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ABSTRACT 

This study examined the effect of ultraviolet radiation on ballistic resistant polymer matrix 

composites.  Two composite systems studied included a phenolic matrix with either S2 

Glass® or Kevlar® fiber laminates.  These composites were weathered in ultraviolet 

conditions and the effects were quantified with multiple destructive and non-destructive 

testing.  Electrochemical impedance spectroscopy (EIS) was used as a non-destructive 

evaluation method which is a commonly used experiment in the corrosion community.  

Circuit modeling the EIS spectra produced both resistive and capacitive characteristics 

inherent of the composite materials.  Surface characterization was performed to determine 

if degradation was occurring at the composite surface.  Techniques included: color, gloss, 

surface profilometry, and water contact angle.  Tensile and flexural destructive 

experimentation revealed the influence of the ultraviolet exposure on the mechanical 

properties.  It was determined that the resistive portion of the EIS response correlated well 

with the ultimate tensile strength of the S2 Glass® fiber composites. 
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PREFACE 

The thesis entitled “Electrochemical Impedance Spectroscopy Study of the 

Ultraviolet Exposure of Ballistic Resistant Polymer Matrix Composites” was written as the 

author saw the need for a quick, inexpensive, and quantitative method for polymer matrix 

composites in structural applications. Most importantly, the quantitative nature of the 

impedance method would be more conducive for correlation to the mechanical properties, 

so that impedance could be used to know when structures would “fail”.  The thesis 

experimental chapters were then fashioned in logical order to display the impedance 

change, why the impedance was changing, and how the change in impedance influenced 

the mechanical properties.  

The first experimental chapter, Chapter 3, was to determine if a change in the 

impedance would be observed for the ballistic resistant composite materials after exposure 

to ultraviolet radiation.  Changes were observed in the impedance response, so more 

commonly found non-destructive methods of surface characterization were then instituted 

to show the surface characteristics changing during ultraviolet exposure.  The literature 

review found in the introduction chapter determined which surface characterization 

techniques would be most useful and cost efficient to reinforce the fact that degradation 

was occurring.  Initially, it was hypothesized that if a change in the impedance occurred 

from increased porosity, then the mechanical properties should correlate to that impedance 

change.  The last experimental chapter, Chapter 5, investigates the mechanical properties of 

the weathered composites along with the correlation to the electrochemical impedance 

results.  The final chapter, Chapter 6, of the thesis then entails the general conclusions from 

the entire study as well as future experimentation to be completed for further validation of 



vii 
 

using this impedance method for non destructive evaluation of polymer composite 

structures. 
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CHAPTER 1.  APPLICATIONS, ULTRAVIOLET DEGRADATION, AND NON- 
 

DESTRUCTIVE EVALUATION OF POLYMER MATRIX COMPOSITES 
 
1.1 Introduction 

A polymer matrix composite (PMC) is a combination of two distinct phases with 

the polymeric phase being continuous (i.e., matrix or binder) and the other phase 

discontinuous (i.e., fiber, inclusions, etc.).[1]  The combination of these materials, when 

correctly selected, provide a desirable material with physical, mechanical, thermal, and 

electrical properties which are typically more beneficial than each phase alone.   The 

improvements in properties give rise to the extensive use of these materials in the 

aerospace, defense, automotive, industrial, and civil infrastructure sectors.  Many PMCs 

have a low density, which is attributed to the low density of the polymeric matrix, and 

when combined with the high strength and high modulus of fibrous inclusions the resulting 

composite has a high specific strength and specific modulus.[2]  PMCs with advanced 

fibers (i.e., carbon, aramid, various glasses, and other polymeric fibers) have properties that 

far exceed traditional and advanced metallic alloys on a per density basis.[2] 

However, one major drawback of PMCs is their susceptibility to degradation in 

outdoor exposure.  Some PMCs will undergo thermal oxidation in ambient conditions 

which occurs when polymeric chains are severed from the thermal energy input and 

oxygen, readily available in the atmosphere, forms a bond with the radical present on the 

exposed chain end.[3]  The overall result is a loss of long range continuity in the polymer 

which will lead to a noticeable change in many properties of the material when enough 

oxidation reactions occur throughout the bulk polymer.  Hydrolysis is another aspect of 

degradation that occurs in PMCs which causes degradation of the chain when water is 
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present.  Of utmost concern for the polymeric matrix, and occasionally the fiber, is 

photodegradation which is caused by solar radiation in the ultraviolet (UV) wavelengths. 

One particular fiber with relatively low resistance to UV degradation is an aramid based 

polymer such as Kevlar®.[4]  Much like thermal oxidation, an exposed chain end combines 

with ambient oxygen to form a peroxy containing structure.  The breaking of the chain 

causes a loss of chain stability and a corresponding decrease in the ability to support 

mechanical and thermal stressors.  Chain scission can also deteriorate the transfer of 

mechanical stresses from the matrix to fiber influencing the mechanical properties.  

Polymers and fibers, such as phenolics, epoxies, and aramids, contain aromatic groups 

within the polymeric chain.  Aromatic groups are ring structures with multiple carbon-

carbon double bonds which form a chemical structure of resonance where the electrons 

must be shared to remain stable.  The use of aromatic polymers and fibers is beneficial 

because these materials are typically stronger and undergo less expansion upon thermal and 

mechanical loading as the rings in the chain cause significant interference to chain 

movement.  Photodegradation of PMCs can lead to void or pore formation within these 

materials which is undesirable in many aspects. 

Pore formation in the polymeric matrix provides sites for crack initiation or 

propagation when subjected to various stressors.  Non-destructive evaluation (NDE) is used 

to investigate cracks, voids, delaminations, and other defects within the matrix material by 

non-evasive methods.  Typically, NDE is used for an initial investigation of a PMC after 

manufacturing to determine void content as well as providing a method to improve the 

processing of these composites.  Another sector of NDE usage is in structural health 

monitoring of the matrix after mechanical damage has occurred.  The most common 
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methods used for NDE of PMCs are thermography, acoustic emission, ultrasonic 

techniques, and x-ray radiography.[2]  As mentioned, these methods are considered, for the 

most part, to be non-destructive, however, some materials may be degraded upon exposure 

to the NDE technique.  The results obtained from common NDE experiments are typically 

qualitative allowing for interpretation of the results.  This causes the technique to be highly 

dependent upon the person performing the NDE technique.  Ideally, an NDE technique is 

desired where the results are quantifiable, leading to a mathematical and statistical means 

for evaluating a PMC.  The measurement should also be repeatable and have the ability to 

be conducted quickly.  One experimental method with these desirable characteristics is 

electrochemical impedance spectroscopy (EIS), which is commonly used in the coatings 

industry to monitor coating degradation and corrosion.[5]   

The establishment of the two electrode EIS technique, as opposed to the traditional 

three electrode technique, and the emergence of PMCs in multiple structural applications 

lead to the possibility of EIS as a structural health monitoring technique.  In the late 1980s, 

carbon fiber reinforced polymers (CFRPs) became the subject of EIS experimentation 

utilizing the three electrode technique where the conductive fiber could act as the working 

electrode.  Figure 1.1 displays the distinction between the two electrode and three electrode 

EIS techniques.   

 

Figure 1.1 – Two electrode technique (left) and three electrode technique (right) 
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The research in this area led to many observations depending on the stimuli causing 

delaminations between the fiber and matrix.  The use of carbon fiber as an electrode had 

many distinct advantages due to the previous work accomplished in the research of carbon 

electrodes for electrochemical measurements.[6]  However, the aforementioned 

measurement technique is not suitable for use with bulk non-conducting PMCs.  Therefore, 

it was not until 2008 when the two electrode technique was introduced to monitor the bulk 

material EIS response non-conducting PMCs.  Unlike the local measurements performed 

on conductive fibers within an insulating matrix, the EIS experiments were performed in a 

global sense, which may provide correlation with other bulk properties (i.e., strength, 

stiffness, thermal expansion, etc.). Therefore, it was observed that two-electrode EIS is a 

suitable NDE technique for PMCs and that this technique has not been extensively 

researched or utilized to date. 

1.2 Polymer Matrix Composites: Applications and Advantages 

 As mentioned previously, PMCs have higher specific modulus and specific strength 

compared to metallic alloys.  Until recently, the main components of structural bearing 

components within many engineering sectors have been comprised of predominantly 

metallic alloys with the composite materials making contributions in primarily non-load 

bearing applications.  The first use of PMCs in aircraft applications occurred during the 

metal shortage during World War II.[1]  Non- structural aircraft parts such as ducts, engine 

covers, and radomes were manufactured with PMCs to save metal.  Eventually, the success 

of these parts (i.e., easily processed and structurally stable) transferred to the initial design 

of structural components comprised of PMC material.  One of the first aircraft to be 

designed with a large portion of PMC as the structural component was the AV-8B aircraft 
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designed in the 1970s and 1980s for use as a ground attack aircraft.[7]  Original designs 

suggested that 23.3%, by weight, of the fuselage and wing substructures were comprised of 

a graphite fiber embedded within an epoxy matrix.  This aircraft’s development led Boeing 

and Airbus to design the Boeing 777 and Airbus 340 with 13% and 15% of their structural 

components comprised of polymeric composites by weight.[8]  A major milestone in the 

use of PMCs occurred when Boeing’s Dreamliner 787 was reported to be designed with 50 

weight percent of composites, distributed throughout the entire aircraft.[9]  The specific 

strength and modulus of PMCs are typically much higher than the metallic alloys 

traditionally used in aerospace applications; for instance, carbon fiber/epoxy matrix 

composites have a specific strength and modulus roughly two to four times higher than 

mild steel and one and a half to two and a half times higher than commonly used aluminum 

alloys.[2]  The differences become even more prominent when comparing to a low density 

fibers like Kevlar®, Spectra®, and Dyneema®, which are polymeric in nature. 

 In the civil engineering sector, the use of PMCs has also been explored for the 

replacement and retrofitting of concrete structures.[10-11]  Both the use of retrofitting 

concrete structures with PMCs and the development of fiber reinforced polymer (FRP) 

beams for replacement of steel reinforcement have been utilized in this sector.  Both these 

replacements stem from the corrosion issues of the interior steel reinforcement.  Once the 

corrosion process occurs in the steel reinforcements, voluminous rust causes cracking at the 

steel reinforcement/concrete interface. When combined with cyclic loading from traffic and 

pedestrians, cracks initiated at the interface can be propagated to the surface of the 

concrete.  To combat the complete destruction and replacement of beams, PMC wrapping 

of the column structures is a solution used to delay further corrosion and also provides a 
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structural support. [12]  Specific equipment, Robo-Wrapper®, is used with polymer pre-

impregnated unidirectional fibers to wrap the beam structure and cure the matrix material 

after application.[13]  The most typical PMC used in this application is epoxy 

matrix/carbon fiber due to the relative high elongation and high strength.  Strong PMC 

beams containing carbon reinforced polymers have also been utilized in the replacement of 

steel reinforcements to offset the metallic corrosion.  Many PMC combinations have been 

explored in this area which usually include numerous combinations of common matrix and 

reinforcement materials.  Another area of investigation is disposing of the concrete element 

and replacing these bridge and support structures with PMCs.  The first all-composite 

bridge designed for pedestrians was erected in Israel almost four decades ago in 1975.  

Now, composite bridges which support vehicles have been built in many states with the 

first being constructed in Kansas.[14]   On the other hand, these structures are expensive, 

compared to the concrete bridges.  Another area of concern is the long-term durability of 

these structures as the technology and materials are relatively new. 

Defense applications are another major market in which PMCs have found a 

niche.[1]  Kevlar® and Twaron® fibers woven into plies and then surrounded by stiff matrix 

materials (i.e., epoxies and phenolics) have found many uses in ballistic shielding 

applications including the up-armoring of military vehicles and bunker containment 

materials.[15]  These materials are also being utilized in the door separating passengers 

from pilots in some commercial aircrafts for protection purposes.  Another fiber 

reinforcement used in this area includes S2 Glass® and R Glass® which are a less expensive 

alternative to an aramid (i.e., Kevlar® or Twaron®) fiber.  The applications can be identical, 

but typically the aramid fiber has a lower density making it more suitable when weight 
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restrictions are a concern.  High performance polyethylene (HPPE) including Spectra® and 

Dyneema® are garnering attention in the hard personnel armor which also contain a 

polymeric binder.[16]  Common applications include helmets and armor plates for insertion 

into clothing.  Other organic fibers in ballistic armor are poly-phenylenebenzobisoxazole 

(PBO) and poly-diimadazo-pyridinylene-dihydroxy-phenylene (M5).[16]  However, PBO 

is known to hydrolytically degrade from exposure to ambient atmospheric conditions.  

Also, the processing of M5 is considered difficult, compared to the other fibers, making 

these fibers not as common.   

As mentioned, PMCs have excellent properties on a per density basis such as 

specific strength and specific modulus.  These attributes also lead to these composite 

systems performing well in ballistic applications.  Ballistic penetration is directly related to 

how well a material absorbs energy along with how fast that material distributes that 

energy.  Polymeric fibers embedded within a matrix perform very well in this area as the 

sonic velocity (i.e., relates to the velocity of energy transfer) and specific energy absorption 

are both on a per density basis.[16]  Figure 1.2 displays the areas encompassing several 

types of PMC fibers with respect to their energy absorption and sonic velocities.[16] 

 
Figure 1.2 - Fiber performance on basis of ballistic properties 

 
[With kind permission from Springer Science+Business Media: Journal of Materials Science, Ballistic protection 

mechanisms in personal armour, 36, 2001, pages 3137-3142, M. Jacobs, Figure 3] 
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Typically, ballistic resistant PMCs also have high smoke and flame retardant 

capabilities which are two more important attributes for defense applications.  To 

accomplish flame retardant matrix, a substitution reaction of the matrix polymer 

incorporates a halogen (i.e., fluorine, chlorine, bromine, iodine) to reduce the oxygen at the 

area of combustion.[17]  A typical substituted polymer is a phenolic as the highly aromatic 

backbone is difficult to ignite with flame and halogenation is relatively easy with the 

numerous hydroxyls present.   Another commonly halogenated matrix material is epoxy 

which also has aromatic groups present within the polymeric chain. 

One main reason for PMC success in many applications is the ease of 

manufacturing complex geometries.  When the first aircraft parts were made during the 

metal shortage of World War II, manufacturers noted that much time could be saved with 

hand lay-up of the difficult duct structures in aircraft as opposed to bending and riveting 

metal.[1]  Additionally, new technologies in processing have made parts far more robust 

with continuously more automation within PMC manufacturing.[18]  Autoclaving of PMCs 

uses a combination of pressure and a vacuum along with heat to consolidate and cure thick 

and complex geometries with minimal void content.[19]  Resin transfer methodologies 

(vacuum assisted resin transfer molding, expansion resin transfer molding, Seeman’s 

composite resin infusion molding process, etc.) have also been used with promise in 

manufacturing complex PMC components.[1]  Lastly, compression molding using high 

pressures and heat has been used to produce thick composite parts with reasonably low 

void content on a per thickness basis.[1] 

Another aspect regarding the success of PMCs is the fiber architecture design which 

can be engineered to have minimal fiber content by aligning fiber in the directions of 
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incurred stressing.  Fiber architecture can be accomplished within some composite 

processing techniques including: extrusion, pultrusion, fiber placement, and filament 

winding. Additionally, fiber weaving into fiber plies and the subsequent orientation and 

stacking of these plies along with the woven pattern can determine strength 

directionality.[1]  The emergence of three dimensional weaving is another proponent to the 

likelihood of PMC’s stable market in many advanced applications.[20]  With all these 

capabilities for fiber orientation much weight can be saved in the part and also the entire 

structure.  In the aerospace and transportation sectors, part weight is always a major design 

consideration with the increasing price of fuel. 

PMCs have many advantages over traditional monolithic metals, but a downfall of 

these materials is their weathering in outdoor exposure from the presence of heat, water, 

and ultraviolet radiation.  The influence of ultraviolet radiation can have several 

undesirable effects which can directly influence the desired performance of the 

aforementioned applications.   

1.3 Ultraviolet Radiation Weathering of Polymer Matrix Composites 

 Various forms of degradation occur when reinforced polymers are placed into their 

functioning environment.  The three main forms of weathering degradation which cause a 

chemical change include: thermal degradation, hydrolysis, and photodegradation.[3]  

Thermal degradation and hydrolysis are unlike photodegradation as the entire bulk material 

can undergo degradation reactions after exposure while photodegradation is usually a 

surface phenomenon.  As mentioned previously, radical formation is achieved once a 

degradation initiation reaction occurs which usually combines with oxygen to form various 

carbonyl containing groups.  These carbonyl groups can further undergo free radical 
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reactions to produce highly oxidative species.[21]  Also, the hydroxyl radicals are of 

concern as a further initiator of degradation reactions.  In some polymers, both thermal 

initiation and photo-oxidation can occur in synergy to further excel the degradation.  The 

overall process is highly sophisticated and dependent on polymer chemistry, but a 

simplified reaction scheme of the degradation process in organic polymers is presented in 

Figure 1.3.[21]   

 

Figure 1.3 - Generalized reaction scheme of organic polymers via photodegradation 

[With kind permission from Springer Science+Business Media: Progress in Polymer Science, Photostabilization of 
coatings. Mechanisms and performance, 25, 2000, pages 1261-1335, Pospı́šil, J. and S.  Nešpurek, Scheme 25-29] 

 
In Figure 1.3, “P” represents the polymeric structure and the “P·” is the radical form of the 

polymer after a stimuli of enough energy has produced a free radical.  The chain scission 

decreases the overall stability of the polymer which effects transfer of stimuli to the fiber 

and, thus, the entire PMC structure is compromised.  Fibers and inclusions, if possessing an 

appropriate chemical structure, can also undergo photodegradation resulting in a loss of 

integrity.  Photodegradation can even lead to complete deterioration of the polymeric rich 

top layer present in many PMCs by a process known as chalking.[22]  Chalking results in a 

white powder formation from the oxidation processes which consists of degraded polymer 

and various other components depending on the material system.  A similar phenomenon 

termed blooming is the migration of degraded species causing a dull appearance.[23] 



11 
 

 PMCs that are degraded from ultraviolet exposure display significant changes to 

surface characteristics; however, if the UV source is of the correct wavelength and the 

exposure time is great enough, sufficient damage can be done to interior layers of the PMC.  

Two of the most easily noticeable changes, visible by the human eye, are gloss and color 

change.[23]  Unfortunately, very little literature investigates these two phenomena 

quantitatively for PMCs.  Most literature in this area cites a noticeable change in color and 

gloss without stating the results as a quantitative value.[24-29]  However, some studies 

were performed to investigate polymer degradation use the yellowness index which 

monitors the yellowing of the polymer over exposure time by numerical color 

measurements.[30-32]  This is often done by purely monitoring the b* value of the CIE 

Lab coordinate system, or by using the tristimulus values of color with the following 

Equation 1.1. 

 

 

In Equation 1.1, X, Y, and Z are tristimulus values dependent on the object, illumination 

source, and standard observer.[33]  This index only utilizes one aspect of color change 

from UV degradation while two other color coordinates can also be monitored.  Of 

particular concern is the L* value of the CIE (i.e., Commission Internationale de 

L'éclairage) Lab color scale which can be used to determine the amount of chalking that 

has occurred with the PMC.[34]  In a numerical sense, a total color change can be 

calculated by measuring the L*, a*, and b* coordinates differences in the Euclidean color 

space which is displayed in Equation 1.2.[35]   

∆𝐸𝐸 = (∆𝐿𝐿2 + ∆𝑎𝑎2 + ∆𝑏𝑏2 )1/2 

Y
ZXYI )06.128.1(100 −

= (1.1) 

(1.2) 
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Ahmad Thimizir et al. investigated a natural kenaf fiber in poly(butylene succinate) 

after radiation exposure to a natural atmosphere in Malaysia.[36]  Both the polymer and 

fiber had proper chemical structures for photodegradation to occur through multiple 

reaction forms depending on the wavelengths of radiation present.[37]  It was observed that 

all color values were modified over an exposure time of six months, with the largest 

contribution of color change coming from the L* value of color due to polymer chalking.  

Correria et al. examined the gloss and color change of polyester matrix/glass fiber 

composites under UV exposure for long (i.e., greater than 2000 hours) exposure times.[38]  

It was found that considerable changes were observed in the b* and L* values for the 

samples subjected to only UV exposure.  These large differences, especially in the b* 

value, gave a large total color change from initial experimentation to the end of exposure.  

Also, the change in gloss was attributed to many effects, but surface roughening effects 

were thought to be the main proponent by the authors.  Equation 1.3 was derived by 

Toporets and is used to quantify the surface roughness when comparing the reflectance 

values of the pristine surface to that of the weathered surface.[39] 

 

In Equation 1.3, Rs is the reflectance of the rough surface, Ro is the initial 

reflectance of the polymer, σ is the root mean square deviation from the mean height, θ is 

the angle of the gloss measurement, and λ is the wavelength of the illuminant.  The surface 

roughness usually increases with exposure which corresponds to a larger σ value and, thus, 

a larger decrease in the exponentially decaying function.  The rough surface reflectance is 

decreased which directly correlates to lower gloss values.   

(1.3) 
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 Another surface characteristic studied is the surface roughness after exposure to UV 

radiation.  The effect can vary from surface wrinkling and void creation to complete 

degradation of the polymeric top layer to expose fiber ends.  Scanning electron microscopy 

(SEM) is a commonly used technique to observe fiber pull-out, matrix micro-cracking, and 

matrix erosion at the surface of the composite structure.[40-46]  In lengthy weathering 

experiments, the debonding between fiber plies was observed via SEM.[29]  SEM 

micrographs can also distinguish the form of failure that occurred within the PMCs when 

fracture surfaces are examined.  The fracture surface examination provides information on 

the failure mode and whether it was due to matrix or fiber centered properties or a 

combination of the two in the form of delamination.[24, 47]  Figure 1.4 displays common 

degradation characteristics observed in carbon fiber/epoxy matrix.[28] 

 

Figure 1.4 –  Scanning electron micrographs of a) pristine PMC b) PMC exhibiting 

fiber loss at low magnification c) matrix cracking of PMC at high magnification and 

d) matrix erosion of PMC all after 1000 hours of accelerated exposure 

[With kind permission from Sage Publications: Journal of Composite Materials, Degradation of carbon fiber-
reinforced epoxy composites by ultraviolet radiation and condensation, 36, 2002, page 2713, Kumar, B.,Singh, R., 

Nakamura, T., Figure 10] 
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Another common method of surface investigation is optical microscopy which can 

be used to monitor pore content, depth of pore and void formation, fiber pull-out, and 

various other characteristics.[28, 48-49]  Other surface phenomena that have also been 

studied are the area of surface energies and resistivity for photodegraded composites.  

Findings in this area have concluded that the wavelength of ultraviolet radiation present 

influences the surface energy, surface resistivity and contact angle.  Therefore, the 

degradation products formed from the matrix material are also dependent on the radiation 

energy.[50] 

A major area of concern with degraded PMCs is the presence of voids which 

indicate a mass loss of the part or structure.  Mass loss can be attributed to degraded 

polymer being removed from the surface, or if enough matrix is removed, loss of fiber.[28, 

43, 45]  Additionally, the presence of pores also leads to an increased solution or water 

absorption.[38, 51-54]  Micelli and Nanni studies with glass and carbon fiber composites 

exhibited an increase of water absorption with increased time and temperature.[52] 

However, the uptake of water correlated with the trends observed in the mechanical testing 

of the composites.  Depending on the solution, which varies with the composite’s 

application, hydrolysis and polymeric oxidation may occur if oxidizing agents are present 

in the solution.  Chin et al. also investigated solution uptake of composite samples 

subjected to artificial UV exposure.[53]  Three forms of solution were used to weather 

PMCs comprised of polyester and vinyl ester resins for extended time frames.  A concrete 

alkaline solution, produced from concrete mixing, was of concern as the study focused on 

these PMCs function in as concrete reinforcement.  The final conclusion was that the 

composites were oxidized which caused changes composite structure. 
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 UV photo-oxidation and the resulting degradation reactions can cause significant 

mechanical damage if the radiation is of a low enough wavelength (i.e., higher energy) 

and/or for extended periods of time.  Flexural properties are more dependent on the matrix 

phase of composites than tensile properties as the load is applied out-of-plane of the fiber 

orientation.  This causes increased dependence on the matrix to fiber load transfer.  Matrix 

dominated properties are observed to change after relatively short weathering periods.[36, 

38, 40, 48-49, 55-57]  In some instances, the flexural modulus can increase due to 

increased crosslinking, either from under-cured composites or photodegradation induced 

crosslinking from free radicals, and then decrease after further exposure.[29, 51, 58]   

A study conducted by George and Dursch investigated numerous high strength 

composites in a low earth orbit for a duration of 69 months.[58]  The results displayed 

increased composite flexural modulus and strength over this duration.  Figure 1.5 reveals 

two composites that increased the flexural strength or both the flexural strength and 

modulus.[58] 

 

Figure 1.5 - Two composites systems subjected to low earth orbit and the 

corresoponding flexural properties 

[Reprinted by permission from the society for the                                                                                          
Advancement of Material and Process Engineering (SAMPE): Journal of Advanced Materials, Low earth orbit 

effects on organic composites flown on the long duration exposure facility, 25, 1994, 10-19, 
George, P. and Dursch, H., Figure 7] 
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The PMC systems 934/T300 and PMR15/C6000 designate an epoxy 

matrix/graphite fiber and polyimide matrix/graphite fiber, respectively.  The 934/T300 

PMC was made in a unidirectional fiber orientation while the PMR15/C6000 was a 

composite constructed of numerous stacked fiber plies.  It was also concluded from this 

research that carbon fiber/epoxy matrix composites had both a higher modulus and strength 

than the polyimide matrix/ graphite fiber composites.  However, low earth orbit exposure 

does not provide similar conditions to that found on Earth’s surface, but is a form of 

accelerated exposure as photodegradation and increased oxidation reactions are occurring. 

 Transverse tensile loading of unidirectional composites are also highly dependent 

on the matrix properties.  A transverse tensile measurement corresponds to a tensile loading 

in a direction 90° from the fiber orientation.  This form of experimentation on PMCs 

provides better insight into how the matrix was affected due to UV exposure which 

normally decreases the strength and modulus.[28, 44]  Kumar et al. studied both 

longitudinal (i.e., in the fiber direction) and transverse tensile properties of epoxy 

matrix/carbon fiber composites.[28]  It was observed that the longitudinal moduli and 

strengths did not change from the original values as the fiber phase was not affected by UV 

radiation.  Carbon fiber is not susceptible to UV degradation which is the reason for the 

modulus remaining constant with increasing exposure.  Likewise, the transverse modulus 

did not change dramatically during exposure, but the transverse strength did change 

substantially.  The transverse modulus is an out-of-phase loading scenario which is more 

dependent on the matrix; however, the small strains associated in this regime do not 

promote large differences from short exposure.  Figure 1.6 exhibits the change observed for 

various weathering cycles and the corresponding transverse strengths.[28] 



17 
 

 

Figure 1.6 - Transverse strengths of (from left to right) undegraded PMC, UV 

exposure only PMC, Moisture exposure only PMC, sequential exposure, and cyclic 

exposure of UV and moisture  

[With kind permission from Sage Publications: Journal of Composite Materials, Degradation of carbon fiber-
reinforced epoxy composites by ultraviolet radiation and condensation, 36, 2002, page 2713, Kumar, B., 

Singh, R., Nakamura, T., Figure 15] 
 

It can be concluded that these composites appear to be more sensitive to moisture 

than UV exposure.  However, 500 hours of UV exposure changed the transverse strength 

significantly from the initial strength.  These examples indicate that the longitudinal 

strength and modulus are not greatly affected by UV induced degradation, but the degree of 

UV susceptibility is dependent on the fiber architecture and fiber type. 

 The tensile properties are commonly reported measurements for PMCs that have 

been exposed to UV radiation.  Depending on the fiber, drastically different results can be 

obtained.  For instance, carbon or graphite and glass fiber exhibit tensile properties that 

demonstrate little change after weathering due to the fibrous material not undergoing 

degradation reactions.[26, 28, 38, 42, 45, 59-60]  Similarly, the compressive strength of 

composites is dominated by the fiber which demonstrates little change if the fiber itself is 

not susceptible to UV degradation.[61]  However, most natural fiber PMCs are known to 
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display decreasing tensile mechanical properties when exposed to ultraviolet radiation for 

durations long enough to remove the polymeric top layer.[56, 62-64]  For instance, 

Shubhra et al. studied the utilization of randomly oriented silk fibers in a polypropylene 

matrix for durability after several forms of weathering.[63]  It was observed that the 

composite systems displayed a higher loss of tensile strength with increased ageing.  Figure 

1.7 displays the loss of tensile strength with increased exposure time for 

polypropylene/rubber matrix ratios with 20% silk fiber by weight.[63] 

 

Figure 1.7 - Loss of tensile strength over ageing time for varying ratios of 

polypropylene (PP) to natural rubber (NR)  

[With kind permission from Sage Publications: Journal of Reinforced Plastics and Composites, Effect of matrix 
modification by natural rubber on the performance of silk-reinforced polypropylene composites, 29, 2010, page 

3338, Shubhra, Q., Saha, M., Alam, A., Beg, M., Khan, M., Figure 2] 
 

Polymeric fibers such as ultra high molecular weight polyethylene (UHMWPE) 

have also displayed a decrease in mechanical tensile properties when UV radiation is 

administered to the composite.[65]  If the duration of exposure is long enough and the 

radiation administered to the samples is the certain wavelength, considerable damage can 

accumulate thus affecting the tensile strength substantially.  Segovia et al. determined that 
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7000 hours of exposure to artificial weathering gave undeniably large decreases in tensile 

strength for several types of two dimensional fiber layup composites.  The artificial 

weathering was also conducted at UV intensities of 1700 watts per square meter.[66] 

 Lastly, infrared spectroscopy has been used to provide an indication of the extent of 

photodegradation as new chemical constituents form and the initial chemical structure is 

altered.  Depending on the matrix, many forms of chemical reactions can occur producing a 

variety of degraded compounds.  One of the degraded functional groups produced is the 

carbonyl group which was referenced earlier and can be observed in pristine organic 

polymers.[36, 38, 67]  Correia et al. found an increase in the carbonyl peak at 1730 cm-1 

with an increase in UV exposure for an isopthalic polyester matrix/glass fiber PMC.[38]  

Figure 1.8 displays the trend of an increasing carbonyl peak with exposure time.[38] 

 

Figure 1.8 - Infrared spectra of UV weathered PMC for a) reference b) 1642 hours c) 

3304 hours d) 4839 hours and e)  6480 hours showing increased carbonyl content 

[With kind permission from Springer Science+Business Media: Mechanics of Composite Materials, Durability of 
pultruded glass-fiber-reinforced polyester profiles for structural applications, 42, 2006, pages 325-338, Correia, J., 

Cabral-Fonseca, S., Branco, F., Ferreira, J., Eusebio, M., Rodrigues, M., Figure 10] 
 
 It was concluded that the extent of weathering is dependent on many factors such as 

the form of exposure and PMC type.  In a mechanical sense, an area of great concern is 

pore development which can alter material properties.  To monitor the extent of weathering 
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in these structures without permanent destruction (i.e., mechanical testing), non-destructive 

evaluation techniques have been introduced.  

1.4 Non-Destructive Evaluation of Polymer Matrix Composites: Traditionally 

Accepted Methods 

 The goal of non-destructive evaluation (NDE) of PMCs is to determine areas 

containing voids, pores, and delaminations within a structure.  NDE techniques can be 

performed with PMCs that are in their unused state or for scheduled structural health 

monitoring of a composite part over time.  The traditionally used and widely accepted 

methods of NDE are: thermography, acoustic emission, ultrasonic techniques, and x-ray 

radiography.[2]  As the name suggests, each evaluation technique is typically non-

destructive, but each method can be detrimental depending on the PMC. For instance, 

acoustic emission monitors the noise emitted by the PMC when stresses are applied.  Noise 

is emitted when fiber breakage, matrix cracking, or fiber-matrix delamination occurs which 

is destructive.  Thermography requires a temperature increased from ambient conditions 

and maintained for a period of time to determine void areas.  This can be degrading if the 

matrix is highly susceptible to thermal oxidation.  Each method has positive and negative 

aspects, but all methods tend to have relatively quick measurements, repeatable results, and 

qualitative imagery where the interpretations of the results are user specific. 

 Thermography is a NDE methodology which exploits the differences in thermal 

conductivities of air and polymers to observe air entrapment within PMC via void 

formation or delamination creation via an infrared camera.[2]  The energy source can be 

either external or internal.  An external source is radiant heating of the composite and an 

internal source is accomplished from the heat generation from fatigue cycling of the 
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composite.  Originally, this inspection method had poor resolution compared to other NDE 

methods, but now with the immergence of liquid crystal technology the resolution has 

improved.[68]  Instead of the traditional heating methods, where the composite’s surface 

temperature is increased, the use of pulse thermography and cooling techniques has also 

been instituted.[69]   Numerous forms of active (i.e., heat source containing) thermography 

are available, ranging from continuously modulated radiation to bursts as short as 2 

milliseconds.[70]  However, most methods do have a negative aspect.  Pulse thermography 

typically discovers only surface defects of thicker cross sectional parts where development 

of major mechanical flaws are not detected.[71]  If continuous thermally exposed samples 

are examined with thermography, thermal oxidation reactions will increase in number and 

accelerate the degradation process which is undesirable.  Another area for concern is the 

detection limit of this method.  As assumed, larger defects are relatively easy to detect, but 

large defects below the surface can be difficult to observe in thick or multi-ply PMCs.  

Composites with similar fiber and matrix thermal conductivities are also difficult to 

examine via thermography.  Thus, investigation of polymeric fiber PMCs is difficult which 

is a negative aspect considering the emergence of polymeric fibers.  Also, thin defects, 

such as fiber disbonding, are difficult to detect when occurring parallel to the heat 

source.[72]  

 Acoustic emission is a NDE that monitors the release of energy, in the form of 

sound waves, from PMCs.  Energy release can be incurred through fiber breakage, matrix 

cracking, and complete delamination of fiber from matrix.[2]  This method is traditionally 

used when fatigue or mechanical investigation is being conducted on composites as the 

acoustic microsensors can measure the energy releasing events in real-time as compared to 
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other NDE methods.  The sound is emitted by the composite, captured by the emitter, and 

the signal amplified, filtered, conditioned, and converted to usable data.  The frequency and 

amplitudes of the energy release are then studied and interpreted to determine which effect 

is occurring during the recorded energy release.  By grouping these events into frequency 

bins for examination, it can be determined which effect may be the main contributing 

factor to the composite failure.[73]  Also, mechanical degradation mechanisms may have 

one or more frequencies at which the sound response is generated leading to results that 

have to be heavily analyzed before the mechanism can be found.[74]  This method leads to 

many quantitative results where statistical analysis is important, but the one negative aspect 

is the noise emitted is associated with a mechanism that compromises the stability of the 

composite.  The measurement can only be accomplished with a specimen that is being 

degraded, causing this methodology to be less ideal than other accepted methods. 

 Ultrasonic NDE techniques use sound waves (i.e., frequencies between 1 and 25 

MHz) as an external source to determine internal voids.[2]  The wave can bounce off the 

sample skin layer (i.e., the depth of penetration dependent on material and wave frequency) 

or can go through the sample with the voids and defects scattering the wave such that the 

signal is not caught by the receiver to display a void.  The measurement is performed on a 

point by point basis which is called an A-scan, and combining multiple A-scans produce a 

line of points known as a B-scan.  If all B-scans are sorted in order and placed on one 

plane, the combination is known as a C-scan.  These measurements are typically performed 

in a fluid medium to dissipate the loss effects that would be present in air. The fluid 

medium can cause degradation when subjected to this environment for extended periods of 

time.  On the other hand, development of new sensors is paving a niche in the area of in-air 
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measurements.[75-76]  An example of a typical C-scan is displayed in Figure 1.9 for the 

damage caused by impacts of varying energies in three composite systems.[77]   

 

Figure 1.9 - C-scans for 45 J, 64 J, and 89 J (from left to right) impacts on composite 

systems containing (a) carbon fiber (b) carbon and E Glass fiber and (c) carbon and 

Kevlar fiber 

[With kind permission from Springer Science+Business Media: Journal of Materials Processing Technology, Air-
coupled ultrasonic C-scan technique in impact response testing of carbon fibre and hybrid: glass, carbon and 
Kevlar/epoxy composites, 157-158, 2004, pages 513-522, Imielińska, K., Castaings, M., Wojtyra, R., Haras, J., 

Clezio, E., Hosten, B. Figure 7] 
 

The pulse echo method is usually the most popular method for in-service 

measurements as it requires only one side of the composite to be accessible.[78]  Pulse-

echo measurements are  typically performed on thick samples (i.e., greater than 15 

millimeters) while through transmission measurements are performed on thinner 

samples.[79-80]  Regardless of the signal capturing methods, the results are quantitative as 

the size of a defect present may or may not directly coincide with the mode of failure.  This 

is especially true when monitoring smaller voids and delaminations within a composite.  
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 X-ray radiography NDE methods use x-ray radiation to pass through composite 

samples where the signal is then received by a detector and the intensity plotted.  This 

technique has been utilized in the medical industry for many years for examining bone 

structures.  The difference in absorption coefficients between air and the surrounding 

polymeric matrix and inclusions cause differences in the intensities as air has a low 

extinction coefficient compared to polymers, glass, and carbon.[2]  For polymeric matrices, 

the use of heavy metal salts as penetrants highlight cracks, voids, and delaminations with 

greater contrast than air.  The emergence of charge coupling devices (CCDs) and the more 

portable x-ray sources have led to 3-D imaging of internal flaws within PMCs as the image 

can be captured in 180° and multiple CCD screens to produce an image which has been 

used for numerous applications.[81]  The use of high-resolution X-ray computed 

tomography (i.e., microtomography) has provided an insight into a variety of polymer 

composites and even investigated small defects created during UV exposure of 

composites.[82]  These methods are far more functional than the originally used 

photographic film to capture the material response.[83] Three dimensional imaging is a 

progressive technology, but a major concern is length of time required to capture an image 

which can take up to 10 hours to scan an entire sample.[82]  Of note, x-rays have been 

known to cause serious health effects including mutagenic and cytogenic conditions.[84]  

Also, the emergence of polymeric fibers, which have similar densities to the matrix 

materials, would not be observed via x-ray radiography.  These reasons have lead to x-ray 

not being widely utilized for NDE of PMCs. 

Electrochemical Impedance Spectroscopy (EIS) is a NDE typically used on coated 

metals to determine the attributes of the coating system, coating-metal interface, and 
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metallic substrate and the coating performs when exposed to degrading stimuli.[5, 85]  A 

potentiostatic EIS method is most often used to apply a “controlled” sinusoidal voltage 

between two electrodes and the current response is measured, as the frequency is swept, to 

determine the magnitude of the impedance.  The results of EIS experimentation are 

depicted in graphs of impedance magnitude versus frequency, phase angle (i.e., the offset 

of current from voltage) versus frequency, and the real versus imaginary components of the 

impedance.  From these plots of data, circuit modeling with resistors, capacitors, and 

constant phase elements can be performed to produce a better understanding of the physical 

characteristics.  The circuit elements, when placed in combinations of series and parallel, 

can replicate the results obtained during EIS measurements.  Of more interest, each 

element can be monitored over time and compared to other systems.  For instance, the 

delamination of a coating from substrate can be monitored over exposure time by the 

modeled capacitive elements within a spectra.[86]  The resistive elements of the spectra 

can be an indicator of coating degradation as pore development can affect the barrier 

function of the coating system.[87]  EIS is typically reserved for coatings with metallic 

substrates where one electrode of the experimentation is the conductive substrate, but more 

recently the use of non-conductive substrates has also been investigated.   

By using a two electrode technique, displayed in Figure 1.1, the current measured is 

between the same two electrodes which apply the voltage making EIS measurements 

possible on non-conductive materials and in various configurations.[88]  The quantitative 

measurement leads to statistical analysis of the results and correlation to various properties.  

Likewise, the repeatable measurements which are performed rather quickly make this 

technique a plausible method to be incorporated with the other NDE previously mentioned. 
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1.5 Electrochemical Impedance Spectroscopy of Polymer Matrix Composites 

 Both conductive and non-conductive composites can be measured by EIS via the 

three electrode and two electrode EIS techniques, respectively.  With conductive samples, 

either the conductive element (i.e., usually a conductive fiber) may act as an electrode, or if 

a loading above the percolation threshold is present, a setup similar to coated metals can be 

used.  To clarify the distinction, this section will be divided into the two different types of 

composites, conductive and non-conductive, and then sorted by the mode of void and 

delamination creation as many possible types of degradation exists including: mechanical 

stressing, absorption of various solutions, application of overpotentials, galvanic coupling 

to metallic alloys, and even microbial attack.   

1.5.1 Investigation of Conductive Fiber PMCs Containing Carbon/Graphite Fiber via EIS 

 Carbon and graphite fiber containing composites have been studied longer than the 

non-conductive composites as the electrode setup is more closely related to the traditional 

methods used for coated metals.  A three electrode technique can be accomplished via the 

attachment of the working electrode to one of the conductive fibers, or the entire composite 

structure acting as the working electrode if intimate contact can be made with the 

conductive species.  The entire structure is used as a working electrode with EIS of carbon 

fiber reinforced plastics (CFRPs) used to wrap concrete columns, but this will not be 

covered as only large area delaminations, in the magnitude of inches squared, are detected 

in this type of experimentation.[89-91]  Also, these delaminations are not from the 

composite structures but rather from the delamination of the composite from the concrete.   

The delamination of these structures undoubtedly occur from fatigue stressing of 

the concrete columns, but of more concern is the fatigue process in the actual composite 
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which has been researched by Glass and co-authors.  Fatigue stresses are known to cause 

fiber failure, delaminations, fiber debonding, and matrix cracking in polymer matrix 

composites.[92]  Glass et al. monitored the double layer capacitance in circuit modeled 

results of the electrochemical impedance spectra to determine the extent of delamination of 

a carbon fiber/epoxy matrix composite after significant flexural fatigue had been 

administered to the sample.[93]  This three electrode configuration used a Luggin probe for 

the saturated calomel electrode (SCE) reference electrode to promote low resistance effects 

between the conductive solution, deaerated sodium sulfate solution, and sample.  The 

counter electrode material was also made of carbon which acts as one of the electrodes 

measuring the current flow.  Many fatigue cycles (i.e., 100,000 cycles) were then 

administered to the epoxy matrix/carbon fiber composite to induce voids throughout the 

PMC sample.  The modeled double layer capacitor exhibited a major difference from that 

of the original values.  This change can be attributed to the decrease in the active electrode 

area, more than likely, from the fiber breakage that occurred during the fatigue 

experimentation.  Likewise, the absorption of solution in fatigued samples was observed to 

increase with increasing amount of fatigue cycles as void creation allows for more solution 

uptake.[94] This increase in solution absorption would also increase the solution resistance 

typically, but the decrease in area effect outweighed that of the permittivity effect.  

Equation 1.4 displays the calculation of capacitance for two electrodes separated by a less 

conductive material than that of the electrodes. 

C =  εrεoA/d 
 
In Equation 1.4, εo is the permittivity of free space, εr is the dielectric constant, A is the 

active area, and d is the distance between the two conductive electrodes.  As fiber breakage 

(1.4) 
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occurs, the fiber area decreases resulting in a smaller capacitance.  However, the absorption 

of the dilute solutions increase the capacitance values as the relative permittivity of water is 

between 76.6 and 80 while polymer has a dielectric constant between 2.0 and 12.2.[95]  A 

dilute salt solution does not affect the relative permittivity of the solution as the mixed 

media theory states that the volume fractions of each constituent are of utmost 

importance.[96]  Likewise, the volume fraction of solution present in the polymer was 

outweighed by the area effect causing the capacitance variance.  Another interesting aspect 

came from the research of the carbon fiber/epoxy matrix composite as the capacitance 

values were observed to decrease after completion of flexural fatiguing.  This trend was 

attributed to atmospheric moisture causing further penetration of the solution to promoting 

swelling deeper within the matrix material and possibly causing fiber breakage.  Again, the 

fiber breakage corresponds to less area causing a decrease in capacitance.  The fiber 

breakage also led to higher resistance values as the longer pathway, from the fiber to 

counter electrode, through a more resistive media (i.e., polymeric matrix) increases the 

resistance.  This work demonstrated that the fiber breakage mechanism was the main mode 

of degradation in this composite system and it could be monitored with EIS. 

 Glass et al. also investigated the immersion of the carbon fiber/epoxy matrix 

composites in different solutions, with intermittent dry cycles, to determine the influences 

on the EIS spectra.[93]  The solutions used were distilled water and the sodium sulfate 

solution previously mentioned.  A comparison was made between the as-received 

composite EIS spectra and that of composites dried at 140°C for 48 hours, composites 

immersed in sodium sulfate solution for 30 days at room temperature, composite immersed 

in distilled water for 4 days at 100°C, and composites dried after immersion in solution.  
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Both solutions displayed a decrease in the capacitance compared to the original values.  

The capacitance rose compared to initial values after drying the immersed samples.  This 

observation can be credited to the increased electrolyte absorption due to matrix 

microcracking, void formation, and delaminations due to the swelling/unswelling cycle 

caused with wet and dry cycling.  Void creation between fibers can cause electrical 

bridging with an electrolyte medium causing an increase in the surface area and, thus, an 

increased capacitance.  Taylor et al. reinforced this claim by studying composite systems 

containing unsized graphite fiber in an epoxy matrix via EIS on a specimen that had been 

subjected to 90°C temperatures.[97]  The 90°C environment was maintained until the 

samples were removed and then immediately measured with EIS.  Thermal coefficients of 

expansion differences between the fiber and matrix caused delaminations and voids which 

caused an increase in the measured capacitance.  Lastly, Glass et al. correlated the values of 

capacitance to the shear strengths of these composites as observed in Figure 1.10.[93] 

 

Figure 1.10 - Relationship between capacitance, shear strength, and weight gain of 

samples immersed in 90°C distilled water  

[Reproduced with kind permission from Springer Science+Business Media: Journal of Nondestructive Evaluation, 
Electrochemical impedance spectroscopy as a method to nondestructively monitor simulated in 

-service damage in a carbon fiber reinforced plastic, 6, 1987, 187, 
 R. Glass, S. Taylor, G. Cahen, Jr., and G. Stoner, Figure 8.] 
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The results displayed a positive correlation between capacitance and shear strength.  

An increase in water uptake further supports the postulation that with fiber breakage, from 

the polymeric swelling, decreased mechanical properties can be observed.  This work was 

an initial contribution in the area of correlating the mechanical properties with circuit 

modeled elements. 

 Taylor et al. investigated the use of a solution containing hydroxyl (OH-) ions as the 

hydroxyl ion is the anion which is believed to cause delaminations in bismaleimide 

matrix/graphite fiber composites.[98]  Sodium hydroxide solutions, in various 

concentrations, were used as the source of the hydroxyl ions which are believed to be 

produced during cathodic polarization of PMCs.  The results from the solution immersed 

samples did not demonstrate similar trends compared to the results obtained during the 

cathodic overpotentials applied in the same study.  The Bode phase plots of the sodium 

hydroxide solution did not exhibit the same behavior of a “porous electrode” which is 

formed when delaminations occur along the fiber edge to create a crevice over the exposure 

time.  The porous electrode effect was observed at the fiber/matrix interface within the bulk 

of the PMC. However, the only noticeable change from the dissolution of bismaleimide 

was observed at the surface of the PMC.  This observation led to a further investigation as 

to which species were causing the delamination of the fiber from matrix when 

overpotentials were imposed upon the sample. 

 It has been observed, repeatedly, that carbon/graphite cross woven with glass fibers 

in polymer matrices display significant blistering at the surface when attached to anodic 

metals.[99-100]  Literature states the blister formation is from evolved species at the 

carbon fiber/polymer matrix interface as cathodic overpotentials are induced and an 
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electrochemical process occurs.  Circuit modeling was utilized by Kaushik and colleagues 

to investigate the effects of cathodic overpotentials on carbon and glass fiber weaves in a 

vinyl ester matrix.[101] Voltages of 0 volts, -0.65 volts, and -1.20 volts (versus saturated 

calomel electrode (SCE)) for various exposure times were applied.  The model used to 

determine the circuit constituents was initially used by Mansfeld and Kendig of coated 

metals displaying corrosion initiation.[102-103]  This circuitry displays two time constants, 

or two resistor-capacitor (RC) circuits in parallel, which includes a solution resistance, Rs, 

“coating” capacitance, Cc, pore resistance, Rpo, a charge transfer resistance, Rct, and a 

double layer capacitor, Cdl.  Figure 1.11 reveals the commonly used circuit model utilized 

in this study. 

 

Figure 1.11 – Two time constant circuitry utilized for circuit modeling 
 

Similarly, a constant phase element (CPE) can also be used for substitution of the 

capacitors as CPEs are thought of as “leaky” capacitors where the response is not entirely 

in a capacitive fashion.  The pore resistance was of most importance when studying the 

blister formation as electrolyte penetration would be more pronounced with time.  The 

results founded by Kaushik suggest that the blister formation does indeed occur at the 

fiber/matrix interface and migrates toward a surface.  The results were visually confirmed 

by utilizing SEM to investigate the fiber/matrix interface.  EIS results also exhibited a 

decrease in the pore resistance which results from the easier electron and ion paths between 
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the fiber (working electrode) and counter electrode.  The pH, in the blisters, increased from 

the formation of hydroxyl ions which was the proposed degradation species created from 

cathodic overpotentials.  As mentioned earlier, Taylor et al. believed hydroxyl ions were 

not the key ion or radical creating the delaminations and void creation at the fiber/matrix 

interface.[98]  

 Alias and Brown studied the topic of cathodic overpotentials on carbon and glass 

woven fiber/vinyl ester matrix and epoxy matrix in a similar fashion to the aforementioned 

work by Kaushik and colleagues.[104-105]  Vinyl ester matrix composites displayed the 

formation of blisters and a black product on the composite surface while the epoxy matrix 

displayed a white deposit formed on the surface.  From the circuit modeling results, it was 

observed that the pore resistance was negligible as the values approached zero which 

suggests that a “short circuit” was present.  This can be caused when macro voids are 

present which was only the case with the epoxy based composites at cathodic potentials of 

-300 millivolt (versus SCE) or more negative.  On the other hand, when the potentials were 

more positive than -300 millivolt (versus SCE), the pore resistance was still measurable 

and was greater in the epoxy composites than the vinyl ester composites.  Both 

electrochemical impedance and visual assessment of these composites displayed greater 

damage to the structure with an increase in the cathodic potential applied.  The impedance 

results displayed a decrease in magnitude with increasing exposure time.  Phase angle 

shifts to lower frequencies were also observed with increasing exposure time.  This work 

suggested that the hydrogen evolution was occurring at -1200 millivolt (versus SCE) which 

was the degradation species, but another hypothesis stated the possible direct reduction of 

the polymer matrix due to the high magnitude potentials. 
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 Taylor’s published research in 1994 sought to determine the damage instituted by 

cathodic overpotentials via a “crevice” geometry calculation to determine the area of 

delamination of the electrode (graphite fiber) from the matrix.[106]  The derivation of this 

electrode geometry was initially proposed by de Levie to monitor surface roughening of 

electrodes over exposure to scratches during fast electrochemical measurements.[6]  

However, Taylor’s derivation noticed that the only constituent required to monitor this 

effect was the phase angle at low frequencies in EIS experimentation.  This discovery was 

unique as phase angle is a quantity that is independent of electrode size and area unlike 

traditional impedance magnitude, but could be used to determine crevice width and depth.  

The experimentation was conducted on composites consisting of a bismaleimide matrix 

and unidirectional graphite fiber.  Three electrodes were again used in this study with a 

graphite fiber acting as the working electrode and the electrolyte was a 3.5% (weight 

percent) sodium chloride solution.  One distinct advantage of having graphite as the 

working electrode is its non-Faradaic region near the open circuit potential which creates 

more accuracy in the measurement.  Also, the polymeric matrix causes the main constituent 

of the impedance to be derived from the double layer capacitance formed from electrolyte 

solution penetration which was an assumption of the electrode geometry to monitor crevice 

width and depth.  The degradation was accomplished by subjecting the samples to cathodic 

potentials of -1.2 volt, -1.4 volt, and -1.73 volt (versus SCE) for varying amounts of time.  

It should be mentioned that these potentials were not maintained during EIS 

experimentation as that would be far away from the open circuit potential which is needed 

for steady-state measurements.  Figure 1.12 displays the depth of penetration for the three 

cathodic potentials for various exposure times.[98]  
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Figure 1.12 - Penetration depth of delaminations as calculated by the EIS phase angle 

data for three cathodic potentials 

[Reproduced by permission of The Electrochemical Society: Journal of The Electrochemical Society, The detection 
and analysis of electrochemical damage in bismaleimide/graphite fiber composites, 143, 1996, 451, S. Taylor, F. 

Wall, and G. Cahen, Jr., Figure 5.] 
 

The depth of penetration calculation had many assumptions which were not 

necessarily met during experimentation.  For instance, the opening of the crevice (i.e., 

distance from the fiber edge to the surface of polymer) was held constant even though it 

was expected to change over time from the delamination effect.  The double layer 

capacitance was approximated from the suggested values of the basal plane of graphite and 

crystal edges, but these values from the actual configuration were not calculated during this 

study.  Even with the assumptions made, the extrapolated data correlated well with 

composite samples coupled to magnesium in seawater.  This was promising as the crevice 

geometry of delamination could be very beneficial in understanding mechanical damage 

over exposure time in service conditions where coupling to a metal was present. 

 This work was continued by Taylor et al. in work published in 1996.[98]  

Bismaleimide matrix/graphite fiber composites were studied with the same setup and 

potentials mentioned in the 1994 work.  In this research, a closer investigation of the phase 
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angle was proposed as not only could the depth of delamination be determined, but with 

shifts in the phase angle, other interfacial characteristics could be explored.  The results 

revealed that with an increasing cathodic potential the corresponding changes in the phase 

angle were more pronounced.  It was determined, by potentiodynamic polarization, that 

both the -1.2 volts and -1.4 volts (versus SCE) applied voltages should be limited by 

diffusion processes, but it was observed in the results for -1.4 volts a larger change in the 

phase angle was measured.  This was not expected as the imposed voltages in both cases 

were of the same magnitude, therefore the reactions and evolved species should be the 

same or very similar.  Smaller overpotentials were applied and investigated for their effect 

on the phase angle and other EIS data.  Potentials of 0 volts to -100 millivolts (versus SCE) 

demonstrated the phenomenon was not observed at the other potentials, but once the 

potential was change in the range of -200 millivolts to -300 millivolts, the capacitance 

values increased as expected.  The inhomogeneity of the samples and a constant assumed 

open circuit potential was the suggested reason for the discrepancies in the low potentials.  

The discrepancies could also be accounted for by the slight reduction of certain functional 

groups at these low potentials.  The reduction of functional groups can possibly produce 

electrostatic debonding at the fiber/matrix interface.  The major contribution from this 

work came from a proposed degradation species present when the composites were 

subjected to the overpotentials.  As mentioned previously, the hydroxyl ion did not produce 

the same type or extent of degradation, when applied as a solution, as that of cathodic 

overpotentials. This was further reinforced by curvature observed in the low frequency 

phase angles.  The new proposed species were peroxide, superoxide radicals, and 

potentially hydroperoxyl radicals.  Cleavage of the carbon-carbon bonds, along with 
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various other mechanisms, to produce the aforementioned species has been well 

documented from the breakdown of polymer matrices.[107-109]  The species were not 

chemically determined within this study, but it was assumed that the type of degradation 

species would vary from polymer to polymer. 

 Anodic overpotentials were also studied by Taylor et al. in the work mentioned 

previously.[98]  The instance where a graphite fiber would be subjected to an anodic 

overpotential is very rare in an industrial sense as graphite is one of the noblest materials 

used today.  However, stray currents could produce this type of potential which was why a 

large over potential of +1.5 volts (versus SCE) was applied to the composites for a 20 hour 

duration.  After exposure, EIS was performed in the traditional three electrode technique.  

The results displayed a decrease in the magnitude of impedance, a shift in the capacitive 

regions toward lower frequencies, but no significant changes were observed in the phase 

angle peak.  This did not lead to noticeable changes in the delamination effects.  Also, the 

impedance magnitude decreased with time which was explained by the solution ingression 

which was not accompanied by a delamination. 

 Galvanic coupling of two conductive materials is similar in nature to cathodic 

overpotentials but more typically found in industrial settings.  Taylor studied graphite fiber 

composites galvanically coupled to a more active metal in the presence of an 

electrolyte.[98]  Coupling of the bismaleimide matrix/graphite fiber composites to 

aluminum, steel, copper, and titanium was performed and the EIS behavior monitored over 

exposure time.  The results obtained during this study were similar, but not identical, to that 

of what was observed during the cathodic overpotential study.  A decrease in the 

impedance magnitude, phase angle depression, and slope of the Nyquist plot decreasing 
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were all commonly observed during the cathodic overpotential study but not to the same 

extent for all samples.  As expected, the change in impedance magnitude correlated with 

the difference in electrochemical potentials of the composite and metal.  In this study, the 

aluminum coupled composites displayed the most damage.  Aluminum has a potential of    

-0.81 volts (versus SCE), low carbon steel has a potential of -0.70 volts (versus SCE), 

copper has a potential of -0.20 volts (versus SCE), and lastly titanium has a potential of      

-0.05 volts (versus SCE) in a saltwater solution which was very similar to the sodium 

chloride solution used during this experimentation.[110]  The porous electrode effect, or 

crevice geometry, calculations were most pronounced in the aluminum as the assumed 

peroxide radicals were being formed more readily to cause more degradation reactions. 

 Delaminations caused by microbial attack of the matrix material, at the interface of 

the matrix and fiber, is the last mode of delamination studied.  Gu studied the extent of 

microbial growth at the interface of carbon fiber composites as microbe growth is known to 

occur at additive (i.e., sizings, plasticizers, flame retardant, etc.) sites within PMCs as 

supported by SEM.[111]  It was hypothesized that EIS would be the proper experimental 

method to determine the growth of the microbes at the consequence of the graphite 

fiber/matrix interface leading to delamination.[112-113]  Graphite cross woven with glass 

fibers was impregnated with an epoxy matrix to produce a PMC that was inoculated with a 

fungal mixture.  The consortium of fungi was then allowed to incubate for a period of 179 

days and characterization via EIS and SEM was performed.  EIS results revealed that the 

impedance magnitude decreased from values collected from non-microbe administered 

samples.  In fact, the impedance increased slightly in the non-microbe containing samples 

but then stabilized.  The impedance data suggested a decrease in both the real and 
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imaginary portions of the impedance.  Real impedance is the resistive elements where the 

decrease in the real portion being attributed to the pore formation and expansion with 

increased microbe deterioration.  The capacitive elements account for the imaginary 

portion of the impedance which can be accounted for with an increased electrode area from 

electrical bridging between newly exposed fibers.  Both of these results were visually 

verified with the investigation of scanning electron micrographs. 

1.5.2  Investigation of Non-Conductive PMCs via EIS 

 Non-conductive fiber in a non-conductive matrix is a completely insulative material 

which cannot have EIS experimentation conducted upon it in the traditional three electrode 

fashion.  This has led to very little investigation of this class of composite in an 

electrochemical sense.  However, non-conductive fiber usage is at the forefront of research 

due to the exceptional properties which rival and exceed the properties present within 

carbon and graphite fibers.  One fiber type that is inexpensive and has been engineered to 

perform in specialized ways, depending upon its composition, is glass fiber.  The 

emergence of S Glass®, M Glass® and  C Glass® ,from the traditional E Glass®,  display 

increases in many properties ranging from strength to chemical resistance.[114] Therefore, 

a quantitative methodology for determining the extent of damage is needed and has been 

investigated by EIS in a very limited fashion.  The typical setup is a two electrode 

configuration which was displayed in Figure 1.1.  Again, this setup leads to the reference 

acting as a quasi-reference without comparison to a standard reference electrode. 

 Fazzino et al. used this form of EIS methodology to investigate the effects of 

fatigue cycles on the impedance data.[115-116]  The composite of interest was a 

halogenated epoxy matrix/E Glass® which was subjected to cyclic compression where 
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voids and delaminations were expected to occur.  First, the effects of immersion and drying 

were studied to determine the overall influence on the impedance characteristics. After 48 

hours of immersion and drying, the initial circuitry was observed to contain both resistive 

and capacitive effects.  Once the sample was sufficiently dried, a capacitive dominated 

circuitry transpired.  This is expected behavior as a completely non-conductive media (i.e., 

composite) sandwiched between two conductive plates should behave in a predominantly 

capacitive nature.  Wet samples have solution ingression in pre-existing voids, which are 

inherent in composites, creating resistive pathways.  It was also determined that higher 

concentrations of the sodium chloride solution decreased the impedance as easier electron 

and ion movement is possible with more chlorine anions present.  After initial studies, the 

samples were then fatigued and the EIS spectra monitored.  As the fatigue cycles increased, 

it was found that the impedance correspondingly decreased due to increased absorption of 

the three molar sodium chloride solution which created shorter resistive pathways from 

increased penetration of the electrolyte.  Interestingly, even though small amounts of 

damage, only 20% of the needed cycles to failure, were administered to the sample, visual 

assessment displayed no noticeable damage while EIS detected drastic changes in the 

impedance. 

 Fazzino et al. also investigated the dependence of the fatigue direction with respect 

to the fiber alignment.  Composites were produced using a stacked plain weave 0° and 90° 

(with respect to the warp fiber direction) orientation to obtain a thickness of one millimeter.  

Composite samples where then cut at 0°, 90°, and 45° for examination.  As expected, the 0° 

and 90° cut samples revealed similar results as a plain weave exhibits isotropic 

characteristics in both the weft and warp fiber directions.  The 45° cut specimen displayed 
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drastically different qualities compared to 0° and 90° cut samples.  For instance, the low 

frequency impedance was lower in the 45° cut sample by two orders of magnitude and the 

high frequency impedance was changed in the 45° sample, but remained unchanged in the 

0° and 90° specimens.  These effects can be attributed to the 45° sample having matrix 

driven degradation causing significantly more voids and microcracking than the other 

configurations.  As mentioned, lower impedance insinuates further electrolyte penetration 

with more hydration sites for easier electron and ion flow.  The large shift in high 

frequency impedance suggests that not only were the resistive qualities changing but also 

the capacitive properties were modified.  Further examination found that relationships were 

present between the impedance spectra, area of damage, strain to break, and the fraction of 

fatigue life conducted.  The impedance magnitude at 1000 Hertz and the initial slope of the 

Nyquist plot correlated with the mechanical strain at break after normalizing these values 

to their initial value.  This was very important because it proves the mechanical behavior of 

a non-conductive composite could be predicted based on EIS results. 

1.6 Conclusions 

 PMCs exhibit low density and high strength which is why this class of material is 

becoming more acceptable for use in high-profile applications in many sectors.  One of the 

major drawbacks is that these materials undergo degradation reactions in the environment 

where they are utilized.  UV exposure is present in all areas of the world and it can cause 

significant damage to PMCs if allowed to degrade for extended periods of time.  Therefore, 

EIS is proposed to be a quantitative methodology suitable for non-destructive evaluation of 

polymeric composites which have undergone various degradation mechanisms.  This 

method provides quick measurements, repeatable results, and quantitative data leading to a 
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better understanding of correlation to other mechanical, thermal, and electrical properties 

of the composite.  Several EIS studies have been performed in the area of conductive fiber 

composites which can monitor delamination progression from a variety of stimuli.  

However, literature available in the realm of non-conducting PMCs is scarce, but the 

literature in existence demonstrates that EIS results correlated with mechanical properties. 
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CHAPTER 2.  MATERIALS AND METHODOLOGIES 
 

2.1 Materials 
  
 The materials used during this study consisted of polymer matrix composites, which 

were integral to the research, as well as materials used in the measurement of impedance 

via electrochemical impedance spectroscopy (EIS). The materials for EIS measurement 

consisted of ultra-pure water and a conductive gel.  The conductive gel was utilized to 

provide a defined surface area of the electrode during EIS measurements. 

2.1.1 Polymer Matrix Composites 
 
 The composites studied were produced by Sioux Manufacturing Corporation of Fort 

Totten, North Dakota.  Four different sample sizes consisting of two material systems were 

studied.  A phenolic matrix plasticized with polyvinyl butyral (PVB) was used for all 

samples with either S2 Glass® fiber or Kevlar® fiber.  In order to produce balanced and 

symmetric laminates, plain woven fiber plies were “laid up” in an alternating scheme of 0° 

and 90° (with respect to warp fiber or longitudinal direction) until the desired thickness 

was achieved.  To adhere to ASTM standard D 2344, the composite specimens 

manufactured for determination of interlaminar shear strength had the final dimensions of 6 

inches long by 2 inches wide by 1 inch thick (or 15.24 centimeters long by 5.08 centimeters 

wide by 2.54 centimeters thick).  This thickness was accomplished with 50 fiber plies in 

the case of the S2 Glass® composite and 45 plies in the Kevlar® composites.  The tensile 

properties were also investigated in accordance with ASTM D3039 with the ideal sample 

dimensions being 6 inches long by 0.6 inches wide by 0.06 inches thick (or 15.24 

centimeters long by 1.52 centimeters wide by 0.15 centimeters thick).  However, the 

minimal thickness along with the symmetric nature required at least three fiber plies be 
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used, so the thickness was altered slightly from the ideal dimension.  The Kevlar® 

composite had a final nominal thickness of 0.087 inches (or 0.22 centimeters) while the S2 

Glass® composite had a nominal thickness of 0.059 inches (0.15 centimeters). 

2.1.2 Materials for EIS Measurements 

 The ultrapure water was produced from a Millipore Milli-Q® water purification 

system to produce water with a resistivity of 18.2 MΩ·centimeter.  The conductive gel used 

for the EIS measurements was Spectra 360® which is produced by Parker Laboratories.  

This gel is designed specifically for electrode use, predominantly in the medical industry, 

but contains a salt which promotes both electrode health and minimal skin irritation. 

2.2 Electrochemical Impedance Spectroscopy: Principles and Circuit Modeling 

 EIS is an electrochemical technique that has been used extensively in monitoring 

the durability of coatings in the corrosion sector.  In potentiostatic EIS, a sinusoidal voltage 

is applied and the resulting current response is measured over a frequency range.  To 

maintain a non-destructive nature, only a small perturbation is applied about the open 

circuit potential which is usually on the order of millivolts.  The equation for determination 

of the modulus is a slight manipulation of Ohm’s Law which states the direct current 

voltage is related to the current by the magnitude of the resistance.  Equation 2.1 

demonstrates this relationship with an alternating current. 

 

In Equation 2.1, VOCP is the open circuit potential, Vpert is the perturbation voltage, 

ω is the angular frequency, t is time, I is the magnitude of the current, θ is the phase 

between current and potential response, and Z is the impedance magnitude.  The current 

responses, both in magnitude and phase, allow for a calculation of the impedance versus 

)()sin()sin( ωθωω ZtItVV pertOCP •+=+ (2.1) 
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frequency and phase angle versus frequency which are known as the Bode impedance and 

Bode phase plots, respectively.  The phase between the current and voltage lead to 

responses both in-phase and out-of-phase over the frequency range sweep.  This 

phenomenon leads to a complex impedance with real and imaginary parts where the overall 

magnitude of the impedance can be calculated from Equation 2.2. 

|𝑍𝑍| =  �(𝑍𝑍′)2 + (𝑍𝑍′′)2  

 Z’ denotes the real portion of the impedance and Z’’ denotes the imaginary 

response.  In the two ideal cases, and cases most often observed in EIS literature, the ideal 

real impedance response is solely resistive while the ideal imaginary response is 

completely capacitive. Nyquist plots show the relationship between the imaginary and real 

portions of impedance.   

The results of electrochemical impedance spectra can be modeled as a combination 

of resistors and capacitors in series and parallel.  This process is known as circuit modeling 

of impedance data.  Common models are used for systems and processes occurring in 

coating systems upon exposure.  The most commonly observed model in literature for ideal 

coating systems, and thus composite systems, is known as a Randle’s cell.[1]  A diagram of 

the circuitry is displayed in Figure 2.1. 

 

Figure 2.1 - Randle's cell configuration of circuit elements 
 

The solution resistance is the inherent uncompensated resistance of the electrolyte used 

during EIS experimentation while the material resistance is usually a measure of pore 

(2.2) 
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resistance which tends to be present even in ideal systems.  Lastly, the material capacitance 

is attributed to the out-of-phase response between the voltage and current.  The classical 

definition of a capacitor is the response of current between two conductive species (i.e., 

electrodes) separated by a non-conductive species (i.e., coating or composite).  An ideal 

Randle’s cell would display the characteristic Bode plots displayed in Figure 2.2. 

 

Figure 2.2 - Ideal Randle's cell response 
 

It should be noted that in the mid to low frequencies, the response is completely 

resistive as the impedance is independent of frequency and the phase shift between voltage 

and current is non-existent (i.e., 0°).  Conversely, the high frequency response is 

completely capacitive which can be observed by the -90° difference between current and 

voltage (i.e., voltage lags the current).  By monitoring these circuit constituents over 

exposure time, a better understanding of which degradation mechanism is occurring may 

be obtained.  For instance, if the pore resistance decreases, it can be assumed that either the 

pores are becoming larger or more numerous in quantity causing easier electron and ion 

mobility.  Also, capacitance effects can be observed to change due to water or electrolyte 

penetration into the coating or composite which changes the dielectric properties with 

dependence on the volume fraction of each constituent present. 



52 
 

2.3 Methodologies 

 Several methodologies were utilized for characterization of the weathered PMCs 

including: EIS, surface characterization, mechanical, and ballistic experimentation.  The 

methodology for weathering the composites will also be covered in this section.  

2.3.1 Ultraviolet Exposure Criterion 

 The accelerated weathering of composite samples was conducted within a QUV 

Accelerated Weathering Tester manufactured by Q-Panel Lab products.  The lamps utilized 

in this study were equipped with UVA-340 fluorescent bulbs.  These bulbs emit a power 

spectrum displayed in Figure 2.3 which is compared with that of sunlight.[2] 

 

Figure 2.3 – Spectral power distribution of the UVA-340 lamps compared to sunlight 

(figure extracted from Q-Panel Lab Products Technical Bulletin LU-0822) 

The irradiance was increased for the composite samples to a value of 1.35 

watts/square meter at the 340 nanometer wavelength.  This intensity was held for six hours 

at a temperature of 60°C.  The second cycle was a wet cycle containing distilled water 

vapor for a duration of two hours at 50°C.  In the second cycle, no ultraviolet radiation was 

subjected to the sample.  The “large” composite samples were subjected to a maximum of 
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6000 hours of the ultraviolet cycle in 1200 hour increments while the “thin” samples were 

subjected to a maximum of 3000 hours of ultraviolet exposure in 600 hour increments.  To 

promote even weathering, the samples were flipped in the QUV chamber at the median 

weathering increment.  For example, the “thin” samples with 600 hours of exposure would 

have 300 hours of ultraviolet exposure on each side of the composite specimen. 

2.3.2 Methods for EIS measurement, Circuit Modeling, and Data Exclusion 

 EIS was the main methodology utilized during the course of all experimentation 

because the core investigation was to relate impedance data to mechanical properties.  

Modeling of the impedance data, via circuit modeling, was accomplished for better 

understanding of the degradation processes and characteristics.  For a better mathematical 

understanding, Thompson’s tau analysis was performed on the circuit elements to discard 

outliers that could appear from testing variation.   

For flexural samples, both a “short” and “long” immersion time were used where 

the “short” immersion time was six minutes and the “long” immersion period was sixty 

minutes. In each instance, the mass of the composite was weighed before and after 

immersion in ultrapure water with a Mettler Toledo New Classic MF balance with model 

number MS1003S-1200g.  The balance can weigh samples up to 1200 grams with a 

resolution of 0.001 grams.  The composite samples used in flexural measurements (i.e., 

“thick” samples of 1 inch thickness) used a novel electrode system which had platinum 

coated niobium mesh acting as the electrode with a rubber suction cup surround to promote 

connection to the composite sample throughout the duration of the experimentation.  The 

coated mesh electrode had a surface area of approximately 0.75 square inches or 4.84 

square centimeters.  EIS was performed in a transmission configuration where the current 
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and ion motion would be through the bulk material as opposed to a surface measurement.  

Four milliliters of Spectra 360® electrode gel was applied directly to each suction electrode 

before attachment to the composite sample producing a complete electrode area of 1.61 

square inches or 11.40 square centimeters.  Figure 2.4 displays the electrode configuration 

of the “thick” samples. 

 

Figure 2.4 – Electrode configuration for “thick” composite specimens 
 

Before electrode placement, the adsorbed layer of water present on the surface of 

the composite was removed by laying the composite onto two plies of paper towel, 

supplied by Georgia Pacific, and rolling on each side allowing only the weight of the 

composite to remove the water.  A nominal time of 45 seconds was observed between 

removal of the sample from ultrapure water to beginning the EIS experimentation.  For 

flexural samples, EIS was performed between 100,000 Hertz and 0.001 Hertz.  The low 

frequency, of 0.01 Hertz, was utilized as it was hypothesized that low frequency influences 

may be observed in the “thick” samples.  Five points per decade were measured with an 

AC perturbation of 30 millivolt about the open circuit potential.  Initial studies determined 

the 30 millivolt root-mean-square perturbation yielded the most stable impedance spectra at 

low frequencies.  EIS was performed with Gamry PC4 model potentiostats or femtostats. 

1 inch 
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 “Thin” tensile samples were also studied via EIS.  The immersion times were 

slightly altered from the “thick” samples, as the “thin” samples were subjected to a “short” 

immersion of ten minutes and “long” immersion of sixty minutes.  A different “short” 

immersion period was utilized in the “thin” samples as it provided the most repeatable 

impedance spectra.  As before, the mass was measured on the Mettler Toledo scale before 

and after immersion.  The adsorbed water was removed with two Kimwipes, supplied by 

VWR Scientific, placed in a sandwich configuration.  By placing an aluminum panel above 

the sample and drawing down with a hammer, a constant mass of 300 grams was 

administered repeatedly to the specimens.  The electrodes were then attached in 

transmission configuration utilizing a stainless steel shim as the electrode with a surface are 

of 0.197 square inches or 1.70 square centimeters.  A volume of 0.1 milliliters of Spectra 

360® electrode gel was also administered to the stainless steel surface to promote a constant 

surface area regardless of surface topography.  Maintaining a constant surface area was 

very important as both the capacitive and resistive elements, utilized in circuit modeling, 

are dependent on the surface area.  A period of 45 seconds between removal of the sample 

from the ultrapure water to the onset of EIS experimentation was adhered to for each 

measurement.  EIS for the “thin” composite samples were performed from 100,000 Hertz 

to 0.01 Hertz with an AC perturbation of 10 millivolts about the open circuit potential.  The 

decrease in perturbation voltage from the “thick” samples was utilized as 10 millivolts 

provided a stable measurement for the “thin” samples without the possibility of degradation 

from the larger potential.  Figure 2.5 represents a schematic drawing and image of the 

“thin” composite electrode configuration. 
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Figure 2.5 - Electrode configuration for “thin” composite specimens with schematic 

(left) and actual (right) 

Data collection was acquired in a logarithmic fashion with ten points per decade.  

Again, EIS measurements were conducted with Gamry potentiostats.  To clarify the 

measurement attributes, Table 2.1 summarizes the EIS experimental differences between 

the two composite sample dimensions.  

Table 2.1 – Summary of EIS Methods and Characteristics 
 

Quantity "Thick" Composites "Thin" Composites 
Configuration Transmission Transmission 

"Short" Immersion Length 6 minutes 10 minutes 
"Long" Immersion Length 1 hour 1 hour 

Electrode Surface Area 11.40 square centimeters 1.70 square centimeters 
Initial Frequency 100,000 Hertz 100,000 Hertz 
Final Frequency 0.001 Hertz 0.01 Hertz 
AC Perturbation 30 millivolts 10 millivolts 

Points per Decade 5 10 
 
 Once EIS spectra were obtained, circuit modeling was performed utilizing ZVIEW 

circuit modeling software.  A modified Randle’s cell, which has a constant phase element 

(CPE) instead of a capacitor, was used to acquire data for analysis and interpretations.  A 

CPE accounts for variation within the system associated with stray currents, 

1 inch 
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inhomogeneous surface geometry, etc.[3-4]  It was observed that more electrode gel and a 

larger surface area present in the “thick” samples resulted in a lower solution resistance, 25 

ohms, compared to the small amount used in the “thin” sample which had a solution 

resistance of 25,000 ohms.  Circuit modeling revealed three circuit elements which were 

measured and monitored over the weathering periods.  These modeling constituents were 

the composite resistance, or pore resistance, composite CPE-T value (i.e., capacitance 

magnitude), and composite CPE-P value (attribute which explains degree of capacitive 

nature). 

 To ensure the data obtained was void of numerical outliers (i.e., values not 

statistically within the natural variation of experimentation), Thompson’s tau analysis was 

performed on the three circuit modeled elements.  This data exclusion principle utilizes the 

sample set average, standard deviation, and a tau value to present a range of statistically 

significant values.  Thompson’s tau analysis is a commonly used analytical technique 

within the industrial sector.[5]  Equation 2.3 demonstrates the range of acceptable values 

from a data set. 

Xbounds = λ ± στ 

λ is the mathematical average, σ is the standard deviation, and τ is a numerical value 

dependent on the number of samples within the set.  The bounds of this range are 

determined by either the additive and subtractive mathematical property.  After an 

exclusion of an outlier occurs, the new average, standard deviation, and tau value are 

recalculated to investigate the remaining values until all data is free of outliers.  In terms of 

the circuit modeled elements, Thompson’s tau analysis was performed on each element 

individually.  If one circuit constituent was deemed to be an outlier, the other two 

(2.3) 
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parameters obtained during that test were also rejected.  A sample set of ten measurements 

was used for the “thin” composites and seven measurements for the “thick” composites.  A 

smaller sample set was used for the “thick” composites as the time required for the “thick” 

composite EIS measurement was significantly longer than the “thin” composites.  Both 

sample sets provided large data matrices which were utilized to minimize the range by 

decreasing the standard deviation. 

2.3.3 Methods for Measurements of Surface Characteristics 

 Typically, ultraviolet degradation of polymers and PMCs results in several changes 

in the surface characteristics.  One of the most notable changes is in the color.  To monitor 

color change, a spectrophotometer can be used to monitor the absorption of visible 

wavelength radiation.  In this study, a Macbeth Color-Eye 7000 was utilized to measure the 

“thick” composite samples with the software ProPalette used to analyze results.  The “thin” 

composite color was monitored with a Datacolor International Microflash model of 

spectrophotometer which had a smaller measurement port for the smaller samples.  Both 

instruments supplied a D65 light source, and the CIE (i.e., Commission Internationale de 

L'éclairage ) L*a*b* color coordinate system was used for monitoring the color changes in 

each of the L*, a*, and b* coordinates.  The L*a*b* coordinate system displays a point in 

three dimensions in the color space.  The L* value dictates the lightness of the color with a 

whiter color being a more positive number and darker color being more negative.  The a* 

value demonstrates the color on a red to green scale with red being positive and green 

being negative.  The b* value is a measure of the yellow to blue scale with yellow being 

positive and blue being a more negative coordinate.  As the space is Euclidean (i.e., real 

numbers define the position in three dimensions) in nature, a total color change can be 
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calculated by simply applying vector mathematics in a Pythagorean metric.  Each sample 

had a data set of six measurements per exposure time with three measurements per side. 

 Gloss measurements were performed on the composites with three different 

measurement angles.  A Novo-Gloss Trio goniophotometer manufactured by Rhopoint 

Instruments Ltd. measures the gloss value at 20°, 60°, and 85°.  The data output is a 

percentage of the highest theoretical intensity at the angle of light present.  The highest 

theoretical value is determined by Fresnel’s equation for an optically smooth surface in 

combination with Snell’s Law.  The combination of these principles can be combined to 

form equations for both the parallel (Equation 2.4) and perpendicular (Equation 2.5) 

polarized light.[6] 

𝑅𝑅𝑠𝑠  =  �cos 𝜃𝜃1− (𝑛𝑛2− 𝑠𝑠𝑠𝑠𝑛𝑛 2𝜃𝜃1)1 2�

cos 𝜃𝜃1+ (𝑛𝑛2− 𝑠𝑠𝑠𝑠𝑛𝑛 2𝜃𝜃1)1 2�
�

2
 

𝑅𝑅𝑝𝑝   =  �n2cos 𝜃𝜃1− (𝑛𝑛2− 𝑠𝑠𝑠𝑠𝑛𝑛 2𝜃𝜃1)1 2�

n2cos 𝜃𝜃1+ (𝑛𝑛2− 𝑠𝑠𝑠𝑠𝑛𝑛 2𝜃𝜃1)1 2�
�

2
 

These equations assume air is the first medium through which the light passes 

through before coming into contact with a second medium, with a refractive index of n, at 

an angle of incidence of θ1.  The arithmetic average of these two values is the theoretical 

gloss value at an angle of θ1.  Typically, for polymeric materials, the three aforementioned 

angles are used for high gloss, semi-gloss, and low gloss surfaces, respectively.  Each 

specimen had six measurements performed with the average and deviation reported. 

 Surface profilometry was utilized to measure the surface roughness accounted for 

by polymer degradation over exposure time.  These measurements were performed by the 

Princeton Applied Research Electrochemical Suite in Optical Scan Profilometry mode.  

The scan size was 7500 micrometer by 7500 micrometer at a scan rate of 1000 

(2.4) 

(2.5) 
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micrometer/second.  Data was collected at every 10 micrometer with a step of 10 

micrometer between each line scan.  The experiments were performed on the “thin” 

composite samples as the large z-direction limited experimentation on the “thick” samples.  

Area surface roughness was observed for both the arithmetic average and root-mean square 

average.  As the measurements were approximately five hours in length, only one 

measurement was made for each specimen at the final exposure time. 

 Water contact angle is an indication of the surface energy for various materials.  

The angle formed at the substrate-water interface can give insight to the surface roughness 

and many other surface composition properties.  The water utilized for measurement was 

from the ultra-pure source, and the camera used to capture images was a 60 Hertz V2-

RS170 manufactured by North American NTSC.  Side imaging was also captured with this 

camera to display surface aspects as a function of accelerated exposure.  To analyze the 

contact angle captured by the camera, FTA32 Video software was employed.  The contact 

angle data was collected with six measurements per sample with three measurements 

conducted on both sides.   

2.3.4 Mechanical and Ballistic Measurement Methodologies 

 Tensile mechanical measurements were conducted in two separate methodologies 

as the two fiber systems exhibited drastically different behavior.  The Kevlar® fiber 

composites needed very little sample preparation as 100 grit sandpaper was wrapped 

around the composite clamping area for little slippage and failure within the gage section.  

The higher strength S2 Glass® fiber composites needed 10° composite taper tabs to induce 

failure within the gage sections.  Tabs were adhered to the composite samples with a high 

strength epoxy “Plastic Bonder” produced by Loctite®.  Both composites were subjected to 
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tensile experimentation in accordance with ASTM D3039.[7]  This guideline was followed 

to produce the correct composite dimensions and the proper layup mentioned previously.  

A displacement rate of 2 millimeter/minute was used in accordance with the standard.  The 

tensile modulus was calculated as the change in stress over the change in strain for small 

strains (i.e., less than 0.2%).  Ultimate tensile strength, strain at break, and energy at 

ultimate tensile strength were also monitored during tensile measurements.  All 

measurements were performed on an Instron 5567 model with MTS Sintech clamping 

fixtures.  A MTS extensometer (model 632.25B-20) was utilized for accurate strain 

measurements in low stress (i.e., 0 – 100 megapascal (MPa)) regimes.  The load cell was 

also manufactured by MTS and had a rating of 30 kilonewton (kN).  A total of five 

measurements were performed at each weathering period.  From these experiments, only 

the samples which demonstrated failure within the gage section were recorded for data 

analysis. 

 Flexural property assessment was administered in a three point bending 

configuration.  ASTM D 2344 for short beam strength of polymer matrix composite 

laminates was followed for measurement protocol and sample preparation for both the 

“thick” S2 Glass® fiber and Kevlar® fiber composite samples.[8]  A displacement of 1 

millimeter/minute was administered to the samples.  The loading nose had a diameter of 6 

millimeters and the loading supports a diameter of 3 millimeters.  Short beam strength was 

also calculated by Equation 2.6 which was observed in ASTM D2344.[8]  

 
𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠 = 0.75 𝑃𝑃𝑚𝑚

𝑠𝑠ℎ
 

The short beam strength, or Fsbs, is dependent on the maximum load (Pm), width (b), 

and thickness (h) of the composite sample.  Interlaminar shearing is observed within the 

(2.6) 



62 
 

mid-section of the composites usually within a matrix rich region.  With consideration to 

the ASTM standard, the span length was nominally set to four times the composite 

thickness.  To apply a large enough load, a MTS load cell, model number 661.23A-01, of 

250 kN capacity was utilized.  The MTS system, model number 312.31, was operated from 

a FlexTest SE platform.  Hydraulic wedge grips were employed, model 647, with a max 

pressure rating of 69 MPa.  The hydraulic wedge grips were utilized to maintain proper 

position of both the bottom and top flexural fixtures.  North Dakota State University 

manufactured the flexural fixtures used in this experimentation.  A total of three samples 

per weathering period were measured for both composite systems.  Of these measurements, 

only the samples which failed in an interlaminar shearing fashion were utilized in the 

interlaminar shear strength values.  However, flexural modulus could not be obtained for 

these samples as the span to composite thickness ratio yielded interlaminar shear stresses 

which are not truly indicative of elastic deformations. 

Ballistic resistances of the composites were measured at North Dakota State 

University.  The gas gun apparatus consisted of a high pressure chamber, a firing cylinder, 

and a capture chamber containing two infrared chronographs.  The high pressure chamber 

manufactured with AISI 1045 steel was produced at North Dakota State University.  The 

chamber was pressurized with Helium gas to a nominal value of 150 pounds/square (psi) 

inch.  A pneumatic actuator and ball valve produced by Novospect, Inc. was utilized for 

releasing the pressure to the firing chamber in less than one second.  A solenoid was 

utilized for remote firing of the actuator.  The 150 psi pressure produced high velocity (≥ 

100 meters/second) projectiles for impacting the composite specimens.  The actuator opens 

a valve which allows the release of gas to push the sabot with the mounted projectile.  A 
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polyurethane foam sabot was used to carry the fragment simulating projectile (FSP) toward 

the sabot stripper which removes the sabot immediately before the impact chamber.  After 

sabot removal, an infrared CED Millenium chronograph captures the velocity of the 

projectile before and after interacting with the composite.  However, the projectile form 

and velocities used in this ballistic study were not conducive for the FSP to proceed 

through the composites.  Accordingly, the exit velocity was not observed during this study.  

The composite structures allowed for a more accurate representation of the cross sections 

utilized for up-armoring of military vehicles, but the “thick” cross sections were not 

conducive for traditional ballistic limit measurements. 

A fragment simulating projectile (FSP) comprised of AISI 1019 carbon steel 

(Rockwell B hardness of 73) was utilized in this experimentation to produce damage.[9]  

The FSP had a nominal weight of 17.3 grams (or 267 grains).  Figure 2.6 exhibits the 

projectile dimensions utilized for ballistic characterization. 

 

Figure 2.6 – Characteristic dimensions of fragment simulating projectile 
 

The projectile consisted of a necked structure to produce an impact which would 

cause interlaminar delaminations, transverse shear failure, and fibrous tensile failure along 

with the expected projectile penetration.[10]  Since ballistic limit experimentation could 

not be conducted, a comparative study was administered with visual cross section 

examination of the FSP penetration depth.  Two measurements of the penetration depth 
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were utilized.  Surface penetration was measured immediately above the impact area to the 

depth of the penetration.  Cross-sectional penetration measured the depth of the penetration 

with respect to the unaffected composite surface.  Cross-sectional measurements were 

performed after cutting the affected zone with a wet saw. 
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CHAPTER 3.  ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY 
 

 INVESTIGATION OF BALLISTIC RESISTANT  
 

POLYMER MATRIX COMPOSITES 
 
3.1 Introduction 
 

Electrochemical impedance spectroscopy (EIS) investigation of non-conducting 

polymer matrix composites (PMCs) was conducted to determine if ultraviolet degradation 

would change the characteristic spectra.  It was hypothesized that the wetted composite 

would produce conductive pathways for ion and electron flow and display spectra similar 

to that of polymeric coatings.  Initial investigation of the ballistic resistant composites 

reaffirmed this assumption, but another result displayed a phenomenon not observed in 

literature.  This effect was determined to be caused by evaporation that occurred when the 

samples were exposed to the ambient conditions of the experimental chamber.  Two 

different immersion times were also studied to determine if the circuit modeled constituents 

would exhibit a statistically significant change.  Lastly, the circuit modeled constituents 

were examined after several accelerated exposure durations for both “thin” and “thick” 

configurations.   

3.2 Initial EIS Investigation of Ballistic Resistant PMCs 

 Two composite systems (i.e., phenolic matrix/S2 Glass® fiber and phenolic 

matrix/Kevlar® fiber) were used in this study along with two different sample dimensions.  

Therefore, each section in this chapter will divide the results based on the sample 

dimensions of “thin” or “thick”. 

3.2.1 Initial EIS Investigation of the “thin” Ballistic Resistant PMCs 

 Initial investigations of the “thin” composite samples exhibited a difference of the 
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two composite systems in terms of the impedance magnitudes in the mid and low 

frequencies.  It was also observed that changing the immersion time between 10 minutes 

and 60 minutes had an influence on several characteristics of the impedance spectra.  

Figure 3.1 displays the differences between the two composite systems for the two 

immersion times of the S2 Glass® fiber and Kevlar® fiber composites. 

 

Figure 3.1 - Typical EIS results for the thin composite samples displaying the Bode 

impedance modulus plot (left) and Bode phase angle plot (right) 

 The most interesting phenomenon associated with the initial EIS investigation was 

observed in the low frequencies.  As the impedance increases with lower frequencies, 

substantial change from 0° cannot be observed in the Bode phase plot.  However, the low 

frequency data of the Kevlar® fiber composites demonstrated noisy results associated with 

the potentiostat measurement capabilities.  The 0° phase angle was indicative of the system 

maintaining a resistive nature.  Typically, the increase in impedance at the lower 

frequencies is accompanied with an increase in the phase angle toward -90° as the system 

is displaying capacitive effects in the low frequency.  In this case, the increasing impedance 

was explained by an evaporation process occurring from the experimental conditions 

associated with the Faraday cage utilized for measurements.  To reinforce these claims, a 
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single frequency impedance measurement was measured at 0.1 Hertz.  The frequency was 

selected because it is in the evaporation affected regime for both immersion times and both 

composite systems.  Figure 3.2 displays the impedance magnitude of the unweathered 

“thin” composite specimens, phenolic matrix/S2 Glass® fiber composite and phenolic 

matrix/Kevlar® fiber composite, at 0.1 Hertz for a period of three hours. 

 

Figure 3.2 - Impedance modulus at 0.1 Hertz versus time for phenolic matrix/S2 

Glass® fiber composite (left) and phenolic matrix/Kevlar® fiber composite (right) 

Figure 3.2 reveals increasing impedance with experiment time.  The measurements 

were conducted for approximately 10,800 seconds, which was longer than the original 

experiment, but was conducted to prove a convergence of the modulus toward a steady 

value.  In each case, the impedance displays an increase with time from evaporation 

causing longer pathways through a less conductive material resulting in higher impedance.  

Figure 3.2 also reveals that the large increase in impedance occurs later in the samples 

immersed for one hour as opposed to ten minutes.  At the beginning of the measurement, 

the impedance was larger for the ten minute immersed samples which was also displayed in 

Figure 3.1.  Likewise, the S2 Glass® fiber composites expressed a larger impedance than 

the Kevlar® fiber composites.  The lofty nature of the Kevlar® fiber composites allowed the 

evaporation to take place more slowly compared to the S2 Glass® fiber composites. 
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 Another study regarding the evaporation influence examined the dependence of the 

increasing modulus on water weight loss.  Figure 3.3 displays the impedance at 0.1 Hertz 

for a length of 3,600 seconds with simultaneous weight loss measurements on Kevlar® 

fiber composites. 

 

Figure 3.3 – Single frequency EIS of Kevlar® fiber composites with corresponding 

weight loss (left) and inset to demonstrate initial linear increase of the impedance 

modulus (right) 

Three regimes of the single frequency impedance were observed including: a slow 

initial (0 – 200 seconds) increase, fast intermediate increase, and a slowly increasing final 

regime. The blue and green lines provide a visual estimation of the intermediate and long 

evaporation regimes.  The initial linear increase was also observed in the amount of water 

weight loss during the weight measurement.  When comparing the EIS and weight loss at 

times between 200 and 600 seconds, a rapid increase in the impedance was observed while 

the water weight loss rate remained unchanged.  At times exceeding 600 seconds, both the 

impedance and water weight loss displayed a slowly increasing linear trend.  Again, the 

impedance increased due to longer resistive pathways as the water evaporated from the 

composite.  By linear fitting of the data, it was observed that the three regimes exhibited a 

different impedance change per weight loss.  The initial regime exhibited a slow 0.48 MΩ/ 
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milligram of water loss, the intermediate regime displayed a fast changing regime of 6711 

MΩ/milligram of water loss, and the final regime exhibited 1837 MΩ/ milligram of water 

loss.  The final value is larger than expected due to the low value of weight change 

observed in this regime, effectively increasing the ratio. 

 The circuit modeled elements, which consisted of constant phase element (CPE) 

attributes and composite resistance, data values were obtained for the initial spectra.  After 

Thompson’s tau analysis was performed, the averages were plotted to observe the 

differences incurred with an increase in the immersion time.  Figure 3.4 reveals the 

averages of the three circuit modeled elements for the phenolic matrix/S2 Glass® fiber 

composites with one standard deviation. 

 

Figure 3.4 - Phenolic matrix/S2 Glass® fiber composite circuit modeled constituents 

including composite capacitance (upper left), CPE-P value (upper right), and 

composite resistance (bottom) 
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The CPE-T value (i.e., magnitude of capacitance) exhibits a statistically significant 

difference in four instances for these five samples and was also observed a majority of the 

time with the other samples.  This trend was attributed to the capacitive nature increasing 

with an increase in water absorption which is typically observed in coating studies.[1-3]  

The increased amount of water absorbed in the one hour immersion increases the bulk 

dielectric as the dielectric constant of water is 80 and for common polymers is between 2 

and 5.[4]  Also, the increase in depth of penetration reduces the distance between 

electrodes to further increase the capacitance.   

The CPE-P value represents the extent of the CPE-T element acting as a perfect 

capacitor.  A purely capacitive element would exhibit a CPE-P value of one.  The values 

range from approximately 0.65 to 0.85 in the S2 Glass® fiber composite measurements.  On 

average, the one hour immersion specimens have a higher CPE-P value, but the large 

deviations demonstrate low statistical confidence in the difference.   

The last value of concern is the composite resistance which directly relates to the 

pore resistance of the composite system.  For S2 Glass® fiber composites, the value of the 

pore resistance is usually higher for the 10 minute immersion as water had not ingressed as 

far into the matrix leading to longer pathways of electrons and ions through a higher 

impedance material.  This is further supported by the diffusion depth which is related to the 

diffusion coefficient and the square of immersion time.[5] The differences between the 10 

minute and 60 minute immersions, in terms of the square root of immersion time, was not 

distinguished significantly (i.e., only by a factor of approximately 2.45 times) to be 

measured by EIS.  Theoretically, this would be a measurable difference with the EIS 

capabilities, but the composite surface variability caused large deviations in the data. 



71 
 

 The phenolic matrix/Kevlar® composites displayed different behavior when the 

circuit modeled element analysis was conducted.  Figure 3.5 reveals the circuit modeled 

elements of the aforementioned polymer matrix composite and the differences of these 

values for the two immersion times. 

 

Figure 3.5 -Phenolic matrix /Kevlar® fiber composite circuit modeled constituents 

including composite capacitance (upper left), CPE-P value (upper right), and 

composite resistance (bottom) 

The CPE-T values are approximately the same value regardless of immersion time.  

This was accounted for by the porous structure of the composites which is also 

accompanied by porous peel ply.  The fiber ends and the intact peel ply caused increased 

absorption of water. Also, the voids being instantaneously filled with water during 

immersion creates a composite which has a majority of the water uptake occurring in the 

first stage of immersion which is supported by Figure 3.6.  Figure 3.6 displays the weight 
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change for the initial testing of the composites systems for both 10 and 60 minute 

immersion durations. It should be noted that only one standard deviation of error is 

displayed in Figure 3.6. 

 

Figure 3.6 - Weight Change from water immersion of phenolic/S2 Glass® composite 

(left) and phenolic/Kevlar® composite (right) 

The phenolic matrix/S2 Glass® composites exhibited a more uniform trend, from 

sample to sample, in water uptake during the immersion periods.  There was also more 

confidence of the difference in weight gain between the different immersion durations in 

the S2 Glass® fiber composites. The small deviations caused the composite capacitances to 

be statistically different as was observed in Figure 3.4.  The phenolic matrix/Kevlar® fiber 

composites demonstrated little difference in the different immersion periods.  This led to a 

CPE-T value with a similar magnitude in both immersion times.  These explanations also 

describe the similarities in both the CPE-P value and pore resistance for the “thin” Kevlar® 

fiber composites. 

 Differences between the composite systems were observed predominantly in the 

capacitive effects, specifically in the CPE-T value.  The phenolic matrix/Kevlar® fiber had 

a lower capacitive magnitude by roughly a factor of 10.  This was accounted for by the 



73 
 

difference in the dielectric constants of the two fibers as S2 Glass® has a higher value of 

dielectric at 5.2-5.3 while Kevlar® can range between 3.5 and 4.5 with experimental results 

favoring the smaller value.[6-7]  Another attribute is the difference in thickness as the 

Kevlar® composite samples were thicker at 2.23 millimeters ± 0.06 millimeters while the 

S2 Glass® fiber composites were approximately 1.45 millimeters ± 0.01 millimeters.  The 

Kevlar® fiber composites also exhibited a more capacitive behavior as the CPE-P 

demonstrates.  The CPE-P has been known to account for stray currents associated with a 

“leaky” capacitor type situation as well as non-uniform thicknesses and currents.[8-9]  In 

the case of the Kevlar® fiber, both the resistivity and dielectric are more similar to the 

encapsulating phenolic matrix which may lead to a lower probability of stray current 

occurring from an incomplete circuit pathway.  Both composites do possess uneven 

thicknesses from a surface roughness inherent with high fiber volume fraction.  Lastly, the 

resistances are slightly higher in the phenolic matrix/S2 Glass® fiber composites.  This was  

attributed to the high resistivity of the S2 Glass® fiber which again causes longer pathways 

as the  resistivity is approximately 9.1x1012 ohm·centimeter.[6]  The S2 Glass® volume 

resistivity is almost an order of magnitude higher than the phenolic polymer that surrounds 

these fibers which has a volume resistivity of 1.0x1012 ohm·centimeter.[10]  Kevlar® fiber 

also has a low volume resistivity compared to S2 Glass® which is shown to be 0.5x1012 

ohm·centimeter.[11]  This leads to longer paths for the electrons and ions as the higher 

impedance glass fiber acts as a disturbance which needs to be circumnavigated.  

3.2.2 Initial EIS Investigation of the “thick” Ballistic Resistant PMCs 

 Initial investigations of “thick”, 1 inch or 2.54 centimeter, composite samples were 

also conducted to study the applicability of performing EIS on these composites. Literature 
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reported is often performed on relatively thin composite samples as polymers are high 

impedance materials which cannot easily be measured with most common potentiostats.  

Figure 3.7 displays the impedance spectra difference between a “dry” sample and that of a 

sample immersed for six minutes. 

 

Figure 3.7 - Typical impedance spectra differences observed for the two composites 

systems in the Bode impedance plot (left) and Bode phase angle plot (right) 

It was observed that in both cases the “dry” samples demonstrated a more 

capacitive manner, as the phase angle is around -90° until the low frequencies.  The low 

frequency range scatter may be from a non-steady state measurement as the low frequency 

decade, last five frequencies, could take up to 3 hours to measure.  However, it was 

deduced that even a small immersion time can change the impedance magnitude.  The 

immersed samples revealed the same trend as the “thin” samples where the resistive 

portion of the response was higher for the S2 Glass® fiber composites.  Also, the capacitive 

portion of the response was greater in the Kevlar® fiber composites.  The total impedance is 

inversely affected by the capacitance, thus, smaller capacitances have higher impedance.  

Lastly, the evaporation effect was also observed in this study which, again, contributed to 

the ambient conditions observed by the composite during the EIS measurement. 
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3.3 Ultraviolet Exposure Effects on Ballistic Resistant PMCs 

 Both the “thin” and “thick” composites were exposed to accelerated weathering 

conditions possessing an ultraviolet irradiation intensity of 1.35 watts/square meter at 340 

nanometers.  EIS was explored as a possible mean to monitor changes in the ballistic 

resistant composites.  

3.3.1 EIS Investigation of Exposure on “thin” Ballistic Resistant PMCs 

The “thin” composite samples were measured by EIS after defined accelerated 

exposure durations. Circuit modeled element values were then subjected to data exclusion 

methodologies.  Figure 3.8 displays the values observed for the three circuit modeled 

elements for S2 Glass® fiber composites after a ten minute immersion.   

 

Figure 3.8 - Composite circuit modeled constituent values as a function of weathering 

time including the composite capacitance (upper left), CPE-P value (upper right), and 

composite resistance (bottom) for “thin” S2 Glass® composites 
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The trends observed were identical between the ten minute and one hour 

immersions; however, the magnitudes of the responses shifted in a similar manner as was 

observed in the initial “thin” composite immersion study.  It was observed that large 

variations were present which was displayed by the averages at each exposure time.  Four 

of the five samples demonstrated an initial increase of capacitance at 600 hours before 

decreasing at 1200 hours back toward the original capacitance value.  This is counter 

intuitive as the capacitance should increase with the increased water absorption from pore 

creation and water entrapment.  Figure 3.9 depicts the increase in water absorption for the 

six weathering periods of the “thin” S2 Glass® fiber composites. 

 

Figure 3.9 - Water absorption during 10 minute immersion for the phenolic matrix/S2 

Glass® fiber composites 

As this data suggests, the capacitance should be increasing with exposure time.  

However, the area effect may be far exceeding the relative permittivity effect as more fiber 

bridging, or fiber protrusion from the bulk composite, leads to smaller electrode area 

because a more resistive material comes to the surface.  Another reason for decreased 

capacitance may come from the increased measurement thickness as the fiber protrusion 

effectively increases the distance between the two electrodes.  Also, a swelling effect from 
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water ingression into the matrix may be occurring.  Both the swelling and increased 

thickness effects have been observed in composite literature for possible decreasing 

capacitive trends with increased water absorption.[12]  The water uptake data also exhibits 

a noticeable change at 2400 and 3000 hours.  The composite resistance exhibited the most 

notable trend with confidence of a significant change after 2400 hours of ultraviolet 

exposure which was explained by the increase in porosity.  At 2400 hours, fiber bridging 

was observed on all samples while only a few samples displayed the fiber bridging before 

2400 hours.  Figure 3.10 displays the normalized, final value to initial value, circuit 

modeled elements. 

 

Figure 3.10 - Normalized data for the phenolic matrix/S2 Glass® composites including 

the composite capacitance (upper left), CPE-P value (upper right), and  

composite resistance (bottom) 
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A trend of three distinct regimes is present within the pore resistance 

measurements.  The trend observed signifies that the 0 hour measurement is a pristine 

sample, 600 to 1800 hours of exposure demonstrate some porosity and minimal fiber 

bridging, and 2400 to 3000 hours demonstrate much porosity due to complete removal of 

the polymer top layer.  These characteristics are similar to those observed within the 

absolute results; however, Figure 3.9 was presented to verify both the changes observed 

and the uniformity of the measurement.  Again, it should be noted that the 2400 hour and 

3000 hour weathered samples exhibited the least amount of variation from sample to 

sample as the weathering had uniformly removed the top most polymeric layer in these 

composites. 

 Kevlar® fiber composites demonstrated less distinguishable results than those of the 

S2 Glass® fiber composites.  This was attributed to the presence of an intact peel ply which 

caused a screening of the ultraviolet intensity.  After removal of the peel ply, subsequent 

experimentation suggested that the peel ply was porous causing little statistical influence 

on the resistive values.  The mean of the resistance values with the peel ply removed was 

within the natural variance measured with the peel ply intact.  However, the water 

absorption of the peel ply caused the capacitive values to be altered from that of bulk 

Kevlar® fiber composite.  Initially, the mean of the Kevlar® PMC capacitance, without the 

peel ply, was an order of magnitude larger than with the peel ply intact.  At 3000 hours of 

accelerated ultraviolet exposure, the CPE-T and CPE-P mean values demonstrated little 

variation from the mean of the PMCs with the peel ply intact suggesting that the peel ply 

had been photodegraded.  Figure 3.11 displays the circuit modeled results for the “thin” 

Kevlar® composites after 10 minutes of immersion with the peel ply attached.  
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Figure 3.11 - Composite circuit modeled constituent values as a function of 

weathering time including the composite capacitance (upper left), CPE-P value 

(upper right), and composite resistance (bottom) for “thin” Kevlar® composites 

The one hour immersion samples exhibited the same trends with shifts in 

capacitance and resistance similar to those of the initial results.  As suggested earlier, the 

change in the capacitive elements was not completely due to the degradation of the PMC 

from ultraviolet exposure.  However, the resistive changes in the “thin” Kevlar® fiber 

composites were deemed to be independent of the peel ply as it was highly porous.  

Therefore, the only circuit modeled element that was monitored for change was the 

composite resistance.   

Both the matrix and fiber are polymers possessing aromatic nature in the chemical 

structure.  Also, literature has shown that the major absorption of ultraviolet wavelengths 

of Kevlar® occurs at the wavelength supplied by the UVA 340 lamps.[13] The composite 
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resistance demonstrates a slight increase in porosity which effectively lowered the 

composite resistance.  The increase in porosity suggests photodegradation occurred as a 

small fraction, ranging from 0.06 watts per square meter to 0.12 watts per square meter, of 

the ultraviolet radiation was able to proceed through the peel ply  Figure 3.12 displays the 

normalized circuit modeled composite resistance for the 10 minute immersed phenolic 

matrix/Kevlar® fiber composites. 

 

Figure 3.12 - Normalized data for the phenolic matrix/Kevlar® fiber  

composite resistance 

The results from Figure 3.12 reveal that there was more variation in the Kevlar® 

fiber composite compared to the S2 Glass® fiber composites.  Again, each specimen is 

realistically different when it is assumed to be theoretically the same, but the surface 

undulations and polymer thickness is different in each sample.  Likewise, the one standard 

deviation demonstrates that the composite resistance has high variability.  Also, a 

noticeable trend in the composite resistance was non-existent.  This was attributed, again, 

to the presence of the peel ply which prohibited the amount of accelerated exposure needed 

to cause a distinguishable change. 
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3.3.2 EIS Investigation of Exposure on “thick” Ballistic Resistant PMCs 

The “thick” composite specimens studied were of great interest as the literature 

reported in this area is non-existent.  Additionally, the larger composite samples are more 

similar to the geometries used for ballistic resistant applications such as vehicle up-

armoring.  As the EIS methodology was suggested for use as an in-service NDE method, 

the results on the thicker samples were monitored to determine the applicability of using 

EIS on “thick” cross-sections.  The experimental scheme allowed monitoring of the 

progression of decreased impedance over exposure time.  Figure 3.13 displays the 

impedance spectra of the two composite specimens weathered for 6000 hours of ultraviolet 

exposure. 

 

Figure 3.13 –EIS spectra during exposure for an ideal “thick” samples of phenolic/S2 

Glass® composite (left) and phenolic Kevlar® composite (right) 

Figure 3.13 demonstrates that impedance data obtained throughout the duration of 

exposure displayed expected results.  The zero hour measurement is a “dry” measurement 

for both composite systems.  It is observed that the modulus does not necessarily decrease 

accordingly during the exposure time.  The EIS spectra demonstrate the significance of 

data exclusion principles for this specific experimentation.  It was apparent in the S2 
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Glass® fiber composites that the impedance was slightly higher in 3600 hours 

experimentation than the 2400 hours experimentation.  The Kevlar® fiber composites 

displayed two instances of decreasing modulus in the mid-frequencies, but this would not 

influence the circuit modeled element values as the range is from 100,000 to 10 Hertz.  

However, the decreasing impedance suggests that accelerated exposure durations did 

display noticeable changes between each exposure time.  This is a promising attribute as 

only one measurement was required to display the differences in the spectra after 

accelerated exposure.  Also, data presented displayed that the “thick” composites were 

measurable with the current capabilities of EIS. 

 Next, multiple EIS experiments were performed on each “thick” composite sample 

at the designated weathering times much like the “thin” composite measurements.  Due to 

the “thick” cross-section, longer exposure times were required.  Longer exposure times 

were required, compared to the “thin” samples, as a thicker polymeric top layer was 

observed in the “thick” composites, specifically the S2 Glass® composites.  The longer 

duration would increase the probability of distinguishing the differences observed in the 

circuit modeled values. 

Both six minute and one hour immersion times were subjected to the composites.  

Similar to the results obtained with the “thin” composites, the trends observed between the 

10 minute and 60 minute immersion times were similar with slight changes in the 

magnitudes.  Figure 3.14 displays the circuit modeled constituents versus the ultraviolet 

exposure time for the S2 Glass® fiber composites immersed for six minutes.  It should be 

noted that each value observed is the average displayed with one standard deviation error 

bars. 
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Figure 3.14 - Composite circuit modeled constituent values as a function of 

weathering time for “thick” S2 Glass® fiber containing composites including the 

composite capacitance (upper left), CPE-P value (upper right), and composite 

resistance (bottom) 

The resistance of the composite does have a decreasing trend with exposure time as 

was observed for the “thin” S2 Glass® fiber composites.  This decrease is accounted for by 

a more porous structure occurring as the matrix material is removed during ultraviolet 

exposure.  The results indicate that the capacitive attributes (i.e., composite capacitance and 

CPE-P value) measured during EIS experimentation demonstrated undetectable changes.  

This was explained by the volume fraction of water present within the composite systems 

after immersion.  The amount of water was too small to adequately change the permittivity 

and thus the capacitance magnitudes.  Figure 3.15 displays the water uptake during the six 

minute immersion for the phenolic matrix/S2 Glass® fiber composites.  
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Figure 3.15 – Water gain during immersion for “thick” S2 Glass® fiber composites 
 

The water uptake displays a large change from the previous values at 4800 and 

6000 hour immersions.  The observation also displays a high amount of confidence in the 

increase in water absorption.  The increase in water absorption should demonstrate a 

noticeable change in the capacitance values; however, the volume fraction of water within 

the phenolic matrix/S2 Glass® fiber composite is much lower than the “thin” PMC.   The 

slight change in the relative permittivity that may occur is not deducible within the 

measurement variability associated with the natural variation of the composites. Again, the 

surface area effect of the electrodes may be counteracting the increase which is expected to 

occur from increased water absorption. 

 The “thick” phenolic matrix/Kevlar® fiber composites were also investigated.  

Again, both 10 minute and 60 minute immersion times were performed on the Kevlar® 

fiber composites.  However, only the 10 minute data is displayed as the trends between the 

two immersion periods displayed were similar with a shift in the magnitude.  As before, the 

circuit modeled element values for these Kevlar® fiber composites is displayed with one 

standard deviation for each value in Figure 3.16.   
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Figure 3.16 - Composite circuit modeled constituent values as a function of 

weathering time for “thick” Kevlar® fiber containing composites including the 

composite capacitance (upper left), CPE-P value (upper right), and  

composite resistance (bottom) 

The results in Figure 3.16 demonstrate the same trend as the S2 Glass® fiber 

composites with statistically unchanged capacitive responses.  However, CPE-P values of 

the Kevlar® composites were larger, on average, than the S2 Glass® composites.  Again, 

this can be explained by the fiber and matrix possessing similar resistivity and dielectric 

properties.  The similar properties allow for a more conducive path for electron and ion 

flow compared to the S2 Glass fiber composites.  Increased water uptake is the reason for 

the unchanging capacitive trend as a discernable increase in water uptake was not observed 

for the six weathering periods.  The weight gain during immersion was more uniform for 

the case of the Kevlar® fiber composites which is displayed in Figure 3.17. 
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Figure 3.17 - Water gain during immersion for “thick” Kevlar® fiber composites 
 

Figure 3.17 reveals an increase in the water uptake during immersion when 

observing the averages.  However, the deviation associated with these measurements 

displays low confidence in the mean values increasing with accelerated exposure.  On the 

other hand, the resistance displayed a trend of increasing porosity which corresponded to a 

decrease in impedance as the motion of ions and electrons occurred more freely with 

increased exposure.   

3.4 Conclusions 

 Initial investigation conducted on both composite systems yielded an understanding 

of the variability of the EIS measurements.  However, the capacitance magnitude for the S2 

Glass® fiber composites demonstrated a substantial change with longer immersion time.  

This was not observed with the phenolic matrix/Kevlar® fiber as water uptake occurred 

quickly causing little difference in the volume fraction of water present.  In both 

composites, the resistance did not display any noticeable changes with increased immersion 

times.  The composite resistance is more closely related to the void content which would 

not have changed with increased immersion. 



87 
 

 Another interesting aspect of the initial experimentation was the low frequency 

response.  The low frequency response demonstrated an increase in impedance without a 

corresponding phase angle decrease toward a capacitive value.  This effect was accounted 

for by evaporation which occurred as the sample was subjected to ambient conditions 

during EIS experimentation.  Single frequency EIS measurements were conducted at a 

frequency of 0.1 Hertz to monitor the impedance modulus with time.  Both composite 

systems displayed an increase of impedance with time as evaporation occurred.  The 

composites also demonstrated that with more water present (i.e., one hour immersion as 

compared to ten minutes) the impedance modulus required longer lengths of time to reach a 

steady state of impedance. 

 Next, the influence of ultraviolet radiation on the circuit modeled elements was 

studied.  It was determined that an anomaly occurred within the capacitive nature of the 

“thin” S2 Glass® composites.  An increase in water absorption was observed, but the 

capacitance magnitude decreased with increased exposure time.  This was attributed to 

possible changes in the electrode area of contact and thickness effects from fiber bridging 

and swelling of the matrix after immersion.  The resistance of the pores in the composite 

exhibited a decreasing trend which is assumed to be occurring with larger pore formation 

during ultraviolet weathering.  Larger pores cause less impeded flow of ions and electrons 

during EIS experimentation and thus lower impedance.  “Thin” phenolic matrix/Kevlar® 

fiber composites were also subjected to accelerated ultraviolet weathering.  The presence of 

a peel ply limited the ultraviolet exposure subjected to these samples.  It was noted that the 

presence of the peel ply changed the capacitive values measured while not influencing the 

resistive values.  Therefore, the resistive element was the only circuit element to produce 
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values which were consistent with the changes from ultraviolet exposure.  The resistance 

was observed to decrease slightly in this composite system which was occurring from 

increased porosity. 

 Larger composite samples possessing a thicker cross-section were also studied as 

these geometries are more realistic for ballistic resistant applications.  The thicker cross-

sectional composites have not been studied via EIS in literature to-date making this aspect 

of this research novel.  Initial investigation demonstrated that the composite could be 

analyzed with EIS experimentation if the samples were immersed before conducting the 

measurement.  In fact, an ideal case revealed that each composite could be observed to 

produce results of decreasing impedance as a function of the weathering time.  This is 

important in the realm of using this methodology as an in-service measurement as smaller 

sample sizes are more conducive for quick measurements.  Likewise, final circuit modeling 

investigation for each composite at distinct weathering increments revealed trends when 

statistical evaluation was conducted.  Both composite systems demonstrated little change in 

the capacitance magnitude and the degree to which the composite was acting capacitive. 

The volume fraction of water was not sufficient enough to change the relative permittivity 

to be measured with the current methodology.  Water uptake displayed an increasing trend 

with exposure time in both cases which was more than likely from pore formation within 

the composites.  This increase in pore formation is believed to be the reason for the 

decrease in the circuit modeled resistance.  Again, the motion of ions and electrons are less 

hindered in larger pores making the pathway between the two electrodes less impeded. 

 Overall, the composite resistance decreased with exposure time in every instance 

which demonstrates a diminishing effect which may result in a loss of mechanical integrity.  
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The mechanical properties may be altered and the change in these properties may 

correspond with the changes observed in modeled resistance.  The influence and the 

correlation of these values will be displayed in Chapter 5 of this thesis. 
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CHAPTER 4.  SURFACE CHARACTERISTICS OF BALLISTIC RESISTANT 
 

 POLYMER MATRIX COMPOSITES UPON ULTRAVIOLET EXPOSURE 
 
4.1 Introduction 

 Polymer matrix composites (PMCs) were subjected to accelerated ultraviolet 

conditions to increase the number of degradation reactions compared to ambient 

conditions.  Ultraviolet conditions are known to change several physical properties 

associated with PMCs which include: color change, surface roughening, gloss loss, etc.  

The changes can be detrimental if the intended application serves an aesthetic purpose.  

Likewise, changes in surface porosity may allow larger amounts of water and salt solution 

absorption causing increased weight of the structure which offsets the advantageous nature 

of these materials.  Color change of PMCs is a commonly used methodology to examine 

the extent of weathering as polymers tend to become more yellow with increased exposure.  

This study examines the changes in color, surface roughness, gloss, and contact angle 

during accelerated ultraviolet exposure of ballistic resistant PMCs. 

4.2 Physical Appearance of PMCs Exposed to Ultraviolet Conditions 

 The changes in physical appearance were vastly different between the two 

composite systems.  This is attributed to the difference between the fibers for the two 

PMCs as one composite had a S2 Glass® fiber and the other a Kevlar® fiber.  S2 Glass® is 

transparent to the ultraviolet radiation used for exposure while Kevlar® has a large increase 

in absorption over the spectral distribution present from UVA 340 light source.[1-2]  The 

absorption characteristics led to a more uniform degradation in the case of the Kevlar® 

fiber as both the matrix, a phenolic polymer plasticized with polyvinyl butyral (PVB), and 

the Kevlar® fiber contain aromatic groups.  Meanwhile, the S2 Glass® fiber did not degrade 
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noticeably upon accelerated ultraviolet exposure. This led to fiber bridging or the presence 

of fiber protrusion at the surface of the S2 Glass® fiber composites.  Figure 4.1 presents the 

two “thin” composite systems after six intervals of accelerated weathering. 

 

Figure 4.1 - Physical appearance after accelerated exposure for  “thin” phenolic 

matrix/S2 Glass® fiber composite (left) and phenolic matrix/Kevlar® fiber composite 

(right).  Each set contains 0, 600, 1200, 1800, 2400, and 3000 hours of exposure 

starting at left and moving right 

It should be noted that the black lines present at the middle of the samples are 

marked for the EIS experimentation area.  A substantial color change occurred for both 

composite systems when compared to the initial color.  The phenolic matrix/S2 Glass® 

fiber composites tended to shift toward a darker color than the initial state as well as 

becoming more glossy with exposure time.  On the other hand, the phenolic matrix/Kevlar® 

fiber composites shifted toward a brown color in the intermediate weathering periods and 

then to a lighter color after longer exposure times.  However, the Kevlar® fiber composites 

had a well intact peel ply which served as a barrier to post-manufacturing handling which 

was mistakingly not removed prior to weathering.  The color change observed was only 
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from the weathering of the peel ply.  Fiber bridging could be observed at 1200 hours of 

accelerated ultraviolet exposure with promintent bridging occuring in the 2400 and 3000 

hours sample sets for the phenolic matrix/S2 glass® composites.  Figure 4.2 displays the 

surface of the “thin” S2 Glass® composites after the six weathering periods. 

 

Figure 4.2 - Phenolic matrix/S2 Glass® fiber composites after weathering a) 0 hours b) 

600 hour c) 1200 hours d) 1800 hours e) 2400 hours and f) 3000 hours 

Initially, the surface pattern displays a phenolic matrix rich layer with no fiber 

bridging.  As the exposure time increases, more fiber bridging is observed in the top most 

fiber weave.  Fiber bridging was due to the fiber closest to the surface becoming exposed at 

this position.  The degradation demonstrates fiber bridging in a checkered pattern with fiber 

bridging in one area, or square, and phenolic polymer in the other.  Finally, at 3000 hours 

of accelerated exposure, enough matrix material has been degraded to expose fiber in both 

the weft and warp fiber directions which is observed in Figure 4.2f.  There is still a small 

amount of polymer present between the fiber bridged regimes in the 3000 hour sample set 

as the thickest polymer region occurs at these points.   
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Fiber bridging was not apparent in the phenolic matrix/Kevlar® fiber composites as 

the peel ply prevented any fibers from coming to the surface.  The lighter circles were 

present at 0, 600, and 1200 hours exhibiting regimes which were polymer rich as observed 

via visual microscopy making the initial removal of the peel ply very difficult.  Figure 4.3 

reveals the edge view of the Kevlar® fiber composite peel ply at the six weathering times. 

 

Figure 4.3 - Phenolic matrix/Kevlar® fiber composites after weathering a) 0 hours b) 

600 hour c) 1200 hours d) 1800 hours e) 2400 hours and f) 3000 hours 

After 1800 hours of accelerated exposure, it was observed that the polymer rich 

regimes are no longer apparent.  Removal of the peel plies was easier at this time as the 

polymer was no longer present.  Irradiation intensities were observed for the initial peel ply 

and after 3000 hours.  It was observed that the irradiation increased from 0.06 watts per 

square meter initially to 0.12 watts per square meter at 340 nanometers which is attributed 

to the increase in porosity of the peel ply as a function of weathering. 

Investigation of the “thick” composite samples demonstrated similar trends during 

exposure for the phenolic matrix/S2 Glass® fiber composites as the color became a darker 
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color with a glossier surface.  However, the phenolic matrix/Kevlar® fiber composites 

demonstrated a noticeable difference in the color aspects of appearance.  Figure 4.4 

displays the physical appearance of the “thick” composite systems after the six exposure 

periods with the “thick” Kevlar® fiber composites demonstrating the color with the peel ply 

not present. 

 

Figure 4.4 - Physical appearance after accelerated exposure for “thick” phenolic 

matrix/S2 Glass® fiber composite (left) and phenolic matrix/Kevlar® fiber composite 

(right).  Each set contains 0, 1200, 2400, 3600, 4800, and 6000 hours of exposure 

starting at left and moving right 

The Kevlar® fiber composites displayed a yellow initial color compared to the green 

colored composites present in the “thin” peel ply covered samples because the peel ply was 

removed after manufacturing.  Upon removal of the peel ply, the initial color was similar.  

The weathering lengths were doubled in the case of the “thick” samples as compared to the 

“thin” samples.  However, several physical characteristic trends in both thickness 

configurations remained similar over the duration of the accelerated exposure.  The matrix 

removal during degradation is similar in both the “thin” and “thick” instances, but a thicker 

polymeric top layer was present in the “thick” composites allowing for greater weathering 

durations before fiber bridging was observed.  The gloss was also similar as the 4800 and 
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6000 hour sample sets displayed a glossier appearance for the phenolic matrix/S2 Glass® 

fiber composites.  The extent of gloss increase was not readily observed in the phenolic 

matrix/Kevlar® fiber composites, but was distinguished with quantitative analysis of gloss.  

The use of numerical methods for determining the changes in the surface characteristics are 

presented in the following sections to provide more insight into the trends observed. 

4.3 Color of PMCs Exposed to Ultraviolet Conditions 

 Color changes in the CIE Lab color coordinate system were observed for each 

coordinate individually as well as the overall color change (i.e., ΔE).  Figure 4.5 displays 

the three color coordinates as well as the overall change in color for the “thin” phenolic 

matrix/S2 Glass® fiber composites during the six weathering periods. 

 

Figure 4.5 - Numerical color results for the "thin" phenolic matrix/S2 Glass® fiber 

composites including L* (top left), a* (top right), b*(bottom left), and  

ΔE (bottom right) 
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The L* color value drops slightly, on average, before increasing at the 2400 and 

3000 hour time periods.  This suggests that the S2 Glass® composites become slightly 

darker before changing to a lighter color.  The predominance of fiber at the surface caused 

the 2400 and 3000 hour sample sets to appear lighter as light is reflected more easily.  The 

a* value displayed a decrease over exposure time which demonstrates the composite 

shifting from a red color toward a green color.  However, the shift may be toward the 

green, but the value is positive affirming it is more red than green.  The b* value is a 

measure of the yellow to blue colors with yellow being on the positive axis.  This value is 

considered the main indication of weathering degradation occurring in polymeric 

materials.[3-6]  However, the common polymer binder systems monitored are either clear 

or white.  The initial b* value for the phenolic matrix/S2 Glass® composites are far more 

yellow than blue, as Figure 4.5 suggests, but the shift in this instance is toward a blue 

value.  An initial drop at 600 hours is observed before minor alterations in b* are observed.  

Lastly, the overall color change increased before remaining constant after 2400 hours.  

Investigation of the “thin” Kevlar® fiber composites revealed that the lightness 

value (i.e., L*) displayed an increasing value with increasing exposure time which was 

observed visually.  Little confidence is shown in the a* value changing in the first four time 

periods, but at the 2400 and 3000 ultraviolet exposure hours the a* become more green 

than the initial value.  Similarly, the b* value showed little confidence in the initial 

increase, but overall the final time period suggests a more blue color.  Finally, the color 

change increases with exposure time before a large increase in the 3000 exposure hour 

sample set.  This data suggests that the peel ply layer was also undergoing 

photodegradation under the accelerated weathering conditions.  Weathering of the peel ply 
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restricted the composite substrate from experiencing ultraviolet photodegradation.  Figure 

4.6 reveals the color characteristics of the “thin” Kevlar® fiber composites. 

 

Figure 4.6 - Numerical color results for the "thin" phenolic matrix/Kevlar® fiber 

composites including L* (top left), a* (top right), b*(bottom left), and  

ΔE (bottom right) 

         Numerical color investigation of the “thick” S2 Glass® fiber composites was also 

examined.  The trends observed in the L* and b* values are similar to that of the “thin” 

phenolic matrix/S2 Glass® composite samples.  A larger change in the L* value after one 

period of exposure was accounted for by the “thick” samples being lighter at the onset of 

exposure which may be accredited to the composite manufacturing process.  The high 

temperature associated with the autoclaving manufacturing process may have begun 

thermal oxidation processes which have been observed to cause a color change in phenolic 

compounds.[7]  Differences in the lightness were observed upon initial investigation of the 
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samples.  However, the lightness does increase with longer exposures because fiber 

bridging occurred in the thicker samples also. Initially the a* value was much lower in the 

“thick” samples, but the trend, once accelerated exposure was subjected to the samples, 

was similar in both sample geometries.  The b* values were initially similar and the trends 

were similar in both the “thick” and “thin” samples.  The overall color change exhibited a 

large increase at 1200 hours before remaining relatively stable.  Figure 4.7 reveals the color 

values for the “thick” S2 Glass® fiber composites after exposure. 

 

Figure 4.7 - Numerical color results for the "thick" phenolic matrix/S2 Glass® fiber 

composites including L* (top left), a* (top right), b*(bottom left), and  

ΔE (bottom right) 

“Thick” composites containing Kevlar® fiber were also studied, with the peel ply 

removed, to determine the color characteristics.  Many differences in the values and trends 

were observed due to the peel ply not being present on the “thick” samples.  Figure 4.8 
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displays the color coordinates of the “thick” phenolic matrix/Kevlar® fiber composites for 

the six accelerated exposure times. 

 

Figure 4.8 - Numerical color results for the "thick" phenolic matrix/Kevlar® fiber 

composites including L* (top left), a* (top right), b*(bottom left), and  

ΔE (bottom right) 

As expected, there was a decrease of the L* value at 1200 hours of exposure before 

a gradual increase in lightness.  The a* value increased in redness at 1200 hours before 

shifting toward a green value.  The b* color values displayed a drop at 1200 hours of 

exposure before remaining unchanged for the final four time periods.  Overall, the color 

change was large at 1200 hours, but remained approximately the same as both the L* and 

b* value deviated very small amounts in each of the last four exposure periods.   

Even though the weathering time periods were different for the two geometries, the 

long exposure term trends were similar in the case of the S2 Glass® fiber composites.  On 
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the other hand, the “thick” phenolic matrix/Kevlar® fiber composites demonstrated vastly 

different trends as the peel ply was removed causing a greater photodegradation to occur.   

4.4 Surface Profile of PMCs Exposed to Ultraviolet Conditions 

 The surface changes incurred during weathering were also observed via optical 

profilometry.  Figure 4.9 depicts the surface topography for the “thin” S2 Glass® fiber 

composites at the six exposure periods. 

 

Figure 4.9 – Surface topography for phenolic matrix/S2 Glass® fiber composite at a) 0 

hours b) 600 hour c) 1200 hours d) 1800 hours e) 2400 hours and f) 3000 hours 

The square observed in the middle of each scan represents the area where the fiber 

weave comes close to the PMC surface which has also been observed in literature.[8]  The 

over and under weaving of the fiber tows leaves a polymer rich zone around these squares 

which can also be observed in Figure 4.9.  Profiles 4.9c and 4.9d suggest the breakthrough 

of fiber at the surface which was observed visually.  Profiles 4.9e and 4.9f visually appear 

to have less fiber bridging occurring; however, this effect is observed visually and may be 
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diminished in the profiles as the polymer rich regimes become deeper from accelerated 

exposure.  This statement is further reinforced when examining the surface roughness 

parameters of the area scan experiments.  The emergence of fiber bridging began at 1200 

hours of exposure which was also indicated with a noticeable surface roughness increase 

from the surface roughness characteristics.  Figure 4.10 reveals the surface arithmetic and 

root-mean square (RMS) roughness for the six weathered “thin” S2 Glass® composite 

specimens. 

 

Figure 4.10 – Surface roughness parameters for S2 Glass® fiber composites 
 

The surface roughness remained relatively stable until 3000 hours of accelerated 

ultraviolet exposure. An increase occurred in the both roughness parameters which may be 

indicative of the polymeric rich surround becoming more degraded (i.e., deeper) and the 

fiber surface remaining stable causing an increase in overall roughness. 

 The surface profile of the phenolic matrix/Kevlar® fiber composites was not studied 

as removal of the peel ply would cause significant mechanical damage to the composite.  

The weathering duration would not be correlated to the other composites as well due to the 

ultraviolet screening influence of the peel ply.  Also, the “thick” samples could also not be 
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measured as the larger cross sections were not measurable due to the limitations of the 

optical profilometer. 

4.5 Gloss of PMCs Exposed to Ultraviolet Conditions 

 Gloss values were measured throughout the ultraviolet exposure at three different 

angles.  The three angles included 20°, 60°, and 85° with the last angle typically being 

utilized for rough surfaces as the near grazing angle allows a higher probability of the 

signal reaching the detector.  Figure 4.11 reveals the gloss values of the three angles for the 

“thin” phenolic matrix/S2 Glass® composites. 

 

Figure 4.11 – Gloss values of “thin” S2 Glass® fiber composites for the  

six weathering periods 

The results of Figure 4.11 demonstrate that the material is increasing in gloss with 

exposure time which has also been observed in literature for polymeric composites.[6]  The 

20° gloss measurement revealed a progression of increasing gloss, but the values were 

extremely low compared to traditional substrates.  When measuring the 60° angle, the 

largest increases in gloss were observed with time.  Between 600 and 1800 hours the 

surface increased in gloss by a combination of erosion of matrix and emergence of the S2 
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Glass® which reflects more light than the matrix material.  At 2400 and 3000 hours another 

increase was observed, on average, as fiber bridging was observed visually.  Lastly, the 85° 

angle demonstrated little change from the initial value.  There was a slight increase at 600 

and 1200 hours of exposure before stabilizing.  This could be explained by a surface 

smoothing, on the macro scale, from erosion of matrix material before the long exposure 

times when fiber became exposed.  After 1800 hours, fiber was present at the surface 

which does not degrade with increased exposure time creating a stable gloss value.  Again, 

the gloss values of the “thin” Kevlar® fiber composites were measured, but the peel ply 

attached to the composite did not allow for an efficient measurement of gloss for the 

underlying composite system. 

 The larger composite specimens were also measured for gloss over the duration of 

the accelerated exposure.  It was observed that all gloss angles demonstrated a significant 

change from the initial value at the longest exposure times.  Figure 4.12 reveals the gloss 

values for the three gloss angles of the “thick” phenolic matrix/S2 Glass® fiber composites. 

 

Figure 4.12 - Gloss values of “thick” S2 Glass® fiber composites for the  

six weathering periods 
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Again, the 60° gloss angle revealed the largest changes from the initial value.  All 

angles exemplified the same gloss values as the “thin” composite specimens of the same 

composition.  This verifies that the initial gloss values were dependent on the polymeric 

top layer, but upon exposure the values became slightly different as the thickness of the top 

layer is assumed to be different in each instance.  The 20° and 60° gloss angles 

demonstrated noticeable changes during the exposure while the 85° did reveal a 

statistically significant change from the initial value at 3600 hours.  At 3600 hours, the 

“thick” samples had fiber bridging beginning to occur which is responsible for the large 

change from the initial value before remaining stable for the last three weathering periods.  

Statistically, the last three weathering periods displayed stable values that were all 

significantly different than the initial value.  Visually, this was observed as the fiber 

emergence became apparent at this exposure time.  Figure 4.13 displays the gloss values of 

the phenolic matrix/Kevlar® fiber composites. 

 

Figure 4.13 - Gloss values of “thick” Kevlar® fiber composites for the  

six weathering periods 

As before, the 60° gloss angle revealed the largest change in gloss over the 

exposure time, but the gloss values are much lower than the S2 Glass® composites.  The 
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20° gloss angle remained unchanged during exposure with a large variation initially.  Much 

like the “thick” S2 Glass® composites at the 60° gloss value, the matrix erosion during 

weathering occurs to expose fiber which was glossier than the matrix material. This 

interpretation was visually observed with an increase of gloss after 3600 hours of exposure 

in Figure 4.4.  Lastly, the surface also displayed a glossier finish at 85° as the incurred 

weathering increased, but after 2400 hours approximately the same gloss value was 

observed which may be accounted for the with the beginning of fiber protrusion.  This 

again was accounted for by the emergence of fiber scattering which scatters more of the 

incident light. 

4.6 Water Contact Angle of PMCs Exposed to Ultraviolet Conditions 

 Water contact angle is an indirect measure of a material’s surface energy and is 

dictated by the angle formed at the water/material interface.  The water contact angle can 

change over exposure time from a multitude of factors including both a surface energy 

change and a surface profile change.  Figure 4.14 displays the water contact angle for the 

“thin” S2 Glass® composites. 

 

Figure 4.14 – Water contact angle over exposure time for “thin” phenolic matrix/S2 

Glass® fiber composites 
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A decrease in the water contact angle was observed during the composite 

weathering.  However, it was not until 2400 hours of ultraviolet exposure that the water 

contact angle was noticeably different.  This could be due to the emergence of fiber at the 

surface.  A wicking effect was noticed at later exposure times as the droplet of water would 

spread upon contact with the composite substrate.  The constant volume of water was 

allowed to spread over a larger area reducing the angle of contact.  The measurements after 

3600 hours did not allow the system to achieve equilibrium, but a constant time of three 

seconds was used between water placement and measurement.  Large variations in the 

samples were noted as the composite surfaces tended to have differences in surface 

structure initially.  Also, fiber bridging did occur to some extent at 1200 hours, but was not 

observed in each sample leading to higher deviations from the average. 

 Unlike the “thin” samples of the same composition, the results of the “thick” S2 

Glass fiber composites reveal no statistical change during the accelerated exposure.  Figure 

4.15 displays the water contact angle for the “thick” S2 Glass® fiber composites. 

 

Figure 4.15 – Water contact angle over exposure time for “thick” S2 Glass® fiber 

composites 
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On average a decrease was observed, but very little significance was associated 

with this observation.  The large variations are again due to the inconsistency of surface 

roughness at the local measurement level along with the difference from sample to sample 

in terms of when fiber bridging begins.   

Contact angle measurements were also performed on the “thick” Kevlar fiber® 

composites.  It was observed, on average, a trend of decreasing water contact angle was 

occurring.  However, a statistically significant decrease, of one standard deviation 

difference, was observed from the 3600 hour water contact angle to the initial value.  

Figure 4.16 exhibits the values of water contact angle over exposure for the “thick” 

phenolic matrix/Kevlar® fiber composites. 

 

Figure 4.16 - Water contact angle over exposure time for “thick” phenolic 

matrix/Kevlar® fiber composites 

  At 3600 hours a relatively large deviation was observed, but smaller values were 

exhibited in 4800 and 6000 hours.  This again was attributed to the emergence of fiber at 

these weathering periods as the 3600 hour value had a difference in value greater than one 

standard deviation.  The Kevlar® fiber exhibited a more stable surface after the matrix 
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material was removed which led to smaller standard deviations.  Water wicking still 

occurred, but to a lesser extent than the S2 Glass® fiber composites. 

 Overall, the S2 Glass® samples displayed little stability once fiber emerged at the 

surface as water wicking became a factor in the instability of the composite surface.  This 

was especially evident in the “thick” S2 Glass® composites.  Conversely, the Kevlar fiber 

composites demonstrated less wicking at the surface, but the results displayed larger 

deviations from the mean.  It is assumed that the water contact changed in both composite 

systems due to changing surface roughness and increased fiber interaction.  

4.7 Conclusions 

 The physical appearance of the composites was initially studied with visual 

assessment and edge profiles.  It was observed that the “thin” and “thick” composites 

demonstrated similar characteristics except for the “thin” Kevlar® composites.  A peel ply 

was attached to the composites because removal of the well intact protective layer might 

have caused significant mechanical damage.  The matrix material in the Kevlar® fiber 

composites could be observed protruding through the peel ply in the edge view. 

 Color measurements were recorded over exposure time for both “thin” and “thick” 

composites.  An overall color change was observed in for all samples.  The “thin” S2 

Glass® composites demonstrated an increase in lightness and a decrease in the a* and b* 

values suggesting the system becoming more green and blue, respectively.  However, the 

S2 Glass® composite remained positive in both the a* and b* scales indicating the color 

was still more red than green and more yellow than blue.  The peel ply attached to the 

“thin” Kevlar® fiber also displayed a color change, along with an increase in irradiation 

intensity which demonstrates peel ply weathering.  In terms of the “thick” composites, a 
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large change in color was observed at 1200 hours before remaining relatively stable.  Both 

systems exhibited a decrease in lightness before a gradual increase back toward the original 

value.  The a* value demonstrated an increase at 1200 hours before gradually decreasing.  

Also, the b* value decreased a significant amount at 1200 hours before decreasing 

gradually.  The major contribution to the color change was due to the large change in the 

b* value in both instances. 

 The surface roughness area scans were monitored for the “thin” S2 Glass® 

composites only as the “thin” Kevlar® fiber composites illustrated the deviation of the peel 

ply which was not of importance in this instance.  The “thin” S2 Glass® composites 

revealed a surface roughening effect over the exposure times, and large values were 

obtained once the fiber began to emerge at the composite surface.  The S2 Glass® is 

transparent to the ultraviolet light provided by the UVA lamps utilized during accelerated 

weathering.  This led to the S2 Glass® fiber remaining visually unchanged while the matrix 

material degraded and created deeper crevices.   Overall, the surface at 3000 hours revealed 

large amounts of fiber present with small regimes of phenolic polymer around the outside 

of the fiber tow squares. 

 Gloss was monitored with exposure time to observe the effect of matrix degradation 

and fiber bridging.  A large increase in the 60° gloss value was observed in both the “thin” 

and “thick” composites for both material systems.  The 20° gloss value revealed an 

increase in the S2 Glass® composites, but not in the Kevlar® fiber composites.  The 85° 

gloss value may be an indication of when the fiber emergence becomes prominent after 

during accelerated exposure.  The near grazing angle may have be an early indication of 

fiber protrusion because the value stabilizes after fiber exposure which was observed in the 
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S2 Glass® fiber composites.  The stability in the gloss value at 85° stems from the S2 

Glass® fiber not degrading with increased exposure making the gloss value only dependent 

on the fiber which does not degrade with increased exposure. 

 The water contact angle exhibited a decrease with exposure time for the “thin” S2 

Glass® composites, but little change was observed in the “thick” S2 Glass® composites.  

The averages of the contact angle demonstrate an initial decrease at 1200 hours of exposure 

before remaining stable, but large deviations create little confidence in these finding.  

Large deviations are perhaps associated with local variations in the composite surfaces 

along with the change in when fiber bridging occurred.  Lastly, at the 3600, 4800 and 6000 

hour exposure periods, a change, of one standard deviation, could be observed from the 

initial value.  This is again due to fiber emergence at the surface leading to water wicking 

which results in lower water contact angles.  This methodology also provides insight to 

when the fiber bridging dominates the surface characteristics. 

 Overall, it was determined that the fiber protrusion occurs between 2400 and 3600 

hours for the “thick” composite systems as multiple methods suggest.  In the “thin” S2 

Glass® composite systems fiber bridging dominates the surface properties after 2400 hours 

in the gloss and contact angle measurements, but fiber bridging was observed visually as 

early as 1200 hours.  As a protective peel ply was adhered to the “thin” phenolic 

matrix/Kevlar® fiber composites, surface characteristics of the actual composite system 

were not monitored due to the changing amount of ultraviolet radiation subjected to the 

composites. 
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CHAPTER 5.  MECHANICAL AND BALLISTIC PROPERTIES OF BALLISTIC 
 

 RESISTANT POLYMER MATRIX COMPOSITES  
 

UPON ULTRAVIOLET EXPOSURE 
 
5.1 Introduction 

 Mechanical and ballistic properties of the weathered PMCs were obtained to 

quantify the degradation of these composites after accelerated ultraviolet exposure.  

Ultraviolet exposure is known to degrade polymers with aromatic structures which are 

within both the phenolic matrix and Kevlar® fibers.  Tensile and flexural properties were 

obtained at six exposure periods of accelerated weathering.  A comparative ballistic study 

was also performed on the two PMCs to determine the effect of ultraviolet exposure on the 

ability of the composite to resist ballistic penetration.  In fibrous composites, the ballistic 

resistant capabilities are dependent on fiber’s ability to transfer the absorbed energy away 

from the area of impact which may be comprised if long term continuity of the fiber is lost 

from ultraviolet exposure.  The ultimate tensile strength of the S2 Glass® composites was 

compared to the EIS circuit modeled composite resistance.  The correlation of the two 

material properties determines the applicability of utilizing EIS as a structural health 

monitoring technique. 

5.2 Tensile Properties of PMCs Exposed to Ultraviolet Conditions 

 Mechanical integrity of composite materials is known to change under ultraviolet 

exposure as both the matrix and reinforcements can degrade.  Each composite structure 

studied contains a phenolic matrix which is highly aromatic and is known to have a change 

in mechanical integrity after exposure to ultraviolet conditions.[1]  A typical stress/strain 

curve is depicted in Figure 5.1, demonstrating several characteristics for each material.   
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Figure 5.1 – Stress/Strain curves for the two composite systems 
 

At 100 megapascal (MPa), there is a discontinuity observed which is attributed to 

the removal of the extensometer to avoid damage to the equipment.  It was observed that 

the elastic modulus of the S2 Glass® fiber composites was larger than the Kevlar® 

composites as the slope in the linear region was larger.  Also, the ultimate tensile strength 

of the S2 Glass® composites was higher than the Kevlar® composites.  The S2 Glass® 

composites demonstrated similar sudden rises and depressions in higher stress responses.  

These sudden changes were due to the individual or multiple fiber filaments breaking at 

these stresses with the occurrence of this phenomenon occurring more frequently near 

failure.  Finally, the mode of failure, as define by ASTM D 3039, was maintained 

throughout the experimentation as a combination of explosive and edge delamination were 

observed in the gage section of the composites for the S2 Glass® composites.  

Occasionally, longitudinal splitting was observed but these instances were also 

accompanied by explosive failure.  In the case of the Kevlar® fiber composites, failure 

occurred from either a lateral or angled fracture.  The individual fiber breakage was not 
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observed as frequently compared to the S2 Glass® fiber composites.  However, the manner 

of failure was still brittle in nature as the ultimate tensile strength and strain at failure 

occurred simultaneously.   

From the stress/strain curves, the tensile modulus, ultimate tensile strength, strains 

at break, and energy at ultimate tensile strength were properties obtained for analysis.  

Figure 5.2 displays the aforementioned properties for the “thin” phenolic matrix/S2 Glass® 

fiber composites after the six weathering periods. 

 

Figure 5.2 – Tensile properties for S2 Glass® composites after six exposure periods 

including a) tensile modulus b) ultimate tensile strength c) strain at break and d) 

energy at the ultimate tensile strength 

The tensile modulus reveals small changes during accelerated exposure; however, 

the decrease at 3000 hours is larger than one standard deviation from the initial modulus.  
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Also, the modulus exhibited a slight increase at 600 hours and 1200 hours before 

decreasing again at 1800 hours.  Tensile modulus is dependent on the bulk polymer and 

fiber responses to small strains which would have not been drastically influenced until long 

exposure times.  The slight increase in the modulus can be attributed to less polymer 

mobility in the elastic regime.  A loss of mobility can occur from a variety of reasons, but 

the most pertinent cases, to this research, stem from either an increase in crosslinking 

reactions from ultraviolet exposure of the matrix or plasticizer. It is assumed that the 

phenolic polymer is lightly copolymerized with polyvinyl butyral (PVB) which has 

demonstrated self crosslinking when exposed to ultraviolet conditions.[2]  Low 

concentrations of PVB have demonstrated PVB rich zones in a phenolic matrix allowing 

for possible entrapment of unreacted PVB.[3]  Another possible contribution may be 

attributed to the increased crosslinking of unreacted phenolic polymer which is possible 

within the cross sections of the composites.  The 2400 hour sample set produced only three 

acceptable failures (i.e., failures initiated within the gage section) leading to large 

deviations in the results.   

The ultimate tensile strength displayed significant changes after 2400 hours of 

exposure.  This time frame also correlated well with the emergence of fibers present at the 

composite surface.  On average, a slight increase in ultimate tensile strength was observed 

before decreasing in later exposure periods.  Similar to the tensile modulus, the initial 

increase can be attributed to less mobility of the matrix material from either increased 

crosslinking of the matrix or plasticizer.  The ultimate tensile strength of the S2 Glass® 

composites was observed to occur within 0.5% strain of bulk composite failure.  This 

suggests a brittle failure which is to be expected with a brittle fiber constituent in S2 
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Glass®. A relatively unchanging modulus during accelerated exposure with a decreasing 

ultimate tensile strength has also been observed in literature.[4]  Porosity increased with 

increased ultraviolet exposure which was also observed with water uptake and 

electrochemical impedance results.  The effect of pore formation may only influence the 

ultimate tensile strength as the modulus is calculated in small strain regions where fiber and 

interfacial properties dictate the bulk response. 

The strain at break also demonstrated an increase after initial exposure, but little 

confidence of a statistical change was observed as the standard deviations overlap in these 

instances.  This trend was counter intuitive as the increased crosslinking would suggest a 

decrease in the strain at break due to less matrix mobility.  Further observation determined 

that slipping of the clamped composite was occurring which influenced the results.  The 

slipping caused higher elongations which would increase the strain at break value for the 

S2 Glass® fiber composites.  

Energy at the ultimate tensile strength was observed to slightly increase before 

decreasing with increased exposure.  The energy is calculated as the area under the stress-

strain curve from initial loading until the ultimate tensile strength occurs.  Therefore, the 

energy is dependent on both the stress and strain aspects.  This suggests that the initial 

increase had both an increase in ultimate tensile strength and strain as factors causing a 

large initial increase in the energy.  After the initial increase in energy, the later 

measurements were influenced by the ultimate tensile strength decreasing while the strain 

remained relatively constant resulting in an overall decrease in the energy.  This result can 

be explained by the ultimate tensile strength decreasing from the creation and expansion of 

voids while the strain remained unchanged due to the slipping which was occurring.  
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 As the peel ply was attached during exposure of the Kevlar® fiber composites, very 

little difference was observed in the tensile properties.  The intensity of ultraviolet radiation 

allowed to pass through the peel ply increased from 0.06 watts/square meter (W/m2) to 0.12 

W/m2, at 340 nanometer wavelength, over the span of 3000 hours of exposure when 

applied at 1.35 W/m2.  Overall, the amount of degradation reactions possible (i.e., the 

number of photons subjected to the composite) for the 3000 hour exposure samples would 

theoretically have less degradation reactions than that of the 600 hour samples weathered 

without the peel ply.  This fact demonstrates that the results would show little difference 

from the initial results.  Figure 5.3 displays the tensile properties of the phenolic 

matrix/Kevlar® fiber composites. 

 

Figure 5.3 - Tensile properties for Kevlar® fiber composites after six exposure periods 

including a) tensile modulus b) ultimate tensile strength c) strain at break and d) 

energy at the ultimate tensile strength 
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 As expected, the tensile modulus remained statistically unchanged from the initial 

values.  This can be explained by the lack of penetration of the ultraviolet radiation during 

exposure.  However, a small increase, of the average, was observed at 3000 hours, but little 

statistical confidence was assigned to this observation.  Similarly, the ultimate tensile 

strength was not observed to change during increased exposure as pore creation and 

expansion could not occur which would change the crack initiation and propagation 

attributes.  Strain at break values remained unchanged from the lack of ultraviolet exposure 

while the energy at ultimate tensile strength displayed a slight decrease in value but small 

confidence was assigned to this observation.   

The small intensity of the ultraviolet radiation passing through the peel ply allowed 

for minor discoloration in the composites, but Figure 5.3 reveals that the tensile mechanical 

properties remained unchanged.  Again, the unchanged properties are attributed to the lack 

of photodegradation reactions that occurred due to ultraviolet screening by the peel ply. 

5.3 Flexural Properties of PMCs Exposed to Ultraviolet Conditions 

 Three point bending experiments were utilized to perform flexural measurement of 

the “thick” composite samples.  By using a span distance (i.e., distance between two 

bottom supports) of four times the thickness of the composite, the short beam interlaminar 

shear strength (ILSS) could be determined.  This ratio of span to thickness produces 

interlaminar shearing to occur which is not representative of an elastic flexural response; 

therefore, flexural modulus could not be calculated. From the ILSS measurement, it was 

determined that an overall trend of increasing ILSS was observed during the ultraviolet 

exposure.   However, very little confidence is associated with this result which was 

observed for the S2 Glass® fiber composites in Figure 5.4. 
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Figure 5.4 - ILSS of S2 Glass® fiber composites 
 

Flexural responses (i.e., out of plane loading) are more dependent on the matrix 

material because fibers are not aligned for this loading, unless z-direction stitching is 

applied, as opposed to the tensile experimentation which is largely dependent on the 

fiber.[5]  The ILSS demonstrated very little change during the exposure as the interlaminar 

shearing occurs typically within the middle most fiber plies.  This was explained by the 

lack of penetration of the ultraviolet radiation into the inner most layers.  Photodegradation 

of polymers tends to be a  surface phenomenon as the depth of ultraviolet radiation 

penetration is low for a solar spectrum centered about the 340 nanometer wavelength (i.e., 

less than 20 micrometer).[6]  This stems from the high absorption of visible and ultraviolet 

radiation in polymers along with the relatively low energy of this radiation wavelength.  

Even though the penetration depth is shallow, a noticeable increase in the ILSS of the S2 

Glass® fiber composites was observed.  However, a larger sample set would be necessary 

to determine the validity of this observation.  The mode of failure for this experimentation 

demonstrated predominantly interlaminar shearing while compressive matrix cracking 

became more apparent after longer ultraviolet exposure. 
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 The “thick” cross section phenolic matrix/Kevlar® fiber composites were also 

examined via flexural loading.  Figure 5.5 displays the ILSS values for the Kevlar® fiber 

composite specimens with respect to the accelerated exposure times. 

 

Figure 5.5 - ILSS of Kevlar® fiber composites 
 

The interlaminar shear strength values were recorded although the predominant 

mode of failure was a combination of compressive and inelastic deformation, but some 

instances of interlaminar shearing were observed.  Post-manufacturing of the Kevlar® fiber 

composites resulted in difficult determination of possible shear cracking locations.  Also, 

with flexural loading, the maximum tensile and compressive stresses occur at the surfaces 

which correspond with the area most influenced by photodegradation.   Since both the 

Kevlar® fiber and phenolic matrix are aromatic, the surfaces were photodegraded during 

ultraviolet exposure which could have led to greater porosity and, thus, more sites for 

compressive crack propagation. At six thousand hours of exposure the ILSS of the Kevlar® 

composites displayed an increase from the previous averaged values.  However, the 

standard deviations were large lending little confidence to the increased ILSS value 

observed at this duration of weathering.  
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5.4 Ballistic Resistance of PMCs Exposed to Ultraviolet Conditions 

 Fragment simulating projectiles (FSPs) were utilized in the comparison of ballistic 

resistant capabilities of the two composite systems exposed to ultraviolet exposure.  Table 

5.1 reveals the ballistic results for the S2 Glass® fiber composites. 

Table 5.1 – Ballistic results for S2 Glass® fiber composites 

Sample 
Identification 

Projectile 
Mass 

(grams) 

Measured 
Entrance 
Velocity 

(meters/second) 

Projectile 
Surface 

Penetration 
(millimeter) 

Cross-Sectional 
Penetration 
(millimeter) 

0 Hours Trial #1 17.30 88.70 4.47 3.72 
0 Hours Trial #2 17.70 77.72 6.08 4.81 
1200 Hours Trial #1 17.60 N/A 6.05 4.62 
1200 Hours Trial #2 16.90 135.94 6.19 5.43 
2400 Hours Trial #1 15.80 N/A 6.42 4.45 
2400 Hours Trial #2 17.70 136.86 6.37 6.11 
3600 Hours Trial #1 16.60 N/A 6.24 5.38 
3600 Hours Trial #2 17.00 54.86 4.42 4.53 
4800 Hours Trial #1 16.60 157.28 6.56 4.84 
4800 Hours Trial #2 17.10 N/A 4.41 4.12 
6000 Hours Trial #1 16.70 146.30 6.28 5.13 
6000 Hours Trial #2 16.50 71.02 6.58 6.17 

 
Two replicates per exposure period were subjected to ballistic characterization.  The 

projectile mass was recorded as the kinetic energy is dependent on the mass and velocity of 

the projectile before impacting the composites.  It was noted that the entrance velocity had 

large discrepancies which are attributed to the chronographs detecting the sabot particulates 

after reaching the sabot stripper.  By using data from previous studies at this pressure, the 

average velocity for this composite set was determined to be 147 meters/second (m/s) by 

disregarding the unrealistically low velocities.  The velocity measured constitutes a high 

velocity impact (i.e., > 100 m/s) for these samples.  The penetration depth of the projectile 

was determined via two methods, including a surface measurement and a cross-sectional 

approach which was deemed more accurate as the depth was measured from an 
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uninfluenced ballistic exposed surface.  The ballistic affected zone of the S2 Glass® fiber 

composites displayed fiber failure with an explosive nature as broken fiber and fiber ends 

were readily exposed.  This failure mode was also observed in the tensile experimentation.  

Figure 5.6 displays the explosive failure observed for the S2 Glass® fiber composites.   

 

Figure 5.6 – Ballistic impact surface characteristics of S2 Glass® fiber composites 
 

Normalization of the penetration depth, with mass, accounts for the variation in the 

projectile mass and, thus, the variation in projectile energy.  Figure 5.7 exhibits the 

normalized penetration depth as a function of the ultraviolet exposure time. 

 

Figure 5.7 - Normalized penetration depth of S2 Glass® fiber composites 
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At 6000 hours of ultraviolet exposure, a one standard deviation of difference was 

observed in the normalized penetration depth.  On average, all values of penetration depth 

were greater than the unexposed samples.  Since the cross-sectional penetration depth was 

measured from an unaffected area, the slight decreases at 3600 and 4800 hours of exposure 

may be due to the removal of the topmost polymeric layer.  The same amount of fiber plies 

would have been subjected to the projectile, but the distance between the impact area and 

top most surfaces would have decreased due to photodegradation.  However, very low 

confidence was assigned to the increasing trend.  Also, very little confidence is assigned to 

the difference between 0 and 6000 hours as only two replicates were subjected to ballistic 

measurement.   

 Examination of the Kevlar® fiber composites via ballistic penetration measurements 

demonstrated deeper penetration than the S2 Glass® fiber composites.  However, the 

penetration depth was strongly dependent on the fiber material and the amount of plies of 

contact.    The ballistic results for the Kevlar® fiber composites are displayed in Table 5.2. 

Table 5.2 - Ballistic results for Kevlar® fiber composites 

Sample 
Identification 

Projectile 
Mass (g) 

Measured 
Entrance 

Velocity (m/s) 

Projectile Surface 
Penetration (mm) 

Cross-Sectional 
Penetration (mm) 

0 Hours Trial #1 17.30 N/A 4.38 3.80 
0 Hours Trial #2 17.90 151.79 6.13 7.18 
1200 Hours Trial #1 16.10 N/A 8.11 5.80 
1200 Hours Trial #2 16.60 153.31 8.35 6.98 
2400 Hours Trial #1 16.40 N/A 7.14 6.14 
2400 Hours Trial #2 16.30 N/A 5.08 5.01 
3600 Hours Trial #1 16.70 N/A 8.41 6.94 
3600 Hours Trial #2 16.70 N/A 8.22 7.91 
4800 Hours Trial #1 16.90 45.02 8.16 7.60 
4800 Hours Trial #2 16.90 N/A 7.43 7.39 
6000 Hours Trial #1 17.00 63.70 N/A 7.02 
6000 Hours Trial #2 16.10 89.61 7.64 6.68 
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In the S2 Glass® fiber composites, 50 plies were utilized to create the 25.4 

millimeter cross-sectional thickness while 45 plies were needed to produce the same 

thickness in the Kevlar® fiber composites.  Therefore the results do not necessarily dictate 

that the Kevlar® composites did not perform as well as the S2 Glass® fiber composites on a 

per ply basis.  Also, a larger difference was observed between the surface penetration and 

cross-sectional penetration depths.  The difference in the two penetration depths can be 

accounted for by the fiber and matrix material being moved in the transverse direction with 

respect to the impact surface causing a bulging at the impact surface.  The penetration 

surface also demonstrated a different mode of failure compared to the S2 Glass® fiber 

composites.  A plugging effect was observed more frequently in the Kevlar® fiber 

composites along with a cleaner penetration surface.  Plugging is a process where a surface 

layer creates a circular “plug” of material which must be forced through the bulk material 

and is known to occur more frequently with flat headed projectiles.[7]  This plugging 

phenomenon is displayed in Figure 5.8 where the plug is observed within the impact area. 

 

Figure 5.8 – Ballistic impact surface characteristics of Kevlar® fiber composites 
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 Even with plug formation, the normalized penetration depth also exhibited an 

increasing trend for the Kevlar® fiber composites with respect to the ultraviolet exposure 

time.  The normalized penetration depth for the Kevlar® fiber composites are displayed in 

Figure 5.9. 

 

Figure 5.9 - Normalized penetration depth of Kevlar® fiber composites 
 

On average, an increasing trend was observed from the initial penetration depth.  A 

large deviation was observed at 0 hours of ultraviolet exposure which was dependent on the 

small number of trials associated with this data.  The small number of replicates provides 

little confidence in the trend observed for the ballistic resistance of the Kevlar® fiber 

composites.  For the phenolic matrix/Kevlar® fiber composites, both the matrix and fibrous 

materials were degraded during ultraviolet exposure which may be a factor in the deeper 

penetration upon ultraviolet exposure.  As mentioned previously, the penetration depth is 

dependent on the number of plies the projectile contacts which is widely varied in these 

composites as fiber plies are not flat with respect to the penetration surface.  This attribute 

made the determination of penetrated plies difficult. 
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5.5 Correlation of Mechanical Properties to EIS Circuit Model Constituents 

 The main objective of this research was to obtain a correlation of the 

electrochemical impedance and the mechanical properties.  Of the three impedance 

modeled circuit elements, the pore resistance was selected as the most applicable 

characteristic to correlate to the mechanical properties, specifically the ultimate tensile 

strength.  Both the average pore resistance and average ultimate tensile strength are 

displayed as a function of accelerated ultraviolet exposure for the “thin” S2 Glass® fiber 

composites in Figure 5.10. 

 

Figure 5.10 – Composite pore resistance and ultimate tensile strength as a function of 

accelerated ultraviolet exposure for “thin” S2 Glass® fiber composites 

A large decrease after 2400 hours of accelerated exposure was present in both the 

pore resistance and ultimate tensile strength.  The relative stabilities of both the pore 

resistance and ultimate tensile strength in the intermediate weathering periods also 

demonstrated a positive correlation between the two material properties.  However, the 

initial increase in the ultimate tensile strength of the S2 Glass® fiber was met with a 

decrease in the pore resistance.  The increase in porosity (i.e., lower pore resistance) with 

an increase in ultimate tensile strength has been observed during short ultraviolet exposure 
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durations in literature.[8]  This was counter intuitive as increasing porosity was expected to 

lower the ultimate tensile strength as more defects are present, but the hardening of the 

matrix by various mechanisms outweigh the decrease from pore development.[9] 

 The correlation between the pore resistance and ultimate tensile strength of the S2 

Glass® fiber composites was furthered studied to determine the relationship.  Figure 5.11 

exhibits the trend between the two properties for the data after 600 hours of accelerated 

ultraviolet weathering. 

 

Figure 5.11 – Exponential relation between the ultimate tensile strength and pore 

resistance for the S2 Glass® fiber composites 

The exponential relationship can be expressed in multiple variations which were 

studied for determination of the applicability of the fit.  The two most popular forms, which 

also had high R2 correlation, along with the constants are detailed in Table 5.3. 

Table 5.3 – Exponential fitting summary for the pore resistance and ultimate tensile 

strength relationship 

Equation Y0 A B R2 
(5.1)  y = Y0 + Aebx 471.7 26.6 2.57E-6 0.978 

(5.2)  y = Aebx ---- 479.2 3.78E-7 0.983 
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From the equations, it was concluded that the fitting yielded a strong correlation as 

the correlation value was approaching one.  However, the small sample set is conducive to 

a high correlation regardless of the type of fitting.  The exponential function was applied to 

the data set as the boundary condition of a completely porous composite displayed 

reasonable approximation.  As the pore resistance approaches zero, these two exponential 

functions approach 498 MPa (Equation 5.1) and 479 MPa (Equation 5.2) which are 

reasonable approximations given the extent of degradation which had occurred over the 

selected weathering periods.  After 3000 hours of accelerated ultraviolet exposure, fiber 

was readily apparent on both exposed surfaces which signifies that most matrix removal 

from ultraviolet degradation had occurred in this duration.  Therefore, it is assumed that the 

ultimate tensile strength would not decrease to a significant amount after this exposure 

period further justifying the use of the exponential models and good correlation to 

boundary conditions applied for the model. 

5.6 Conclusions 

 It was concluded that the ultraviolet exposure had an influence on the mechanical 

properties as changes were observed in both the S2 Glass® fiber composites and Kevlar® 

fiber composites.  The peel ply covering the “thin” Kevlar® fiber composites hindered the 

ultraviolet absorption, but a fraction of the intensity was observed to penetrate through the 

protective layer to induce degradation.  Although the “thick” composite samples were 

administered to lengthy accelerated exposure periods, little change was found in the 

interlaminar shear strength.  The ballistic resistance of these composites also displayed 

greater penetrations with increased exposure, but a small sample sizes promotes low 

confidence in these results. 
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Tensile properties of the S2 Glass® fiber composites demonstrated the most change 

from exposure to ultraviolet specifically in the area of ultimate tensile strength.  The tensile 

modulus of these composites demonstrated an initial increase until a decrease was observed 

at the 3000 hour exposure point.  Ultimate tensile strength followed a similar trend with an 

initial increase which then decreased dramatically at 2400 hours of exposure.  These trends 

can be explained by an increase in crosslinking in either the phenolic matrix or changes 

involved with the plasticizer. The increased crosslinking of PVB has been reported in 

literature and can increase the modulus of these composite materials.  Increased 

crosslinking of aromatic matrix materials also have been reported to initially increase the 

modulus and strength of composites.  The strain at break, which occurred approximately at 

the ultimate tensile strength, increased initially and remained relatively unchanged, but 

some slipping was observed in these samples which may have altered the true strain 

observed at failure.  Lastly, the energy at the ultimate tensile strength was observed to 

increase initially and decrease with increasing exposure.  This was attributed to the change 

in the ultimate tensile strength as it decreased while the strain remained unchanged after the 

initial increase. 

Phenolic matrix/Kevlar® fiber composites were inadvertently exposed to the 

accelerated ultraviolet source with an intact peel ply still attached.  This layer acted as a 

screen to the ultraviolet exposure, but the investigation of the weathered peel ply 

demonstrated that an intensity of 0.12 watts/square meter (at 340 nanometer wavelength) 

was being subjected to the sample after long exposure periods.  The most profound result 

was the appearance of a tensile modulus increase at 3000 hours.  This was thought to occur 

from matrix hardening as was observed in the S2 Glass® composites initially.  Other tensile 
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properties exhibited little statistical change from the initial properties as the peel ply 

screened ultraviolet radiation from causing significant photodegradation. 

The ILSS displayed very little change in either composite as this characteristically 

involved fracture from shearing which occurs within the inner most composite plies.  

Ultraviolet penetration into these “thick” composites is not deep enough to drastically 

influence this property.  Also, the depth of ultraviolet penetration was dependent on the 

absorption coefficient of these materials. As the S2 Glass® was transparent in this radiation 

regime, the small changes in ILSS may be attributed to the deeper penetration of ultraviolet 

radiation.  The presence of compressive cracking at the surface, observed in both 

composite systems, can be attributed to the surface hardening which occurs upon 

photodegradation.  The surface also corresponds to the largest compressive and tensile 

stresses in flexural loading which is another reason for cracks initiating at the surface.  In 

the ILSS results, a sample set of three composites was used leading to large deviations 

from the mean and less statistical confidence in the results. 

Ballistic characterization of these composites demonstrated a deeper penetration 

with increased exposure.  By normalizing the penetration depth to the mass of the projectile 

(i.e., the only known constituent of the kinetic energy), a more conclusive investigation 

could be performed on the penetration depth.  The mechanism of failure was also observed 

to be different between the two fiber types as the S2 Glass® fiber composites demonstrated 

an explosive failure while a cleaner penetration surface was observed with the Kevlar® 

fiber composites.  The deeper penetration was not statistically significant as a small sample 

set provided large deviations in the data.  Kevlar® fiber composites demonstrated a deeper 

penetration of the FSP than the S2 Glass® fiber which was expected as the S2 Glass® fiber 
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does not undergo photodegradation from ultraviolet exposure.  The penetration depth is 

largely dependent on the number of fiber plies that comes in contact with the projectile.  As 

the fiber weave made the discerning of the plies penetrations difficult.  Therefore, the S2 

Glass® fiber is not necessarily a better ballistic deterrent fiber as fiber size and fiber loading 

in the composite is a very important aspect.  

The relationship between the ultimate tensile strength and pore resistance obtained 

from circuit modeling demonstrated a strong correlation.  After numerous variations of 

curve fitting, it was determined that an exponential fitting more appropriately correlated to 

the boundary conditions.  As the pore resistance approached a low value (i.e., effectively 

the resistance of the electrolyte) the ultimate tensile strength of the S2 Glass® composites 

approached a value between 479 MPa and 498 MPa.  These values were deemed 

acceptable as the top layer polymeric region was almost completely removed at 3000 hours 

leading to an ultimate tensile strength which would not be drastically influenced until the 

ultraviolet radiation reached the middle most ply. 
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CHAPTER 6.  GENERAL CONCLUSIONS AND FUTURE WORK 
 
6.1 General Conclusions 

 After exposure to accelerated ultraviolet exposure, it was determined that a 

multitude of material characteristics were altered.  Surface characteristics including gloss, 

color, water contact angle, and surface roughness were monitored to determine the 

influence of the ultraviolet exposure on the phenolic matrix composites containing either 

S2 Glass® or Kevlar® fibers.  As expected, gloss and color were visually observed to 

change with exposure time while the contact angle and surface profilometry results 

demonstrated increasing surface roughness, possibly from pore creation.  All these surface 

effects have been widely reported in literature. Electrochemical impedance spectroscopy 

(EIS) was utilized to monitor the bulk impedance of the composites after accelerated 

exposure was administered.  From the EIS data, circuit modeling demonstrated that both 

capacitive and resistive elements were observed in the impedance response.  Modeling 

each element individually allowed further characterization of the bulk degradation 

mechanisms.  Mechanical analysis performed in tension demonstrated the most conclusive 

changes in the ultimate tensile strength for the S2 Glass® fiber composites.  Also, ballistic 

resistance experimentation exhibited an increased penetration with exposure time, but large 

deviations in the data caused a low confidence in this observation. 

 First, the applicability of using EIS for a non-destructive evaluation (NDE) 

technique was investigated.  It was determined that composites immersed in water for a 

brief duration could be measured via EIS.  The EIS spectra demonstrated both a resistive 

(i.e., pore resistance) and capacitive (i.e., composite capacitance) response in the mid to 

high frequencies.  Circuit modeling of the spectra was performed to obtain the magnitude 
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of each circuit modeled element.  For the “thin” S2 Glass® composites, a large decrease in 

the pore resistance was observed from the initial to final exposure periods.  Porosity 

increases with increased ultraviolet exposure which allows easier motion of electrons and 

ions and ,thus, lower impedance.  An initial increase in the capacitive value was also 

observed for these composites before decreasing toward the original value.  Increased 

water uptake should cause the capacitive value to continually increase, but the decrease in 

capacitance was associated with a smaller contact area as fiber became exposed.  The 

“thin” phenolic matrix/Kevlar® fiber composite were subjected to EIS experimentation with 

the peel ply intact.  After experimentation with the peel ply removed, it was determined 

that the peel ply was porous enough that the pore resistance was not influenced.  However, 

the water uptake of this layer did change the magnitude of the capacitance, so the initial 

results observed are not truly representative of the actual composite capacitance.  Both 

“thick” composite systems did not display significant differences in the capacitive elements 

with increasing exposure time.  Water uptake was not large enough to influence the bulk 

dielectric constant and, correspondingly, the capacitance was not influenced.  The pore 

resistance was observed to decrease in both systems with increasing exposure from the 

porosity increasing with increased ultraviolet exposure.   

 Another interesting phenomenon that occurred as measured by EIS experimentation 

was the appearance of a low frequency impedance increase.  The phase angle remained 

resistive while an increase in the impedance suggested an almost capacitive incline at the 

low frequencies.  This phenomenon has not been observed in literature, so further analysis 

was conducted to determine the cause for this phenomenon.  Performing single frequency 

measurements at a low frequency (i.e., 0.1 Hertz) displayed that an evaporation process 
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was occurring in the ambient experimental chamber.  The evaporation influence at the low 

frequencies was not modeled in the circuit modeled results.  By selecting the correct 

frequency range during circuit modeling, the possibility of error in the results from this 

undocumented phenomenon was avoided. 

The EIS results suggested that porosity was occurring from ultraviolet exposure.  

Therefore, traditionally reported surface characteristics were monitored during exposure to 

examine the extent of degradation.  A color change was visually observed after the first 

weathering duration in both the “thick” and “thin” composites.  Color measurements 

displayed that, after the final exposure period, large changes in color were present.  Color 

characteristics are an indication the ultraviolet exposure caused photodegradation reactions 

within the material.  The degradation reactions created new functional groups or alter the 

existing functional groups to change the absorption of visible light and, thus, change the 

color of the sample.  Most specifically in the literature, a yellowing occurs in clear and 

white polymers.  In the case with the phenolic matrix composites, the yellowness decreased 

during exposure.  However, the emergence of fiber verified that significant degradation 

was occurring, causing the removal of the top polymeric layer.  This claim was further 

reinforced as the gloss values for the 60° and 85° angles increased during exposure which 

is attributed to fiber bridging.  Fiber bridging was not easily observed by surface 

profilometry, but the increases in surface roughness before fiber emergence (i.e., before 

1200 hours of exposure) signified that a roughening was occurring.  The roughening effect 

was also observed within the water contact angle as the water contact angle was observed 

to decrease with exposure time.  However, the water contact angle is not only dependent of 

surface roughness as it also depends on the chemical composition at the surface.  An intact 
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peel ply attached to the “thin” Kevlar® fiber composites hindered absorption of the 

ultraviolet radiation.  Therefore, color and gloss results of the Kevlar fiber composites were 

not reported for the “thin” samples as the peel ply color and gloss were not of concern in 

this study. 

 The increase in porosity, suggested by EIS and surface characterization, was further 

studied with destructive mechanical measurements in tensile and flexural configuration.  It 

was determined that the “thin” S2 Glass®  fiber composites demonstrated a significant 

decrease in the ultimate tensile strength while the modulus demonstrated an increase with 

exposure time before decreasing at long exposure times.  The hardening of the matrix via 

increased crosslinking of the matrix or plasticizer is commonly observed in literature.  At 

long exposure times, the porosity greater influences both the modulus and ultimate tensile 

strength as the pores act as locations for easier crack propagation.  A slipping of the tabs 

attached for experimentation was noted which may have resulted in misleading strain at 

break information, but the energy at the ultimate tensile strength was observed to increase 

initially before decreasing.  The “thin” Kevlar® fiber composites displayed little mechanical 

change as the peel ply prevented any significant ultraviolet degradation.  All properties 

observed remained unmodified from the original value, but a small increase in the modulus 

was observed at 3000 hours of exposure which was thought to be caused by matrix 

hardening.   

Flexural properties were different for the two composite systems which was 

attributed to both the possible difference in matrix composition as well as fiber absorption 

properties.  The S2 Glass® fiber composites displayed a slight increase in the interlaminar 

shear strength (ILSS) but little statistical confidence was associated with this observation.  
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Kevlar® fiber composites demonstrated that the ILSS remained unchanged except for a 

slight increase at 6000 hours which, again, was not statistically different.  The relatively 

unchanged vales for both ILSS vales were due to the location of the interlaminar shearing.  

As ultraviolet radiation only penetrates a small distance into the composites, the 

interlaminar properties would not be greatly influenced as the location of failure was within 

the middle of the structure.  The “thick”, or one inch, cross-sections were too thick for 

monitoring a substantial ILSS change.  However, the modes of failure in the ILSS 

measurements were different for the two composite systems.  The S2 Glass® fiber 

composites demonstrated interlaminar shearing failure.  Kevlar® fiber composites displayed 

surface compression cracking and inelastic deformation, but the edge view of the post-

manufactured composites displayed some instances of interlaminar shearing.  The 

compressive cracking occurred at the surface which was also becoming harder with 

increased ultraviolet exposure.  A combination of surface hardening and the location of the 

largest compressive stresses at the surface lead to surface compression cracking.  

 Ballistic experimentation determined that the normalized penetration depth 

exhibited an increasing trend with increased exposure.  By normalizing the penetration 

depth with the mass of the projectile, which was the only known constituent involved in the 

impact energy, a better understanding of the material’s ballistic resistance could be 

determined.  The Kevlar® fiber composites displayed deeper penetration of the fragment 

simulating projectile (FSP) than the S2 Glass® fiber composites.  These depths of 

penetration were more dependent on the composition and number of fiber plies which 

could not be accurately counted due to complex orientation of the fiber plies.  Also, the 

increased penetration depth has a low confidence as the sample set of two replicates was 
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not conducive in this type of experimentation.  The mode of failure was also different for 

the two composites.  The S2 Glass® fiber composites displayed explosive failure in the 

impact zone as S2 Glass® fiber was broken in a buckling manner to expose fiber ends.  The 

Kevlar® fiber composites demonstrated a much cleaner penetration surface, but the 

occurrence of plugging was observed frequently.  A plug of composite is developed at the 

surface and is pushed into the impact zone via the FSP. 

6.2 Future Work 

 One of the major drawbacks of the completed research occurred due to the peel ply 

attachment on the “thin” Kevlar® fiber composites utilized for tensile experimentation.  The 

Kevlar® fiber composition, being aromatic, was ideal to determine the influence of 

accelerated exposure where the two composite constituents would degrade.  A repeated 

ultraviolet exposure should be conducted with the peel ply removed to determine the 

correlation between the pore resistance and ultimate tensile strength for this composite 

system.   

 Longer exposure periods would be preferred as well to determine if the tensile 

modulus and ultimate tensile strength would continue to decrease.  Also, different exposure 

durations could be utilized to determine the applicability of the exponential model for 

prediction of the ultimate tensile strength as a function of the pore resistance.  A larger 

sample set would also be more conducive for minimizing the standard deviation and thus 

increasing the confidence in trends observed. 

 Although the “thick” composite samples were a better reflection of the geometries 

utilized in ballistic resistant applications, the cross section was not conducive to flexural 

properties of composites weathered with ultraviolet exposure.  Noticeable EIS and surface 
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characteristics were observed during exposure, but upon investigation of the flexural 

properties, little change was observed in the Kevlar® fiber composites.  The ILSS results 

may exhibit more change if smaller cross-sections were utilized.  Thinner composite 

thicknesses would be more conducive to exhibiting mechanical property differences as 

ultraviolet penetration is of the order of 20 microns. 

 Ballistic experimentation performed in this work was not the ideal for determining 

the ballistic limit as the sample geometry was not correct.  Future work in this area would 

benefit from larger panel dimensions with thinner cross sections.  This would require more 

EIS experimentation as the influence of ultraviolet radiation is dependent on the 

penetration depth.  The ballistic limit would then be another quantitative result which could 

be correlated with the pore resistance and perhaps even the capacitive values which may 

display information regarding the interfacial properties. 

 In terms of EIS experimentation, a study of the electrode size would be interesting 

as a large area is preferred.  Electrons travel via the least impeded path which would 

coincide with pores formed during weathering.  At this point, it is assumed that the 

impedance measured over a large area would be at the deepest pore where mechanical 

failure would be likely to occur.  If the EIS technique would be utilized for NDE of non-

conducting composites, a large surface area electrode would be ideal for fewer 

measurements which would further reduce the cost of an already inexpensive method.  A 

study determining the largest usable electrode size while maintaining correct sensitivity 

would be very beneficial.  Adversely, the use of local EIS (LEIS) could also be useful in 

determining the precise area where the high porosity, or low impedance, is occurring 

within the composite specimen. 
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 A simultaneous single frequency EIS and ultrasonic NDE technique would be a 

novel study correlating data from EIS and a widely accepted ultrasonic technique.  Both 

these techniques could be carried out in a water medium with some type of external stimuli 

to induce pores and delaminations.  Ultrasonic techniques do not use an electronic signal 

for conducting measurements which would not provide errors in the EIS measurements.  

The difficultly in the measurement would be the interference of metallic electrodes with the 

ultrasonic waves.  To avoid the possible interference, different configurations of ultrasonic 

transducers and receivers could be utilized for measurements as opposed to the most 

traditional transmission methods to avoid the interference.   
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