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ABSTRACT

In this thesis, a unique design of a self-adapting conformal phased-array antenna system for wireless

communications is presented. The antenna system is comprised of a sensor circuit and one 1x4 printed

microstrip patch antenna array on a flexible substrate with a resonant frequency of 2.47 GHz. When

the performance of the antenna starts to degrade under non-planar orientation, the sensor circuitry

compensates the phase of each array element of the antenna. The proposed analytical method for phase

compensation has been first verified by designing an RF test platform that was used to calibrate the sensor

circuitry by observing the behavior of the antenna array system on surfaces with different curvatures. In

particular, this phased array antenna system was designed to be used on the surface of a spacesuit or

any other flexible prototypege. This work was supported in part by the Defense Miroelectronics Activity

(DMEA), NASA ND EPSCoR and DARPA/MTO.
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CHAPTER 1. INTRODUCTION

1.1. History

In the year of 1873, famous physicist James Clerk Maxwell mathematically described the nature

of electromagnetic waves. In his book, “A Treaties on Electricity and Magnetism”, he proposed four sets

of partial differential equations that explain the quantitative and qualitative analysis on electromagnetic

waves. These equations are known as Maxwells Equations and have been considered to be one of the

greatest discoveries of 19th century in the world of mathematical physics. A few years later, another

famous physicist Heinrich Hertz experimentally demonstrated the existence of electromagnetic waves

in free space. However, it took another twenty-two years to apply the concept of Maxwells equations

in practice when two scientists from two different countries, Sir Jagadish Chandra Bose from India

and Guglielmo Marconi from Italy separately demonstrated the engineering behind radio waves and the

usefulness of wireless communications through radio waves in the year of 1895. Afterwards, the wireless

communications soon gained popularity due to two World Wars. Today wireless communications is being

exploited from clinical practice to extraterrestrial communications. Space science is one of the domains

that experienced a dramatic advancement after the invention of powerful antennas. Antenna is one of

the basic building blocks in the world of wireless technology. The fields of antenna and wave propagation

has drawn the attention of researchers for last thirty years resulting in many inventions of new types of

antennas with superior performance and versatile features. Conformal antennas is one of these new types

of antennas. A conformal antenna can be described as an antenna that conforms to a prescribed shape.

The shape can be some part of an airplane, a spacesuit, a high-speed train or other types of physical

entities. The purpose will be to build antenna systems in such a way that the antenna integration makes

the antennas less disturbing yet maintaining the optimum performance [1]. Usually, a conformal antenna

is cylindrical, spherical, or some other shape, with the radiating elements mounted on or integrated into

the smoothly curved surface.

The IEEE Standard Definition of Terms for Antennas (IEEE Std 145-1993) gives the following

definition:

2.74 conformal antenna [conformal array]. An antenna [an array] that conforms to a surface

whose shape is determined by considerations other than electromagnetic; for example, aerodynamic or

hydrodynamic.

1



1.2. Background

Antennas are used to transmit and receive electromagnetic signals in wireless communication

systems. From the view of a receiving antenna, the quality of the antenna depends upon how well it can

receive the faintest electromagnetic waves. In general, antennas with very large aperture can detect faint

signals much better than antennas with a comparatively smaller aperture. However, a larger aperture

demands bulky systems and complex construction engineering which sometime exceeds the feasibility for

physical implementation of the antenna. One way to overcome this challenge is to implement antenna

array concepts where a number of identical antennas with very small apertures can be cascaded in different

manners based on their functionality. The output of each small antenna is then combined to enhance the

total received signal that is equivalent to the signal received with a single antenna with a large aperture.

Mathematically, an antenna array can offer an aperture that exceeds the aperture of a single antenna and

thus it can be capable of detecting extremely faint signals from far away sources [2]. The compromised

factor here is the complexity. Since the electromagnetic signals received by each antenna array element

differs from the signals received by other array elements in terms of amplitude and phase, they must be

combined coherently to achieve the desired output. Though it is more complex to set up an antenna

array compared to a single antenna, weighting the signals before combining them enables enhanced

performance features such as interference rejection and beam steering without physically moving the

aperture. The trade-off for these attractive features is increased complexity and cost.

1.3. Motivation for Work

Now-a-days wireless systems are exploited in the domain of space communication, harvesting

energy, tracking inventory and streaming entertainment to billions of people around the globe. The

microstrip antenna shown in Fig. 1 is one of the most popular antennas used currently in wireless

communications because of its simple geometry, ease of design, compactness, durability and low

manufacturing cost. A more detail geometry related to the designing of a printed microstrip antenna

is illustrated in Fig. 2. This type of antenna consists of a single conducting plane, usually made with

copper, printed on the top layer of a dielectric material. A ground plane, also made with copper, is then

printed on the bottom layer of the dielectric substrate. The radiation of the antenna can be achieved

by generating an electric field between the two conductor layers of the antenna by applying a voltage

between the two conductors on the top and the bottom of the substrate. Widespread use of printed

microstrip antennas has drawn a lot of attention in the area of research that includes but is not limited to,

ultra wide-band antennas, reconfigurable antennas, metamaterials-based antennas and millimeter-wave

integrated phased arrays [3]. However, most of the geometries of the aforesaid systems are limited to
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Figure 1. Top-view of a rectangular microstrip antenna.

Figure 2. A printed single microstrip antenna.

planar surfaces. Therefore if a printed antenna is required to be operated on a conformal surface, then

the performance may be less than desirable. One solution to design a printed microstrip antenna array on

a non-planar surface is to print a planar conformal array antenna on a semi-flexible or flexible substrate

capable of being mounted on a curved surface. Though several initial designs of conformal antennas have

been previously proposed, most of them are limited to operation only on a particular non-planar surface

with a fixed and known curvature. Therefore if an antenna system can be developed to be operated

under such conditions where the change of the curvature of the surface of the antenna array is acceptable

during its operation, then the system will offer more flexibility in terms of using it on a non-planar surface

with different and unknown curvatures. Thus, implementation of the conformal array concepts of printed

microstrip antennas on a flexible substrate can be a solution to applications that require the antenna to

be used on curved surfaces that change with time.
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1.4. Proposed Work

Figure 3. High level block diagram of the proposed antenna system.

One of the drawbacks of an antenna array is the lack of ability to recover the original radiation

pattern when it undergoes some sort of change in its physical structure. As illustrated in Figures 4(a) and

4(b), an antenna array has the capability of changing the direction of radiation by controlling the individual

phases of the voltages being supplied to each microstrip antenna array, known as beam steering. To do

that, implementation of flexible sensor circuitry in a planar conformal antenna array is being proposed

in this thesis. In particular, the flexible sensor circuit will be used with suitable phase compensation

circuitry to dynamically determine the changes in the curvature of the antenna surface and the circuit

then modifies necessary input signals to each array element through a feedback path. The block diagram

of the proposed setup has been shown in Fig. 3.
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(a) A printed microstrip antenna array.

(b) A printed microstrip array on a curved surface illustrating a change in radiation direction as a result
of curvature and radiation correction using phase compensation circuitry.

Figure 4. A printed microstrip array on planar and curved surfaces with direction of maximum radiation
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CHAPTER 2. PLANAR CONFORMAL ARRAY ANTENNA

2.1. Introduction

This chapter presents the details involved with the conformal array antenna system. In general,

conformality means preserving the correct angles within small areas, though distorting distances.

Specifically for any conformal antenna, the antenna system is deployed to work on any non-planar surface

in such a way that the performance of the antenna remains unchanged with respect to the performance

of the antenna that has been placed on a flat surface. Particularly, the background on conformal array

antenna and scanning techniques have been discussed in this chapter for a better understanding of the

theory of conformal array antennas.

2.2. Concept of Antenna Array

An antenna array is a set of N antenna elements. Practically, the value of N has a range from 2

to several thousands, as in the AN/FPS-85 Phased Array Radar Facility operated by U. S. Air Force [4].

The reason why the array antenna is more popular than its equivalent single element prototype is that

the array introduces the ability to scan not only the frequency band but also the coverage area without

increase in size of the total system. Based on different types of spacial distributions of the elements and

application of signal processing units in the array, an antenna array can offer superior performance to an

individual element in terms of bandwidth and directivity [5].

The fields radiated from a linear array are a superposition of the fields radiated by each element

in the presence of the other elements. Each element has an excitation parameter, which is current for a

dipole, voltage for a slot and mode-voltage for a multiple-mode element. The excitation of each element

will be a complex number, with amplitude and phase. This discrete distribution is called an aperture

distribution where the array is the aperture.

2.3. Phased Array Antenna

One popular way to achieve electronic scanning in an antenna arrays is to feed array elements by

means of phase shifters in such a way that the phase variations along the array follow an arithmetical

progression whose common difference is the phase shift between two adjacent elements. Thus the array

generates a plane wave whose direction depends on this phase difference [7].

2.4. Functional Blocks of Phased Array Antenna

Any phased array antenna in general, apart from the array elements, consists of two functional

blocks known as feed network and phase scanning circuitry. Each of these blocks plays very important

roles for the correct functionality of the array and are described here in detail.
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2.4.1. Feed Network

A feed network distributes energy to the elements of the array by means of phase shifters according

to a desired amplitude function. Corporate binary feed, as shown in Fig. 5 is common in arrays of dipoles,

open-end guides and patches. Such feed circuits are commonly binary but can be modified to design 3-way

or 5-way dividers, depending upon the number of array elements. The critical component in the corporate

feed is the power divider that can be realized by bifurcated T waveguide or coaxial T junctions [6]. One

challenge in design of this type of feed network is that each of the elements is required to be impedance

matched and isolated or the reflected signal from each element results in a parasitic radiation pattern

that will be superimposed on the required pattern. This condition plays an important role in the design

of feed networks, where it is often necessary to use a directional couplar or a matched transmission line.

Figure 5. Corporate feed structure for an array system.

2.4.2. Phase Scanning Circuitry

One primary goal of developing phased-array antennas is to achieve beam steering electronically

and thus to eliminate the mechanical movement of an antenna system. Electronic beam steering in an

array antenna can be realized by time delay scanning, frequency scanning or phase scanning techniques.

However, ease of implementation, cheaper digital control circuits, fast response time and high sensitivity

make the phase scanning method the most popular. For proper functionality, a clever choice for a phase

shifter is a switched line or ferrite phase shifter with analog or digital control. A good choice for the

placement of phase shifters along the feed line is also a very important factor. The orientation may be

in series or in parallel, as shown in Fig. 6. Although the series phasers have the advantage of sharing

equal power, the disadvantage is the phase compensation circuit because the basic interelement phase

shift must be multiplied by the number of elements and the attenuations of the phasers add up along
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Figure 6. Parallel and Series Feeds.

the feed line. On the contrary, for parallel combination, although each phase shifter does not share the

same power, the major advantage is all phasers are independent of each other and thus modeling of the

control circuit becomes simpler. The mathematical approach to the phase compensation calculation will

be discussed in the next section.

2.5. Defining Coordinate System

For notation purposes, henceforth it will be assumed that any linear planar array will be lying on

the x-y plane with the z-axis pointing broadside to the array unless otherwise mentioned, as shown in

Fig. 7(b). One objective of this project is to build an array system for a receiver, therefore any antenna

system will be considered as a receiver module with respect to a point source acting as a trasmitter, as

shown in Fig. 7(a). The rectangular coordinate system has been used throughout the discussion with

proper notation. To define the angular separation of the array element from an axis, two parameters

have been defined, denoted as the elevation angle or scan angle (θ) and the azimuthal angle (φ). The
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scan angle has been defined as the angular separation of the elements from the broadside direction or

specifically, the z axis. The azimuthal angle has been defined as the angle between the elements and x

axis, as shown in Fig. 7(b). Now considering the Cartesian coordinate system, a new parameter has been

defined here,

Ψn = k(xnu+ ynv) (2.1)

where

k =
2π

λ
(2.2)

(xn, yn) is the location of the element n in the x-y plane, k is the wave number and

u = sin θ cosφ and v = sin θ sinφ (2.3)

2.6. Controlling Parameters of An Array Antenna System

Two important properties of any individual antenna are return loss and radiation pattern. Return

loss is the measurement of impedance mismatch along the path of propagation of the signal. Often

termed as (S11), this parameter determines the reflection coefficient (Γ) of the system. The radiation

pattern or the field pattern describes the angular dependency of the strength of the radiowaves received

by the antenna, usually expressed in dB (and sometimes in dBi when compared with the field pattern of

an isotropic radiator). But when multiple antennas are used to form an array, as shown in Fig. 8, there

are several factors that determine the behavior of the antenna array [5], and are discussed below.

2.6.1. Geometrical orientation of the overall array

The geometrical orientation of the array may be linear, planar, circular, spherical etc. in nature.

When the array elements lie along a straight line, it will be denoted as a linear array and when these are

located on a plane, the array will be denoted as a planar array. Depending upon the spatial distribution

of the array elements, a planar array may be designed as a circular or rectangular array. However, for

each of the cases, the effective field distribution and mutual coupling will be different from one another.

2.6.2. Relative separation between the elements

The relative spacing between the elements of the array determines the position of the peak and

the null of the field pattern, and hence, careful choices need to be taken during the design of an array.

2.6.3. Excitation amplitude of the individual element

Amplitudes of the current on the elements of an array can be varied to shape the beam and control

the level of the sidelobes of the array. This phenomenon is known as amplitude tapering and the arrays

of these types are termed as non-uniformly excited arrays [14].
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(a) Aray system with a point source transmitter.

(b) Distribution of elements of a 2X4 patch antenna array on the x-y plane.

Figure 7. Defining coordinate system of an antenna array system with a point
source acting as the transmitter.
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Figure 8. A typical linear array system with variable phase shifter (shown
as circular blocks) and attenuator (shown as variable resistor block) segments
designed to be operated as a receiver module.

2.6.4. Excitation phase of the individual element

The relative phases of the currents on each individual element of an array can be controlled to

reinforce the field pattern of the array in a particular direction. These types of arrays are known as phased

array antennas.

2.6.5. Relative pattern of the individual element

The overall response of the array is the superposition (sum) of all individual elements of the arrays

excited separately and thus can be mathematically determined by a Fourier transformation. To avoid

complexity in terms of design and calculation, generally arrays are considered to be made of identical

elements.

2.7. Array Factor

An important factor related to the array antenna is the Array Factor (AF) which is unique for

each array and depends on various parameters such as the number of elements of the array and their

geometrical arrangements, relative magnitude, phase shift and interelement spacing. If Es is the response

of a single element of a linear array and if the AF is the array factor of that array, then the total response
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Etotal at the far-field of the array can be expressed as [5]:

|Etotal| = [Es][AF ] (2.4)

provided all the elements of the array are identical in nature. This concept can be used even if the actual

elements are not isotropic sources. Then the total field can be determined by multiplying the array factor

of the array made of isotropic sources and the field due to a single isotropic element. This concept is

known as pattern multiplication and can be a very powerful tool for practical cases where elements of an

array are not isotropic sources [5]. For a system where an isotropic point source is the receiver, the field

of the array turns out to be proportional to the weighted sum of the received signal from each element

in the array. The far-field radiation pattern is the discrete Fourier transform of the array excitation [5].

The array notation used here is θ for the angle from broadside, θ0 being the scan angle, d for the element

spacing and λ for corresponding wavelength. Mathematically [6],

|E(xf , yf , zf )| ∝
N∑
n=1

wn
ejkRn

Rn
(2.5)

where Rn is the distance from the element n to the point (xf , yf , zf ) of a rectangular coordinate system.

The phase of the received signals at the element will be positive as the signal is travelling toward the

element. When the array is very far from the point source, then all the Rn in the denominator of equation

(2.5) are approximately the same. Consequently, the resulting field is the proportional to the sum of the

weighted phase vectors and can be expressed as [6],

|E(xf , yf , zf )| '
N∑
n=1

wne
jkRn (2.6)

Generally, arrays are either planar or linear. To make calculations easy, henceforth it will be assumed

that the array elements lie along the x, y or z axes under normal condition. The phase reference or the

point of zero phase can be regarded to be any element of the array. However, the origin of the coordinate

system should be considered to be placed at the phase center to reduce calculations complexity. An

incident plane wave arrives at all of the elements at the same time when the incedent field is normal or

broadside to the array. When the plane wave is off-normal, then the plane arrives at each element at a

different time. Thus, the phase difference between the signals received by the elements is accounted for

an appropriate phase delay before summing the signals to get the array output [6]. For the calculation of
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Figure 9. Spherical Coordinate System.

phase delay and array factor, Spherical coordinate system has been used here. Conversion from Spherical

coordinate system to its equivalent Cartesian coordinate system has been given in equation (2.7).

Let us consider that an element is lying at (R, θ, φ) in a Spherical coordinate system as shown in

Fig. 9. Now for any incident wave vector located on the x− y plane, the phase will be a function of φ

and for any incident wave vector located on the y − z plane, the phase will be a function of θ where

x = R sin θ cosφ

y = R sin θ sinφ

z = R cos θ (2.7)

R =
√
x2 + y2 + z2

R = tan−1
(y
x

)
and

R = cos−1

(
z√

x2 + y2 + z2

)
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If wn is the complex weight factor for element n, then the array factor AF due to isotropic point sources

is a weighted sum of the signals received by the elements and can be expressed as,

AF =

N∑
n=1

wne
jΨn (2.8)

where

wn = ane
jδn (2.9)

(xn, yn, zn) is the location of element

(θ, φ) is the direction in space

and

Ψn =


kxnu = kxn cosφ or kxn sin θ, along x axis;

kynu = kyn sinφ or kyn sin θ, along y axis;

kzn cos θ, along z axis.

(2.10)

2.8. Phase Steering

By controlling the progressive phase difference between each individual elements of an array, the

field pattern of the array can be reinforced in certain directions to form a scanning array. In Fig. 10,

the change of direction of maximum radiation of an array has been shown graphically. Let us assume,

the maximum radiation of the array is required to be in the direction u = us. Now, the direction of

maximum radiation refers to the peak of the main beam of the field pattern of the array. But, at the

peak of the main beam, the array factor has the maximum value of:

AFmax =

N∑
n=1

wn (2.11)

Therefore, without moving the antenna physically this condition can be achieved by adding a constant

phase shift δn to the parameter Ψn. Now mathematically,

Ψn = kxnu+ δn (2.12)

But according to equation (2.11), Ψn = 0 ◦ for the desired steering direction, earlier defined by u = us.
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Figure 10. Beam of an 4-element array steered to 45 ◦.

Therefore,

Ψn = (kxnu+ δn)|u=us

⇒ δn = −kxnus (2.13)

This is the basic principle of electronic scanning for phased array operation. Practically, continuous

scanning can be realized using commercially available phase shifters which are available as either ferrite-

based or diode phase shifters. However, to achieve a fixed phase difference, one can also apply the

theory of path delay by introducing equivalent length of signal trace on the path of signal propagation

to individual elements in the array.

For a complete discussion on this issue, let us consider a phase steering example of a phased array

system consisting of 4 elements along x-axis with element spacing of 0.5λ. Now steering the beam to

45 ◦, as shown in Fig. 10, requires a phase at element n of value δn where δn can be computed using

equation (2.13) and can be expressed as,

δn = −cos(45 ◦)× 2π

λ
× 0.5λ× (n− 1)

⇒ δn = −0.707π(n− 1) radians (2.14)
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The above mathematical model of the theory of phase steering can thus be validated for any array antenna

system. This validation, in particular, leads to the motivation of designing a conformal array antenna. In

the case of a conformal array antenna, the surface of the substrate can be changed between planar and

non-planar orientations during the time of operation. Now, when the surface remains planar, the system

behaves normally. However, as the surface changes to a non-planar orientation, not only the distances

between the elements of the array change but also the direction of maximum radiation differs for each

individual element. These changes lead to an overall distorted field pattern of the array. By using the

concept of phase steering, the direction of maximum radiation of the array can then be controlled by

introducing phase correction. Moreover equation (2.13) suggests that δn also depends on the geometrical

placement of the element n, given by xn from the origin in the Cartesian coordinate system.

2.9. Realization of Phased Array Antenna

Let us consider a 1x4 linear microstrip patch antenna array in the x−y plane, as shown in Fig. 11.

The array, as shown, consists of four identical microstrip rectangular patches. Therefore if the amplitude

and phase of excitation current on each individual element of the array are the same, there will be no

change in the behavior of the array. An angle φs has been defined here as the angle between the direction

of maximum radiation and the x-axis. It is assumed that the direction of maximum radiation is broadside

to the array. This angle φs is then equal to π/2 when the array elements are considered to be placed on

the x− y plane.

Now the main objective of this work is to rescue the radiation pattern of the conformal array during

its nonplanar activity. Since broadside radiation is desired, it will be expected that the effective driving

current on each individual element has to be kept equal in terms of amplitude and phase. Then only

the fields radiated from each element will arrive in the same manner to any plane along the broadside

direction. The two dimensional orientation of the array in both planar and nonplanar stages have been

shown in Fig. 12. A circular nonplanar orientation can also be designed which will be discussed later.

First we will consider correction of phase of a conformal antenna on a wedge shaped surface as shown

in Fig. 12. The grey dotted line in Fig. 12 defines the position of the array in a planar orientation and

the solid line defines the position of the array after bending into a non-planar orientation. The angle φs,

described earlier is shown here. A new parameter θw has been introduced in this section to define the

angular separation between the two planes of the array after bending. In practice, this situation can be

realized by placing the array on a wedge with angle θw made up of any non-conducting material such as

wood or Styrofoam. The antenna elements situated on the positive x−axis are denoted as A+n and the

elements situated on the negative x−axis are denoted as A−n where n is the number of elements of the
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Figure 11. 1x4 Microstrip patch antenna array.
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Figure 12. Phase compensation of a linear array on a single curved surface shaped as a wedge.
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array with respect to the center of the array, located at the origin. The field from each element A±n has

been denoted as E±n. If (xn, zn) is the location of the nth element of the linear conformal array in Fig.

12, then, for any non-planar orientation of the array, an x− and z−translation will be incurred from the

original flat position for each array element. Now, when the fields from A±2 arrive at the new reference

plane, as shown in Fig. 12., they will lag the radiated fields from element A±1 due to the observation

of negative phase along the propagation of the free space wave. Therefore the phases of current at A±2

should be positive enough to compensate for the phase delay introduced by that free space propagation

to ensure that the fields arrive at the new reference plane with the same phase for broadside radiation.

Clearly, this phase delay depends upon the angle θw. The amount of free-space phase introduced by the

propagation of the wave from elements A±2 to the new reference plane can be computed by using the

equation below [2],

δn = −k(|xn| cosφs + |zn| sinφs) (2.15)

Now as mentioned earlier, the primary concern of this work is to maintain the radiation pattern in the

broadside direction. So it can be inferred that irrespective of any value for θw, the value of the scan

angle φs will be considered to be π/2. This then simplifies equation (2.15) to

δn = −k|zn| (2.16)

Next, the required phase compensation has been calculated using θw. Consider the case when the

1 × 4 array is attached to the conformal surface shown in Fig. 12. The phase of the current at each

element will be different with respective to each other during receiving any signal from a transmitter at

far-field. This will eventually lead to a distorted radiation pattern of the array. This can be described

as follows. Under flat conditions when the array is acting as a planar array, the electric fields radiated

from each antenna leave the original reference plane with the same phase to create a broadside radiation

pattern. However, when the array is placed on a wedge shaped surface, situated at the origin, the

geometrical orientation of the elements changes. As Fig. 12 suggests, the position of elements A+1

and A−1 now belong to a new plane, shown as the black dotted line and the position of elements A+2

and A−2 belong to another new plane. So now, when any signal from the far-field will be received by

the array, the elements of the array will no longer receive the signals coherently. Mathematically, the

predefined angle φs will be changed therefore for the nonplanar application of the array as the array

elements will be then excited with signals with different attributes. Clearly, the signals received by A±2
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Figure 13. Phase compensation of a linear array on a single curved surface shaped as a cylinder.

have to travel a path distance more than the signals received by A±1 where this path distance is the

linear separation between those two planes where the elements A±1 and A±2 are lying. From Fig. 12,

this path distance can be calculated in terms of θw as L cos(θw/2) where L is the element spacing in

terms of wavelengths. Now as the path delay of an unit length affects the phase delay of any signal by

its wave number, therefore for the above scenario, the resulting phase delay will be kL cos(θw/2). For

the discussion, let θb be the bend angle of the array where it can be expressed as a function of angle θw,

given by,

θb =
(π − θw)

2
(2.17)

Then the phase delay between the signals received by the elements A±1 and A±2 can be expressed in

terms of θb as kL sin θb. For the plane where the elements A±n are located, the phase delay between

the signals received by A±1 and A±n will be therefore kL|n| sin θb. As the phase has being corrected

here towards the source, therefore it will be additive in nature [2]. The expression in equation (2.18) is

the phase difference between the adjacent antenna elements required to correct the radiation pattern of

the array placed on a wedge with a bend angle θb. The superscript w has been used to denote the case

of wedge-shaped surface. It has been also shown in [2] that for bend angles large enough, two different

main lobes from the antenna begin to appear in directions that are normal to the flat surfaces on each

side of the wedge.

∆φwn = +kL|n| sin θb (2.18)
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Apart from wedge shaped surface, a conformal array can also be realized on a singly curved surface

such as a cylinder. Fig. 13 describes the position of the antenna elements placed on such a cylinder of

radius r with its axis aligned with z−axis. Then, the coordinate of the nth element of the array can be

denoted as (r, φn). Now by applying the same phase correction concept for the array placed on a wedge,

the amount of required phase compensation can be computed as

∆φcn = +kr| sin(φn)− sin(φn−1)| (2.19)

Again, the expression in (2.19) assumes a scan angle of φs = π/2.
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CHAPTER 3. PHASED ARRAY ANTENNA TEST PLATFORM

3.1. Introduction

This chapter presents the details involved with the phased array antenna test platform.

3.2. Motivation for Work

The function of an antenna array depends on two individual parameters in terms of the operating

signal, amplitude and phase. By controlling these two parameters on each individual element of the array,

different types of spatial distributions of the radiation pattern and beam scanning methodology can be

achieved. In particular, controlling the phase of the signal on each element gives the characteristics

of beam steering to reconstruct the radiation pattern for optimum functionality. These attributes of

the antenna array can be very useful for designing a conformal type array antenna. When the surface

of the conformal array changes its shape, the spatial orientation of the antenna changes resulting in a

deformation of the radiation pattern of the array. To recover the desired radiation pattern in a particular

direction, the amplitude and phase of the signal received by each individual element need to be selectively

controlled. One way to do this is to process the signals received by each individual element prior to being

analyzed. The processing method of received signals can be done by exploiting small signal processing

units or by designing RF circuitry consisting of voltage variable attenuators and voltage controlled phase

shifters. Although these components are available commercially, the difficulty here will be the complexity

due to the integration of all these components in a proper way to control the behavior of the integrated

RF circuit in the desired manner.

3.3. Description of Work

The antenna array under test along with the designed RF circuit will be denoted as the phased

array antenna test platform in this discussion. The test platform has been designed to be compatible

with any conformal antenna array and consists of four individual elements working at 2.45 GHz. This

work will validate the phase compensation expression evaluated in the previous chapter for the practical

implementation of the phase compensation circuitry for the conformal array antenna. The test platform

has been designed to work as a receiver and consists of several blocks, as shown in Fig. 14. The schematic

of the RF test platform is depicted in Fig. 15 where the symbols G, dB, ∆Φ and Σ refer to amplifier,

attenuator, phase shifter and power combiner, respectively. The details for each block are discussed on

following sections.
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Figure 14. Block diagram of the proposed system.
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Figure 15. Schematic of the antenna test platform.
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Figure 16. Four individual microstrip patch antennas on a non-conducting surface.

3.3.1. Four element Antenna Array

Four identical individual microstrip patch antennas working at 2.45 GHz have been designed

and printed as a part of the test platform. These four antennas can be realized as an array. These

patches, as shown in Fig. 17(b), were manufactured on a 60 mil thick Rogers RT/duroid 6002 substrate

(εr = 2.94, tan δ = 0.0012, where εr is the relative permittivity and tan δ is the lost tangent of the

substrate) and placed on a non-conducting Styrofoam surface with λ/2 spacing, as shown in Fig. 16.

These patches, as shown in Fig. 18 can be attached to any wedge of a certain angle or to a circular

surface of any radius.

3.3.2. Coaxial Cable to SMA Connectors

Four individual patch antennas have been connected to the RF circuit board by four identical

coaxial to SMA (SubMiniature version A) connectors. Being equal in length and identical in nature, all

of these connectors offer equal path delay of the signal to the patches resulting in a zero path delay of

the signal between four patches with respect to the each other.
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(a) (b)

Figure 17. a) Printed individual microstrip patch antenna with detail geometry (g = 2.0 mm, h =
35.6 mm, t = 5.5 mm, w = 43.6 mm) and b) the fabricated prototype

(a) Arrays made of individual patches on
wedge-shaped surface.

(b) Arrays made of individual patches on
singly curved circular shaped surface.

Figure 18. Conformal array made of individual microstrip patches.
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Power splitter

Figure 19. Picture of the four port receiver.

Figure 20. Voltage Controlled Phase Shifter under test.

3.3.3. Four-Port Receiver RF Circuit Board

The four-port receiver RF circuit board is a MISO (Multiple Input Single Output) system with

four input ports and one output port, as shown in Fig. 19. This board was developed on a 60-mil thick

Rogers RT/duroid 6002 substrate (εr = 2.94, tan δ = 0.0012) to be operated at 2.45 GHz and consists

of several individual blocks such as power amplifier, voltage-controlled phase shifter, voltage variable

attenuator, amplifier and microstrip transmission line.

The voltage-controlled phase shifters used in the board are manufactured by Hittite Microwave

Corporation (part number: HMC928LP5E) [42]. These analog phase shifters can offer a range of 0 ◦ to

450 ◦ normalized phase shift for a 0 V-13 V control voltage. The pictures in Fig. 20 were taken during

the S-parameter measurements of an individual phase shifter at 2.45 GHz. The phase shifter is being

tested on the same substrate as the RF board. As Fig. 21 suggests, the measured reflection coefficient,

S11, has a 10-dB cutoff at 2.45 GHz. The measured magnitude and normalized phase of the tranmission
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Figure 21. S11 of the phase shifter at 2.45 GHz.

Figure 22. Magnitude of S21 of the phase shifter at 2.45 GHz.
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Figure 23. Normalized Phase of S21 of the phase shifter at 2.45 GHz.

Figure 24. Voltage Variable Attenuator under test.

coefficients S21 are shown in Figures 22 and 23, respectively. For all of the cases, the control voltage

has been varied from 0 V to 5 V, as plotted along the x−axis because of the fact that the normalized

phase offered by the phase shifter for such span of control voltages would be enough for the scope of this

current work. The four individual phase shifters controlled by four different control voltages have been

implemented to control the phases of the signals received from each individual four patches separately.

These control voltages can be operated through the LabVIEW graphical user interface (GUI) (which will

be discussed later).
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Figure 25. |S11| of the Attenuator at 2.45 GHz.

Figure 26. Magnitude of S21 of the Attenuator at 2.45 GHz.
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Figure 27. Phase of S21 of the Attenuator at 2.45 GHz.

Figure 28. Low Noise Amplifier under test.

The voltage variable attenuators used in the RF board are manufactured by Mini-Circuits (part

number: RVA - 3000+) [41]. These attenuators can offer attenuation in a range of 4 - 45 dB for

input control voltages of 18 V - 1 V. The pictures in Fig. 24 have been taken during the S-parameter

measurements of an individual attenuator at 2.45 GHz. The results in Fig. 25 show that the measured

reflection coefficient S11 has a good 10 dB cutoff at 2.45 GHz. The measured magnitude and phase of

the tranmission coefficients S21 are also shown in Figures 26 and 27, respectively. These attenuators are

connected in series with the phase shifters through a microstrip transmission line for achieving amplitude

variation of the signals received from the patch antennas and can be controlled by the LabVIEW GUI.
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Figure 29. |S11| in dB of the Amplifier from 2.4 to 2.6 GHz.

Figure 30. Phase of S21 of the Amplifier from 2.4 to 2.6 GHz.
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The low noise amplifiers (LNA) used in the RF board are manufactured by Mini Circuits (part

number: PMA 545+) [41]. These amplifiers have been used to enhance the level of the received signals

from the patches to compensate for the insertion loss of the phase shifters and attenuators. A multiline

inductor manufactured by (part number: MCL A049 ADCH - 80A) Sunlord [47] has been integrated

along with the LNA for achieving a stable amplification. The pictures in Fig. 28 were taken during the

S-parameter measurements of an individual amplifier at 2.45 GHz. The results in Figures 29 and 30 show

the measured reflection coefficient S11 and magnitude of transmission coefficients for a span from 2.4

GHz to 2.6 GHz, respectively. The limitation of the amplifier can be seen from the step-like response with

respect to the network analyzer. However this limitation can be ignored for this project as the responses

at 2.45 GHz will be the points of interest .

The signals were combined by the power combiner (part number: WP4R+) manufactured by

Mini-Circuits [41]. The combined signal from the power combiner was then sent to the network analyzer

for analyzing the overall response of the system as a single unit. The pictures in Fig. 31 have been taken

during the S-parameter measurements at 2.45 GHz. Figures 32 and 33 show the measured reflection

coefficient S11 of the summing port with ports 1 to 4 terminated with 50Ω and port 1 with the other

ports terminated with 50Ω from 2.4 GHz to 2.6 GHz, respectively. The phase shifts between the input

ports and the output port have been measured to be ∆Φ1C = −161 ◦, ∆Φ2C = −170 ◦, ∆Φ3C = −171 ◦

and ∆Φ4C = −152 ◦.

3.3.4. DAC Controller Circuit

The Texas Instruments DAC 7718 [48] is a 12 bit, octal, 64-pin, low power digital to analog

converter (DAC) that takes digital serial data as input and generates analog outputs in eight different

channels ranged from either ±2 V to ±16.5 V in bipolar operation or 0 V to +33 V in unipolar operation.

The state of the operation of the chip depends upon the analog power supply, based on which it acts

in bipolar state while connected to a ±15.5-V supply or in unipolar state while connected to a +30.5-V

power supply. However, as the RF test platform in this case is designed to be worked only in the range

from 0 V to 15 V, a +15-V power supply (V1) has been used as the analog power source of the chip

and all the necessary parameters of the DAC have been set to the designated values as provided in the

datasheet to be operated in the unipolar state. The connection setup of the entire system can be seen

in Fig. 34. From the perspective of digital operation, the DAC accepts inputs in the range from 0.3 Volt

to 0.8 Volt as lowlevel input and 3.8 Volt to 5.3 Volt as highlevel input. +5 Volt digital power supply for

the DAC system has been achieved by designing a voltage limiter circuitry that takes +15 Volt analog

power supply as the input and produces a constant +5 Volt at the output. National Semiconductor
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Figure 31. Power Combiner under test.

Figure 32. |S11| of the Combiner at Combiner Side from 2.4 to 2.6 GHz.
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Figure 33. |S11| of the Combiner at one of the branch from 2.4 to 2.6 GHz.

LM78M05 [49], which is a 3−terminal positive voltage regulator offers constant +5 Volt output with

the input ranges from +8 Volt to +18 Volt, has been used for this operation. It also offers over voltage

protection of the device. As the analog input source is allowed to be a maximum of +15 Volt, therefore

the digital input can only have a +5 Volt maximum as the digital source of the chip. Since both the

analog source and digital source share a common ground reference, therefore in the RF system analog

grounds (AGND) and digital grounds (DGND) refer to the same common ground. The DAC allows for

programmable gains of Vref × 4 or Vref × 6 at the outputs where Vref refers to the applied reference

voltages that can range from 0 Volt to +5 Volt. The eight analog output channels are divided into two

groups, Group A and Group B. Two different reference voltages can be fed separately to them. Thus

two different ranges of voltages can be achieved in eight channels, of which first four channels (Group

A) yield outputs of one range and last four channels (Group B) yield outputs of another range. In the

RF system, Group A channels are connected to the control pins of the analog phase shifters and have to

be varied in the range from 0 Volt to +10.5 V, and Group B channels are connected to the control pins

of the voltage attenuators and have to be varied in the range from 0 V to +15 V. However, to avoid

the circuit complexity and to introduce more application flexibility, the ranges of the outputs in the two

groups have been controlled by the interface software in this particular setup rather than by applying

separate reference voltages at two groups. Both of these reference voltages of the two groups have been

allowed to be connected to a +5 V reference voltage source (V2) so that if needed in the future, any

range of outputs between 0 V to +15 V can be achieved by just changing the software parameters and

keeping the circuit setup intact.
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Figure 34. DAC circuitry in details.

The DAC 7718 features a high speed Serial Peripheral Interface (SPI) that can be operated at 50

MHz and is logic compatible at 1.8 V, 3 V or 5 V. All the input data is double buffered. An inverted

asynchronous load input (LDAC) transfers data from the DAC data register to the DAC latch and an

inverted asynchronous clear input (CLR) sets the output of all eight DACs to AGND. In the SPI Shift

Register, the serial data input (SDI) has to be loaded in the device MSB first as a 24-bit word under the

control of a serial clock input (SCLK). The register consists of a read/write bit, five register address bits,

and twelve data bits. Other bits are reserved for future devices. The falling edge of chip selects (CS)

starts the communication cycle. The data is latched into the SPI Shift Register on the falling edge of

SCLK while CS is low. When CS goes high, the SCLK and SDI signals become blocked and the serial

data output (SDO) pin remains in the high-impedance state. The contents of the SPI shifter register

are decoded and transferred to the proper internal registers on the rising edge of CS. The timing for this

operation is described in details in the datasheet of the DAC 7718. It offers a maximum settling time

of 15sec and a slew rate of 6sec. It can be operated in both asynchronous and synchronous modes.The
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resolution of the DAC is 12 bits with a relative accuracy of 1 LSB maximum. For the output in the range

of 0 V to +15 V, a resolution of 3.66 mV can be achieved. However for the ease of usage, a precision

of 300 mV that meets the criteria of the minimum precision of the analog phase shifters and voltage

attenuators of the RF system has been offered in the user interface.

The chip comes in two different packages, Quad Flat No leads (QFN)-48 (7 × 7mm) and Thin

Quad Flat Pack (TQFP)-64 (10×10mm). The TQFP-64 package has been used throughout the testing.

SchmartBoard, Inc. TQFP interface [50] has been used to make the circuit connection to the chip. As

a low power device, the DAC system can handle only upto ±5mA of current while in operation. For a

higher current-rating load, buffer circuits at the outputs is recommended for the protection of the device

from burn out. A current limiter circuit that limits the current from the input has been designed to

protect the DAC system. This circuit limits the current to about 50 mA. One 5 V voltage source (V3)

and two National Semiconductor 2N3904 transistors (Q1 and Q2) have been used to design the circuit.

It will act like a normal switch as long as the system draws current no more than 50mA. When the

system exceeds beyond such conditions, the circuit will bypass the current to Ground until the current

through the system stables back to 50 mA. Resistor R1 (18 Ω) is used as a current sense resistor that

monitors the current flowing through the Q1 transistor. The voltage drop across R1 starts to increase as

the current through Q1 increases. If the voltage at the top of R1 reaches 0.7 V, Q2 begins to turn on

diverting some of the current from the base of Q1 and bypassing the over-rated current to the ground.

Thus the whole mechanism protects the system from over-current damage.

3.3.5. LabVIEW GUI

National Instrument LabVIEW 2010 [43] has been used to design a Graphical User Interface

(GUI) that offers the user to control the eight output channels of the DAC separately. The GUI basically

consists of several logic and functional blocks in its background that controls the DAC through a National

Instrument LabVIEW USB 6008 peripheral device. The GUI takes the inputs from the user in analog

format and then converts it into desired digital expressions for further processing which produce the

desired 24 bit serial digital bit stream to feed it as the SDI signal to the DAC through the Universal

Serial Bus (USB) peripheral interface. The peripheral device needs to be connected to the USB port of

the system at one end. The other end consists of a total 16 analog and 16 digital ports of which only

four digital output ports are used to generate the signals SCLK, CS, SDI and ground reference which are

fed to the DAC circuit directly. A four channel oscilloscope can be used to view the SCLK, CS, SDI and

SDO signals separately to get the timing information of the DAC circuitry. Overall, this setup presents

the user an interactive interface to control each of the devices of the RF system in a very effective way.
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Figure 35. a) Picture of the 1 x 4 antenna test platform attached to a non-conducting wedge; b) picture of the
1 x 4 antenna test platform attached to a non-conducting cylinder.

3.4. S-Parameter Measurements and Scanning Properties

The measurement of the Phased Antenna Array Test Platform has been carried out in a fully

anechoic chamber. To verify the scanning capability of the conformal array, the scanning characteristics

of the test platform have been analyzed. At first, the antennas were attached to a flat surface and the

S-parameters and radiation pattern have been measured. The picture of the test setup is shown in Fig.

35 a). The measured return loss is shown in Fig. 36 and the scanning characteristics measured in the

chamber are shown in Fig. 37. For comparison, the analytically computed array patterns for a uniformly

excited, equally spaced linear array (UE, ESLA) [14] has been shown also. Good comparison has been

observed between the predicted and measured results which validate the fact that all of the RF blocks

in the four port receiver are operating correctly, especially the phase shifter. For all of the cases, the

interelement spacing was kept fixed at a value of λ/2.

3.5. Phase Compensation and Pattern Correction Results

When the array was attached to the non-conducting wedge shaped surface shown in Fig. 35 a)

and the non-conducting cylindrical surface shown in Fig. 35 b), the phase compensation expressions

in equation (2.18) and equation (2.19) can be implemented to correct the behavior of the array. This

can be done by careful adjustment of the control voltages of individual phase shifters which offer exact

phase compensation to each array element with respect to the analytically computed phase compensation

values.

3.5.1. Analytical Work for Correction of Field Pattern of The Test Platform

The expression of Array Factor (AF) has been described as equation (2.8) in chapter 2 for Cartesian

coordinate system. For analytical computations, the same parameter can be redefined in a Spherical
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Figure 36. Measured S11 of the 1 x 4 antenna test platform.

coordinate system as,

AF =

N∑
n=1

wne
jk[xn(u−us)+yn(v−vs)+zn cos θ] (3.1)

Equation (3.1) assumes u = sin θ cosφ, us = sin θs cosφs, v = sin θ sinφ, vs = sin θs sinφs, θs is the

elevation steering angle, φs is the azimuth steering angle and wn is the complex weighting function.

For this work, an element factor of e(θ) = A cos θ was defined and each complex weighting function

was defined as wn = e(θ)ejα where α was the voltage angle used to scan the array and the attenuator

was used to control the amplitude A of each element. Then to analytically compute the compensated

radiation pattern and validate the measurements of the test platform on a conformal surface, the following

compensated Array Factor (AFc) was used:

AFc = AFej∆φn (3.2)

3.5.2. Phase Compensation Results

The measurement of the radiation pattern of the test platform with phase correction has been

carried out next. To do that, the antenna test platform has been attached to the wedge shaped conformal

surface, as shown in Fig. 35 a) with bend angles θb = 30 ◦ and 45 ◦ with an element spacing of λ/2.
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Figure 37. Measured and analytical scanned patterns in the x− z plane for the 1 x
4 antenna test platform on a flat surface (θb = 0◦).

The radiation pattern was then measured at 2.45 GHz in x − z plane for both the compensated and

uncompensated cases. Figures 38 and 39 show the pattern correction results for θb = 30 ◦ and 45 ◦,

respectively. The uncorrected radiation pattern was measured at first when the surface of the array was

changed to a non-planar orientation but the control voltages to all of the phase shifters were set to equal

value (no phase compensation). Next, the control voltages of the phase shifters were changed carefully

to achieve the corrected results. The technique used here is to change the reference plane of the array

to a new reference plane where the elements A±1 are lying, as shown in Fig. 12. By defining this new

plane as the reference, only the voltage of the phase shifters feeding elements A±2 have to be changed

to adjust the radiation pattern. The antenna factor terms in equation (3.1) and equation (3.2) were

used next to analytically compute the pattern of the array on both wedge-shaped conformal surfaces. In

particular, the uncorrected antenna patterns were computed using equation (3.1) and these results are

shown in Figures 38 and 39 and the corrected antenna patterns were computed using equation (3.2) and

these results are also shown in Figures 38 and 39. Next, the performance of the antenna test platform

was carried out on a cylindrical surface with radius 10 cm. The interelement spacing of the array was

kept λ/2 and the measurement was taken at 2.45 GHz. The test setup can be seen in Fig. 18(b). The
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Figure 38. Measured and analytical patterns at 2.45 GHz in the x-z plane for the 1
x 4 antenna test platform on a wedge with θb = 30◦.

required phase compensation was calculated using equation (2.19) and has been presented in Fig. 40. In

all cases, good agreement between the measurements and the analytical computations can be observed.

A small amount of asymmetries can be seen in all of the measured field patterns with respect to θ = 0◦

which can be explained as the measurement error due to limitation of the measurement equipments and

the small anechoic chamber.

3.6. Gain Calculation and Compensation Results

Gain of an antenna system to a particular direction can be defined by the total accepted power

normalized by the corresponding isotropic intensity at that direction for the antenna. On the other hand,

directivity of an antenna system towards a particular direction can be defined by the radiation intensity

normalized by the corresponding isotropic intensity at that direction for the antenna. Theoretically if

there is no loss due to the mutual coupling in the antenna system, the gain and the directivity will be

the same. The mathematical relation between gain (G ) and directivity (D) can be expressed as

G = eD (3.3)
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Figure 39. Measured and analytical patterns at 2.45 GHz in the x-z plane for the 1
x 4 antenna test platform on a wedge with θb = 45◦.

The term e in the equation (3.3) is known as the efficiency of the antenna system which may be defined

as the ratio of the total power radiated by the antenna to the net power accepted by the antenna from

the connected transmitter for an antenna system. Practically the gain of an antenna can never be equal

to the directivity of that antenna as the gain depends also on the efficiency of the system. But to analyze

the gain of a system, the analysis of directivity is required. So it can be said that if the efficiency of

an antenna system does not change, the change in the directivity by a factor will lead to an equivalent

change in the gain of the system by the same factor.

The above concept can be used also to analyze the gain of the array system described in this work.

The directivity of an array can be found using the array factor equation [6],

D =
4π|AFmax|2∫ 2π

0

∫ π
0
|AF |2 sin θ dθdφ

(3.4)

A uniform linear array of N number of elements with constant element spacing of d along the z−axis is

symmetric with respect to φ and therefore the directivity of the array can be numerically computed and

40



−90 −45 0 45 90
−40

−35

−30

−25

−20

−15

−10

−5

0

θ (deg)

|E
φ| (

dB
)

 

 

uncorrected (analytical)
uncorrected (measured)
corrected (analytical)
corrected (measured)

Figure 40. Measured and analytical patterns at 2.45 GHz in the x-z plane for the 1
x 4 antenna test platform on a cylinder with a radius of curvature of 10cm.

expressed as

D =
N2

N + 2
∑N−1
n=1 (N − n) sinc(nkd) cos(nkd cos θs)

(3.5)

For the element spacing of d = 0.5λ, equation (3.5) simplifies to,

D ' N (3.6)

For the element spacing up to a wavelength, the directivity increases almost in a linear fashion [2]. But

as the element spacing increases further, the denominator in equation (3.5) also increases while the

maximum value of AF in the numerator remains same. This results to a decrease in directivity of the

array. Moreover, as the element spacing exceeds a wavelength, appearance of grating lobes results a

sharp drop in directivity [6]. The decrease in directivity due to the grating lobe becomes more dramatic

as the number of elements increases, because the main beam and grating lobes have narrower bandwidths

which results in to a large change in AF for a small change in θ [2].

Refer to Fig. 12, when the surface of the array was bent in a certain angle, the phase shifter has

been used to correct the radiation pattern. This has been done by adjusting the reference plane of the
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antenna. Although the array elements can be realized to be belonged virtually on a same plane by this

phase compensation technique but a change in inter-element spacing can be noticed through this process.

When the array element A+2 has been projected on the plane where A+1 was lying, the effective spacing

between A+1 and projected A+2 got reduced by a factor of (1 − sin θb). Now, as the default spacing

was 0.5λ, therefore any further reduction of spacing would be result in a reduced directivity.

When the conformal array changes its shape, the associated gain of the overall array also changes

therefore. The reference gain Gr(θ, φ) of the array can be defined as the gain of the array in a certain

direction when the antenna array is attached to a particular surface. Now as the surface changes, the

associated field pattern of the array also changes. To compensate this change, when the phase correction

method is applied to the array system, the shift in the gain of the antenna has been observed. If this

new compensated gain of the array system is denoted as Gc(θ, φ) and the shift in gain is described as

Gs(θ, φ) then the relationship between them can be expresses as:

Gs(θ, φ) = Gc(θ, φ)−Gr(θ, φ). (3.7)

This computed gain shift value can then be compared to measurements to determine if the antenna

pattern is recovered or corrected. As mentioned before, the gain broadside to the antenna will be

measured and the reference surface used to evaluate Gr(θ, φ) is assumed to be flat (θb = 0◦).

Table 1. Gain Shift Values for the Antenna Test Platform.

Surface Gs,analy. Gs,meas. Proj. spacing
θb = 30◦ -0.6 dBi -1.0 dBi 0.43λ
θb = 45◦ -1.3 dBi -1.8 dBi 0.35λ
Cylinder -0.8 dBi -1.6 dBi non-uniform

The measured and computed gain shift values are also shown in Table 1 for all three test cases

(wedge with θb = 30◦, 45◦ and a cylinder). The analytical values were computed using the gain

expressions presented in [6] for a non-uniformly spaced array. Although the radiation pattern can be

recovered for an array antenna by technique of projection of plane but the trade-off will be the reduced

gain and hence this is the limitation of the proposed technique.
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CHAPTER 4. THE FOUR ELEMENT SELFLEX ARRAY DESIGN

4.1. Motivation

The conformal array design presented on previous chapter validates the concept of phase correction

theory. However from the perspective of design guidelines, there were several drawbacks in that type

of system. First, the array was realized by placing four patch antennas, designed on different substrate

surfaces. But in a practical scenario, a microstrip patch antenna array is generally realized on a single

substrate. Therefore to be applicable physically, all of the elements of the conformal array need to be

designed on the same flexible substrate. Secondly, the associated RF test platform that has been used

to correct the functionality of the array was controlled manually. This limitation actually slows down the

performance of the array. Therefore, if any methodology can be developed to compensate the phase to

the array elements in an autonomous manner, then this limitation can be overcome. Third, the array

system designed earlier could not be operated without the RF test platform. Though developing the RF

system each time for an array is neither cost effective nor space constrained solution but for validation

of the theoretical work, that block was a necessary part of the array system in general. Altogether, the

challenges here are to design an autonomous conformal array system prototype which can maintain the

same performances like the RF test platform but can offer more compactness, cost-effective, less complex

and faster response for practical feasibility.

The new four element SELFLEX (SELF-adapting FLEXible) array design proposed in this chapter

not only consists of the array elements designed on a single substrate but also offers autonomous correction

of the field pattern during its conformal activity with the help of a simple circuit embedded on the surface

of the array. The first challenge was met by designing the four patches with only a single feed network.

This has been achieved by exploiting of parallel feed network, described in chapter 1, in the array system.

The second challenge, the development of an autonomous correction circuitry has been achieved by

introducing a sensor circuit. This feedback network offers the system with necessary phase compensation

by sensing the curvature of the antenna by a flexible resistor, attached to the conformal surface of the

array. Finally the remaining challenge was met by elimination of the devices that were integrated earlier in

the RF test platform. One objective of this project is to meet the specific goal of autonomous correction

of the radiation pattern for an array system. To meet this, only the phase of the driving signal on each

patch has to be controlled separately. Thus by ignoring the other functional RF blocks, only the phase

shifters have been embedded on the substrate of the SELFLEX (SELF-adapting FLEXible) array and the

necessity of the RF test platform has been eliminated. The new proposed design is shown in Fig. 42
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where the sensor circuit block and small black phase shifters can be seen clearly. However the flexible

sensor, which has been attached at the back of the array surface, is not visible here. The elements in the

array are designed to operate at 2.47 GHz on a thin and flexible 20 mil Rogers RT/duroid 6002 substrate

and have a spacing of λ/2.

4.2. Description of Work

The design of the four element SELFLEX array is described in this section.

4.2.1. The Resistive Sensing Circuit

In the conformal array design proposed in the previous chapter, the phase correction of the each

array element has to be controlled manually. Each time the surface of the array changes, the user

has to change the control voltage of the phase shifter through the LabVIEW GUI to provide the array

adequate phase compensation. This limitation has been overcome in the new design of SELFLEX array

by introducing a sensor circuit that consists of a flexible resistor manufactured by Spectra Symbol [46].

This new feature enables the array to correct its functionality autonomously in time. A schematic of

the sensor circuit is shown in Fig. 43. The resistor senses the amount of curvature of the surface of

the array each time and feeds that information to an OpAmp circuit. An AMP04 precision single-supply

instrumentation amplifier manufactured by Analog Devices [45] has been used in the sensor circuit which

provides the necessary control voltage of the phase shifters for various values of θb to compensate the field

pattern of the array in its non-planar activity. To realize the functionality, a text fixture consisting of the

flexible resistor attached to a wedge-shaped conformal surface was constructed. The sensor circuit was

then connected to the resistive sensor and the output control voltage Vctrl of the circuit was connected

to a prototype board including a single Hittite voltage controlled phase shifter. The text fixture was then

used to bend the resistive sensor at various angles of θb and the associated phase shift was measured at

2.47 GHz using a network analyzer. The measured and analytical normalized phase shift obtained from

the sensor circuit have been shown in Fig. 44. As both results match pretty well, this sensor circuit

has been used in the array system along with the Hittite phase shifter to achieve the autonomous phase

correction feature for the array.

4.2.2. 1× 4 SELFLEX Array Prototype

The 1×4 SELFLEX array introduced in this chapter is a new type of self-adapting conformal array.

The self-adapting capability of the array has been achieved by the sensor circuit described in the previous

paragraph. In this paragraph, the detail design related to the 1 × 4 microstrip patch array has been

described. In case of the RF test platform, it was shown that the elements of the array were developed

using the same substrate but on discrete surfaces. However, such designs are not efficient for practical
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Figure 41. Schematic of the 1 x 4 Self-adapting flexible (SELFLEX) array with
embedded sensor circuitry.
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Figure 42. Picture of the manufactured 1 x 4 SELFLEX array prototype (g = 2.0
mm, h = 35.6 mm, m = 19.8 mm, s = 11.0 mm, t = 1.3 mm, u = 33.4 mm and w
= 43.6 mm).
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b) a picture of the flexible resistive sensor used for measuring surface deformation.
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Figure 44. Measured output of the phase shifter controlled by the sensor circuit
where θb is the bend angle and ∆φw

n is the phase compensation for the nth antenna
element in the array.
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Figure 45. Measured S11 of the 1 x 4 SELFLEX array for various conformal surfaces.

application in terms of cost and complexity. With these considerations, a new type of conformal array

has been proposed here. The proposed design consists of four microstrip patches. The patches have

been printed on a flexible 60 mil thick Rogers RT/duroid 6002 substrate (εr = 2.94, tan δ = 0.0012) to

be operated at 2.47 GHz. To design all the patches on a single surface, microstrip transmission lines

have been used as the feed network. The parallel phasor type network, as shown in Fig. 6 a), has been

deployed here as a linear feed network. This technique thus eliminates the requirement of multiple feed

point to excite the array elements. The details about the geometry of the proposed array can be seen in

Fig. 41. The printed prototype is shown in Fig. 42 with phase shifters and the sensor circuit. An image

of the flexible resistor attached to the back of the prototype SELFLEX antenna is shown in Fig. 43 b).

4.3. S-parameter and Pattern Measurement Results

The evaluation of the printed SELFLEX array has been performed next by placing the array on a

flat surface. The measured return loss S11 was recorded for the two designes, with and without the phase

shifters. At first, when the array was placed on a flat-surface, there would be no need for the correction

of the phases. Considering this situation as the reference position, the S11 values of the array with the

phase shifters were recorded. As Fig. 45 suggests, a good 10 dB bandwidth centered at 2.46 GHz has

been observed.
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Figure 46. Measured and analytical patterns at 2.47 GHz in the x-z plane for the
array with the embedded sensor circuit on a wedge with θb = 30◦.

a)                                                 b)

Figure 47. a) Picture of the 1 x 4 SELFLEX array attached to a non-conducting
wedge and b) picture of the 1 x 4 SELFLEX array attached to a non-conducting
cylinder.
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Figure 48. Measured and analytical patterns at 2.47 GHz in the x-z plane for the
array with the embedded sensor circuit on a wedge with θb = 45◦.

4.3.1. Pattern Correction of The Antenna on Wedge-Shaped Surfaces

Next, the array with the phase shifters was attached to a non-conducting wedge-shaped surface

in the anechoic chamber and the S-parameter and radiation pattern properties were measured. The

test setup for θb = 30 ◦ can be seen in Fig. 47 a). Then the S11 values were measured for the two

conditions θb = 30 ◦ and 45 ◦ and have been plotted in Fig. 45 for comparison with the reference position.

Measurements show that a good impedance match at 2.47 GHz has been achieved for both of the bend

angles, shown as the gray area in Fig. 45. These S11 values were measured when the phase shifters were

turned on and working under the control of the sensor circuit autonomously. Next, the radiation pattern

measurements in the x− z plane were carried out. For validation, radiation patterns were taken for both

compensated and uncompensated cases and compared with not only the analytical computations, using

equation (3.1) and equation (3.2) but also the simulation results from Ansys HFSS [51]. The results

from these computations and simulations are also shown in Figures 46 and 48 showing good agreement

between each observation.

4.3.2. Pattern Correction of The Antenna on Cylindrical Surfaces

The behavior of the conformal array was also studied for a cylindrical surface. To do that, the

SELFLEX array was put on a non-conducting cylindrical surface with radius 10 cm in the anechoic
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Figure 49. Measured and analytical patterns at 2.47 GHz in the x-z plane for the
array with the embedded sensor circuit on a cylinder with a radius of curvature of
10cm.

chamber, as shown in Fig. 47 b). The measured S11 values are shown in Fig. 45 illustrating that the

SELFLEX antenna has a good match at 2.47 GHz when the phase shifters were working under the control

of the sensor circuit autonomously. The radiation pattern for this setup was also recorded and compared

with analytical values using equation (2.19) and simulated values from Ansys HFSS [51] on x− z plane

at 2.47 GHz, as shown in Fig. 49.

There is an interesting phenomenon occurred for each of the pattern correction cases. In Figures

46, 48 and 49, the radiation patterns are much broader for the uncorrected cases. This can be justified

by the results provided by [2] and [22] on circular arrays. As the surface of the conformal array changes

from a planar to non-planar orientation, the spacial distribution of the array elements approaches the

orientation similar to a circular array. Broadening of the array pattern is therefore expected because of

the resemblance of the linear conformal array to a circular array. It should be mentioned that the patterns

were also measured in the y − z plane and were similar to the fields from a 1× 4 microstrip array. In all

cases, good agreement between the measurements and the analytical computations can be observed. A

small amount of asymmetries can be seen in all of the measured field patterns with respect to θ = 0◦

which can be explained as the measurement error due to the limitation of the equipments in chamber.
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Figure 50. Measured calibrated gain of the 1 x 4 SELFLEX array for various conformal
surfaces.

Table 2. Gain Shift Values for the SELFLEX array.

Surface Gs,analy. Gs,meas. Gs,HFSS Proj. spacing
θb = 30◦ -0.6 dBi -0.9 dBi -0.73 0.43λ
θb = 45◦ -1.3 dBi -1.4 dBi -2.0 0.35λ
Disk -0.8 dBi -1.2 dBi -1.25 non-uniform

4.4. Gain Compensation Results

The calibrated gain values for the SELFLEX design were also measured and the comparison with

analytical and simulated gain was shown in Table 2 when the array was placed on the wedge of angle

θb = 30 ◦ and 45 ◦ and on the disk. Finally, an interesting occurrence of multiple resonance points can

be observed in Fig. 45. It is believed that this multiple resonance behavior of the conformal array occurrs

due to the poor matching of the phase shifter blocks and the variation of the mutual coupling between the

elements due to the change in inter-element spacing during the conformal activity of the array. Although

the phase shifters do not offer good matching networks and the investigation of mutual coupling due to

conformal activity of the array is beyond the scope of current work, still the results in Fig. 50. show that

the improvement in the maximum gain is occurring in the 10 dB bandwidth of the array.
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CHAPTER 5. CONCLUSIONS

The properties and development of a self-adapting conformal antenna array for wireless commu-

nications have been studied in this work. Initially the analytical background related to this work was

developed. For validation of the proposed theoretical work, development of a test platform was carried

out. This test platform consists of discrete RF blocks and can be used to realize a conformal array at

2.46 GHz. Using the proposed phase compensation methodology, good comparison between measured

and analytical results was observed for a general array system. Then a conformal 1×4 microstrip phased

antenna array has been developed on a flexible substrate. This new design consists of sensor circuitry

that enables the design to autonomously correct its radiation pattern while operating on various non-

planar surfaces. This novel SELF-adapting FLEXible antenna design has been denoted as a SELFLEX

antenna which thus offers an attractive feature of preserving the field pattern behavior autonomously

during conformal surface changes. Finally, throughout this work, measurements are shown to agree well

with simulations and analytical computations.
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APPENDIX. MATLAB CODE

The following
SELFLEX1.m
code was used to generate S11 and S22 graphs obtained from S-parameters measurements of the
attenuators and phase shifters as individual blocks.

The following
SELFLEX2.m
code was used to generate S11 and S22 graphs obtained from S-parameters measurements of the
amplifier as an individual block.

The following
SELFLEX3.m
code was used to generate S11 and S22 graphs obtained from S-parameters measurements of the power
combiner as an individual blocks.

The following
SELFLEX4.m
code was used to generate S11 graph obtained from S-parameters measurement of the 1×4 test platform.

The following
SELFLEX5.m
code was used to generate phase shifter output graph obtained from analytical and measured normalized
phase shift results from the sensor circuit.

The following
SELFLEX6.m
code was used to generate S11 graph obtained from S-parameters measurement of the 1 × 4 SELFLEX
array for various conformal surfaces.

The following
SELFLEX7.m
code was used to generate graphs of phase correction results of the 1 × 4 SELFLEX array for various
conformal surfaces shaped as wedge.

The following
SELFLEX8.m
code was used to generate graphs of phase correction results of the 1 × 4 SELFLEX array for various
conformal surfaces shaped as wedge.

SELFLEX1.m File

clc

clear all

S_12_phase_shifter=[data...];

phi_12_phase_shifter=[data...];

S_22_phase_shifter=[data...];

S_12_attenuator=[data...];

phi_12_attenuator=[data...];

S_22_attenuator=[data...];

V_shifter=0:.5:5;
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V_attenuator=[0 1:2:17];

figure;

plot(V_shifter,S_12_phase_shifter,’-o’,’linewidth’,4)

grid on;

xlabel(’Volt’,’FontSize’, 30)

ylabel(’(dB)’,’FontSize’, 30)

%title(’Phase-shifter at 2.45 GHz’,’FontSize’, 30)

axis([0 5 -5 0])

figure;

plot(V_shifter,phi_12_phase_shifter-min(phi_12_phase_shifter),’-o’,’linewidth’,4)

grid on;

xlabel(’Volt’,’FontSize’, 30)

ylabel(’(deg)’,’FontSize’, 30)

%title(’Phase-shifter at 2.45 GHz’,’FontSize’, 30)

figure;

plot(V_shifter,S_22_phase_shifter,’-o’,’linewidth’,4)

grid on;

xlabel(’Volt’,’FontSize’, 30)

ylabel(’(dB)’,’FontSize’, 30)

%title(’Phase-shifter at 2.45 GHz’,’FontSize’, 30)

axis([0 5 -35 0])

figure;

plot(V_attenuator,S_12_attenuator,’-o’,’linewidth’,4)

grid on;

xlabel(’Volt’,’FontSize’, 30)

ylabel(’(dB)’,’FontSize’, 30)

%title(’Attenuator at 2.45 GHz’,’FontSize’, 30)

axis([0 17 -40 0])

figure;

plot(V_attenuator,phi_12_attenuator,’-o’,’linewidth’,4)

grid on;

xlabel(’Volt’,’FontSize’, 30)

ylabel(’(deg)’,’FontSize’, 30)

%title(’Attenuator at 2.45 GHz’,’FontSize’, 30)

axis([0 17 0 200])

figure;

plot(V_attenuator,S_22_attenuator,’-o’,’linewidth’,4)

grid on;

xlabel(’Volt’,’FontSize’, 30)

ylabel(’(dB)’,’FontSize’, 30)

%title(’Attenuator at 2.45 GHz’,’FontSize’, 30)

axis([0 17 -30 0])

SELFLEX2.m File

clc

clear all

freq=[data...];

S_11=[data...];

S_21=[data...];

figure;

plot(freq,S_11,’linewidth’,4)

grid on;
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axis([2.4 2.5 -21.2 -20.2])

xlabel(’(GHz)’,’FontSize’, 30)

ylabel(’(dB)’,’FontSize’, 30)

figure;

plot(freq,S_21,’linewidth’,4)

grid on;

axis([2.4 2.5 6.4 6.9])

xlabel(’(GHz)’,’FontSize’, 30)

ylabel(’(deg)’,’FontSize’, 30)

SELFLEX3.m File

clc

clear all

freq=[data...];

S_11=[data...];

S_22=[data...];

S_21=[data...];

figure;

plot(freq,S_11,’linewidth’,4)

grid on;

axis([2.4 2.5 -22 -20])

xlabel(’(GHz)’,’FontSize’, 30)

ylabel(’(dB)’,’FontSize’, 30)

figure;

plot(freq,S_22,’linewidth’,4)

grid on;

axis([2.4 2.5 -14 -12])

xlabel(’(GHz)’,’FontSize’, 30)

ylabel(’(dB)’,’FontSize’, 30)

figure;

plot(freq,S_21,’linewidth’,4)

grid on;

axis([2.4 2.5 -6.25 -6.05])

xlabel(’(GHz)’,’FontSize’, 30)

ylabel(’(deg)’,’FontSize’, 30)

SELFLEX4.m File

clc

clear all

S11=[data...];

pts = 1:10:length(S11);

figure

plot(S11(pts,1)./1e9,S11(pts,2))

axis([2 3 -30 0])

xlabel(’f (GHz)’)

ylabel(’|S_{11}| (dB)’)

SELFLEX5.m File

clc

clear all

angle = 0:2.5:45;
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V=[data...];

offset = .2;

figure

plot(angle,V+offset,’s-’)

xlabel(’\theta_b’)

ylabel(’V_{ctrl}’)

grid on

axis([0 45 1.5 4.5])

f = 2.44e9;

c = 2.99e8;

lambda = c/f;

k = 2*pi/lambda;

d = lambda/2;

phi = 0:.001:pi;

delta = -k*d*sin(phi);

figure

delta_meas=[data...];

theta_b=0:2.5:45;

plot(theta_b,delta_meas,’s’,phi*180/pi,abs(delta*180/pi),’--’)

axis([0 45 0 140])

xlabel(’\theta_b (deg)’)

ylabel(’\Delta\phi_n^w (normalized)’)

legend(’Measured’,’Analytical’)

grid on

SELFLEX6.m File

clc

clear all

S11_flat=[data...];

figure

pts=1:17:length(S11_30_deg(:,1));

pts2=1:10:length(S11_flat(:,1));

plot(S11_flat(pts2,1)./1e9, S11_flat(pts2,2), ’o’, ...

S11_30_deg(pts,1)./1e9,S11_30_deg(pts,2),’-’, ...

S11_45_deg(pts,1)./1e9,S11_45_deg(pts,2),’--’, ...

S11_disk(pts,1)./1e9,S11_disk(pts,2),’:’)

xlabel(’f (GHz)’)

ylabel(’|S_{11}| (dB)’)

legend(’no phase shifters’,’\theta_b = 30^...

{\circ}’,’\theta_b = 45^{\circ}’,’cylinder’)

% title(’1 x 4 array controlled with the sensor circuit’)

axis([2.0 2.7 -40 0])

SELFLEX7.m File

clc

clear all

S11_flat=[data...];

S11_corrected_30=[data...];

S11_uncorrected_30=[data...];

S11_corrected_45=[data...];

S11_uncorrected_45=[data...];

S12_phase_shifters_flat=[data...];
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S12_corrected_30=[data...];

S12_uncorrected_30=[data...];

S12_corrected_45=[data...];

S12_uncorrected_45=[data...];

E_total_30_uncorrected(:,1)=[data...];

E_phi_bent_30_uncorrected_analytical=[data...];

E_phi_bent_30_corrected_analytical=[data...];

E_phi_bent_30_uncorrected_measured=[data...];

E_phi_bent_30_corrected_measured=[data...];

E_total_30_corrected=[data...];

E_total_45_uncorrected(:,1)=[data...];

E_phi_bent_45_uncorrected_analytical=[data...];

E_phi_bent_45_corrected_analytical=[data...];

E_phi_bent_45_uncorrected_measured=[data...];

E_phi_bent_45_corrected_measured=[data...];

E_total_45_corrected=[data...];

figure

pts=1:20:length(S11_corrected_30);

plot(S11_uncorrected_30(pts,1)./1e9, ...

S11_uncorrected_30(pts,2),’--’, ...

S11_corrected_30(pts,1)./1e9, ...

S11_corrected_30(pts,2),’-’, ...

S11_uncorrected_45(pts,1)./1e9, ...

S11_uncorrected_45(pts,2),’s’, ...

S11_corrected_45(pts,1)./1e9, ...

S11_corrected_45(pts,2),’x’, ...

S11_flat(pts,1)./1e9,S11_flat(pts,2),’o-’);

xlabel(’f (GHz)’)

ylabel(’|S_{11}| (dB)’)

legend(’uncorrected (\theta_b = 30)’,’...

corrected (\theta_b = 30)’, ...

’uncorrected (\theta_b = 45)’,’...

corrected (\theta_b = 45)’, ’flat’)

figure

plot(S12_phase_shifters_flat(pts,1)./...

1e9, S12_phase_shifters_flat(pts,2), ’o’, ...

S12_uncorrected_30(pts,1)./1e9, ...

S12_uncorrected_30(pts,2),’d’, ...

S12_corrected_30(pts,1)./1e9, ...

S12_corrected_30(pts,2),’-’, ...

S12_uncorrected_45(pts,1)./1e9, ...

S12_uncorrected_45(pts,2),’s’, ...

S12_corrected_45(pts,1)./1e9, ...

S12_corrected_45(pts,2),’--’);

xlabel(’f (GHz)’)

ylabel(’|S_{12}| (dB)’)

legend(’flat (\theta_b = 0^{\circ})’, ...

’uncorrected (\theta_b = 30^{\circ})’,’...

corrected (\theta_b = 30^{\circ})’, ...

’uncorrected (\theta_b = 45^{\circ})’,’...

corrected (\theta_b = 45^{\circ})’)
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figure

pts2=1:2:length(E_total_45_uncorrected(:,1));

plot(180/pi*[-pi/2:.1:pi/2].’,20*log10(abs...

(E_phi_bent_45_uncorrected_analytical(:,1))./...

max(abs(E_phi_bent_45_corrected_analytical(:,1)))),’--’, ...

E_phi_bent_45_uncorrected_measured(:,1)...

+-5,20*log10(E_phi_bent_45_uncorrected_measured...

(:,2)./max(E_phi_bent_45_corrected_measured(:,2))),’.’, ...

E_total_45_uncorrected(pts2,1),20*log10...

(E_total_45_uncorrected(pts2,2)./max...

(E_total_45_corrected(pts2,2))), ’s’, ...

180/pi*[-pi/2:.1:pi/2].’,20*log10(abs...

(E_phi_bent_45_corrected_analytical(:,1))./...

max(abs(E_phi_bent_45_corrected_analytical(:,1)))),’-’, ...

E_phi_bent_45_corrected_measured(:,1)+-5,20*log10...

(E_phi_bent_45_corrected_measured(:,2)./max...

(E_phi_bent_45_corrected_measured(:,2))),’o’, ...

E_total_45_corrected(pts2,1),20*log10...

(E_total_45_corrected(pts2,2)./max...

(E_total_45_corrected(pts2,2))), ’^’)

legend(’uncorrected (analytical)’,...

’uncorrected (measured)’,...

’uncorrected (HFSS)’, ...

’corrected (analytical)’, ...

’corrected (measured)’, ...

’corrected (HFSS)’)

axis([-90 90 -40 0])

title(’x-z plane - 1 x 4 array controlled with the sensor ...

circuit on a wedge with \theta_b=45’)

xlabel(’\theta (deg)’)

ylabel(’|E_{\phi}| (dB)’)

figure

plot(180/pi*[-pi/2:.1:pi/2].’,20*log10(abs...

(E_phi_bent_30_uncorrected_analytical...

(:,1))./max(abs(E_phi_bent_30_corrected_...

analytical(:,1)))),’--’, ...

E_phi_bent_30_uncorrected_measured(:,1)...

+-5,20*log10(E_phi_bent_30_uncorrected_measured...

(:,2)./max(E_phi_bent_30_corrected_measured(:,2))),’.’, ...

E_total_30_uncorrected(pts2,1),20*log10...

(E_total_30_uncorrected(pts2,2)./max...

(E_total_30_corrected(pts2,2))), ’s’, ...

180/pi*[-pi/2:.1:pi/2].’,20*log10(abs...

(E_phi_bent_30_corrected_analytical(:,1))./...

max(abs(E_phi_bent_30_corrected_analytical(:,1)))),’-’, ...

E_phi_bent_30_corrected_measured(:,1)...

+-5,20*log10(E_phi_bent_30_corrected_measured...
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(:,2)./max(E_phi_bent_30_corrected_measured(:,2))),’o’, ...

E_total_30_corrected(pts2,1),20*log10...

(E_total_30_corrected(pts2,2)./max...

(E_total_30_corrected(pts2,2))), ’^’)

axis([-90 90 -40 0])

legend(’uncorrected (analytical)’,...

’uncorrected (measured)’,...

’uncorrected (HFSS)’, ...

’corrected (analytical)’, ...

’corrected (measured)’, ...

’corrected (HFSS)’)

title(’x-z plane - 1 x 4 array controlled with the sensor ...

circuit on a wedge with \theta_b=30’)

xlabel(’\theta (deg)’)

ylabel(’|E_{\phi}| (dB)’)

figure

polar(pi/180*E_phi_bent_45_corrected_measured...

(:,1)+-5*pi/180,E_phi_bent_45_corrected_measured...

(:,2)./max(E_phi_bent_45_corrected_measured(:,2)),’.-’)

hold on

polar(pi/180*E_phi_bent_45_uncorrected_measured...

(:,1)+-5*pi/180,E_phi_bent_45_uncorrected_measured...

(:,2)./max(E_phi_bent_45_corrected_measured(:,2)),’x-’)

polar([-pi/2:.1:pi/2].’,abs(E_phi_bent_45_uncorrected_analytical...

(:,1))./max(abs(E_phi_bent_45_corrected_analytical(:,1))),’--’)

polar([-pi/2:.1:pi/2].’,abs(E_phi_bent_45_corrected_analytical...

(:,1))./max(abs(E_phi_bent_45_corrected_analytical(:,1))),’-’)

xlabel(’\theta_b = 45 (deg)’)

title(’x-z plane - 1 x 4 array controlled with the sensor ...

circuit on a wedge’)

SELFLEX8.m File

clc

clear all

S11_flat=[];

S11_uncorrected=[];

S12_uncorrected=[];

S11_corrected=[];

S12_corrected=[];

S12_array=[];

E_phi_r_10cm_corrected_measured=[];

E_phi_r_10cm_uncorrected_measured=[];

E_phi_r_10cm_corrected_analytical=[];

E_phi_r_10cm_uncorrected_analytical=[];

E_total_uncorrected=[];

E_total_corrected=[];
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pts2=1:2:length(E_total_uncorrected(:,1));

theta = [-pi/2:.1:pi/2]’*180/pi;

figure

plot(theta,20*log10...

(abs(E_phi_r_10cm_uncorrected_analytical)./

max(abs(E_phi_r_10cm_corrected_analytical))),’--’, ...

E_phi_r_10cm_uncorrected_measured(:,1),20*log10...

(E_phi_r_10cm_uncorrected_measured(:,2)./...

max(E_phi_r_10cm_corrected_measured(:,2))),’.’, ...

E_total_uncorrected(pts2,1),...

20*log10(E_total_uncorrected(pts2,2)./...

max(E_total_corrected(pts2,2))), ’s’, ...

theta,20*log10(abs...

(E_phi_r_10cm_corrected_analytical)./...

max(abs(E_phi_r_10cm_corrected_analytical))),’-’, ...

E_phi_r_10cm_corrected_measured(:,1)-5,20*log10...

(E_phi_r_10cm_corrected_measured(:,2)/...

max(E_phi_r_10cm_corrected_measured(:,2))),’o’, ...

E_total_corrected(pts2,1),20*log10...

(E_total_corrected(pts2,2)./max...

(E_total_corrected(pts2,2))), ’^’)

xlabel(’\theta (deg)’)

ylabel(’|E_{\phi}| (dB)’)

axis([-90 90 -40 0])

title(’x-z plane - 1 x 4 array controlled ...

with the sensor circuit on a 10 cm disk’)

legend(’uncorrected (analytical)’,...

’uncorrected (measured)’,...

’uncorrected (HFSS)’, ...

’corrected (analytical)’, ...

’corrected (measured)’, ...

’corrected (HFSS)’)
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