
AN INVESIGATION OF INTEGRATION AND PERFORMANCE ISSUES RELATED TO

THE USE OF EXTENDED PAGE SIZES IN COMPUTATIONALLY INTENSIVE

APPLICATIONS

A Thesis

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Matthew James Piehl

In Partial Fulfillment

for the Degree of

MASTER OF SCIENCE

Major Department:

Computer Science

November 2012

Fargo, North Dakota

 North Dakota State University
 Graduate School

 Title

 AN INVESTIGATION OF INTEGRATION AND PERFORMANCE ISSUES RELATED TO

 THE USE OF EXTENDED PAGE SIZES IN COMPUTATIONALLY INTENSIVE APPLICATIONS

 By
 Matthew James Piehl

The Supervisory Committee certifies that this disquisition complies with North Dakota
State University’s regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

SUPERVISORY COMMITTEE:

Dr. William Perrizo
Co-Chair

Dr. Greg Wettstein
Co-Chair

Dr. Jun Kong

Dr. Ben Braaten

Approved by Department Chair:

11/08/12

Dr. Kenneth Magel

iii

ABSTRACT

 The combination of increasing fabrication density and corresponding decrease in price

has resulted in the ability of commodity platforms to support large memory capacities. Processor

designers have introduced support for extended hardware page sizes to assist operating systems

with efficiently scaling to these memory capacities. This paper will explore integration strategies

the designers of the Linux operating system have used to access this hardware support and the

practical performance impact of using this support. This paper also provides a review of common

strategies for adding support for this functionality at the application level. These strategies are

applied to a sampling representative of common scientific applications to support a practical

evaluation of the expected performance impact of extended page size support. An analysis of

these results support a finding that a 5% performance improvement can be expected by adding

support for extended page sizes to memory intensive scientific applications.

iv

ACKNOWLEDGEMENTS

 I would like to thank several people for their support during the development of this

work. First I would like to thank Dr. Greg Wettstein for his endless encouragement, guidance,

and advice. Without Dr. Wettstein, this work would have not been possible. I would also like to

thank the other members of my committee Dr. William Perrizo, Dr. Jun Kong, and Dr. Ben

Braaten for their valuable advice. Special thanks to Bryan Mesich of the NDSU Research

Support Group for his valuable input and support throughout my time at NDSU. Lastly, I would

like to thank my family for their endless encouragement.

v

TABLE OF CONTENTS

ABSTRACT……………………………………………………………………………..……….iii

ACKNOWLEDGEMENTS…………………………………………………….…………...……iv

LIST OF TABLES…………………………………………………………………………..…...vii

LIST OF FIGURES……………………………………………………………………………..viii

LIST OF APPENDIX TABLES…………………………………………………………………..x

LIST OF APPENDIX FIGURES………………………………………………………………...xi

1. INTRODUCTION……………………………………………………………………………...1

 1.1. Directly Addressed Memory………………………………………………………….1

1.2. Virtual Memory………………………………………………………………………2

1.3. Caching……………………………………………………………………………….6

1.4. Hardware Implementation of Virtual Memory…………………………………….....8

1.5. x86-32 vs. x86-64…………………………………………………………………….8

1.6. The x86 Memory Management Unit…………………………………………………9

1.7. Address Space Expansion…………………………………………………………...14

1.8. Linux Virtual Memory Management Architecture………………………………….17

1.9. Extended Page Sizes………………………………………………………………...25

1.10. Objectives………………………………………………………………………….37

2. RELATED WORK……………………………………………………………………………39

3. METHODS……………………………………………………………………………………42

3.1. System Overview…………………………………………………………………....42

3.2. Performance Monitoring…………………………………………………………….43

vi

3.3. High Performance LINPACK…………………………………………………….....45

3.4. Theoretical Peak Performance………………………………………………………46

3.5. General Atomic and Molecular Electronic Structure System……………………….47

3.6. Vertical Data-mining Application (PTrees)…………………………………………49

4. EXPERIMENTAL RESULTS AND ANALYSIS…………………………………………....52

4.1. HPL Results…………………………………………………………………………52

4.2. GAMESS Results…………………………………………………………………....57

4.3. Vertical Data Mining Results………………………………………………………..62

5. DISCUSSION………………………………………………………………………………....66

6. CONCLUSION……………………………………………………………………………......70

7. REFERENCES………………………………………………………………………………..72

8. APPENDIX…………………………………………………………………………………....76

vii

LIST OF TABLES

Table Page

1.1. Hierarchy of access times…………………………………………………………………….7

1.2. Example pmap output……………………………………………………………………….17

1.3. VMA flags…………………………………………………………………………………..18

1.4. Types of minor page faults………………………………………………………………….22

1.5. Contents of /proc/buddyinfo………………………………………………………………...24

1.6. VMA memory overhead…………………………………………………………………….25

1.7. Page sizes for various architectures…………………………………………………………26

1.8. Contents of /proc/meminfo………………………………………………………………….28

3.1. Perf tool commands…………………………………………………………………………45

4.1. Experimental results: HPL with four kilobyte pages………………………………………..53

4.2. Experimental results: HPL with transparent extended pages……………………………….54

4.3. Experimental results: HPL with static extended pages……………………………………...55

4.4 Experimental results: GAMESS with four kilobyte pages…………………………………..58

4.5. Experimental results: GAMESS with transparent extended pages………………………….59

4.6. Experimental results: GAMESS with static extended pages………………………………..60

4.7. Experimental results: PTrees with four kilobyte pages……………………………………..62

4.8. Experimental results: PTrees with transparent extended pages……………………………..63

4.9. Experimental results: PTrees with static extended pages…………………………………...63

viii

LIST OF FIGURES

Figure Page

1.1. Virtual memory……………………………………………………………………………….3

1.2. An example of independent process address space…………………………………………..4

1.3. A common three-plus-one mapping strategy………………………………………………...5

1.4. The x86 MMU………………………………………………………………………………..9

1.5. The x86 virtual address translation process…………………………………………………11

1.6. The x86 PAE virtual address translation process…………………………………………...15

1.7. The x86-64 virtual address translation process……………………………………………..16

1.8. A shared memory code sample……………………………………………………………...32

1.9. An example hugetlbfs mount command…………………………………………………….32

1.10. An example mmap() binding to a pseudo filesystem………………………………………33

1.11. An example anonymous mmap()…………………………………………………………..34

1.12. An example libhugetlbfs allocation………………………………………………………..35

3.1. Perf tool interfaces…………………………………………………………………………..44

3.2. Example perf stat command………………………………………………………………...44

3.3. Buckminsterfullerene image………………………………………………………………...48

4.1. Experimental results: Average dTLB load-misses in HPL…………………………………56

4.2. Experimental results: Average execution time in HPL……………………………………..56

4.3. Experimental results: Average system time in HPL………………………………………..57

4.4. Experimental results: Average dTLB load-misses in GAMESS…………………………...60

4.5. Experimental results: Average execution time in GAMESS……………………………….61

4.6. Experimental results: Average system time in GAMESS…………………………………..61

ix

4.7. Experimental results: Average dTLB load-misses with PTrees…………………………….64

4.8. Experimental results: Average execution time with PTrees………………………………...68

4.9. Experimental results: Average system time with PTrees…………………………………...68

x

LIST OF APPENDIX TABLES

Table Page

A.1. HPL input file……………………………………………………………………………….76

xi

LIST OF APPENDIX FIGURES

Figure Page

A.1. GAMESS input file………………………………………………………………………...78

A.2. HPL allocation code sample………………………………………………………………..79

A.3. GAMESS allocation code sample…………………………………………………………..80

A.4. GAMESS free code sample………………………………………………………………...81

A.5. PTree allocation code sample………………………………………………………………82

1

1. INTRODUCTION

 This section provides relevant background discussion on hardware and software systems

used to support operating system management of memory. It begins with a brief history of

computers and memory followed by a discussion of concepts and technologies relevant to the

Linux operating system.

1.1. Directly Addressed Memory

 Beginning in 1969, various companies began production of minicomputers. These

computers, such as the Data General Nova and the PDP-11 were used for general purpose

computing in scientific, educational, and business applications. These 16-bit minicomputers only

contained 64 kilobytes of addressable memory [7].

These systems all used what is known as directly addressed memory. Directly addressed

memory refers to a system which statically assigns which sections of memory should be used for

which purpose and a coordinated policy of access [8].

Directly addressed memory has many limitations. If a system has a limited amount of

RAM available to the Central Processing Unit (CPU), it may not be enough to run all the

programs a user may expect to run at once. For example, the operating system will require a

fixed amount of memory and the remaining memory may not be enough to support simultaneous

use of applications such as a web browser or a word processor. This would result in the operating

system issuing an out of memory error or a refusal to execute an application whose memory

requirement could not be fulfilled.

An additional limitation of directly addressed memory is a lack of protection. Memory

used by the operating system could potentially be modified by user applications. A programming

2

error in an application could result in total system failure. Limited protection mechanisms, such

as segmentation, were the only means to ensure this could not happen.

1.2. Virtual Memory

 To address the limitations of directly addressed memory, computer architects

implemented the concept of virtual memory. Virtual memory is a collection of management

techniques [9].

One of these techniques, known as paging, allows segments of memory that have not

been used recently to be copied to secondary storage such as a hard disk. This will allow the

memory that was occupied by an application to be released, thereby allowing that memory to be

used to satisfy a request of another application. This process is completely transparent to the

application.

 Virtual memory also imposes isolation on processes (contexts of execution). Processes

cannot address memory not assigned to their context which improves the reliability and security

of the system. Virtual memory thus provides a mechanism for increasing the overall security of

the system while also reducing the impact of application programming errors.

 Figure 1.1 depicts how virtual address can be mapped to multiple storage mediums. It

also details how processes are unaware of other processes use of physical memory. It should be

noted that virtual memory assumes the memory required by a process will be broken into

segments, the importance of these segments will be explained later.

3

Figure 1.1. Virtual memory

 The mapping of virtual memory to its physical location is the responsibility of the

memory management unit (MMU) [10]. Since each process has its own independent virtual

address space, the same virtual address from independent processes can map to different

segments of physical memory. An example of this is provided in Figure 1.2 where the virtual

memory address 0x886688 in processes one would result in a reference to physical memory

location 0x123456. In process two, virtual memory address 0x668866 would reference physical

memory location 0x987654.

4

Figure 1.2. An example of independent process address space

 The virtual to physical address translation capabilities of the MMU are also used to

provide separate processes with mappings to common operating system data structures and

shared libraries. Figure 1.3 demonstrates a common three-plus-one mapping strategy where three

gigabytes of the virtual address space are used for application specific data with one gigabyte of

virtual address space being used to map operating system data. The operating system mapping is

common to all processes.

Virtual memory is also used to support optimization strategies such as copy-on-write

(COW)[25]. With COW, when a process forks or creates a copy of itself, the new process points

to the exact same memory as the original process until a write is issued. At this point, a private

mapping of memory is created for use by the child process to prevent changes from being visible

to other processes. The primary advantages of COW are twofold; the first being multiple copies

5

of the identical memory segments do not need to be maintained with the second being the

performance optimization of not needing to create a complete memory image of the parent for

each child at the time of process creation.

Figure 1.3. A common three-plus-one mapping strategy

 As first noted in Figure 1.1, virtual memory implementations partition the virtual address

space into segments which are referred to as pages. Pages are blocks of contiguous virtual

memory addresses. MMU’s have historically used page sizes of 4096 bytes. These pages are the

smallest unit of memory allocation performed by the operating system and are the unit in which

data is transferred between main memory and secondary storage.

 As noted in Figure 1.2, any available physical memory that has not been mapped to a

process is capable of satisfying virtual mappings. As applications repeatedly execute, the

physical memory map develops discontinuity. While not having a direct performance impact,

this fragmentation process reduces the amount of contiguous physical memory which is

6

available, this reduction has important implications with respect to the use and management of

extended size pages.

 Virtual memory allows a page which does not have a physical memory mapping to be

referenced by an application. In the event a program attempts to reference a page not mapped in

physical memory, an exception called a page fault is generated. Once a page fault is triggered,

the operating system is notified and loads the required page from secondary storage.

The application referencing this page has no knowledge that a page fault occurred or of

the underlying mechanism used to implement the fault. This transfer of pages between main

memory and secondary storage is known as paging or swapping. It is the responsibility of the

operating system to determine which pages are migrated to secondary storage in response to

memory pressure.

 As an application executes it will eventually reach a steady state with respect to memory

which is being constantly referenced. Once this state is reached page faults, and in turn

swapping, should be at a minimum. However, in the event where a program has a steady state

which is too large to be supported directly in memory, a phenomenon known as thrashing

occurs. This results in pages being constantly swapped between main memory and secondary

storage which can result in an order of magnitude drop in system performance. This performance

degradation results in the common practice of configuring systems with sufficient memory to

minimize the need for swapping.

1.3. Caching

 Table 1.1 summarizes the hierarchy of access times of various levels of memory in

modern computer systems. As noted in the table, accessing memory from cache can result in a 3-

6 fold improvement in access latency when compared to satisfying requests from main memory.

7

Modern processors implement caches in order to increase application performance by decreasing

memory latency.

Table 1.1. Hierarchy of access times

Storage Level Access Time (clock cycles)

Processor Registers 1

Processor Cache 2-3

Main Memory 12

Hard Disk 1,000,000+

Network 1,000,000+

 In current architectures, up to three levels of cache are used. The cache is a high speed

memory store which is populated by data from a referenced memory location in parallel to its

return to the application. Caches hold a limited amount of data at any given time in static random

access memory (SRAM) based storage.

 Various levels of cache are considered to be 'closer' to the CPU with respect to access

latency than main memory. The closest cache to the processor, the L1 cache, has very low

latency. However, this cache is very small and is typically localized to a single processing core

on the CPU. The L2 cache is slower but larger and typically is unified between two processing

cores. The furthest from the CPU is the L3 cache. This cache is the slowest but can hold the most

data and is unified between every processing core.

 When data for a referenced memory location is located in cache, a condition known as a

'cache hit', the cached data is returned which reduces the time required to access the data. If the

referenced address is not in the cache, a condition referenced to as a 'cache miss', the referenced

8

value must be returned from main memory. The more requests which are served directly from

cache, the better the application will perform.

1.4. Hardware Implementation of Virtual Memory

 This paper will describe virtual memory management as implemented on the x86

architecture. The term x86 refers to a group of instruction set architectures (ISA) originating

from the Intel 8086 CPU.

Released in 1978, the 8086 was a 16-bit extension of Intel’s 8-bit based 8080 processor.

The term x86 is derived from the fact that successors to the 8086 also had names ending in “86”.

Many additions and extensions have been added to the x86 instruction set architecture over the

years while maintaining full backward compatibility. The term x86 became common after the

introduction of the 80386 which implemented a 32-bit instruction set and addressing [11].

 Prior to the 80386, the 80286 processor implemented segmentation as a method of

memory of protection. With segmentation, memory is divided into partitions that are addressed

with a single register (FS or GS) [12]. Partitions are of a fixed or variable size depending on the

implementation and may also overlap depending on the segmentation model. Processors today

still support segmentation as it is still minimally used by operating systems to support thread and

CPU specific data. With the introduction of the 80386, which included a full featured MMU with

a flat 32-bit address space, the use of memory segmentation was largely discontinued.

1.5. x86-32 vs. x86-64

 Increases in memory subsystem sizes required a further extension to the x86 architecture.

This extension is referred to as x86-64 and increases the native word size from 32 to 64 bits. This

extension also provides a corresponding increase in virtual and physical address space which

allows larger physical memory sizes to be implemented [4].

9

 Given current hardware architectures, a 64-bit address space is so large that physical and

virtual address spaces less than 64 bits are implemented. For example, the machine in this

investigation implements a 38-bit physical address space and a 48-bit virtual address space. The

38-bit physical address space supports 256 gigabytes of physical memory while the 48-bit virtual

address space supports a virtual mapping space of two trillion memory locations.

1.6. The x86 Memory Management Unit

 As previously discussed, current processors use a memory management unit (MMU) to

implement virtual memory. A MMU is a computer hardware component responsible for handling

memory accesses requested by the CPU. Its responsibilities include translation of virtual to

physical addresses, memory protection, and cache control.

As noted in the discussion on paging, modern x86 MMUs operate by dividing the virtual

address space into pages. In order for the MMU to locate the page of physical memory being

referenced, the MMU carries out a virtual to physical address translation process.

 Figure 1.4. The x86 MMU

10

 On the x86 MMU, virtual address translation takes place in three stages [6]. In the first

stage, a global page directory (GPD) is located. The x86 architecture implements a global

control register called the CR3 register, this register is used to store the physical address of the

global page directory for the currently executing process. The global page directory is a 1024

element array of page table entries.

 The address in the CR3 register is used as the base address of the array. The top 10 bits of

the target virtual address are used to compute an offset into the GPD array which will contain a

physical address to a page directory entry (PDE).

 The PDE contains the physical address of a page table which is a 1024 element array,

with each array element containing the physical address of a page. The second 10 bits of the

target virtual address are used to compute an offset into the page table array to an element

referred to as a page table entry (PTE). The remaining 12 bits of the virtual address are used to

compute an offset to the final physical location of the data for the referenced virtual address from

the given PTE. The desired data is returned to the application and the caching layers. Figure 1.5

provides an example of the virtual to physical translation process.

Consider the example where translation of the following virtual address is requested:

1100110011 0011001100 110011001100

 The process specific address contained in the CR3 register is used to determine the

location of the PGD. The first 10-bits of the virtual address are used as an index in the PGD to

locate the PDE. In the example above, 1100110011 is used as the offset in the PGD to locate the

PDE.

11

Figure 1.5. The x86 virtual address translation process

The second component of the target virtual address, 0011001100 represents the offset in the PDE

to the address of the physical page. The final component of the virtual address, 110011001100

is applied as an offset to the address of the physical page.

 A 12-bit offset is capable of enumerating 2
12

 or 4096 separate bytes which are found in a

standard 4K page. The contents of the physical memory location at the specified offset are

returned to fulfill the virtual address request.

 As noted in our discussion of memory cache architectures there are significant latency

penalties associated with accessing physical memory. The three memory accesses (GPD access,

PDE access, page access) required for a 'page table walk', constitutes the physical memory

12

latency required to support a virtual memory translation. This latency translates into tens of CPU

cycles [13].

 In order to reduce the memory latency imposed by virtual to physical address translation,

an additional cache known as the translation lookaside buffer (TLB) is implemented [15]. The

TLB uses an associative cache architecture to support the direct translation of a virtual address to

a physical address. This direct translation eliminates the need for a 'page table walk' and its

associated latency.

 The cache tag or index is a set of virtual memory addresses. The value associated with the

tag is a physical address which the virtual address resolves to. The result of the TLB cache hit is

a physical address which is used to resolve the virtual address translation request. In the event of

a TLB miss, the MMU must execute the virtual to physical address translation described above.

 The effect of a TLB is to reduce the computational and latency costs associated with

executing address translation and page table look-ups on every virtual address reference. The

TLB exploits the common case of high locality of reference to reduce the memory latency

impact of the virtual to physical address translation process.

 If a virtual address translation is executed, the TLB must be updated. This update requires

a decision to be made as to which current member of the cache must be evicted. The x86 TLB

implements a least recently used (LRU) eviction strategy in hardware. With LRU, the address

that was least recently referenced is discarded and is replaced with the current virtual address

translation.

 The advantage of this policy is that it has the best chance of releasing a translation that

will not be used in the near future, thus reducing eviction pressure. On a standard x86 server

13

machine, the TLB contains 1024 translation entries. Since the TLB is a very limited commodity,

eviction pressure on the TLB has a significant impact on execution performance.

 Similar to CPU caches, modern TLBs have multiple levels which contain different data.

For example, with Intel's Nehalem architecture, a 64-entry L1 data-TLB (dTLB for short) is held

'closer' to the CPU. This TLB contains only data specific translations. An additional cache of

related proximity is the instruction TLB or iTLB which is used to hold translations for

instructions. Lastly, a unified L2 TLB is used to hold either data or instruction address

translations [14].

 If application data is to move in or out of memory, it does so through movement to or

from a register. Movement from a register to memory is a data store. Movement from memory to

a register is a load. These movements are mediated through several different dTLB and iTLB

translations. There are performance metrics available for each of these translations.

 The dTLB has several statistics of importance with regards to its influence on application

performance. The first, a concept known as 'dTLB loads', is the number of translations for

addresses associated with data loads. The second important statistic, known as ‘dTLB load-

misses’, is instances when a data load address translation could not be resolved by the TLB.

 Conversely, a second set of metrics, known as 'dTLB stores', is the number of address

translations for data store instructions from CPU registers to main memory. Correspondingly,

dTLB store-misses are the number of data store translations that could not be resolved by the

TLB.

 A final statistic, known as 'iTLB loads', represents the number of address translations

needed to load processor instructions. 'iTLB load-misses' contains the number of times the

processor instructions failed to be translated.

14

1.7. Address Space Expansion

 Due to the inherent characteristics of modeling and simulation problems in high

performance computing, applications often times possess a large memory footprint [1]. This has

resulted in a situation where a 32-bit physical address space, supporting the previously

mentioned three gigabytes of user based application memory, is insufficient. To remedy this

limitation, system architects developed what is known as the Physical Address Extension (PAE)

mode for x86 processors [16].

 PAE mode implements physical address space sizes greater than four gigabytes as long as

the underlying operating system supports it. The physical address space increase from 32-bits to

36-bits increases the maximum supported memory from 4 to 64 gigabytes. This extension

requires a third level in the hardware page table hierarchy to support the increased physical

address size [17].

 As previously described, a traditional x86 processor uses a two-level page table with a

four kilobyte page table directory with 1024 entries. Enabling PAE mode changes this

implementation. Rather than four byte entries in the page table directory and the page tables,

each table entry increases in size to eight byte entries (64-bits). The arrays used to implement the

virtual to physical address translation remain four kilobytes in size which results in each array

containing 512 entries rather than 1024 entries.

 Since each page table contains only half as many entries as the original x86 design, an

additional level must be added to the page table directory to compensate. As Figure 1.6

illustrates, the CR3 register now points to a Page Directory Pointer Table (PDPT) which

15

contains references to four page directories. The four page directory references of the PDPT are

sufficient to support the extended physical address space of 36-bits.

 In PAE mode processes are still limited to three gigabytes of virtual address space. PAE

mode thus enables a system to have a larger number of processes with full memory commitment

given the conventional limitation on the amount of memory each process can reference

Figure 1.6. The x86 PAE virtual address translation process

With the introduction of x86-64, a further extension to x86 with PAE is introduced.

x86_64 provides even larger virtual and physical address spaces than is possible with x86. As

previously noted, current x86_64 processors support a physical address space of 48-bits which is

256 terabytes of physical memory.

16

 In order to expand to a 64-bit logical address space, a superset of PAE mode called 'long

mode' was introduced. Long mode contains the same support for 32-bit applications in addition

to supporting an extended physical address space size.

 Instead of utilizing the three level page table hierarchy present in PAE mode, the long

mode implementation uses four levels of page tables. The PDPT from PAE mode is extended

from 4 to 512 entries. In addition, a fourth level called the Page-Map Level 4 (PML4) is added

which contains 512 entries. Figure 1.7 details this architecture.

Figure 1.7. The x86-64 virtual address translation process

 This page table hierarchy supports up to 48-bits of addressable physical memory. A

complete mapping of 4 kilobyte pages on a 48-bit address space would provide the ability to

reference 256 terabytes of physical memory. No known systems are currently able to utilize a 48-

17

bit physical address space. At the time of this writing the SGI UV2 shared memory system,

which currently supports 64 terabytes of physical memory, is the largest memory system

available [18].

1.8. Linux Virtual Memory Management Architecture

 In the Linux Operating System [23], each process resides within its own contiguous

virtual address space which translates to a discontinuous physical address space through platform

specific hardware mapping systems. Each segment of the virtual address space is managed

through a structure known as a Virtual Memory Area (VMA) which encapsulates information

needed to define and manage a contiguous segment of virtual address space. The complete

virtual memory map is represented by a linked list of VMAs.

 The VMAs for a particular process can be viewed using two methods. The first method

is by viewing the content of /proc/PID/maps. This is the native platform interface to VMA

information. The second method is by using the 'pmap' command line tool on a process ID. Table

1.2 demonstrates the output of this command on a standard BASH shell process.

Table 1.2. Example pmap output

0000000000400000 712K r-x-- /bin/bash

00000000006b2000 40K rw--- /bin/bash

00000000006bc000 20K rw--- [anon]

00000000008bb000 32K rw--- /bin/bash

00000000008c3000 264K rw--- [anon]

18

As displayed in Table 1.2, the VMAs for a process all have a size that is an exact multiple

of a standard 4 kilobyte page size. At a minimum, a memory map for a process will contain

application text, initialized / uninitialized data, the application stack, and any active memory

mappings.

 A VMA will be created when an application issues a mmap() system call to map memory

into a process's address space. If the request can be satisfied, the operating system will grant the

mmap() request by creating a new VMA segment large enough to represent the requested

allocation.

 Once a VMA is allocated by the system, appropriate permissions in the form of system

flags are set for that segment of virtual memory. These permission flags will determine how data

in the memory area is managed. VMA permission flags are independent from the permissions on

each individual page within the memory area. Table 1.3 documents these VMA flags. They can

also be found in <include/linux/mm.h>.

Table 1.3. VMA flags

VM_READ Pages in this area can be read

VM_WRITE Pages in this area can be written

VM_EXEC Page in this area can be executed

VM_SHARED Pages in this area are shared

VM_MAYREAD Allow VM_READ to be turned off with mprotect()

VM_MAYWRITE Allow VM_WRITE to be turned off with mprotect()

VM_GROWSDOWN The VMA grows up

VM_GROWSUP The VMA grows down

19

Table 1.3. VMA flags (continued)

VM_READ Pages in this area can be read

VM_NOHUGEPAGE Madvise() marked this VMA

VM_DENYWRITE Deny write attempts to VMA

VM_EXECUTABLE VMA maps executable file

VM_LOCKED Pages in VMA are locked

VM_IO VMA maps a devices I/O space

VM_SEQ_READ Application will access data sequentially

VM_RAND_READ Application will not benefit from clustered reads

VM_DONTCOPY Do not copy VMA on fork()

VM_DONTEXPAND Do not expand VMA with mremap()

VM_RESERVED This area must not be swapped out

VM_NORESERVE Suppress VM accounting

VM_HUGETLB This VMA is a hugetlb

VM_HUGEPAGE Madvise() marked this VMA

 To manage VMAs, the Linux kernel uses a data structure known as the 'vm_area_struct'.

Each vm_area_struct contains the start and end address of a segment of contiguous virtual

memory. These segments of memory are non-overlapping and represent a set of virtual addresses

generated by an application request to map virtual memory. The vm_area_struct is defined in

<include/linux/mm_types.h>.

 In order to access a page of memory, a series of data structures must be navigated. The

structures referenced depend on the type of memory allocation request which is being requested.

20

 If the application is requesting file backed memory, the value of the 'vm_file’ pointer is

used to locate a structure of type ‘address_space’. The address_space structure contains a radix

tree representation of the pages contained in that VMAs address space. Each node in the radix

tree contains a page address and a bit field which represents the page’s state. These bit fields

indicate whether a page is clean, dirty, or locked.

 If the application requests anonymous memory mapping, the ‘vm_file’ variable will be a

set to NULL and a new variable called ‘anon_vma’ will point to a structure of type anon_vma.

 Each physical page is represented with a corresponding page structure. This structure is

used to keep track of the page’s status. This structure is defined in <include/linux/mm_types.h>.

 All of the information, including references to the VMAs required to manage the virtual

address space of a process are encapsulated within a structure that is referred to as an mm_struct.

Included in this structure is a pointer to the linked list of vm_area_structs which define the

virtual address space of the process, a red-black tree containing references to the individual

vm_area_structs, and a pointer reference to the processes PGD. This structure is found in

<include/linux/mm_types.h>.

 Inside the mm_struct several key data structures are critical to the operation of the virtual

memory manager. The first is a red-black tree (defined in include/linux/rb.h) which contains the

virtual start address for every VMA resident within the process. The red-black tree is used in the

event rapid address lookups are required. These lookups are important for page fault handling

when VMAs must be found quickly. The red-black tree implements O(log n) time complexity for

these lookups. The tree is ordered in such a way that lower order addresses are found on the left

side of the tree and higher order addresses are located on the right-hand side of the tree.

21

 In order to service a mmap() system call requesting a new memory allocation, the linked

list of VMAs is consulted. Within the linked list, VMAs are ordered in ascending virtual memory

addresses. The linked list is traversed to determine whether a gap within the virtual address space

can be found to satisfy the allocation request. In the event a gap is not found within the virtual

address space to satisfy the request, the new VMA is inserted at the end of the list.

 The mm_struct is referenced by another structure known as the task_struct. The task

structure is responsible for encapsulating all data related to each process within the operating

system. It formally declared in <include/linux/sched.h>.

During the process of a context switch the address of the PGD(which is referenced

through the mm_struct) is loaded into the CR3 register. As noted in the description of the

hardware implementation, the MMU will now have access to the physical memory

implementation of the virtual memory map of the process.

 In the event an entry for a physical page within the page table is not found, the page fault

handling mechanism is invoked. At this point, the virtual page will indicate that the page is

flagged as non-resident within page tables and a variety of scenarios may occur depending on the

type of page fault.

The most common type of page fault is known as a minor page fault. The Linux page

fault handler responds to a variety of events which result in a minor page faults. Table 1.4 details

the different types of minor page faults.

22

Table 1.4. Types of minor page faults

1. Memory region is valid however the page frame is not allocated.

2. Memory region is not valid but is next to an expandable memory region

(such as the stack).

3. Page is swapped out but present within swap cache.

4. Page is written to when marked as read-only. (COW page)

 The most common type of minor page fault results from a page that is resident in memory

at the time of fault generation however, the page does not contain a valid page table entry. In this

event, the page fault handler needs to create a PTE which points to the requested page in memory

and indicate to the operating system that the page's address is now loaded in the page tables.

 This typical minor page fault case on the x86 architecture with Linux involves several

steps.

1. The exception handler is alerted to a page fault in a valid memory region. The

exception handler will proceed to invoke the architecture dependent function

do_page_fault().

2. The do_page_fault() function will proceed to the architecture independent function

handle_mm_fault(). This later function will allocate required page table entries if

needed before passing control to the handle_pte_fault() function.

3. The handle_pte_fault() establishes a PTE for the requested page and updates the struct

page accordingly.

23

 There exists a second type of page fault, known as a major page fault. A major page fault

occurs if the requested page is non-resident in physical memory but present in secondary storage.

In order to handle this type of fault, the page fault handler must locate a page suitable for

eviction, write it out to disk, and move the requested page into memory, followed by updating

the page table entries appropriately. Major page faults are not the subject of this investigation as

common HPC systems contains sufficient memory to handle the applications being used to avoid

swapping.

 Major faults are clearly more expensive than minor faults due to the added disk latency.

However, minor page faults are not without computational cost. In the event of a minor page

fault, an entry into the kernel is required, a requested page must be located, the requested page

must be updated, and the page table(s) properly modified. All this must be accomplished while

maintaining proper synchronization with other threads modifying and reading the page table tree.

 The final step in the page fault procedure is the allocation of the physical memory needed

to hold a page. Applications typically request memory in segments, often times these segments

are multiple pages in size which the operating system attempts to place in physically contiguous

memory. A specialized allocation algorithm is used to carry out physical memory allocation.

 The algorithm used to implement physical memory allocation is known as the buddy

allocator. This allocator is a two part scheme which combines power-of-two allocation with

physical memory coalescing [19].

Allocation of physical memory is managed by segmenting sections of contiguous

physical memory into blocks where each block contains a power-of-two number of pages. These

blocks are placed in one of ten lists of varying sizes. The lists contain blocks that range in size

24

from one page to blocks that are 2
10

 in size. This list and the number of list occupants can be

viewed in ‘/proc/buddyinfo'. Table 1.5 provides an example output of this file.

Table 1.5. Contents of /proc/buddyinfo

DMA 1 1 1 0 2 1 1 0 1 1 3

DMA32 9 8 10 3 4 8 7 3 4 2 483

Normal 17 2 10 408 193 45 4 1 1 1 255

 In order to allocate pages for a request, the allocator must check if the request can be

satisfied by a free block in the smallest list possible. For example, if 64 (2
6
) pages of contiguous

physical memory are requested, the allocator will check the 2
6
 list for a free block. If one exists,

the allocator can pass the block to the requester. However, if the free block in the 2
6
 list does not

exist, the allocator will look in the 2
7
 list for a free block. If a block is present within this list, the

block is split and half is given to the requester while the second half is given to the 2
6
 list.

In the event the 2
7
 list is empty, the allocator proceeds to the 2

8
 list where it further

divides blocks to fill the previous lists and grant the allocation request. If no list contains a free

block, a memory allocation error is reported.

 Once the requester has finished using a block, the Kernel will attempt to coalesce free

buddy blocks of size S to size 2S. In order to merge two blocks, several points must hold. Both

buddy blocks must be the same size and both blocks must be adjacent to each other in physical

memory.

25

1.9. Extended Page Sizes

 As previously mentioned, standard four kilobyte pages impose a memory overhead of

four kilobytes of physical memory per page table. This, coupled with the operating system data

structure overhead required to manage the virtual memory, constitutes the physical memory

overhead imposed by the virtual memory abstraction.

 Consider the following example; a 16 gigabyte web server application handling 500

concurrent connections will be using 4,194,304 four kilobyte pages. The page table memory

consumption to support these pages is 16 megabytes per process.

 This results in a requirement to dedicate 8000 (16 megabytes * 500 processes) megabytes

of memory to support the system page tables. Since the TLB can only hold a maximum of 1024

PTE translations, the eviction pressure of using standard sized pages on large memory

configurations becomes apparent.

 Table 1.6 summarizes VMA memory overhead as a function of physical memory size for

four kilobyte pages across a spectrum of physical memory sizes.

Table 1.6. VMA memory overhead

 1GB 10GB 100GB 1000GB

4Kb Page Tables Required 256 2560 25,600 256,000

Total Page Table Entries 262,144 2,621,440 26,214,400 262,144,000

 Processor architects have introduced extended size pages to address memory

consumption and TLB cache pressure associated with standard page sizes. This architecture

26

allows multiple page sizes to be used simultaneously due to the potential drawbacks and

penalties imposed by using a single page size.

 Table 1.7 illustrates various hardware architectures and the variety of page sizes

available.

Table 1.7. Page sizes for various architectures

Architecture Standard Page Size Extended Page Size

x86 4Kb 4M and 2M in PAE mode

ia64 4Kb 4Kb, 8Kb, 64Kb, 256Kb,

1M, 4M, 16M, 256M

ppc64 4Kb 16M

sparc 8Kb -

arm 4Kb 64Kb

 Extended page sizes provide several benefits. The first of which results from the effects

of decreasing the number of page table entries required to cover a processes memory map. Use

of extended pages also reduces the amount of physical memory required by the previously

described data structures.

 Lastly, by utilizing extended pages, the overall amount of memory covered by entries

within the TLB increases. For example on x86, a 1024 entry TLB using two megabyte extended

page sizes would allow the TLB to translate two gigabytes of virtual memory. In contrast, the

same size TLB would only allow four megabytes of virtual memory translations using four

kilobyte pages.

27

 The Linux operating system presents extended pages in two forms. The first form is a

statically assigned pool of extended size pages allocated by a system administrator before an

application is run. This pool is used to service extended page size allocation requests userspace

applications. The second form is a transparent model where the operating system transparently

allocates extended pages based on application demand for large physical memory segments

during execution.

 The statically assigned extended page size pool, referred to as 'hugetlbfs' within Linux,

was the first attempt at offering extended size page support. 'hugetlbfs' or 'huge translation-

lookaside buffer file system', first developed by Dr. Mel Gorman, is a collection of techniques to

access extended page size mappings[24]. These techniques include shared memory, a pseudo

RAM based file system, and anonymous mapping of memory backed by extended page sizes.

 Before selecting an access method, support for extended pages has to be enabled within

the Kernel. A system administrator must configure the extended size page pool which will be

available for access. Various Linux Kernel configuration operations are available to configure

this support.

 The pseudo file /proc/meminfo contains information regarding the current number of the

'hugetlbfs' pages within the extended size page pool. This pseudo file also contains information

regarding the free, reserved, surplus pages, and default extended page size. Table 1.8 provides an

example of this file.

28

Table 1.8. Contents of /proc/meminfo

MemTotal: 16458212 kB

MemFree: 186656 kB

Buffers: 59344 kB

Cached: 15246344 kB

SwapCached: 0 kB

Active: 3730604 kB

Inactive: 11917232 kB

Active(anon): 305416 kB

Inactive(anon): 42080 kB

Active(file): 3425188 kB

Inactive(file): 11875152 kB

Unevictable: 32408 kB

Mlocked: 14012 kB

SwapTotal: 2097148 kB

SwapFree: 2097148 kB

Dirty: 0 kB

Writeback: 0 kB

AnonPages: 374652 kB

29

Table 1.8. Contents of /proc/meminfo (continued)

MemTotal: 16458212 kB

Mapped: 16576 kB

Shmem: 216 kB

Slab: 528820 kB

SReclaimable: 509328 kB

SUnreclaim: 19492 kB

KernelStack: 1696 kB

PageTables: 5420 kB

NFS_Unstable: 0 kB

Bounce: 0 kB

WritebackTmp: 0 kB

CommitLimit: 10326252 kB

Committed_AS: 2866592 kB

VmallocTotal: 34359738367 kB

VmallocUsed: 302460 kB

VmallocChunk: 34359431323 kB

AnonHugePages: 317440 kB

HugePages_Total: 10

HugePages_Free: 10

HugePages_Rsvd: 0

HugePages_Surp: 0

Hugepagesize: 2048 kB

30

Table 1.8. Contents of /proc/meminfo (continued)

MemTotal: 16458212 kB

DirectMap4k: 6144 kB

DirectMap2M: 16766976 kB

 The following values within this file are the important parameters with regards to

extended page sizes:

 HugePages_Total: Size of extended page pool.

 HugePages_Free: Number of unallocated extended pages

 HugePages_Rsvd: Extended pages reserved by application but have not been

populated

 HugePages_Surp: Number of surplus extended pages currently overcommited

 Hugepagesize: Size of extended pages for this system

 The number of available extended pages is set by writing values to the

/proc/sys/vm/nr_hugepages pseudo file. This pseudo file indicates the number of persistent

extended pages in the operating system extended page pool. Persistent extended pages are

returned to the pool when a task has finished using them. A system administrator dynamically

adds or removes extended pages from the pool by changing the value in the 'nr_hugepages' file.

 Static allocation of extended pages has a number of limitations. Statically assigned

extended pages are reserved within the operating system, as a result, the reserved memory may

not be used for any other purpose. An architectural limitation of this model is that extended

pages cannot be swapped to secondary storage should memory contention arise.

31

 Extended page allocation also depends on the presence of contiguous physical memory.

Without sufficient contiguous physical memory, an allocation request cannot proceed. The

longer a system runs, the greater chance for memory fragmentation to develop. This

fragmentation decreases the chance of a successful allocation.

Because of this fragmentation effect, system administrators should specify extended page

pool size at system boot time when there is the greatest chance of allocating large segments of

contiguous physical memory.

 Once the system administrator has reserved an extended page pool, user applications may

access extended page mappings using one of the following three methods:

1. A shared memory system call.

2. An anonymous memory map.

3. A pseudo filesystem.

 The first method uses statically allocated extended pages accessed through a traditional

shared memory system call. The shmget() system call is passed the SHM_HUGETLB flag to

request that the memory allocation be managed using extended page size rather than a standard

four kilobyte page.

 Although simple to use, this method has a drawback in that it only supports the default

extended page size for the system it is running on. This means architectures that support multiple

extended page sizes, such as IA64 and PPC, are forced to a single page size.

Figure 1.8 is an example of using a shared memory system call backed by extended sized

pages.

32

Figure 1.8. A shared memory code sample

 The variable 'shmbuffer' now points to a 128 megabyte segment of memory which will be

mapped by extended size pages.

 The second method is the use of the “hugetlbfs” pseudo filesystem. This method requires

a RAM-based filesystem be mounted prior to applications requesting allocations with extended

page size backings.

 The size of the extended page which will be used for mappings is configured by a system

administrator when the filesystem is first mounted. The extended page size selected during the

mount must be supported by the underlying architecture. An example 'mount' command is

provided below in Figure 1.9.

Figure 1.9. An example hugetlbfs mount command

33

 The command in Figure 1.9 creates a RAM-based file system which uses an extended

page size of 16 megabytes.

 Once the filesystem has been mounted, the mmap() system call is used on a generic file-

descriptor obtained by opening a file on the filesystem. Figure 1.10 provides an example:

Figure 1.10. An example mmap() binding to a pseudo filesystem

 Memory referenced by the 'addr' variable will be mapped with the extended page size

specified to the pseudo filesystem.

 The total size of all files mapped on the filesystem cannot exceed the number of extended

pages allocated in the extended page pool.

 The final method is an anonymous memory mapping obtained with the mmap() system

call. Anonymous memory mappings are not backed by any file. As of Kernel version 2.6.38, the

flags MAP_ANONYMOUS and MAP_HUGETLB can be passed to mmap() to receive a

memory allocation managed by extended page sizes. This strategy provides a simpler method to

handle general memory allocation without the special requirements imposed by the prior

methods. Figure 1.11 provides an example mmap() extended page allocation.

34

Figure 1.11. An example anonymous mmap()

 The variable 'mmapbuffer' references 128 megabytes of virtual memory managed by

extended size pages.

 Many applications simply need a single memory buffer backed by extended page sizes. In

order to provide an API for this functionality, libhugetlbfs was developed by Dr. Mel Gorman.

[39] Libhugetlbfs provides the get_hugepage_region() and get_huge_pages() which implement

this functionality.

 The get_huge_pages() function is primarily used for the development of custom

allocation schemes and is not a suitable replacement for malloc(). The size parameter of this

function is required to be a multiple of the default extended page size.

 The get_hugepage_region() function is used by applications that want to allocate large

segments of memory which are not precise multiples of the extended page size. This function can

also fall back to using small pages if needed making it a suitable replacement for malloc() in

most cases. Figure 1.12 provides an example allocation using this method.

35

Figure 1.12. An example libhugetlbfs allocation

 There are several challenges with associated with the use of statically assigned extended

pages. One of the most fundamental challenges is that support is not transparent to the

application. The application programmer must introduce support for extended page size

mappings within the application. This presents a challenge to application programmers who are

not necessarily experienced in the implementation of extended page size backings. Additional

36

application development time is required to integrate the appropriate APIs to request extended

page size mappings.

 In addition to these issues, support from system administration staff is required to

properly configure support for extended size pages at the operating system level. There also must

be an agreement between administrators and developers with respect to the amount of memory

assigned to the extended page pool.

 Transparent huge page support has been introduced in recent Linux kernels to address the

deficiency of statically assigned extended pages. Transparent Huge Pages (THPs) are

implemented by allocating extended size pages mappings whenever possible to any application

that requests a memory allocation greater than or equal to the default system extended page size.

 The THP system has a number of advantages over the static allocation system. The

primary advantage arises from the fact that no changes are needed at the application level to gain

the benefits of extended page size allocations.

 An additional benefit is support for coalescence of standard size pages to extended size

pages. This functionality is implemented through a Kernel monitoring thread called

'khugepaged'. This thread periodically attempts to consolidate groups of contiguous standard

sized pages into a smaller number of extended size pages.

 The final advantage is support for migrating (swapping) memory backed by THPs to

secondary storage. To achieve this functionality, transparent pages are split into corresponding

smaller, four kilobyte pages which are then handled by the traditional swapping mechanism.

 An extension to the madvise() API allows application programmers to advise the

operating system that certain memory allocations would be well suited to be supported by

extended size mappings. The hinting is accomplished by passing the “MADV_HUGEPAGE”

37

flag to the madvise() system call. The opposite hint is also available. The

“MADV_NOHUGEPAGE” is used to specify to the Kernel to not attempt extended size

mappings for a memory allocation requests.

 Due to these advantages, current development efforts are focused on improvements to the

transparent model. In spite of these improvements, some disadvantages remain.

 One of the first disadvantages with the current THP implementation is that the VMM is

only able to handle a single extended page size of two megabytes. This leads to a limitation on

architectures which support multiple page sizes or which don't have support for two megabyte

pages.

 The realloc() standard library call (which invokes the mremap() system call) must have

special handling with transparent huge pages. When a segment of memory backed by transparent

huge pages is reallocated, the operating system splits the extended pages into four kilobyte pages

in order to process the reallocation request. Once complete, it is the responsibility of the

'khugepaged' monitoring daemon to coalesce the newly reallocated memory segment back into

extended pages.

 Lastly, unlike statically allocated extended pages, transparent huge pages offer no

guarantees that the application will have access to extended size mappings since the memory is

not explicitly reserved.

1.10. Objectives

 The objective of this work is to analyze the previously described extended paging

methods in simulation environments which have significant memory requirements. The specific

areas of investigation are as follows:

38

 Understand and analyze the impact of varying memory allocation architectures

used by different applications

 Determine the effectiveness of application integration strategies with respect to

page fault rate, dTLB performance, and system time with a collection of non-

synthetic benchmarks.

 Determine where performance advantages are gained within the VMM when

using extended page sizes.

 Investigate performance anomalies and situations where extended size pages are

not appropriate.

39

2. RELATED WORK

 There is a large body of work across multiple hardware and operating system

architectures to address the problem of TLB eviction pressure. These are characterized by

various strategies which seek to leverage increased TLB scope through the use of extended

hardware managed page sizes. The following discussion offers a high level overview of the use

and performance of extended page sizes to increase application and operating system

performance.

 The effectiveness of static extended page sizes measured in [36] demonstrates a variety of

test cases in which several common benchmarking applications are used. These benchmarking

applications suggest an overall improvement in application run time when using with statically

allocated extended pages. In most of these test cases, the synthetic benchmarks had a

performance improvement of between 5 and 10 percent.

 In [29], comparison tests were run on another set of synthetic benchmarking applications

against both transparent and statically allocated extended pages. In this case, it was discovered

that the transparent paging method was slightly less effective compared to the static method. It

was noted in this study that the comparison could not be considered an exact 'like-by-like' study

as the 'hugetlbfs' backed memory segments were allocated using shared memory while the

transparent segments were allocated using anonymous memory mappings.

 In [28], a custom benchmarking application is used to determine the effectiveness of

statically allocated extended page mappings. This benchmarking application used a random read-

write access pattern to determine the effect of a TLB miss. It was found that extended pages

didn't always outperform standard pages, especially at reduced memory levels.

40

 In [30] the effect of operating system “noise” which in this report is in the form of TLB

misses, interrupts, and asynchronous events. This paper uses a custom microkernel versus

several different Linux kernels to better understand how operating system noise affects a system.

It was noted that the impact on TLB eviction pressure can be greatly affected just by application

code alone.

 In [31] an analysis of TLB miss-rates is conducted. In this paper, the TLB is treated as a

bottleneck which is alleviated by increasing page size and potentially supporting two page sizes.

A SPARC system was used which is programmed to support a single 32 kilobyte page size or

two page sizes, a 4 kilobyte (standard) and 32 kilobyte (extended). It was found that the single 32

kilobyte page had a 60% increase in average working set size and significantly improved TLB

statistics compared to a single four kilobyte page model. The mixed page size model had a 10%

increase in average working set size with almost no improvements to TLB pressure.

 The reference cited in [32] analyzes the benefits of using extended page sizes on Open

Multiprocessing (OpenMP) applications. In this paper, a custom OpenMP application able to

support extended page sizes was developed. Results were gathered from the application using

Oprofile and a 25% improvement in execution time was seen in some cases.

 In [33] a vendor specific microkernel as an alternative to Linux in a high-performance

computing center is introduced to combat the impact of TLB misses. A “big memory” design is

proposed which uses extremely large extended pages available on the PowerPC architecture in

an attempt to create a fully transparent TLB-miss-free environment. Single compute node

benchmarks showed a 0.03%-0.2% improvement compared to a Linux Kernel. When run on a

1024 node cluster using a benchmarking application, a 0.1% to 0.7% improvement was noted.

41

In [35], decreasing communication overhead in parallel applications through extended

page sizes is evaluated. By using appropriate data placement strategies, the author was able to

utilize a transparent approach to extended page sizes to decrease memory registration costs and

improve network bandwidth.

The author points out how communication latency can vary depending on how data is

placed and organized in memory. By using extended pages and proper in-memory data

placement, more than a 10% improvement in communication performance resulted with

applications using RDMA over Infiniband.

 In [34] the authors detail the difficulties of a transparent design due to architectural

limitations and operating system overhead cost. The overall cost of the transparent model of

extended pages access is brought into question and instead, an explicit static method of

allocation is proposed. The explicit method saw an average 2% to 10% improvement on x86-64

and a 4%-15% improvement on PPC64 when using standard memory benchmarking

applications.

 The inference from [29], [33], [34], and [35] suggests that simply increasing the hardware

page size is not enough to guarantee an application performance increase. Factors such as

hardware architecture, number of processing cores, degree of parallelism, amount of memory,

page size, and paging method all need to be taken into account when developing a solution

which supports maximum application performance.

42

3. METHODS

 For the purpose of this investigation we will be observing how the use of extended page

sizes influence the performance of a variety of applications found in high performance

computing which have significant physical memory requirements. These applications include

HPL, GAMESS, and a specialized vertical data mining application.

3.1. System Overview

 The following evaluations were carried out on a 1U server. The application x86info[26]

was used to obtain the following system characteristics:

 CPU:

 Dual-quad core 2.66 Ghz Processor; E5430 Xeon

 Cache Information:

 L1 Instruction cache: 32KB, 8-way associative. 64 byte line size.

 L1 Data cache: 32KB, 8-way associative. 64 byte line size.

 L2 cache: 6MB, 24-way set associative, 64-byte line size.

 TLB Information:

 Instruction TLB: 4x 4MB page entries, or 8x 2MB pages entries, 4-way

associative

 Instruction TLB: 4K pages, 4-way associative, 128 entries.

 Data TLB: 4K pages, 4-way associative, 256 entries.

43

 L1 Data TLB: 4KB pages, 4-way set associative, 16 entries

 Address Sizes:

 38 bits physical, 48 bits virtual

 Main Memory:

 16 gigabytes

 Operating System:

 Linux kernel version 3.4.7

3.2. Performance Monitoring

 The Performance Monitoring Unit (PMU) [20] of Intel based CPUs contain a collection

of registers that count the number of hardware events generated by the execution of an

application. These events include cache-misses, total instructions executed, context-switches,

page faults, and much more. In addition to this, the PMU is used to measure where applications

spend the majority of their time executing. The PMU is a common feature on all modern x86_64

processors and IA-64 based processors.

 The Linux Perf subsystem provides an abstraction interface to interact with the PMU to

gather event data. This interface is used gather application events by process, thread, and

function from the PMU.

 A userspace tool called 'perf' is used to query the Perf subsystem for application event

information. Figure 3.1 outlines the interactions of these tools and interfaces.

44

Figure 3.1. Perf tool interfaces

 Figure 3.2 provides example output from the 'perf stat' command on a simple UNIX 'dd'

command. With 'perf stat', hardware events are aggregated during program execution from the

PMU registers and presented through standard output once the application has finished

executing.

Figure 3.2. Example perf stat command

45

 Table 3.1 summarizes common commands used with perf to gather, record, and view

various system events.

Table 3.1. Perf tool commands

Command Description

stat Display event counts

record Record events for later reporting

report Breakdown events by process, function, thread

annotate Annotate source code with event counts

top View live(current) event counts

 System events provided by this interface, in combination with system time, provided the

means of benchmarking the applications being studied. The primary event of interest to this

investigation is the number of minor page faults and TLB misses an application generates during

execution.

 The page fault metric is used to determine to what extent page faults occur when using

varying page sizes and methods (static vs. transparent). The overall execution time will be used

to determine whether or not the use of extended page sizes, through a reduction in page faults

and TLB misses, has a user impact on application performance.

3.3. High Performance LINPACK

 The High Performance LINPACK (HPL) is a portable, highly scalable linear algebra

application package used as the standard test to measure the execution rate of distributed high

46

performance computing clusters [1]. Benchmark results from this application are used as the

standard for the TOP500 ranking [21], which is a ranking of the 500 fastest super computers in

the world.

 HPL measures cluster performance in floating point operations per second (FLOPS). This

unit of measure is commonly interrupted as TeraFLOPS or GigaFlops (TFLOPS/GFLOPS),

where GFLOP/s and TFLOP/s are a measure of the number of billion or trillion floating point

operations a computer system can execute in one second. The floating point operations used as a

metric consist of 64-bit multiplications and additions.

As of June 2012, Sequoia, a super computer used by the Department of Energy located at

Lawrence Livermore National Laboratory (LLNL) holds the top ranking on this list at

16,324,751 GFlops (16.3 PetaFlops).

3.4. Theoretical Peak Performance

 The theoretical rate at which a computer can execute an application is not based on actual

performance measurements. Theoretical performance of a computer is a generalized metric to

determine the peak throughput rate of execution in FLOPS. A computers performance will not

exceed this theoretical limit thus establishing an upper-bound.

 The theoretical peak performance is computed by determining the number of floating

point operations that are completed in a single clock cycle on the machine. For example, the

theoretical execution rate for the system being using for this investigation is as follows:

 Quad core Intel Xeon CPU at 2.66 GHz can complete 4 floating point operations per core

per cycle

 4 Flop/s * 2.66 GHz * 8 cores = 85.12 Gflop/s

47

 The actual measured performance of the platform is a complex metric with a large

number of factors involved. These include algorithmic efficiency, problem size, memory usage,

memory speed, disk speed, programming language, compiler, operating system, etc. The results

presented in this benchmarking should not be used as a measure of total system performance but

instead as a reference for evaluation.

Table A.1 details a description of input parameters used for this application. The 'Ns'

value is adjusted between tests in order to exercise a variety of memory profiles (5Gb, 10Gb,

15Gb). All experimental runs were conducted using HPL version 2.0.

 Figure A.2 contains the changes made to the HPL source code to implement the use of

static extended pages in the application. The following changes were placed at line 241 in

src/panel/HPL_pdpanel_init.c in the HPL source tree.

When using mmap() with extended page sizes, the allocation request must lie on an

extended page boundary. To support this, a conditional was placed in the source code to ensure

allocation requests greater than two megabytes are aligned on extended page sizes. If the

allocation request is less than two megabytes, a standard malloc() is used with regular page sizes.

3.5. General Atomic and Molecular Electronic Structure System

 The General Atomic and Molecular Electronic Structure System (GAMESS) is a freely

available computational chemistry application developed by Mark Gordon and researchers at

Iowa State University [2]. GAMESS is used to model the electronic structure of atoms and

molecules. GAMESS shares the common characteristics of other computational chemistry

applications, which include large memory requirements, significant disk IO, and long execution

time.

48

 This investigation will use a memory intense simulation using a Restricted Hartree-Fock

wavefunction enhanced with Moller-Plesset Perturbation Method (MP2) corrections on the

Buckminsterfullerene (C60) molecule. An augmented triple-zeta (aug-cc-pVTZ) basis set was

used to maximize the amount of physical memory required for the simulation. This simulation

was created with the help of [37]. The input file is located in Figure A.1.

 Buckminsterfullerene is a spherical molecule entirely carbon based. The cage structure of

the sphere is made up of 20 hexagons and 12 pentagons [22]. Figure 3.3 contains a representation

of the molecule drawn using the modeling language Avogadro [27].

Figure 3.3. Buckminsterfullerene image

 Simulations such as this one are common in computational chemistry and can take days

or weeks to complete depending on the level of theory used. The described simulation uses 6.3

49

gigabytes of physical memory and requires approximately 20 hours of computational time to

complete.

 For this simulation, GAMESS version 5-22-09 was used. Appendix A contains the input

file for this computation. It should be noted that before being run in GAMESS, the geometry of

the molecule was optimized in Avogadro.

 The GAMESS application is primarily written in Fortran. However, the memory

allocation routines are implemented in C. In order to properly include support for statically

allocated extended pages, the malloc() standard library call was replaced with a mmap() system

call. A conditional is in place to ensure the allocation request is properly aligned.

Lastly, a single free element at the end of the array is used to hold the length of the array

in order to properly free the array using the munmap() function. In order to facilitate these

changes, the file 'zunix.c' was modified as detailed in Figure A.3 and A.4.

3.6. Vertical Data-mining Application (PTrees)

 Developed by Dr. Perrizo and researchers at North Dakota State University (NDSU),

PTrees (Predicate trees) implement methods for prediction and analysis using vertically

structured data. These methods are being developed to address challenges involved in the

analysis of massively large data sets. These methods are based upon vertical structuring of data

combined with compression of these structures into hierarchical arrangements which provide the

opportunity for accelerated analysis.

 These methods were applied to the Netflix data mining competition. This competition

focused on developing improvements to improve the accuracy of the NetFlix movie

recommendation system. A monetary prize of $1,000,000 was offered as an incentive to develop

50

a solution. Netflix provided research contestants with 7 years of past rating data. This data

include 100,480,507 user ratings on 17,770 movies from 480,189 random Netflix customers.

 The prediction system developed for the NetFlix problem was based on vertically

structured methods. The analytical methods are based on a library which implements primary

PTree operations which consist of binary and unary boolean operations. The libPTree library is

used to implement the operational primitives on the vertically structured NetFlix data. [38] The

prediction application and its associated library are used to measure the effect of extended page

sizes.

 The vertical data-mining application algorithm functions by implementing item-based

collaborative filtering. This algorithm attempts to predict a rating a NetFlix user would give to a

particular movie. NetFlix provides past rating data in the form of training data which is provided

in a single large text file. This training data is compressed into a binary vertical PTree structure

and saved to disk.

 Once the application begins, 6.8 gigabytes of data represented in vertically structured

form by PTrees, are transferred from disk to main memory. Next, a movie similarity matrix is

constructed which contains a predetermined number of the most similar movie-to-movie

relationships. A prediction based on a particular users' favorability toward a movie is then made

on the basis of the user’s past movie preferences against the similarity matrix. For the purpose of

this study, 622,453 NetFlix user-ratings of 100 different movies are predicted.

 In order to generate the similarity matrix and to determine the favorability of hundreds of

thousands of users’ likeness of a specific movie, the vertically structured data must be repeatedly

analyzed. This introduces a computational constraint which is influenced by memory access

efficiency and latency.

51

 The current libPtree code is written in C++ with C standard library and system calls.

Figure A.6 details the code changes needed to support statically allocated extended pages.

 The code changes for this application were the most extensive compared to the previous

applications. With this application, the memory allocation architecture had to be rewritten to

properly accommodate extended page sizes. The original architecture requested hundreds of

thousands of 2,224 byte memory allocations which each belonged to its own class object. While

these allocations added up to a large memory footprint (6.5 gigabytes), each individual allocation

was not large enough to be handled with extended page sizes without a significant degree of

internal fragmentation.

 In order to resolve this issue, the thousands of memory allocations were replaced with a

single large memory allocation which was capable of containing the entire 6.5 gigabyte PTree

dataset. Once the dataset was fread() into the buffer, each PTrees data object’s tree array variable

referenced the position in the large array where the object specific PTree was located. This

allowed the new large buffer to be allocated with an anonymous mmap() backed by extended

size pages.

52

4. EXPERIMENTAL RESULTS AND ANALYSIS

 In this section we will observe how the previously described scientific applications

perform using a variety of integration methods on a collection of memory intensive simulations.

For completeness, a large number of system statistics were gathered using the PMU software

including dTLB loads/stores, the number of page faults, system, userspace, and execution times.

In order to eliminate timing transients and ensure correctness, each performance assessment for

each paging method was executed three times. The results of these runs are provided in tables 4.1

to 4.9.

4.1. HPL Results

 The first assessment involved evaluating HPL using a standard four kilobyte pages to

establish a baseline performance metric. This metric will serve as a control to compare the

effectiveness of the various integration methods used.

Each test run of the HPL application was executed using eight processes over a steadily

increasing physical memory size. The “N Size” represents the size of the matrix used during

decomposition, as its size increases the overall physical memory footprint occupied by the

application increases as well.

 The average results of these baseline runs are summarized in Table 4.1. In each set of

application executions, the memory utilized increased at an exponential rate which translated

into an exponential increase in page fault rate. At the final N size increase, a 26.6% increase in

physical memory usage resulted in a 29.5% increase in the number of page faults.

 TLB pressure also climbed significantly as the problem size and physical memory

requirements increased. dTLB load-misses from N size 35,000 to 40,000 increased by 47.9%. In

53

addition, dTLB store-misses, for the same N size range increased by 32.7%. System time

averaged 13.16 seconds on an N size of 40,000. The partitioning of this time will be discussed

later.

Table 4.1. Experimental results: HPL with four kilobyte pages

N Size 5000 15000 25000 35000 40000

Memory(MB) 1550 2843 5602 9371 11871

Page Faults 77,482 517,389 1,344,853 2,570,603 3,329,412

dTLB-loads 29,338,925,503 552,941,215,983 2,369,933,621,884 6,321,361,399,214 9,275,877,679,481

4Kb dTLB-load-misses 10,070,349 137,363,529 548,013,720 1,379,489,146 2,012,378,206

dTLB-stores 5,466,989,725 53,975,664,885 177,150,206,806 420,025,762,269 562,893,505,586

dTLB-store-misses 1,764,952 21,392,034 86,769,290 234,834,897 310,261,395

iTLB-loads 103,430,912,398 2,119,589,275,510 9,271,921,132,159 24,902,318,701,857 36,747,531,771,252

iTLB-load-misses 148,910 256,825 464,079 751,061 905,398

4Kb time elapsed(seconds)

4.58

0.69

53.10

0.20

221.42

0.17

586.45

0.91

849.05

0.91

Userspace Time

22.75

0.42

412.60

1.64

1,752.82

1.31

4,659.06

7.83

6,755.52

6.03

4Kb system time

0.42

0.03

2.27

0.01

5.75

0.08

11.00

0.08

12.97

1.25

Gflops

35.35

0.02

46.81

0.01

48.72

0.00

50.19

0.00

51.55

0.00

 Table 4.2 details the average results for three experimental runs using a two megabyte

extended page size with transparent page support. As in the previous test, the application was run

with the same input file and problem size configuration to ensure equivalent system memory

usage.

 The use of extended size pages resulted in a page fault rate increase of 3.3% between N

size of 35,000 to 40,000. In contrast to the basline run, use of extended page sizes results in a

decrease in the number of page faults. In addition, there was a 12.75% decrease in dTLB load-

misses for this problem size compared to the previous value of 47.9%.

54

 All of the transparent cases resulted in a decrease in the overall system time for each

application run. These decreases are attributed to two primary factors which will be discussed in

the next section.

Table 4.2. Experimental results: HPL with transparent extended pages

N Size 5000 15000 25000 35000 40000

Memory(MB) 1550 2843 5602 9371 11871

Page Faults 29,505 47,117 50,019 66,509 70,338

dTLB-loads 29,998,551,448 556,897,454,669 2,366,798,239,424 6,287,224,745,673 9,268,143,000,469

2MB-transparent dTLB-load-misses 3,914,936 35,634,631 82,526,129 216,379,969 262,130,058

dTLB-stores 5,673,718,419 55,249,394,548 175,363,789,264 404,804,783,815 559,060,582,342

dTLB-store-misses 617,450 2,521,421 4,857,158 10,043,933 11,891,715

iTLB-loads 104,135,253,088 2,125,360,229,064 9,261,007,931,350 24,819,864,190,443 36,723,262,098,116

iTLB-load-misses 147,482 250,552 432,477 739,778 904,972

2MB-transparent time elapsed(seconds)

4.40

0.49

52.97

0.55

219.76

0.08

577.73

0.65

840.33

0.76

Userspace Time

23.09

0.22

412.90

0.62

1,743.73

2.38

4,599.21

0.58

6,696.41

2.67

2MB-transparent system time

0.32

0.02

1.27

0.11

2.92

0.01

5.75

0.23

7.24

0.32

Gflops

35.77

0.06

48.06

0.25

50.82

0.03

52.01

0.30

53.07

0.16

 Table 4.3 contains the average HPL run results using a statically allocated extended page

integration method. As the table shows, there was a uniform slight improvement when compared

to the transparent model.

Due to the application’s memory allocation architecture, slightly more memory was

utilized when the static integration method was used. This was the result of the slightly larger

mmap() allocations required to ensure each allocation was an exact multiple of the extended page

size. This is discussed further in the next section.

55

 Between N sizes 35,000 and 40,000, there was a 2% increase in the number of application

minor page faults. This further improves on the previous transparent rate of 3.3% and the base

case of 29.5%.

There was a 13.8% decrease in dTLB load-misses between this run and the baseline for

the N size range of 35,000 to 40,000. The system time on most static runs out performed the

transparent runs by a very small margin, often times by as a little a tenth of a second.

Table 4.3. Experimental results: HPL with static extended pages

N Size 5000 15000 25000 35000 40000

Memory(MB) 1560 3002 5954 9787 12684

Page Faults 25,570 42,775 46,539 63,062 64,105

dTLB-loads 30,620,237,829 562,507,215,821 2,376,868,313,078 6,304,754,865,088 9,379,134,313,867

2MB-static dTLB-load-misses 3,629,084 32,685,939 87,201,887 217,948,706 264,054,549

dTLB-stores 6,029,825,074 58,099,578,607 181,152,852,327 415,249,163,176 601,675,648,588

dTLB-store-misses 638,074 2,069,082 4,598,664 9,429,038 11,619,247

iTLB-loads 105,982,585,985 2,138,410,918,872 9,285,334,294,886 24,864,231,987,083 37,021,508,431,113

iTLB-load-misses 133,974 246,424 429,558 683,696 863,801

2MB-static time elapsed(seconds)

4.56

0.49

52.41

0.55

218.00

0.08

572.38

0.65

823.38

0.76

Userspace Time

23.80

0.22

413.37

0.62

1,742.87

2.38

4,585.33

0.58

6,692.15

2.67

2MB-static-extended system time

0.34

0.02

1.23

0.11

2.86

0.01

5.48

0.23

6.91

0.32

Gflops

34.77

0.06

48.22

0.25

51.09

0.03

52.68

0.30

53.71

0.16

 With this application it is clear that using extended page sizes improves application

performance. Figures 4.1 to 4.3 contain graphical representations of important system statistics

to compare the three paging strategies used with HPL.

Figure 4.1 contains the dTLB-load-misses comparison between each paging method,

Figure 4.2 contains a comparison of the average overall run time, Figure 4.3 contains the average

system time for each performance assessment.

56

Figure 4.1. Experimental results: Average dTLB load-misses in HPL

Figure 4.2. Experimental results: Average execution time in HPL

57

Figure 4.3. Experimental results: HPL with static extended pages

4.2. GAMESS Results

 The testing and analysis of GAMESS was approached in a similar manner to the

HPL application. The evaluation of the performance of each paging strategy was assessed by a

model simulation described by the input file Table A.1. This input model required 6.5 gigabytes

of memory which was allocated at the beginning of each simulation. Table 4.4 contains the

average performance statistics of three GAMESS runs using a standard page size of four

kilobytes.

58

Table 4.4. Experimental results: GAMESS with four kilobyte pages

Memory(GB) 6.5

Page Faults 9,327,727

dTLB-loads 16,099,434,770,249

4Kb dTLB-load-misses 191,875,297,119

dTLB-stores 4,898,981,277,659

dTLB-store-misses 271,448,901,747

iTLB-loads 45,786,055,686,513

iTLB-load-misses 3,321,999

4Kb time elapsed(seconds)

75,992.81

393.50

Userspace Time

74,700.08

340.39

4Kb system time

1,333.72

6.64

Tables 4.5 details average experimental run statistics using a two megabyte extended

page size with transparent page support.

 The use of transparent extended size pages with GAMESS resulted in an average page

fault rate of 392,758 which was a 95% decrease compared to the four kilobyte benchmark.

Similar to the HPL results, use of extended page sizes resulted in a decrease in the number of

page faults compared to 4 kilobyte pages. In addition, there was an average of 18,911,053,951

dTLB-misses per run which was a 9.8% decrease compared to the baseline results.

 The transparent paging method used an average of 645.61 seconds of system time per

run. This was a 48.5% improvement in performance time when compared to the four kilobyte

baseline value.

59

Table 4.5. Experimental results: GAMESS with transparent extended pages

Memory(GB) 6.5

Page Faults 392,758

dTLB-loads 15,778,947,563,803

2MB-transparent dTLB-load-misses 20,244,387,285

dTLB-stores 4,854,633,911,900

dTLB-store-misses 14,869,695,598

iTLB-loads 45,479,347,843,756

iTLB-load-misses 2,762,298

2MB-transparent time elapsed(seconds)

75,004.52

554.46

Userspace Time

75,325.57

1,400.09

2MB-transparent system time

645.61

5.04

 Table 4.6 presents the average results for three runs using a statically allocated extended

page model. Similar to the transparent results, page fault rate decreased by 96% compared to the

benchmark value. dTLB-load-misses also decreased at a rate similar to the transparent results.

 It should be noted that the static allocation model resulted in a decrease in average system

time when compared to the transparent method. This is likely due to reduced demands on the

operating system from not having to allocate resources to page coalescences. The GAMESS

memory allocation architecture of using a single buffer makes the use of static page allocation

particularly efficient.

60

Table 4.6. Experimental results: GAMESS with static extended pages

Memory(GB) 6.5

Page Faults 387,015

dTLB-loads 15,617,020,475,385

2MB-static dTLB-load-misses 20,520,389,478

dTLB-stores 4,847,999,877,867

dTLB-store-misses 12,592,415,096

iTLB-loads 46,137,872,466,241

iTLB-load-misses 2,767,822

2MB-static time elapsed(seconds)

74,913.94

71.47

Userspace Time

75,375.89

236.92

2MB-static system time

632.71

1.49

Figure 4.4 to 4.6 contain bar graph representations of the above results. Figure 4.4 is the

dTLB-load-misses for each set of three runs using the different paging methods, Figure 4.5 is

overall execution time for each paging method, and Figure 4.6 is the graphical representation of

the system time for each run.

Figure 4.4. Experimental results: Average dTLB load-misses in GAMESS

61

Figure 4.5. Experimental results: Average execution time in GAMESS

Figure 4.6. Experimental results: GAMESS with static extended pages

62

4.3. Vertical Data Mining Results

 Table 4.7 presents results for average baseline baseline run of a vertical data-mining

application. To remove the application cost of the initial load of the data into memory from hard

disk, the application was first run once on system prior to initial benchmarking. This ensures that

the page cache was populated with data prior to test runs. Testing was conducted in a manner

similar to the previous applications.

Table 4.7. Experimental results: PTrees with four kilobyte pages

Memory(GB) 6.3

Page Faults 613,359,804

dTLB-loads 49,207,872,777,818

4Kb dTLB-load-misses 132,083,167,159

dTLB-stores 15,109,495,668,408

dTLB-store-misses 246,000,108,765

iTLB-loads 142,702,658,622,792

iTLB-load-misses 10,145,979

4Kb time elapsed(seconds)

249,569.00

125.12

Userspace Time

1,818,112.37

4230.21

4Kb system time

33,824.93

51.77

 Table 4.8 contains the average performance results when the application is run using a

transparent paging architecture. Compared to the standard four kilobyte paging method, the

transparent model had a 51.9% decrease in the number of dTLB-load-misses. In addition, the

page fault rate decreased by 96%. Lastly, the overall average system time of 16,391.02 seconds

was a 51.54% decrease compared to the baseline performance assessment.

63

Table 4.8. Experimental results: PTrees with transparent extended pages

Memory(GB) 6.3

Page Faults 24,087,478

dTLB-loads 50,082,340,605,514

2MB-static dTLB-load-misses 63,443,297,806

dTLB-stores 15,406,330,382,482

dTLB-store-misses 50,582,972,225

iTLB-loads 144,338,243,301,581

iTLB-load-misses 8,703,010

2MB-static time elapsed(seconds)

244,459.37

98.34

Userspace Time

1,722,617.16

2142.43

2MB-static system time

16,391.02

43.76

 Table 4.9 contains the average performance assessment on the vertical data-mining

application when paired a with statically allocated extended page size architecture. Similar to the

transparent performance assessment, page faults and dTLB-misses were markedly less than the

benchmark assessment. In every case the static runs also slightly out preformed the average

system time of transparent assessment by 3.4%.

Table 4.9. Experimental results: PTrees with static extended pages

Memory(GB) 6.3

Page Faults 22,185,634

dTLB-loads 49,854,668,541,845

2MB-transparent dTLB-load-misses 54,897,558,631

dTLB-stores 15,385,416,855,174

dTLB-store-misses 47,856,945,201

iTLB-loads 141,584,004,521,877

iTLB-load-misses 7,854,215

2MB-transparent time elapsed(seconds)

241,857.65

153.11

Userspace Time

1,702,485.75

1539.54

2MB-transparent system time

15,241.42

53.02

64

 Significant programming effort was required to implement the statically allocated

integration but the performance benefits exceeded both the transparent and standard integration

strategies. Figures 4.7 to 4.9 contain graphical representations of important system statistics used

to compare the three paging strategies used with the vertical data-mining application. Figure 4.7

contains the dTLB-load-misses comparison between each paging method, Figure 4.8 contains a

comparison of the average overall run time and Figure 4.9 contains the average system time for

each performance assessment.

Figure 4.7. Experimental results: Average dTLB load-misses with PTrees

65

Figure 4.8. Experimental results: Average execution time with PTrees

Figure 4.9. Experimental results: Average system time with PTrees

66

5. DISCUSSION

 Before considering further analysis and discussion about the results of this work it is

important to consider issues which influence the strategy used to integrate support for extended

size pages. While HPL, GAMESS, and the NetFlix code are all memory intensive applications,

important architectural differences exist with respect to how application memory is allocated.

 The HPL application uses a memory allocation pattern characterized by small-but-

frequent allocation requests. Each application memory allocation request is typically between

three and twelve megabytes in size. Depending on the problem size, the application generates

hundreds to thousands of such requests rapid and parallel succession. When configured for a

large problem size, these requests translate into a total memory consumption in the range of tens

of gigabytes.

 In GAMESS, memory is requested in single large segment. When configured within the

methods section, GAMESS requires approximately six gigabytes of application memory. These

six gigabytes of memory are allocated shortly after the start of the application in a single large

buffer request.

 In the original architecture, the vertical data mining application exhibited a memory

allocation pattern which involves hundreds of thousands of 2,224 byte allocation requests. This

allocation architecture was not suitable to extended page sizes.

In the alternative architecture which implemented, the conversion to a single large buffer

request resulted in a architecture similar to that employed by GAMESS which made the static

allocation strategy optimum for both applications.

67

 These differences in application allocation behavior, while not obvious, play an important

role during the analysis of the effectiveness of each paging scheme. When considering

integration of extended page size support, it is not only important for the application to utilize

large memory allocations. An equally important consideration is how the application requests

memory segments as the type of allocation requests react much differently to different paging

methods.

 The three unique styles of memory allocation exposed by these applications resulted in

several challenges during the course of this work. One of these challenges was a performance

anomaly related to the memory allocation scheme of the HPL application when utilizing

statically allocated extended pages. Due to the previously mentioned memory allocation

characteristics of the HPL application, use of the libhugetlbfs API, resulted in a performance

regression.

 This is in contrast to the expected observation that use of extended size pages in high

memory utilization environments would result in improved performance. When implementing

extended size page support using libhugetlbfs, the get_hugepage_region() library call was used

to replace the malloc() system call. An example of this call is provided in the introduction.

 The use of this integration method resulted in a performance time regression. While this

performance regression was noted, page faults and TLB pressure were improved from the

standard page size.

 An analysis of this regression indicated the HPL 'small-but-frequent' allocation pattern

was the source of the regression. The applications memory allocation pattern resulted in memory

requests which were not multiples of an extended page size. This resulted from non-extended

68

page size aligned memory request. For simplicity this is referred to as a “two megabyte plus one

byte mapping”. Consider the following allocation request:

allocation_request = (3*2*1024*1024) + X | where X is less than 2*1024*1024

 (3 pages)

 An allocation request such as this grants four pages however the total memory required is

three pages plus one byte. This partial allocation requires operating system overhead to zero fill

the remaining 2,097,151 bytes of the final page. The page zeroing cost generated enough

operating system overhead to nullify the performance advantages of the use of an extended page

size. This effect is not experienced with applications which make a small number of very large

requests.

 This issue can be resolved by allocating only on extended page size boundaries within

libhugetlbfs. Rather than requesting the following integer value:

X = memory_request | where X is 0 < X < 2*1024*1024

 Compute the offset to the next complete extended page and add the offset to the previous

X value to complete the next page during allocation.

allocation_request = total_request + (total_request MOD extended_page_size)

69

 By doing this, the operating system impact of the additional page clear can be avoided

and the statically allocated extended page sizes are capable of outperforming the standard page

size. Internal fragmentation will still exist on the page

70

6. CONCLUSION

 In this paper, a group of extended page size application integration methods were

introduced and analyzed using a selection of common scientific applications. The results and

discussion suggest that using extended page sizes, when appropriate, can result in significant

changes in application performance.

 The results also demonstrate that depending on the type and size of the allocation

requests, extended size pages can produce performance regressions. This suggests that

integrating extended size page support requires an analysis of the applications memory allocation

behavior.

 Transparent huge pages offer an “ease of use” advantage which reduces development and

integration costs needed to obtain performance improvements. Static allocation of extended

pages produces additional performance improvements when compared to transparent huge pages

but at the cost of additional management and implementation time. The static allocation model

carries an additional advantage of guaranteeing deterministic performance and benchmarking

benefits.

 Several avenues exist for potential further research. While the dTLB was closely

analyzed with regards to application performance, further work could done to determine how

effective the use of extended page sizes would be in reducing iTLB costs.

 In addition, some applications which issue memory reallocation requests currently do not

have operating system support to handle this function with statically allocated extended pages.

While transparent huge pages support memory reallocation requests, it is at the expense of

71

degrading the memory allocation to standard size page backings with subsequent operating

system cost to recoalesce the reallocated memory to extended page mappings.

 Finally, the impact on application integration cost and performance of an object magazine

architecture would be of interest. An object magazine system would involve language support to

preallocate segments of memory backed by extended pages which would serve as an allocation

pool for user requested objects and allocations.

72

7. REFERENCES

[1] Innovative Computing Laboratory, High Performance Linpack,

http://www.netlib.org/benchmark/hpl, June 2012.

[2] Gordon Research Group ISU, GAMESS Software Package,

http://www.msg.ameslab.gov/gamess/download.html, June 2012.

[3] Netflix, NetFlix Prize, http://www.netflixprize.com/index, Retreived July 2012

[4] Intel Corporation, “Intel 64 and IA-32 Combined Architectures Software Developer

Manuals,” June 2012.

[5] DataSURG, P-Tree Application Programming Interface Documentation,

http://midas.cs.ndsu.nodak.edu/~datasurg/ptree, November 2005.

[6] M. Gorman, “Understanding The Linux Virtual Memory Manager,” Prentice Hall, pp. 36-42,

2004.

[7] P. Ceruzzi, “A History of Modern Computing,” MIT Press, pp. 238. 2003.

[8] I. Englander, “The Architecture of Computer Hardware and Systems Software 3
rd

 Edition,”

Wiley, 2003.

[9] R. Bryant, D. O'Hallaron, “Computer Systems A Programmer's Perspective,”

Prentice Hall, pp. 690-764, 2003.

[10] R. Bryant, D. O'Hallaron, “Computer Systems A Programmer's Perspective,”

Prentice Hall, pp. 694, 2003.

[11] Intel Corporation, “Intel 80386 Reference Programmer's Manual,”

http://css.csail.mit.edu/6.858/2012/readings/i386/toc.htm, 2012.

[12] Intel Corporation, “80286 Microprocessor With Memory Management and Protection,”

73

http://datasheets.chipdb.org/Intel/x86/286/datashts, July 2012

[13] T. Barr, A. Cox, S. Rixner, “Translation Caching: Skip, Don't Walk (The Page Table),”

ISCA, 2010.

[14] D. Kanter, “Inside Nehalem: Intel's Future Processor and System,”

Retrieved September 2012 from http://www.realworldtech.com/nehalem/4, April 2
nd

, 2008

[15] R. Bryant, D. O'Hallaron, “Computer Systems A Programmer's Perspective,”

Prentice Hall, pp. 707-715, 2003.

[16] MSDN, “Operating Systems and PAE Support,”

http://msdn.microsoft.com/en-us/library/windows/hardware/gg487512.aspx, July 14
th

, 2006

[17] J. Corbet, “Four-level Page Tables,” http://lwn.net/Articles/106177, October 12
th

, 2004

[18] SGI Press Release, “Announcing the New SGI UV: The Big Brain Computer,”

http://www.sgi.com/company_info/newsroom/press_releases/2012/june/uv.html, June 18
th

,

2012.

[19] D. Knuth, “The Art of Computer Programming 1 (2
nd

 Edition),” Addison-Wesley,

pp. 435-455, 1973.

[20] Intel, “Performance Monitoring Unit Sharing Guide (White Paper),” Intel Corporation,

http://software.intel.com/file/30388, 2010.

[21] Top500, Top 500 List, http://www.top500.org, 2012.

[22] H. Kroto, J. Heath, S. O'Brien, R. Curl, R. Smalley, “C60: Buckminsterfullerene,” Nature

Volume 318, pp. 162-163, 1985.

[23] The Linux Kernel Archives, http://www.kernel.org, 2012.

[24] M. Gorman, “Using the Direct Hugepage Allocation API with STREAM,”

http://www.csn.ul.ie/~mel/docs/stream-api/, April 29
th

, 2009.

74

[25] W. Stallings, “Operating Systems: Internals and Design Principles (5
th

 Edition),”

Prentice Hall, pp. 644, 2006.

[26] x86info, http://codemonkey.org.uk/projects/x86info, 2012.

[27] Avogadro, http://avogadro.openmolecules.net/wiki/Main_Page, 2012

[28] K. Yoshii, “Regular Memory v.s. HugeTLBFS”, Argonne National Laboratory Technical

Report, http://www.mcs.anl.gov/~kazutomo/hugepage/x86laptop.html, 2006.

[29] M. Gorman, “Transparent Hugepage Support #33,” Technical Report,

http://lwn.net/Articles/423590, December 20
th

, 2010.

[30] P. Beckman, K. Iskra, K. Yoshii, S. Coghlan, A. Nataraj, “Benchmarking the Effects of

Operating System Interference on Extreme-Scale Parallel Machines,” Cluster Computing, v.11,

pp. 3-6, 2008.

[31] M. Talluri, S. Kong, M. D. Hill, D. A. Patterson, “Tradeoffs in Supporting Two Page

Sizes,” In Proceedings of the 19
th

 Annual International Symposium on Computer Architecture,

1992.

[32] R. Noronha, “Improving Scalability of OpenMP Applications on Multi-core Systems Using

Large Page Support,” Parallel and Distributed Processing Symposium, IPDPS, pp. 1-8, 2007.

[33] K. Yoshii, K. Iskra, P. C. Broekema, H. Naik, P. Beckman, “Characterizing the

Performance of Big Memory on Blue Gene Linux”, Technical Report, Argonne National

Laboratory, 2009.

[34] M. Gorman, P. Healy, “Performance Characteristics of Explicit Superpage Support,” Sixth

Annual Workshop on the Interaction between Operating Systems and Computer Architecture

(WIOSCA), 2010.

75

[35] R. Rex, F. Mietke, W. Rehm, et al. “Improving Communication Performance on Inifiniband

by Using Efficient Data Placement,” In Proceedings of Cluster 06, Barcelona, Spain, 2006.

[36] M. Gorman, “Benchmarking with Huge Pages”, Technical Report,

http://lwn.net/Articles/378641, October 19
th

 2012.

[37] J. Jensen, “Molecular Modeling Basics,” CRC Press, 2010.

[38] T. Lu, W. Perrizo, Y. Wang, G. Wettstein, “Extensino study on item-based P-Tree

Collaborative Filtering Algorithm for Netflix Prize,” ISCA, pp. 149-154, 2010.

[39] libhugetlbfs, http://libhugetlbfs.sourceforge.net.

76

8. APPENDIX

Table A.1. HPL input file

HPL.out # output file name (if any)

6 # device out (6=stdout,7=stderr,file)

1 # of problems sizes (N)

10000 # Ns

1 # of NBs

128 # NBs

0 PMAP process mapping (0=Row-,1=Column-major)

1 # of process grids (P x Q)

4 # Ps

2 # Qs

16 # threshold

1 # of panel fact

2 # PFACTs (0=left, 1=Crout, 2=Right)

1 # of recursive stopping criterium

4 # NBMINs (>= 1)

1 # of panels in recursion

2 # NDIVs

77

Table A.1. HPL input file (continued)

HPL.out # output file name (if any)

1 # of recursive panel fact.

1 # RFACTs (0=left, 1=Crout, 2=Right)

1 # of broadcast

1 BCASTs (0=1rg,1=1rM,2=2rg,3=2rM,4=Lng,5=LnM)

1 # of lookahead depth

1 # DEPTHs (>=0)

2 # SWAP (0=bin-exch,1=long,2=mix)

64 # swapping threshold

0 # L1 in (0=transposed,1=no-transposed) form

0 # U in (0=transposed,1=no-transposed) form

1 # Equilibration (0=no,1=yes)

8 # memory alignment in double (> 0)

78

Figure A.1. GAMESS input file

79

Figure A.2. HPL allocation code sample

80

Figure A.3. GAMESS allocation code sample

81

Figure A.4. GAMESS free code sample

82

Figure A.5. PTree allocation code sample

