) representation of a bifurca-

tion. Presume we have a system ξ̇= g
�

ξ,β;σ
�

, for ξ ∈ Rn, β ∈ Rk, σ ∈ R`, in which g

is polynomial in ξi with vector of coefficients σ. Presume this system has equilibrium

at the origin for all
�

�β
�

� sufficiently small and undergoes a particular bifurcation of

codimension k in the most generic manner possible when β = 0.

Also presume we have a system ẋ = f (x ,α), where x ∈ Rn and α ∈ Rk which

has equilibrium at the origin for all |α| sufficiently small. Also presume that when

α = 0, ẋ = f (x ,α) undergoes the same codimension k bifurcation that the system

ξ̇ = g(ξ,β;σ) undergoes when β = 0, and with the same degree of genericity. We

have the following definition of the topological normal form of the bifurcation:

Definition 2.7. The system ξ̇ = g
�

ξ,β;σ
�

is called a topological normal form for the

bifurcation if any generic system ẋ = f (x ,α) undergoing that bifurcation is locally
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topologically equivalent near the origin to the system ξ̇ = g(ξ,β;σ) for some values

of the coefficients σ.

A generic system can be written as a linear combination of coordinates on the

center, stable, and unstable manifolds ξ = ξc + ξs + ξu. On the stable and unstable

manifolds, the system is smoothly equivalent to its linearization, i.e. trajectories expo-

nentially grow or shrink thanks to the Hartman-Grobman theorem [3]. This provides

the system






















ξ̇c = ĝ
�

ξc,β;σ
�

ξ̇s =−ξs

ξ̇u = ξu

where ĝ represents the system restricted to the center manifold. The reduction princi-

ple, first proved by Pliss [11], provides the existence of some C k homeomorphism (for

some k ¾ 1) mapping this system into the restricted system ξ̇c = ĝ
�

ξc,β;σ
�

. This

allows us to disregard the stable and unstable manifolds, and the genericity conditions

ensure that the restricted system is smoothly equivalent to the topological normal form.

The “interesting” part of the system is suspended by the standard saddle; orbits

starting off of M act as if they are near a saddle point, whose dynamics are well-

known. The reduction principle allows us to strip off everything except the center

manifold, whose dynamics are under study. We can then demonstrate transversality

and genericity to ensure the system is smoothly equivalent to the topological normal

form via a sequence of (possibly nonlinear) changes in variables, parameters, and time.

Note that transforming the system into its normal form is not necessary to demon-

strate transversality and genericity, and in fact is to be avoided if possible. Indeed,

demonstrating the genericity and transversality of the fold and Andronov-Hopf bi-

furcation does not require transforming the system into the topological normal form.

Further, we only need to go “half-way” to the Bogdanov-Takens bifurcation normal form
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Figure 2.4: A generic unfolding of the fold bifurcation in a planar system. The shaded
region denotes the basin of attraction of the stable fixed point. Figure from [8] printed
with permission from E.M. Izhikevich.

in order to demonstrate transversality and genericity. The complete transformation into

the normal form is tedious and not particularly illuminating.

2.3.2. Fold Bifurcation

We first seek the lowest-hanging bifurcative fruit, the fold (or saddle-node) bifurca-

tion. Consider the parameter-dependent system ẋ = f (x ,α), where x ∈ Rn and α ∈ R.

The fold bifurcation condition is the existence of an equilibrium x = x∗ dependent on a

critical parameter choice α = α∗ such that an eigenvalue vanishes and no other eigen-

values lie on the imaginary axis. If genericity and transversality conditions are satisfied,

the fold bifurcation geometrically corresponds to a stable equilibrium approaching a

saddle, the two equilibria colliding with nonzero velocity, and then disappearing in the

process. In the most generic case, the stable equilibrium is a node, and for this reason,

the fold bifurcation is often known as a saddle-node bifurcation. A complete unfolding

of the fold bifurcation in a planar system is depicted in Figure 2.4.
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The eigenvector associated with this vanishing eigenvalue is referred to as critical.

The center manifold theorem and the reduction principle ensure that it is sufficient

to consider the dynamical system projected onto the critical eigenspace. The fold

bifurcation takes on the one-dimensional topological normal form ẏ = β ± y2 where

β ∈ R.

If the fold bifurcation, genericity, and transversality conditions are satisfied, then

a homeomorphism exists taking a system of interest (restricted to its center manifold)

into the topological normal form. The bifurcation condition guarantees that the linear

part of the system vanishes. The genericity condition guarantees that the quadratic

part of the Taylor expansion of the system is non-vanishing. The transversality condi-

tion guarantees that the derivative of the vector field with respect to the bifurcation

parameters is non-vanishing at the bifurcation point. Following Kuznetsov [10] pp.

174-177, we have the following conditions ensuring the generic occurrence of a fold

bifurcation:

(i) (Equilibrium condition) For the critical parameter value α = α∗, we have an

equilibrium x = x∗ dependent on α∗ (that is, f (x∗,α∗) = 0).

(ii) (Bifurcation condition) The equilibrium x∗ has an eigenvalue λ (α∗) = 0, with no

other eigenvalues on the imaginary axis.

(iii) (Transversality condition) The eigenvalue vanishes transversally with respect to

α and so has a nonzero derivative with respect to α evaluated at (x ,α) = (x∗,α∗).

(iv) (Genericity condition) The quadratic term of the Taylor expansion of the system

restricted to the critical eigenspace is nonzero.

Let us endeavor to make these conditions more precise. In a two-dimensional

system, if we denote τ as the trace of the Jacobian at an equilibrium and ∆ as the
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determinant, then the eigenvalues satisfy the characteristic polynomial λ2−τλ+∆= 0.

Indeed, given a Jacobian








a b

c d









we have the characteristic polynomial λ2 − τλ+∆ = 0, where τ = a + d and ∆ =

ad − bc. Thus we have a simple zero eigenvalue if and only if ∆= 0 and τ 6= 0.

Transversality is equivalent to requiring that the first derivative of the restricted

vector field with respect to the bifurcation parameter does not vanish at the bifurcation

point. Genericity is equivalent to requiring that the quadratic term of the Taylor ex-

pansion of this vector field does not vanish. Hence, we need to compute our restricted

system.

Let us presume that we have a planar autonomous system ẋ = f (x ,α) where

x ∈ R2, α ∈ R, and f is smoothly dependent on x and α. Presume further that for

α = α∗, the system has the equilibrium x = x∗ with one eigenvalue λ1 = 0 and one

eigenvalue λ2 < 0. The Center Manifold Theorem implies the existence of a smooth

invariant center manifold locally defined near (x ,α) = (x∗,α∗) and tangent to the

subspace spanned by the eigenvector associated with λ1 = 0 at this point. Since the

second eigenvalue is strictly real and negative, this center manifold is attracting. We

denote the Jacobian matrix evaluated at the equilibrium as L and we write

x =
�

x1

x2

�

, q =
�

q1

q2

�

, p =
�

p1

p2

�

, f (x ,α) =
�

f1 (x ,α)
f2 (x ,α)

�

where q is the eigenvector corresponding to the annihilated eigenvalue (i.e. Lq = 0),

and p is its adjoint (L
>

p = L>p = 0 since all quantities are real).

We can without loss of generality choose q and p so that 〈p, q〉 = 1. We restrict

the system to the basis spanned by q by writing any x = yq+ u+ x∗ for some vector u
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orthogonal to p. Following Kuznetsov, [10], pp. 177, at α = α∗, the restricted system

will now have the form ẏ = a2 y2+O(y3) where

a2 =
1

2

∂ 2

∂ y2 〈p, f (yq+ x∗)〉 |(y,α)=(0,α∗)

=
1

2

*

p,
�q2

1

�

f1

�

x1 x1
+ 2q1q2

�

f1

�

x1 x2
+ q2

2

�

f1

�

x2 x2

q2
1

�

f2

�

x1 x1
+ 2q1q2

�

f2

�

x1 x2
+ q2

2

�

f2

�

x2 x2

�

+
�

�

�

�

�

(x ,α)=(x∗,α∗)

where 〈v, w〉 = v1w1 + v2w2. If a2 6= 0, the system depends generically on a2, and the

system satisfies some transversality conditions, then we obtain the topological normal

form. Define σ = sgn(a2), and let a ∈ R be a new parameter; we obtain the topological

normal form

ẏ = a+σy2+O
�

y3
�

Following Kuznetsov [10], pp. 84, 177, the transversality and genericity conditions,

respectively, are

(iii)
�

p,
∂

∂ α
f
�

yq+ x∗,α
�

�
�

�

�

�

(y,α)=(0,α∗)

6= 0

(iv) a2 =
1

2

*

p,
�q2

1

�

f1

�

x1 x1
+ 2q1q2

�

f1

�

x1 x2
+ q2

2

�

f1

�

x2 x2

q2
1

�

f2

�

x1 x1
+ 2q1q2

�

f2

�

x1 x2
+ q2

2

�

f2

�

x2 x2

�

+
�

�

�

�

�

(x ,α)=(x∗,α∗)

6= 0

where
�

fi
�

∗∗ denotes second partial derivatives. Hence, any system satisfying the

following four conditions is smoothly equivalent to the topological normal form of

the fold bifurcation:

(i) (Equilibrium) f (x∗,α∗) = 0

(ii) (Bifurcation) When (x ,α) = (x∗,α∗), ∆= 0 and τ 6= 0

(iii) (Transversality)
�

p,
∂

∂ α
f
�

yq+ x∗,α
�

�
�

�

�

�

(x ,α)=(x∗,α∗)

6= 0
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Figure 2.5: A generic unfolding of the fold-on-invariant-circle bifurcation. Figure from
[8] printed with permission from E.M. Izhikevich.

(iv) (Genericity)

*

p,
�q2

1

�

f1

�

x1 x1
+ 2q1q2

�

f1

�

x1 x2
+ q2

2

�

f1

�

x2 x2

q2
1

�

f2

�

x1 x1
+ 2q1q2

�

f2

�

x1 x2
+ q2

2

�

f2

�

x2 x2

�

+
�

�

�

�

�

(x ,α)=(x∗,α∗)

6= 0

We are also interested in a slightly different flavor of the fold bifurcation, the

fold-on-invariant-circle bifurcation, as illustrated in Figures 1.1b and 2.5.

The fold-on-invariant-circle bifurcation proceeds as the fold bifurcation, how-

ever, the the unstable manifold of the saddle connects with a stable node forming

a heteroclinic loop. The nomenclature is clear: this loop is an invariant set and is

homeomorphic to a circle. After the fold bifurcation occurs, the heteroclinic loop

becomes a limit cycle, as in Figure 2.5.

2.3.3. Andronov-Hopf Bifurcation

Presume we have some system ẋ = f (x ,α) where x ∈ R2 and α ∈ R with fixed

equilibrium x∗ = 0 for all |α| sufficiently small. Geometrically, the Andronov-Hopf

bifurcation occurs when a spiral equilibrium changes stability. However, it is a local

bifurcation, and so trajectories outside of a small neighborhood of the equilibrium re-

main unperturbed (up to smooth equivalence). For example, if an equilibrium becomes

unstable, trajectories outside of a small neighborhood of the equilibrium will still be

approaching the neighborhood. This apparent paradox is resolved with the creation of

a stable limit cycle surrounding the equilibrium, preserving the behavior beyond the

neighborhood. If an Andronov-Hopf bifurcation is associated with the (dis)appearance
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of a stable limit cycle, it is referred to as supercritical (Figure 2.6, left), and if it is

associated with the (dis)appearance of an unstable limit cycle, it is subcritical (Figure

2.6, right).

Figure 2.6: Generically unfolding Andronov-Hopf bifurcations. On left, a
generic unfolding of a supercritical Andronov-Hopf bifurcation corresponding to the
(dis)appearance of a stable limit cycle. On right, a generic unfolding of a subcritical
Andronov-Hopf bifurcation. Figure from [8] printed with permission from E.M.
Izhikevich.

The Andronov-Hopf bifurcation condition demands that two complex-conjugate

eigenvalues cross the imaginary axis. Transversality demands that the real part of these

eigenvalues vanish transversally. Genericity demands that the first Lyapunov coefficient

not vanish. As before, we wish to make these conditions more precise.

The center manifold is locally described by the critical eigenbasis, comprised of

two linearly independent eigenvectors. As before, for a 2× 2 Jacobian matrix L with

trace τ and determinant ∆, the eigenvalues of L in a two-dimensional system satisfy
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λ2−τλ+∆= 0. Further, a pair of complex conjugate eigenvalues meets the imaginary

axis if and only if τ= 0 and ∆> 0.

The Andronov-Hopf bifurcation takes the topological normal form







ṙ = τ

2
r + `1r3

θ̇ = 1
2

p

4∆−τ2+δr2

(2.2)

Further, δ describes the sensitivity of an orbit’s oscillation frequency to the square of the

distance from equilibrium, and `1 is known as the first Lyapunov coefficient, describing

the sensitivity of the radius of oscillation to the cube of that distance. The computation

of `1 and δ are often nontrivial in the general setting. We can use a convenient formula

for `1, but we will ignore δ since it is not involved in demonstrating the genericity of

the bifurcation.

Following the procedure described by Kuznetsov ([10] pp. 89-96), we compute

the genericity conditions, which demand that the first Lyapunov coefficient be non

vanishing. If it does vanish, a generalized Hopf (or Bautin) bifurcation may be occur-

ring, which is of codimension at least 2 (see Section 2.3.4). The first Lyapunov coeffi-

cient results from a series of coordinate and parameter changes, but can be computed

directly using formulas from Kuznetsov to simplify the process. For the parameter-

dependent system ẋ = f (x ,α) with equilibrium at the origin for all sufficiently small

|α| undergoing an Andronov-Hopf bifurcation when α = 0, let q(α) be an eigenvector

associated with the eigenvalue on the imaginary axis (i.e. L(α)q(α) = λ(α)q(α)), p(α)

be its adjoint (L(α)
>

p(α) = λ(α)p(α)), and define ω(α) :=
p

∆(α). Then we have

the eigenvalues
n

λ(α),λ(α)
o

= {±iω} when α = 0. Projecting any point x onto

the coordinate system afforded by q(α) and q̄(α) provides x = zq(α) + z̄q̄(α) on the

complex plane. We use symmetric multi-linear functions in the partial derivatives

with respect to z and z̄ to compute the Taylor expansion of the vector field in these
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coordinates:

gkl =

®

p(α),
∂ k+l

∂ zk∂ z̄ l f
�

zq(α) + z̄q̄(α),α
�

¸

�

�

�

�

�

(z,α)=(0,0)

(2.3)

The first Lyapunov coefficient is `1 =
�

2ω2�−1 Re
�

i g20 g11+ωg21

�

at the bi-

furcation point (following [10] and others). Checking to ensure genericity, then, is

equivalent to checking that Re
�

i g20 g11+ωg21

�

6= 0.

Hence, we have the following conditions ensuring the generic occurrence of an

Andronov-Hopf bifurcation:

(i) (Equilibrium) f (0,α) = 0 for small |α|,

(ii) (Bifurcation) τ= 0 and ∆> 0 when (x ,α) = (0,0),

(iii) (Transversality) ∂ τ

∂ α
|(x ,α)=(0,0) 6= 0

(iv) (Genericity) Re
�

i g20 g11+ωg21

�

|(x ,α)=(0,0) 6= 0

As an aside, our usage of the symmetric multi-linear functions of the partial

derivatives of z and z̄ is not concerned with linear terms. Hence, it is sufficient to

consider only the nonlinear terms in the Taylor expansion centered on the equilibrium.

Indeed, this expansion will be f (x) = Lx+F (x) where L is the Jacobian of the system,

which can be disregarded; to compute any gkl with k+ l ¾ 2, we can use F instead of

f . Indeed, for gkl , we only need terms of order k+ l in the Taylor expansion of F .

The Andronov-Hopf bifurcation is of codimension 1 as the Andronov-Hopf bi-

furcation curve is defined implicitly by one and only one parameter curve, τ = 0.

The first dimension of our topological normal form takes the form ṙ = 1
2
τr + `1r3,

where `1 is the 1st Lyapunov coefficient. If the first Lyapunov coefficient vanishes at

the bifurcation point, then genericity fails and a Bautin bifurcation of codimension at

least 2 may be occurring. In general, checking whether Lyapunov coefficients vanish
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is not trivial. We are tasked with assessing the richness of the voltage-sensitive neuron

model’s bifurcation behavior; if genericity is failed, then a candidate Bautin point has

been reached, and expected Bautin behavior will be checked numerically.

Finally, we can classify an Andronov-Hopf bifurcation as either subcritical or

supercritical depending on the sign of the first Lyapunov coefficient. Geometrically,

supercritical Andronov-Hopf bifurcations correspond to the appearance or disappear-

ance of a stable limit cycle, which occurs when sgn
�

`1

�

= −1. Otherwise, we have a

subcritical Andronov-Hopf bifurcation, corresponding to the appearance of an unstable

limit cycle when sgn
�

`1

�

=+1.

2.3.4. Bautin Bifurcation

If a dynamical system satisfies the Andronov-Hopf equilibrium and bifurcation

condition for some equilibrium and critical parameter value (x ,α) = (x∗,α∗), but fails

the genericity condition, i.e. has vanishing first Lyapunov coefficient, then the point

(x∗,α∗) is a candidate Bautin bifurcation point. To verify that a Bautin bifurcation

is occurring generically and transversally, one must compute the value of the second

Lyapunov coefficient and verify a transversality condition. Doing this for a general

system is not easy.

Any neighborhood in parameter space of a generic and transversal Bautin bifur-

cation point will contain a supercritical Andronov-Hopf bifurcation point, a subcritical

Andronov-Hopf bifurcation point, and a (global) fold-limit-cycle bifurcation point. The

subcritical Andronov-Hopf bifurcation is associated with the appearance of an unstable

limit cycle, and the supercritical Andronov-Hopf bifurcation is associated with the

appearance of a stable limit cycle, and near a Bautin point, these limit cycles appear

nested within one another. The fold-limit-cycle bifurcation occurs when the inner cycle

grows or the outer cycle shrinks, and the cycles annihilate in a fold-like bifurcation.
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Numerically verifying the presence of a Bautin bifurcation is straightforward.

We demonstrate phase portraits from each qualitatively distinct region surrounding

the candidate Bautin point. This numerically demonstrates the coexistence of stable-

unstable limit cycle pairs before a fold-limit-cycle bifurcation, the hallmark behavior

associated with the Bautin bifurcation.

2.3.5. Bogdanov-Takens Bifurcation

Geometrically, the Bogdanov-Takens bifurcation is more complicated than the

Andronov-Hopf and fold bifurcations since it is of codimension 2. The fold bifurcation

has two dynamical regimes and one degenerate case: before the two equilibria collide,

after they collide, and the degenerate case in which we have a single half-stable equi-

librium. The Andronov-Hopf bifurcation likewise has two dynamical regimes with a

degenerate border: before the spiral changes stability, after it changes stability, and the

degenerate case in which we have a neutrally stable center (a family of non-isolated

cycles). The unfolding of the Bogdanov-Takens bifurcation depends on whether the

Andronov-Hopf bifurcation in question is subcritical or supercritical.

Indeed, we have four distinct dynamical regimes with three degenerate border

cases. Figure 2.7 illustrates both the supercritical and the subcritical case. As in the

Andronov-Hopf bifurcation, the criticality is determined by the sign of a coefficient s

computed via a series of parameter, time, and coordinate changes. Let a and b be the

bifurcation parameters, and consider the subcritical Bogdanov-Takens bifurcation. Be-

ginning in region 1 of Figure 2.7 and moving counterclockwise, we begin with a stable

spiral and saddle pair of equilibria. Crossing the SHO line triggers a saddle-homoclinic

orbit in which the stable and unstable manifolds of the saddle form a homoclinic loop.

This loop pinches off in section 2 into an unstable limit cycle surrounding the stable

spiral equilibrium. An Andronov-Hopf bifurcation occurs at AH as the unstable limit

cycle shrinks and collides with the stable spiral inside, leaving an unstable spiral behind
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in region 3. Crossing from region 3 into region 4 across SN1 triggers a saddle-node

bifurcation in which the unstable spiral and the saddle collide and annihilate. In region

4, we have no equilibria, and crossing SN2 triggers another saddle-node bifurcation

giving birth to our original stable spiral and saddle pair of equilibria. The supercritical

Bogdanov-Takens bifurcation unfolds similarly, except with time reversed.

The Bogdanov-Takens (or double zero) bifurcation occurs when the system has

two zero eigenvalues. As before, we wish to make the conditions of the Bogdanov-

Takens bifurcation precise. Presume we have a planar system dependent on two pa-

rameters, ẋ = f (x ,α) with x ,α ∈ R2 where f is smoothly dependent on x and α.

Furthermore, suppose that for α = 0, the equilibrium x = 0 has two zero eigenvalues,

λ1,2 = 0. Denote the Jacobian evaluated at the equilibrium as L, its trace as τ, and its

determinant as ∆.

The Bogdanov-Takens bifurcation condition demands that both eigenvalues van-

ish so τ = ∆ = 0. Transversality demands that they vanish transversally, and so we

require the map (x ,α)> 7→
�

f (x ,α) ,τ,∆
�> to be regular (has a nonzero determinant)

at the origin. The Center Manifold Theorem implies the existence of a smooth invariant

center manifold locally defined near (x ,α) = (0,0). To discuss genericity, we project

the system onto the center manifold, or at least its linerization near the bifurcation

point, which is spanned by its critical (generalized) eigenvectors.

We project the system onto the subspace spanned by the generalized critical

eigenvectors q0 and q1 using their adjoints p1 and p0; we have Lq0 = 0 and Lq1 = q0

and that L
>

p1 = 0 and L
>

p0 = p1. Since L consists of real entries, L = L, so this

reduces to L>p1 = 0 and L>p0 = p1. These eigenvectors are also associated with the

Jordan normal form of the Jacobian matrix evaluated at the equilibrium; q0 and q1

form the columns of the passage matrix of the Jacobian to the Jordan normal form and

p0 and p1 form the rows of the inverse passage matrix. Since both eigenvalues of L are
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Figure 2.7: Generically unfolding Bogdanov-Takens bifurcation. Complete bifurcation
portrait of the Bogdanov-Takens topological normal form illustrating a generically
unfolding BT bifurcation. Image taken from [8], printed with permission from E.M.
Izhikevich.
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zero, and since L is 2× 2, the Jordan normal form for L is









0 1

0 0









Without loss of generality we can assume the generalized eigenvectors have been

normalized so that 〈p0, q0〉= 〈p1, q1〉= 1 and 〈p0, q1〉= 〈p1, q0〉= 0.

When we set y =
�y1

y2

�

and represent a point x in this coordinate system as x =

y1q0+ y2q1, we obtain







ẏ1 = 〈p0, f (y1q0+ y2q1,α)〉

ẏ2 = 〈p1, f (y1q0+ y2q1,α)〉
(2.4)

which is a system with equilibrium at the origin for α = 0. If we consider the Taylor

expansion of this system about the origin, we obtain coefficients that vary as functions

of α. Since q0 and q1 form the columns of the passage matrix of the Jacobian to the

Jordan normal form (and p0 and p1 form the rows of the inverse passage matrix), we

always have a system of the form

ẏ =









0 1

0 0









�

y1

y2

�

+
�a0+ a10 y1+ a01 y2+

1
2
a20 y2

1 + a11 y1 y2+
1
2
a02 y2

2 +O
�

‖y‖3�

b0+ b10 y1+ b01 y2+
1
2
b20 y2

1 + b11 y1 y2+
1
2
b02 y2

2 +O
�

‖y‖3
�

�

(2.5)

where each coefficient is a function of α. Furthermore, when α = 0, we have that

a0, a10, a01, b0, b10, and b01 each vanish.
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Kuznetsov [10] provides that the genericity conditions of the Bogdanov-Takens

bifurcation demands a20 + b11 6= 0, b20 6= 0. Hence, we have the following conditions

for the Bogdanov-Takens bifurcation:

(i) (Equilibrium) Equilibrium at the origin ( f (0,0) = 0)

(ii) (Bifurcation) When (x ,α) = (0, 0), the trace and determinant both vanish with

nonzero Jacobian (τ=∆= 0, L 6= 0)

(iii) (Transversality) The map (x ,α)> 7→
�

f (x ,α) ,τ,∆
�> is regular at the point (x ,α) =

(0,0) (and so has a nonzero determinant)

(iv) (Genericity) The following holds when α= 0:

(a) a20+ b11 6= 0

(b) b20 6= 0

The normal form is







ξ̇1 = ξ2

ξ̇2 = β1+ β2ξ1+ ξ2
1+σξ1ξ2

(2.6)

where σ = sgn
�

b20

�

a20+ b11

��

, and the parameters β1,β2 are computed from the

parameters of our system 2.5 in the following manner summarized by Kuznetsov [10].

Notice that we have guaranteed that σ 6= 0 due to our genericity conditions. The

parameters β1,β2 in the topological normal form are used to parameterize the saddle-

homoclinic-orbit bifurcation curve associated with a Bogdanov-Takens bifurcation point,

as discussed below. Following Kuznetsov [10], pp. 318, we take system 2.5 and reduce
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it to a nonlinear oscillator with a change of coordinates







u1 = y1

u2 = y2+ a00+ a10 y1+ a01 y2+
1
2
a20 y2

1 + a11 y1 y2+
1
2
a02 y2

2 +O
�

‖y‖3�

yielding the system







u̇1 = u2

u̇2 = g00+ g10u1+ g01u2+
1
2
g20u2

1+ g11u1u2+
1
2
g02u2

2+O
�

‖u‖3�

where each gkl is a function of α. We then perform a parameter-dependent shift:







u1 = v1+δ (α)

u2 = v2

A choice of δ (α)≈− g01(α)
g11(0)

will yield the system







v̇1 = v2

v̇2 = h00+ h10v1+
1
2
h20v2

1 + h11v1v2+
1
2
h02v2

2 +O
�

‖v‖3�

where each hkl is a smooth function of α. From here, we can compute the topological

normal form 2.6 directly. Define the following:



































A := 1
2

�

h20− h10h02

�

B := h11

µ1 := h00

µ2 := h10−
1
2
h00h02
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Then in system 2.6 we have:






β1 =
B4

A3 µ1

β2 =
B2

A2 µ2

The existence of the Bogdanov-Takens bifurcation, which is local, implies the

existence of the global saddle-homoclinic-orbit bifurcation, which is global (see section

2.4). Kuznetsov provided the following Lemma for β =
�β1

β2

�

([10] pp. 325):

Lemma 2.8. There is a unique smooth curve P corresponding to a SHO bifurcation in

system 2.6 that originates at β = 0 and has the local representation

P =
�

(β1,β2) | kβ1 =−
6

25
β2

2 + o(β2
2 ),β2 < 0

�

Moreover, for ‖β‖ small, system 2.6 has a unique limit cycle for parameter values inside

the region bounded by the Hopf bifurcation curve and the SHO bifurcation curve P, and

no cycles outside this region. This cycle is stable if σ < 0 and unstable if σ > 0.

2.4. Global Bifurcations and Non-smooth Bifurcations

Global bifurcations affect the entire state-space, rather than a single invariant set.

The existence of high-codimension (at least 2) local bifurcations of equilibria implies

the existence of global bifurcations of lower codimension; without the existence of

these local bifurcations, global bifurcations are very difficult to detect and handle

computationally. We will ignore them except in the case of the saddle-homoclinic-

orbit bifurcation (whose existence is implied by the Bogdanov-Takens bifurcation), the

fold-limit-cycle bifurcation (whose existence is implied by the Bautin bifurcation), and

the “big” saddle-homoclinic-orbit bifurcation (which occurs due to the hybrid nature of

our model).

More interestingly, perhaps, is that our model is not strictly smooth. Indeed,

we have a discontinuous reset, and so it is a hybrid system, which both “flows” and
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“jumps.” Hybrid systems exhibit more complicated behaviors that are technically not

global bifurcations, but have the same consequences as global bifurcations. For exam-

ple, the (dis)appearance of limit cycles do not always coincide with Andronov-Hopf

bifurcations. We will observe some interesting phenomena that arise due to the hybrid

nature of our model in Chapter 4.

We are not interested in interactions between the equilibria and the jump, as this

would compromise the local topological equivalence between our model and previous

models. However, the interaction between the jump, limit cycles, and the stable and

unstable manifolds of the equilibria are of interest, as these interactions maintain a

biological interpretation. Indeed, in Chapter 4 we numerically demonstrate that model

3.1 is capable of hybrid equivalents of both (global) "big" saddle-homoclinic-orbit bi-

furcations and (local) fold-on-invariant-circle bifurcations (see Figure 2.8). These

phenomena create (or destroy) stable spiking limit cycles, and the hybrid “big” SHO

and hybrid fold-on-invariant circle bifurcation-like behaviors seem to occur together in

model 3.1 ubiquitously. However, we must be careful; since our system is not strictly

smooth, we cannot classify these interactions as a bifurcation in the smooth sense.

However, the phenomena have the same ramifications as bifurcations.

Techniques are available for analyzing non-smooth bifurcations, but we do not

pursue this line of inquiry. Coombes, Thul, and Wedgewood present an interesting

analysis of non-smooth dynamics in hybrid spiking models in [2].
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Figure 2.8: Depiction of a “big” saddle-homoclinic-orbit bifurcation. The unfolding of
a “big” saddle-homoclinic-orbit bifurcation. Thanks to the discontinuous reset in our
model, we are able to observe a non-smooth analog to this bifurcation. Figure from
[8] printed with permission from E.M. Izhikevich.
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CHAPTER 3. THE MODEL AND ITS SMOOTH BIFURCATIONS

From here, we analyze the following continuous-time model; we have imple-

mented the parameter reduction as described in Chapter 1, in which I , E ∈ R:







v̇ = f (v) + u (v− E) + I

u̇ = v− u
(3.1)

We also assume that f ∈ C2(R), is convex, and has a unique minimum. Later, we

will strengthen our assumptions to presume that f ∈ C3(R). We assume convexity

because the hybrid spiking model [7] was first proposed so as to retain local topo-

logical equivalence with the Hodgkin-Huxley model near that model’s resting state

equilibrium. The dynamics in this neighborhood can be locally well-described with

convex functions. Izhikevich used quadratic functions [8], Brette and Gerstner used

exponential functions [1], and Touboul used quartics [12].

3.1. Characterization of Equilibria

Ultimately we wish to construct a bifurcation portrait; to this end, we first investi-

gate local bifurcations of equilibria. We establish the existence of at most two equilibria

and then determine the subsets of parameter space under which those equilibria lose

hyperbolicity. One equilibrium is a saddle and is hence always hyperbolic, but the other

equilibrium loses hyperbolicity in a few ways.

First we develop some tools. Certainly (v, u) = (v0, u0) is an equilibrium point if

and only if u0 = v0 and f (v0) + v0(v0 − E) + I = 0. Also, notice the Jacobian at the

equilibrium can be written

L =









f ′
�

v0

�

+ v0 v0− E

1 −1









(3.2)
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Define, for each v ∈ R, E∗(v) := f ′(v) + 2v. Since f is convex, E∗ ∈ C1(R) is strictly

increasing with d
dv

E∗ ¾ 2. Define V ∗(E) as the inverse of E∗; since E∗ ∈ C1(R), we have

that V ∗ ∈ C1(R), and since d
dv

E∗ ¾ 2, we have that d
dE

V ∗ ∈
�

0, 1
2

�

.

We shall first be interested in determining when equilibria exist, i.e. choices for E

and I when solutions to f (v)+ v(v− E)+ I = 0 exist. Define I∗(E) :=−minv∈R( f (v)+

v(v − E)); we prove in the next Lemma that this is precisely the curve dividing the

parameter space into regions with and without equilibria. Notice that v minimizes

f (v) + v(v − E) if and only if f ′(v) + 2v − E = 0, i.e. E = E∗(v) or v = V ∗(E). That is,

I∗(E) = V ∗(E)E − f (V ∗(E))− V ∗2(E).

I∗(E) admits some helpful properties: I∗(E) ∈ C2(R), I∗(E) is strictly convex with

a unique minimum, and d
dE

I∗ = V ∗(E). Indeed, the chain rule yields the following:

d

dE
I∗(E) =

d

dE
�

− f (V ∗(E))− V ∗(E)(V ∗(E)− E)
�

(3.3)

=−
�

f ′(V ∗(E)) + 2V ∗(E)− E
� dV ∗

dE
(E) + V ∗(E) (3.4)

=− (E∗(V ∗(E))− E)
dV ∗

dE
(E) + V ∗(E) (3.5)

= V ∗(E) (3.6)

Of course, since d
dE

V ∗(E) > 0, I∗ must be strictly convex. Consequently, the curve

I = I∗(E) has a minimum occurring at the value E given by dI
dE
= V ∗(E) = 0, i.e.

E = E∗(0) = f ′(0). Hence, the minimum occurs at (E, I) = ( f ′(0),− f (0)).

Next define T (v) := f ′(v) + v − 1, the trace τ of the Jacobian, and ∆(v) :=

E − E∗(v), i.e. the determinant of the Jacobian. Since E∗ ∈ C1(R) is strictly increasing

with d
dv

E∗ ¾ 2, we have that ∆ ∈ C1(R), is strictly decreasing, and d
dv
∆ ¶ −2. Further,

note that v is the minimum of f (v) + v(v − E) if and only if ∆ = 0, E = E∗(v), or

v = V ∗(E). That is, I∗(E) is our candidate fold bifurcation curve, since, for any choice

(E, I) = (E, I∗(E)) with equilibrium (v, u) = (v0, v0) will have ∆= 0.

41



Also observe that the convexity of f implies that T ∈ C1(R) and d
dv

T ¾ 1. Define

V ∗∗ as the unique root of T ; note that V ∗∗ depends solely on the properties of f . Since

all eigenvalues satisfy λ2 + τλ + ∆ = 0, notice that the second eigenvalue of V ∗ is

precisely T (V ∗). These definitions and observations lead naturally to the following

lemma:

Lemma 3.1. For E ∈ R, given model 3.1, we have a strictly convex critical input current

I∗(E) = V ∗(E)E − V ∗2(E)− f (V ∗(E)) ∈ C2(R) with a unique minimum such that:

(i) if I > I∗ (E), then the model has no equilibria,

(ii) if I = I∗ (E), then the model has a unique non-hyperbolic equilibrium, (v, u) =

(V ∗(E), V ∗(E)) with a zero eigenvalue and whose other eigenvalue is precisely

T (V ∗(E)), and

(iii) if I < I∗ (E), then the model has precisely two equilibria, (v, u) = (v−(E, I), v−(E, I))

and (v, u) = (v+(E, I), v+(E, I)) satisfying the following:

(a) the ordering v−(E, I)< V ∗(E)< v+(E, I);

(b) for a fixed E, v+(E, I) is a strictly decreasing function of I mapping (−∞, I∗(E))

onto (V ∗(E),∞) and is always a saddle; and

(c) for a fixed E, v−(E, I) is a strictly increasing function of I mapping (−∞, I∗(E))

onto (−∞, V ∗(E)).

Proof. Of course, we have already proven that I∗(E) = V ∗(E)E − f (V ∗(E))− V ∗2(E).

If I > I∗(E), then f (v) + v(v − E) + I > 0 for any v ∈ R, and hence no (v, u)

can possibly be an equilibrium. On the other hand, if I = I∗(E), then f (V ∗(E)) +

V ∗(E)(V ∗(E) − E) + I∗(E) = 0 by definition. Hence, (v, u) = (V ∗(E), V ∗(E)) is an

equilibrium. Since I = I∗(E), the determinant of the Jacobian at V ∗ is zero. The
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eigenvalues then satisfy λ2 − τλ = 0, and hence we have a zero eigenvalue, violating

hyperbolicity.

Since f ∈ C2(R) is convex with a unique minimum, so is f (x)+ x(x − E) for any

E ∈ R; such functions intersect level subsets once, twice, or never. By the definition of

I∗, if I < I∗(E), there exist two solutions which, necessarily, satisfy v−(E, I) < V ∗(E) <

v+(E, I).

Finally note that an equilibrium v0 ∈
�

v−, v+
	

must satisfy the relation f (v0) +

v0(v0− E) + I = 0 and is hence continuous. We obtain

0=
∂

∂ I
�

f (v0) + v0(v0− E) + I
�

(3.7)

= ( f ′(v0) + 2v0− E)
∂ v0

∂ I
+ 1 (3.8)

∂ v0

∂ I
=

1

E − E∗(v0)
(3.9)

which is continuous since v0 6= V ∗(E) and therefore det L 6= 0. Moreover, ∂ v−
∂ I
> 0

and ∂ v+
∂ I
< 0 since the determinant is strictly decreasing. It remains to be shown the

mappings are onto their ranges and that v+ is a saddle.

Let E ∈ R and c ¾ V ∗(E). Then define Ic,E := − f (c)− c(c − E) and note that

(E, Ic,E) will have v+(E, Ic,E) = c. Hence, the mapping v+ is onto. The same argument,

mutatis mutandis, demonstrates that the map v− is also onto.

Finally, we have that ∆(v) is strictly decreasing, vanishes at V ∗(E), v+ > V ∗, and

any equilibrium with a negative determinant is a saddle.

Observe that, if v0 6= V ∗(E) then ∂ v0

∂ E
= −v0

E−E∗(v0)
, which is continuous, although we

won’t use this fact. Also note that we are generally unconcerned with the eigenvalues

of a saddle. Finally, although we can easily classify v+ as a saddle, it is a more delicate

task to classify the behavior of v−.
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3.2. Fold Bifurcation

We have equilibrium conditions, bifurcation conditions, a transversality condi-

tion, and a genericity condition to check on our candidate bifurcation curve I∗(E),

following Section 2.3.2. Here the determinant vanishes, so − f ′(V ∗(E))−2V ∗(E)+ E =

0, but we require that the trace does not, so we require that f ′(V ∗(E))+V ∗(E)−1 6= 0.

Equivalently, we require E 6= 1+ V ∗(E). Thus, our bifurcation conditions are, for any

E ∈ R,

(i) (Equilibrium) u= v = V ∗(E)

(ii) (Bifurcation 1) I = I∗(E)

(iii) (Bifurcation 2) E 6= 1+ V ∗(E)

The transversality condition requires that the first derivative of the vector field (in

the critical eigenspace) with respect to I is nonzero. Similarly, the genericity condition

demands that the second derivative with respect to the state-space variables of the

vector field not vanish.

We have the Jacobian

L =









f (V ∗) + V ∗ V ∗− E

1 −1









and if we have a vanishing eigenvalue with eigenvector q =
�q1

q2

�

, then clearly q1 = q2.

Hence, we can choose the eigenvector associated with the vanishing eigenvalue q =
�1

1

�

with adjoint (normalized as in Section 2.3.2) p =
�p1

p2

�

= (V ∗− E + 1)−1 � 1
V ∗−E

�

. This

normalization allows us some intuition about why we require V ∗ 6= E − 1. Note that if
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the determinant vanishes, then the Jacobian is

L =









E − V ∗ V ∗− E

1 −1









and the other eigenvalue is precisely the trace, E−V ∗−1. Hence, transversality requires

that

�

p,
∂

∂ I

�

v̇

u̇

��
�

�

�

�

(v∗,v∗,I∗)

6= 0

�

p,
�

1

0

��

6= 0

1

V ∗− E + 1
6= 0

Therefore, transversality is always assured. Our genericity condition requires that

0 6=
®

p,

�

q2
1

∂ 2

∂ v2 + 2q1q2

∂ 2

∂ u∂ v
+ q2

2

∂ 2

∂ u2

�

�

v̇

u̇

�

¸

�

�

�

�

�

(V ∗,V ∗,I∗)

0 6=
®

p,
�

q2
1 f ′′ (V ∗) + 2q1q2

0

�

¸

0 6=
f ′′ (V ∗) + 2

V ∗− E + 1

Certainly convexity provides f ′′ + 2 ¾ 2. Hence, genericity is always satisfied,

proving the following Lemma. We will see that if this exceptional condition is violated,

then a Bogdanov-Takens bifurcation occurs.

Lemma 3.2. Let E ∈ R. If E 6= 1+ V ∗ then a generic and transversal fold bifurcation

occurs at the point (v, u, E, I) = (V ∗(E), V ∗(E), E, I∗(E)).
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3.3. Andronov-Hopf Bifurcation

We now turn our attention to the Andronov-Hopf bifurcation, when the trace van-

ishes transversally with a positive determinant, following Section 2.3.3. In this section,

we assume f ∈ C3(R) so as to allow discussion of the first Lyapunov coefficient. The

Andronov-Hopf bifurcation is associated with a spiral equilibrium changing stability;

since v+ is always a saddle, this must occur at v−(E, I) or V ∗(E). However, V ∗(E) is

associated with the fold bifurcation (or a bifurcation with higher codimension when

genericity fails). Hence, we only concern ourselves with v−(E, I). This can only exist

for I < I∗(E). Of course, ∆ > 0 in this region following from the monotonicity of

E − E∗(v). We, again, begin with a few introductory tools.

To analyze an equilibrium (v, u) = (v−, v−), observe that the real part of the

eigenvalue has the same sign as the trace, i.e. Sgn
�

T (v−(E, I))
�

= Sgn (Re(λ)). Hence,

since T (v) is monotonically increasing and T (V ∗∗) = 0, an equilibrium is stable if and

only if v−(E, I) < V ∗∗. Recall that v−(E, I) maps onto (−∞, V ∗(E)) and V ∗(E) ranges

from −∞ to ∞, following Lemma 3.1. Hence, for any c ∈ R, the contour v−(E, I) = c

exists and is well-defined in parameter space. Indeed, since v− is an equilibrium, this

curve satisfies the relation I = cE− c2− f (c). We make some remarks about these lines

through parameter space.

For any c ∈ R, the curve I∗(E) intersects the line I = cE − c2− f (c) at the point

(E, I) = (E∗(c), I∗(E∗(c))) =
�

f ′(c) + 2c, c2− f (c) + c f ′(c)
�

Furthermore, d
dE

I∗(E) |E=E∗(c)= V ∗(E∗(c)) = c, and the curve I∗(E) is strictly convex

(see Lemma 3.1). Hence, each of these lines is beneath the curve I∗(E) and is tangent

to that curve at the point E = E∗(c). Since I∗(E) is strictly convex following Lemma

3.1, the tangent line lies entirely below I∗(E) except at the point of tangency. The point
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of tangency therefore divides the tangent line into two open half-lines with E < E∗(c)

and E > E∗(c), each of which lies entirely below I∗(E).

Lemma 3.3. Let c ∈ R and define Lc as the right half-line I = cE− c2− f (c) defined on

E > E∗(c). The family L :=
�

Lc | c ∈ R
	

partitions the region D := {(E, I) | I < I∗(E)}.

Proof. We observed that each half-line is strictly beneath I∗(E). Hence, ∪c∈RLc ⊆ D. Let

(E, I) ∈ D. By Lemma 3.1, there exists two equilibria, v−(E, I) and v+(E, I). Certainly

(E, I) ∈ Lv−(E,I). Indeed, I = v−(E, I)E − v−(E, I)2 − f (v−(E, I)) and v−(E, I) < V ∗(E),

we have that E∗(v−(E, I)) < E. So (E, I) is on at least one half-line in L , in particular,

Lv−(E,I). Thus, D = ∪c∈RLc. It remains to be shown that no point (E, I) can be on two

distinct half-lines Lv−(E,I) and Lc.

To this end, let (E, I) ∈ D on Lv−(E,I) as above, and also assume that (E, I) ∈ Lc

for some c 6= v−(E, I). Then I = cE − c2− f (c) and E > E∗(c). However, f (x) + x(x −

E) + I = 0 has only two possible solutions, v−(E, I) and v+(E, I). Since c 6= v−(E, I),

we conclude c = v+(E, I). However v+(E, I) > v∗(E), so E∗(v+(E, I)) > E, which is a

contradiction. Hence, each point (E, I) ∈ D is on one and only one half-line Lv−(E,I) ∈ L ,

and L must therefore partition D.

We pause to remark about the transition between a node and a spiral. First,

this transition does not correspond to a loss in hyperbolicity, i.e. this transition is

not a bifurcation transition. However, we can divide the region I < I∗(E) into two

subregions, one in which v− is a node, and one in which v− is a spiral in the following

manner. Recall that any eigenvalue λ satisfies λ2−τλ+∆= 0 where τ is the trace and

∆ is the determinant, and for any c ∈ R, the equilibrium v− = c exists and corresponds

to Lc, the open half-line I = cE − c2 − f (c) in parameter space. Recall that the

family
�

Lc | c ∈ R
	

partitions I < I∗(E) by Lemma 3.3. Further, for this equilibrium,

τ = f ′(c) + c − 1 and ∆ = E − E∗(c). Hence, the eigenvalues for v− = c are real (i.e.

v− is a node) if 1
4
( f ′(c) + c − 1)− (E − E∗(c)) > 0, and the eigenvalues are complex
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conjugate (i.e. v− is a spiral) if 1
4
( f ′(c)+ c−1)−(E−E∗(c))< 0. For each c ∈ R, define

the discriminant Ec := 1
4
( f ′(c) + c − 1)2+ E∗(c). It is clear, then, that on each half-line

Lc, the equilibrium is a node for any E∗(c)< E < Ec and a spiral for any E > Ec. Hence,

we can parametrically represent a point (E, I) on the spiral-node transition curve as

E = Ec, I = cE − c2− f (c) for any c ∈ R.

Now, reconsider the family of half-lines. A remarkable fact about these half-lines

is that the trace T (v) is a constant on each half-line. Indeed, let (E, I) be an ordered

pair on some half-line Lc; then v− = c and T (v−) = f ′(c) + c − 1. That is, by defining

S :=
�

Lc | T (c)< 0
	

and U :=
�

Lc | T (c)> 0
	

, we see that v− is stable in the region

RS = ∪Lc∈S Lc and unstable in the region RU = ∪Lc∈U Lc. Further, there always exists a

unique equilibrium V ∗∗ with T (V ∗∗) = 0 and we always have a candidate Andronov-

Hopf half-line I = V ∗∗E−V ∗∗2− f (V ∗∗). Observe that the half-line LV ∗∗ includes the point

(E∗(V ∗∗), I∗(E∗(V ∗∗))) which is not an allowable point on the candidate Hopf curve

since the determinant is precisely zero on I∗(E). Observe that the node-spiral transition

curve, which divides the region I < I∗(E) into the node- and spiral subregions, will

also divide RS and RU , so the region I < I∗(E) can (in general) be divided into four

subregions, corresponding to stable nodes, stable spirals, unstable nodes, and unstable

spirals.

The second bifurcation condition demands that we have a positive determinant,

so we require that E > E∗(V ∗∗). Of course, E∗(V ∗∗) = f ′(V ∗∗) + 2V ∗∗, and since V ∗∗ is

the point at which the trace vanishes, we have that f ′(V ∗∗) = 1− V ∗∗. Thus, E∗(V ∗∗) =

1+ V ∗∗.

Thus, the candidate Hopf curve always exists as precisely the half-line I∗∗(E) =

V ∗∗E − V ∗∗2− f (V ∗∗) where E > 1+ V ∗∗. That is, the Andronov-Hopf conditions are:

(i) (Equilibrium) v = u= V ∗∗

(ii) (Bifurcation 1) I∗∗ = V ∗∗E − V ∗∗2− f (V ∗∗)

48



(iii) (Bifurcation 2) 1+ V ∗∗ < E

In Section 2.3.3, we lay out the general method of checking transversality and gener-

icity of the Andronov-Hopf bifurcation; herein, we recapitulate that method for our

specific model. To check transversality, we require that the trace must vanish transver-

sally as we vary our bifurcation parameter, I . That is, we require that

0 6=
∂

∂ I
�

f ′ (v) + v− 1
�

|v=V ∗∗

0 6=
�

f ′′ (V ∗∗) + 1
�

�

∂ v

∂ I

�

|v=V ∗∗

Convexity yields that f ′′+ 1¾ 1 and we have seen that ∂ v±
∂ I

is continuous and nonzero

in this region since ∆> 0. Thus, transversality is always satisfied, and we only need to

demonstrate genericity.

The Andronov-Hopf bifurcation occurs generically if and only if the first Lyapunov

coefficient is nonvanishing. This coefficient has the same sign as Re
�

i g20 g11+ωg21

�

6= 0, where ω =
p
∆ and each gkl is defined as in Equation 2.3 in Section 2.3.3. We

begin by changing parameters I = J+ I∗∗ so that the Andronov-Hopf bifurcation occurs

with parameter J = 0. This yields the system of differential equations







v̇ = f (v) + uv− Eu+ I∗∗+ J

u̇ = v− u
(3.10)

Since I∗∗ =− f (V ∗∗)− V ∗∗2+ EV ∗∗, we can rewrite this as







v̇ =
�

f (v)− f (V ∗∗)
�

+
�

uv− V ∗∗2
�

+ E [V ∗∗− u] + J

u̇ = v− u
(3.11)
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in which each term in square brackets vanishes at the point (v, u) = (V ∗∗, V ∗∗), and

for which the equilibrium is at this point for J = 0. We make a parameter-dependent

change of coordinates






v = x + X (J)

u = y + Y (J)
(3.12)

such that X (0) = Y (0) = V ∗∗ yielding the system of differential equations























ẋ =
�

f (x + X (J))− f (V ∗∗)
�

+
�

(x + X (J))(y + Y (J))− V ∗∗2
�

+E
�

V ∗∗− y − Y (J)
�

+ J

ẏ = x − y + X (J)− Y (J)

(3.13)

The Implicit Function Theorem allows us to make a choice for X (J) and Y (J) such

that the resulting system has an equilibrium at the origin for all sufficiently small

|J |. However, if this has equilibrium at the origin for all sufficiently small |J |, then

inspection of ẏ reveals that Y (J) = X (J) for all sufficiently small |J |. Define f̂ (x) to be

the (parameter-dependent) function f̂ (x) := f (x + X (J))− f ′(X (J))x − f (X (J)). It is

easily seen that f̂ ∈ C3(R), is convex, has a unique minimum, has no linear terms, and

passes through the origin when J = 0. Furthermore, f̂
′′
(x) = f

′′
(x + X (J)). We obtain

the system























ẋ = f̂ (x) +
�

(x + X (J))(y + X (J))− V ∗∗2
�

+ E
�

V ∗∗− y − X (J)
�

+ f ′(X (J))x + f (X (J))− f (V ∗∗) + J

ẏ = x − y

(3.14)
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Note that the Jacobian, L, evaluated at the equilibrium (i.e. the origin), is now

L =









f ′(X (J)) + X (J) X (J)− E

1 −1









.

Let q =
�q1

q2

�

be an eigenvector so that Lq = λq and p =
�p1

p2

�

be its adjoint, where λ, q,

and p each depend on J . Then we have

q =
�

1+λ
1

�

p =
1

2Im(λ)

�

i

−i(1+λ)

�

Let F
�x

y

�

be the nonlinear components of the vector field governing the model 3.14:

F
�

x

y

�

=
�

F1

�

x , y
�

F2

�

x , y
�

�

=
�

x y + f̂ (x)
0

�

We desire to compute F(zq+ z̄q̄) and find its inner product with p before taking higher

order derivatives. Since the second dimension of F is zero, we only need the first

component of p and F . We have:

〈p, F(zq+ z̄q̄)〉=
−i

2Im(λ)

�

(1+λ)z2+ 2zz̄+ (1+ λ̄)z̄2+ f̂
�

(1+λ)z+ (1+ λ̄)z̄
��

(3.15)

Recall from Equation 2.3 that gkl =
D

p, ∂ k+l

∂ zk∂ z̄ l F
�

zq+ z̄q̄
�

E
�

�

�

α=α∗,z=0
. Further recall

that when J = 0, we have that X (0) = V ∗∗ and λ = iω. We are primarily interested

in the second and third derivatives so as to obtain Re(i g20 g11+ωg21). To this end, we
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compute using Equation 3.15 and recalling that f̂ ′′(0) = f ′′(V ∗∗):

∂ 2

∂ z2 F1

�

zq+ z̄q̄
�

= 2(1+λ) + (1+λ)2 f̂ ′′
�

(1+λ)z+ (1+ λ̄)z̄
�

(3.16)

g20 =
−i

2ω

�

2(1+ iω) + (1+ iω)2 f ′′(V ∗∗)
�

(3.17)

Similarly, we obtain:

∂ 2

∂ z∂ z̄
F1

�

zq+ z̄q̄
�

= 2+ (1+λ)(1+ λ̄) f̂ ′′
�

(1+λ)z+ (1+ λ̄)z̄
�

g11 =
−i

2ω

�

2+ (1+ω2) f ′′ (V ∗∗)
�

(3.18)

∂ 3

∂ z2∂ z̄
F1

�

zq+ z̄q̄
�

= (1+λ)2(1+ λ̄) f̂ ′′′
�

(1+λ)z+ (1+ λ̄)z̄
�

g21 =
−i

2ω
(1+ω2)(1+ iω) f ′′′(V ∗∗) (3.19)

We obtain:

Re
�

i g20 g11+ωg21

�

=
1

2ω
(1+ f ′′(V ∗∗))(2+ (1+ω2) f ′′(V ∗∗)) +

ω

2
(1+ω2) f ′′′(V ∗∗)

(3.20)

Hence, the first Lyapunov coefficient vanishes if and only if

0=
�

f ′′(V ∗∗) + 1
�

�

(1+ω2) f ′′(V ∗∗) + 2
�

+ (1+ω2)ω2 f ′′′(V ∗∗) (3.21)

More to the point, ω2 = E − V ∗∗− 1 here; this boils down to the following:

0=
�

f ′′(V ∗∗) + 1
��

2+ (E − V ∗∗) f ′′(V ∗∗)
�

+ (E − V ∗∗)(E − V ∗∗− 1) f ′′′(V ∗∗) (3.22)
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Hence, if f ′′′(V ∗∗) < 0 then an Andronov-Hopf bifurcation may lose genericity as we

vary E. Further, this formula is quadratic in E, and hence will vanish at most twice

as we vary E. Consequently, the Andronov-Hopf bifurcation can lose genericity for at

most two points on the half-line LV ∗∗ corresponding to the roots of 3.22 in E. All that

remains is to study the criticality which depends on the sign of Re(i g20 g11 +ωg21),

given by Equation 3.20, as described in Section 2.3.3; this informs our analysis of

the limit cycles associated with the Andronov-Hopf bifurcation. Of course, it follows

immediately from the definition of the criticality of the Andronov-Hopf bifurcation that

if this sign is positive, then we have a subcritical bifurcation, and vice versa.

Hence, we proved the following lemma:

Lemma 3.4. Let V ∗∗ ∈ R be the unique solution to f ′(x) + x − 1 = 0. If E > 1+ V ∗∗

and I∗∗(E) = V ∗∗E − V ∗∗2− f (V ∗∗) and

0 6=
�

f ′′(V ∗∗) + 1
��

2+ (E − V ∗∗) f ′′(V ∗∗)
�

+ (E − V ∗∗)(−1+ E − V ∗∗) f ′′′(V ∗∗) (3.23)

then an Andronov-Hopf bifurcation occurs at the point (v, u, E, I) = (V ∗∗, V ∗∗, E, I∗∗(E))

which is subcritical (respectively supercritical) if the sign of the right side of Equation

3.23 is positive (negative).

3.4. Bogdanov-Takens Bifurcation

The Bogdanov-Takens bifurcation occurs when the fold and Andronov-Hopf bi-

furcations occur together; we obtained in Sections 3.2 and 3.3 the fold and Hopf

conditions, and in Section 2.3.5, we lay out the general method of checking genericity

and transversality of a Bogdanov-Takens bifurcation. Herein, we check the specific

model of choice. Define Ê := E∗(V ∗∗) and Î := I∗(E∗(V ∗∗)). Any candidate Bogdanov-

Takens point has vanishing trace and determinant; to this end, let (v, u) be a candidate

Bogdanov-Takens point. Since the trace vanishes, v = V ∗∗ is the equilibrium and since
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the determinant vanishes, I = I∗(E). That is, E = Ê and I = Î , yielding (v, u) =

(V ∗∗, V ∗∗) with parameters (E, I) = (Ê, Î).

If f ′(V ∗∗) = 1 − V ∗∗ then Ê = f ′(V ∗∗) + 2V ∗∗ = 1 + V ∗∗. This also yields that

Î = V ∗∗ Ê − V ∗∗2 − f (V ∗∗) = V ∗∗ − f (V ∗∗). Hence, our bifurcation and equilibrium

conditions of interest are the following:

(i) (Equilibrium) (v, u) = (V ∗∗, V ∗∗)

(ii) (Bifurcation 1) E = Ê = 1+ V ∗∗

(iii) (Bifurcation 2) I = Î = V ∗∗− f (V ∗∗)

and, since both the trace and the determinant vanish at this equilibrium, the Jacobian

evaluated at this equilibrium becomes

L =









1 −1

1 −1









.

We begin checking genericity and transversality by making the following change of

coordinates and parameters:

v = x1+ V ∗∗, I = a1+ Î

u= x2+ V ∗∗, E = a2+ Ê

This yields the system of differential equations:







ẋ1 = f (x1+ V ∗∗)− f (V ∗∗) + x1 x2+ V ∗∗x1− (1+ a2)x2+ (a1− a2V ∗∗)

ẋ2 = x1− x2

(3.24)
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Here we write f (x1 + V ∗∗) = f (V ∗∗) + f ′(V ∗∗)x1 +
f ′′(V ∗∗)

2
x2

1 + g(x1) for some g(x1) =

O(x3
1). Since f ′(V ∗∗) + V ∗∗ = 1, we obtain







ẋ1 = g
�

x1

�

+ f ′′(V ∗∗)
2

x2
1 + x1 x2+ x1− (1+ a2)x2+ (a1− a2V ∗∗)

ẋ2 = x1− x2

(3.25)

We now have the Jacobian

L =









g ′(x1) + f ′′(V ∗∗)x1+ x2+ 1 x1− 1− a2

1 −1









=









f ′(x1+ V ∗∗)− f ′(V ∗∗) + x2+ 1 x1− 1− a2

1 −1









(3.26)

To demonstrate transversality and genericity, we must check a few things. First,

we must verify the Jacobian is nonzero at the bifurcation point. Certainly this is the

case since the bottom row is nonzero. Next, we must check regularity of the following

map evaluated at the bifurcation point:





















x1

x2

a1

a2





















7→





















ẋ1

ẋ2

τ(L)

∆(L)
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x1

x2

a1

a2





















7→





















g
�

x1

�

+ f ′′(V ∗∗)
2

x2
1 + x1 x2+ x1− (1+ a2)x2+ (a1− a2V ∗∗)

x1− x2

f ′(x1+ V ∗∗)− f ′(V ∗∗) + x2

f ′(V ∗∗)− f ′(x1+ V ∗∗)− x1− x2+ a2





















This is equivalent to verifying that the following determinant is nonzero:

0 6=

�

�

�

�

�

�

�

�

�

�

�

�

�

g ′(x1) + f ′′(V ∗∗)x1+ x2+ 1 1 f ′′(x1+ V ∗∗) −( f ′′(x1+ V ∗∗) + 1)

x1− (1+ a2) −1 1 −1

1 0 0 0

−(x2+ V ∗∗) 0 0 1

�

�

�

�

�

�

�

�

�

�

�

�

�

0 6=

�

�

�

�

�

�

�

�

�

�

1 f ′′(x1+ V ∗∗) −( f ′′(x1+ V ∗∗) + 1)

−1 1 −1

0 0 1

�

�

�

�

�

�

�

�

�

�

0 6=

�

�

�

�

�

�

�

1 f ′′(x1+ V ∗∗)

−1 1

�

�

�

�

�

�

�

6= 1+ f ′′(x1+ V ∗∗)

Of course, this follows from convexity, i.e. f ′′ + 1 ¾ 1. All that remains is to check

genericity.

We have the eigenvector q0 =
�1

1

�

, its generalized eigenvector q1 =
�2

1

�

and their

adjoints p0 =
�−1

2

�

and p1 =
� 1
−1

�

, normalized as in Section 2.3.5. We project system

3.25 onto the coordinate system afforded by q0 and q1 by writing
�x1

x2

�

= y1q0 + y2q1.
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This yields the system:



































ẏ1 = y2+ (a2V ∗∗− a1) + a2 y1+ a2 y2−
1
2
(2+ f ′′(V ∗∗))y2

1 − (3+ 2 f ′′(V ∗∗))y1 y2

−1
2
(4+ 4 f ′′(V ∗∗))y2

2 + g(y1+ 2y2)

ẏ2 = a1− a2V ∗∗− a2 y1− a2 y2+
1
2
(2+ f ′′(V ∗∗))y2

1 + (3+ 2 f ′′(V ∗∗))y1 y2

+1
2
(4+ 4 f ′′(V ∗∗))y2

2 + g(y1+ 2y2)
(3.27)

Using the notation from Section 2.3.5, we have ẏ1 = y2 +
∑

j,k¾0 a jk y j
1 yk

2 and

ẏ2 =
∑

j,k¾0 b jk y j
1 yk

2 , yielding the genericity conditions:

a20+ b11 = (−2− f ′′(V ∗∗)) + (3+ 2 f ′′(V ∗∗)) = f ′′(V ∗∗) + 1 6= 0

b02 = 4(1+ f ′′(V ∗∗) 6= 0

which are both guaranteed by the convexity of f . We do not compute the saddle-

homoclinic orbit curve with this level of generality. Hence, we have proven the follow-

ing lemma:

Lemma 3.5. Let V ∗∗ be the unique root of f ′(x)+x−1= 0, let I = Î = V ∗∗− f (V ∗∗), let

E = Ê = 1+ V ∗∗. Then a generic and transversal Bogdanov-Takens bifurcation occurs

at the point (v, u, E, I) = (V ∗∗, V ∗∗, Ê, Î).

Observe that the genericity and transversality of this bifurcation implies that the

first Lyapunov coefficient at the Bogdanov-Takens point is always nonzero; hence, the

Bogdanov-Takens bifurcation and the Bautin bifurcation never occur together.

3.5. Bifurcation Portrait

We have established the following theorem:
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Theorem 3.6. Consider model 3.1 with f ∈ C3(R), convex, with a unique minimum.

Define I∗(E) := V ∗(E)E− (V ∗(E))2− f (V ∗(E)). Let V ∗∗ be the root of f ′(v)+ v = 1 and

define Ê := V ∗∗+ 1, Î := I∗(V ∗∗). Then:

(1) I = I∗(E) ∈ C2(R) is strictly convex, has a unique minimum (E, I) = ( f ′(0),− f (0))

and is such that:

(i) if I > I∗ (E), then the model has no equilibria,

(ii) if I = I∗ (E), then the model has a unique non-hyperbolic equilibrium, v =

V ∗(E) with a zero eigenvalue whose other eigenvalue is precisely T (V ∗(E)),

and

(iii) if I < I∗ (E), then the model has precisely two equilibria, v−(E, I) < V ∗(E) <

v+(E, I) satisfying the following.

(a) for a fixed E, v−(E, I) is strictly increasing function of I from (−∞, I∗(E))

onto (−∞, V ∗(E));

(b) for a fixed E, v+(E, I) is strictly decreasing function of I from (−∞, I∗(E))

onto (V ∗(E),∞); and

(c) the equilibrium (v, u) = (v+(E, I), v+(E, I)) is always a saddle.

(2) For each c ∈ R, the half-line Lc defined by I = cE − c2 − f (c) for E > E∗(c)

is tangent to I = I∗(E) when E = E∗(c). Furthermore, the family of half-lines
�

Lc | c ∈ R
	

partitions the region {(E, I) | E ∈ R, I < I∗(E)}.

(3) If E 6= Ê and I = I∗(E) then a generic and transversal fold bifurcation occurs at the

point (v, u, E, I) = (V ∗(E), V ∗(E), E, I∗(E)).
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(4) If E > Ê and I = I∗∗(E) := V ∗∗(E − Ê) + Î (the half-line LV ∗∗), and if

0 6=
�

f ′′(V ∗∗) + 1
��

(E − V ∗∗) f ′′(V ∗∗) + 2
�

+ (E − V ∗∗)(−1+ E − V ∗∗) f ′′′(V ∗∗)

(3.28)

then an Andronov-Hopf bifurcation occurs at (v, u, E, I) = (V ∗∗, V ∗∗, E, I∗∗(E)). This

bifurcation is subcritical when Equation 3.28 is positive and supercritical when

Equation 3.28 is negative. This condition can fail at most twice for E > Ê, yielding

up to two candidate Bautin bifurcation points.

(5) Finally, if E = Ê and I = Î , then a generic and transversal Bogdanov-Takens

bifrucation occurs at the point (v, u, E, I) = (V ∗∗, V ∗∗, Ê, Î).

Theorem 3.6 also yields the existence of at least one global bifurcation curve, in

particular a saddle-homoclinic-orbit bifurcation curve implied by the Bogdanov-Takens.

In order to verify the genericity of the candidate Bautin bifurcation points, stronger

assumptions are required of f as well as a much more extensive analysis. In particular,

we would require that f ∈ C5(R) in order to compute the second Lyapunov coefficient.

This is beyond the scope of this analysis. However, if this Bautin bifurcation were

to be verified to be generic, this would also imply the existence of a fold-limit-cycle

bifurcation.

We have enough information to develop a generic local bifurcation portrait. In-

deed, the saddle-node curve has the parameterization

E = E∗(c), I = I∗(E) = cE − c2− f (c), c ∈ R
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which is always convex with unique minimum at ( f ′(0),− f (0)). The Andronov-Hopf

curve is the half-line

¦

(E, I) | I = V ∗∗E − V ∗∗2− f (V ∗∗), E ¾ E∗(V ∗∗)
©

and we can parametrically represent the spiral-node transition curve

E =
1

4
( f ′(c) + c− 1)2+ E∗(c), I = cE(c)− c2− f (c), c ∈ R.

This, together with up to two Bautin bifurcation points on the Andronov-Hopf line,

yields a bifurcation diagram as in Figure 3.1.

Note, however, that the spiral-node transition curve is not properly a bifurcation

curve as it is not related to loss of hyperbolicity, i.e. eigenvalues crossing the imaginary

axis. Further note that while we have some information about the shape of the fold-

and Andronov-Hopf bifurcation curves, the shape of the spiral-node transition curve is

sensitive to our choice of f and our analysis has not revealed much information about

its properties.
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Figure 3.1: Partition of parameter space via bifurcation curves in general model 3.1.
In region 1, the equilibrium (v, u) = (v−(E, I), v−(E, I)) is a stable node. In region
2, v− is a stable spiral. In region 3, v− is an unstable spiral. In region 4, v− is an
unstable node, and in region 5, no equilibria exist whatsoever. Point BT denotes the
Bogdanov-Takens point, whose existence is always assured, and points Bau denote the
candidate Bautin bifurcation points, of which there are at most two. The curves SN1

and SN2 denote the fold bifurcation curves, and the candidate Bautin points lie on the
Andronov-Hopf bifurcation line, Hp f , which is tangent with the the fold bifurcation
curve at the Bogdanov-Takens point. The spiral-node transition curve is denoted Res.
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3.6. Examples

With this theorem in hand, we provide a few examples. Both have very similar

spike activation functions f (x), and yet have very different Hopf behaviors.

Example 3.7. Let f (x) = x4+ x . Then E∗(v) = 4v3+2v+1 and if we define γ(E) such

that

γ3(E) :=−9+ 9E +
p

105− 162E + 81E2

then V ∗(E) = γ(E)/ 3
p

72− ( 3
p

3γ(E))−1 and I∗(E) = V ∗(E)E−V ∗2(E)−V ∗4(E)−V ∗(E).

We apply the results of Theorem 3.6. The critical input current curve I = I∗(E)

has a unique minimum at the point (E, I) = ( f ′(0),− f (0)) = (1, 0). Notice that V ∗∗,

the unique root of f ′(v)+ v−1= 0, is precisely V ∗∗ = 0. For E 6= V ∗∗+1= 1, a generic

fold bifurcation occurs at the point (v, u, E, I) = (V ∗(E), V ∗(E), E, I∗(E)). Furthermore,

E∗(V ∗∗ = 1 and I∗(E∗(V ∗∗)) = 0. The Andronov-Hopf bifurcation curve is the open

half-line I = 0 for E > 1.

If E > 1, then an Andronov-Hopf bifurcation occurs at the point (v, u, E, I) =

(0, 0, E, 0). Furthermore, f ′′(V ∗∗) = f ′′′(V ∗∗) = 0, and so the sign of 3.23 is always

positive, and the Andronov-Hopf bifurcation is always subcritical.

Finally, a generic and transversal Bogdanov-Takens bifurcation occurs at the point

(v, u, E, I) = (0, 0,1, 0). This implies the existence of a smooth saddle-homoclinic-orbit

bifurcation curve. Following the procedure in Chapter 2 and the equation in Lemma

2.8, we use Mathematica to obtain the local approximation to the saddle-homoclinic

orbit curve

I(E) =
1

888

�

84− 109E + 5
p

−144+ 120E + 49E2
�

+ o((E − 1)2) (3.29)

We investigate the accuracy of this curve by numerically finding SHO bifurcation

points; we plot the approximate curve as a dashed blue line and the numerically-
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verified “true” SHO bifurcation points as solid purple points on Figure 3.2. Near the

Bogdanov-Takens point, the approximation curve is above the true SHO bifurcation

curve. At some point near E ≈ 2.8, the approximate SHO curve and the true SHO

bifurcation curve intersect. It numerically appears that for any greater value of E, the

approximate SHO bifurcation curve is below the true SHO bifurcation curve in (E, I)-

plane. For values E > 5.5, the approximation gets progressively worse. We summarize

our numerical results in Table 3.2.

Figure 3.2 shows the partition of parameter space into regions of distinct dynam-

ical behavior, as well as particular (E, I) ordered pairs of interest and the spiral-node

transition curve. Figure 3.3 shows representative phase portraits, associated nullclines,

separatrices, and equilibria from the three regions of richest behaviors. Parameter

values used to generate those figures can be found in Table 3.1, and are plotted on

Figure 3.2.
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Point Parameter E Parameter I
A 6.5 −0.192
B 6.75 −0.096
C 6.5 0.384

Table 3.1: Parameter values used to generate Figure 3.3 in Example 3.7.

Figure 3.2: Complete partition of parameter space for Example 3.7. We include some
other interesting features. Local bifurcation curves (resp. points) appear as blue solid
lines (resp. points): fold bifurcation curve SN1 and SN2, Andronov-Hopf bifurcation
half-line AH, and Bogdanov-takens point BT . The saddle-node non-bifurcation tran-
sition curve appears as the purple solid line Res. The points representing parameter
values used to generate phase portraits in Figure 3.3 appear as red points A, B, and C ,
whose numerical values are reported in Table 3.1. The approximate SHO bifurcation
curve from Equation 3.29 appears as a blue dashed line and numerical, hand-tuned,
“true” SHO bifurcation points appear as purple points. The numerical values of the
“true” SHO points are reported in Table 3.2 and compared with the approximate SHO
bifurcation curve.

Example 3.8. Although this Example has a similar spike activation function f (x) to

the previous Example, the behavior is much more rich. The Example does exhibit a

candidate Bautin bifurcation, as well as a saddle-homoclinic-orbit bifurcation above

the Andronov-Hopf line. Let f (x) = x4 + 6x . Then E∗(v) = 4v3 + 2v + 6, and if we
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(a) Stable spiral equilibrium

(b) Unstable limit cycle around stable spiral equilib-
rium

(c) Unstable spiral equilibrium

Figure 3.3: Depiction of Example 3.7 undergoing bifurcation cascade. Example 3.7
displaying the expected behavior from a Bogdanov-Takens bifurcation. In figure (a),
the model is near a saddle-homoclinic-orbit bifurcation for (E, I) = (6.5,−0.192) (point
A on Figure 3.2), and displays a single stable spiral equilibrium. In figure (b), the model
exhibits an unstable limit cycle surrounding a stable equilibrium near a subcritical
Andronov-Hopf bifurcation for (E, I) = (6.75,−0.096) (point B on Figure 3.2). In
figure (c), the model has undergone a subcritical Andronov-Hopf bifurcation and only
an unstable equilibrium remains for (E, I) = (6.5,0.384) (point C on Figure 3.2).
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E IAPX ISHO Error = ISHO− IAPX

1.5 −0.021 −0.038 −0.017
2.5 −0.091 −0.105 −0.014
3.5 −0.168 −0.136 0.032
4.5 −0.248 −0.156 0.092
5.5 −0.329 −0.175 0.154
6.5 −0.410 −0.192 0.218

Table 3.2: Accuracy of SHO approximation in Example 3.7. For each value of E, we list
the expected values IAPX for input current I that triggers an SHO bifurcation according
to our approximation in Equation 3.29. We compared this approximation to measured
“true” SHO currents ISHO discovered by hand-tuning, and we list the error ISHO − IAPX

for each value of E.

define γ(E) such that

γ3(E) =−54+ 9E +
p

2940− 972E + 81E2

then V ∗(E) = γ(E)/ 3
p

72−( 3
p

3γ(E))−1 and I∗(E) = V ∗(E)E−V ∗2(E)−V ∗4(E)−6V ∗(E).

We apply the results of Theorem 3.6. The critical input current curve I = I∗(E)

has a unique minimum at the point (E, I) = ( f ′(0),− f (0)) = (6, 0). Notice that V ∗∗,

the unique root of f ′(v)+v−1= 0, is precisely V ∗∗ =−1. For E 6= V ∗∗+1= 0, a generic

fold bifurcation occurs at the point (v, u, E, I) = (V ∗(E), V ∗(E), E, I∗(E)). Furthermore,

E∗(V ∗∗ = 0 and I∗(E∗(V ∗∗)) = 4. The Andronov-Hopf bifurcation curve is the open

half-line I = 4− E for E > 0.

It remains to check the first Lyapunov coefficient. Indeed, f ′′(V ∗∗) = 12 and

f ′′′(V ∗∗) =−24, yielding

sgn(`1) = sgn
��

f ′′(−1) + 1
��

(E + 1) f ′′(−1) + 2
�

+ E(E + 1) f ′′′(−1)
�

(3.30)

= sgn (13(12E + 14)− 24(E + 1)E) (3.31)
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One root occurs for E < 0, but the other root occurs when E = 33+
p

2181
12

≈ 6.64;

the Andronov-Hopf bifurcation loses genericity at this point. Further, for any E <

33+
p

2181
12

, the Andronov-Hopf bifurcation is subcritical, corresponding to the appearance

of an unstable limit cycle, and for any E > 33+
p

2181
12

, the Andronov-Hopf bifurcation is

supercritical, corresponding to the appearance of a stable limit cycle. This implies the

existence of a candidate Bautin bifurcation point at

(v, u, E, I) = (−1,−1,
33+

p
2181

12
, 4−

33+
p

2181

12
)

Thus, if E ∈ (0, 33+
p

2181
12

) then a subcritical Andronov-Hopf bifurcation occurs at

the point (v, u, E, I) = (0,0, E, 4−E), and if E > 33+
p

2181
12

, then a supercritical Andronov-

Hopf bifurcation occurs at the point (v, u, E, I) = (0,0, E, 4− E).

A generic and transversal Bogdanov-Takens bifurcation occurs at (v, u, E, I) =

(0, 0,0, 4). This implies the existence of a smooth saddle homoclinic orbit bifurcation

manifold. Following the procedure in Chapter 2 and the equation in Lemma 2.8, we

use Mathematica to obtain the local approximation to the saddle-homoclinic orbit curve

I(E) =
1

2080272

�

8291513− 2145493E + 65
p

91
p

2275+ E(10034+ 91E)
�

+ o(E2)

(3.32)

We investigate the accuracy of this curve by numerically finding SHO bifurcation

points, illustrated in Table 3.3. The true SHO bifurcation curve, approximate SHO

bifurcation curve (Equation 3.32, and the Andronov-Hopf line are each tangent to I∗(E)

at the Bogdanov-Takens bifurcation point. Near the Bogdanov-Takens point E = 0, the

approximation curve is an over-estimate of true SHO bifurcation curve, and both the

approximation curve and the true SHO curve lie below the Andronov-Hopf half-line. At

some point near E ≈ 3.70, the approximate SHO curve and the true SHO bifurcation
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curve intersect and the approximation becomes an under-estimate. For values of 3.70<

E < 6.50, the true SHO curve is above the approximation, but below the Andronov-

Hopf half-line. When E ≈ 6.50, the true SHO curve intersects the Andronov-Hopf

bifurcation half-line at a point near E ≈ 6.50. Further, it seems that, for any value

E > 6.50, the true SHO curve lies above the Andronov-Hopf bifurcation half-line in

parameter space and the approximation lies below the Andronov-Hopf line. While

the approximation curve 3.32 has an accuracy within 0.2 for values up to E ¶ 7, the

approximation curve does not lie in the correct region of parameter space for any value

of E > 6.50 and therefore the approximation is not particularly accurate for E > 6.50.

We also numerically investigate the fold-limit-cycle (FLC) bifurcation curve. We

found examples of FLC bifurcation points for values of E in the interval [6.28, 6.57], il-

lustrated in Table 3.4, and we compared these findings to the SHO and Andronov-Hopf

half-lines. The FLC curve is very close to both the true SHO curve and the Andronov-

Hopf half-line, so finding numerical examples of the FLC bifurcation for 6.57< E < EBau

leads to numerical difficulties. This is consistent with the expected behavior of a Bautin

bifurcation, whose FLC bifurcation curve in the topological normal form is a half-

parabola extending away from the Bautin point and tangent to the Andronov-Hopf

half-line at the Bautin point. However, the curve does appear to naturally terminate

near E ≈ 6.27. On this entire interval, the FLC curve is below both the true SHO curve

and the Andronov-Hopf half-line.

The presence of the candidate Bautin point near the SHO curve leads to interest-

ing results. As Table 3.4 demonstrates, the SHO curve, the Andronov-Hopf half line,

and the FLC curves are very close together in parameter space; they vary by a small

error in I usually on the order of 10−2 or smaller. Hence, model behavior is rich with

bifurcation cascades that occur in rapid succession near Andronov-Hopf bifurcations.

Holding E constant near the Bautin value E ≈ 6.64 and varying I as a bifurcation
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E ISHO IAPX Error = ISHO− IAPX

1.5 −0.021 −0.038 −0.017
0.500 3.493 3.4956 −0.0026
1.500 2.4620 2.4782 −0.0162
2.500 1.4380 1.4572 −0.0192
3.500 0.4300 0.4345 −0.0045
4.500 −0.5610 −0.5891 0.0281
5.500 −1.5380 −1.6135 0.0755
6.000 −2.0210 −2.1258 0.1049
6.100 −2.1170 −2.2284 0.1114
6.200 −2.2130 −2.3309 0.1179
6.300 −2.3080 −2.4334 0.1254
6.350 −2.3567 −2.4846 0.1279
6.400 −2.4044 −2.5359 0.1315
6.450 −2.4520 −2.5871 0.1351
6.480 −2.4805 −2.6179 0.1374
6.500 −2.4996 −2.6384 0.1388
6.550 −2.5471 −2.6896 0.1425
6.600 −2.5940 −2.7409 0.1469
6.610 −2.6040 −2.7512 0.1472
6.620 −2.6130 −2.7614 0.1484
6.630 −2.6230 −2.7717 0.1487
6.640 −2.6320 −2.7819 0.1499
6.642 −2.6338 −2.7837 0.1500
6.650 −2.6420 −2.7921 0.1502
6.660 −2.6510 −2.8024 0.1514
6.670 −2.6620 −2.8127 0.1507
6.680 −2.6700 −2.8229 0.1529
6.690 −2.6790 −2.8332 0.1547
6.700 −2.6890 −2.8434 0.1544
6.800 −2.7830 −2.9459 0.1629
6.900 −2.9724 −3.1510 0.1786
8.000 −3.9000 −4.1764 0.2765

Table 3.3: Accuracy of SHO approximation in Example 3.7. For each value of E, we list
the expected values IAPX for input current I that triggers an SHO bifurcation according
to our approximation in Equation 3.32. We compared this approximation to measured
“true” SHO currents ISHO discovered by hand-tuning, and we list the error ISHO − IAPX

for each value of E.
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E ISHO IHopf IFLC IHopf− ISHO IHopf− IFLC

6.29 −2.2994 −2.29 −2.2995 0.0094 0.0095
6.30 −2.3080 −2.3 −2.3090 0.008 0.009
6.31 −2.3185 −2.31 −2.3186 0.00854 0.00855
6.32 −2.3280 −2.32 −2.3281 0.008 0.0081
6.33 −2.3376 −2.33 −2.3377 0.0076 0.0077
6.34 −2.3471 −2.34 −2.3473 0.0071 0.0073
6.35 −2.3567 −2.35 −2.3569 0.0067 0.0069
6.36 −2.3662 −2.36 −2.3665 0.0062 0.0065
6.37 −2.3758 −2.37 −2.3761 0.0058 0.0061
6.38 −2.3853 −2.38 −2.3856 0.0053 0.0056
6.39 −2.3948 −2.39 −2.3953 0.0048 0.0053
6.40 −2.4044 −2.4 −2.4050 0.0044 0.005
6.41 −2.4139 −2.41 −2.4145 0.0039 0.0045
6.42 −2.4234 −2.42 −2.4243 0.0034 0.0043
6.43 −2.4329 −2.43 −2.4336 0.0029 0.0036
6.44 −2.4425 −2.44 −2.4434 0.0025 0.0034
6.45 −2.4520 −2.45 −2.4531 0.002 0.0031
6.46 −2.4615 −2.46 −2.4629 0.0015 0.0029
6.47 −2.4710 −2.47 −2.4726 0.001 0.0026
6.48 −2.4805 −2.48 −2.4821 0.0005 0.0021
6.49 −2.4901 −2.49 −2.4917 0.0001 0.0017
6.50 −2.4996 −2.5 −2.5016 −0.0004 0.0016
6.51 −2.5091 −2.51 −2.5113 −0.0009 0.0013
6.52 −2.5186 −2.52 −2.5214 −0.0014 0.0014
6.53 −2.5281 −2.53 −2.5311 −0.0019 0.0011
6.54 −2.5376 −2.54 −2.5408 −0.0024 0.0008
6.55 −2.5471 −2.55 −2.5507 −0.0029 0.0007
6.56 −2.5566 −2.56 −2.5603 −0.0034 0.0003
6.57 −2.5661 −2.57 −2.5703 −0.0039 0.0003

Table 3.4: Comparison of various bifurcation curves for Example 3.8. For each value
of E, we display the numerically measured “true” SHO current ISHO, the analytically
known Andronov-Hopf current IHopf = 4−E, and the numerically measured FLC current
IFLC. We compare the numerically measured values ISHO and IFLC to IHopf to demonstrate
when the SHO curve crosses the Andronov-Hopf half-line, and to demonstrate that the
FLC curve always lies below the Andronov-Hopf half-line. Inspection reveals that the
FLC curve also lies below the SHO curve.
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parameter yields four qualitatively distinct cascades of bifurcations near the Andronov-

Hopf half-line, and in particular near the Bautin point. We completely characterize

the bifurcation behavior near the Bautin point by illustrating each of the four cases,

providing strong numerical evidence that the candidate Buatin bifurcation is generic

and transversal.

In Figure 3.4, we illustrate the first distinct cascade. For 0 < E < 6.27, no FLC

points were found and the SHO curve is below the Hopf half-line. For I << 0, we

have a single stable equilibrium. As I increases, our system passes the true SHO curve,

and this creates an unstable limit cycle surrounding the stable equilibrium. Biologically

speaking, this allows for the coexistence of a spiking limit cycle with a stable resting

state, and that resting state has a relatively small basin of attraction. As I increases

further and passes the Hopf half-line, the unstable limit cycle shrinks and merges with

the stable equilibrium, leaving an unstable equilibrium behind.

In Figure 3.5, we illustrate the second distinct cascade, the first in which a fold-

limit-cycle bifurcation occurs, and so the first that has interesting Bautin behavior. For

6.27 < E < 6.50, the FLC curve exists and the SHO curve is below the Hopf half-

line. Hence, for I << 0, we have a single stable equilibrium. As I increases, an FLC

bifurcation is triggered, creating a stable-unstable pair of limit cycles surrounding the

stable equilibrium. Biologically, this describes a neuron capable of both endogenous

subthreshold oscillation as well as a resting state equilibrium, which is a desirable

property of neural models. As I increases further, the SHO bifurcation is triggered,

destroying the stable limit cycle, leaving behind an unstable limit cycle surrounding

the stable equilibrium. Biologically, this is equivalent to a resting state with a small

basin of attraction as in the previous case. As I increases further, we cross the Hopf

half-line; the unstable limit cycle shrinks, merging with the stable equilibrium, leaving

an unstable equilibrium behind.
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(a) Stable spiral equilibrium

(b) Unstable limit cycle surrounding stable spiral equi-
librium

(c) Unstable spiral equilibrium

Figure 3.4: First bifurcation cascade from Example 3.7. For 0 < E < 6.27, as I
increases from −∞ to ∞, two distinct bifurcations occur in rapid succession near the
subcritical part of the Andronov-Hopf half-line. First, the SHO bifurcation curve is
crossed, creating an unstable limit cycle, and then the subcritical Andronov-Hopf half-
line is crossed, causing that limit cycle to merge with the resting state equilibrium.
Phase portraits generated with (a) (E, I) = (3.5,0.2), (b), (E, I) = (3.5,0.47), and (c)
(E, I) = (3.5,0.55).
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(a) Stable spiral equilibrium (b) Stable and unstable limit cycles surrounding sta-
ble spiral equilibrium

(c) Unstable limit cycle surrounding stable spiral
equilibrium

(d) Unstable spiral equilibrium

Figure 3.5: Second bifurcation cascade for Example 3.8. For 6.27 < E < 6.50, as I
increases from −∞ to∞, three distinct bifurcations occur in rapid succession near the
subcritical part of the Andronov-Hopf half-line. First, the fold-limit-cycle bifurcation
curve is crossed, creating a stable limit cycle surrounding an unstable limit cycle,
both of which surround a stable spiral equilibrium. Next, the SHO curve is crossed
as the outer stable limit cycle expands and is annihilated, leaving an unstable limit
cycle surrounding a stable spiral equilibrium. Finally, a subcritical Andronov-Hopf
bifurcation occurs as the unstable limit cycle shrinks and merges with the stable spiral
equilibrium, leaving an unstable equilibrium behind. Phase portraits generated with
(a) (E, I) = (6.35,−2.5), (b) (E, I) = (6.35,−2.3568), (c) (E, I) = (6.35,−2.3566),
and (d) (E, I) = (6.35,−2.25).
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In Figure 3.6, we illustrate the third cascade, in which the FLC bifurcation curve

exists, but the SHO bifurcation curve is above the Hopf line. For 6.50 < E < 6.64

and I << 0, we have a single stable equilibrium. As I increases, an FLC bifurcation

is triggered, creating a stable-unstable pair of limit cycles surrounding the stable equi-

librium. As before, this corresponds to the coexistence of endogenous subthreshold

oscillations with a quiescent resting state in the neuron. As I increases further, the

Hopf bifurcation is triggered, shrinking the unstable limit cycle and causing it to merge

with the stable equilibrium, leaving behind a stable limit cycle surrounding an unstable

equilibrium. Biologically, there now exists only subthreshold oscillations and no resting

state. Finally, as I increases even further, the SHO bifurcation occurs, destroying the

stable limit cycle leaving only an unstable spiral equilibrium.

In Figure 3.7, we illustrate the fourth distinct change of dynamical regime. For

EBau < E, the Hopf line is below the SHO curve. Hence, as I increases from −∞ to

∞, two distinct bifurcations occur in rapid succession. As we cross the supercritical

Andronov-Hopf half-line, a stable limit cycle surrounds an unstable spiral equilibrium.

As we cross the SHO curve, the stable limit cycle swells and annihilates with the stable

and unstable manifolds of the saddle.

In Table 3.5, we summarize the (E, I) ordered pairs used to generate the phase

portraits in Figures 3.4, 3.5, 3.6, and 3.7. Figure 3.8 shows the partition of parameter

space by the Hopf half-line and the fold bifurcation curves for f (x) = x4+ 6x , as well

as the Bogdanov-Takens point and the candidate Bautin point.
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(a) Stable spiral equilibrium (b) Stable and unstable limit cycles surrounding sta-
ble spiral equilibrium

(c) Stable limit cycle surrounding unstable spiral
equilibrium

(d) Unstable spiral equilibrium

Figure 3.6: Third bifurcation cascade for Example 3.8. For 6.50< E < EBau ≈ 6.64, as I
increases from−∞ to∞, three distinct bifurcations occur in rapid succession. First, the
fold-limit-cycle bifurcation curve is crossed, creating a stable limit cycle surrounding
an unstable limit cycle, both of which surround a stable spiral equilibrium. Next, the
subcritical Andronov-Hopf bifurcation curve is crossed as the interior unstable limit
cycle shrinks and merges with the stable spiral equilibrium. This leaves a stable limit
cycle surrounding an unstable equilibrium. Finally, the SHO curve is crossed as the
stable limit cycle swells and annihilates as it collides with the stable and unstable
manifolds of the saddle point, leaving only an unstable spiral equilibrium. Phase
portraits generated with (a) (E, I) = (6.5,−2.55), (b) (E, I) = (6.5,−2.501), (c)
(E, I) = (6.5,−2.4999), and (d) (E, I) = (6.5,−2.45).
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(a) Stable spiral equilibrium

(b) Stable limit cycle surrounding unstable spiral
equilibrium

(c) Unstable spiral equilibrium

Figure 3.7: Fourth bifurcation cascade for Example 3.8. For EBau < E, as I increases
from −∞ to ∞, two distinct bifurcations occur in rapid succession. First, the su-
percritical Andronov-Hopf bifurcation curve is crossed, creating an stable limit cycle
surrounding an unstable spiral equilibrium. Next, the stable limit cycle swells and
annihilates with the stable and unstable manifolds of the saddle in an SHO bifurcation.
Phase portraits generated with (a) (E, I) = (7.0,−4.0), (b), (E, I) = (7.0,−2.9862),
and (c) (E, I) = (7.0,−2.5).
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E I IHopf− I =∆I Behavior
3.5 0.2 0.3 Stable spiral equilibrium, Figure 3.4 (a)
3.5 0.47 0.03 Unstable limit cycle surrounding stable spiral

equilibrium, Figure 3.4 (b)
3.5 0.55 −0.05 Unstable spiral equilibrium„ Figure 3.4 (c)

6.35 −2.5 0.15 Stable spiral equilibrium„ Figure 3.5 (a)
6.35 −2.3568 0.0068 Stable limit cycle around unstable limit cycle

around stable spiral equilibrium„ Figure 3.5
(b)

6.35 −2.3566 0.0066 Unstable limit cycle around stable spiral equi-
librium„ Figure 3.5 (c)

6.35 −2.25 −0.1 Unstable spiral equilibrium, Figure 3.5 (d)
6.5 −2.55 0.05 Stable spiral equilibrium, Figure 3.6 (a)
6.5 −2.501 0.001 Stable limit cycle around unstable limit cycle

around stable spiral equilibrium, Figure 3.6
(b)

6.5 −2.4999 −0.001 Stable limit cycle around unstable equilib-
rium, Figure 3.6 (c)

6.5 −2.45 −0.05 Unstable spiral equilibrium, Figure 3.6 (d)
7.0 −4 1 Stable spiral equilibrium, Figure 3.7 (a)
7.0 −2.9862 −0.0138 Stable limit cycle around unstable spiral equi-

librium, Figure 3.7 (b)
7.0 −2.5 −0.5 Unstable spiral equilibrium, Figure 3.7 (c)

Table 3.5: Parameter values used to generate phase portraits and their behaviors.
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Figure 3.8: Partition of parameter space for Example 3.8. We include the fold
bifurcation curves SN1 and SN2, the subcritical Andronov-Hopf bifurcation curves
H+, the supercritical Andronov-Hopf bifurcation curve H−, the Bautin point Bau, the
Bogdanov-Takens point BT , and the spiral-node transition curve Res.
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CHAPTER 4. COMPARISON WITH BIOLOGICAL NEURONS

In this section, we investigate some behavior resulting from the nonsmooth com-

ponent of our model. This behavior resembles global bifurcations and gives rise to some

interesting behavior that can be interpreted biologically. We also investigate some of

the extent to which our model can approximate biological neurons.

4.1. Nonsmooth Bifurcations

We have demonstrated the existence of the smooth fold bifurcation, the sub-

and super-critical Andronov-Hopf bifurcations, corresponding to bistable integrators,

and bistable and monostable resonators. However, the smooth behavior of our model

does not end the story. The interactions between the stable and unstable manifolds

extending from the saddle point and the instantaneous reset in our model can lead to

interesting behavior. Indeed, post-spike trajectories can be “dumped” into the basin of

attraction of the resting state or not, and this can lead to the creation or destruction

of heteroclinic loops in our model. In this section, we observe some numerical simu-

lations that lead to some bifurcation-like behavior. However, we must impose another

assumption on f .

In particular, we assume there exists some ε,α > 0 such that f (v) ¾ αv2+ε for

sufficiently large v. This assumption follows from our desire for voltage to blow up

in finite time in simulating the upstroke of a spike. This can be done so long as f

scales faster than linearly. The stronger condition that f scales faster than quadratically

ensures that the recovery variable u remains bounded. This is proven in Appendix A.

Without this assumption, this model and others may exhibit biologically implausible

sensitivity to the voltage cutoff value vmax and may be vulnerable to period-doubling

bifurcations in this scenario [13].

Since our model is not smooth, we may observe a non-smooth equivalent of a

fold-on-invariant-circle bifurcation, providing a model of monostable integrators. In-
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Figure 4.1: The model of choice before a fold-on-invariant-circle bifurcation. We depict
the unfolding for f (x) = x4+x . The saddle point’s unstable manifold leading to a spike
resets into the stable equilibrium’s basin of attraction, forming a heteroclinic invariant
circle. Dashed lines represent the nullclines of the system; thick lines represent the
stable and unstable manifolds of the saddle point. Image generated using Mathematica
with parameters (c, d, E, I) = (−3,−2.19, 1,−0.25)

deed, so long as the saddle’s unstable manifold leading to a spike resets into the basin of

attraction of the stable equilibrium, the orbit of any trajectory starting on this unstable

manifold will form an invariant heteroclinic loop. Any model in this configuration

undergoes a fold-on-invariant-circle bifurcation rather than a fold bifurcation. See

Figure (4.1).

We can also observe the nonsmooth equivalent of the “big” saddle-homoclinic-

orbit bifurcation discussed in Section 2.4 and illustrated in Figure (4.2). In this in-

stance, the bifurcation causes the model to transition from acting as a monostable

resonator to a bistable resonator (or vice versa).

Since our model is capable of producing a saddle-homoclinic-orbit bifurcation

(following from the existence of a Bogdanov-Takens bifurcation) and a fold-on-invariant-

circle bifurcation, a natural question is whether these two bifurcations ever occur

together. Such a bifurcation would produce a saddle-node homoclinic orbit bifurcation

(as in 4.3). Thanks to our discontinuous reset, the boundary between the saddle-node-
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(a) d =−1.00 (b) d =−2.19

(c) d =−2.45

Figure 4.2: The model of choice undergoing “big” saddle-homoclinic-orbit bifurcation.
We depict the unfolding with f (x) = x4 + x undergoing a “big” saddle-homoclinic-
orbit bifurcation, transitioning from bistable to monostable as the after-spike recovery
variable reset d varies. Dashed lines represent the nullclines of the system; thick lines
represent the stable and unstable manifolds of the saddle equilibrium. Phase portraits
generated in Mathematica with the model of choice using the parameters (c, d, E, I) =
(−3, d, 1,−0.25) where d varies as in the captions above.
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Figure 4.3: The unfolding of a saddle-node-homoclinic-orbit bifurcation. These occur
when fold-on-invariant-circle and saddle-homoclinic-orbit bifurcations occur simulta-
neously. Our model is capable of a hybrid version of this bifurcation with only two,
rather than three, equilibria.

homoclinic-orbit, the “big” saddle-homoclinic orbit, and the fold-on-invariant-circle

bifurcations is blurry. If a fold-on-invariant-circle bifurcation occurs simultaneously

with a “big” saddle-homoclinic bifurcation, then a saddle-node-homoclinic-orbit bifur-

cation has occurred (illustrated by Figure 4.2 with the stages in opposite order, that is,

proceeding from (c) to (a)). Biologically, this bifurcation corresponds to the transition

from quiescence to spiking in a monostable resonator. Hence, even though traditional

continuous-time models of spiking neurons are only capable of governing this transition

in monostable resonators with a super-critical Andronov-Hopf bifurcation, the hybrid

nature of our model allows us to generate this transition. That is, our model is capable

of two distinct dynamical behaviors, one smooth and one non-smooth, both of which

lead to the biological phenomena of monostable resonance.
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4.2. Comparison with Biological Neurons

Real neurons are capable of producing tonic, phasic, mixed-mode, rebound, and

inhibition induced spiking and bursting, as well as spike frequency adaptation, Hodgkin

Class 1 and 2 excitability, spike latency, subthreshold oscillations, threshold variability,

bistability, and depolarizing after potentials, and accommodation, among other myriad

behaviors. We numerically investigate simulations of the model proposed by Izhikevich

[9]






















v̇ = f (v) + u (v − E) + I

u̇ = bv− u

v ¾ vmax⇒ v← c, u← u+ d

(4.1)

in which f (x) = x4 + x , we choose I , c, d ∈ R and b > 0. We follow Izhikevich’s

suggestion that we may change coordinates so that conductance reversal energy E may

be taken without loss of generality as a member of the set {−1, 0,1}. That is, in this

section, we diverge from our previous notation and treat I and b as the bifurcation

parameters so as to coincide with previous literature more closely.

Note that if the trace of this system at an equilibrium vanishes, then the deter-

minant is bE − 1, which can only be positive if E > 1
b
> 0. That is, the model is only

capable of an Andronov-Hopf bifurcation if we presume E = 1. Hence, in this Chapter

we investigate the system







v̇ = v4+ uv+ v− u+ I

u̇ = bv− u
(4.2)

Model 4.2 is capable of many of the biological behaviors of interest. In this

section, we utilize a Runge-Kutta method implemented in the programming language

Python to obtain numerical approximations to solutions to the system of differential
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equations in 4.2 to simulate the interspike behavior of a neuron. Due to the non-

linearity of the model, detecting the time at which the simulated neuron crosses the

maximum voltage cutoff value vmax, which corresponds to the firing of a spike, requires

a linear interpolation, as described by Izhikevich in [9]. Figure 4.4 depicts the different

neurocomputational properties we discovered, and Table 4.1 lists the corresponding

parameter values used for the numerical computations. It is an open question whether

this example, however, is capable of generating rebound- and inhibition-induced bursts

as well as accommodation.

Figure 4.5 (from [8]) illustrates the six most common neocortical firing patterns.

We can obtain the behavior of regular spiking, intrinsically bursting, and low-threshold

spiking neurons out of our model with no modifications. Figure 4.6 illustrates our

model mimicking a regular spiking neuron. Figure 4.7 illustrates our model mimicking

an intrinsically bursting neuron, firing a burst of spikes before settling into a tonic

spiking pattern. Figure 4.8 illustrates our model mimicking a low-threshold spiking

neuron, with a voltage adaptation. Note that our low-threshold simulation can only

be loosely described as such, as low-threshold neurons exhibit a fairly low frequency-

amplitude sensitivity, whereas our model’s spiking frequency is sensitive to amplitude.

It is an open question whether the other three common types (chattering, fast-

spiking, and late-spiking interneurons) can be simulated by model 4.2. We discuss this

more in Chapter 5.
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(a) Tonic Spiking (b) Phasic Spike (c) Tonic Bursting (d) Phasic Burst

(e) Mixed Mode (f) Spike freq. adapt. (g) Class 1 excitability (h) Class 2 excitability

(i) Spike latency (j) Subthreshold oscilla-
tions

(k) Resonator (l) Integrator

(m) Rebound spike (n) Threshold variability (o) Bistability (p) DAP

Figure 4.4: Some neurocomputational properties of which the model is capable. In
all cases, the top curve is (dimensionless) membrane voltage, the bottom curve is
(dimensionless) input current, and the horizontal axis represents (dimensionless) time.
Parameters used to generate each spike train displayed in Table 4.1
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Figure 4.5: Spiking patterns of six common neocortical neurons. All recordings
are plotted on the same voltage and time scale, and the data are available at
www.izhikevich.com.
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Property b c d
Tonic spiking 5 -2.0 0.1
Phasic spiking 50 -1 0.1
Tonic bursting 200 0.2 0.1
Phasic bursting 50 0.7 0.1

Mixed mode 50 0.0 0.1
Spike frequency adaptation 200 -1.0 0.1

Class 1 excitable 0.25 -1.0 0.01
Class 2 excitable 0.47 -1.0 0.5

Spike latency 0.5 -1.0 1.0
Subthreshold oscillations 2.0 -1.0 0.1

Resonator 2.0 -1.0 0.1
Integrator 0.1 -1.0 0.1

Rebound spike 1.0 -0.5 0.1
Threshold variability 1.0 -0.5 0.1

Bistability 1.0 -1.0 0.1
Depolarizing after-potential 0.5 -0.7 -1.1

Table 4.1: Table of parameter values used to generate spike trains in Figure 4.4.

Figure 4.6: The model of choice simulating a regular-spiking neuron. Compare with
Figure 4.5. Simulation obtained with parameter values (b, c, d, E) = (0.5,−2.0, 0.4,1)
with I ∈ {0.21, 1,3}
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Figure 4.7: The model of choice simulating an intrinsically bursting neuron. Com-
pare with Figure 4.5. Simulation obtained with parameter values (b, c, d, E) =
(10,−0.75,0.3, 1) with I ∈ {0.15, 0.4,1}
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Figure 4.8: The model of choice simulating an low-threshold spiking neuron. Compare
with Figure 4.5. Simulation obtained with parameter values (b, E) = (5, 1) with non-
constant values for vmax = max (10− 0.5u, 1) and c = max (min (−1− 0.25u, 0) ,−3)
with I ∈ {0, 0.5,2}
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CHAPTER 5. FURTHER QUESTIONS

In this chapter, we address inevitable questions that remain unanswered in our

analysis. Certainly the connection between Examples 3.7 and 3.8 may be solidified

by considering model 3.1 and taking f (x) = x4 + mx with m ∈ R taken as a new

bifurcation parameter. When we choose m = 1, as in Example 3.7, the model cannot

exhibit a Bautin bifurcation, but for m = 6, as in Example 3.8, the model can exhibit

a Bautin bifurcation. By treating m as a continuous bifurcation parameter, the model

should present a rich bifurcation portrait.

Behaviorally, it is an open question whether our model is capable of simulating

a chattering neuron, a fast-spiking neuron, or a late-spiking neuron without a method

such as multi-compartment models. Multi-compartment models simulating dendritic

spikes can be used to obtain a variety of more complicated behavior. With such a

multi-compartment model, we may be able to obtain chattering, fast-spiking, and late-

spiking neuron models from our simple model. We may be able to obtain still further

complicated behavior by coupling our model of choice in one compartment with other

hybrid spiking models in other compartments. To this author’s knowledge, no multi-

compartment, multiple-model neuron has been studied in the literature.

In [8], Izhikevich classified the four canonical neural behaviors with smooth

models alone (see Figure 1.1, Chapter 1). We have demonstrated in our neural model

that the discontinuous reset allows us to represent neurons like monostable integra-

tors with a nonsmooth “big” saddle-homoclinic-orbit bifurcation. The existence of

a Bogdanov-Takens bifurcation in a model such as ours could possibly be exploited

so as to obtain very slowly decaying orbits to resting state when the system is near

an SHO curve. With a sufficiently slow decay rate, the system may approximate

stable endogeneous subthreshold oscillations without a stable subthreshold limit cycle.

Investigating a more thorough expansion of neural classification using smooth and
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nonsmooth dynamics both, perhaps utilizing the works in [2], would be a fruitful

avenue of further research.

From the dynamical systems perspective, this model is rich in behavior. The in-

tersections of bifurcation curves are interesting, corresponding to bifurcation points of

high codimension, and our model has many bifurcation curves. In [2], Coombes, Thul,

and Wedgwood demonstrated that the dynamics arising from the nonsmooth cutoff in

similar hybrid neuron models may give rise to wide arrays of bifurcation-like behaviors,

of which we have only a given a cursory review. We have only partially answered the

question of completely classifying both the smooth and nonsmooth behavior of model

3.1; answering the question in toto may present an interesting combinatorial challenge.

We may generalize our system further to obtain:







v̇ = f (v) + g (v)u+ I

u̇ = v − u
(5.1)

where I ∈ R and f , g ∈ C2(R) are both convex functions. This generalization is a

natural extension of model 3.1. Since Andronov-Hopf bifurcations together with clear

numerical evidence of a Bautin bifurcation have been demonstrated when g(v) is taken

to be a linear function, it is evident that this generalization will produce at least a

similar range of behavior. Hence, further investigation into this very general class of

spiking neuron models may be a fruitful area of research, as it may have a yet wider

range of behaviors.

Certainly, the bifurcation portrait we have included here is not complete. Among

other things, we have only highlighted a few examples of how manipulation of discon-

tinuous reset parameters can give rise to homoclinic and heteroclinic orbit bifurcations

like the “big” saddle-homoclinic-orbit bifurcation. Also, we have not rigorously investi-

gated the Bautin bifurcation and we have avoided rigorously addressing the existence
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of limit cycles that come about due to the hybrid nature of our model. A complete

bifurcation portrait of model 3.1 demands analysis of all limit cycles in the model,

including ones that arise due to the discontinuous reset. Such an analysis may follow

a similar procedure as that set forth by Coombes, Thul, and Wedgwood in [2]. A

general theorem regarding the existence and uniqueness of spiking limit cycles would

be helpful toward completing our analysis of model 3.1. A proof of such a theorem

regarding the existence of stable limit cycle attractors in the hybrid system may benefit

from the use of the lemmata of Appendix A, and will almost certainly benefit from

other tools such as the Poincaré map.

Finally, it is worth noting that while we have avoided a rigorous treatment of

spiking limit cycle attractors, we have seen strong numerical evidence of spiking limit

cycle attractors in the hybrid model (see Figure 4.4). Our demonstrations of the

biologically plausible phenomena of tonic spiking, tonic bursting, mixed-mode spiking,

spike frequency adaptation, and bistability in Section 4.2 illustrate the existence of

these spiking limit cycles (see Figure 4.4).
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APPENDIX A. JUSTIFICATION FOR ASSUMPTIONS

Herein, we demonstrate why we assume that f must eventually scale faster than

quadratically. Indeed, without this assumption, the recovery variable u in our model

may blow up in finite time with membrane voltage v in some scenarios; Touboul

demonstrated that, in similar hybrid models, such behavior can lead to biologically

implausible period-doubling bifurcations [13].

For the purposes of terminology, if f : R→ R and there exists some α,ε > 0 such

that, for any x sufficiently large, f (x) ¾ αx2+ε, we say that f eventually scales faster

than quadratically, and if there exists some α,ε > 0 such that, for any x sufficiently

large, f (x)¾ αx1+ε, we say that f eventually scales faster than linearly.

First, observe that, for any ε,α > 0, any solution to the differential equation

d x
d t
= f (x) where f (x) ¾ αx1+ε with a strictly positive initial condition will blow up in

finite time. Indeed, the trajectory passing through x = x0 > 0 when t = 0 in the system

d x
d t
= αx1+ε is

x (t) =
�

x−ε0 − εαt
�−1/ε

and hence any such system will blow up in finite time, in particular when t =
�

εαxε0
�−1

.

Thus, any system with a strictly positive initial condition whose derivative is bounded

below by αx1+ε will also blow up in finite time.

Now let α,ε > 0 and let g (x) eventually scale faster than linearly. Then solutions

to the differential equation d x
d t
= g (x) with sufficiently large initial conditions will also

blow up in finite time. In particular, if f scales faster than linearly and h : R → R is

defined by h(x) = β x + γ for any β ,γ ∈ R, then f (x) + h(x) will also eventually scale
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faster than linearly. Indeed, we have the following:

f (x) + β x + γ¾ αx1+ε+ β x + γ (A.1)

¾ αx1+ε

�

1+
β

αxε
+

γ

αx1+ ε

�

(A.2)

Of course, for any ε0 > 0, we can pick a sufficiently large x such that

�

�

�

�

β
αxε

�

�

�

�

¶ ε0
2

and
�

�

�

γ
αx1+ε

�

�

�<
ε0
2

. Hence, given ε > 0, for a sufficiently large x we have that

1+
β

αxε
+

γ

αx1+ε > 1− ε0

Therefore, if f (x)¾ αx1+ε for some ε > 0 and α > 0 given any sufficiently large x , we

have that g (x)¾ α̂x1+ε where α̂= α
�

1− ε0

�

.

In particular, if f eventually scales faster than linearly, then for any I ∈ R, we

have that f (v) + I will eventually scale faster than linearly. Using a similar proof

method, it is easily shown that if f scales faster than linearly but does not scale faster

than quadratically and g(x) scales faster than quadratically, then f (x) + g(x) scales

faster than quadratically.

With these facts, we can demonstrate that, if f scales faster than linearly and

voltage v(t) in system 3.1 blows up, it does so in finite time. We will also show that

if f does not grow sufficiently rapidly, then the corresponding recovery variable u(t)

will also blow up in finite time. Finally, we will show that if f scales faster than

quadratically, then u will not blow up in finite time.

To this end, we will consider the model of choice in the sequel for E, I ∈ R and

f ∈ C1(R):






v̇ = f (v) + u (v− E) + I

u̇ = v− u
(A.3)
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In this system, an equilibrium (v, u) = (v0, u0) must satisfy u0 = v0 and f
�

v0

�

+

v0

�

v0− E
�

+ I = 0.

We make some observations about the vector field in our model and make some

definitions. Assume f eventually scales faster than linearly for some α,ε > 0. Since f

eventually scales faster than linearly, so does f (v)+ I , and so there exists some V∞ and

β > 0 such that f (v) + I ¾ β v1+ε > 0 for any v ¾ V∞. We can choose V∞ > |E|. Now

define S∞ :=
�

(v, u) | v ¾ V∞, 0¶ u¶ v
	

.

Lemma A.1. Assume f eventually scales faster than linearly for some ε,α > 0 with

corresponding set S∞ as defined above. Any trajectory (v(t), u(t)) satisfying v(t)→∞

as t →∞ eventually enters and remains in S∞.

Proof. We first prove that any trajectory that enters S∞ remains in S∞ for all time. We

then prove that any trajectory satisfying v(t)→∞ as t increases will eventually enter

S∞.

The vector field on the boundary of S∞ points inward, and hence any trajectory

entering S∞ will never exit S∞. Indeed, when u = v and v ¾ V∞, we have du
d t
= 0 and

since v(v − E) > 0, we also have that dv
d t
= f (v) + v(v − E) + I > β v1+ε > 0. That is, a

trajectory with a point starting on this boundary enters S∞.

On the other hand, when v = V∞ and 0< u< V∞, we have that u(v− E)> 0, we

also have that dv
d t
= f (v) + u(v − E) + I > β v1+ε > 0. Hence, a point with a trajectory

starting on this boundary also enters S∞. Finally, when u= 0 and v ¾ V∞, we have that

du
d t
> 0 and dv

d t
= f (v) + I ¾ β v1+ε > 0. All trajectories that enter S∞ must remain in

S∞.

It remains to be shown that if v(t) → ∞ as t increases, then (v(t), u(t)) enters

S∞. Certainly if v(t) → ∞ as t increases, then there exists some t0 ∈ R such that

v(t0)¾ V∞ and dv
d t
(t0)¾ 0, otherwise v(t) 6→ ∞. If this point is already in S∞, then we
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are done. If not, then either u(t0)> v(t0) or 0> u(t0)¾
f (v(t0))+I
E−v(t0)

; this latter inequality

follows from the fact that v′(t0)¾ 0.

Consider trajectories starting from points in the region
�

(v, u) | v ¾ V∞, u> v
	

.

Notice that for trajectories starting at a point with v = V∞, we have that dv
d t
> 0,

and hence the trajectory enters the region v ¾ V∞. Further, we have that v − u < 0

and u(v − E) > 0. Hence d
d t
(u− v) = (v − u)− f (v)− u(v − E)− I < − f (v)− I . But

f (v)+ I ¾ βV 1+ε
∞ in this region, and hence d

d t
(u−v)¶−βV 1+ε

∞ < 0. Hence, trajectories

starting from points in this region approach u− v = 0 in finite time. We have already

seen that points on v = u enter S∞.

On the other hand, consider trajectories starting from points in the region

�

(v, u) | v ¾ V∞,
f (v) + I

E − v
< u< 0

�

(A.4)

Notice that trajectories starting on the boundary v = V∞, − f (V∞)+I
V∞−E

< u < 0 of region

A.4 enter region A.4. Indeed, dv
d t
= (V∞− E)(u+ f (V∞)+I

V∞−E
)> 0.

Similarly, trajectories starting on the boundary u = − f (v)+I
v−E

with v ¾ V∞ have

dv
d t
= 0, du

d t
> 0. Further, when v ¾ V∞, we have that d2v

d t2 exists since f ∈ C1(R) and

d2v
d t2 =

du
d t
(v− E)> 0, so all trajectories crossing this boundary will enter region A.4.

Of course region A.4 shares its only remaining boundary with S∞, and we have

shown any trajectory on that boundary enters and stays in S∞. But any point within

region A.4 will have du
d t
= v − u ¾ V∞ > 0, and since u < 0 in this region, we see that u

must become positive within finite time. That is, any trajectory with a point starting in

region A.4 will enter S∞.

With Lemma A.1 in hand, we demonstrate that trajectories (v(t), u(t)) that enter

S∞ will have v(t), u(t) → ∞ in finite time whenever f eventually scales faster than
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linearly but not sufficiently rapidly, and will have v(t) → ∞ but u(t) converge to a

finite value whenever f eventually scales faster than quadratically.

Lemma A.2. Assume that f eventually scales faster than linearly, f (v)/v2 → ∞ as

v→∞, and that
∫∞

x0

x
f (x)

d x is divergent for some x0. If (v(t), u(t)) is a trajectory such

that v(t)→∞, then both v(t) and u(t) both blow up in finite time.

Proof. Notice that any function that scales faster than quadratically will be excluded

from this Lemma; for these functions, the stated integral converges. An example of a

function that satisfies the hypothesis of the Lemma is f (v) = v2 ln(v).

If f (v) ¾ αv1+ε for sufficiently large v, let β > 0, V∞ > |E| as above so that

f (v)+ I ¾ β v1+ε for any v ¾ V∞. Notice that any trajectory (v(t), u(t)) with v(t)→∞

certainly enters S∞ following Lemma A.1. Furthermore, for any point in S∞, we have

dv
d t
= f (v)+u(v−E)+ I ¾ β v1+ε since u(v−E)¾ 0. By our observation at the beginning

of this appendix, this must blow up in finite time since it starts with a positive initial

condition; further notice that this is true even if ε > 1.

We will demonstrate that u blows up in finite time by bounding du/dv from be-

low. Within S∞, we have that dv
d t
= f (v)+u(v−E)+I ¶ f (v)+v2+vV∞+I since V∞ > |E|

and 0¶ u¶ v. Therefore, vg(v)−ug(v)¶ du
dv

where g (v) :=
�

f (v) + v2+ vV∞+ I
�−1.

We pause to make some observations about the function g(v) and the related

function vg(v). Observe that g(v) is a positive function. Further, notice that f (v)+ I >

0 eventually implies that f (v)+ v2+ vV∞+ I ¾ v2 eventually. Hence,
∫∞

v1
g(s)ds is finite

for any sufficiently large v1 ¾ V∞. The property f (v)/v2→∞ provides that

f (v) + v2+ vV∞+ I = f (v)

�

1+
v2+ vV∞+ I

f (v)

�

< 2 f (v)
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for sufficiently large v. Hence, g(v)> 1
2 f (v)

for sufficiently large v. Now since
∫∞

x0

x
f (x)

d x

diverges for some x0, for a sufficiently large v2, we then have that
∫∞

v2
sg(s)ds diverges.

Now, we have du
dv
+ ug(v) ¾ vg(v) > 0, which has an integrating factor e

∫ v

v1
g(s)ds.

The integrating factor is bounded since
∫∞

v1
g(s)ds is finite. In fact, there exists some

M ∈ R such that for all v ¾ v1, 1¶ e
∫ v

v1
g(s)ds ¶ M . We obtain

d

dv

�

ue
∫ v

v1
g(s)ds

�

¾ vg(v)e
∫ v

v1
g(t)d t

ue
∫ v

v1
g(s)ds ¾

∫ v

v1

sg(s)e
∫ s

v1
g(t)d t ds+ u1

u¾ e−
∫ v

v1
g(s)ds

∫ v

v1

sg(s)e
∫ s

v1
g(t)d t ds+ u1e−

∫ v

v1
g(s)ds

Since e
∫ v

v1
g(s)ds ¾ 1 for any v, we have sg(s)e

∫ s

v1
g(t)d t ¾ sg(s) > 0. In particular,

∫ v

v1
sg(s)e

∫ s

v1
g(t)d t ds ¾

∫ v

v1
sg(s)ds. Furthermore, e−M ¶ e−

∫ v

v1
g(s)ds ¶ 1 and hence u ¾

e−M
∫ v

v1
sg(s)ds. That is, u is unbounded as v→∞ and u also blows up.

Lemma A.3. Assume that f eventually scales faster than quadratically. That is, assume

there exists some α > 0 and ε > 0 such that f (v) ¾ αv2+ε for any sufficiently large v.

If (v(t), u(t)) is a trajectory such that v(t)→∞, then v(t) blows up in finite time, but

u(t) converges to a finite value.

Proof. We certainly have that v will blow up in finite time, since if f scales faster than

quadratically, then it scales faster than linearly; our argument from Lemma A.2 applies.

It is sufficient to show that u does not blow up in finite time. Let β > 0, V∞ > |E| ¾ 0

such that f (v) + I ¾ β v2+ε, and notice that our trajectory enters S∞.

For any (v, u) ∈ S∞, we have 0 ¶ v − u ¶ v and u(v − E) ¾ 0. In particular,

f (v) + u(v − E) + I ¾ f (v) + I ¾ β v2+ε, and so du
dv

is bounded between two integrable
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functions, completing the proof:

0¶
du

dv
=

v− u

f (v) + u(v− E) + I
¶

v

f (v) + I
¶

1

β v1+ε
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APPENDIX B. SIMULATION CODE

This section describes the Mathematica code (presented at the end of this section)

used to generate phase portraits in Section 3.6. The code must be modified if a unique

equilibrium exists or if no equilibria exist. We present the code in parts.

In this first section, input current I from model 3.1 is coded as p, conductance

reversal energy E is coded as n, and the functions V ∗(E) and I∗(E) from Section 3.1

are coded as vstar and istar, respectively.

The code plots the nullclines of model 3.1 with spike activation function f[x]

with ordered pairs in vnull1 (with points to the left of the singularity in the v-

nullcline), vnull2 (with points to the right of the singularity). We use the function

ListLinePlot to plot these nullclines, and we store this plot in Pnull.

Clear[p, n, f, vnull1, vnull2, unull, x]

Clear[pr]

(* pr = plot range *)

pr = {{-3, 2}, {-2, 2}};

Clear[n, p];

(* n = conductance reversal energy, E *)

(* p = input current, I *)

n = 6.44176;

p = -2.44434;

Clear[f]

f[x_] := x^4 + 6 x;

Clear[vstar, istar]
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vstar = v /. NSolve[f’[v] + 2*v - n == 0, v, Reals][[1]];

istar = vstar^2*(3*vstar^2 + 1);

Clear[xm, vnull1, vnull2, unull]

xm = 10;

vnull1 = Table[{x, -(f[x] + p)/(x - n)}, {x, -xm, n - 1/20, 1/20}];

vnull2 = Table[{x, -(f[x] + p)/(x - n)}, {x, n + 1/20, xm, 1/20}];

unull = Table[{x, x}, {x, -xm, xm, 1/20}];

Clear[ps, Pnull]

ps = {{Blue, Dashed}};

Pnull = ListLinePlot[{vnull1, vnull2, unull}, PlotRange -> pr,

PlotStyle -> ps];

The code next plots the direction field of model 3.1 for spike activation function

f[x] by defining v̇ and u̇ as vdot[v_,u_] and vdot[v_,u_], respectively. Here we

have clipped the vector fields to our plotrange so that they are zero outside of our

plotrange; due to the nonlinearity of our system, failing to do so can lead to numerical

blowups (see Appendix A). We use the function StreamPlot to plot the direction

fields, and we store this plot in Pstream.

Clear[vdot, udot, Pstream]

vdot[v_, u_] :=

If[v >= xm, 0,

If[v <= -xm, 0,

If[u >= xm, 0, If[u <= -xm, 0, f[v] + u*(v - n) + p]]]];

udot[v_, u_] :=

If[v >= xm, 0,
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If[v <= -xm, 0, If[u >= xm, 0, If[u <= -xm, 0, v - u]]]];

Pstream =

StreamPlot[{vdot[v, u], udot[v, u]}, {v, -xm, xm}, {u, -xm, xm},

PlotRange -> pr];

The code next plots the ordered pairs corresponding to equilibria, if any exist,

using the Graphics function, storing these plots in the Psaddle and Prest, cor-

responding to the saddle equilibrium and the resting state equilibrium, respectively

(which is not necessarily a stable resting state).

Clear[vstar, istar, equilibria, saddle, rest]

vstar = v /. NSolve[f’[v] + 2*v - n == 0, v, Reals][[1]];

istar = vstar^2*(3*vstar^2 + 1);

If[p >= istar, 0,

equilibria = v /. NSolve[f[v] + v^2 - n*v + p == 0, v, Reals]];

saddle = Max[equilibria];

rest = Min[equilibria];

Psaddle =

Graphics[{Blue, PointSize[Large], Point[{saddle, saddle}]}];

Prest = Graphics[{Blue, PointSize[Large], Point[{rest, rest}]}];

The code next generates some initial conditions associated with the stable and un-

stable mandfolds of a saddle equilibrium, allows the user to enter the user’s own initial

conditions, and plots the trajectories for these initial conditions into two different plots

to distinguish them. By perturbing the saddle equilibrium ordered pair in the direction

of the eigenvectors scaled by a small factor, we obtain initial conditions that have orbits

“very near” the stable and unstable manifolds of the saddle equilibrium. The variable

vects stores the eigenvectors of the saddle equilibrium scaled by a factor of scale.
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We store the ordered pairs corresponding to the initial conditions of orbits “very near”

the stable and unstable manifolds of the saddle equilibrium in startingPoints1.

The user then may uncomment the code to perturb the resting point according to its

eigenvectors similarly and store that information in startingPoints2 to investigate

phenomena like heteroclinic loops induced by the discontinuous reset.

Now that initial conditions associated with the stable and unstable manifolds of

the saddle equilibrium are stored, the stores initial conditions associated with specific

trajectories of interest in startingPoints by hand; these are usually inserted to

demonstrate the existence of limit cycles, and so on. We use the Graphics function

to plot all initial conditions in startingPoints desired by the user, and we store

this plot in Pstart. We use NDSolve to find solutions to the system of equations

with initial conditions in startingPoints on a time interval from t=0 to t=tmax,

and store this solution in sols. We plot sols with ParametricPlot and store the

plot in Ptraj. We then plot the manifold-related trajectories similarly using the initial

conditions from startingPoints1, storing that plot in Pmanis. We usually have the

plots in Ptraj a distinctly different color than the plots in Pmanis so as to indicate a

difference between the stable/unstable manifolds.

Clear[vects, scale, startingPoints1, startingPoints]

scale = 1/1000;

vects = Re[

scale* Eigenvectors[{{f’[saddle] + saddle,

saddle - n}, {1, -1}}]];

(*startingPoints1 = {{saddle,saddle} + vects[[1]], {saddle,saddle} + \

vects[[2]], {saddle,saddle} - vects[[1]], {saddle,saddle} - \

vects[[2]]};*)
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startingPoints1 = {{saddle, saddle} - vects[[1]], {saddle, saddle} -

vects[[2]]};

Clear[vects, startingPoints2]

scale = 1/5;

vects = Re[scale*Eigenvectors[{{f’[rest] + rest, rest - n}, {1, -1}}]];

startingPoints2 = {{rest, rest} - vects[[2]]};

(*startingPoints = Union[startingPoints1, startingPoints2];*)

Clear[startingPoints]

(*startingPoints=Union[startingPoints1,startingPoints2];*)

\

(*startingPoints=Union[startingPoints1,{{-0.6615,-0.6429},{-0.2769,-0.\

2695}}];*)

startingPoints = {{-0.8729, -0.8773}, {-0.6985, -0.6783}};

(*startingPoints=startingPoints2*)

Pstart = Graphics[{Red, PointSize[Medium], Point[startingPoints]}];

Clear[sols, Ptraj, tmax]

tmax = 200;

sols = Table[

NDSolve[{v’[t] == vdot[v[t], u[t]], u’[t] == udot[v[t], u[t]],

v[0] == startingPoints[[k]][[1]],

u[0] == startingPoints[[k]][[2]]},

{v, u}, {t, 0, tmax}, MaxSteps -> Infinity], {k, 1,

Length[startingPoints]}];
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Ptraj = ParametricPlot[Evaluate[{v[t], u[t]} /. sols], {t, 0, tmax},

PlotRange -> Automatic, PlotStyle -> {{Blue, Thick}}];

Clear[startingPoints, manis, Pmanis, tmax]

tmax = 30

startingPoints = startingPoints1;

manis = Table[

NDSolve[{v’[t] == vdot[v[t], u[t]], u’[t] == udot[v[t], u[t]],

v[0] == startingPoints[[k]][[1]],

u[0] == startingPoints[[k]][[2]]},

{v, u}, {t, -tmax, tmax}, MaxSteps -> Infinity], {k, 1,

Length[startingPoints]}];

Pmanis = ParametricPlot[

Evaluate[{v[t], u[t]} /. manis], {t, -tmax, tmax},

PlotRange -> Automatic, PlotStyle -> {{Purple, Thick}}];

Finally, we allow the user to reset the plot range pr and then use the Show

command to illustrate Pnull, Pstream, Ptraj, Pmanis, and Pstart.

Clear[pr]

pr = {{rest - 1.5, saddle + 0.2}, {rest - 0.2, saddle + 0.2}};

(*Show[Pnull,Pstream,Psaddle,Prest,Ptraj,Pstart,PlotRange->pr,Frame->\

True]*)

Show[Pnull, Pstream, Ptraj, Pmanis, Pstart, PlotRange -> pr,

Frame -> True]

(*Show[Pnull,Pstream,Pmanis,PlotRange->pr,Frame->True]*)
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