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ABSTRACT

Reducing sample frequencies in measurement systems can save power, but reduc-

tion to the point of undersampling results in aliasing and possible signal distortion.

Nonlinearities of the system under test can also lead to distortions prior to mea-

surement. In this dissertation, a first algorithm is presented for designing multisine

excitation signals that can be undersampled without distortion from the aliasing of

excitation frequencies or select harmonics. Next, a second algorithm is presented

for designing undersampled distributions that approximate target frequency distri-

butions. Results for pseudo-logarithmically-spaced frequency distributions designed

for undersampling without distortion from select harmonics show a considerable

decrease in the required sampling frequency and an improvement in the discrete

Fourier transform (DFT) bin utilization compared to similar Nyquist-sampled output

signals. Specifically, DFT bin utilization is shown to improve by eleven-fold when

the second algorithm is applied to a 25 tone target logarithmic-spaced frequency

distribution that can be applied to a nonlinear system with 2nd and 3rd order

harmonics without resulting in distortion of the excitation frequencies at the system

output.

This dissertation also presents a method for optimizing the generation of mul-

tisine excitation signals to allow for significant simplifications in hardware. The

proposed algorithm demonstrates that a summation of square waves can sufficiently

approximate a target multisine frequency distribution while simultaneously optimiz-
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ing the frequency distribution to prevent corruption from some non-fundamental

harmonic frequencies. Furthermore, a technique for improving the crest factor of a

multisine signal composed of square waves shows superior results compared to random

phase optimization, even when the set of obtainable signal phases is restricted to a

limited set to further reduce hardware complexity.
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CHAPTER 1. INTRODUCTION

Widespread adoption of in-situ structural health monitoring (SHM) to

autonomously assess the condition and deterioration of real world infrastructure is

curtailed by initial capital and recurring maintenance costs. Primary contributors to

these prohibitors generally include the complexity of the instrumentation equipment

and the need for localized power sources, which may require routine service for

continued operation. SHM instrumentation requirements are satisfied with a

commercial impedance analyzer, such as the HP4194A, but previous engineering

efforts have led to simplified hardware setups. Self-contained DSP-based measurement

modules utilizing off-the-shelf components can readily satisfy the demands of SHM

and are orders of magnitude more economical compared to lab-grade equipment [1].

Likewise, complete instrumentation systems for SHM have been realized in single

integrated circuits [2, 3], further decreasing equipment costs and vastly reducing

power consumption through integration. Additional system optimization has been

realized by substituting classical, high-resolution measurement techniques with less

intensive measurement approximations that are specifically designed with the goal

of improving energy efficiency and reducing system complexity [4]. In combination,

these approaches have opened the door for energy harvesting [5–7] as a viable, low

maintenance alternative to conventional energy storage sources such as batteries.

The power consumption of digital circuitry in a standard CMOS process, a low

cost process technology for integrated SHM sensors, can be divided into dynamic and

leakage power. Dynamic power is modeled as

PD = αCfV 2
DD, (1)
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where α is the activity factor, C is the total capacitance of the switching circuits, f

is the switching frequency, and VDD is the supply voltage. Likewise, leakage power is

modeled as

PLEAK = VDDILEAK, (2)

where ILEAK is dominated by the drain-to-source current of the transistor when the

gate-to-source voltage is zero [8]. The 0.18 µm process is a typical design node for

low-power mixed-signal integrated circuits because it offers a good balance between

analog capabilities, digital integration, IP availability, and manufacturing cost. In

this geometry, dynamic power consumption is the predominant concern for low gate

count devices such as SHM sensors. Thus, methods to reduce the power consumption

of SHM sensors should focus on reducing the switching frequency, supply voltage, and

gate count of the circuits. Assuming the frequency of operation can be adequately

reduced, subthreshold circuit design can further decrease the power consumption of

the digital blocks, such as an FFT processor [9, 10].

In addition to DFT processing, an SHM sensor implementing impedance

spectroscopy also requires analog circuits, such as an analog-to-digital converter

(ADC), for measuring the system response to an excitation signal. Similar to the

digital circuits, the power consumption of the ADC can be reduced by decreasing

the bias voltage and the duty cycle of operation, resulting in a reduced sampling

rate. For power-scalable ADC architectures with sampling rates in the Hz to kHz

range of operation, the relationship between power consumption and sampling rate

is approximately linear [11, 12].

Undersampling, sampling at a frequency less than Nyquist, has been

implemented in discrete component impedance spectroscopy circuits as a means for

reducing the cost of the ADC and the power consumption of the ADC and DSP-FIFO

circuits. Both single sine excitation systems [13,14] and multisine excitation systems
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[15, 16] have been previously demonstrated. In comparison to single sine excitation,

broadband excitation can be beneficial in reducing the total test time of impedance

spectroscopy by simultaneously analyzing several frequency points, thereby decreasing

the total settling time of the system [17]. Of the many types of broadband excitation

signals, including pulse, chirp, pseudo-random binary sequences, and noise excitation,

multisine signals enable straightforward specification of a line spectra excitation.

This is helpful for analyzing frequency interactions resulting from aliasing due to

undersampling.

Pioneering work performed by Creason and Smith [18, 19] in the early 1970s

with Nyquist sampled multisine signals recognized the benefit of using odd harmonic

frequency distributions to prevent the corruption of excitation signals from even

order system nonlinearities. Later work by Evans and Rees [20,21] introduced a new

type of multisine distribution that is specifically designed to eliminate all nonlinear

distortions, both even and odd, up to a specified order. However, neither of these

approaches, nor other examples such as odd-odd or relative prime distributions, are

specifically designed to prevent corruption of the excitation frequencies by nonlinear

distortions when the output signal is undersampled. Therefore, these traditional

multisine frequency distributions are not typically used when undersampling a system

that includes a significant nonlinear component.

In addition to power savings through reductions in switching frequency and

duty cycle, undersampling during frequency analysis also saves power by reducing

the computational complexity of the discrete Fourier transform (DFT) processor by

increasing the DFT bin utilization of the measured signal. In this paper, the DFT

bin utilization is defined as the ratio of the total number of excitation frequencies

to the total number of DFT bins. For example, frequency aliasing provides a means

to map a sparse logarithmically-spaced frequency distribution into a compact set of
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linearly-spaced DFT bins, leaving only a few DFT bins empty for nonlinear detection.

If N is the total number of DFT bins and M is the number of excitation frequencies,

the computational complexity of calculating the DFT using the fast Fourier transform

(FFT) is O(N log2(N)), and the complexity of Goertzel processing is O(MN). The

complexity of both analysis methods is reduced as N decreases for a fixed value of

M . Furthermore, both dynamic and leakage power are reduced by decreasing the

required memory depth of the DFT processor in proportion to N .

A limitation of previous undersampled multisine excitation design methods [15,

16, 22] is that they assume the system-under-test is linear. Unfortunately, this is

generally not true in SHM and other electrochemical impedance spectroscopy (EIS)

applications where system nonlinearities can appear in measurements as a result of

large amplitude excitations. In order to minimize the crest factor (minimize test

time), it is useful to detect system nonlinearities by monitoring the harmonics of the

excitation signals [21,23–28]. However, the orthogonality of excitation and harmonic

frequencies can be lost during undersampling, thereby making it infeasible to control

excitation signal amplitude in response to detected system nonlinearities.

1.1. Dissertation Topic

In system identification applications, it is common practice to apply a single sine

or multisine input to a system under test and then measure the response. Typically,

the output signal is digitally sampled at a greater-than-Nyquist rate to ensure that

frequency aliasing does not corrupt signal measurements. Nonlinear systems can

produce harmonics that demand even higher sampling rates. Existing analog and

digital circuitry are available to implement these sampling and processing functions,

but the cost in power and complexity can be substantial. For example, hardware

implementations consume increasing power when operating at increasing frequencies.
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The primary objective of this dissertation is to present methods to design

multisine input signals that, when applied to linear or nonlinear systems, can be

sampled at less-than-Nyquist frequencies without signal loss or corruption. The

benefits of undersampling are two-fold. First, the measurement hardware operates

at a lower frequency and thereby consumes less power. Second, signal design

ensures controlled aliasing during undersampling that substantially improves DFT bin

utilization and allows the signal to be processed in a more computationally-efficient

manner. Furthermore, these signals are designed to intelligently accommodate

harmonics produced by system nonlinearities. Taken together, the results are

decreased power consumption and decreased processing complexity.

In addition, this dissertation proposes a methodology for simplifying the

generation of multisine excitation signals. Rather than using direct digital synthesis or

recursive oscillators paired with high speed digital-analog-converters, it is shown that

multisine signals can be well approximated using synchronized square wave generators

and low pass filters. Likewise, the frequency distribution of the excitation signal can

be modified such that distortion can be avoided from harmonics created by the square

waver generators or the system under test.

Techniques and algorithms presented herein will focus on several facets of

excitation signal design, including:

1. Decreasing the required sampling frequency.

2. Ensuring that aliasing does not lead to the corruption of excitation frequencies.

3. Increasing the DFT bin utilization.

4. Accommodating harmonics generated by system nonlinearities.

5. Approximating desired multisine excitation frequency distributions.
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6. Minimizing the signal crest factor.

A portion of the dissertation research has been published and presented by the

author at a conference [22] and published in a peer-reviewed journal [29].

1.2. Organization

This paper is organized into seven chapters, beginning with this introduction.

A review of relevant topics is presented in Chapter 2, including Electrochemical

Impedance Spectroscopy, system identification, multisine excitation signals, nonlinear

detection, signal sampling, signal undersampling, and signal generation. Previous

work in undersampled excitation signal design is also presented here. The

requirements for designing a multisine excitation signal that can be undersampled,

while still providing means for nonlinear detection through the measurement of

select harmonics, are discussed in Chapter 3. These requirements present a discrete

optimization problem with the goal of minimizing the total number of DFT bins

needed to analyze an undersampled output signal with nonlinear detection.

In Chapter 4, minimum values of N are directly calculated for small values

of M and for different sets of detection harmonics using the frequency distribution

f of the excitation signal as a free variable. The MinN -Freef algorithm is then

presented to identify frequency distributions that minimize N for larger values of

M . These results set the lower bound of N for any frequency distribution f with

M tones. Building on this algorithm is the MinN -Targetp algorithm. It considers

additional excitation signal requirements such as the acceptable error allowed between

the resulting distribution designed for undersampling and the target excitation

frequency distribution required by a particular system identification application.

The capabilities of the MinN -Targetp algorithm are investigated in Chapter 5

through its application to target logarithmic frequency distributions. Results show

that considerable improvements in both sample frequency and DFT bin utilization

6



are possible compared to Nyquist-sampled output signals that support nonlinear

detection.

Chapter 6 looks at methods for improving the efficiency of multisine excitation

signal generation. The concept of using multiple square wave generators to create

a multisine signal is introduced, and the Minf0-Targetp algorithm is presented to

optimize a multisine frequency distribution to work with square wave generators.

The algorithm is capable of managing both the harmonics created by the square

wave generators along with any harmonics that may be created by the system under

test. Furthermore, a method for optimizing the crest factor of a multisine signal

created from multiple square waves is proposed. Finally, the dissertation closes with

opportunities for future work and the conclusions in Chapter 7.
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CHAPTER 2. BACKGROUND AND PREVIOUS WORK

2.1. Introduction

Electrochemistry Impedance Spectroscopy (EIS) is a powerful technique for

analyzing the frequency dependent response of an unknown system. Some of the

earliest applications of EIS methods were performed by Muller in 1938 for AC

polarography analysis [30] and by Grahame in 1941 for capacity measurement of

double layer capacitance [31–33]. Since the 1970’s, EIS has grown in popularity as a

tool for the measurement of hundreds of electrochemical phenomenon including the

evaluation of coating corrosion protective properties [34, 35], the characterization of

nano materials [36], the reactions in electrochemical cells, and the understanding of

molecular properties and interactions in biological tissues [37,38]. While traditionally

an instrument intended only for the laboratory test-bench [39], there is currently a

desire to develop and refine portable, battery powered EIS equipment for in-field

measurements and installations [40].

This chapter serves as an introduction to Electrochemical Impedance

Spectroscopy (EIS) and its underlying process. First, the fundamentals of frequency-

domain system identification are presented, followed by a review of the previous work

in the development of multisine excitation signals, the current de facto standard

for system identification. Several different classes of multisine signals are presented

along with the characteristics of each. In addition, a brief review of sampling theory is

provided with an emphasis on undersampling. Finally, recent work on the application

of undersampling to system identification is investigated. The goal of this inspection

is to set the backdrop for the proposed research and to help quantify its relevance.

2.2. System Identification

The framework of EIS rests on a foundation of frequency-domain system

identification concepts. A comprehensive description of a frequency domain approach
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to transfer function modeling of linear time-invariant (LTI) systems can be found

in Pintelon and Shoukens [41]. Typically, the process can be divided into three

tasks: selecting a model of the unknown system, collecting frequency response

function (FRF) measurements, and estimating the model parameters using the FRF

measurements. Choosing a model to adequately represent the system can be a

daunting task. Generally, it is only necessary to accurately model a subset of the

true system characteristics rather than system in its entirety. The simplest, lowest-

order model capable of adequately representing the required system characteristics

is preferred over a higher-order model. Low-order models have the benefit of being

easy to define and fit to measurement data. Using a higher-order model increases the

difficulty of estimating model parameters from the FRF measurements, and it can

even be possible to model unintentional effects such as system noise and measurement

errors.

While model development and the estimation of model parameters is an integral

part of the system identification process, the scope of this work is focused on methods

for obtaining quality FRF measurements under specific test circumstances. In review,

FRF measurements obtained by perturbing the unknown system with an input signal

and measuring the resulting system output signal are used to generate a transfer

function estimate of the unknown system response. The typical setup for an FRF

measurement is shown in Fig. 1. The system under test, referred to as the plant,

with the transfer function G(jω), has an input x0(t) and output y0(t). The input is

derived from a generator with a weighted pulse train output xg(nTs), where Ts is the

sampling period of the generator and n is an integer. Next, the output of the generator

is converted into a series of stair steps xZOH(t) by a zero-order-hold filter (ZOH). In

practice, xZOH(t) could represent the output of a digital-to-analog converter (DAC).

Before xZOH(t) is applied to the input of the plant, it passes through a low-pass
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reconstruction filter with response Gr(jω) that removes all unintended harmonics

above the Nyquist frequency fs/2, where fs = 1/Ts, thereby removing the stair-step

characteristic and producing a bandlimited signal. To model the noise and errors of

the signal generation process, the output of the reconstruction filter xg(t) is summed

with a non-periodic noise source ng(t), which represents the generator noise, resulting

in the system excitation signal x0(t). The output of the plant y0(t) is modeled as a

sum of the plant noise np(t) and the output of G(jω) in response to the excitation

input x0(t).

Figure 1. Deconstructed measurement setup

To obtain the FRF measurements of the plant, the true input and output signals

x0(t) and y0(t) must be measured. Low-pass anti-aliasing filters Gx(jω) and Gy(jω)

may be necessary to remove any frequency content in x0(t) and y0(t), respectively,

that is greater than the Nyquist frequency fs/2, where fs is the sampling frequency of

the measurement equipment. Although the reconstruction filter Gr(jω) may eliminate

the generation of this unwanted frequency content, the modeled noise sources ng(t)

and np(t) may very well add additional frequency content to both x0(t) and y0(t).

Likewise, the plant output y0(t) may contain significant frequency content different

from the plant input x0(t) if the plant is nonlinear. Whereas the output of a linear
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plant contains only the same frequency components as the input, it is possible for the

output of a nonlinear plant to contain frequency content at higher frequencies than

the input.

Following the anti-aliasing filters, the input and output signals are corrupted

with additive noise sources nx(t) and ny(t), respectively, to represent the measurement

noise before being sampled to obtain x(t) and y(t), respectively. Mathematically, the

sampled measurements can be represented as

x(t) = (x0(t) + nx(t))
∞
∑

n=−∞

δ(t− nTs). (3)

In practice, these time-sampled measurements could represent the output of an

analog-to-digital converter (ADC).

The sampled continuous-time measured signals x(t) and y(t) are transformed

to the frequency domain using the discrete Fourier transform (DFT) to obtain X [k]

and Y [k], respectively. This DFT consists of the the analysis equation

X [k] =

N−1
∑

n=0

x[n]e−j2πnk/N (4)

and the synthesis equation

x[n] =
1

N

N−1
∑

k=0

X [k]ej2πnk/N , (5)

where x[n] is the discrete-time representation of the sampled continuous-time signal

x(nTs).

In frequency-domain system identification, the FRF estimate G(jω) of the true

plant transfer function G0(jωk) consists of transfer function measurements G(jωk) at
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discrete frequencies ωk, where

G(jωk) =
Y [k]

X [k]
(6)

and

ωk =
2πk

NTs
(7)

with uniform sampling period Ts and N number of samples. Because x[n] has finite

length and X [k] specifies the frequency of x[n] at only a finite set of frequencies, it

is possible to observe both the smearing and leakage of frequency content in X [k].

To prevent this, an integer number of periods must by measured, and all frequency

content in x[n] must reside at the sampled frequencies ωk of the DFT.

Assuming the excitation waveform is periodic with sample length N and

measurements are collected for M number of periods, as shown in Fig. 2, the m-

th estimate of G(jω) is

Ĝm(jωk) =
Ym[k]

Xm[k]
, (8)

where Xm[k] and Ym[k] are the N -length DFT of the m-th period of the measured

waveforms x[n] and y[n], respectively.

Several methods exist for finding an average FRF estimate ḠM(jωk) of the M

number of Ĝ(jωk) estimates. One approach is to average the M number of input and

output measurement periods before calculating the FRF estimate as

ḠM(jωk) =

∑M
m=1 Ym[k]

∑M
m=1Xm[k]

. (9)

Assuming that the measured Fourier coefficients can be represented as

Xm[k] = X0[k] +NXm
[k] (10)

Ym[k] = Y0[k] +NYm
[k], (11)
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Figure 2. m-th FRF estimate

where NXm
[k] and NYm

[k] are the noise contributions from nx(t) and ny(t) in the

m-th estimate, and NX [k] and NY [k] are circular-complex normally distributed [41]

such that

E{NX [k]} = lim
M→∞

1

M

M
∑

m=1

NXm
[k] = 0 (12)

E{NY [k]} = lim
M→∞

1

M

M
∑

m=1

NYm
[k] = 0, (13)

then it can be shown that

lim
M→∞

ḠM(jωk) =
Y0[k]

X0[k]
= G0(jωk). (14)

Thus, as the number of estimates M approaches infinity, the bias error of the average

FRF estimate ḠM(jωk) calculated using Eq. (9) approaches zero.
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The primary goal in the design of excitation signals is to maximize the quality of

the average FRF estimate ḠM(jωk) for a given measurement time and peak amplitude

of excitation. The quality of the result can be established by analyzing the variance

of Ḡ(jωk) which is estimated as

σ̂2
M (jωk) =

1

M(M − 1)

M
∑

m=1

∣

∣

∣
Ĝm(jωk)− ḠM(jωk)

∣

∣

∣

2

, (15)

where the plant transfer function is estimated as

ḠM(jωk) =
1

M

M
∑

m=1

Ĝm(jωk) ≈ G0(jωk). (16)

As σ̂2
M(jωk) decreases for a given frequency point wk, the quality of ḠM(jωk) at wk

improves. However, this does not necessarily imply that ḠM(jωk) is a good estimate

of G0(jωk), since σ̂2
M(jωk) does not account for any bias error in ḠM(jωk). Rather,

σ̂2
M(jωk) describes a confidence ball

∣

∣G0(jωk)− ḠM(jωk)
∣

∣ < ασ̂M(jωk)) (17)

in the complex plane for ḠM(jωk), where α is chosen to achieve the desired level of

confidence.

Generally speaking, minimizing the sources of measurement error will help to

reduce the number of samples M required to achieve a quality FRF estimate with

a specified confidence level. Extensive research has been performed with the goal of

reducing the error in FRF measurements caused by influences such as noise, nonlinear

distortions, and non-ideal test hardware [?, 28, 42]. One particular area of focus

is on the design of excitation signals. Through the careful selection of excitation
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signal parameters, many distortions that commonly plague FRF measurements can

be reduced or even eliminated.

2.3. Multisine Excitation Signals

Advances in DSP techniques and hardware, especially the implementation of the

fast Fourier transform (FFT) [43] for efficient calculation of the the DFT, enable the

use of multisine excitation waveforms rather than single sinusoids for obtaining FRF

measurements. The primary benefit is that multisine input signals enable the system

response to be measured at multiple discrete frequencies of interest simultaneously

rather than consecutively. As will be shown, this can dramatically reduce the

required measurement time needed to obtain an acceptable FRF variance compared

to consecutive single sine measurements.

In general, a multisine signal consists of a sum of two or more harmonically

related sinusoids with programmable amplitudes, phases, and frequencies [44]. It is

mathematically defined as

x(t) =
F
∑

k=1

Ak sin (2πfkt + φk), (18)

where Ak, fk, and φk are elements of amplitude, frequency, and phase vectors,

respectively, and F is the number of harmonics in the signal. In contrast, a single or

stepped sine is a pure sine wave defined as

x(t) = A sin (2πft+ φ), (19)

where the frequency is updated for every measurement.

Much research has been devoted to the minimization of the crest factor (Cr) of

multisine signals [45–48]. This parameter is useful for characterizing excitation signals

as it quantifies the ratio of the peak amplitude of a signal to the power of the signal.
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This factor is relevant when one considers that a high power input signal is beneficial

as it increases the signal-to-noise ratio (SNR) of the experiment, thus leading to a

reduction in σ̂2
M (jωk). However, a signal with sufficiently small peak amplitude is

necessary for the plant to approximate a linear system and to prevent saturation of

the measurement system. Therefore, an excitation signal with minimum crest factor

is preferred. Assuming all of the signal power is constrained to the frequency range

of interest, the crest factor of a periodic signal x(t) is

Cr(x) =
max

t
{|x(t)|}

√

1
T

∫

T
|x(t)|2 dt

=
xmax

xrms
, (20)

where T is the period of x(t). For example, a single sinusoid with a peak amplitude of

1 has an rms value of 1/
√
2 and a crest factor of

√
2 ≈ 1.414, whereas a square wave

with a peak amplitude of 1 has an rms value of 1 and a crest factor of 1. It is easy to

see that for a given peak amplitude, a square wave excitation signal has a lower crest

factor than a single sinusoid and is capable of perturbing a system with more power.

This becomes even more apparent when considering the Fourier series of a square

wave, which consists of a fundamental sinusoid with a peak amplitude of 4/π and

a infinite number of harmonically-related sinusoids with decreasing amplitude over

frequency. Actually, a square wave is a special case of a non-bandlimited multisine

signal.

Another important parameter to consider when comparing excitation signals

is the signal time factor (Tf) [44]. The time factor of the input signal x(t) defines

the minimum measurement time required for all excitation frequencies ωk in x(t) to

obtain FRF measurements with a minimum relative accuracy. In a multisine signal,

this is limited by the test frequency with the minimum SNR. The time factor is
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calculated [41] as

Tf(x) = max
k

{

0.5Cr2(x)
X2

rms

|X [k]|2
}

, (21)

where

X2
rms =

N
∑

k=1

|X [k]|2
N

(22)

and x[n] is periodic with sample length N . Eq. (21) has been normalized by

introducing the scale factor 0.5 such that a pure sinusoid has a time factor of 1.

When considering the transient response of the plant and measurement system

when initially applying an excitation signal, the difference in total measurement time

for single sine and multisine signals with the same time factor becomes apparent.

Each time a new input signal is applied, it is necessary to wait for a time Tw until the

transient response of the system decays to an acceptable level. Assuming a very high

SNR and frequency dependent waiting time Tw(f), the minimum total measurement

time when using a stepped sine excitation signal to test F number of fk frequencies

is

Tss =

F
∑

k=1

{1/fk + Tw(fk)}. (23)

Under the same conditions, the total measurement time for a multisine signal is

Tms = 1/f0 +max
fk

{Tw(fk)}, (24)

where 1/f0 is the period of the multisine signal. Whereas the stepped sine signal

incurs a waiting time penalty at each step in frequency, a system excited with a

multisine signal only needs time for the transient to settle once, and that time is set

by the test frequency with the longest settling time. This shows quite obviously that

under conditions of high SNR, a multisine excitation will outperform a stepped sine

excitation in regards to total test time. On the other hand, if the SNR is very low,

17



the waiting time Tw becomes small in comparison to the measurement time required

to obtain an FRF measurement with acceptable accuracy. Assuming the power in

the multisine is equally distributed across F frequencies and the measurement noise

is flat across the frequency range of interest, the multisine excitation must be applied

F times longer than each single sine excitation. Therefore, in a measurement system

with low SNR, the total measurement time for multisine and stepped sine excitations

are approximately equal [17].

In general, the ease at which multisine signals can be generated with today’s

DSP techniques and the resulting decrease in total measurement time has made

multisine excitation signals for system identification in the frequency-domain the

preferred choice. Not surprisingly, several variations of multisine signals have been

developed over the years, each with their own advantages and disadvantages. In the

next several sections, the major classes of multisine signals are reviewed.

2.3.1. Schroeder Multisine

In 1970, Schroeder published a method [49] for reducing the crest factor

of multisine signals with flat amplitude spectra and uniformly spaced frequency

components by choosing the phases φk of Eq. (45) such that φk = −k(k − 1)π/K.

This solution does not necessarily find the minimum crest factor, but its closed form

nature usually enables the crest factor of a multisine signal to be reduced with little

computational complexity. The typical crest factor of a Schroeder multisine with flat

amplitude spectra and uniformly spaced frequency components is approximately 1.6-

1.7. In practice, it is also common to use the Schroeder phases for multisine signals

without flat amplitude spectra or uniformly spaced frequency components. However,

applying the Schroeder phases to a signal with a pseudo-log spaced frequency spectra

results in a crest factor of around 3 or higher [44]. In this case, it is advantageous to
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use another form of crest factor minimization such as a random phase distribution or

an iterative crest factor optimization algorithm.

2.3.2. Multisines for Nonlinear Detection

All practical systems are nonlinear in nature. For discussion purposes, Evans

assumes the plant G(jω) can be reduced to a linear system in parallel with a static

nonlinear system as shown in Fig. 3 [27]. Typically, it is assumed that the nonlinear

output contribution yNL(t) is dominated by the linear output contribution yL(t) for a

sufficiently small peak value xmax of x(t). This is a perfect example of why minimizing

the crest factor of x(t) is so important for the accurate estimation of G(jω) in an

acceptably short measurement time. However, it is not always obvious what is an

acceptable value of xmax and what effect the nonlinear contributions yNL(t) have on

the measured output y(t), where y(t) = yL(t) + yNL(t). Particular attention must be

paid during testing to ensure that any effect of nonlinear contributions is reduced.

Linear

Nonlinear

x(t) y(t)

yNL(t)

yL(t)

Figure 3. Parallel nonlinear model structure

Assuming stochastic errors are small and neglected, Evans shows that the FRF

estimate Ĝ(jωk) at the excitation frequencies wk is

Ĝ(jωk) = Y (jωk)/X(jωk) =
YL(jωk)

X(jωk)
+

YNL(jωk)

X(jωk)
(25)

From this it can be seen that any non-zero terms of YNL(jωk) will result in a systematic

bias and/or scatter of the FRF estimate. Assuming that the the nonlinear system
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can be represented, rather simply, by the power-series

yNL(t) =
P
∑

p=1

γpx
p(t), (26)

where P is the maximum order of the nonlinear system, the output contribution

YNLp
(jω) of the p-th order term of the system nonlinearity can be found using

convolution in the frequency-domain. For example, the output of a quadratic

nonlinearity is

YNL2
(jω) = γ2 [X(jω) ∗X(jω)] , (27)

and the output of a cubic nonlinearity is

YNL3
(jω) = γ3 [X(jω) ∗X(jω) ∗X(jω)] . (28)

If X(jω) is non-zero for a discrete set of frequencies wk, then YNLp
(jω) is non-zero

for all combinations of p number of frequencies from wk. In the case of a multisine

signal as defined in Eq. (45), the frequencies of nonlinear contributions are located at

fi± fj and fi± fj ± fk for quadratic and cubic nonlinear systems, respectively, where

i = 1, 2, . . . , F , j = 1, 2, . . . , F , and k = 1, 2, . . . , F .

To help understand the effects of the nonlinearities, Evans divides the

contributions into two categories, Type I contributions and Type II contributions

[27]. Type I contributions are located at the test frequencies fk or at DC and are

generated by combinations of equal positive and negative frequencies. For a quadratic

nonlinearity, a combination of fk − fk results in a contribution at DC. Likewise, a

combination of fi − fi + fk for a cubic nonlinearity results in a contribution at fk.

Type I contributions have the same phase as the original test frequency, and as such,

will introduce a systematic bias into the FRF estimate. The total number of Type I
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contributions depends only on the order of the nonlinearity. The distribution of fk

has no effect.

Type II contributions include all other frequency combinations. This includes

the quadratic nonlinearity combinations fi ± fj 6= 0 and the remaining cubic

nonlinearity combinations fi ± fj ± fk. Unlike Type I contributions, the phases of

Type II contributions depends on the phases φk of the multisine input and the order

of the nonlinearity. Therefore, Type II contributions introduce a varying bias in the

form of scatter.

Several types of multisine excitation signals have been developed to reduce

nonlinear distortions in y(t) contributed by yNL(t) and to aid in the detection

of nonlinear contributions. Odd, odd-odd, and no-interharmonic-distortion (NID)

multisines are reviewed in the following sections.

2.3.2.1. Odd Multisine

An odd multisine excitation signal contains signal power at only the odd

harmonics of the fundamental frequency component f0 by restricting the frequency

vector fk of Eq. (45) to fk = (2k−1)f0. The primary benefit of only exciting the odd

harmonics is that all Type I and Type II even-order nonlinearity contributions will

fall at either DC or the unexcited even harmonics. Therefore, the linear contribution

of the output YL(jωk) and all even-order nonlinearity contributions are orthogonal

in the frequency domain [20]. Not only does this prevent the output Y (jωk) from

being distorted by the even-order nonlinearity contributions, but it also enables the

even-order nonlinearity contributions to be detected by analyzing the unexcited even

harmonics at the output. However, the output Y (jωk) still includes both Type I and

II odd-order nonlinearity contributions. The Type I odd-order contributions always

fall on the test frequencies, and the Type II odd-order contributions consist of an
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odd sum of odd harmonics, which may result in contributions at the excited odd

harmonics.

2.3.2.2. Odd-Odd Multisine

The odd-odd multisine is similar to the odd multisine, except that only every

other odd harmonic is excited according to fk = (4k − 3)f0. At the (4k − 3)f0

frequencies, the output consists of the linear contribution YL(jωk), all of the Type I

odd-order nonlinearity contributions, and some of the Type II odd-order nonlinearity

contributions. At the (4k − 1)f0 frequencies, the output includes only some of the

Type II odd-order nonlinearity contributions. The output includes only Type II

even-order nonlinearity contributions at the (4k − 2)f0 and (4k)f0 frequencies, and

all Type I even order nonlinearities again fall at DC [41]. Therefore, both the even-

order and odd-order nonlinearity contributions can be detected and characterized by

analyzing the unexcited even and odd harmonics at the output. Despite the added

advantages over the odd multisine, the output Y (jωk) still suffers from Type II odd-

order nonlinearity distortions. In addition, the odd-odd multisine suffers from reduced

frequency resolution compared to the odd multisine.

2.3.2.3. NID Multisine

A no-interharmonic-distortion (NID) multisine follows the form of Eq. (45), but

the frequency vector fk consists of a sub-set of the odd harmonics of f0 such that

all Type II nonlinearity contributions, including odd-order nonlinearities, up to a

certain order are eliminated from the output Y (jωk). Once again, the excitation

signal is restricted to only odd harmonics to prevent any even-order nonlinearity

distortions at the output. However, Type I odd-order nonlinearity distortions still

exist in the output Y (jωk) since these contributions fall at the test frequencies.

Because all significant Type II nonlinearity contributions can be removed, the

FRF measurements exhibit only a systematic bias caused by the Type I odd-order
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nonlinearity contributions [27]. An example harmonic vector for a multisine signal

with NID properties up to and including fourth order nonlinearities [20] is

fk = f0× [1 5 12 29 49 81 119 141 . . .

207 263 359 459 543 729 775 909 . . .

1097 1213 1405 1649 1853 2077 2461 2653 . . .

3047 3111 3151 3631 4177 4431 5195 5591 . . .

6793 6943 7745 8457 8759 10033 10209 11391 . . .

11783 13281].

(29)

The frequency distribution of an NID multisine tends to be closer to a logarithmic

spacing rather than a linear spacing, as seen in Fig. 4.
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Figure 4. Frequency distribution of NID multisine

2.3.3. Pseudo Log-Spaced Multisine

A pseudo-log spaced multisine is an approximation of a logarithmic spaced

frequency distribution where each excited frequency component is rounded to the

nearest discrete frequency fk that is a harmonic of the fundamental f0. The harmonic

requirement is imposed such that all frequency components of the multisine signal will

have an integer number of periods for each period of excitation, which is necessary

to prevent leakage errors in the subsequent DFT calculations. An example of a

pseudo-log spaced multisine that excites the frequency band of 1Hz to 100Hz with 12
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lines per decade and a period of 6 seconds is shown in Fig. 5. The frequency error

between the pseudo log-spacing and the ideal log spacing is shown in Fig. 6. The

design criteria for this particular signal were chosen such that the resulting pseudo

log-spaced frequency distribution has no degenerate frequencies, where degenerate

frequencies refer to adjacent log spaced frequency components that are rounded to

the same pseudo-log spaced frequency. Furthermore, the second harmonic of each

excited frequency falls at an unexcited frequency, thus reducing the effects of nonlinear

contributions in the output measurements [50].
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Figure 5. Pseudo log-spaced multisine

Compared to a linear spaced frequency distribution, a logarithmic spacing is

useful for covering a large frequency range with a sparse excitation spectrum. By

reducing the number of frequencies F , more power can be applied at each test

frequency while still limiting the peak amplitude of excitation xmax to the linear

range of the plant. This increases the SNR of the measurements and decreases the

total measurement time needed to achieve a given FRF variance σ2
Ḡ
[k]. Because many

plant models are plotted using log-log scaling, a logarithmic frequency distribution

more accurately measures the plant, whereas a linear frequency spacing would tend

to concentrate measurements at the the higher test frequencies [51].
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Figure 6. Frequency error of pseudo log-spaced multisine

2.4. Signal Sampling

The concept of sampling a continuous time signal is reviewed along with the

conditions necessary to reconstruct the signal exactly from its samples. In addition,

aliasing and undersampling are presented.

2.4.1. The Sampling Theorem

A sampled continuous time signal xp(t) can be represented as the multiplication

of x(t) with a periodic pulse train p(t), where

p(t) =

+∞
∑

n=−∞

δ(t− nTs), (30)

resulting in

xp(t) = x(t)

+∞
∑

n=−∞

δ(t− nTs). (31)

This is illustrated in Fig. 7. The sampling theorem, proved by Shannon in 1949 [52],
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Figure 7. Impulse train sampling

states that any continuous-time low-pass function x(t) with X(jω) = 0 for |ω| ≥ W

can be exactly determined by its samples at xp(nTs), for integer values of n, if

ωs ≥ 2W, (32)

where ωs = 2π/Ts. Assuming x(t) is sampled at the minimum sampling rate ωs = 2W ,

also known as the Nyquist rate, the original signal can be approximately reconstructed

as x̂(t) from the samples xp(nTs) according to

x̂(t) =
+N
∑

n=−N

xp(nTs)
sin (π(2Wt− n))

π(2Wt− n)
. (33)
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As the number of samples approaches infinity, the quality of the x̂(t) estimate

improves, such that

lim
N→∞

∫ +∞

−∞

|x(t)− x̂(t)|2 dt = 0. (34)

The need for an infinite number of samples to exactly reproduce x(t) is rather evident

since the domain of a signal cannot be finite in both time and frequency. However,

considering that in practice all time domain signals have inherently finite duration,

the frequency spectrum X(jω) must be nonzero at |ω| ≥ W . If X(jω) is limited to

very small values for |ω| ≥ W , then the reconstructed signal x̂(t) will contain little

energy outside the support of x(t).

2.4.2. Aliasing

The appearance of signal content at a frequency lower than the true signal

frequency is known as aliasing. For example, the Fourier transform of the sampled

signal xp(t) = x(nTs) is

Xp(jω) =
1

Ts

∞
∑

k=−∞

X(j(ω − kωs)), (35)

where X(jω) is the Fourier transform of the original continuous-time signal x(t).

Therefore, Xp(jω) is a periodic function consisting of multiple shifted copies ofX(jω).

Given an original bandlimited signal with X(jω) = 0 for |ω| ≥ W , as shown in Fig. 8,

if ws ≥ 2W , then the replicas of X(jω) appearing in Xp(jω) do not overlap. This is

illustrated in Fig. 9. Thus, X(jω) can be recovered exactly from xp(nTs), as stated

by the sampling theorem. However, if ws < 2W , as shown in Fig. 10, then the copies

of X(jω) in Xp(jω) may overlap, and the original X(jw) may no longer be recovered.

2.4.3. Undersampling

The sampling theorem can be further extended by realizing that x(t) does not

need to be limited to the class of low-pass functions. Consider a complex bandpass
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Figure 10. Spectrum of sampled signal with ωs < 2W

function XBP(jω) that is zero outside the range of Wa < ω < Wb. This can be

represented mathematically as the convolution of a low-pass function XLP(jω) with

a frequency shifted delta function by

XBP(jω) = XLP(jω) ∗ δ(ω − (Wa +W )), (36)
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where W = (Wb −Wa)/2. Since XLP(jω) = 0 for |ω| ≥ W , then as long as xLP(t) is

sampled at ws ≥ 2W , xLP(t) can be exactly reconstructed as x̂LP(t) from the samples

according to Eq. (33). Knowing that F−1{δ(ω − (Wa +W ))} = ej(Wa+W )t, then

x̂BP(t) = ej(Wa−W )tx̂LP(t). (37)

In general, any continuous-time signal with a bandwidth W can be exactly

reconstructed from its samples if ws > 2W .

The process of sampling a signal x(t) at a rate less than 2ωmax, where X(jω) = 0

for |ω| ≥ ωmax is known as undersampling. Because undersampling reduces the rate at

which samples of a signal are collected, it is a useful technique for relaxing the speed

requirements of the digital signal processing system. Plus, as long as the sampling rate

remains greater than twice the bandwidth of the sampled signal and all out-of-band

content is properly rejected, no information from the original signal is lost.

2.5. Undersampled Excitation Signal Design

Undersampling is a proven way to reduce power consumption and computational

complexity in frequency analysis hardware [53]. Since the relationship between the

signal generator and analysis circuitry in the system identification instrumentation

hardware is tightly controlled, frequency aliasing through undersampling can be

implemented in the analysis stage when using properly designed excitation signals [15].

The benefits of undersampling have previously been applied to system identification

in order to reduce the complexity and cost of measurement and processing

equipment. For example, Gamry Instruments, a producer of electrochemical

measurement equipment, designs potentiostats for system identification that use

single sine excitation signals and undersampling techniques for signal measurement

[14]. Specifically, any excitation frequencies greater than 8Hz are undersampled using

the on-board analog to digital converter. When using only single sine excitation
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signals, it is relatively straight forward to identify prior to sampling if undersampling

should be used. In addition, because the measured signal is dominated by a single

frequency, there is little concern of loss of information due to aliasing.

Using multisine excitation signals in combination with undersampling increases

the complexity of the problem. Without careful selection of the frequencies of

excitation and the undersampling frequency, interference between multiple excited

frequencies can occur in the aliased measurements, thereby resulting in the loss or

corruption of data. One method for undersampling a multisine signal composed of

harmonically related content is to skip one or more periods of the lowest harmonic

component [54]. Specifically, Märtnes proposed using this method of undersampling

in performing bio-impedance measurements [16]. Consider a multisine signal that

follows Eq. (45), where f = kf0. If M periods of component f0 are skipped between

samples plus an effective sampling step ∆T , then the period of the undersampling

frequency is found to be

Ts =
M

f0
+∆T, (38)

where 1/∆T is the Nyquist rate, defined as

1

∆T
≥ 2fF . (39)

While this approach to undersampling of multisine excitations signals in system

identification is useful for reducing the speed requirements of the DSP system, it

imposes restrictions on the design of the excitation signal. For example, the frequency

spacing of the excitation signal must be linear, and the lowest frequency component of

the signal must be approximately greater than twice the sampling frequency. These

requirements may make it difficult or impossible to design an optimal excitation
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signal with respect to test time, test frequencies, noise requirements, and hardware

limitations.

2.6. Typical Methods of Multisine Generation

The development and commercialization of the digital signal processor (DSP)

has eased the difficulty of generating multisine excitation signals. Through the use

of a look-up table (LUT) or recursive algorithm, a DSP can quickly calculate the

digital samples necessary to produce a desired waveform. Using a digital-to-analog

converter (DAC) interfaced to the DSP, these discrete time samples can be readily

converted into a continuous time signal. The hardware requirements of the DAC,

such as the sampling rate, settling time, resolution, and range, are largely dependent

on the parameters of the generated signals.

The digital recursive sinusoidal oscillator is capable of producing a fixed

frequency sinusoidal output. Therefore, a multisine signal generator would require

multiple recursive oscillators, one for each sine component of the multisine output, to

be summed together. On the other hand, a direct digital synthesizer (DDS), which

employs the LUT approach to signal generation, can directly produce either a single

or a multisine excitation. DDS and recursive oscillators are discussed in detail in the

following sections.

2.6.1. Direct Digital Synthesis

Direct digital synthesis (DDS) is a digital technique for creating arbitrary

waveforms synchronized to a fixed frequency reference clock. A simple DDS

architecture is shown in Fig. 11. It consits of an input reference clock fclk, an address

counter, and a programmable-read-only-memory (PROM) LUT. The digital output

of the PROM LUT is interfaced to a DAC in order to convert the digitally produced

waveform into a continuous-time output. In operation, the output of the address

counter is incremented once per cycle of fclk. This output is used as a memory
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pointer to the PROM LUT, which subsequently outputs the corresponding digital

value stored in said memory location. The PROM LUT is programmed with one

complete cycle of discrete amplitude samples of the desired output waveform. The

address counter is circular, thus, a new cycle of the output signal will commence at

the completion of the previous cycle. For this particular architecture, the period of

the output waveform is often

T =
2N

fclk
, (40)

and the size of the LUT is 2N ×M bits.

Figure 11. Simple direct digital synthesizer

A more advanced and tunable DDS architecture is shown in Fig. 12. In this

architecture, the circular address counter has been replaced with a phase accumulator.

This performs essentially the same function except that its increment step size can

be adjusted. In addition, the PROM LUT block has been renamed the phase to

amplitude converter to better describe its functionality. However, it still consists of

the same PROM LUT structure as before.

Figure 12. Tunable direct digital synthesizer

The frequency of the DDS output can be adjusted by modifying the frequency

control tuning word that is summed with the feedback from the phase accumulator
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output. This adjusts the step size of the phase accumulator and changes the number

of fclk cycles that are required to traverse one cycle of the waveform stored in the

phase to amplitude converter block. For phase control of the output signal, a phase

control tuning word is summed with the output of the phase accumulator to control

the phase offset of the output waveform. Lastly, the amplitude of the output waveform

can be adjusted by multiplying the output of the phase to amplitude converter with

an amplitude control tuning word.

Quantization error is introduced at both the output of the phase accumulator

and the output of the phase to amplitude converter. Additional quantization error can

be injected by a bit-wise truncation between the output of the phase accumulator and

the input of the phase to amplitude converter. This truncation is sometimes imposed

to reduce the memory size of the LUT, which can grow prohibitively large otherwise.

Quantization error manifests itself as unwanted spurious spectral components in the

DDS output signal. The difference in output power of the desired signal and the noise

spurs is called spurious free dynamic range (SFDR).

One of the easiest ways to maximize the SFDR of the DDS output, an important

goal of many designs, is to increase the bit-width of the phase to amplitude converter

input. However, as mentioned before, this may lead to an impractically large LUT.

In light of this, a considerable amount of DDS research has been dedicated to the

compression of the waveform stored in the LUT. For example, if the waveform is a

sinusoid, its symmetrical properties can be exploited to gain an LUT compression

ratio of 4:1. By storing only one-quarter of the sinusoid in the LUT, the other three-

quarters of the waveform can be reproduced through the addition of some additional

logic for translating the data points.
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2.6.2. Digital Recursive Sinusoidal Oscillator

Digital recursive oscillators are useful for generating sinusoidal waveforms in a

DSP without dedicating large memory requirements to an LUT necessary for DDS.

One example of a direct form digital recursive oscillator is

x[n] = ax[n− 1]− x[n− 2] = ax1[n]− x2[n], (41)

which is also shown illustratively in Fig. 13.

Figure 13. Recursive oscillator

To determine the value of the multiplier a, consider the requirements for

oscillation: (1) the total loop gain must be equal to one, and (2) the total loop

phase shift must be a multiple of 2π radians. First, the transfer function is rewritten

as






x[n]

x1[n]






=







a b

c d













x1[n]

x2[n]






. (42)

Then, considering that it can be shown that the discrete-time equivalent requirements

for oscillation are

ad− bc = 1 (43)

|a+ d| < 2, (44)
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where b = −1, c = 1, and d = 0 in this particular case, it is obvious that there are

many solutions for the value of a. One solution, known as the biquad oscillator, has

a = 2 cos(θ) where θ is the step angle.

Digital recursive oscillators are straight-forward to implement in a DSP because

they are accomplished with only multiplications, additions, and unit delays. However,

these digital operators may be too computationally expensive or power intensive for

an application specific, low-power EIS system. They can also exhibit accumulated

drift errors due to quantization.
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CHAPTER 3. UNDERSAMPLED SIGNAL

REQUIREMENTS

3.1. Introduction

In this chapter, the generic equation for a multisine excitation signal is defined

along with an explanation of the parameters of most interest to this research. Next,

the assumptions of the measurement system and the system-under-test are declared.

Finally, the requirements for undersampling a multisine excitation signal are outlined

along with an illustrative example.

3.2. Excitation Signal

The focus of this paper is on multisine excitation signals, denoted

x(t) = A0 +
M
∑

m=1

Am sin(2πfmt+ φm), (45)

where M is the number of tones in the signal, A is a set of amplitudes, φ is a set

of phases, and f defines the frequency distribution of the signal. Elements in f are

defined to be positive and 0 < fm < fm+1 for 1 ≤ m ≤ (M − 1). There is no

upper bound for fM , and no frequencies in f define a DC term. Rather, the DC

term of x(t) is defined by the amplitude A0. All analysis in this paper assumes that

A0 = 0, and the optimization techniques presented here allow for harmonics of the

excitation frequencies to alias to DC. However, it would be straight forward to modify

the presented algorithms to prevent the aliasing of any frequency content to the 0 Hz

DFT bin if it were necessary to prevent the corruption of a DC term in x(t). This

paper uses logarithmic distributions for examples due to their spectral efficiency in

probing over a wide frequency range and applicability to EIS measurement systems.

The design methods presented herein are not dependent on nor specify A or

φ. However, extra consideration given to A and φ may be warranted if nonlinear
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detection through the measurement of non-excitation frequencies is implemented.

The techniques discussed can result in the aliasing of multiple harmonic frequencies

to the same DFT frequency bin. If the coincident harmonics are out of phase, then

the sampled signal component generated by the system non-linearity is attenuated.

3.3. Measurement Assumptions

A block diagram of the basic impedance spectroscopy test setup is shown in

Fig. 14. The system-under-test is described as an LTI system GL(jω) in parallel with

a nonlinear system GNL(jω) [20]. The impedance spectroscopy hardware generates

an excitation signal x(t) with a digital-to-analog converter (DAC) followed by a

reconstruction filter. Conversely, the instrumentation hardware measures the system

input x(t) and system output y(t) with two analog-to-digital converters (ADC). The

discrete time digital outputs of the ADC circuits are converted to the frequency

domain with DFT processors for further analysis. With this model assumed for the

system-under-test, the system output is

Y (jω) = X(jω)GL(jω) +X(jω)GNL(jω). (46)

It is the X(jω)GNL(jω) term of the system output that can result in harmonic

frequency components. If the magnitudes of these harmonic frequencies are significant

and they fall at excitation frequencies in x(t) after sampling, the ability of the

instrumentation hardware to extract the X(jω)GL(jω) term of Y (jω) is diminished.

3.4. Problem Statement

If the system-under-test combined with the instrumentation equipment

constitutes an LTI system, then the measured system output will contain no harmonic

frequency components other than the fundamental frequencies. The system output

can be undersampled without loss of information as long the excitation frequencies
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Figure 14. Basic measurement setup.

defined in f remain orthogonal after sampling. This requires that

a(fi) 6= a(fj) for i 6= j (47)

where

a(f) =

∣

∣

∣

∣

f − Fs

⌊

f

Fs

+
1

2

⌋
∣

∣

∣

∣

(48)

is the absolute value of the frequency alias of f when sampled at Fs. Note that all of

the frequencies in f , including f1, may alias to a lower frequency.

In addition, each excitation frequency must be coincident to a DFT bin center

frequency after sampling to prevent spectral leakage. Since both the magnitude and

phase information of the sampled output signal are required for proper estimation of

the frequency transfer function, the excitation frequencies cannot alias to the 0 Hz

DFT bin. Therefore, the aliases of f must be a subset of d, written

a(f) ⊆ d (49)
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where

dn = n/T for n = 1, 2, · · · , ⌊(N − 1)/2⌋ (50)

is the set of non-zero positive DFT bin frequencies that compose set d. The excitation

signal period T is related to the output sampling frequency and the total number of

DFT bins by N = FsT . The 0 Hz DFT bin is void of any excitation frequencies after

sampling and is available to hold the alias of one or more harmonic frequencies.

Since the system-under-test G(jω) is nonlinear, f must also be selected such that

the non-fundamental harmonic frequencies in Y (jω) do not alias to the same DFT

frequency as the alias of an excitation frequency. For the purpose of this analysis,

the dominant harmonic frequency components in the system output that are used

for nonlinear detection are defined as the set h. For example, if 2nd and 3rd order

harmonics are to be monitored for nonlinear detection, then h = {2, 3}. Furthermore,

the cardinality of h is denoted as |h| [55]. Therefore, to ensure that harmonic

frequencies in h remain orthogonal to excitation frequencies in f after sampling,

a(fn) 6= a(hifm) (51)

for all 1 ≤ i ≤ |h|, 1 ≤ m ≤ M , and 1 ≤ n ≤ M . Note that the alias of single

harmonic frequency will alias to a single DFT bin. However, the set of all monitored

harmonics of an excitation frequency, {h1fm, h2fm, h3fm, · · · , h|h|fm}, may alias to

up to |h| different DFT bins. In other words, all of the harmonics defined in h for a

given excitation frequency fm may not alias to the same DFT bin.

In order to undersample the system output y(t) without spectral leakage or

distortion from harmonics defined in h, the excitation distribution f must satisfy

Eqs. (47), (49), and (51).
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3.4.1. Illustrative Example

Given these requirements, it is possible to design a multisine excitation signal

that can be undersampled without loss information. To illustrate this effect, an

approximation of a logarithmically-spaced frequency distribution is shown in Fig. 15.

Assuming the aforemention rules are satisfied, then the distribution of Fig. 15 can be

undersampled to obtain the result shown in Fig. 16. The frequency components are

now out of order as a result of aliasing, as shown by the corresponding color coding.

However, the resulting frequency distribution better utilizes the DFT bins, and the

sampling frequency is dramatically reduced compared to Nyquist.
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Figure 15. Fourier transform of a multisine excitation
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Figure 16. DFT of multisine excitation after undersampling

40



CHAPTER 4. IMPROVING DFT BIN UTILIZATION

4.1. Introduction

For a given number of tones, M, the only way to increase the DFT bin utilization

is to decrease the total number of DFT bins, N. In this chapter, the MinN -Freef

algorithm is presented for approximating the minimum value of N for a given M. The

results are compared to an exhaustive search for the minimum value of N for small

values of M. Next, the MinN -Targetp algorithm is presented as an extension to the

MinN -Freef algorithm. The MinN -Targetp algorithm generates a mutisine excitation

signal that approximates a desired frequency distribution, all while attempting to

maximize the DFT bin utilization. Finally, a numerical example is provided to

demonstrate the MinN -Targetp algorithm.

4.2. MinN-Freef Algorithm

Of particular interest is the minimum value of N , Nmin, for which a solution

exists for f since this maximizes the DFT bin utilization. However, there are an

infinite number of unique frequency distributions that alias to the DFT frequencies

defined in d, thus resulting in an infinite number of solutions that must be evaluated

while searching for Nmin.

In order to bound the optimization problem, it is necessary to define a finite set

of frequency distributions to evaluate that includes the solution to f that minimizes

N . This can be achieved by limiting f to be a subset of d, written f ⊆ d. Eqs. (47)

and (49) allow the search space to be bounded to f ⊆ d since they only operate on

a(fm) and a(f), which, by definition, are subsets of d. Likewise, it can be seen that

Eq. (51) also operates on a(fm) when written in the form

a(fn) 6= a(hia(fm)). (52)
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The substitution of

a(hifm) = a(hia(fm)) (53)

into Eq. (52) can be proved valid by expanding Eq. (52) to

hifm − Fs

⌊

hifm
Fs

+
1

2

⌋

= hi

(

fm − Fs

⌊

fm
Fs

+
1

2

⌋)

− Fs









hi

(

fm − Fs

⌊

fm
Fs

+ 1
2

⌋)

Fs
+

1

2







 (54)

using the more general definition for frequency aliasing of

a(f) = f − Fs

⌊

f

Fs
+

1

2

⌋

. (55)

Distributing hi, subtracting hifm, and dividing by −Fs leaves

⌊

hifm
Fs

+
1

2

⌋

= hi

⌊

fm
Fs

+
1

2

⌋

+

⌊

hifm
Fs

− hi

⌊

fm
Fs

+
1

2

⌋

+
1

2

⌋

. (56)

The property ⌊x+ k⌋ = ⌊x⌋+k, where x ∈ R and k ∈ Z, can be applied by recognizing

that

hi

⌊

fm
Fs

+
1

2

⌋

∈ Z (57)

since hi represents a harmonic multiplier and, by definition, must be an integer. Thus,

Eq. (56) reduces to

⌊

hifm
Fs

+
1

2

⌋

=

⌊

hi

⌊

fm
Fs

+
1

2

⌋

+
hifm
Fs

− hi

⌊

fm
Fs

+
1

2

⌋

+
1

2

⌋

. (58)

Finally, canceling of terms leaves

⌊

hifm
Fs

+
1

2

⌋

=

⌊

hifm
Fs

+
1

2

⌋

. (59)
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In the end, the solution space for f can be limited to
(

|d|
M

)

possibilities. Also

worth noting is that the specific values for T and Fs can be ignored while optimizing

f to minimize N since T and Fs are constrained by the relationship N = FsT . The

resulting minimum value of N for small values of M found after an exhaustive search

of all
(

|d|
M

)

possible solutions is plotted in Fig. 17. This shows that Nmin typically

increases when either M or |h| increases, but in some instances, M can be increased

without any change to Nmin.
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Figure 17. Minimum value of N for which a solution exists for f .

Executing an exhaustive search to find Nmin becomes increasingly difficult for

large values of M . Therefore, presented here is an iterative algorithm, titled the

MinN -Freef algorithm, that operates on the free variable f to find Nmin which

satisfies Eqs. (47), (49), and (51). The algorithm solves for f and Nmin by repeatedly

incrementing N and operating on f until a solution is found to exist. The inputs to

the algorithm are the set of harmonic frequencies h, the number of non-DC tones in

the multisine excitation M , and the required excitation signal period T .
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It has been shown that the search space for the MinN -Freef algorithm can be

reduced to the finite set of DFT frequencies d without affecting Nmin. However, for

each iteration of the algorithm, the search space can actually be reduced further by

recognizing that some harmonics defined in h may automatically exclude some DFT

frequencies in d from holding an excitation frequency after aliasing. This occurs

when an excitation frequency fm and one of its harmonics hifm alias to the same

DFT frequency dn, thereby resulting in corruption of the original excitation frequency

after sampling. The reduced search space is denoted d′, where the prime (′) indicates

that d′ is a subset of the original set d. Because the search space had already been

reduced from f to d, d′ can be defined as

d′ =







x ∈ d : x /∈
|h|
⋃

i=1

a(hix)







. (60)

The MinN -Freef algorithm sequentially solves for one frequency fm in f at a

time for a given value of N . Each time a solution for another frequency fm is chosen,

the search space d′ is reduced. This limits the set of possible solutions for other

frequencies in f . There are three reasons for this reduction in d′.

1. One frequency in d′ must be reserved to hold the excitation frequency fm.

2. The harmonics of fm may alias to other DFT frequencies defined in d′. These

DFT frequencies are therefore no longer available to hold the alias of an

excitation frequency. For a potential solution x, the set of relevant DFT

frequencies is

α(x) =







y ∈ d′ : y ∈
|h|
⋃

i=1

a(hix)







. (61)

3. No harmonics of frequencies in f can alias to the same DFT frequency as the

solution chosen for fm. Thus, any DFT frequency remaining in d′ that has a
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harmonic defined in h that aliases to the same DFT frequency containing fm

is not a valid solution for other frequencies in f . For a potential solution x, the

set of relevant DFT frequencies is

β(x) =







y ∈ d′ : x ∈
|h|
⋃

i=1

a(hiy)







. (62)

For example, if d = {1, 2, 3, 4}, h = {2}, T = 1, and N = 9, then d′ = {1, 2, 4} since

the 2nd harmonic of d3 aliases to d3. Likewise, α(d′3) = d′1 since the 2nd harmonic of

d′3 aliases to d′1, and β(d′3) = d′2 since the 2nd harmonic of d′2 aliases to d′3.

The objective of the MinN -Freef algorithm is to choose the solution for fm that

minimizes the reduction to d′. This ensures that the maximum number of possible

solutions are available for the next frequency in f to be solved. This objective can be

written as

fm = argmin
x∈d′

|x ∪α(x) ∪ β(x)| . (63)

Once fm is chosen for a given d′ and h, the set of DFT frequencies available for the

next solution frequency becomes

d′′ = d′ \ fm \α(fm) \ β(fm), (64)

where \ is the notation for set subtraction. Eq. (64) ensures that all future solution

frequencies found for f will reside in empty DFT bins, and the associated harmonics

in h will not distort any previous solution frequencies already found for f .

The complete sequence of steps that compose the MinN -Freef algorithm are

outlined here. The pseudo-code shows that the algorithm increments N until a valid

solution for f that satisfies Eqs. (47), (49), and (51) is found. The value of N at

completion of the algorithm is Nmin.
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1. Begin withN = 2M+1. This is the minimum possible value forN if h = ∅. Two

DFT bins are required to hold the positive and negative frequency components

of each of the M tones in x(t), and the 0 Hz DFT bin must remain empty.

2. Find the set of non-zero positive DFT frequencies d′ per Eq. (60) that are not

corrupted by the aliases of their own harmonics defined in h.

3. Start with m = 1.

4. Solve for fm using Eq. (63).

5. Increment m. If m = M + 1, then the algorithm is complete and Nmin = N .

6. Use Eq. (64) to remove all DFT frequencies from d′ that are not eligible for

future solutions to frequencies in f . If d′′ = ∅, then a solution to f does not

exist for the current value of N . Increment N and go back to step 2.

7. Substitute d′′ for d′ and return to step 4.

The value of Nmin found with the MinN -Freef algorithm is plotted in Fig. 18

across a range of tones from 2 ≤ M ≤ 50 and for three different sets of harmonics.

The algorithm results are identical to the exhaustive search results shown in Fig. 17

for 2 ≤ M ≤ 10. As would be expected, increasing the number of harmonics in h also

increases the value of Nmin. This is because the algorithm must accommodate more

harmonic frequencies when mapping harmonic frequencies to DFT frequencies that

are orthogonal to the excitation frequencies. In addition, Nmin typically increases as

M increases. However, note that Nmin can remain constant for consecutive values

of M in some instances. This suggests that it may also be possible in some cases

to increase the DFT bin utilization by increasing M while keeping N constant. To

further explore this point, the MinN -Freef algorithm results are post processed to

reveal the maximum number of tones Mmax for a given value of N for which the
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algorithm can find a valid solution to f . Mmax is plotted in Fig. 19. A trace for

h = {2, 3, · · · , 9} has been added to help show the effect that larger values for |h|

have on Mmax. The results for Mmax show that there are distinct points, such as

N = 72, M = 11, and h = {2, 3, · · · , 9}, where the DFT bin utilization is locally

maximized.

Since Mmax is not monotonic over N , a solution for f may not exist for all

N > Nmin. Although Nmin maximizes the DFT bin utilization, is does not necessarily

minimize the DFT computational complexity. For example, it may be advantageous

to modify the MinN -Freef algorithm to only consider values of N that help decrease

the DFT computational complexity, such as N ∈ {2x : x ∈ N}.
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Figure 18. Minimum value of N found with the MinN -Freef algorithm for a given
number of tones M .

4.3. MinN-Targetp Algorithm

A particular system-under-test may require an excitation signal with period T

and a target excitation frequency distribution p. The MinN -Freef algorithm can be

used to find an excitation frequency distribution f and period T that minimizes N ,
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Figure 19. Maximum value of M found with the MinN -Freef algorithm for a given
number of total DFT bins N .

but f is likely to be significantly different than the target distribution p. Because of

the simplification in Section 3.4, the frequency distribution f is a subset of the DFT

frequencies d. There are an infinite number of discrete frequency distributions that

alias to f when sampled at Fs, but there is no ensuring that any of these distributions

will sufficiently approximate the target frequency distribution p.

A second iterative algorithm is presented here, titled the MinN -Targetp

algorithm. The objective of this algorithm is to find a frequency distribution g

that sufficiently approximates a target frequency distribution p while minimizing the

number of DFT bins N . Similar to the MinN -Freef algorithm, the resulting frequency

distribution g found with the MinN -Targetp algorithm must satisfy Eqs. (47), (49),

and (51), where g is substituted for f . This ensures that the excitation frequencies

in g will alias to the centers of the DFT frequencies and remain uncorrupted from

harmonics defined in h after sampling.

48



The inputs to the MinN -Targetp algorithm are the set of harmonic frequencies

h, the required excitation signal period T , the target frequency distribution p, and

the maximum error e allowed between frequencies in g and p. The maximum relative

error e can be written as

∣

∣

∣

∣

gm − pm
pm

∣

∣

∣

∣

≤ e for 1 ≤ m ≤ M. (65)

Because of the additional input requirements, the distribution g found with the MinN -

Targetp algorithm may not alias to the same set of DFT frequencies as the distribution

f found with the MinN -Freef algorithm.

Like the MinN -Freef algorithm, the MinN -Targetp algorithm repeatedly

increments N until a solution to g is found. For each iteration of the algorithm, the

search space for g is recalculated. Unlike the MinN -Freef algorithm, the search space

for the MinN -Targetp algorithm cannot be reduced to the set of DFT frequencies.

Instead, a distinct search space Sm is defined for each frequency gm in g, resulting in

M search spaces in total. The search space Sm consists of all frequencies that satisfy

the limit defined by e in Eq. (65) and also alias to a DFT frequency. Thus, the search

spaces are defined as

Sm =

{

x ∈ Z :

∣

∣

∣

∣

x− pm
pm

∣

∣

∣

∣

≤ e

}

for 1 ≤ m ≤ M (66)

where

Z = {x : a(x) ∈ d′} (67)

is the set of all frequencies that alias to d′ when sampled at Fs. Notice in Eq. (67)

that the set of DFT frequencies d has been reduced to d′ per Eq. (60).

The total number of possible solutions to g is limited to
∏M

m=1 |Sm|. However,

recognizing that more than one frequency in Sm may alias to the same DFT
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frequency allows the total number of possible solution combinations to be reduced to
∏M

m=1 |a(Sm)|. If the allowed error e between gm and pm is sufficiently large, then the

maximum number of possible solutions is
∏M

m=1 |d′| = |d′|M . Since

(|d|
M

)

≤ |d′|M , (68)

adding the additional requirement of Eq. (65) to the existing requirements of

Eqs. (47), (49), and (51) for the MinN -Targetp algorithm can greatly increase the

complexity of the problem.

The MinN -Targetp algorithm is similar in construction to the MinN -Freef

algorithm but adds a means for monitoring which frequencies in g have been solved

and which frequencies remain to be solved. This is tracked with set u, where gui
is an

unsolved frequency in g. For example, if solutions for g1, g4, and g5 have been found

and frequencies g2, g3, and g6 have yet to be solved, then u = {2, 3, 6} and |u| = 3.

It is necessary to track the progress of solving g using set u since the objective is for

g to approximate the target distribution p. In contrast, the MinN -Freef algorithm

has no such restriction.

Pseudo-code for the MinN -Targetp algorithm is provided here. The algorithm

uses a search operator that sequentially solves for one frequency gm in g at a time,

where m ∈ u. This search operator differs from the MinN -Freef objective function,

Eq. (63), since it must operate over each search space Sm. Although this algorithm

may operate over a larger total search space compared to the MinN -Freef algorithm,

its progress can be accelerated by starting with the resulting Nmin found with the

MinN -Freef algorithm.

1. Apply the MinN -Freef algorithm from Chapter 4.2 to find an initial value for

N .
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2. Find the set of non-zero DFT frequencies d′ per Eq. (60) that are not corrupted

by the alias of their own harmonics defined in h.

3. Define u = {1, 2, · · · ,M} so solutions to all M frequencies in f will be found.

4. Apply the search operator to find a solution for one gm in g, where g ∈ u. If

the set of possible solutions Sui
for any gui

is empty, then increment N and go

to step 2.

5. Update the set of unsolved frequencies to u′ = u \m. If u′ = ∅, the algorithm

is complete and Nmin = N .

6. Use Eq. (64) to remove all DFT frequencies from d′ that are not eligible for

future solutions to frequencies in g. If d′′ = ∅, increment N and go back to

step 2.

7. Substitute d′′ for d′ and u′ for u and return to step 4.

The objective of the search operator used in the MinN -Targetp algorithm is to

minimize the number of DFT bins by intelligently selecting frequencies from the search

spaces Sm that sufficiently approximate the target distribution p. Three candidate

search operators of increasing complexity are presented in this paper to allow the

relative performance of each to be evaluated.

4.3.1. Search Operators

4.3.1.1. Max|d′| Search Operator

The objective of the Max|d′| search operator is to choose the solution for gm

that minimizes the reduction to d′ and ensures that the maximum number of possible

solutions are available for the next frequency in g to be solved. This operator is similar

to the objective function in the MinN -Freef algorithm, Eq. (63).

Application of the Max|d′| search operator begins by determining which DFT

frequencies in d′ have the potential to hold an excitation frequency after sampling.
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It is possible that there may be no excitation frequencies that alias to a particular

DFT center frequency and also sufficiently approximate a frequency in p per Eq. (65).

The eligible set of DFT frequencies is equivalent to the alias of all frequencies in the

remaining search spaces. This set is labeled b for reference in this paper and can be

written as

b =

|u|
⋃

i=1

a(Sui
). (69)

Next, the search operator determines which DFT frequencies in b will minimize

the reduction to d′. This is written as

c = argmin
x∈b

|x ∪α(x) ∪ β(x)| , (70)

where α(x) and β(x) are found with Eqs. (61) and (62), respectively. Note that it is

sufficient for Eq. (70) to operate over the set of DFT frequencies b since a(gm) ∈ b.

The set c of DFT frequencies is then used to define the set Z′ of all possible solutions

to gm that sufficiently approximate p while also aliasing to a DFT frequency in c.

Set Z′ can be written as

Z′ = {x ∈ Z : a(x) ∈ c} . (71)

Assuming that there are multiple frequencies in Z′ for gm, this paper chooses

the solution for gm that minimizes the error between gm and pm. Thus,

gm = argmin
x∈Z′

(

min
y∈u

∣

∣

∣

∣

x− py
py

∣

∣

∣

∣

)

, (72)

where

m = argmin
x∈u

∣

∣

∣

∣

gm − px
px

∣

∣

∣

∣

. (73)
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4.3.1.2. Max|d′|-MinS Search Operator

The Max|d′|-MinS search operator expands on the previous Max|d′| operator.

This operator considers additional criteria to further optimize g and Nmin at the cost

of extra algorithm complexity. After the set of DFT frequencies c that minimize the

reduction in d′ is found with Eq. (70), the Max|d′|-MinS operator chooses a solution

for gm that aliases to a DFT frequency in c and that also has the smallest search

space. This helps to reduce the likelihood that the MinN -Targetp algorithm will

need to increment N in step 4 when Sui
= ∅ for any i in 1 ≤ i ≤ |u|.

Continuing from Eq. (70), the set q of indices to unsolved frequencies in g with

the minimum number of possible solutions, at least one of which aliases to a DFT

frequency in c, is defined as

q = argmin
i∈k

|Si| , (74)

where

k = {i ∈ u : a(Si) ∩ c 6= ∅} . (75)

From this point it is known that m ∈ q, a(gm) ∈ c, and gm ∈ Z′, where Z′ is still

found with Eq. (71). If this defines more than one frequency in Z′, then the specific

solution for gm is chosen in this paper to minimize the error between gm and pm.

Therefore,

gm = argmin
x∈Z′

(

min
y∈q

∣

∣

∣

∣

x− py
py

∣

∣

∣

∣

)

(76)

where

m = argmin
x∈q

∣

∣

∣

∣

gm − px
px

∣

∣

∣

∣

. (77)

4.3.1.3. MinS-Max|d′| Search Operator

As the name implies, the MinS-Max|d′| search operator is similar to the Max|d′|-

MinS search operator except that the order of operation is reversed. This operator

first looks for the frequency gm with the smallest search space and then finds which
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frequency in this search space will minimize the reduction in d′ for the next frequency

in g to be solved.

First, the search space with the fewest number of frequencies is found. This is

labeled as a set, set q, in case there is more than one search space that is equally

small. Thus,

q = argmin
i∈u

|Si| , (78)

where Si is found with Eq. (66). Set b is then constructed, where b includes all of

the frequencies in the smallest search space or spaces. This is written as

b =

|q|
⋃

i=1

Sqi
. (79)

Next, the possible solutions for gm listed in b are analyzed to find the frequencies

that minimize the reduction to d′ for the next solution to g. This results in

c = argmin
x∈b

|a(x) ∪α(x) ∪ β(x).| (80)

Finally, if c contains multiple solutions to gm, then this paper chooses the frequency

that minimizes the error between gm and pm. Thus,

gm = argmin
x∈c

(

min
y∈q

∣

∣

∣

∣

x− py
py

∣

∣

∣

∣

)

, (81)

where m is found using the same Eq. (77) as in the Max|d′|-MinS search operator.

4.3.2. Numerical Example

Consider the example where p = {10, 20, 50} Hz, h = ∅, e = 0.1, N = 8, and

T = 1 second. Given these conditions, Fs = 8 Hz and d′ = d = {1, 2, 3} Hz. Given
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these inputs, the set of all frequencies that alias to d′ is

Z = {1, 2, 3, 5, 6, 7, 9,

10, 11, 13, 14, 15, 17, 18,

19, 21, 22, 23, 25, 26, 27,

29, 30, 31, 33, 34, 35, 37,

38, 39, 41, 42, 43, 45, 46,

47, 49, 50, 51, 53, 54, 55} Hz,

(82)

according to Eq. (67). For the sake of this example, the maximum value in Z is

limited to 55. Any value greater than 55 is known not to be a solution to g since

(maxp) e = 55. Using Z, the search spaces S1, S2, and S3 for each respective

frequency in g are defined per Eq. 66.

S1 = {9, 10, 11} Hz (83)

S2 = {18, 19, 20, 21, 22} Hz (84)

S3 = {45, 46, 47, 49, 50, 51, 53, 54, 55} Hz (85)

Assuming the MinS-Max|d′| search operator is selected, then the first frequency

to be solved is g1 since S1 has the fewest number of possible solutions, per Eq. (78).

Following along with Eq. (79), b = {9, 10, 11} since q = {1}. Applying b to Eq. (80)

results in c = {9, 10, 11}. In other words, all of the solutions in S1 will eliminate

the same number of DFT frequencies, one to be exact, from d′ if chosen as the

solution for g1. Finally, the solution to g1 is selected according to Eq. (81), resulting

in gm = g1 = 10 Hz. It is not necessary to compute Eq. (73) to find m. The fact that

there is only a single element in q implies that m = q1 = 1.
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The first solution, g1 = 10 Hz, aliases to the 2 Hz DFT bin when sampled at 8

Hz. Therefore, d′ is reduced to {1, 3} Hz for future solutions, per Eq. (64). There are

no additional DFT frequencies in d′ that must be removed due to corruption from

harmonic frequencies since this example has assumed h = ∅ for simplicity. Given

this update to d′, the solution sets for the remaining unsolved frequencies g2 and g3

become

S2 = {19, 21} Hz (86)

and

S3 = {45, 47, 49, 51, 53, 55} Hz. (87)

Following the same procedure as before for the MinS-Max|d′| search operator

results in q = {2}, b = {19, 21}, c = {19, 21}, gm = 19, and m = 2. Thus, the next

solution is g2 = 19 Hz. Another equally valid solution if g2 = 21 Hz. The particular

result achieved depends on how Eq. (81) is interpreted for multiple solutions. In

this dissertation, the minimum frequency is chosen by default to minimize power

dissipation.

The second solution, g2 = 19 Hz, aliases to the 3 Hz DFT bin. As before, this

reduces d′ to {1} Hz and S3 to {47, 49, 55} Hz. Applying the MinS-Max|d′| search

operator one last time results in q = {3}, b = {47, 49, 55}, c = {47, 49, 55}, gm = 49,

and m = 3. Thus, the last solution is g3 = 49 Hz and the final complete solution is

g = {10, 19, 49} Hz.
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CHAPTER 5. APPLICATION TO LOGARITHMIC

DISTRIBUTIONS

5.1. Introduction

This chapter demonstrates the use of the MinN -Targetp algorithm to design

pseudo-logarithmically-spaced frequency distributions g with improved DFT bin

utilization that approximate a target distribution p. In addition, nonlinear detection

through harmonic analysis is accommodated by designing g such that harmonics

defined in set h do not corrupt the excitation frequencies after undersampling.

This analysis assumes that the target excitation signal has an ideal-logarithmically-

spaced excitation frequency distribution p with M tones where 0 < pm < pm+1 for

1 ≤ m ≤ (M − 1).

5.2. Pseudo-Logarithmic Mapping

For a typical Nyquist-sampled system, the ideal target distribution p would be

mapped to a pseudo-logarithmically-spaced distribution p̂ by

p̂m =
⌊Tpm⌉

T
(88)

for 1 ≤ m ≤ M , where ⌊x⌉ rounds x to the nearest integer. This ensures that each

excitation frequency is coincident to a DFT frequency to prevent spectral leakage

during analysis. T must be sufficiently large to guarantee that all frequencies in p̂

are unique. A design guideline that ensures this requirement for any logarithmic

distribution with any number of M frequencies is to ensure that the delta between

linear spaced DFT frequencies is less than the smallest delta between adjacent

frequencies in p, written

1

T
< p1(α− 1), (89)
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where

α =

(

pM
p1

)
1

M−1

. (90)

An additional constraint when mapping p to a Nyquist-sampled pseudo-

logarithmically-spaced frequency distribution is that the lowest frequency p1 should

not be mapped to p̂1 = 0 Hz. Otherwise the excitation distribution will contain an

undesirable DC component. This constraint can be written as

1

2T
< p1. (91)

Both Eqs. (89) and (91) also apply when undersampling with Fs < 2pM .

However, the presence of any harmonics in an undersampled signal may necessitate a

larger T to ensure adequate DFT bins are available for holding harmonics, especially

if some frequencies in p are less than Fs/2.

The maximum allowed error e between frequencies in g and p must be defined

in order to define the frequency search space for each frequency using Eq. (66). The

allowed error cannot be zero unless a valid result to the MinN -Targetp algorithm is

g = p. In general, the minimum limit to e, labeled emin, is defined by the difference

between the logarithmically-spaced target distribution p and the corresponding

pseudo-logarithmically-spaced frequency distribution p̂. The minimum error between

frequencies in p and g cannot be less than the maximum error between frequencies

in p and p̂. For a given value of T , emin can be written as

emin = max
m

∣

∣

∣

∣

p′m − pm
pm

∣

∣

∣

∣

. (92)

This does not ensure that a solution to g will exist for e = emin, but it does ensure

that a solution to g will not exist for e < emin.
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A reasonable upper bound for the maximum error emax for logarithmically-

spaced distributions is

emax =
α− 1

α+ 1
. (93)

This is the limit at which pm(1 + e) = pm+1(1− e). If e > emax, then the assumption

that gm < gm+1 for 1 ≤ m ≤ (M − 1) is no longer guaranteed to be true. If T is

selected such that emax ≤ emin, then a solution for g at e = emax does not exist. In

this situation, T must be increased in order to decrease emin.

5.3. Examples

The MinN -Targetp algorithm and the three search operators are applied to an

example logarithmically-spaced frequency. The objective is to characterize the ability

of the MinN -Targetp algorithm to maximize the DFT bin utilization by minimizing

the total number of DFT bins. The target frequency distribution p that is used for all

examples is composed of 25 logarithmically-spaced tones spanning two decades from

1 Hz to 100 Hz with a period of T = 6 seconds. This distribution is selected from a

previous study in pseudo-logarithmically-spaced frequency distributions [50].

For the defined distribution p, the frequency error between the Nyquist-

sampled pseudo-logarithmically-spaced distribution found with Eq. (88) and the ideal

logarithmically-spaced distribution is shown in Fig. 20. The maximum error between

p and p̂ is 3.7% and is determined by the frequency p̂2. Thus, emin = 0.037 per

Eq. (92). Note how the frequency error for higher frequency components of p̂ is

greatly diminished in comparison. This is because the DFT frequencies are linearly-

spaced.

5.3.1. Search Operator Comparison

Now, the MinN -Targetp algorithm is applied to the target distribution p. The

allowed error is set to e = emax = 0.0956 to give the algorithm the most flexibility when

populating g. The algorithm is executed three times using a different search operator

59



10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3

3.5

4

P
er
ce
n
t
F
re
q
u
en
cy

E
rr
o
r

Frequency [Hz]

Figure 20. Frequency error of the Nyquist-sampled pseudo-logarithmically-spaced
frequency distribution p̂ that best approximates an ideal-logarithmically-spaced
frequency distribution p, where p1 = 1, pM = 100, M = 25, and T = 6.

each time to determine the effectiveness of each search operator at reducing the

number of DFT bins. This process is repeated for several different sets of harmonics

to see how the harmonics defined in h affect the result. The algorithm output Nmin

is recorded in Table 1 for these different run combinations. The data show that the

additional operations added to the Max|d′| search operator to create the Max|d′|-

MinS and MinS-Max|d′| search operators result in a further improvement in Nmin

for all tested sets of harmonics. Furthermore, the data show that the MinS-Max|d′|

search operator performs equal to or better than the Max|d′|-MinS search operator

in most of these particular test cases. This suggests that it may be advantageous

to place higher priority on optimizing g based on the search space sizes rather than

optimizing g based on the reduction in DFT frequencies. This helps to ensure that a

solution for a particular frequency is found before the search space for that frequency

is eliminated by other solutions. Note that using the MinS-Max|d′| search operator

does not guarantee that the MinN -Targetp algorithm will find the optimal minimum
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Table 1. MinN -Targetp algorithm output for M = 25, p1 = 1, pM = 100, T = 6, and
e = emax.

Nmin

h Max|d′| Max|d′|-MinS MinS-Max|d′|
{2} 112 105 88

{2, 3} 153 108 108

{2, 3, 4} 180 126 126

{2, 3, · · · , 6} 293 240 171

{2, 3, · · · , 9} 510 230 256

number of DFT frequencies needed to define g. However, using the MinS-Max|d′|

search operator may produce better results compared to using one of the other two

search operators.

5.3.2. MinS-Max|d′| Performance

Table 2 provides further analysis of the optimized distribution g and number

of DFT bins Nmin found with the MinN -Targetp algorithm using the MinS-Max|d′|

search operator. The resulting sample frequency is calculated as Fs = Nmin/T =

Nmin/6. The DFT bin utilization is equivalent to 2M/Nmin = 50/Nmin. The

improvement in DFT bin utilization compared to a Nyquist-sampled excitation

signal equals the sample frequency, Fs, divided by the Nyquist-sample frequency,

2pM = 200 Hz, assuming the higher frequency harmonics are removed with an anti-

aliasing filter prior to Nyquist sampling. The analysis shows that as |h| increases,

the required number of DFT bins needed to hold both the excitation and harmonic

alias frequencies also increases. This results in an increase in Fs and a decrease

in the DFT bin utilization for a fixed T . However, the DFT bin utilization does

not decrease at the same rate as |h| increases. For example, when |h| increases

from 1 to 8, an increase of 8x in the number of harmonic frequencies, the DFT

bin utilization only decreases by a factor of 2.91x. Note that there is still a 4.7x
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Table 2. DFT bin utilization of an undersampled distribution g found with the MinN -
Targetp algorithm using the MinS-Max|d′| search operator for p1 = 1, pM = 100,
M = 25, T = 6, and e = emax.

h Fs DFT Bin Utilization Improvement

Utilization Over Nyquist-Sampling

{2} 14.7 56.7% 13.6x

{2, 3} 18 46.3% 11.1x

{2, 3, 4} 21 39.7% 9.5x

{2, 3, · · · , 6} 28.5 29.2% 7.0x

{2, 3, · · · , 9} 42.7 19.5% 4.7x

improvement in DFT bin utilization compared to a Nyquist-sampled signal even when

consideration is given to the 2nd through 9th harmonics. This shows that optimizing

the excitation frequency distribution using the MinN -Targetp algorithm and the

MinS-Max|d′| search operator can result in substantial savings in instrumentation

power consumption and computational complexity due to a lower sample frequency

and improved DFT bin utilization, even when a significant number of harmonics need

to be accommodated due to system nonlinearities. The real savings are likely to be

even greater since it is common to oversample the output signal at a rate significantly

faster than the Nyquist rate. Traditional hardware systems may also require a higher

sampling rate to prevent aliasing of higher frequency harmonics if there is insufficient

anti-aliasing filter rejection.

Next, the MinN -Targetp algorithm using the MinS-Max|d′| search operator is

applied again to the same target frequency distribution p, but this time the allowed

error is set to e = emin. The error between the algorithm output g and the target

distribution p is plotted in Fig. 21 for h = {2, 3}. Comparing this result to the error

of the Nyquist-sampled distribution p̂ plotted in Fig. 20 shows that the error between

g and p is greater at high excitation frequencies compared to the error between p̂
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and p. In practice, g should be designed using the maximum acceptable value for e

in order to maximize the DFT bin utilization.
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Figure 21. Frequency error between g and p when using the MinN -Targetp algorithm
and MinS-Max|d′| search operator for h = {2, 3}, p1 = 1, pM = 100, M = 25, T = 6,
and e = emin.

Finally, the effects of varying M and T on Nmin when designing g using the

MinS-Max|d′| search operator are shown in Figs. 22 and 23, respectively. Results for

the Max|d′| and Max|d′|-MinS search operators are not provided because the MinS-

Max|d′| search operator typically produces better results. The number of tones M in

p has a noticeable impact on Nmin, as would be expected. However, Nmin has little

dependency on T for small values of |h|. This is significant since a small excitation

period is desirable when making measurements in order to help minimize the total

measurement time.

5.3.3. Decreasing the Frequency Error

The objective of the MinN -Targetp algorithm is to maximize the DFT bin

utilization by reducing N while approximating a target frequency distribution p.

However, a single run of the MinN -Targetp algorithm provides no insight into possible
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Figure 22. Nmin vs M and h using the MinN -Targetp algorithm and MinS-Max|d′|
search operator for p1 = 1, pM = 100, T = 6, and e = emax.
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Figure 23. Nmin vs T and h using the MinN -Targetp algorithm and MinS-Max|d′|
search operator for p1 = 1, pM = 100, M = 25, and e = emax.

tradeoffs for improvement. For example, it may be beneficial to the application if a

slight increase in the sampling frequency or the excitation signal period were to result
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in a beneficial decrease in the total frequency error between p and the optimized

frequency distribution f .

The MinN -Targetp algorithm implementing the MinS-Max|d′| search operator

is again applied to the original 25 tone logarithmically-spaced frequency distribution.

Harmonics from system nonlinearities are ignored (h = {}). To understand how the

frequency error between f and p is dependent onN , the algorithm is rerun for values of

N greater than Nmin. Specifically, the sampling frequency Fs is limited to a maximum

of 10 Hz, and the excitation signal period T is limited to the range of 5 to 7.5 seconds.

This is close to the signal period of the original Nyquist-sampled distribution. To

limit the number of signal period and sampling frequency combinations that must

be evaluated by the algorithm, the signal period range is tested with a 0.01 second

resolution. Furthermore, the maximum allowed positional frequency error for each

frequency component is limited to e = 0.1. The resulting minimum value of the

objective function g(f) for each run is shown in Fig. 24, where

g(f) =
1

M

M
∑

m=1

e(m)

fm
(94)

and

e(m) = |fm − pm| . (95)

Although discrete solutions to the algorithm only exist at the points that fall

along the regular concentric semi-circles, the interpolated error surface helps to

visualize the impact of both sampling frequency and signal period on the result.

As indicated on the plot, the minimum solution is g(f) = 0.006406. This value

correlates to an undersampling frequency of 7.5239 Hz and a signal period of 7.31

seconds. Thus, for a small amount of positional frequency error and a 22% increase

in the signal period, the sampling frequency is reduced by at least 96%. The final
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Figure 24. Minimum g(f) over sample frequency and excitation period for a log-spaced
frequency distribution. (M = 25; e = 0.1; h = ∅)

optimized frequency distribution is shown in Fig. 25. This plot helps to visualize the

relationship between the original excitation frequencies and the received frequencies

after undersampling. It is easy to see that the aliased frequencies are equally spaced

and lie at unique DFT frequencies.

By maintaining a low signal period while undersampling the received signal,

the ratio of the total number of multisine frequency components to the number of

DFT bins increases dramatically. In this example, the Nyquist-sampled frequency

distribution has a low DFT frequency utilization ratio of (2× 25)/(6× 200) = 0.042.

However, the optimized log-spaced distribution with a signal period of 7.31 seconds

and undersampled at 7.5239 Hz has a DFT frequency utilization of 0.909, which is

an improvement factor of more than 21.
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log-spaced frequency distribution. (Fs = 7.5239 Hz)
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CHAPTER 6. MULTISINE SIGNAL GENERATION

6.1. Introduction

This chapter explores methods for optimizing the generation of multisine

excitation signals. A proposal is made to simplify the hardware complexity of

generating multisine signals by using multiple square wave generators rather than a

digital-to-analog converter (DAC) paired with a recursive oscillator or look-up table.

First, the properties of square waves are reviewed. Second, the requirements for

generating multiple square wave signals that are synchronous to a common system

clock are presented.

6.2. Multisquare-Multisine Generator

The traditional methods for sinusoid signal generation are not optimized for

the generation of multisine excitation signals. Whereas digital recursive oscillators

are well-equipped to generate single frequency sinusoids, a multisine signal generator

requires one digital recursive oscillator for each frequency component in the signal.

Likewise, digital recursive oscillators require a hardware architecture capable of

multiplication and addition operations at a frequency many times greater than the

maximum frequency of the multisine signal. On the other hand, look-up table signal

generators are capable of generating arbitrary waveforms and, therefore, can produce

a multisine signal. However, a multisine signal can have a relatively large signal

period compared to its sinusoid components and, thus, can require an impractical

amount of memory to store all the necessary data points needed to generate the

multisine signal with adequate resolution. Beyond the method of generating the

digital codes that represent discrete points of the generated multisine signal, these

approaches also require a high-speed and high-resolution digital-to-analog converter

(DAC) to convert the digital codes into an analog output. This DAC needs to run at

a sampling frequency at least twice the highest frequency component of the multisine
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signal, and it requires many bits to produce the desired analog output with sufficient

resolution. In some applications of system identification, such as energy harvesting

systems, this DAC alone may be impractical to implement due to power and cost

reasons.

The objective is to exploit characteristics of multisine signals that enable the

simplification of the signal generation such that complex mathematical computations,

large memory banks, or high-speed and high-resolution DACs are not required. The

first step in simplifying the generation of multisine signals is to concentrate on the

types of signals that digital circuits are adept at producing. Considering that digital

logic circuits are specifically designed to produce ones and zeros, usually represented

as high and low voltages, a straightforward waveform to generate with a digital circuit

would be a square wave. This could be readily produced by the toggling output of

an inverter or other logic gate.

An odd-symmetry square wave can be mathematically decomposed into a

summation of harmonically related sinusoids, as shown by the Fourier series

representation

x(t) =
4

π

∞
∑

n=1,3,5,···

1

n
sin(2πfnt). (96)

Fig. 26 illustrates a portion of the Fourier transform of a square wave with a

fundamental frequency of 1Hz. It can be seen that a square wave consists of

only frequency components that are odd-multiples of the fundamental, and that the

amplitudes of the harmonic decreases at a rate of 1/n as the frequency increases. By

eliminating all of the upper frequency components above a certain cutoff frequency,

possibly by low-pass filtering, the resulting signal looks less like an ideal square wave

and more like a single frequency sinusoid. This is shown in Fig. 27, where traces

consisting of one, two, three, four, five, and all of the harmonics of a square wave are

plotted.
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Figure 27. Impact of square wave harmonics

Through the combination of multiple square wave generators and low-pass

filters with carefully selected cutoff frequencies, it is possible to generate a multisine

excitation signal without using any high-speed and/or high-resolution DACs, memory,
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or complex mathematical computations. A proposed multisine signal generator is

shown in Fig. 28. The mth square wave generator is defined as

xm(t) = Amsgn [sin (2πfmt+ φm)] , (97)

where sgn(t) is the signum function

sgn(t) =























−1 for t < 0

0 for t = 0

1 for t > 0,

(98)

Am is the amplitude, fm is the frequency, and φm is the phase of xm(t). Each of theM

square wave generators is followed by a low-pass filter, hm(t) filters xm(t), to attenuate

higher order harmonics prior to summation with the other square wave generators.

Alternatively, a single low-pass filter h(t) can be used to attenuate all high frequency

content above fM , assuming xm has the greatest fundamental frequency of all of the

square wave generators. Because the multisine signal generated by this particular

architecture is derived from the summation of multiple filtered square waves, the

output signal is hereby referred to as a multisquare-multisine (MSMS) signal.

x1(t) h1(t)

x2(t) h2(t)

x3(t) h3(t)

xM(t) hM(t) h(t) x(t)

Figure 28. Block diagram of a multi-square wave signal generator
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To minimize the hardware complexity required to generate the M square wave

signals in an MSMS generator, it is beneficial to derive all frequencies from a single

clock source using even integer dividers. For example, if the common clock source is

f0, then the frequencies f0/2, f0/4, f0/6, f0/8 and so on can be readily generated with

standard logic gates. The relation of these clocks is shown in Fig. 29. Observe that

using even integer dividers creates a clock with a 50% duty cycle that is synchronous

only to the rising edge of the common clock f0. This relationship dictates that

fm =
f0
2km

where km ∈ {1, 2, 3, · · · }. (99)

f0

f0 /2

f0 /4

f0 /6

f0 /8

f0 /10

t

Figure 29. Timing diagram of multiple synchronous clocks derived from f0

6.3. Minf0-Targetp Algorithm

An MSMS generator can generate an endless variety of excitation signal

frequency distributions. The possible values for each frequency component in f are

dictated by Eq. (99) and the common clock frequency f0. If high excitation frequencies

are required, or if fine resolution is needed for defining the excitation frequencies, then

a high f0 may be necessary. Of course, hardware power consumption is proportional

to the clock frequency. Thus, it is desirable to keep f0 as low as possible.

An iterative Minf0-Targetp algorithm is presented here to identify an MSMS

generator excitation frequency distribution g that sufficiently approximates a target
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excitation frequency distribution p. The primary objective of the algorithm is to

minimize the generator’s common clock frequency f0. A secondary objective of the

algorithm is to reduce the excitation signal period T to reduce the system test time.

A tertiary objective of the algorithm is to select excitation frequencies such that a

significant non-fundamental harmonic of one excitation frequency is not co-located

with a second excitation frequency. The inputs to the Minf0-Targetp algorithm

are the target frequency distribution p, the maximum allowed error e as defined in

Eq. (65), and a set of harmonics h. The set h defines the significant harmonics of

g that will remain after low-pass filtering of the square wave sources in the MSMS

generator. For example, if the low-pass filters are designed to sufficiently attenuate all

harmonics above the 7th order harmonic, then h = {3, 5, 7}. Even-order harmonics

are not included since they are not generated by the square wave sources. However,

the algorithm can support even-order harmonics, and it may be desirable to include

them in h if there is an appreciable even-order nonlinearity somewhere in the system.

Two outputs of the algorithm are a lower limit fL and an upper limit fU that define

the valid range for the minimum value of f0, where fL ≤ f0 ≤ fU . This provides

some flexibility when choosing the common clock frequency and allows for some error

and drift in the clock generation circuitry. The third output of the algorithm is a

set of clock divider coefficients k. With this information, the optimized excitation

frequency distribution g is found by

g =
f0
2k

where fL ≤ f0 ≤ fU . (100)

Furthermore, the excitation signal period T is calculated as

T =
LCM(2k)

f0
, (101)
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where LCM(x) is the least common multiple of all elements in set x.

The Minf0-Targetp algorithm repeatedly increments kM until solutions for all

other km for 1 ≤ m ≤ (M − 1) can be found. For a given value of kM , the limits for

fL and fU can be initially defined as

fL = 2kMpM(1− e) (102)

and

fU = 2kMpM(1 + e), (103)

where e is the maximum error allowed between pm and gm and is defined in Eq. (65).

In addition, the initial normalized excitation period for a given kM is defined by gM

as

Tn =
1

gM
=

2kM
fn

, (104)

where fn = 1 Hz. The normalized excitation period Tn relates to the actual excitation

period T according to

T =
Tn

f0
. (105)

The algorithm operates on Tn since the exact value for f0, and therefore T , is not

known.

The subset of divisors of set k that have yet to be solved are defined as u,

where each element of u is an index to an unsolved element in k. Therefore, the set

is initially defined as u = {1, 2, 3, · · · ,M − 1)}. If a solution for k2 was to be found

next, for example, then u would become u = {1, 3, 4, · · · ,M − 1}. The search space

Sui
for ui ∈ u of possible solutions to kui

can be written as

Sui
=

{

x ∈ Z :

⌈

fL
2pui

(1 + e)

⌉

≤ x ≤
⌊

fU
2pui

(1− e)

⌋}

. (106)
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The domain Z is defined as

Z = {x : kM ≤ x ≤ max k1} (107)

where max k1 is the maximum integer value of k1 that will result in a g1 that satisfies

the error limit e. It can be written as

max k1 =

⌊

fU
2p1(1− e)

⌋

. (108)

The definition of Z assumes that min g = g1.

During each iteration, the Minf0-Targetp algorithm chooses a solution for one

unsolved frequency in k. Assuming that the most recent solution chosen is km, then

the set u becomes u = u\m. The choice of km from Z also reduces the set of available

solutions for the remaining unsolved divisors in k. This is due to four reasons:

1. The most recent solution km cannot be a solution for any other element in k.

If this was not true, then two excitation frequencies would be co-located.

2. The remaining unsolved divisors in k cannot generate a fundamental frequency

that exists at the same frequency as a significant harmonics of km as defined by

set h. The set of divisors this excludes from Z is

α(km) =







x ∈ Z : x ∈
|h|
⋃

i=1

km
hi







. (109)

3. No harmonics of frequencies defined by the divisors in Z can be co-located with

km. The set of divisors this excludes from Z is

β(km) =







x ∈ Z : fm ∈
|h|
⋃

i=1

x

hi







. (110)
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4. The most recent solution km may reduce the valid range of the common clock

source f0 that is defined by the limits fL and fU . If the lower frequency limit

before choosing km is defined as fL and the lower frequency limit after choosing

km is defined as f ′
L, then

f ′
L =











2kmpm(1− e) for 2kmpm(1− e) > fL

fL otherwise
(111)

Similarly, the new upper frequency limit for f0 is

f ′
U =











2kmpm(1 + e) for 2kmpm(1 + e) < fU

fU otherwise
(112)

Thus, after choosing km as a solution for an unsolved divisor in k, the domain for the

next solution for a divisor in k is

Z′ = Z \ km \α(km) \ β(km). (113)

Note that Eqs. (109) and (110) for α and β are not equivalent to Eqs. (61) and (62),

but they do share similarities in meaning.

The Minf0-Targetp algorithm applies two optimization steps to choose the

solution km during each iteration. First, the algorithm will find a solution for an

unsolved divisor that has the fewest number of possible solutions remaining in its

search space. The reason for this decision is that the search space for each unsolved

divisor defined by u will shrink as the size of u is reduced. This is evident by the

definitions for Z′, f ′
L, and f ′

U . Targeting the search space with the fewest number of

remaining solutions will help ensure that a valid solution is found for the respective
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divisor before all valid solutions are eliminated. Thus, m ∈ q, where

q = argmin
i∈u

|Si| (114)

and Si is found with Eq. (106). Likewise, km ∈ b, where

b =

|q|
⋃

i=1

Sqi
. (115)

The second optimization step chooses the solution km from b that minimizes

the increase to the signal excitation period T . If the normalized excitation period

before choosing km is Tn and the normalized excitation period after choosing km is

T ′
n, then

T ′
n = LCM(Tn, 2km). (116)

Therefore, the algorithm chooses km to be

km = argmin
x∈b

(LCM(Tn, 2x)) , (117)

where

m = {x ∈ q : km ∈ Sx} . (118)

The complete Minf0-Targetp algorithm is described in pseudo-code. The

objective is to minimize kM , thereby also minimizing f0.

1. Start with kM = 1.

2. Find fL, fU , Tn, and Z with Eqs. (102), (103), (104), and (107), respectively.

3. Define u = {1, 2, 3, · · · ,M − 1} so solutions to all divisors except for kM will

be found. M is not included in u since a solution for KM is assumed.
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4. Substitute Z′ for Z based on the value of kM .

5. Apply Eqs. (117) and (118) to find a solution for one km in k, where m ∈ u. If

the set of possible solutions Sui
for any kui

is empty, then increment kM and go

to step 2.

6. Update the set of unsolved divisors to u′ = u\m. If u′ = ∅, then the algorithm

is complete, fL = f ′
L, and fU = f ′

U .

7. Use Eq. (113) to update the search domain. If Z′ = ∅, increment kM and go

back to step 2.

8. Substitute f ′
L for fL, f

′
U for fU , Z

′ for Z, T ′
n for Tn and u′ for u and return to

step 5.

6.3.1. Numerical Example

Consider the example where p = {10, 20, 50} Hz, h = ∅, and e = 0.1. The

algorithm begins with kM = 1. Step 2 of the algorithm calculates the initial values

of fL = 90 Hz, fU = 110 Hz, Tn = 2 seconds and Z = {1, 2, 3, 4, 5, 6}. In steps 3 and

4, the solution for kM is initially assumed to be 1. This results in u = {1, 2} and

Z′ = {2, 3, 4, 5, 6}.

Next, the search spaces S1 = {5, 6} and S2 = {3} for the two elements in u are

found. k2 has fewer potential solutions than k1 because S2 has fewer elements than

S1. This results in q = {2}, and b = {3}. The first application of Eq. (117) gives

km = 3, and Eq. (118) gives m = 2. Thus, k2 = 3.

After finding a solution for k2, the set of unsolved divisors becomes u = {1}.

Likewise, Z′ = {2, 4, 5, 6}, f ′
L = 108 Hz, f ′

U = 110 Hz, and T ′
n = 6 seconds. The search

space for k1 remains unchanged. Applying Eqs. (117) and (118) on the updated values

for fL, fU , Z, and Tn results in k1 = 6. Thus, the final solution for k is k = {6, 3, 1}.

The frequency range for f0 remains at 108 ≤ f0 ≤ 110 Hz.
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6.4. Algorithm Application

The Minf0-Targetp algorithm is applied to the same target excitation

distribution p used throughout this paper. It is defined as a logarithmically-spaced

distribution ranging from p1 = 1 Hz to pM = 100 Hz and is composed of M = 25

tones. The resulting minimum source frequency fL is plotted in Fig. 30 against e/emax,

where emax is defined in Eq. (93). It is observed that fL has only a weak dependency

on the number of significant odd harmonics, at least for the values of h evaluated.

This suggests that it may be advantageous to optimize the excitation distribution

using a larger set of harmonics in h in order to relax the requirements of the low-pass

filters needed to remove the higher frequency harmonics. However, Fig. 31 tells a

different story. In this plot it is shown that the excitation signal period T can have

a strong dependency on the number of harmonics in h. For example, it is possible to

obtain T = 5.4 seconds for h = {}, but this increases to T = 356 seconds for h = {3}

and h = {3, 5}. Depending on the application requirements, this significant increase

in excitation signal period may or may not be acceptable.

To better understand the dependency of the Minf0-Targetp algorithm on the

number of tones in p, the target excitation distribution is modified from M = 25

to M = 11. It is still logarithmically-spaced with p1 = 1 Hz and pM = 100 Hz.

The expectation is that reducing the number of tones in p will reduce fL and T for a

given e/emax and h since there will be fewer harmonic frequencies that the algorithm

will need to accommodate. The algorithm results are plotted in Figs. 32 and 33

and significant improvements compared to the M = 25 case are readily apparent.

Observe that even for h = {3, 5, 7, 9, 11}, an excitation period of T = 4.9 seconds

can be achieved with a common source frequency of f0 = (fU + fL)/2 = 389 Hz.

Furthermore, this optimization point is found for a value of e/emax just less than 0.5,

and is even better than values of e closer to emax. It is worth noting that increasing
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e does not always lead to a better solution as one may expect. This is due to the

iterative structure of the algorithm which must solve for values of k prior to realizing

all ramification on the final result.
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Figure 32. fL vs e/emax and h using the Minf0-Targetp algorithm for p1 = 1, pM =
100, and M = 11.

The results obtained in Figs. 32 and 33 show that it is quite possible to

generate an MSMS signal with a reasonable excitation period and using a system clock

frequency that is only a few times greater than the maximum excitation frequency.

All of this is achieved while simultaneously selecting the square wave frequencies

such that there is no distortion from the 3rd through 11th order harmonics of any

fundamental excitation frequencies. Assuming that the 13th order harmonics do

result in distortion, then filtering each square wave generater xi(t) with a low pass

filter hi(t), as shown in Fig. 28, can attenuate the 13th order harmonics below the

noise floor in many applications. For example, if hi(t) is a third order Butterworth

low pass filter with a -3dB cutoff point at the fundamental frequency of xi(t), then

the resulting xi(t) ∗ hi(t) signal will closely approximate a pure sinusoid, as shown
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Figure 33. T vs e/emax and h using the Minf0-Targetp algorithm for p1 = 1, pM = 10,
and M = 11.

in Fig. 34. Converting this to the frequency domain, as shown in Fig. 35, illustrates

that this is sufficient to suppress the 13th order harmonic to about 88 dB below the

fundamental frequency of xi(t) after filtering.

6.5. Crest Factor Optimization

Several methods exist for manipulating the phases of a multisine excitation

signal in order to optimize the crest factor. A low crest factor is beneficial as it

improves the signal-to-noise ratio of the measurement, can reduce the severity of some

system nonlinearities, and decreases the test time by allowing for an excitation signal

with increased signal power for a given peak amplitude. Unfortunately, these existing

techniques may not be directly applicable to signals produced by a multisquare-

multisine signal generator. Because all tones in an MSMS signal are derived from

a common clock source using integer dividers, all frequency tones obey a strict phase

relationship. Only a discrete set of phases is possible for each tone of the signal. The

crest factor optimization algorithm is not free to operate over the continuum of phase.
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Figure 34. Time domain plot for a square wave [x1(t)] and a low-pass filtered square
wave [x1(t) ∗ h1(t)]. The low-pass filter has a third-order Butterworth response with
a -3 dB cut-off point at the fundamental.

Presented here is one method to optimize the crest factor of an MSMS signal

through the assignment of phase to each tone in the distribution. For a given tone gm

that is derived from a common clock f0 with a divider of 2km as shown in Eq. (99),

the set of valid phases for gm is

θm = 2π
n

2km
for n = {1, 2, 3, · · · , 2km}. (119)

This is illustrated in Fig. 36 for km = 2. Notice that f0/4 can be shifted in time in

increments equal to the period of f0, and that the edges of f0/4 remain aligned with

the rising edges of f0.

The set of available phases for gm grows as km increases. Thus, high frequency

tones have less phase resolution compared to low frequency tones for a given source

frequency f0. This observation forms the basis for the crest factor optimization

algorithm proposed here. It is an iterative algorithm that optimizes the phase of one
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f0

f0/4 

f0/4 + 3π/2 

f0/4 + π/2

f0/4 + π 

t

Figure 36. Phases of f0/4 that can be generated from f0

frequency component gm in x(t) at a time by choosing the phase from set φm that

minimizes the signal crest factor. The algorithm starts with the highest frequency

component gM and works towards the lowest frequency component g1. This ordering

provides increasing flexibility in tuning the phase of a frequency component as the

power of the signal increases. This is evident in the pseudo-code provided here.
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1. Start with m = M .

2. Choose the phase φm for xm from φm according to

φm = argmin
x∈θm

CR

(

M
∑

i=m

xi(t) ∗ hi(t)

)

(120)

where CR(x) is defined in Eq. (20) and

xi(t) = Aisgn [sin (2πgit+ φi)] . (121)

3. Decrement m and return to step 1 until the phases for all M components are

found.

The capabilities of the phase optimization algorithm are demonstrated by

comparing the algorithm result to the crest factors of random phase assignments

and an equal phase assignment. An equal phase assignment is defined as φm = φm+1

for 0 ≤ m ≤ M−1. The crest factor of a random phase assignment is calculated 1000

times and displayed as a histogram in Fig. 37 to show the approximate probability

distribution function of random phase assignment. The random phases were selected

from the set of phases φm defined in Eq. (119) to restrict them to only the discrete

phases that can be produced by the proposed MSMS signal generator. The results are

calculated for an excitation distribution produced by the Minf0-Targetp algorithm

for a target logarithmically-spaced frequency distribution p where p1 = 1, pM = 100,

and M = 25. The set of accommodated harmonics is h = {3, 5, 7, 9, 11}. The results

for this specific test case show that the crest factor for randomly assigned phase has

an approximate Gaussian distribution with a mean of about 3.3. The optimization

algorithm produced a crest factor of 2.77 that is about 2 standard deviations below
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the random phase mean. The equal phase assignment produced a crest factor that is

1.9 standard deviations greater than the random phase mean.
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Figure 37. Crest factor histogram for random discrete phases for p1 = 1, pM = 100,
M = 11, f0 = 389 Hz, and T = 4.9 seconds.

The exercise is repeated using continuous random variables for the phase in

order to better understand the limitations imposed by discrete phase assignment.

The resulting histogram is shown in Fig. 38. Both the mean and the standard

deviation of the resulting crest factor probability distribution function are similar

to the discrete phase results. Thus, the limitation of discrete phases does not appear

to have a significant negative impact on the signal crest factor when using random

phase assignment. However, the crest factor optimization algorithm presented here

still offers a significant benefit when compared to random phase assignment or equal

phase assignment.
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Figure 38. Crest factor histogram for random continuous phases for p1 = 1, pM = 100,
M = 11, f0 = 389 Hz, and T = 4.9 seconds.
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CHAPTER 7. FUTURE WORK & CONCLUSIONS

Two primary techniques are presented in this paper for reducing the complexity

and power consumption of system identification hardware through optimization of

the multisine excitation signal. The proposed improvements attack both ends of the

signal chain, excitation signal generation and system output analysis. The focus

of the research is on the selection of the frequency tones that comprise a multisine

excitation signal such that power saving architectures and signal processing techniques

can be employed without significantly distorting the generated excitation signal or

the sampled output signal.

Hardware complexity and system power consumption are potentially reduced

at the signal generation end of the signal chain by using low complexity square

wave generators and low-pass filters to create a multisine signal from a summation of

square wave signals. To deal with the significant odd harmonics that are created by

square wave signals, the iterative Minf0-Targetp algorithm is proposed to optimize the

selection of square wave fundamental frequencies such that the generated harmonic

tones do not distort the excitation tones of interest. Examples provided for sparse

logarithmically-spaced frequency distributions show that distortion from odd-order

harmonics up to the 11th order or more can be achieved without significantly

increasing the required excitation sample period. Furthermore, this can be achieved

while requiring a system clock frequency that is only three to four times greater than

the maximum frequency component of the multisine signal. Lastly, results show that

it is possible to significantly improve the crest factor of an optimized multisine signal

that is composed of multiple square waves.

The MinN -Targetp algorithm is proposed for decreasing the system complexity

and power consumption required to sample and analyze the system output signal in

a system identification application. The improvements are realized by designing a
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multisine excitation signal such that it can be undersampled without distorting any

of the excitation frequencies. This has the effect of compacting a sparse excitation

frequency distribution into a more dense distribution, thereby increasing the DFT

bin utilization. The efficiency of many DFT algorithms is generally improved when

the total number of DFT bins is reduced. Similar to the Minf0-Targetp algorithm,

the MinN -Targetp algorithm is also designed to accommodate a select number of

harmonic components. This makes it possible to undersample the system output

signal without distortion even if the system under test includes a significant nonlinear

component. Multiple search operators for the MinN -Targetp algorithm are proposed,

and examples for a typical logarithmically-spaced excitation signal show that it is

possible to improve the DFT bin utilization by more than one order of magnitude.

Analyzing the performance of the Minf0-Targetp and MinN -Targetp algorithms

when applied to a more diverse set of target excitation frequencies is a warranted

exercise. Logarithmically-spaced frequency distributions are commonly used in

system identification applications, but the number of tones and the frequency range

can vary greatly. Likewise, the expected order of the system nonlinearity and the

required excitation signal period further impact results. Fortunately, the presented

algorithms do not have any inherent limitations that prevent them from operating on

an arbitrarily defined target frequency distribution or set of harmonic components.

Another interesting exercise would be to combine the Minf0-Targetp and MinN -

Targetp algorithms such that a single excitation signal could be designed such

that it could be produced by a summation of square wave generators and also be

undersampled without distortion. This combination of objectives places additional

boundaries on the algorithm search space, therefore it is expected that the results

will be inferior compared to excitation signal optimization using only the generation

or analysis optimization algorithm. Still, there may be advantages to applying both
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algorithms at once, depending on the instrumentation hardware and the measurement

application.

A very large, yet important, future undertaking would be to realize the benefits

of the two proposed algorithms in actual hardware. One such application could

be a single integrated-circuit instrumentation platform for SHM that incorporates a

simplified multisquare-multisine signal generator. Applying the DFT bin utilization

improvements of the MinN -Targetp algorithms will potentially reduce the memory

depth and operating frequency requirements of the signal analysis hardware in the

single chip solution. Implementing the improvements offered by the optimization

algorithms in actual hardware will provide the best true indication of the power and

cost savings that can be achieved. The results presented in this dissertation are

theoretical only and indicate the potential magnitude of improvement that may be

obtained.
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APPENDIX A. MATLAB: MINN TARGETP MAXD

function g = MinN_Targetp_Maxd(p,h,T,N,e)

% g = MinN_Targetp_Maxd(p,h,T,N,e)

% Find an optimized set of excitation frequencies, g, that approximate a

% target distribution, p, using the MinN-Targetp algorithm and the

% Maxd search operator

% g = vector of optimized excitation frequencies

% p = vector of target excitation frequencies

% h = vector of harmonics

% T = excitation signal period

% N = starting value for number of DFT bins

% e = maximum allowed error between frequencies in p and g

% prescale to T=1

Fs = N;

p = p.*T;

% create variable placeholders

M = length(p);

g = zeros(1,M);

pM = max(p);

% find the set of positive non-zero dft bins

d = (1:floor((N-1)/2));

% find dprime

dprime = d;

% remove the bins with harmonics that alias to themselves

for hi=1:1:length(h)

for di=1:1:length(d)

if ExtFreq2AliasFreq(h(hi).*d(di),Fs) == d(di)
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dprime = setdiff(dprime, d(di));

end

end

end

% define the vector of unsolved frequencies

u = 1:1:M;

while(1)

% stop if out of DFT bins

if isempty(dprime)

g = [];

return;

end

%build the total search space

gmax = (1+e).*pM;

Z = AliasFreq2ExtFreq(dprime,Fs,gmax);

% build the search space Sm for each unsolved frequency defined in u

clear S

b = [];

for i=1:1:length(u)

freqdev = abs((Z - p(u(i)))./p(u(i)));

S{u(i)} = Z(freqdev <= e);

% stop if a search space is empty

if isempty(S{u(i)})

g = [];

return;

end

b = union(b,ExtFreq2AliasFreq(S{u(i)},Fs));

end
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% find set c that minimizes dft usage

NumPollutedBins = [];

for x=1:1:length(b)

% find alpha

alpha = [];

for hi=1:1:length(h)

alpha = union(ExtFreq2AliasFreq(h(hi).*b(x),Fs),alpha);

end

alpha = intersect(dprime,alpha);

% find beta

beta = [];

for i=1:1:length(dprime)

for hi=1:1:length(h)

if ExtFreq2AliasFreq(h(hi).*dprime(i),Fs) ==...

ExtFreq2AliasFreq(b(x),Fs);

beta = union(dprime(i),beta);

end

end

end

PollutedBins = union(ExtFreq2AliasFreq(b(x),Fs),alpha);

PollutedBins = union(PollutedBins,beta);

NumPollutedBins(x) = length(PollutedBins);

end

MinNumPollutedBins = min(NumPollutedBins);

c = [];

for i=1:1:length(b)

if NumPollutedBins(i) == MinNumPollutedBins

c = union(b(i),c);

end

end
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%build the total serch space using c only

gmax = (1+e).*pM;

Zprime = AliasFreq2ExtFreq(c,Fs,gmax);

% find gm

error = [];

for x=1:1:length(Zprime)

for y=1:1:length(u)

error = cat(2,error,abs((Zprime(x) - p(u(y)))./p(u(y))));

end

end

[errormin errormini] = min(error);

gm = Zprime(ceil(errormini./length(u)));

%find m

error = [];

for i = 1:1:length(u)

error(i) = abs((gm-p(u(i)))./p(u(i)));

end

[errormin m] = min(error);

% store to final freq list

g(u(m)) = gm;

% update the list of unsolved frequencies

u = setdiff(u,u(m));

% stop if all the tones have been found

if isempty(u)

% post-scale the distribution
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g = g./T;

return;

end

% find dprimeprime

% find alpha

alpha = [];

for hi=1:1:length(h)

alpha = union(ExtFreq2AliasFreq(h(hi).*gm,Fs),alpha);

end

alpha = intersect(dprime,alpha);

% find beta

beta = [];

for i=1:1:length(dprime)

for hi=1:1:length(h)

if ExtFreq2AliasFreq(h(hi).*dprime(i),Fs) ==...

ExtFreq2AliasFreq(gm,Fs)

beta = union(dprime(i),beta);

end

end

end

dprimeprime = setdiff(dprime,ExtFreq2AliasFreq(gm,Fs));

dprimeprime = setdiff(dprimeprime,alpha);

dprimeprime = setdiff(dprimeprime,beta);

% substitue dprimeprime for dprime

dprime = dprimeprime;

end
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APPENDIX B. MATLAB: MINN TARGETP MAXD MINS

function g = MinN_Targetp_Maxd_MinS(p,h,T,N,e)

% g = MinN_Targetp_Maxd_MinS(p,h,T,N,e)

% Find an optimized set of excitation frequencies, g, that approximate a

% target distribution, p, using the MinN-Targetp algorithm and the

% Maxd-MinS search operator

% g = vector of optimized excitation frequencies

% p = vector of target excitation frequencies

% h = vector of harmonics

% T = excitation signal period

% N = starting value for number of DFT bins

% e = maximum allowed error between frequencies in p and g

% prescale to T=1

Fs = N;

p = p.*T;

% create variable placeholders

M = length(p);

g = zeros(1,M);

pM = max(p);

% find the set of positive non-zero dft bins

d = (1:floor((N-1)/2));

% find dprime

dprime = d;

% remove the bins with harmonics that alias to themselves

for hi=1:1:length(h)

for di=1:1:length(d)

if ExtFreq2AliasFreq(h(hi).*d(di),Fs) == d(di)
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dprime = setdiff(dprime, d(di));

end

end

end

% define the vector of unsolved frequencies

u = 1:1:M;

while(1)

% stop if out of DFT bins

if isempty(dprime)

g = [];

return;

end

%build the total search space

gmax = (1+e).*pM;

Z = AliasFreq2ExtFreq(dprime,Fs,gmax);

% build the search space Sm for each unsolved frequency defined in u

clear S

b = [];

for i=1:1:length(u)

freqdev = abs((Z - p(u(i)))./p(u(i)));

S{u(i)} = Z(freqdev <= e);

% stop if a search space is empty

if isempty(S{u(i)})

g = [];

return;

end

b = union(b,ExtFreq2AliasFreq(S{u(i)},Fs));

end
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% find set c that minimizes dft usage

NumPollutedBins = [];

for x=1:1:length(b)

% find alpha

alpha = [];

for hi=1:1:length(h)

alpha = union(ExtFreq2AliasFreq(h(hi).*b(x),Fs),alpha);

end

alpha = intersect(dprime,alpha);

% find beta

beta = [];

for i=1:1:length(dprime)

for hi=1:1:length(h)

if ExtFreq2AliasFreq(h(hi).*dprime(i),Fs) ==...

ExtFreq2AliasFreq(b(x),Fs);

beta = union(dprime(i),beta);

end

end

end

PollutedBins = union(ExtFreq2AliasFreq(b(x),Fs),alpha);

PollutedBins = union(PollutedBins,beta);

NumPollutedBins(x) = length(PollutedBins);

end

MinNumPollutedBins = min(NumPollutedBins);

c = [];

for i=1:1:length(b)

if NumPollutedBins(i) == MinNumPollutedBins

c = union(b(i),c);

end

end
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% find set k

k = [];

for i=1:1:length(u)

if intersect(ExtFreq2AliasFreq(S{u(i)},Fs),c) ~= 0

k = union(u(i),k);

end

end

% find set q

clear Ssize

q = [];

for i=1:1:length(k)

Ssize(i) = length(S{k(i)});

end

Smin = min(Ssize);

for i=1:1:length(k)

if Ssize(i) == Smin

q = union(k(i),q);

end

end

%build the total serch space using c only

gmax = (1+e).*pM;

Zprime = AliasFreq2ExtFreq(c,Fs,gmax);

% find gm

error = [];

for x=1:1:length(Zprime)

for y=1:1:length(q)

error = cat(2,error,abs((Zprime(x) - p(q(y)))./p(q(y))));

end
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end

[errormin errormini] = min(error);

gm = Zprime(ceil(errormini./length(q)));

%find m

error = [];

for i = 1:1:length(q)

error(i) = abs((gm-p(q(i)))./p(q(i)));

end

[errormin m] = min(error);

% store to final freq list

g(q(m)) = gm;

% update the list of unsolved frequencies

u = setdiff(u,q(m));

% stop if all the tones have been found

if isempty(u)

% post-scale the distribution

g = g./T;

return;

end

% find dprimeprime

% find alpha

alpha = [];

for hi=1:1:length(h)

alpha = union(ExtFreq2AliasFreq(h(hi).*gm,Fs),alpha);

end

alpha = intersect(dprime,alpha);

% find beta
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beta = [];

for i=1:1:length(dprime)

for hi=1:1:length(h)

if ExtFreq2AliasFreq(h(hi).*dprime(i),Fs) ==...

ExtFreq2AliasFreq(gm,Fs)

beta = union(dprime(i),beta);

end

end

end

dprimeprime = setdiff(dprime,ExtFreq2AliasFreq(gm,Fs));

dprimeprime = setdiff(dprimeprime,alpha);

dprimeprime = setdiff(dprimeprime,beta);

% substitue dprimeprime for dprime

dprime = dprimeprime;

end
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APPENDIX C. MATLAB: MINN TARGETP MINS MAXD

function g = MinN_Targetp_MinS_Maxd(p,h,T,N,e)

% g = MinN_Targetp_MinS_Maxd(p,h,T,N,e)

% Find an optimized set of excitation frequencies, g, that approximate a

% target distribution, p, using the MinN-Targetp algorithm and the

% MinS-Maxd search operator

% g = vector of optimized excitation frequencies

% p = vector of target excitation frequencies

% h = vector of harmonics

% T = excitation signal period

% N = starting value for number of DFT bins

% e = maximum allowed error between frequencies in p and g

% prescale to T=1

Fs = N;

p = p.*T;

% create variable placeholders

M = length(p);

g = zeros(1,M);

pM = max(p);

% find the set of positive non-zero dft bins

d = (1:floor((N-1)/2));

% find dprime

dprime = d;

% remove the bins with harmonics that alias to themselves

for hi=1:1:length(h)

for di=1:1:length(d)

if ExtFreq2AliasFreq(h(hi).*d(di),Fs) == d(di)
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dprime = setdiff(dprime, d(di));

end

end

end

% define the vector of unsolved frequencies

u = 1:1:M;

while(1)

% stop if out of DFT bins

if isempty(dprime)

g = [];

return;

end

% build the total search space

gmax = (1+e).*pM;

Z = AliasFreq2ExtFreq(dprime,Fs,gmax);

% build the search space Sm for each unsolved frequency defined in u

clear S

for i=1:1:length(u)

freqdev = abs((Z - p(u(i)))./p(u(i)));

S{u(i)} = Z(freqdev <= e);

% stop if a search space is empty

if isempty(S{u(i)})

g = [];

return;

end

end

% find the minimum search space size
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clear Ssize

for i=1:1:length(u)

Ssize(i) = length(S{u(i)});

end

Smin = min(Ssize);

% find q and b

q = [];

b = [];

for i=1:1:length(u)

if Ssize(i) == Smin

q = union(u(i),q);

b = union(S{u(i)},b);

end

end

% find set c that minimizes dft usage

NumPollutedBins = [];

for x=1:1:length(b)

% find alpha

alpha = [];

for hi=1:1:length(h)

alpha = union(ExtFreq2AliasFreq(h(hi).*b(x),Fs),alpha);

end

alpha = intersect(dprime,alpha);

% find beta

beta = [];

for i=1:1:length(dprime)

for hi=1:1:length(h)

if ExtFreq2AliasFreq(h(hi).*dprime(i),Fs) ==...

ExtFreq2AliasFreq(b(x),Fs);

beta = union(dprime(i),beta);
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end

end

end

PollutedBins = union(ExtFreq2AliasFreq(b(x),Fs),alpha);

PollutedBins = union(PollutedBins,beta);

NumPollutedBins(x) = length(PollutedBins);

end

MinNumPollutedBins = min(NumPollutedBins);

c = [];

for i=1:1:length(b)

if NumPollutedBins(i) == MinNumPollutedBins

c = union(b(i),c);

end

end

% find gm

error = [];

for x=1:1:length(c)

for y=1:1:length(q)

error = cat(2,error,abs((c(x) - p(q(y)))./p(q(y))));

end

end

[errormin errormini] = min(error);

gm = c(ceil(errormini./length(q)));

%find m

error = [];

for i = 1:1:length(q)

error(i) = abs((gm-p(q(i)))./p(q(i)));

end

[errormin m] = min(error);
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% store to final freq list

g(q(m)) = gm;

% update the list of unsolved frequencies

u = setdiff(u,q(m));

% stop if all the tones have been found

if isempty(u)

% post-scale the distribution

g = g./T;

return;

end

% find dprimeprime

% find alpha

alpha = [];

for hi=1:1:length(h)

alpha = union(ExtFreq2AliasFreq(h(hi).*gm,Fs),alpha);

end

alpha = intersect(dprime,alpha);

% find beta

beta = [];

for i=1:1:length(dprime)

for hi=1:1:length(h)

if ExtFreq2AliasFreq(h(hi).*dprime(i),Fs) ==...

ExtFreq2AliasFreq(gm,Fs)

beta = union(dprime(i),beta);

end

end

end

dprimeprime = setdiff(dprime,ExtFreq2AliasFreq(gm,Fs));

dprimeprime = setdiff(dprimeprime,alpha);
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dprimeprime = setdiff(dprimeprime,beta);

% substitue dprimeprime for dprime

dprime = dprimeprime;

end
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APPENDIX D. MATLAB: ALIASFREQ2EXTFREQ

function [E A] = AliasFreq2ExtFreq(AliasFreq,SampFreq,fmax)

% [E A] = AliasFreq2ExtFreq(AliasFreq,SampFreq,fmax)

% Finds the vector of excitation frequencies, E, less than a maximum

% frequency, fmax, that alias to the vector of alias frequencies,

% AliasFreq, when sampled at SampFreq.

% E = excitation frequency vector

% A = alias frequency of each excitation frequency

% AliasFreq = vector of alias frequencies

% SampFreq = sample frequency

% fmax = maximum excitation frequency allowed

numfa = length(AliasFreq);

nmax = ceil(fmax./SampFreq + 0.5);

nmin = floor(-1*fmax./SampFreq - 0.5);

numN = nmax - nmin + 1;

A = repmat(AliasFreq,1,numN);

nrep = [];

for n=nmin:1:nmax;

nrep = [nrep n*ones(1,numfa)];

end

ExtFreq = abs(A + SampFreq.*nrep);

E = ExtFreq(abs(ExtFreq) <= fmax);
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APPENDIX E. MATLAB: EXTFREQ2ALIASFREQ

function A = ExtFreq2AliasFreq(ExtFreq,SampFreq)

% A = ExtFreq2AliasFreq(ExtFreq,SampFreq)

% Finds the vector of alias frequencies, A, of the vector of excitation

% frequencies, ExtFreq, when sampled at SampFreq.

% A = alias frequency of each excitation frequency

% ExtFreq = vector of excitation frequencies

% SampFreq = sample frequency

A = abs(ExtFreq - SampFreq.*floor(ExtFreq./SampFreq+0.5));

116



APPENDIX F. MATLAB: MINF0 TARGETP

function [fL, fU, k, Tn] = Minf0_Targetp(p,h,kM,e)

% [fL, fU, k, Tn] = Minf0_Targetp(p,h,kM,e)

% Find the minimum frequency range for f0 to generate a set of excitation

% frequencies, g, that approximate a target distribution, p, within a

% maximum error, e..

% fL = Minimum frequency for f0

% fH = Maximum frequency for f0

% k = vector of integer divisors to define g, where g = f0./(2k)

% Tn = normalized signal period. T = Tn/f0

% p = vector of target excitation frequencies

% h = vector of harmonics

% kM = solution to assume for k(M)

% e = maximum allowed error between frequencies in p and g

% create variable placeholders

p = sort(p);

M = length(p);

k = zeros(1,M);

k(M) = kM;

m = M;

pM = max(p);

% define the vector of unsolved frequencies

u = 1:1:(M-1);

% find fL and fU set by pM, kM, and e

fL = 2*kM*p(M)*(1-e);

fU = 2*kM*p(M)*(1+e);

% define the search domain
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p1Min = p(1).*(1-e);

k1Max = floor(fU./(2.*p1Min));

Z = kM:k1Max;

% define the normalized signal period

Tn = 2.*kM;

while(1)

% update Z based on the last solution k(m)

if isempty(h)

Z = setdiff(Z,k(m));

else

alpha = k(m)./h;

alpha = intersect(Z,alpha);

beta = [];

for zi=1:1:length(Z)

for hi=1:1:length(h)

if Z(zi)./h(hi) == k(m)

beta = cat(2,Z(zi), beta);

end

end

end

Z = setdiff(Z,k(m));

Z = setdiff(Z,alpha);

Z = setdiff(Z,beta);

end

% build the search space S for each unsolved frequency defined in u

clear S

for i=1:1:length(u)

S{u(i)} = ceil(fL/(2*p(u(i))*(1+e))):floor(fU/(2*p(u(i))*(1-e)));
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% remove existing solutions and harmonics from S

S{u(i)} = intersect(S{u(i)},Z);

% stop if a search space is empty

if isempty(S{u(i)})

k = [];

return;

end

end

% find the minimum search space size

Ssize = zeros(1,length(u));

for i=1:1:length(u)

Ssize(i) = length(S{u(i)});

end

Smin = min(Ssize);

q = [];

b = [];

for i=1:1:length(u)

if Ssize(i) == Smin

q = cat(2,q,u(i));

b = cat(2,b,S{u(i)});

end

end

% choose km that minimizes TnPrime

TnPrime = [];

for i=1:1:length(b)

TnPrime = cat(2,TnPrime,lcm(Tn,2*b(i)));

end

[TnPrimeMin, TnPrimeMinIndex] = min(TnPrime);

km = b(TnPrimeMinIndex);
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% find m

for i=1:1:length(q)

if isempty(intersect(km,S{q(i)})) == 0

m = q(i);

break;

end

end

% update k

k(m) = km;

% find fL and fU set by pm, km, and e

fLPrime = 2*k(m)*p(m)*(1-e);

fUPrime = 2*k(m)*p(m)*(1+e);

if fLPrime < fL

fLPrime = fL;

end

if fUPrime > fU

fUPrime = fU;

end

fU = fUPrime;

fL = fLPrime;

Tn = lcm(Tn,2*k(m));

% update u

u = setdiff(u,m);

% stop if all the tones have been found

if isempty(u)

return;

end

end
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