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ABSTRACT  

This thesis studies the navigational control problem for an independently steered 

and driven four-wheeled ground robotic vehicle, a subset of the larger problem of 

controlling self-reconfigurable robotic vehicles. A reconfigurable vehicle is kinematically 

modeled and simplified using a fixed suspension. A combined steering and speed control 

scheme is proposed that coordinates steering angles by remembering the path of the front 

axle, given by navigational sensors.  

Simulation and experimental results are provided to validate the proposed 

algorithms.  One simulation demonstrates the performance of the controller, while the 

second compares the maneuverability of the proposed steering algorithm with existing 

methods. The first experiment compares the performance of the proposed algorithm with 

existing algorithms on a variety of preprogrammed paths, and the second compares the 

performance by reactively constructing the path in real time using sensors. Results show 

the proposed algorithm outperformed others consistently by rates up to 40%, depending 

on path geometry.   
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1. INTRODUCTION  

 THE GO AL O F THE RES EAR CH  1.1.

The overall goal of this research is to find answers to the problem of controlling  

four wheeled independent drive, reconfigurable, articulated robotic vehicles with prismatic 

wheel support, because of their suitability for applications in terrains that are difficult to 

traverse by normal vehicles and humans. The effort of this thesis takes a step in that 

direction by developing a simple approach for addressing the complexity of the kinematic 

constraints for fixed suspension four wheeled vehicles in which all wheels are driven and 

steered (AWD/AWS). Although the proposed approach was tested on the target fixed 

suspension four wheeled AWD/AWS, it is hoped that by extension this method can be 

applied to the more general AWD/AWS reconfigurable robots with prismatic wheel 

supports. 

Since typical reconfigurable robotic vehicles targeted by this research will have 

AWD/AWS capabilities, this chapter recalls how the technology of typical wheeled ground 

vehicles has evolved. The next section provides an overview of key developments in power 

train and vehicle steering technology over the years, along with their advantages and 

disadvantages. 

 H ISTORI CAL DEV ELOP MENT S  IN  POW ER ED GROUN D VEHI CLES  1.2.

 Most of the powered ground vehicles throughout human history have been 

automobiles; they have significantly shaped our society, leading expeditions on the moon 

(1971) [1], forming motorsports such as NASCAR (1948) [2], and currently, a driving 
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economic force related to finite petroleum commodities [3]. The first commercially 

available gasoline powered automobile, which took the form of a tricycle, was produced by 

Karl Benz in 1885 [4]. In an effort to form a more stable platform, similar to horse-drawn 

carriages, in 1886, Gottlieb Daimler produced a four wheeled gasoline powered vehicle 

with a coupled front wheel steering system accompanied with other innovative 

advancements including a hot tube ignition system [5]. Modern cars still take this historical 

form of a front-wheel-steered, four wheeled vehicle, but they have undergone 

transformations in the form of power distribution and steering configurations.  

1.2.1.  THE EVO LUTION  O F ST EERIN G TECHNO LO GI ES   

As automobiles improved, an entirely new field of study based on vehicle dynamics 

was borne; the initial focus was the kinematics of vehicle suspensions. Many factors were 

observed to play into vehicle handling including camber control, castor alignment, steer 

angle coordination, and weight transfer. New elements such as the double wishbone 

linkage, MacPherson struts, and independent suspensions were created to manage these 

parameters. Effort was also placed in the development of four-bar linkages that can closely 

exhibit Ackermann steering angles [6]. Further evolution of the automobile brought 

commercially available all-wheel-steer (AWS) technology to vehicles in the 1980’s [7]. 

Early skidpad and slalom tests on AWS vehicles showed that this technology increased 

lateral acceleration of the vehicle, which made them more maneuverable with decreased 

turning radius at low speeds, when turning front and rear wheels in the opposite direction 

[8] [9]. Furthermore, at high speeds, AWS vehicles have been shown to have decreased 
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phase lag and increased stability when steering front and rear wheels in the same direction 

[7] [10]. This property is advantageous during high speed lane change maneuvers. 

1.2.2.  THE EVO LUTION  O F PO WER TRAIN  CON FI GUR ATION S  

In addition to developments in steering technologies, there were also new 

developments in power train technology which resulted in various power train 

configurations. From the early vehicles where rear-wheel-drive (RWD) power trains  

dominated, commercial automobiles have evolved in various power train configurations  

such as the four-wheel-drive systems (4WD) that appeared for the first time in the Spyker-

60 vehicles in 1903 [11], and  the  front-wheel-drive (FWD)  configuration that appeared 

for the first time in the Cord L-29  vehicles in 1929 [12]. Each power train configuration 

offers its own advantages and disadvantages.  

FWD cars are more stable for an average driver, exhibiting predictable understeer, 

where the minimum cornering radius increases with increased speed. They also have 

minimal space requirements, but require mechanically complex transmission components 

and may exhibit torque steer; the tractive forces at the wheels cause a torque that counters 

the driver steering effort in an attempt to straighten the wheels.  

RWD vehicles allow a balance of power and control that many advanced drivers 

prefer, however, they can exhibit oversteer, whereby the tractive forces at the back wheels 

cause a greater sideslip than the front wheels. When this condition happens, the vehicle 

becomes unstable, displaying unwanted characteristics such as drifting, ‘fish-tailing’, or a 

spinout. RWD cars dominated the market until the 1970’s when FWD became economical 

and practical.  
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4WD systems thrive in low friction environments such as snow and mud where 

traction is at a minimum. The redundant drive system is quite robust in accelerating 

vehicles because it can provide power to any or all wheels to the point of traction failure. 

However, the mechanical coupling between the front and rear axles at the locking transfer 

case requires the front and rear differentials to spin at matching speeds. This indirectly 

implies that the average speed of the front wheels must be the same as the average speed 

of the rear wheels. On dry pavement, the speed match requirement can lead to increased 

driveline and tire wear because the front wheels take a longer path than the rear wheels, 

illustrated in Figure 1.1, which leads to unstable cornering dynamics such as ‘wheel 

hopping’ or tire skidding [13]. 

 

FIGURE 1.1 - THE FRONT AND REAR WHEEL PATHS OF A TYPICAL PASSENGER VEHICLE [14] 

Until recently, 4WD vehicles have been most common as a selectable setting for low 

traction environments. Now, many systems use integrated Anti-lock Braking System wheel 

speed sensors to detect low traction environments. The system will then automatically 
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engage the 4WD system; once in 4WD, the cornering instabilities will continue, although it 

is expected that the system will disengage when traction is regained. This can be 

particularly troublesome when terrain is rapidly changing such as turning from an icy 

parking lot to a dry road. To overcome these issues, recently developed all-wheel-drive 

systems, AWD, which are conceptually different than 4WD, are described in the next 

section. 

 EMER GEN CE AN D FEAT UR ES O F ALL WHEEL STEER AN D ALL WHEEL DRIV E 1.3.

VEHI C LES  

Requirements for better performance and stability, seem to be leading the 

automotive industry to seek unconventional approaches in the form of power distribution 

and maneuvering by eventually combining AWD and AWS features on a single vehicle [15]. 

While automotive designers knew that 4WD could maximize the power exerted at the 

wheels, at times, using AWS, it was difficult to satisfy Descartes’ principle of rigid body 

motion  about the Instantaneous Center of Rotation, ICR [16], [17], which is  illustrated in 

Figure 1.2. 
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FIGURE 1.2 - AN ILLUSTRATION DEMONSTRATING THE REQUIREMENTS OF THE ICR [18] 

The condition requires the steering angles to be coordinated such that the normals 

of all wheels intersect at a single point, the ICR. In FWS vehicles, the ICR lies on the 

projection of the rear rigid axle, which is easily satisfied; this property has been widely 

known for many years, first described by Darwin (1758), later by Lankenspurger (1810) 

and finally patented by Ackermann (1818) [19]. However, this condition is rarely met, 

since the coupled steering linkages, while closely approximate, never maintain true 

Ackermann angles [6].  As such, sideslip is commonly induced on the tire, diminishing the 

total tractive ability of the tire; this makes it desirable to mechanically unlink the steered 

tires.  

Since the ICR principle also governs the speeds of various points on the body such 

that the tangential speed at each wheel,   , is proportional to its radial distances,   , from 

the ICR, 
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    (
  
  

)    (1.1) 

where    is the radial distance from the center of mass to the ICR, and    is the vehicle 

speed at its center of mass. Therefore, when cornering, there is always some speed 

difference between the inside wheels and outside wheels, which can cause excessive tire 

wear.  Although early vehicles had wheels that were locked together in a live axle, this 

approach was soon discarded by introducing differential gearboxes between the wheel 

axles to account for wheel speed differences during cornering maneuvers. The typical 

structure of these differential gearboxes is illustrated in Figure 1.3; it allows tires on the 

same axle to spin at different speeds when powered by a single source, through the use of a 

planetary gear set. 

 

FIGURE 1.3 – AN OPEN DIFFERENTIAL WHICH ALLOWS LEFT AND RIGHT AXLES TO ROTATE AT 

DIFFERENT SPEEDS [20] 

 While this simple mechanism handles the majority of vehicle  driving demands, it 

fails when one of the wheels loses traction, because the reaction to the other wheel also 

disappears. Thus, the tire with no traction will simply spin, while the opposing wheel 

comes to a standstill.   
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4WD power train technology was meant to address the problem of traction loss by 

one wheel.  Vehicles of this sort have wheels on each axle connected to each other via a 

differential, and the axles are coupled to each other by a locking transfer case. However, 

this arrangement also requires that the front and rear differentials spin at the same speed 

which complicates the ICR condition on cornering events because the rear wheels take a 

shorter path than the front wheels, previously illustrated in Figure 1.1. Moreover, the 

properties of the open differential imply that in the worst case scenario for a 4WD vehicle, 

if one of the front wheels and one of the back wheels lose traction simultaneously, the 

vehicle will be immobilized, even though two tires still have tractive ability as 

demonstrated in Figure 1.4. The pitfalls of 4WD vehicles such as instable cornering, 

increased driveline wear and the inability to power all four wheels under various 

environments led to the development of all-wheel-drive, AWD, vehicles. 

 

FIGURE 1.4 – EXAMPLE SCENARIO WHERE 4WD SYSTEMS CAN BE IMMOBILIZED EVEN WITH 

TRACTION AT TWO WHEELS [21] 

In AWD vehicles, power is optimized about all four wheels, by using limited slip 

differentials such as TorSen (Torque Sensing) and Haldex technologies that allow power to 

be automatically diverted on the fly to any wheels with traction. They may use viscous 
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couplings, pneumatic, mechanical or electronic engagement of clutch packs identified in 

Figure 1.5, below.  

 

FIGURE 1.5 – A LIMITED SLIP DIFFERENTIAL THAT USES AN ELECTRONICALLY ACTIVATED 

CLUTCH PACK (YELLOW, LEFT) [22] 

These approaches minimize the deviation of handling characteristics in cornering 

events as well as inhibit excessive drive train wear because they decouple the tires in high 

traction environments such as dry pavement [23]. However, when the vehicle senses that 

one wheel has lost traction, the differential is engaged and both wheels will spin at the 

same speed. This allows all of the locomotive torque to be used at the wheel with traction, 

until the other wheel has recovered as can be seen in Figure 1.6. While this discussion has 

focused on the left/right traction, the same principle can be applied front/rear, by using a 

total of three limited slip differentials. Some driving enthusiasts tune the torque 

distribution to induce combinations of FWD and RWD handling characteristics. These 

advanced differentials, allow the vehicle to maintain traction in nearly any environment, 

minimizing drive train and tire wear, ‘tune’ performance characteristics, and eliminate 

undesirable cornering behavior. 
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FIGURE 1.6 – EXAMPLE SCENARIO WHERE AWD SYSTEMS DIVERT POWER FROM WHEELS WITH 

NO TRACTION TO  WHEELS WITH TRACTION [21] 

Steer and acceleration by wire systems are becoming ever more prevalent in the 

automobile industry. The future of these vehicles is expected to involve the natural 

symbiosis of electric or gas/electric hybrid vehicles where it becomes viable to steer, brake, 

and power each wheel with genuine independence through the use of more economically 

feasible individual electric wheel motors [24].  

 WHEELED GRO UN D RO BOTI C VEHI CLES  1.4.

As improvements in automobile technologies grew, so too did the interest in 

autonomous ground robotic vehicles. The first wheeled ground robotic vehicle is generally 

accepted to be that of Dr. William Grey Walter, known as the Machina Speculatrix (a.k.a. 

Elmer and Elsie), developed in 1948 [25]. Wheeled ground robotic vehicles have a 

reasonably extensive history with robot platforms such as the JPL Rover [26] and Hilare 

[27] developed in the 1970’s, the Kludge [28], Terragator [29] and Neptune [30] in the 

1980’s, the Mars Sojourner [31] in the 1990’s and the Shrimp [32] in the 2000’s, to name a 

few.  



 

 
11 

The small scale of ground robotic vehicles allows investigators to tinker with 

innovative wheel and steering configurations that would not be suitable or practical in the 

automobile industry. From each of these configurations, new modeling and control 

methods also have to be developed. Today, wheeled ground robot vehicles can be grouped 

into two classes: fixed morphology robots and self-reconfigurable robots. Fixed 

morphology robotic vehicles are characterized by a fixed center of mass, while self-

reconfigurable robots can change the positions of their center of mass. Much of the past 

work on robotic vehicles focused on fixed morphology robots because of their resemblance 

to common automobiles; developments on self-reconfigurable robots have been very slow, 

and these vehicles are still at a stage of infancy. 

1.4.1.  CLASSI FI CATION  O F F IX ED-MO RP HOLOGY RO BOTIC VEHI CLES  

 Campion et al. devised a system for classifying robots upon which kinematic models 

could be derived and studied [33]. The five classes denote the degree of mobility and 

steerability,        , of the robot derived from the wheel types and their configurations. 

While the following authors assume a 2-D environment, the future of robots will involve 

modeling and locomotion in 3-D space [32]. 

Because wheels are the main trait by which robots are classified, it is important to 

understand their abilities. Multiple authors [16] [33] [34] have devised classes of wheels 

which can be summarized into four groups: fixed, steered, self-aligning, and 

omnidirectional. Each of these can then be ranked by their mobility (i.e. whether they are 

driven or free). For discussion’s sake, each wheel is treated as an ideally rigid torus with 
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only one point of contact, allowing the wheel to be rotated about the point of contact with 

zero skid, an unlikely assumption in practical applications. 

Fixed wheels have only the ability to roll about an axle, and prevent the vehicle from 

moving laterally with respect to the tire, allowing only longitudinal motion. Steered wheels 

are those where the rotation about the toe axis of a wheel is controlled in addition to 

rolling ability. Self-aligning wheels, often called castor wheels, are similar to steered wheels 

in their ability to rotate, but it is not in a controllable manner. The rotation is governed by a 

self-aligning torque generated because the axis of rotation does not pass through the point 

of contact. Their purpose is to add stability to the platform as their orientation is not 

controlled and generally not driven. Omnidirectional wheels can take on various forms but 

are physically equivalent to a steered wheel. They offer the same three degrees of freedom 

including any translation in the    plane as well as rotation about the point of contact. Two 

common forms of the omni-wheel are the ball wheel and the Mecanum [35], or Swedish 

[33] wheel. An example of a ball wheel is the wheel in a computer mouse (although this is 

not actuated) or the ball employed on the Ballbot robot at Carnegie-Mellon [36]. These 

balls are in contact with two non-parallel actuated rollers that rotate the ball about any axis 

in the    plane. The Mecanum wheel consists of a disk of rollers that are oriented off axis 

and has the ability to move in both the lateral and longitudinal direction as the wheel 

rotates, shown in Figure 1.7. 
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FIGURE 1.7 – A MECANUM WHEEL [37] 

In 2-D planar space, rigid body vehicles have three possible degrees of freedom 

including longitudinal translation, lateral translation, and body orientation. Based on these 

three possible degrees of freedom, a number of wheel configurations can control one, two, 

or even all three modes of travel. These configurations can be classified based on the 

number of controllable degrees of freedom they provide the vehicle. 

Wheeled robots offering only one controllable degree of freedom offer little 

maneuverability and have not been studied extensively as they must often be constrained 

through other means such as rail or wire. One example of a robot like this is the retrieval 

cart for many mini-load Automatic Storage and Retrieval Systems (AS/RS), which rides on 

a rail to locate the retrieval mechanism in front of the appropriate column of product.  

Robotic vehicles offering two degrees of freedom were the typical launching point 

for today’s research and still appear in significant numbers as they are easily constructed 

and controlled while offering considerable maneuverability. Robots that make up this 

category can be further divided into three categories: differentially driven, car-like robots, 

and    vehicles. 
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Differentially driven vehicles have two wheels parallel to each other who share a 

common axle projection. The wheels are powered at different speeds and directions. The 

speed differential causes the robot to change orientation, while the average speed of the 

wheels controls the robots longitudinal velocity. Table 1.1 shows a summary of example 

vehicles that are differentially driven. The Segway personal transporter has only two 

wheels, creating an unstable platform. It drives the two wheels differentially to balance the 

robot as well as propel it. The Nomad Scout is driven by similar means but uses a third 

castor wheel to create a stable platform. The iRobot ATRV Jr. uses four wheels; the left 

wheels are coupled to each other and the right wheels are coupled to each other. These 

‘skid steer’ vehicles are mechanically robust and easy to control but do not adhere to the 

previous requirement of the ICR; there must be some allowance for wheel skid causing 

excessive tire wear or ground disturbance. 

TABLE 1.1 - DIFFERENTIALLY DRIVEN ROBOTS 

Number 
of Wheels 

Picture Diagram Example 

2 

 
 

Segway Personal 
Transporter [38] 

3 

 
 

Nomad Scout [39] 

4 

 
 

iRobot ATRV Jr. [40] 
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Car-like robots are so named because of their likeness to passenger vehicles; 

examples of these robots are shown in Table 1.2. They have one or a set of steered wheels 

and one or a set of fixed wheels. Either the fixed wheels or steered wheels may be driven as 

might be found in a front wheel drive or rear wheel drive vehicle. If there are multiple 

steered wheels, they are often mechanically coupled through a linkage to maintain 

appropriate Ackermann steering geometry. Robots of this type are very abundant and 

developments on these platforms are more easily adopted by the automotive industry 

because of the hardware similarities. 

TABLE 1.2 - CAR-LIKE ROBOTS 

Number 
of 

Wheels 
Picture Diagram Example 

3 

 
 

NEPTUNE [41] 

4 

  

Stanley [42] 

 

The final group of robots with two degrees of freedom capability is the    Robots. 

They differ from the other subgroups because they control their    motion but have no 

control over their orientation. The Ballbot is an    robot developed at Carnegie Mellon 

University that balances on one omnidirectional wheel which is actuated by two non-

parallel driven rollers [36]. Other robots exist, such as the Denning MRV-2, with multiple 
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wheels whose steering mechanisms are coupled through means such as a belt or chain. One 

motor controls the steering orientation for all wheels while another motor drives all 

wheels at the same speed; this mechanism is called ‘Synchro-drive’.  

Robotic vehicles offering three degrees of freedom were the next evolution in 

robotic ground vehicles. They make use of multiple actuators to control all three degrees of 

freedom offered by planar space. The increased controllable degrees of freedom allow 

greater maneuverability; the robot can orient and position itself through obstacles and 

spaces that might be otherwise impossible for a similar robot. These robots can be further 

divided into two categories: AWS and omnidirectional. 

TABLE 1.3 – XY  ROBOTS 

Number 
of Wheels 

Picture Diagram Example 

1 

 
 

Ballbot [36] 

3 

  

Denning MRV-2 [43] 

 

AWS robots are the most direct solution to enable the third degree of freedom and 

can be distinguished because all of the driven wheels are also steered. They offer the same 

two degrees of freedom as car-like robots with the addition of lateral translation. The 

wheel steering angle may be mechanically coupled, as in many AWS passenger vehicles, or 
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independently steered. In the latter case, consistence with the Instantaneous Center of 

Rotation concept must be maintained to ensure there is no wheel slippage. The HERMES-III 

robot at Oak Ridge National Labs has two independently steered and driven wheels to 

adjust its orientation as well as position. The BIBOT-1 platform at North Dakota State 

University has four independently steered and independently driven in wheel motors. 

TABLE 1.4 - ALL-WHEEL-STEER ROBOTS 

Number of 
Wheels 

Picture Diagram Example 

4 

 
 

BIBOT-I 

6 

 

 

HERMES-III [44] 

 

The final group of robots is the omnidirectional robots. They make use of the 

Mecanum or Swedish wheels and the motions of the robot depend on the coordination of 

the wheels. It can be argued that the steering response time of an omnidirectional vehicle is 

faster than that of an all-wheel-steered vehicle because the wheels do not have to be 

reoriented to change the velocity vector. The kinematics of omnidirectional wheels are 

more complex than those of traditionally steered vehicles because the degrees of freedom 

are cross-linked among all wheels. One example, the Rovio robot, uses three 

omnidirectional wheels with rollers that are perpendicular to the primary axis of rotation. 
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The URANUS robot, developed at Carnegie Mellon University, uses wheels with rollers that 

are misaligned 45° to the primary axis of rotation. The velocity vector generated at each 

wheel depends on the speed and direction of all other wheels. Although omnidirectional 

robots have been identified that allow control over all three degrees of motion in a planar 

environment, this class requires that all four wheels have traction in all directions to be 

able to control all three degrees of freedom; the actuators are critically interlinked and can 

prove to be unreliable or immobilized in rugged terrain where traction may be varying. 

Thus, for these applications, focus should be applied to the AWS robot class. 

TABLE 1.5 - OMNIDIRECTIONAL ROBOTS 

Number 
of Wheels 

Picture Diagram Example 

3 

  

Rovio [45] 

4 

  

URANUS [46] 

 

1.4.2.  SELF-RECON FI GUR ABLE RO BOT S  

Each of the fixed morphology robot configurations presented in the previous 

subsection is suitable for particular terrains. As such, there does not exist one ultimate 

robot for all environments. Often, the construction of these robots sacrifice 

maneuverability for reduced complexity and control hardware. In other cases, designers 

find the additional degree of freedom necessary for the robot to navigate its native 
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environment. In an effort to develop highly maneuverable and rugged robots that can 

traverse all types of possible terrains, robotics research effort is now trending towards self-

reconfigurable robots [47] [48] [49]. The popular effort has been focusing on articulated 

robots which use revolute articulated suspensions like the Mars Rover Curiosity [50], the 

Big Dog [51] and the Shrimp [52], shown in Figure 1.8.  

 

FIGURE 1.8 – SEVERAL ARTICULATING SELF-RECONFIGURABLE ROBOTS [53] [51]  [54] 

Unfortunately, articulated reconfigurable robots with prismatic articulated 

suspensions have not been studied equally as well, and no justifiable reason has ever been 

published against such robots. This research is part of a long term effort to study prismatic 

self-reconfigurable robots such as the BIBOT-2 shown in Figure 1.9. It is hoped that 

prismatically articulated reconfigurable robots will display better maneuvering 

performance on highly irregular and non-flat terrains.  The future of these robots will 

include non-planar environments in which the wheels or other articulators must be able to 

traverse obstacles and other difficult terrain. 
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FIGURE 1.9 – THE BIBOT-2 SELF-RECONFIGURABLE ROBOT EXTENDED (LEFT) AND 

RETRACTED (RIGHT) 

 STAT EMENT  O F T HE RESEAR CH PROBLEM  1.5.

This thesis is one of the steps in the major research program on controlling the 

motion of reconfigurable robotic vehicles equipped with prismatic wheel supports. It 

addresses the problem of satisfying the kinematic rigid body constraint for optimally 

controlling the path-tracking performance of AWS/AWD robotic vehicles. The research 

intends to develop a simple way of incorporating kinematic constraints in the control 

algorithm; as such, it has four objectives as follows: 

1. To develop a comprehensive method of defining the kinematic rigid body 

constraints for wheeled ground vehicles using path geometry information. 

2. To develop a way of incorporating the rigid kinematic constraints in the control 

algorithm for autonomous ground robotic vehicles. 

3. To verify that the methods defined in the first two objectives above can be 

applied for optimally controlling the AWS/AWD vehicle. 

4. To document the results. 
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The thesis is divided into seven chapters. The next chapter presents a dynamic 

model for the intended reconfigurable robotic vehicle along with its governing kinematic 

constraints; the chapter closes by reducing this model and its constraints to an AWS/AWD 

robotic model. Chapter 3 presents an approach that was developed to define the kinematic 

constraints using path geometry and incorporating these constraints in the robot control 

algorithm; the chapter closes by presenting a simple control algorithm that constrains the 

robot to track its path using the path geometrical data. Verification of the applicability of 

the developed kinematic constraint equations along with the proposed controller is 

discussed in Chapters 4 through 6. Numerical simulation results are discussed in Chapter 4 

while experimental results that were obtained using an in-house AWS/AWD robotic vehicle 

are discussed in Chapters 5 and 6. Concluding remarks and recommendations for extension 

of the proposed algorithm to the general articulated AWS/AWD robot with prismatic wheel 

supports are outlined in Chapter 7. 
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2. DYNAMIC MODELING OF WHEELED ROBOTS  

The most comprehensive study for kinematic models of wheeled ground vehicles 

was constructed by Patrick Muir and Charles Neuman [34].  Models for all classes of robotic 

vehicle discussed in the previous section are based on this Muir-Neuman study. This 

project also used the Muir-Neuman approach to develop a kinematic model applicable to a 

four wheeled AWD/AWS robotic vehicle with a prismatically articulated wheel 

configuration. This model was later reduced to be applicable to a fixed morphology 

AWD/AWS vehicle for the purpose of developing and validating the vehicle control 

algorithm. This chapter presents the development of such a model using standard methods 

of analytical dynamics [16] [55] [56] [57] [58]. Section 2.1 presents both the necessary 

kinematic constraints and the dynamic model for a four wheel reconfigurable articulated 

robot. The model developed in Section 2.1 is then reduced to be applicable to a four 

wheeled AWS/AWD fixed suspension robot. 

 MODELING OF A FOUR WHEELED RECONFIGURABLE ROBOT WITH A PRISMATICALLY 2.1.

ARTICULATED SUSPENSION 

2.1.1.  K INEMATI C CO NS TR AIN TS  

The model developed in this section considers a general case of robotic motion in 3-

D environments involving paths,  ⃑       , defined in the 3-D inertial frame    . As a 

generic platform, the vehicle under study is assumed to have four wheels, not necessarily 

arranged symmetrically, each free to assume any coordinate position relative to the 

vehicle’s center of mass,  ; Figure 2.1 shows the framework for this development. The 
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motion of the vehicle is defined by the path,    ⃑⃑⃑⃑ ⃑⃑⃑  tracked by its center of mass  , as well as 

the velocity,   
⃑⃑⃑⃑⃑, and acceleration,   ⃑⃑ ⃑⃑⃑, of this center of mass where 

 
   ⃑⃑⃑⃑ ⃑⃑⃑  (

  

  
  

)       
⃑⃑ ⃑⃑ ⃑⃑ ⃑  (

   

   

   

)       ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  (

   

   

   

). (2.1) 

 

 

FIGURE 2.1 - THE CONFIGURATION THE COORDINATE SYSTEM FOR A ROBOTIC VEHICLE 

The wheels support the vehicle body through actuated prismatic joints; hence, the 

position of each wheel relative to the vehicle’s center of mass can be changed 

independently. It is assumed that frame     is attached to the vehicle’s center of mass,  , 

where the  -axis is in the direction of the vehicle heading. The Euler angles of the moving 

frame     with respect to the global frame    , are   ,   , and   ; therefore, the relative 

position            of any part of the vehicle can be expressed in the     frame by using a 

linear coordinate transformation,   , such that [55] [56] [57] 
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(
  

  

  
)     ⃑⃑⃑⃑ ⃑⃑⃑    (

  

  

  

). (2.2) 

Assuming sequential       rotations, the matrix    is defined as 

   [

 (  )           (  )                                 (  )     

 (  )                      (  )           (  )                

  (  )       (  )       (  )

], (2.3) 

where      corresponds to         and      corresponds to        . Elementary mechanics 

show that the respective velocity vector,   ̇
⃑⃑⃑ ⃑, and acceleration vector,   ̇⃑⃑⃑⃑ , of any point,     ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ , on 

the vehicle as seen from the origin of the     inertial frame are  

   ̇
⃑⃑⃑ ⃑    

⃑⃑⃑⃑⃑   ⃑⃑⃑      ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑        ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑̇    (2.4) 

   ̇⃑⃑⃑⃑    ⃑⃑ ⃑⃑ ⃑   ⃑⃑⃑  ( ⃑⃑⃑      ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ )   ̇⃑⃑⃑      ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑    ⃑⃑⃑      ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑̇        ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑̈    (2.5) 

where  ⃑⃑⃑ is the rotational velocity vector of the frame     in frame     defined as 

 

 ⃑⃑⃑  (

  ̇

  ̇

  ̇

)    (2.6) 

 Since the motion of the vehicle depends on its wheels, then each wheel,  , must move 

at velocity,   ̇
⃑⃑⃑ ⃑, and acceleration,   ̇⃑⃑⃑⃑ , as in equations (2.4) and  (2.5) for the vehicle to track  a 

particular path,    ⃑⃑⃑⃑ ⃑⃑⃑, at the prescribed velocity,   
⃑⃑⃑⃑⃑, and acceleration,   ⃑⃑ ⃑⃑⃑, without slippage.  

Most often, robot navigation control problems are concerned with satisfying velocity 

requirements only, however as a rigid body, the vehicle must also satisfy the instantaneous 

center of rotation while in motion; i.e. there must always be a single and unique point in 

space,  , such that 
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   ̇
⃑⃑⃑    ⃑⃑       ̇⃑⃑ ⃑⃑  ⃑ , (2.7) 

for all wheels, where     ̇⃑⃑ ⃑⃑ ⃑⃑  is the relative position vector of wheel   from the instantaneous 

center of rotation,  .  The locus of this point is also known to be the centrode of the motion. 

This is the one constraint that all robotic vehicle control algorithms must satisfy; its 

complexity increases with the number of controllable parameters of the wheel. Certain 

wheel configurations such as pivoting axles, as in a child’s toy wagon or the vehicle in 

Figure 3.2, satisfy this constraint easily, however, the varying arrangement of wheels on 

reconfigurable vehicles make it extremely difficult to fulfill this condition.  

 Equation (1.1) shows that the wheel velocity,   ̇
⃑⃑⃑ ⃑, depends on the location of the 

wheel relative to the center of mass,   ̇  ⃑⃑⃑⃑⃑⃑⃑, the rate of change of this location,   ̇  ⃑⃑⃑⃑⃑⃑⃑̇ , and the 

vehicle orientation with respect to the     frame,   , the rate of change of the path 

direction,  ⃑⃑⃑, and the desired vehicle velocity,   
⃑⃑⃑⃑⃑. Since the vehicle orientation and the rate 

of change of the path direction are determined by the path structure and cannot be 

controlled by the robot, the motion control system can only coordinate the wheel position, 

the rate of change of this wheel position and the wheel velocity in a variety of ways to meet 

the desired vehicle velocity.  

2.1.2.  THE DYN AMI C MO DEL  

In formulating the dynamic model for the robot, the general dynamic case of a robot 

negotiating a corner is considered. If each wheel is turning at angle    to complete the turn, 

then it is acted upon by a total of six forces and three torques: 
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1. Ground Forces - The longitudinal force,    , lateral force,    , and vertical 

force,     

2. Vehicle Body Reactions - The longitudinal force,    , lateral force,    , and 

vertical force,     

3. Wheel Torques -  The steering torque,    , the traction torque,    , and the 

wheel self-aligning torque,     

As the robot negotiates a turn, each wheel experiences a side slip angle,   . Figure 

2.2 shows the free body diagram of the wheel for this general case. 

 

FIGURE 2.2 – FORCES AND TORQUES ACTING ON A WHEEL 

If the wheels are assumed to roll without slip, remaining in contact with the ground 

and     is the wheel radius, then 

                                    (2.8) 

and the rolling speed,   , of the wheel becomes 
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        ̇̇   (2.9) 

where   ̇̇  is its rotational speed. If     and     are the wheel moment of inertia and the 

viscous damping of the wheel against rotation, then the traction torque is related to the 

wheel speed through 

 
          

   

  
  ̇̇  

   

  
    (2.10) 

The lateral tire force,     , is related to the vertical ground force,    , by 

               (2.11) 

where       is the friction coefficient for a particular side slip angle,   . The friction 

coefficient can be estimated using either the extended Burckhardt formula [59] 

       [                    ]               (2.12) 

or the Pacejka formula [60] 

                                                   (2.13) 

with          and    as constants that depend on the tire material and tire-ground contact 

conditions. 

 

FIGURE 2.3 – FORCES ACTING ON THE VEHICLE BODY 
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The self-aligning torque,     , and the lateral forces on each wheel are related as 

             (2.14) 

with     being the height from the ground to the wheel strut support. If         and     are 

the respective steering moment of inertia, damping coefficient and stiffness, then the 

steering torque is related to the steering angle,   , through 

          ̈̇       ̇̇         (2.15) 

 As illustrated in Figure 2.3, the vehicle body is acted on by a total of four triples of 

wheel reactions               for         , and its own weight,    , where    is the 

mass of the robot body. These forces satisfy Newton’s equation of linear motion 

 ∑ ⃑       ⃑⃑⃑⃑ ⃑⃑⃑̈   (2.16) 

as 

 

[
  

  

  

]    [

  ̈

  ̈
  ̈

]  (2.17) 

where 
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]    ∑[
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  (2.18) 

Additionally, these forces also satisfy the corresponding equation of rotational motion as 

 
[

   

   

   

]  ∑[  ̇  ⃑⃑⃑⃑⃑⃑⃑  (   ̇
⃑⃑⃑⃑ ⃑⃑⃑     ̇

⃑⃑ ⃑⃑ ⃑⃑     ̇
⃑⃑⃑⃑⃑⃑⃑)]     ̇⃑⃑⃑

 

   

  (2.19) 
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where    ,     and     are components of the rotation torque on the body, and    is the 

moment of inertia of the robot body about its center of mass. Therefore, the generalized 

non-conservative force vector acting on the vehicle can be defined as 

       [                                               

                                                                  ]
   

(2.20) 

Also, it is possible to define the generalized coordinate vector,        ,  as 

   [                                      

                                          ]
   

(2.21) 

which leads to a Lagrangian,   , of the form 
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(2.22) 

where    is the vertical displacement of the robot body from a predefined neutral position 

when the vehicle is on level ground. The standard Euler-Lagrange equation 

  

  
(
  

   ̇̇
)  

  

   
                    (2.23) 

for this system, results in 26 equations of motion that can be expressed in state space form 

as 

  ̇        , (2.24) 

where the control vector,        , comprises of all actuated wheel forces and torques as 
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   [                                               

                                               ]
 
  

(2.25) 

The wheel extension forces,                         , are responsible for extending and 

retracting the wheel from position  . The state vector,        , is the same as the 

generalized coordinate vector,  . 

At this stage, only routine steps are required to derive the dynamic system (2.24). 

This is a standard model structure for a       nonlinear dynamic system that can be 

controlled using a variety of nonlinear control methods such as feedback linearization, 

sliding mode control, and many others, likely at a high computational cost because of its 

size. Despite its size, this model offers one advantage that it enables the robot to 

reconfigure itself into various stable configurations consistent with the path profile, 

 ⃑       , by dynamically changing the position of the center of gravity as long as the 

kinematic constraints in equation (2.7) are satisfied. With the ability to dynamically control 

the position of its center of gravity, it is hoped that the robotic vehicle can maneuver in 

many difficult terrains as biological systems do. 

 MODEL REDUCTION FOR A FIXED SUSPENSION 4WS/4WD ROBOT 2.2.

2.2.1.  MODEL REDUCTION  AP PRO ACH  

Out of complexity of the model for the reconfigurable robot system discussed in the 

previous section, this research was focused on finding ways to approach the problem by 

first studying a four wheeled AWS/AWD robot system with non-articulated wheels, 

otherwise referred to as a fixed suspension.  This section simplifies the model in Section 
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2.1.2 to be applicable for a fixed suspension AWS/AWD vehicle; parts of this section have 

been published by the author and coworkers in [61] [62]. It was assumed that the robot is 

traversing a flat plane and the vehicle is a rigid body. Under this assumption, there always 

exists a single point,  , at a position,    ⃑⃑⃑⃑⃑⃑⃑, in the inertial frame,   , serving as its 

instantaneous center of rotation, as illustrated in Figure 2.4. Each wheel,  , has a speed,   , 

at an angle,   , to the vehicle direction, where  ⃑      is the path vector function. The 

ultimate goal of the trajectory control problem is to coordinate individual wheel velocities, 

  ̇
⃑⃑⃑ ⃑, allowing the robot to track the desired trajectory,    ⃑⃑ ⃑⃑ ⃑⃑ , at a prescribed center of mass 

velocity,   
⃑⃑⃑⃑⃑, without wheel slippage. 

 

FIGURE 2.4 - PARAMETERS FOR A TYPICAL FOUR-WHEEL-STEERED VEHICLE 

Therefore, the vehicle motion can be described as a pure rotation about the 

instantaneous center of rotation,  , at any instant in time satisfying 

   
⃑⃑⃑⃑⃑   ⃑⃑⃑      ⃑⃑⃑⃑⃑⃑⃑     ⃑⃑⃑⃑ ⃑⃑⃑    (2.26) 
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where  ⃑⃑⃑ is the angular velocity of the vehicle about  . The velocities at the wheels can then 

be derived using 

 
  ⃑⃑⃑  [

           
           

]   ⃑⃑⃑  [   ⃑⃑⃑⃑⃑⃑⃑      ⃑⃑⃑⃑ ⃑⃑⃑     ̇⃑⃑ ⃑⃑ ⃑ ]                (2.27) 

where    ̇⃑⃑ ⃑⃑ ⃑ is the position vector of wheel   from the vehicle center of mass, and   is the 

angular orientation of the vehicle in the    reference frame. In this case, the centrode of 

vehicle motion can go through any point in the    plane relative to the vehicle. As will be 

shown later, the fact that point   can be anywhere in the    plane relative to the vehicle 

still makes this problem difficult to solve in the same way as the general reconfigurable 

vehicle discussed in the previous section. 

2.2.2.  THE DYN AMI C MO DEL  

To articulate the dynamic equations for the fixed suspension robot, it is assumed 

that the wheels roll without slipping, with each wheel speed,   , given by equation (2.9). 

Each wheel is acted on by a total of four forces and three torques:  

1. The longitudinal,    , and lateral,    , ground forces 

2. The longitudinal,    , and lateral,    , vehicle support reactions 

3. The steering torque,    , the traction torque,    , and the wheel self-aligning torque, 

    (which is taken to be negligible).  

Therefore, the generalized coordinate vector       for the robotic system reduces 

from the one in equation (2.21) to 

   [                               ]
   (2.28) 
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and the corresponding generalized force vector as also reduces from equation (2.20) to 

   [                                        ]
   (2.29) 

The potential energy due to the steering damping and the vehicle suspension system 

can be ignored, which reduces equation (2.22) of the Lagrangian,  , to  
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When the standard Euler-Lagrange equation (2.23) is employed on (2.30), the resulting 

equations of motion can be expressed as 
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  (2.31) 

where    is the steering friction torque at the tire.  

In the state space form of equation (2.24), the control vector,     , involves the 

wheel torques only as 

   [                               ]
   (2.32) 
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and the state vector,      , is defined as  

   [                                         ]
   (2.33) 

where     ̇ . The balance of  longitudinal forces on each wheel satisfy the no slip 

condition, such that 

 
        

 

  
(    

    ̇ 

  
)             (2.34) 

where           , are the wheel velocities and the lateral forces satisfy the self-aligning 

torque assumption.  

With this model, the control problem reduces to that of determining the steering 

torque,    , and the traction torque,    , for each individual wheel such that the vehicle 

tracks the desired path. The next chapter focuses on solving this control problem for the 

fixed suspension vehicle with four wheeled independently driven and independently 

steered vehicle.  
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3. DEVELOPMENT OF AN OPTIMAL CONTROL ALGORITHM FOR AWS/AWD  

PATH TRACKING  

 L ITERATUR E REVI EW  3.1.

As stated in Chapter 1, the high maneuverability characteristics of four steered 

wheels have increasingly attracted interest in these vehicles for a long time. Studies on four 

wheel steering vehicles started in the mid-eighties by the automotive industry [8] [10] [63] 

[64]. These vehicles are known to be highly overactuated, which provided greater control 

over the motion of the robot but also make them difficult to control due to the demand of 

the rigid body kinematic constraint, equation (2.27), discussed in Chapter 2. Overactuation 

provides more robustness in the system by creating redundancy, since failure of one 

actuator does not disable the system. One notable instance of this was the Mars rover Spirit, 

which had one of six wheels mechanically fail but was still able to traverse the sandy 

terrain because of the redundant drive system [65].  

In robotics, the maneuverability problem was addressed by development of two 

classes of robots, namely the AWS/AWD robots and differentially driven omnidirectional 

vehicles equipped with omni-wheels [66] [67] [68]. The latter class successfully introduced 

highly maneuverable omnidirectional robots using three steered wheels with negligible 

slippage [68] [69] [70] [71].  However, the former class was not successful, particularly due 

to the large number of parameters that need to be coordinated by the controller.  
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Today, AWS robots are implemented in one of the two ways as illustrated in Figure 

3.1: robots in which the steered wheels are mechanically coupled as illustrated in Figure 

3.1 (a), and robots that have independently steered wheels illustrated in Figure 3.1 (b).  

 

 

FIGURE 3.1 - TWO TYPICAL CONFIGURATIONS OF FOUR-WHEEL-STEERED VEHICLES 

Structurally, kinematic constraints for robots that have mechanically coupled pairs 

of steered wheels are guaranteed to be satisfied, since only two steering angles are 

required and the wheel speeds are in well-defined ratios. Many significant results in 

robotics have been reported based on vehicles with this wheel configuration [72] [73] [74] 

[75] [76].  

 

FIGURE 3.2 – THE LATERAL STABILITY OF TYPE (A) VEHICLES IS COMPROMISED IN TIGHT 

CORNERS  
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An important shortcoming of these vehicles is that the distance from wheel to mass center 

varies with steering angle. Consequently, the base of the vehicle decreases laterally as the 

steering radius decreases. During highly dynamic maneuvers requiring tight turning radii, 

the lateral stability of the vehicle may be compromised to the point of vehicle inversion. For 

a type (a) vehicle to accomplish a zero turn radius maneuver, the lateral base dimension 

reduces to zero. 

It has been more challenging to control type (b) vehicles with independently steered 

wheels while maintaining rigid body kinematics constraints along a variety of trajectories. 

Control challenges posed by independently steered wheels on AWS/AWD vehicles have 

persistently been difficult to address. Alternative steering approaches that have been 

proposed to handle these systems focus on alleviating the effects of wheel slippage by 

convenient robot structures such as circular or square [77] [78] and sometimes by using 

omnidirectional wheels [55] [79] [80] [81] [82]. Other proposed methods limit the steering 

angles to small values that reduce wheel slippage [83] [84]. 

The easiest way to locate the ICR for AWS/AWD vehicles has been by constraining it 

to the perpendicular bisector of the robot’s longitudinal centerline. The rear wheel angles 

become a reflection of the front wheels. However, this approach limits the robot’s flexibility 

to track different path geometries. In effort to avoid this inflexibility, other approaches use 

predictive methods to estimate the vehicle yaw rate [85] [86] [87] [88] [89] and use 

estimated yaw rates in establishing the center of rotation position. However, since the 

vehicle yaw rate depends on its speed, this approach of estimating the yaw rate using the 

vehicle speeds and use the estimated value to determine future speeds of the vehicle is one 
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way causal, with the latter being a result of the former; determining the wheel velocities 

based on estimated yaw rates may be prone to considerable errors. In addition to this 

possibility of introducing errors, the resulting control will inevitably be relatively complex 

due to the need for yaw measurement instrumentation. 

This research proposed a steering approach that aligns the front and rear axles to 

always track the path center. The next section describes the proposed approach and an 

example use in path tracking. Some of the information in these sections has been published 

by the author and coworkers in references [62] [61]. 

 THE PROPO SED APP RO ACH  3.2.

3.2.1.  DEFINI TION  O F THE K I NEMATI C CON ST RAI NT S  

It was shown in Chapter 2 that a vehicle with the framework of Figure 3.3 satisfies 

the rigid body kinematic constraint only if the wheel velocities,   ̇
⃑⃑⃑ ⃑, and steering angles,   , 

satisfy 

 
  ̇
⃑⃑⃑ ⃑   [

           
           

]   ⃑⃑⃑     ⃑⃑⃑⃑ ⃑⃑⃑                 (3.1) 

where    ̇⃑⃑ ⃑⃑ ⃑ is the position vector of wheel   from the vehicle center of mass, and   is the 

angular orientation of the vehicle in the    reference frame. The velocity,   ̇
⃑⃑⃑ ⃑, of each wheel 

can be described by the wheel speed,   , and its steering angle,   , consistent with equation 

(3.1) with an instantaneous center of rotation, located at  . Since the center of rotation, can 

be at any position in the    plane relative to the vehicle, the kinematic constraint problem 

requires proper values for the wheel speeds and angles that satisfy equation (3.1). 
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Two possible approaches for the vehicle to track the 2-D path,  ⃑      are to either track 

the path of its mass center or track the paths of its wheels. Both methods allow the wheels 

to adopt any velocities (speeds and steering angles) as long as the rigid body kinematic 

constraint in equation (2.26) is maintained. 

 

FIGURE 3.3 - PARAMETERS FOR A TYPICAL FOUR WHEEL STEERED VEHICLE 

Tracking the mass center allows an envelope about the mass center to be easily 

calculated and predicted. The inclusion envelope is useful in avoidance of positive obstacles 

(i.e. those that protrude above the plane of travel); however, its primary disadvantage is 

that it requires much more path area than the alternative method when avoiding negative 

obstacles (i.e. crevices).  

The wheel tracking approach allows the vehicle to avoid wheel path intersection 

with negative obstacles. The primary advantage is that it enables the vehicle to maneuver 

with fewer constraints, since it allows the vehicle body to protrude over negative obstacles 

while ensuring that the wheels do not encounter them thereby allowing for a tighter turn. 
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However, it can pilot the vehicle into positive obstacles that are close to but not on the 

wheel path by the same principle. This is especially evident when negotiating corners, since 

there is no control on the path of the mass center.  

An ideal method would be to couple these methods to exploit advantages of both, 

however, the scope of this research was limited to the wheel tracking approach only. In this 

approach, restrictions are applied that the deviation of   from its path remains within 

acceptable bounds, , such that 

 ‖   ⃑⃑⃑⃑⃑⃑⃑   ⃑     ‖     (3.2) 

where ‖ ‖ denotes the Euclidean norm. Therefore, the enclosed angles,  , at the corners of 

all allowable traversable paths must satisfy 

 
  

 

 
    

 

 
   (3.3) 

If    ,   , and    are the respective front, center, and rear speeds of the vehicle along 

the longitudinal centerline in directions   ,   , and    as shown in Figure 3.3, then 

kinematic and rigid body constraints on the centerline require 

                            (3.4) 

and 

                                        (3.5) 

where   is the yaw rate of the vehicle as it negotiates a corner. Similarly, kinematic and 

rigid body constraints along the front and rear axles require 
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                           (3.6) 

                           (3.7) 

                   (               )      (3.8) 

                                         (3.9) 

The research seeks to find a controller that determines the wheel speeds, 

           , and the drive angles            , by using the path geometry 

information (   and   ) to satisfy the desired vehicle speed,   . By constraining all angles 

                 , such that      
 

 
, then from (3.20) and standard rigid body 

geometric constraints, it was found that the rigid body constraints reduce to the following 

wheel constraints1 
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1 Note that in these equations,           [
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√  
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  (3.15) 
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     [           ])  (3.16) 

 
   

            

√  
 
 (           )

 
  (3.17) 

Ideally, these constraint equations are similar to those of [87] and [88], however, 

these constraints are defined using available real time information on the vehicle speed,   , 

and the path geometry (     ), only instead of estimating the vehicle yaw rate,  , of which 

itself depends on these wheel speeds and angles. To implement these constraints, the 

controller must know the path angles,    and   . This information could be established 

using a path following sensor setup such as painted line or buried wire on predefined 

paths. The general and more versatile way is to use navigation sensors to determine the 

path direction angle at the front axle,   . However, similar corresponding sensors for 

determining the path direction angle at the rear axle,   , are not viable. If the orientation 

angle of the vehicle,  , and the path gradient angle,  , in the inertial frame,    , are known 

where 

 
       (

  

  
)  (3.18) 

the path direction angles at the front axle,   , and at the rear axle,   , of the vehicle satisfy 

    
 

 
 (    )  (3.19) 
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         (3.20) 

where    and    are the path gradient angles at the front and rear axles, respectively. 

Therefore to determine   , a finite path history function,  , must be created to monitor and 

store the front path gradient angle,   , such that 

  (     )       (3.21) 

     (                 )  (3.22) 

at any front axle path coordinates, (     ), and vehicle orientation,  . The path gradient 

angle at the rear axle will be used to determine the rear axle orientation,   , from (3.20). 

This requires the vehicle to start in a straight line motion until the rear of the vehicle 

reaches the starting point of the front, or the memory function be primed with some initial 

path. With the path angles known, it is straightforward to see that the   and   velocity 

components at the vehicles center of mass become 

 
    

               

√                
 (3.23) 

and 

 
    

   

√                
  (3.24) 

3.2.2.  IN COR POR ATION  O F T HE K IN EMATI C CON ST RAINTS  INTO  T HE PAT H 

TR ACKIN G CON TRO LLER  

From the model developed in Chapter 2 and the wheel drive constraints developed 

in equations (3.10)-(3.17), the path tracking control problem reduces to finding steering 
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and traction wheel torques such that the vehicle moves at the desired speed,   , and it 

remains aligned to the path,  ⃑     , according to its geometrical parameters,    and   . In 

a feedback control structure, the desired vehicle speed and the path geometry define the 

controller reference points,        ,         and        . Figure 3.4 shows a simplified 

structure for the resulting feedback control system. 

 

FIGURE 3.4 - A LAYOUT OF THE PROPOSED CONTROL SCHEME  

One advantage of this controller is that it does not require knowledge of the current 

location of the vehicle      . If the vehicle speed,   
⃑⃑⃑⃑⃑, is prescribed, then only the path 

parameter    is required as a continuous input, as    is determined via the path history 

function and (3.20). The path direction,   , can be obtained through path sensors such as 

sonar or laser range finders in the navigation instrumentation. 

Due to the complexity and size of the controller that results from (2.31), the 

approach proposed for this problem was to divide and decentralize the control problem 

into four simpler individual wheel controllers. The robot is then treated as an arrangement 

of independent bodies centered at the wheel locations. The robot mass is assumed to be 

evenly distributed among the wheels; such that (2.34) yields 



 

 
45 

 
(
  

 
   )  ̇  

 

  
(    

    ̇ 

  
)  (3.25) 

where    is the mass of the wheel. This, along with the corresponding steering equations 

for each wheel, leads to the individual body dynamics at the wheel as 
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]  
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  (3.26) 

where     is the steering damping coefficient. Now, the task becomes finding     and     

such that the wheel motion satisfies the reference velocity,        , and steer angle,        , 

compatible with [                       ]
 

. This approach made it possible to apply any 

modern multivariable feedback control algorithm to solve this problem. Although various 

control algorithms were numerically experimented with and found to work well as 

anticipated, the experimental part of the research focused on using a simple decoupled 

proportional controller, discretized as 

 
[
   [   ]

   [   ]
]  [

  [          [ ]]
 

  [          [ ]]
 ]  (3.27) 

where   
 

 and   
 

 are the traction and steering proportional gains, respectively, at time 

step,  . This controller is simple, not highly dependent on model accuracy, and easy to 

program in a microcontroller. Variables used are easily measurable (i.e. the velocity at each 

wheel) negating the need for advanced sensors such as yaw rate gyroscopes and estimation 

computation. It should be noted that the linear form of (3.26) can be uncontrollable, 

therefore linearizing methods may not be suitable for this case. 
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4. SIMULATION RESULTS  

To demonstrate the viability of the control algorithm proposed in Chapter 3, a 

numerical simulation was first carried out. Once the algorithm was deemed viable, it was 

pursued on the experimental platform, the BIBOT-1, as will be described in the next 

chapters. The simulated vehicle parameters are shown in Table 4.1. 

TABLE 4.1 - VEHICLE SIMULATION PARAMETERS 

Quantity Value Units 

           

             

        

         

                

                

           

          

        
   

     
 

 

The simulation was carried out in two phases. The first phase was to examine the 

numerical accuracy of the proposed decentralized control algorithm on generating the 

desired wheel torques to track the desired paths; Section 4.1 describes how this phase was 

implemented and its results. The second phase examined the performance of the two point 

path tracking steering approach to navigate different paths in comparison with other 

steering methods; results of this phase are presented in Section 4.2. 
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Each simulation is animated using a ‘patch()’ function, available in MATLAB, for 

each wheel and the vehicle body. The vehicle is modeled as a rectangle with a wheelbase 

and wheel track similar to those of the BIBOT-1. The coordinates for the vertices of the 

shapes are set up such that rotation and translation transformation matrices can be used 

on the vertices. By continually drawing, erasing, transforming and drawing again, an 

animation is created that is crude in detail but represents the motion of the vehicle and 

wheels along the sample path quite well. Figure 4.1 shows a snapshot of one animation 

which includes the centrode, as well as the path of the center of gravity,  . 

 

FIGURE 4.1 – MATLAB SIMULATION FOR AN ARBITRARY PATH SHOWING CENTRODES AND CG 
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 NUMERI CAL VALIDATIO N O F T HE DECENTR ALI ZED CONT RO LLER  4.1.

The controller in (3.27) was numerically simulated in the MATLAB environment; 

the code for this simulation can be found in Appendix Section A.1. Different paths were 

simulated with different vehicle speeds ranging from         to         consistent with 

the speed limits of BIBOT-1, and the controller gains were tuned to   
      and 

  
    . In all simulations, the front axle path angle,   , was estimated using the path 

gradient while rear axle path angle,   , was calculated using the memory function (3.21)-

(3.22). 

Figure 4.2 - Figure 4.4  show sample results obtained from this simulation on a 

single path at a sampling interval of      using a vehicle speed         .  Figure 4.2 

shows the simulated trajectory with time lapse representations of the vehicle motion. The 

centrodes are also displayed in red; this trajectory changes from near left to infinity-left 

and then jumps to infinity-right and transitions to near right. The infinite asymptote 

represents pure translation where all wheel speeds,   , as well as angles,   , are equal. The 

path of the vehicle CG is also shown in green; it is noted that this path does not match the 

tracked path, which is useful when avoiding negative obstacles but can be a hindrance in 

the presence of positive obstacles. 

Wheel torques that were generated by the controller for this sample simulation are 

shown in Figure 4.3 and Figure 4.4.  In all simulated paths, the magnitudes of the traction 

wheel torques increased whenever wheel speed changed rapidly, but was near zero when 

wheel speed was constant. Steering torques show similar curves, and the largest deviation 

from zero was observed as the vehicle was negotiating sharp curves. Both steering and 



 

 
49 

traction torques for all simulations examined were within reasonable limits of         

consistent with torque limits for both steering and traction motors on BIBOT-1. 

 

FIGURE 4.2 - SIMULATION TRAJECTORY  

 

FIGURE 4.3 - SIMULATED TRACTION TORQUE 
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FIGURE 4.4 - SIMULATED STEERING TORQUE 

Figure 4.5 shows the controlled wheel speeds compared to the expected theoretical 

speeds that would satisfy the instantaneous center constraint. As can be seen from this 

figure, the controlled speeds are virtually equal to the expected theoretical speeds. In a 

sample of 6 simulated paths, the recorded maximum deviation between the controlled 

speeds and the theoretical speeds was negligibly small at           , which happened 

only when the robot was making sharp turns at high speeds. Because of the effectiveness of 

the controller, the results in Figure 4.5 appear as though only one curve is representing 

each wheel when actually both the theoretical and controlled curves are displayed.  

Similarly, Figure 4.6 compares the controlled steering angle to the expected angle. 

The controlled steering angles shown in Figure 4.6 are in close agreement with the 

expected theoretical angles. There was however a time lag between the theoretical angles 

and the controlled angles whenever the robot was assumed to be negotiating turns; in 

these cases where the theoretical angles would appear to be ahead of the controlled angles 
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by one sample interval of     , which made the deviation between the controlled angles 

and theoretical angles to be a bit high with a maximum recorded value of                

 

FIGURE 4.5 - SIMULATED AND THEORETICAL WHEEL SPEED 

 

FIGURE 4.6 - SIMULATED AND THEORETICAL WHEEL ANGLE 
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 S IMULAT ED PATH TR ACKIN G RESULT S  4.2.

The second simulation was carried out to evaluate the performance of the proposed 

two point tracking steering algorithm in tracking arbitrary paths and compare this 

performance with other path tracking steering algorithms. In these simulations, the 

proposed algorithm, 4WS Front and Rear tracking (4FR), was compared with three other 

methods: conventional 2 Wheel Front axle steering (2WF), 4WS Front axle tracking with 

rear axle Mirror (4FM), 4WS Center of Gravity tracking (4CG). The key features of each 

steering algorithm are summarized in Table 4.2. The MATLAB code used in this simulation 

is listed in Appendix Sections A.2-A.6.  

Although passenger vehicle regulatory agencies have standard testing paths such as 

the j-turn, fishhook, and double lane change paths [90], there are no such standard paths 

for wheeled mobile robots. Researchers working on mobile robots tend to design arbitrary 

paths that will best demonstrate the concept that they are trying to propose. Some paths 

are designed for highly dynamic maneuvers such as lane change or skid pads, others try to 

show obstacle avoidance through highly cluttered segments. Several authors have used 

paths such as a straight line, a sinusoid [91], a quarter circle [92], arbitrary curves [93] or 

zig-zags [94] of varying shapes and sizes. Gupta used two routes, the Zig-Zag and U-turn, in 

previous work on the BIBOT-1 [95]. Based on these paths, three new paths were created, 

scaled appropriately to the experimental space,      . These included the Zig-Zag, the 

U-Turn, and the S-Curve, which is essentially a sinusoid with the addition of the straight 

line at the beginning and end for proper priming of the path memory function.  
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 TABLE 4.2 – FEATURES OF COMPARED STEERING ALGORITHMS 

 Diagram Location of ICR Path, Relative to 
Vehicle 

2
W

F
 

 

On projection of 
rear axle 

 Center of front 
axle lies on path 

    is tangential to 

path at this point 
    = 0 

4
C

G
 

 

On longitudinal 
perpendicular 
bisector of 
vehicle 

 Center of gravity, 
 , lies on path 

   
⃑⃑⃑⃑⃑ is tangential to 
path at   

        

4
F

M
 

 

On longitudinal 
perpendicular 
bisector of 
vehicle 

 Center of front 
axle lies on path 

    is tangential to 

path at this point 
 Center of rear 

axle not 
constrained to 
path 

         

4
F

R
 

 

Free to lie 
anywhere in the 
   plane 

 Center of front 
axle lies on path 

    is tangential to 

path at this point 
 Center of rear 

axle lies on path 
    is tangential to 

path at this point 
       
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It is assumed that these three paths contain all elements of arbitrary real world paths, 

including round curves, straight lines, corners and sharp cusps. Logically, if the robot can 

navigate these sample paths then it should be able to navigate any arbitrary path that can 

be formed by an amalgamation of these simple paths. Additionally, these simple path 

shapes can be easily modeled as a continuous function of the   and   coordinates, with 

unique lateral or longitudinal trajectories that are easy to simulate numerically. This made 

analysis easier because MATLAB can process the data as functions using predefined tools. 

Once the path function is established and discretized, a number of parameters can be 

extracted from it, which include the position of the front and rear axles, the path slope, 

vehicle orientation angle, and the path angles at the front and rear axles. 

The full simulation results are shown in Appendix B; for documentation purposes, in 

the simulations shown, the wheels and centrodes are not shown. Instead, only the wheel 

paths are plotted, as these were used in the metric to measure the relative maneuverability 

of the particular steering algorithm. Figure 4.7 is a sample depiction of the path tracking 

results; it shows the tracked path, the paths that would be tracked by an ideal path tracking 

system, the paths tracked by the controller, and the trajectory of the center of gravity. A 

total of 24 scenarios were simulated as included in Appendix B; this section discusses the 

results obtained from this simulation as well as provide a numerical summary of the 

performance comparisons.  

Dead reckoning methods are used to determine the new location of the vehicle.  
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FIGURE 4.7 –  SAMPLE SIMULATION OUTPUT OF 2WF ON S-CURVE PATH 

The location of the front axle is congruent with the succeeding discrete point on the path 

and the change in distance,  , is given by  

 
  √(  [   ]    [ ])

 
 (  [   ]    [ ])

 
  (4.1) 

where    and    are the x and y location of the front axle tracer at each time step,  . The 

wheelbase, H, and intermediary values α and β, given by 

   (            (    [   ])) (4.2) 
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  |     

|       [   ] |

 
| (4.3) 

are used to determine the current vehicle heading given by  

 
 [ ]   [   ]       

|    (  [   ]   )|

 
   [   ]  (4.4) 

Subsections 4.2.1 to 4.2.4 discuss some of the observed general features that distinguish 

these steering algorithms. 

4.2.1.  FRONT  WHEEL STEER  –  2WF  FEATUR ES  

The front wheel steering (2WF) mode is commonly found in passenger vehicles. In 

this case, the rear wheels are kept at an angle of 0° relative to the vehicle orientation while 

the front wheels are steered using an Ackermann steering geometry. The equations 

developed in Chapter 3.2.2 may still be used; however, the rear angle,   , remains at 0. 

Simulation results from this configuration are shown in Figure B.1 - Figure B.6 in Appendix 

B.  

 

FIGURE 4.8 – ILLUSTRATION OF THE REAR WHEELS ‘LAGGING’ THE FRONT WHEELS  
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One noticeable characteristic of this steering algorithm is that the rear wheel paths always 

lag the front wheel paths by cutting towards the inside of the curve, taking a shorter path 

than the front wheels as is illustrated in Figure 4.8. 

4.2.2.  FRONT  AX LE PATH TR ACKIN G –  4FM  FEATUR ES  

The second steering configuration was the front axle tracking with mirrored rear 

angle (4FM), which is typical of the methods proposed in [96] [97] [98]. This method is 

representative of a case presented in Section 6.2 where    is computed from the gradient of 

the path at the front of the vehicle given by a sonar array, and    is a negation of   . This 

implies that the ICR always lies on the centerline of the vehicle, but offers smaller turn radii 

than 2WF. A key feature of this method is that the CG experiences zero sideslip (i.e. relative 

to the vehicle heading, there is zero lateral movement). The results of this simulation are 

shown in Figure B.7 - Figure B.12. 

4.2.3.  CENT ER  O F GRAVI TY  TRACKIN G  –  4CG  FEAT URES  

The third steering configuration was to track the center of gravity along the given 

path (4CG). The center of gravity seems like a natural tracking point for a predefined track 

such as a buried wire or line following robot. The key feature of this method, like 4FM is 

that it offers zero sideslip of the vehicle CG, as the velocity,   
⃑⃑⃑⃑⃑, is always tangential to the 

path.  Although it seems impractical to track a vehicle on the fly using these means, the 

maneuverability of this steering configuration was simulated. In a real world situation, 

using an adaptable navigation system such as laser or sonar range finders, the 4FM 

algorithm would be better suited for path navigation. However, these sensors typically lie 

at the front of the vehicle and are therefore aware of the location of the front axle instead of 
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the center of gravity. This configuration also constrains the ICR to the perpendicular 

bisector as the rear wheels mirror the front wheels. 

The simulation of 4CG steering was relatively easy. First, the slope of the path is 

calculated using finite difference methods, then the vehicle is translated and rotated such 

that   coincides with the path center and the vehicle heading is tangential to the path at  . 

From  , the path is searched forward and backward until a distance of half of the 

wheelbase,  , is reached and the front and rear path trackers can be located. The slope of 

the path, in the    frame, is calculated at these points and the vehicle heading,  , is 

subtracted from front and rear slopes, resulting in    and   , for that time step.  

There are two notable characteristics of this path tracking approach as illustrated in 

Figure 4.9. First, it engages extreme steering angles to negotiate corners, even on relatively 

smooth continuous paths to maintain the tangential requirement. Second, it momentarily 

stops and rotates the vehicle by some angle to negotiate discontinuous paths, such as the 

Zig-Zag path with sharp cusps. This would be difficult to implement on the fly where this 

maneuver may be necessary such as in the case of turning a corner in an urban 

environment, for a constant velocity,   . 

 

FIGURE 4.9 – 4CG TRACKING REQUIRES EXTREME ANGLES FOR RELATIVELY SMOOTH PATHS 

(LEFT) AND NEARLY INSTANTANEOUS ROTATION FOR NON-CONTINUOUS PATHS (RIGHT) 
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4.2.4.  FRONT  AND REAR AXLE PAT H TR ACKIN G  –  4FR  FEAT UR ES  

The final steering configuration simulated was the one proposed in this research. 

Both the center of the front and rear axle track the center of the prescribed path. The 

simulation starts with the rear path tracker on the path. The path is then searched forward 

to the distance equal to the wheelbase,  , of the vehicle which locates the front path 

tracker. The    slope of the path at both the front and rear of the vehicle was calculated 

using finite difference methods. The vehicle heading,  , was subtracted from the slopes 

with the resultant being the path angles,    and   . 

At first glance, this method seems to be superior to the others. It is obvious that this 

method does not require as extreme of wheel angles as 4CG. It is also quite evident that the 

wheels approximate the ideal wheel path much closer than both the 2WF and 4FM 

demonstrated in Figure 4.10. One should expect the numeric metrics to favor this method 

based solely on inspection. 

 

FIGURE 4.10 – 4FR DOESN’T REQUIRE AS EXTREME OF ANGLES AS 4CG  (LEFT) AND VERY 

CLOSELY APPROXIMATES IDEAL WHEEL TRACK (RIGHT) 
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4.2.5.  PERFO R MAN CE MET RI C AND RES ULTS  

A performance metric to numerically compare the various steering modes is 

required. Normally in vehicle maneuverability comparisons, common metrics are turn 

radii, skidpad measurements (essentially how much centripetal force is induced) or lap 

times. None of these measurements was viable because some of the compared steering 

configurations are capable of implementing zero radius turning. The skidpad and lap times 

are not relevant; these methods generally ignore errors from body roll or wheel slip 

because in this scope they are intended for low speed maneuvers, the typical operating 

environment of most wheeled mobile robots. Thus, a new metric had to be developed. The 

research used the mean value,    of the Euclidean norm or the root mean square of the 

vehicle’s normal deviation from the path center as a performance metric. To compute this 

metric, the locus of points at half the road width are plotted. The deviation    of the 

vehicle’s CG from the path center at each sampled point,  , is calculated and used to 

determine the metric as 

 
  √

 

 
∑    

 

   
    (4.5) 
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FIGURE 4.11 – VISUAL REPRESENTATION OF MANEUVERABILITY METRIC, BLACK DOTTED 

LINES REPRESENT IDEAL WHEEL PATHS EQUIVALENT TO HALF WHEEL TRACK ALONG THE PATH 

NORMAL 

This metric can be thought of being analogous to the additional area of asphalt 

needed to pave the road for the robot to go around an assortment of obstacles; it is 

primarily a measure of the deviance of the wheels from the minimum possible paved area. 

A robot with two fixed, articulating axles, as shown in Figure 3.2, would be able to traverse 

any path perfectly and have an ideal score with the proposed metric. However, as was 

pointed out before, a vehicle of this sort will have variable relative distances to the CG 

making control difficult and has a continually changing base and consequently less lateral 

stability. 

 The Euclidean distance is calculated between chosen reference points along the 

path and the actual location of the wheel at each time step. These obtrusions were 

averaged over the number of points taken in the simulation to compute the average 

deviations for the various steering algorithms as presented in Table 4.3 and in Figure 4.12. 
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TABLE 4.3 – WHEEL DEVIATION FROM IDEAL PATH 

 U-Turn (cm) Zig-Zag (cm) S-Curve (cm) 

2FS 16.48 23.23 31.37 
4FM 9.13 20.49 23.61 
4CG 11.04 27.97 29.74 
4FR 8.93 17.18 22.11 

 

 

FIGURE 4.12 – COMPARISON OF PATH TRACKING STEERING CONFIGURATIONS 

Several conclusions can be drawn from the simulation data. In general, the paths 

that are more involved with the most turns also have the most deviations for all steering 

configurations. Secondly, for nearly all paths, 4WS modes performs better than the 2WS 

mode, with less average path deviation, justifying the need for the additional actuators. 

Finally, the proposed method, 4FR, shows superior performance to all other modes for 

every path. It performs with a relative deviation 20-40% better than 4CG, dependent on 
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path geometry. However, the 4FM mode is only marginally worse for two of the paths with 

a relative deviation error of 2-16% poorer, indicating that it may be a close contender. 

These simulations provide a good basis and will be confirmed through experimentation on 

the mobile robot platform, the BIBOT-1, in the next Chapters. 
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5. IMPLEMENTATION OF THE  REDUCED MODEL ALGORITHM ON BIBOT-1  

VEHICLE  

 VEHI CLE DESCRIP TION  5.1.

The experimental test bed, BIBOT-1, was an AWD/AWS four wheeled mobile robot, 

shown in Figure 5.1. The chassis measures 94 cm long by 25.5 cm wide. The wheel track is 

66 cm while the wheel base is 58.5 cm. It is equipped with four wheel units, each 

independently controlled, with an in-wheel tractive wheel hub motor as well as a stepper 

motor for steering. This makes the robot a completely independently all-wheel-steered and 

independently all-wheel-driven vehicle. 

 

FIGURE 5.1 – THE BIBOT-1 WHEELED ROBOTIC VEHICLE EXPERIMENTAL PLATFORM  

5.1.1.  BACK GRO UN D H IS TOR Y  

Development of the mechanical structure of this robot began in 2006 by a team of 

NDSU mechanical engineering senior students as a capstone design project [99]. The 
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electronic control hardware was initially designed by a team of NDSU senior electrical 

engineering students as a subsequent capstone design project [100]. This initial electronic 

design schema was deemed inadequate for a number of reasons and had to be redesigned. 

The redesign of the robot hardware and control architecture  became the thesis 

subject matter of the student who preceded this work, Nikhil Gupta [95]. The robot 

electronics were designed with a structure that allows both centralized and decentralized 

control architectures to be implemented. There is one Vehicle Control Unit, VCU, and four 

Wheel Control Units, WCU. The VCU is a central microcontroller that determines the vehicle 

motion; it was designed with the ability to gather information from an array of sensors and 

determine the vehicle’s current position and velocity. After collecting the vehicle 

information, the VCU  transmits that information to all of the WCUs. Each WCU is free to 

calculate the necessary speed and steering direction of the wheel in any manner depending 

on the selected steering algorithm. This structure allows the robot actuators to be infinitely 

scalable, because the information processing requirements are distributed to the WCUs; 

therefore, any additional WCUs do not cause further demand from the VCU. 

5.1.2.  CONT RO L HAR DW ARE  AND SO FTW AR E  

5.1.2.1.  HAR DW ARE  DE SCR IP TIO N  

The VCU and WCU are powered by five dsPIC33FJMC128 Microchip™ PIC 

microcontrollers which communicate to each other via Serial Peripheral Interface, SPI, 

protocol. There is an individual microcontroller for each of the four WCUs as well as one on 

the VCU as can be seen in the communication architecture blueprint, shown in Figure 5.2. A 

total of three communication protocols plus two analog signals are used on the system in 
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transmitting information between either the VCU or the WCUs and their peripherals such 

as body sensors and wheel sensors as well as for intercommunication between the VCU and 

the WCUs. 

 

FIGURE 5.2 – HARDWARE CONNECTIONS TO VEHICLE CONTROL UNIT 

In this structure, all information passed from the VCU to each WCU is identical. The 

code on each WCU is specific for that wheel to interpret and transform the VCU information 

based on its relative position on the vehicle.  The WCU steers the wheel through a stepper 
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motor via a low level PIC10F that generates the grey code for the stepper driver. One 

drawback is that there is no control over the speed of the stepper because the PIC10F has 

only two inputs; one corresponds to steering direction while the other generates the motor 

drive pulses. The stepper is connected to the wheel through a gearbox, which increases the 

steering torque and reduces the steering rate. Each stepper motor has a 50 kΩ multiple 

turn potentiometer for feedback control of steer angle positioning. Because the 

potentiometers are connected directly to the stepper motors instead of the wheel, the 

controller has increased resolution over the steering angle for the fixed resolution of the 

ADC module on the microcontroller through the gear reduction.  

Finally, the wheel is driven by a 24 volt DC hub motor, which allows the wheel to 

exert a tractive torque without the need for a challenging transmission. This makes for a 

mechanically simple and robust vehicle propulsion system. The hub motors are driven 

through custom pulse width modulated H-bridge drivers, and the steer motors are 

controlled through custom unipolar stepper drivers, all designed and implemented by 

Gupta [95]. An optional joystick is included for tethered teleoperation, this joystick is 

connected to the VCU’s microcontroller analog to digital converter channels, which 

interprets the voltages as direction and speed signals; it is used to control the robot for 

manual positioning. 

5.1.2.2.  SOF TW ARE  DESCR IP TIO N  

When this portion of the research was initiated, the hardware was almost complete 

and robust, but the control firmware left much to be desired. Although, it provided a crude 

groundwork for what was eventually redeveloped. In order to use this robot for the 
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intended experiments, it was necessary to fully develop this firmware. The development of 

the vehicle control software was the most labor intensive part of this project. It involved 

reevaluating the current software, familiarizing with the development environment, and 

learning details of microcontroller features to create an easily understandable, expandable, 

modular architecture. 

The initial software for the project was developed in Microchip™ MPLAB v8.63 

Integrated Development Environment. The project was later migrated to a beta platform 

called MPLABX, which is based on Java, with a much cleaner interface, allowing for java 

commands when using features like code folding. This makes the structure of the programs 

much more intuitive and modularized. The user must manually configure a “project”. This 

includes information based on the model, compiler and any configuration options available 

to the microcontroller. Each project contains header files, which define prototypes, several 

source files, which create the executable code, and finally a trap file, which determines 

error handling procedures. To streamline development, this task uses two projects only: 

one for the VCU and another for the WCU, of which source code can be found in Appendix E 

and Appendix F, respectively.  

Each project was organized with two main source code files: the XCU_Main.c and the 

XCU_Drivers.c files. The XCU_Main.c is the primary source file that contains the repeated 

functions that will be executed when the microcontroller is first powered. These functions 

are those that will make calls to the sensors, send and receive information, and perform the 

necessary calculations to manipulate data in a way that can control the actuators.  The 

XCU_Drivers.c, is a secondary file that contains all subfunctions which are primarily used to 
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initialize communication modules, map and configure all microcontroller I/O channels, and 

set up options, timers and interrupts. 

 PERCEPTION  AND ODO MET RY  SY ST EMS  DESI GN  5.2.

At the beginning of the experimentation phase, the robot did not have sufficient 

sensors as would be required for autonomous navigation; particularly perception and 

odometry sensors were absent. As part of the control system design, these sensors had to 

be added to the robot structure. The following subsections describe how the perception 

and odometry system was designed and incorporated to the robot. 

5.2.1.  SONAR  PER CEPTION  SY ST EM  

An array of four sonar sensors was added to the front bumper of the robot. These 

sensors are arranged in pairs labeled EZ-0 and EZ-2. The sonars communicate with the 

control firmware via the Universal Asynchronous Receiver Transmitter, UART, protocol. 

The purpose of these sensors is to determine the range to the nearest object, which is 

required in obstacle avoidance and corridor navigation maneuvers.  

5.2.2.  ODO MET RY  SYS TEM  

An odometry system was designed and added to the robot for use in both robot 

localization and motion control. It consists of a 3-axis ADXL345 inertial measurement unit 

(IMU) and a wheel encoder. The ADXL345 is equipped with a set of 3-axis accelerometers 

capable of measuring linear accelerations up to 16 G’s, and a set of  3-axis gyroscopes 

capable of measuring angular velocities up to 2000°/s. This IMU can measure a total of six 

axes and communicates with the VCU via the Inter-Integrated Circuit, I2C, protocol. Since 

the hub motors of the vehicle have no built-in encoders,  an additional makeshift 
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independent wheel encoder odometer was added to the robot. This system consists of a 

      diameter castor wheel with a 32 division radial black and white pattern, as can be 

seen in Figure 5.3. An analog phototransistor mounted in the bracket detects the wheel 

patterns and sends pulse signals to the VCU indicating changes in the wheel positions, with 

a resolution of              .  

 

FIGURE 5.3 -  THE INDEPENDENT ODOMETER FOR MEASURING DISTANCE TRAVELED  

Together, these odometry sensors gather information, which is read and interpreted 

by the VCU  to generate vehicle motion data which is in turn communicated to the WCU for 

coordination of the 8 independent motors in accordance with the steering algorithm 

implemented. 

A GPS system was designed but was not implemented to the robot not only out of 

time limitations but also due to its poor indoor performance, which made it impractical. It 

is however recommended to implement this GPS for future outdoor applications.  
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 ODO MET RY  AN D CON TR OL SOFTW AR E  5.3.

5.3.1.  VCU  CO DE SCHEME  

As the microcontroller is first powered, it calls the ‘main()’ function. This function 

chooses one of the available steering modes, 2WF, 4CG, 4FM, or 4FR. Independent steer 

angles use equations (3.10)-(3.17) to determine the steer angle and velocity of each wheel 

unit. After choosing the steering mode, it initializes the microcontroller operating 

environment by setting up the computational speed, which is       , and setting up I/O 

and all communication channels. Finally, the function enters into an endless loop, in which 

it reads all onboard sensors, determines the desired vehicle speed VG, and the path angles  

   and   . This information is constantly sent to WCU at variable rates as follows: selected 

steering mode is transmitted using the SPI module at a rate of      , the desired vehicle 

speed,   , as well as    and    are sent using Timer 4 interrupt at intervals of      . 

The VCU microcontroller reads the wheel encoder odometer using a real time 

interrupt, which is triggered every time the encoder wheel voltage level detected by the 

phototransistor changes. In response to this interrupt, the ‘main()’ function increments 

the distance traveled by the robot’s center of mass by        , corresponding to the 

circumferential arc length of the wheel between the black and white bands of the encoder.  

Sonar sensors are connected to the microcontroller through the UART serial 

module, which must be initialized in order for the sensors to be read.  These sensors are 

read by the microcontroller triggered by the Timer 5 interrupt at a rate of      . The 

sensor works such that when the RX communication line is brought high for      , the 

sensor ranges and returns the distance in inches via an ASCII representation. This data is 
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captured by the communication module, checked for errors and stored in the RangeX 

variable; if the data is good, the microcontroller passes to next sonar sensor until all sonar 

sensors are read. The sonar sensors connections to the microcontroller is such that 

although each has its own separate RX lines, they all share a common TX line, which 

minimizes the pin requirement for 4 sensors. The control software is designed to be able to 

distinguish signals from different sensors. The data from the sonar sensors is used to 

calculate    using a simple lever rule, 

      

     
     

  (5.1) 

where    is the distance to the leftmost obstacle,    is the distance to the rightmost 

obstacle and    is the steering gain, which was an experimentally determined number that 

would steer the wheels away from the obstacle by an appropriate angle. In the case of 

mirrored steering angles this number was simply negated and assigned to   .  

The IMU is connected to the microcontroller through the I2C bus; therefore, to read 

the IMU, the I2C module also must be initialized. Then, a function called ‘initIMU()’ is 

called which checks the active axes, collects 100 samples on each axis, and calibrates the 

axes ready for use. The IMU is read by the microcontroller as a response to Timer 2 

interrupt which runs at a rate of       as configured in the ‘initIMU()’ function. Every 

time the IMU is sampled, the units are converted to the CGS/radians unit systems and 

integrated to give the respective acceleration, velocity and position or orientation [101]. 

The tether joystick is connected to one of the 10 bit ADC ports, which is read as a 

response to Timer 3 interrupts occurring at a rate of      .  The tether signal is configured 
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with maximum of 3.3V compatible with dsPIC microcontrollers voltage level; this signal is 

discretized into 1024 levels compatible with 10 bits of the ADC module. These numbers are 

then manipulated into desired vehicle speeds and path angles. 

Figure 5.4 shows the logic flowchart of VCU_Main.c for navigating through a corridor 

using the 4FM algorithm with a path memory function. The VCU gathers information from 

the sonars and uses that information to calculate   . The three timer modules regulate the 

sonar ranging, IMU sampling and SPI transmission on a prescribed schedule. Every time the 

comparator interrupts, the current angle at the front wheels is stored, with compensation 

from the angular orientation. To implement a path memory function, proposed in Chapter 

3, the absolute angle,   , of the wheels relative to their global orientation was stored in an 

array, and retrieved again for computing    after the rear axle tracer had traversed the 

distance of the vehicle, where 

   [ ]        (5.2) 

and   is the absolute orientation of the vehicle relative to the global coordinate system. The 

rear angle,    is retrieved by subtracting the body orientation from the number that is read 

from the array, i.e., 

      [   ]     (5.3) 

Where   is the number of steps from the front position to the rear of the vehicle. This 

method of storing the front steering angle with respect to the global coordinate system, 

allows the center of the rear axle track the center of the front axle very precisely. 
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FIGURE 5.4 – LOGIC FLOWCHART OF VEHICLE CONTROL UNIT WITH PERIPHERALS  
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5.3.2.  WCU  CODE SCHEME  

The WCU control scheme shares many common features with the VCU. As the 

microcontroller is first powered, it goes through an initialization process by setting up the 

clock frequency at 40 MHz, and initialize the I/O channels similar to the VCU. Again the SPI 

module for communication with the VCU is initialized with the same configuration as that 

of the VCU except that the WCU module is set to operate in the slave mode as opposed to 

the master mode for the VCU. This means that the VCU will initialize all information 

transfers by the chip select line and will maintain the clock cycling.  Also as before, the ADC 

is initialized, scanning on two channels at a rate of      . The WCU uses only one of these 

ADC channels for steering feedback of the potentiometer mounted to the steering stepper 

motor. Finally, the pulse-width-modulation unit is initialized running at an operating 

frequency of       , which is used to control the speed of the DC hub motors.  

The SPI communication between the VCU and WCU is coordinated at the WCU 

through a communication error semaphore flag and a real time interrupt which is set to 

run at        intervals. At each real time interrupt occurrence, the timer sets a 

communication error flag, which is cleared whenever the SPI receives data from the VCU. 

Since the VCU transmits at a much higher frequency than the frequency at which the WCU 

reads the data, the semaphore flag should always be reset in time before the WCU reads the 

data. However, as a safety measure against any possible communication error between the 

VCU and the WCUs, the WCU is set to ignore the data if its real time interrupt occurs before 

the semaphore flag is reset. 
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Once all modules have been appropriately initialized, the WCU program enters the 

main ‘while()’ loop. In this loop, the steering angle and wheel speed are calculated based 

on the three parameters passed from the VCU, i.e., the vehicle speed,   , and the path 

direction angles,    and   . The speed controller is a simple function that sets the duty cycle 

of the PWM module. Although a speed feedback from the wheel is required, the hub motors 

used on this robot do not have the required feedback tachometers, so this speed was 

calibrated to be proportional to the voltage applied to it, assuming that robot runs on flat 

surface. The steer controller, however, uses a feedback sensor in the potentiometer 

connected to the stepper motor; this controller sends drive signals to the dedicated PIC10F 

microcontroller that in turn pulses the stepper driver. The function completes when the 

wheel has entered a prescribed orientation tolerance window or upon the reception of a 

different value from the VCU. The allowance for steering interruption allows the VCU to 

transmit two extreme or polar angles to a wheel and it does not have to wait for the wheel 

to reach the first commanded angle before attempting to steer to the next commanded 

angle, allowing for a much more responsive reaction. Figure 5.5 is a visualization of the 

logic used in the WCU code to control the two motors upon reception of control 

information from the VCU. Although each wheel module is at a different position on the 

vehicle relative to other wheels, each implementing different control algorithms as 

specified by equations (3.10)-(3.17), all wheels share the majority of code components 

except the computations of the steering angle and wheel speed.  As such, only one 

WCU_Main.c program is written to handle all four wheels, and local control calculations 

were implemented accordingly. 
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FIGURE 5.5 – LOGIC CONTROL SCHEME OF WHEEL CONTROL UNIT 
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6. EXPERIMENTAL RESULTS  

After numerically validating the proposed control algorithm, the last activity in this 

research was to experimentally demonstrate the viability of the proposed control 

algorithm on a robot platform. This chapter describes the experimental results obtained by 

implementing the proposed algorithm on BIBOT-1 as described in the previous chapter. 

Two sets of experiments were conducted as described in Sections 6.1 and 6.2. The first set 

evaluates the passive performance of the proposed algorithm on preprogrammed path 

maps, and the second set evaluates active performance of the algorithm on obstacle defined 

paths. In the first set, the robot is programmed with a path map and is required to track 

that path, while in the second set, the robot is required to follow a particular path defined 

by obstacles, so that by using onboard sensors, the robot avoids hitting these obstacles and 

hence tracks the desired path. Both sets use three paths, similar to those used in the 

simulation because of their key characteristics as well as historical precedents. 

 PERFO R MAN CE RES ULT S O N PASSI VE PR E-PRO GR AMMED PAT HS  6.1.

This part of the experimentation was intended to validate the results and trends of 

the simulation. It was designed to circumvent as many external errors as possible, 

especially errors due to perception sensors. As will be shown in the next set of 

experiments, these sensors were the primary sources of errors in robot navigation. 

Because these errors can overshadow the performance differences among compared 

steering algorithms, they need to be attenuated if the simulation is to be validated. The best 

way to do this is to minimize the navigational information collected by the robot by 

preprogramming a mapped path into the VCU’s microcontroller memory. As the robot 
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traverses the path, the steering angles are read from the internal memory instead of being 

interpreted from the sonar sensors. The performance of each algorithm was evaluated 

using a root-mean-square deviation of the robot path from the desired path, which is 

equivalent to the statistical standard deviation of the robot path. Comparison trends are 

able to be extracted from this data and verify the simulation results.  

The three paths tested include a U-Turn, a Zig-Zag path, and an S-Curve, seen in 

Figure 6.1.  These paths are, however, scaled appropriately fit in the available 

experimentation space, which is limited to      .  

 

FIGURE 6.1 – CONTROL CURVES FOR EXPERIMENT 1 

The three methods compared in this experiment were 2WF, 4CG and 4FR. For this 

experiment, 4FM was not used because of its similarity to 4CG. The only difference between 

the two algorithms is the location of the tracer point relative to the vehicle. For this type of 

experimentation, 4FM does not seem appropriate because it is based on using sensor data 
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gathered the front sonar array, which was disabled for this experiment. This 4FM 

configuration however, was addressed in the second set of these experiments. The path 

tracking performance of the robot was measured using the same metric as that used in the 

simulations of Chapter 4. 

6.1.1.  EXP ERI MENT AL SETU P AN D PRO CEDUR E  

In this experimentation, the paths are preprocessed using an adaptation of the 

simulation done in MATLAB. The steering angles,    and   , are calculated as a function of 

the vehicle CG distance along the path, using dead reckoning methods similar to those 

described in  (4.1) - (4.4)  with a resolution of 1 cm. These angles are stored as arrays of 

between 1000 and 2500 points consistent with the length of the path in centimeters. The 

arrays are loaded as lookup tables into the flash memory of the VCU microcontroller, but 

are not included in the supplied code because of their sheer length.  A path function was 

created where the odometer interrupt caused the function to load the appropriate values of 

   and   , for the respective position. To provide sufficient time for the microcontroller to 

process these path arrays, the vehicle was kept at a constant speed of         throughout 

all paths and across all steering methods.  

In order to allow the robot make instantaneous stops and turns when negotiating 

sharp corners on the Zig-Zag path under the 4CG tracking steering as discussed before,  the 

path function was defined in segments. The robot would follow one segment to its end 

where it would stop and turn by a prescribed angle as monitored by the gyroscope before 

following the next segment. This process is repeated by the robot for each turn to the end 

of the path. Although this approach worked well, it was prone to angle measurement errors 
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from the gyroscope which were not experienced by other algorithms. This may have 

contributed to decreased path tracking performance for this run. 

Two paper funnels were and attached to the path tracking studs, mounted at the 

center of the front and rear axles, as shown in Figure 6.2. In each run, the funnels were 

loaded with different colored sand that was then laid in two lines as the robot traversed the 

path, marking the path of the front axle as well as the rear axle. This created a much more 

robust method of recording the robot path compared to other methods such as tracing the 

path using a marking pen. The sand is not pressure or time sensitive, consistently leaves an 

easily distinguishable line for later acquisition, and is quickly cleaned with a broom and a 

dustpan to reset each run. The    coordinates of the path tracked by the robot were 

collected by counting 9” floor tiles from a predefined origin. The procedure was repeated 

three times for each of the three paths and three steering configurations for a total of 27 

runs. 

 

FIGURE 6.2 – THE SAND TRACER MOUNTED TO THE AXLE TRACKER (LEFT) RECORDS THE 

MOTION OF THE VEHICLE (RIGHT) 
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6.1.2.  EXP ERI MENT AL RESULTS  

Once the results had been recorded from the robot’s tracked path into 

  coordinates, they were entered into both MS-Excel for visualization as well as MATLAB 

for data analysis. Although the full collection of raw results are attached as Appendix C, the 

major observations are discussed in the following section. To compare the steering 

algorithms over the different courses, a similar metric,  , used in numerical simulation was 

also used here. First, the locus of the path center was discretized into a regular array in 

MATLAB, then at each of these points, the experimental curve was scanned from beginning 

to end and a nearest neighbor, also known as a Fréchet distance [102], was determined as a 

representation of the path deviation,  . The RMS value of the path deviations for the whole 

path is the metric,     as defined in equation (4.5). The results obtained for all methods and 

all paths are summarized in Table 6.1 and in Figure 6.3. 

TABLE 6.1 – RMS DEVIATION FROM CONTROL PATH 

Steering Algorithm U-Turn (cm) Zig-Zag (cm) S-Curve (cm) 

2WF 17.25 18.98 22.21 
4CG 9.21 16.09 10.75 
4FR 8.87 12.23 8.12 

 

Several observations are made from these results. As had been observed in the 

numerical simulation, the 2WF steering configuration results in paths wherein the rear 

wheels ‘lag’ the front wheels. Additionally, it is also observed that the robot attempted to 

navigate the path with extreme steering angles in the 4CG steering mode. These 
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observations are in agreement with those observed in numerical simulation results of 

Chapter 4.  

 

FIGURE 6.3 –  RMS DEVIATION OF BIBOT-1 FROM PRESCRIBED PATH 

Similarly, the observed RMS errors are, in general, on the same order of magnitude 

as those predicted by the simulation. The trends in relative performances of various 

steering methods also match quite well. For all three paths, both AWS configurations 

perform better than the conventional car-like 2WF. These results confirm the worthiness of 

using all wheel steering in comparison to the conventional car-like front wheel steering. 

Furthermore, comparison of  the two AWS modes shows that the proposed 4FR steering 

algorithm performed relatively 4-25% better than the 4CG tracking method for every path. 
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 PERFO R MAN CE RES ULT S O N REACTIV E OBS TACLE DEFIN ED PAT HS  6.2.

The final set of experiments demonstrated the practical implementation of the path 

tracking algorithm used in a real world environment where the path is defined using 

obstacles. This environment requires the robot to create a path map in real time using its 

onboard odometry system, which includes the IMU and the sonar sensor array. This real 

time map is the used by the robot to navigate through a simulated corridor of varying 

shapes and sizes. This part of the experiment tested only the two AWS steering method: the 

4FR and 4FM tracking algorithms. The 2WF and the 4CG were not tested because the 2WF 

was deemed inferior from all previous results and the 4CG configuration was assumed to be 

equivalent to the 4FM. Recall that the 4FM algorithm is similar to the 4CG method because 

both constrain their ICR along the longitudinal perpendicular bisector of the robot.  

Both methods that were tested use front sonar sensors to determine the angle at the 

front wheels,   . The difference between the two methods is that the 4FR method is the 

only one that uses the gyroscope to determine the absolute vehicle body orientation. The 

body orientation is consequently used to determine the absolute angle of the path using the 

memory function, leading to values of the rear path angle,   , as the rear axle crosses that 

point. This on-the-fly path memory function allows the rear wheels to approximately track 

an identical path as the front wheels, thus avoiding any obstacles. Of the two, the 4FM 

algorithm was however deemed more convenient for this experimental setup because all 

wheel orientations are defined based on the front steer angle,   , which is given only by the 

sonar array located at the front of the vehicle. The 4FM method uses the sonar array to find 

   and negates it to determine   . This implies that the ICR lies on the normal to the vehicle 
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heading which passes through the vehicle CG. This is a simpler approach because it does 

not require a gyroscope. 

6.2.1.  EXP ERI MENT AL SET UP  AND PRO CEDUR E  

For each of the runs, a corridor was set up using pieces of 4” Ø PVC pipe cut to 24” 

lengths, spaced at 18” apart as shown in Figure 6.4. These PVC pipes provided adequate 

‘targets’ for the sonar to range and were spaced closely enough that the robot interprets 

them as continuous walls. The front path angle,   , was computed from sonar 

measurements using the lever rule of equation (5.1). Because the vehicle velocity was set 

constant, a saturation condition was introduced so that the wheels would not ‘flip’ and 

attempt a zero radius turn. This maneuver was avoided because it takes considerably more 

time than standard maneuvering, as the wheels must rotate 180°, which isn’t practical if a 

constant velocity is desired. 

 

FIGURE 6.4 - 90°  TURN USING PVC PIPE TO CREATE CONFIGURABLE CORRIDORS  
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Three paths were tested, including a U-Turn, a 90° corner, and the S-Curve 

simulating an obtrusion or obstacle; all paths are shown in Figure 6.5. For this experiment, 

a 90° corner was supplanted for the Zig-Zag. The key characteristic of the Zig-Zag path is 

the cusps or sharp corners, that vehicles of large aspect ratios normally have a difficult time 

navigating. To assess the robot’s ability to navigate these corners, it was desirable to have 

the robot interpret the boundary as having sharp corners.  

 

FIGURE 6.5 – EXPERIMENTAL PATHS FOR SENSORY NAVIGATION 

Because the robot uses the sonar sensors, smaller angles are interpreted as rounder 

corners.  Therefore to generate a noticeably discontinuous curve, only larger angles could 

be used; this concept is demonstrated in Figure 6.6. This is due to the fact that when the 

vehicle reaches the corner, to the sonar, the boundary abruptly disappears, causing the 

robot to fully steer in that direction until the boundary can be ranged again. For these 
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reasons, a 90° corner was chosen; ideally, this would have been made into a full Zig-Zag 

course but was not feasible due to the size of the experimental setting as well as the limited 

availability of corridor boundary targets. The 90° corner did successfully cause the robot to 

replicate the behavior exhibited when crossing the cusps in Experiment 1. 

 

FIGURE 6.6 – THE SONAR (BLUE) INTERPRETS SHALLOW ANGLES (GREEN) AS ROUND CORNERS 

AND LARGE ANGLES (RED) AS CUSPS 

Once the boundaries had been established and the appropriate steering algorithm 

loaded onto the VCU, the robot traversed the path, again marking the front and rear axle 

tracers with sand. The coordinates of the tracked path were recorded manually using the 

tile spacing on the floor as a reference. Any interference with the PVC corridor was noted 

as reflected in the results, shown in Appendix D. Again, this procedure was repeated three 

times for each path and steering configuration for a total of 18 runs. 
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6.2.2.  EXP ERI MENT AL RESULTS  

For this experiment, the relative performance measure of the robot was based upon 

the ability to navigate the tight corridor without any boundary interference. The exact path 

taken by the robot was less important compared to how often it was unable to avoid the 

obstacles. Therefore, the performance metric was chosen to be the number the boundary 

defining pipes that were interfered with by the robot throughout the navigation of the 

course.  The pipes were regularly spaced and the robot performed well enough that only a 

marginal number of pipes were ever knocked over, yet there was enough of a discrepancy 

between the algorithms to draw a sound conclusion. The full results are shown in Appendix 

D and a summary of these results and observations is noted in this section.  

From a qualitative standpoint, the robot seemed to perform better while it was 

using the 4FR method than when it was tracking the front axle alone (4FM). Although, the 

4FM configuration was not as susceptible to sensor drift or error accumulation as the 4FR 

algorithm because it did not rely upon the gyroscope. In the initial development of the 

experimental procedure, the corridor was much wider than the final one. In the wider case, 

both algorithms performed flawlessly. In fact, it was somewhat difficult to tell which 

algorithm was used based on the resulting path alone. For a wide corridor, the 4FM is a 

much simpler, method that performs as good as the 4FR, for a vehicle of this aspect ratio. 

However, as the corridor was narrowed, the pitfalls of the 4FM method became 

more evident. Because the wheels simply mirror each other, and the robot is only directing 

its front wheels, it is ‘unaware’ of where the rear of the vehicle is in relation to the path 

boundaries. Primarily, in cornering events, the rear end of the robot would swing in the 
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opposite direction; with a narrow corridor, this would usually cause interference. The 4FR 

method however was able to navigate these boundaries with ease. The robot had the 

assurance of ‘knowing’ that if the front axle could pass through the boundary, the path 

memory function would ensure navigation of  the rear end through that same gateway. The 

advantages of the 4FR over 4FM were exposed in all tight corners. It is expected that for a 

vehicle of a large aspect ratio, i.e. a wheelbase much larger than the wheel track,  the 

disparity between the 4FR and 4FM would be even greater. 

 

FIGURE 6.7 – PERFORMANCE COMPARISON OF BIBOT-1 NAVIGATING A CORRIDOR 

By quantitative methods, the 4FR performed 2-3 times better than the 4FM as 

shown by the results in Figure 6.7. For the 90° corner the 4FR method performed 

flawlessly; and in the other two paths it consistently performed better than 4FM. Diagrams 

of the tracked paths, show the ‘bundles’, which indicate the path of the front and rear axles, 
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are much more tightly ‘packed’ for the 4FR algorithm. This is an indicator that the 

controller did an effective job of navigating the rear axle along the same path as the front 

axle. For 4FM tracking, the front and rear paths have little correlation. The swinging out of 

the rear axle is especially evident in the U-Turn route, Figure D.1. The results reflect exactly 

what was observed; in narrow routes the 4FR method is superior. This however, comes 

with the price of increased instrumentation and susceptibility to error accumulation and 

drift. 

 SOUR CES O F ER ROR  6.3.

Throughout the experimentation, there are several sources of error. One of the 

largest sources of error is position drift from accumulation of smaller errors. Because the 

robot has no way to update its absolute position, all errors accumulate until the robot has 

completed its path. It was initially thought that the robot could use the 6-axis inertial 

measurement unit as a means of navigation. However after some simple experimentation, 

it was realized that this was not feasible. Any noise in the accelerometer is integrated twice 

causing an exponential growth of position error. These errors were observed to be on the 

order of kilometers after only a minute of operation, even after doing extensive calibration 

and introducing better error correction steps [101]. Many modern navigation systems 

typically use a Kalman filter to combine information from all axes and in some cases a GPS 

to eliminate noise and consequently drift. These filters and navigational systems 

themselves often become the subject of PhD dissertations. In the limited scope of time, it 

was not viable to use a positioning system like this, so dead reckoning methods were 

combined with a odometer for most applications.  
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The experiment was performed using sand as a path tracking medium. The sand 

may have contributed to wheel slip, causing the robot to misalign as it was navigating the 

paths. Furthermore, the mechanical platform itself displayed momentary backlashes in the 

steering gearboxes, which could cause large amounts of steering errors that may even 

outweigh the discrepancies between steering methods. Although these backlash errors 

were very significant in the early stages of the experimentation, they were resolved 

through properly adjusting the hidden set screws that adjust the gearbox backlash. 

Finally, there may have been error due to the data collection methods. Because the 

sand was laid on a tile floor, these increments became the most convenient method of 

measurement. The tile spacing was 9”, thus most of the data for the paths is collected at 

resolution of 9” intervals. At each interval, an attempt was made to estimate the 

intersection of the line with the tile to the nearest inch. This coarse resolution may have 

been too granular to fully represent the individual paths. 
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7. CONCLUDING REMARKS  

This thesis has investigated path tracking control algorithms for a four wheeled 

robotic vehicle with independently driven and independently steered wheels (AWS/AWD). 

It was part of the larger problem of path tracking of self-reconfigurable robotic vehicles 

with prismatically articulated suspension for use in highly irregular terrains that are 

difficult to traverse by normal vehicles and humans. Controlling these vehicles is still a 

challenging problem because of their overactuation, which makes it difficult to satisfy the 

instantaneous center of rotation for rigid bodies. 

After a brief history of past work in automobile and robotic kinematic developments 

including different drive train and steering configurations and their implications, the 

research began by studying the general four wheeled independently driven, independently 

steered robotic vehicle with prismatic articulated suspension.  Both the kinematics and 

dynamics of this vehicle were studied; it was found that the kinematic dynamic model was 

complex with a dimension of 26 x 20 and the rigid body kinematic constraint was even 

more complex. The problem is simplified by reducing this system to an independent 

AWS/AWD vehicle with a fixed suspension, which reduces the dimension of the system to 

14 x 8. A new set of kinematic constraints was developed to constrain all steered wheels of 

the vehicle to remain at the center of the path while satisfying the instantaneous center of 

rotation condition. These constraints are defined using the vehicle speed, and the geometry 

of the path as well as that of the vehicle. These constraints were then applied in developing 

an optimal path control algorithm that minimizes the vehicle deviation from the path 

center in a decentralized control architecture. 
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The proposed algorithm is tested by both numerical simulation and experimentally 

using an in-house BIBOT-1 robot. Details of the numerical simulation and the 

experimentation are discussed, along with the observed results. The performance of the 

proposed path tracking algorithm are compared with other path tracking algorithms in a 

variety of paths. In general the proposed algorithm, 4FR, outperforms all other methods 

that were used in this study with fewer path tracking errors. Although the experimental 

results are likely to have been affected by a variety of sensor uncertainties, especially for 

those algorithms that relied heavily on sensor data, results obtained from the using the 

proposed algorithm support the need to have overactuation, whose advantages are most 

distinguishable in highly demanding paths, where the margin for error is very small. 

 FUT UR E WO RK  7.1.

Throughout the experimentation, several opportunities for improvement were 

observed. The experimental platform would be most dramatically improved by an absolute 

positioning system such as GPS for outdoor navigation or a system like the STARGAZER 

[103] for indoor localization. The weakness of these systems is that they require beacons 

such as satellites or previously dispersed light signals. This makes the system impractical 

for unfamiliar indoor or extraterrestrial environments. However, the dead reckoning 

system used in the experiments as well as the inertial navigation system initially proposed 

are much too vulnerable to positioning error accumulation to be feasible for distances of 

more than 30 meters. 

Another improvement to the robot would be individual wheel encoders. Currently, 

the robot sets the duty of the pulse width modulation controller for the hub motors. It is 
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therefore assumed that the wheel speed is equally linearly proportional to this duty for all 

wheels, when in fact this is not the case. The individual wheel encoders would allow the 

WCUs to employ a feedback controller for the wheel speed which would further reduce 

errors. 

The last improvement would be for the steering motor controller to be upgraded to 

a more flexible microcontroller. Currently, the microcontroller only allows for the input of 

two signals, namely on/off and direction. This makes fine positioning of the wheels difficult 

and doesn’t allow for variable speeds of the steering motor. Although it is a feedback 

control system, this limits the parameters that can be used to rigorously control the 

steering motor, which may further reduce the errors. 

The next step forward in the research would be to test this steering algorithm in 

conjunction with an articulating suspension on a self-reconfigurable robot such as the 

BIBOT-2. The 3D environment would pose new challenges that must be addressed before 

this technology will be suitable for operational use. However, at this time, the research has 

the potential for being developed into an extraterrestrial rover, an emergency response 

tool or a domestic assistant. The possibilities are endless for a self-reconfigurable 

autonomous robotic vehicle with 3 dimensional navigational capabilities.  
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APPENDIX A.  MATLAB STEERING SIMULATION CODE  

A.1.  FEEDBACK  CO NTRO LLER S I MULATION  

A.1.1.  CONT RO L1.M  

load angles.mat; 
N=length(CGx); 
Steps=2; 
TotalTime=sum((diff(CGx).^2+diff(CGy).^2).^(0.5)); 
DT=TotalTime/(Steps*N); 
vg=1; 
V1=v1(1); 
D1=d1(1); 
V2=v2(1); 
D2=d2(1); 
V3=v3(1); 
D3=d3(1); 
V4=v4(1); 
D4=d4(1); 
BT1=0; 
BT2=0; 
BT3=0; 
BT4=0; 
MR=50.0; 
rw=0.085; 
Iwr=0.025; 
Iws=0.009; 
mw=3.5; 
W=0.75; 
H=1.0; 
Tt1=0; 
Tt2=0; 
Tt3=0; 
Tt4=0; 
Ts1=0; 
Ts2=0; 
Ts3=0; 
Ts4=0; 
 
for k=1:N 
    DF=df(k); 
    DR=dr(k); 
     
    dref1=acot(cot(DF)+(W/(2*H))*cot(DF)*(tan(DF)-tan(DR))); 
    dref2=acot(cot(DF)-(W/(2*H))*cot(DF)*(tan(DF)-tan(DR))); 
    dref3=acot(cot(DR)-(W/(2*H))*cot(DR)*(tan(DF)-tan(DR))); 
    dref4=acot(cot(DR)+(W/(2*H))*cot(DR)*(tan(DF)-tan(DR))); 
    Vref1=vg*tan(DF)*csc(dref1)/sqrt(1+.25*(tan(DF)+tan(DR))^2); 
    Vref2=vg*tan(DF)*csc(dref2)/sqrt(1+.25*(tan(DF)+tan(DR))^2); 
    Vref3=vg*tan(DR)*csc(dref3)/sqrt(1+.25*(tan(DF)+tan(DR))^2); 
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    Vref4=vg*tan(DR)*csc(dref4)/sqrt(1+.25*(tan(DF)+tan(DR))^2); 
    PKT=120; 
    PKS=230; 
    for n=1:Steps 
        TT=PKT*(Vref1-V1(length(V1))); 
        Tt1=[Tt1,TT]; 
        Vn=V1(length(V1)); 
        V1=[V1,Vn+DT*4*rw*TT/(MR*rw^2+4*(Iwr+mw*rw^2))]; 
        TT=PKT*(Vref2-V2(length(V2))); 
        Tt2=[Tt2,TT]; 
        Vn=V2(length(V2)); 
        V2=[V2,Vn+DT*4*rw*TT/(MR*rw^2+4*(Iwr+mw*rw^2))]; 
        TT=PKT*(Vref3-V3(length(V3))); 
        Tt3=[Tt3,TT]; 
        Vn=V3(length(V3)); 
        V3=[V3,Vn+DT*4*rw*TT/(MR*rw^2+4*(Iwr+mw*rw^2))]; 
        TT=PKT*(Vref4-V4(length(V4))); 
        Tt4=[Tt4,TT]; 
        Vn=V4(length(V4)); 
        V4=[V4,Vn+DT*4*rw*TT/(MR*rw^2+4*(Iwr+mw*rw^2))]; 
         
        bn=BT1(length(BT1)); 
        TS=PKS*(dref1-D1(length(D1))); 
 
             
        Ts1=[Ts1,TS]; 
        BT1=[BT1,bn+DT*TS/Iws]; 
         
        bn=BT2(length(BT2)); 
        TS=PKS*(dref2-D2(length(D2))); 
     
        Ts2=[Ts2,TS]; 
        BT2=[BT2,bn+DT*TS/Iws]; 
         
        bn=BT3(length(BT3)); 
        TS=PKS*(dref3-D3(length(D3))); 
 
        Ts3=[Ts3,TS]; 
        BT3=[BT3,bn+DT*TS/Iws]; 
         
        bn=BT4(length(BT4)); 
        TS=PKS*(dref4-D4(length(D4))); 
     
        Ts4=[Ts4,TS]; 
        BT4=[BT4,bn+DT*TS/Iws]; 
         
        dn=D1(length(D1)); 
        D1=[D1,dn+DT*BT1(length(BT1))]; 
         
        dn=D2(length(D2)); 
        D2=[D2,dn+DT*BT2(length(BT2))]; 
         
        dn=D3(length(D3)); 
        D3=[D3,dn+DT*BT3(length(BT3))]; 
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        dn=D4(length(D4)); 
        D4=[D4,dn+DT*BT4(length(BT4))]; 
    end 
    %Integration 
end; 
XM=linspace(0,7,length(d1)); 
XN=linspace(0,7,length(D1)); 
figure(1) 
    plot(XM,d1,'b-',XM,d2,'g-',XM,d4,'r-',XM,d3,'k-'); 
    legend('\delta_{1-th}','\delta_{2-th}','\delta_{3-th}','\delta_{4-th}') 
    ylabel('Wheel angle [radians]'); 
    xlabel('x-position [meters]'); 
    grid 
    figure(2) 
    plot(XM,v1,'b-',XM,v2,'g-',XM,v4,'r-',XM,v3,'k-'); 
    legend('V_{1-th}','V_{2-th}','V_{3-th}','V_{4-th}') 
    ylabel('Wheel Speed [meters/sec]'); 
    xlabel('x-position [meters]'); 
    grid 
     
figure(3) 
    plot(XM,d1,'c--',XN,D1,'b-',XM,d2,'m--',XN,D2,'g-',XM,d4,'y--',XN,D3,'r-
',XM,d3,'gr--',XN,D4,'k-'); 
    legend('\delta_{1-th}','\delta_{1-contr}','\delta_{2-th}','\delta_{2-
contr}','\delta_{3-th}','\delta_{3-contr}','\delta_{4-th}','\delta_{4-contr}') 
    ylabel('Wheel angle [radians]'); 
    xlabel('x-position [meters]'); 
    grid 
    figure(4) 
    plot(XM,vg*v1,'c--',XN,V1,'b-',XM,vg*v2,'m--',XN,V2,'g-',XM,vg*v4,'y--',XN,V3,'r-
',XM,vg*v3,'gr--',XN,V4,'k-'); 
    legend('V_{1-th}','V_{1-contr}','V_{2-th}','V_{2-contr}','V_{3-th}','V_{3-
contr}','V_{4-th}','V_{4-contr}') 
    ylabel('Wheel Speed [meters/sec]'); 
    xlabel('x-position [meters]'); 
    grid 
    figure(5); 
    plot(XN,Tt1,'b-',XN,Tt2,'g:',XN,Tt3,'r--',XN,Tt4,'k-.') 
    legend('\tau_{T1}','\tau_{T2}','\tau_{T3}','\tau_{T4}'); 
    ylabel('Traction Torque [N.m]'); 
    xlabel('x-position [meters]'); 
    grid 
    figure(6); 
    plot(XN,Ts1,'b-',XN,Ts2,'g:',XN,Ts3,'r--',XN,Ts4,'k-.') 
    legend('\tau_{S1}','\tau_{S2}','\tau_{S3}','\tau_{S4}'); 
    ylabel('Steering Torque [N.m]'); 
    xlabel('x-position [meters]'); 
    grid 
    figure(7) 
    plot(XM,d1,'b-',XM,d2,'g-',XM,d4,'r-',XM,d3,'k-'); 
    legend('\delta_{1-th}','\delta_{2-th}','\delta_{3-th}','\delta_{4-th}') 
    ylabel('Wheel angle [radians]'); 
    xlabel('x-position [meters]'); 
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    grid 

A.2.  2WS  CON FIGUR ATIO N  

A.2.1.  ANI MAT E .M  

function animate(option) 
 
%============================ 
% Author: Jon Nistler 
% Date: September 25, 2009 
% For: HW3 
 
%======================================================== 
global carHandle slopef sloper x y 
global x2f y2f x1r y1r hnow drnow 
global line1Handle 
global line2Handle 
global line3Handle 
global line4Handle 
global wheel1Handle 
global wheel2Handle 
global wheel3Handle 
global wheel4Handle 
global w1xpos w1ypos w1rot phi1 w1speed 
global w2xpos w2ypos w2rot phi2 w2speed 
global w3xpos w3ypos w3rot phi3 w3speed 
global w4xpos w4ypos w4rot phi4 w4speed 
 
%============================================================ 
 
global base track sizeindex heading 
global rearx reary frontx fronty ICx ICy 
base=1; %wheelbase of vehicle 
track=base*.75; 
velocity=1; 
 
cardiag=(((track/2)^2+base^2)^.5); 
carang=atan((track/2)/base); 
 
points=500; %number of points to use 
pathend=15; 
 
 
%%initialize on first call 
if nargin<1 
    option = 'initialize'; 
end; 
 
%============================== 
% initialize 
%============================== 
 
if strcmp(option,'initialize') 
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    tic 
    %initialize the program 
    clf; % clears the figure window 
    hold on; hold off; % clean up any previous holds 
    % create the figure window 
    fig1 = figure(1); % get the handle to a new figure window 
    set(fig1,'Position',[50,50,600,600],... 
        'NumberTitle','off','Name',... 
        'AWS Robot Animation'); 
    set(gca,'drawmode','fast'); 
    set(fig1,'Backingstore','off'); 
     
     
    %===================================== 
    % Menus 
    %===================================== 
    set(gcf,'MenuBar','none'); 
     
    %File menu 
    file_menu = uimenu(fig1,'label','File'); 
    print_option = uimenu(file_menu,'Label','Print',... 
        'Callback','printdlg'); 
    export_option = uimenu(file_menu,'Label','Export',... 
        'Callback','print -djpeg'); 
    exit_option = uimenu(file_menu,'Label','Exit','Callback','exit'); 
     
    %Action menu 
    action_menu = uimenu(fig1,'Label','Actions'); 
    animate_option = uimenu(action_menu,'Label','Animate',... 
        'Callback','animate(''animate'')'); 
     
    %Initialize coordinate system 
    plot(0,0,'k','linewidth',1.5) 
    hold on 
    plot(0,0,'r-.','linewidth',1.5) 
    plot(0,0,'c.') 
    legend('Tracking Path','CG Path','Instant Center Path','Location','NorthWest') 
    axis ([0 7.5 0  7.5]); 
    axis square 
    axis('on'); 
    grid('on'); 
    title('Animation Showing Instant Center for Steering Control'); 
    xlabel('X Coordinate'); 
    ylabel('Y Coordinate'); 
     
    %Initialize 'gate' graphics 
    carHandle=0; 
    car(translateme(0,0)); 
     
    wheel1Handle=0; 
    wheel1(translateme(0,0)); 
     
    wheel2Handle=0; 
    wheel2(translateme(0,0)); 
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    wheel3Handle=0; 
    wheel3(translateme(0,0)); 
     
    wheel4Handle=0; 
    wheel4(translateme(0,0)); 
     
    line1Handle=0; 
    line1(0,0,0,0); 
     
    line2Handle=0; 
    line2(0,0,0,0); 
     
    line3Handle=0; 
    line3(0,0,0,0); 
     
    line4Handle=0; 
    line4(0,0,0,0); 
     
    % =============== 
    % Calculation of Coordinates 
    % =============== 
    x=linspace(0,7.5,points+1);  %curve to follow 
    y=curvy(x); 
%     x=.5.*x; 
%     y=.5.*y; 
    dx=x(2)-x(1); 
    %first find point that is closest to car distance away 
    for i=2:1:points; 
        min=inf; 
        length=((x(i)-x(1))^2+(y(i)-y(1))^2)^.5; 
        diff=base-length; 
         
        if diff<min 
            min=diff; 
            start=i; 
            sizeindex=points-start; 
        end 
         
        if diff<0 %break when get further than car length 
            break 
        end 
    end 
     
    %Establish front XY coordinates 
    count=1; 
    for i=start:points; 
         
        frontx(count)=x(i); 
        fronty(count)=y(i); 
        slopef(count)=(y(i+1)-y(i-1))/(2*dx); 
         
         
        %find where rear of vehicle is 
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        min=inf;%reinitialize min for minimum search 
         
        for k=1:points;  %go through all points behind the front to see which is 
closest to the car length 
            length=((x(i)-x(i-k))^2+(y(i)-y(i-k))^2)^.5; 
            diff=base-length; 
             
            if diff<0 %break when get further than car length 
                break 
            end 
             
            if diff<min 
                min=diff; 
                rearx(count)=x(i-k); 
                reary(count)=y(i-k); 
                sloper(count)=(y(i-k+1)-y(i-1-k))/(2*dx); 
            end 
        end 
         
        count=count+1; 
         
    end 
     
    % Rear starting x and y point 
    rearx(1)=x(1); 
    reary(1)=y(1); 
     
    %Now find initial heading angle of car 
    heading(1)=(fronty(1)-reary(1))/(frontx(1)-rearx(1)); 
    %Find first df 
    df(1)=atan(slopef(1))-atan(heading(1)); 
    dr(1)=0; 
     
    for i=2:sizeindex 
         
        dfa=abs(df(i-1)); 
        disp=((frontx(i)-frontx(i-1))^2+(fronty(i)-fronty(i-1))^2)^.5; %pt to pt disp 
        B=asin((disp*sin(dfa))/base); 
        heading(i)=tan(atan(heading(i-1))+sign(df(i-1))*abs(B)); 
        df(i)=atan(slopef(i))-atan(heading(i)); 
        dr(i)=0; 
         
    end 
     
    % %%%%% Calculate Wheel Angles 
    for n=1:sizeindex; 
         
        % %Wheel 1 
        w1xpos(n)=frontx(n)-(track/2)*sin(pi-atan(heading(n))); 
        w1ypos(n)=fronty(n)-(track/2)*cos(pi-atan(heading(n))); 
        d1(n)=acot(cot(df(n))-(track/(2*base))*cot(df(n))*(tan(df(n))-tan(dr(n)))); 
        w1rot(n)=atan(heading(n))+d1(n);%d1(n); 
        % 
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        % %Wheel 2 
        w2xpos(n)=frontx(n)+(track/2)*sin(pi-atan(heading(n))); 
        w2ypos(n)=fronty(n)+(track/2)*cos(pi-atan(heading(n))); 
        d2(n)=acot(cot(df(n))+(track/(2*base))*cot(df(n))*(tan(df(n))-tan(dr(n)))); 
         
        w2rot(n)=atan(heading(n))+d2(n);%d2(n); 
        % 
        % % %Wheel 3 
        w3xpos(n)=frontx(n)-cardiag*cos(atan(heading(n))+carang); 
        w3ypos(n)=fronty(n)-cardiag*sin(atan(heading(n))+carang); 
        d3(n)=acot(cot(dr(n))+(track/(2*base))*cot(dr(n))*(tan(df(n))-tan(dr(n)))); 
        w3rot(n)=atan(heading(n))+d3(n);%d3(n); 
        % 
        % %Wheel 4 
        w4xpos(n)=frontx(n)-cardiag*cos(atan(heading(n))-carang); 
        w4ypos(n)=fronty(n)-cardiag*sin(atan(heading(n))-carang); 
        d4(n)=acot(cot(dr(n))-(track/(2*base))*cot(dr(n))*(tan(df(n))-tan(dr(n)))); 
        w4rot(n)=atan(heading(n))+d4(n);%d4(n); 
        % Center of Gravity 
        CGx(n)=frontx(n)-base/2*cos(atan(heading(n))); 
        CGy(n)=fronty(n)-base/2*sin(atan(heading(n))); 
    end 
     
    Error=0; 
    for k=1:sizeindex; 
        %Find ideal xy coord 
        w1xi(k)=frontx(k)-(track/2)*sin(atan(slopef(k))); 
        w1yi(k)=fronty(k)+(track/2)*cos(atan(slopef(k))); 
        w2xi(k)=frontx(k)+(track/2)*sin(atan(slopef(k))); 
        w2yi(k)=fronty(k)-(track/2)*cos(atan(slopef(k))); 
        w4xi(k)=rearx(k)-(track/2)*sin(atan(sloper(k))); 
        w4yi(k)=reary(k)+(track/2)*cos(atan(sloper(k))); 
        w3xi(k)=rearx(k)+(track/2)*sin(atan(sloper(k))); 
        w3yi(k)=reary(k)-(track/2)*cos(atan(sloper(k))); 
        w1e(k)=((w1xpos(k)-w1xi(k))^2+(w1ypos(k)-w1yi(k))^2)^.5; 
        w2e(k)=((w2xpos(k)-w2xi(k))^2+(w2ypos(k)-w2yi(k))^2)^.5; 
        w3e(k)=((w3xpos(k)-w3xi(k))^2+(w3ypos(k)-w3yi(k))^2)^.5; 
        w4e(k)=((w4xpos(k)-w4xi(k))^2+(w4ypos(k)-w4yi(k))^2)^.5; 
        Error=Error+w1e(k)+w2e(k)+w3e(k)+w4e(k); 
    end 
    Error=Error/(points*4) 
     
    % plot(rearx,reary,'b','linewidth',1.5) 
    plot(frontx,fronty,'k','linewidth',1.5) 
    plot(w1xpos,w1ypos,'g','linewidth',1.5) 
    plot(w2xpos,w2ypos,'g','linewidth',1.5) 
    plot(w3xpos,w3ypos,'g','linewidth',1.5) 
    plot(w4xpos,w4ypos,'g','linewidth',1.5) 
    plot(w1xi,w1yi,'b','linewidth',1.5) 
    plot(w2xi,w2yi,'b','linewidth',1.5) 
    plot(w3xi,w3yi,'b','linewidth',1.5) 
    plot(w4xi,w4yi,'b','linewidth',1.5) 
    plot(x,y,'k','linewidth',1.5) 
    plot(CGx,CGy,'r-.','linewidth',1.5) 
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    legend('Tracking Path','CG Path','Location','NorthWest') 
     
    % 
    % %%% Calculate Wheel Speeds 
    % 
    % w1speed = velocity*W1R./CGR; 
    % w2speed = velocity*W2R./CGR; 
    % w3speed = velocity*W3R./CGR; 
    % w4speed = velocity*W4R./CGR; 
     
    % %%% Second Figure to show Wheel Information 
    % 
    % fig2 = figure(2); % get the handle to a new figure window 
    % set(fig2,'Position',[75,75,625,625],... 
    %     'NumberTitle','off','Name',... 
    %     'Wheel Information') 
    % subplot(2,1,1) 
    % plot(rearx,phi1,'b') 
    % axis([0,pathend/2,-90,90]); 
    % hold on 
    % title('Wheel Angles vs. Postion') 
    % xlabel('Position') 
    % ylabel('Wheel Angle with Respect to Vehicle (Degrees)') 
    % plot(rearx,phi2,'m') 
    % plot(rearx,phi3,'r') 
    % plot(rearx,phi4,'g') 
    % hold off 
    % 
    % subplot(2,1,2) 
    % plot(rearx,w1speed,'b') 
    % axis([0,pathend/2,0,2]); 
    % hold on 
    % title('Wheel Speed vs. Postion') 
    % xlabel('Position') 
    % ylabel('Wheel Speed') 
    % plot(rearx,w2speed,'m') 
    % plot(rearx,w3speed,'r') 
    % plot(rearx,w4speed,'g') 
    % hold off 
    % 
    figure(2) 
    plot(w1e) 
    hold on 
    plot(w2e) 
    plot(w3e) 
    hold on 
    plot(w4e) 
    % 
    % =============== 
    % Animation 
    % =============== 
elseif strcmp(option,'animate'); 
    %sizeindex = number of frames in animation 
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    for index = 1:sizeindex; 
        %     if index==150 
        %         pause; 
        %     end 
        %Car Body 
        car(translateme(frontx(index),fronty(index))*rotateme(atan(heading(index)))); 
% draw the car in new posn 
         
        % %Wheel 1 
        wheel1(translateme(w1xpos(index),w1ypos(index))*rotateme(w1rot(index))); 
        % 
        % %Wheel 2 
        wheel2(translateme(w2xpos(index),w2ypos(index))*rotateme(w2rot(index))); 
        % 
        % % %Wheel 3 
        wheel3(translateme(w3xpos(index),w3ypos(index))*rotateme(w4rot(index))); 
        % % 
        % % %Wheel 4 
        wheel4(translateme(w4xpos(index),w4ypos(index))*rotateme(w4rot(index))); 
         
        drawnow; % flush the buffer 
        %pause(0.01); % slow it down a little 
    end 
     
    hold off 
end; %animate program 

A.3.  AWS  ST EERI NG CON FI GUR ATION ,  FRON T WHEEL TR ACKIN G  

A.3.1.  ANI MAT E .M  

function animate(option) 
 
%============================ 
% Author: Jon Nistler 
% Date: September 25, 2009 
% For: HW3 
 
%======================================================== 
global carHandle slopef sloper x y 
global x2f y2f x1r y1r hnow drnow 
global line1Handle 
global line2Handle 
global line3Handle  
global line4Handle  
global wheel1Handle  
global wheel2Handle  
global wheel3Handle  
global wheel4Handle  
global w1xpos w1ypos w1rot phi1 w1speed 
global w2xpos w2ypos w2rot phi2 w2speed 
global w3xpos w3ypos w3rot phi3 w3speed 
global w4xpos w4ypos w4rot phi4 w4speed 
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%============================================================ 
 
global base track sizeindex heading 
global rearx reary frontx fronty ICx ICy  
base=1; %wheelbase of vehicle 
track=base*.75; 
velocity=1; 
 
cardiag=(((track/2)^2+base^2)^.5); 
carang=atan((track/2)/base); 
 
points=5000; %number of points to use 
pathend=15; 
 
 
%%initialize on first call 
if nargin<1 
option = 'initialize'; 
end; 
 
%============================== 
% initialize 
%============================== 
 
if strcmp(option,'initialize') 
tic 
%initialize the program 
clf; % clears the figure window 
hold on; hold off; % clean up any previous holds 
% create the figure window 
fig1 = figure(1); % get the handle to a new figure window 
set(fig1,'Position',[50,50,600,600],... 
    'NumberTitle','off','Name',... 
    'AWS Robot Animation'); 
set(gca,'drawmode','fast'); 
set(fig1,'Backingstore','off'); 
 
 
%===================================== 
% Menus 
%===================================== 
set(gcf,'MenuBar','none'); 
 
%File menu 
file_menu = uimenu(fig1,'label','File'); 
print_option = uimenu(file_menu,'Label','Print',... 
'Callback','printdlg'); 
export_option = uimenu(file_menu,'Label','Export',... 
'Callback','print -djpeg'); 
exit_option = uimenu(file_menu,'Label','Exit','Callback','exit'); 
 
%Action menu 
action_menu = uimenu(fig1,'Label','Actions'); 
animate_option = uimenu(action_menu,'Label','Animate',... 
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'Callback','animate(''animate'')'); 
 
%Initialize coordinate system 
plot(0,0,'k','linewidth',1.5) 
hold on 
plot(0,0,'r-.','linewidth',1.5) 
plot(0,0,'c.') 
legend('Tracking Path','CG Path','Instant Center Path','Location','NorthWest') 
axis ([0 7.5 0  7.5]); 
axis square 
axis('on'); 
grid('on'); 
title('Animation Showing Instant Center for Steering Control'); 
xlabel('X Coordinate'); 
ylabel('Y Coordinate'); 
 
%Initialize 'gate' graphics 
carHandle=0; 
car(translateme(0,0)); 
 
wheel1Handle=0; 
wheel1(translateme(0,0)); 
 
wheel2Handle=0; 
wheel2(translateme(0,0)); 
 
wheel3Handle=0; 
wheel3(translateme(0,0)); 
 
wheel4Handle=0; 
wheel4(translateme(0,0)); 
 
line1Handle=0; 
line1(0,0,0,0); 
 
line2Handle=0; 
line2(0,0,0,0); 
  
line3Handle=0; 
line3(0,0,0,0); 
 
line4Handle=0; 
line4(0,0,0,0); 
 
% =============== 
% Calculation of Coordinates 
% =============== 
x=linspace(0,pathend,points+1);  %curve to follow 
y=pathdefinition2(x); 
x=.5.*x; 
y=.5.*y; 
dx=x(2)-x(1); 
%first find point that is closest to car distance away 
for i=2:1:points; 
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        min=inf; 
        length=((x(i)-x(1))^2+(y(i)-y(1))^2)^.5; 
        diff=base-length; 
         
        if diff<min 
            min=diff; 
            start=i; 
            sizeindex=points-start; 
        end 
         
        if diff<0 %break when get further than car length 
            break 
        end 
end 
    
%Establish front XY coordinates 
count=1; 
for i=start:points; 
         
    frontx(count)=x(i); 
    fronty(count)=y(i); 
    slopef(count)=(y(i+1)-y(i-1))/(2*dx); 
     
        min=inf;%reinitialize min for minimum search    
        for k=1:points;  %go through all points behind the front to see which is 
closest to the car length 
        length=((x(i)-x(i-k))^2+(y(i)-y(i-k))^2)^.5; 
        diff=base-length; 
    
         if diff<0 %break when get further than car length 
            break 
         end 
          
         if diff<min 
            min=diff; 
            rearx(count)=x(i-k); 
            reary(count)=y(i-k); 
            sloper(count)=(y(i-k+1)-y(i-1-k))/(2*dx); 
         end 
         end 
    count=count+1; 
 
end 
 
% Rear starting x and y point 
    rearx(1)=x(1); 
    reary(1)=y(1); 
 
%Now find initial heading angle of car 
   heading(1)=(fronty(1)-reary(1))/(frontx(1)-rearx(1)); 
 
%Find first df 
    df(1)=atan(slopef(1))-atan(heading(1)); %%% Is this backward? 
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%Find first dr 
     sloper(1)=(y(2)-y(1))/(dx); 
     
        dr(1)=-1*df(1); 
         
    for i=2:sizeindex 
 
         dfa=abs(df(i-1)); 
         disp=((frontx(i)-frontx(i-1))^2+(fronty(i)-fronty(i-1))^2)^.5; %pt to pt 
disp 
         l2=((disp^2+base^2-2*disp*base*cos(pi-dfa))^.5); 
         D=abs(asin((disp*sin(dfa))/l2)); 
         E=pi-abs(asin((l2*sin(dfa+D))/base)); 
         B=real(pi-E-dfa); 
         heading(i)=tan(atan(heading(i-1))+sign(df(i-1))*abs(B));       
         df(i)=atan(slopef(i))-atan(heading(i)); 
         dr(i)=-1*df(i); 
        
     end 

     
% %%%%% Calculate Wheel Angles 
 for n=1:sizeindex; 
 
% %Wheel 1 
 w1xpos(n)=frontx(n)-(track/2)*sin(pi-atan(heading(n))); 
 w1ypos(n)=fronty(n)-(track/2)*cos(pi-atan(heading(n))); 
 d1(n)=acot(cot(df(n))-(track/(2*base))*cot(df(n))*(tan(df(n))-tan(dr(n)))); 
 w1rot(n)=atan(heading(n))+d1(n);%d1(n); 
%  
% %Wheel 2 
 w2xpos(n)=frontx(n)+(track/2)*sin(pi-atan(heading(n))); 
 w2ypos(n)=fronty(n)+(track/2)*cos(pi-atan(heading(n))); 
 d2(n)=acot(cot(df(n))+(track/(2*base))*cot(df(n))*(tan(df(n))-tan(dr(n)))); 
 
 w2rot(n)=atan(heading(n))+d2(n);%d2(n); 
%  
% % %Wheel 3 
 w3xpos(n)=frontx(n)-cardiag*cos(atan(heading(n))+carang); 
 w3ypos(n)=fronty(n)-cardiag*sin(atan(heading(n))+carang); 
  d3(n)=acot(cot(dr(n))+(track/(2*base))*cot(dr(n))*(tan(df(n))-tan(dr(n)))); 
w3rot(n)=atan(heading(n))+d3(n);%d3(n); 
 %   
 % %Wheel 4 
 w4xpos(n)=frontx(n)-cardiag*cos(atan(heading(n))-carang); 
 w4ypos(n)=fronty(n)-cardiag*sin(atan(heading(n))-carang); 
  d4(n)=acot(cot(dr(n))-(track/(2*base))*cot(dr(n))*(tan(df(n))-tan(dr(n)))); 
 w4rot(n)=atan(heading(n))+d4(n);%d4(n); 
% Center of Gravity 
    CGx(n)=frontx(n)-base/2*cos(atan(heading(n))); 
    CGy(n)=fronty(n)-base/2*sin(atan(heading(n))); 
 end 
Error=0; 
for k=1:sizeindex; 
%Find ideal xy coord 
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        w1xi(k)=frontx(k)-(track/2)*sin(atan(slopef(k))); 
        w1yi(k)=fronty(k)+(track/2)*cos(atan(slopef(k))); 
        w2xi(k)=frontx(k)+(track/2)*sin(atan(slopef(k))); 
        w2yi(k)=fronty(k)-(track/2)*cos(atan(slopef(k))); 
        w4xi(k)=rearx(k)-(track/2)*sin(atan(sloper(k))); 
        w4yi(k)=reary(k)+(track/2)*cos(atan(sloper(k))); 
        w3xi(k)=rearx(k)+(track/2)*sin(atan(sloper(k))); 
        w3yi(k)=reary(k)-(track/2)*cos(atan(sloper(k)));    
 w1e(k)=((w1xpos(k)-w1xi(k))^2+(w1ypos(k)-w1yi(k))^2)^.5; 
 w2e(k)=((w2xpos(k)-w2xi(k))^2+(w2ypos(k)-w2yi(k))^2)^.5; 
 w3e(k)=((w3xpos(k)-w3xi(k))^2+(w3ypos(k)-w3yi(k))^2)^.5; 
 w4e(k)=((w4xpos(k)-w4xi(k))^2+(w4ypos(k)-w4yi(k))^2)^.5; 
 Error=Error+w1e(k)+w2e(k)+w3e(k)+w4e(k); 
end 
Error=Error/(points*4)         
 
% plot(rearx,reary,'b','linewidth',1.5) 
 plot(frontx,fronty,'g','linewidth',1.5) 
 plot(w1xpos,w1ypos,'g','linewidth',1.5) 
 plot(w2xpos,w2ypos,'g','linewidth',1.5) 
 plot(w3xpos,w3ypos,'g','linewidth',1.5) 
 plot(w4xpos,w4ypos,'g','linewidth',1.5) 
  plot(w1xi,w1yi,'b','linewidth',1.5) 
 plot(w2xi,w2yi,'b','linewidth',1.5) 
  plot(w3xi,w3yi,'b','linewidth',1.5) 
 plot(w4xi,w4yi,'b','linewidth',1.5) 
plot(x,y,'k','linewidth',1.5) 
plot(CGx,CGy,'r-.','linewidth',1.5) 
legend('Tracking Path','CG Path','Location','NorthWest') 
  
%  
% %%% Calculate Wheel Speeds 
%  
% w1speed = velocity*W1R./CGR; 
% w2speed = velocity*W2R./CGR; 
% w3speed = velocity*W3R./CGR; 
% w4speed = velocity*W4R./CGR; 
 
% %%% Second Figure to show Wheel Information 
%  
% fig2 = figure(2); % get the handle to a new figure window 
% set(fig2,'Position',[75,75,625,625],... 
%     'NumberTitle','off','Name',... 
%     'Wheel Information') 
% subplot(2,1,1) 
% plot(rearx,phi1,'b') 
% axis([0,pathend/2,-90,90]); 
% hold on 
% title('Wheel Angles vs. Postion') 
% xlabel('Position') 
% ylabel('Wheel Angle with Respect to Vehicle (Degrees)') 
% plot(rearx,phi2,'m') 
% plot(rearx,phi3,'r') 
% plot(rearx,phi4,'g') 
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% hold off 
%  
% subplot(2,1,2) 
% plot(rearx,w1speed,'b') 
% axis([0,pathend/2,0,2]); 
% hold on 
% title('Wheel Speed vs. Postion') 
% xlabel('Position') 
% ylabel('Wheel Speed') 
% plot(rearx,w2speed,'m') 
% plot(rearx,w3speed,'r') 
% plot(rearx,w4speed,'g') 
% hold off 
%  
figure(2) 
plot(w1e) 
hold on 
plot(w2e) 
plot(w3e) 
plot(w4e) 
%  
% =============== 
% Animation 
% =============== 
elseif strcmp(option,'animate'); 
%sizeindex = number of frames in animation 
     
for index = 1:sizeindex; 
%     if index==150 
%         pause; 
%     end 
    %Car Body 
car(translateme(frontx(index),fronty(index))*rotateme(atan(heading(index)))); % draw 
the car in new posn 
 
% %Wheel 1 
 wheel1(translateme(w1xpos(index),w1ypos(index))*rotateme(w1rot(index))); 
%  
% %Wheel 2 
 wheel2(translateme(w2xpos(index),w2ypos(index))*rotateme(w2rot(index))); 
%  
% % %Wheel 3 
  wheel3(translateme(w3xpos(index),w3ypos(index))*rotateme(w4rot(index))); 
% %  
% % %Wheel 4 
  wheel4(translateme(w4xpos(index),w4ypos(index))*rotateme(w4rot(index))); 
 
drawnow; % flush the buffer 
%pause(0.01); % slow it down a little 
end 
 
hold off 
end; %animate program 
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A.4.  AWS  ST EERI NG CON FI GUR ATION ,  CEN TER  O F GR AVITY  TR ACKIN G  

A.4.1.  ANI MAT E .M  

unction animate(option) 
%============================ 
% Author: Jon Nistler 
% Date: September 25, 2009 
% For: HW3 
%============================ 
% Key Variables: 
% gateHandle : points to the "step" graphical object 
% gateLength : length of the step (arbitrary right now) 
% x,y : location of the gate 
 
%======================================================== 
global carHandle slopef sloper x y CGx CGy dfdx df2dx2 
global line1Handle 
global line2Handle 
global line3Handle  
global line4Handle  
global wheel1Handle  
global wheel2Handle  
global wheel3Handle  
global wheel4Handle  
global w1xpos w1ypos w1rot phi1 w1speed 
global w2xpos w2ypos w2rot phi2 w2speed 
global w3xpos w3ypos w3rot phi3 w3speed 
global w4xpos w4ypos w4rot phi4 w4speed 
global w1e w2e w3e w4e 
 
%============================================================ 
 
global base track sizeindex heading 
global rearx reary frontx fronty ICx ICy  
base=1; %wheelbase of vehicle 
track=base*.75; 
velocity=1; 
 
cardiag=(((track/2)^2+(base/2)^2)^.5); 
carang=atan((track/2)/(base/2)); 
 
points=5000; %number of points to use 
pathend=15; 
 
 
%%initialize on first call 
if nargin<1 
option = 'initialize'; 
end; 
 
%============================== 
% initialize 
%============================== 
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if strcmp(option,'initialize') 
tic 
%initialize the program 
clf; % clears the figure window 
hold on; hold off; % clean up any previous holds 
% create the figure window 
fig1 = figure(1); % get the handle to a new figure window 
set(fig1,'Position',[50,50,600,600],... 
    'NumberTitle','off','Name',... 
    'AWS Robot Animation'); 
set(gca,'drawmode','fast'); 
set(fig1,'Backingstore','off'); 
 
%===================================== 
% Menus 
%===================================== 
set(gcf,'MenuBar','none'); 
 
%File menu 
file_menu = uimenu(fig1,'label','File'); 
print_option = uimenu(file_menu,'Label','Print',... 
'Callback','printdlg'); 
export_option = uimenu(file_menu,'Label','Export',... 
'Callback','print -djpeg'); 
exit_option = uimenu(file_menu,'Label','Exit','Callback','exit'); 
 
%Action menu 
action_menu = uimenu(fig1,'Label','Actions'); 
animate_option = uimenu(action_menu,'Label','Animate',... 
'Callback','animate(''animate'')'); 
 
%Initialize coordinate system 
plot(0,0,'k','linewidth',1.5) 
hold on 
plot(0,0,'k-.','linewidth',1.5) 
plot(0,0,'c.') 
legend('Tracking Path','CG Path','Instant Center Path','Location','NorthWest') 
axis ([0 7.5 0  7.5]); 
axis square 
axis('on'); 
grid('on'); 
title('Animation Showing Instant Center for Steering Control'); 
xlabel('X Coordinate'); 
ylabel('Y Coordinate'); 
 
%Initialize 'gate' graphics 
carHandle=0; 
car(translateme(0,0)); 
 
wheel1Handle=0; 
wheel1(translateme(0,0)); 
 
wheel2Handle=0; 
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wheel2(translateme(0,0)); 
 
wheel3Handle=0; 
wheel3(translateme(0,0)); 
 
wheel4Handle=0; 
wheel4(translateme(0,0)); 
 
line1Handle=0; 
line1(0,0,0,0); 
 
line2Handle=0; 
line2(0,0,0,0); 
  
line3Handle=0; 
line3(0,0,0,0); 
 
line4Handle=0; 
line4(0,0,0,0); 
 
% =============== 
% Calculation of Coordinates 
% =============== 
x=linspace(0,7.5,points+1);  %curve to follow 
y=curvy2(x); 
dx=x(2)-x(1); 
 
%first find point that is closest to car distance away 
count=0; 
    min=inf;%reinitialize min for minimum search  
    for i=1:points;  %go through all points ahead of rear to see 
                     %which is closest to the car length 
        length=((x(i)-x(1))^2+(y(i)-y(1))^2)^.5; 
        diff=base/2-length; 
         
        if diff<min 
            min=diff; 
            start=i; 
        end 
         
        if diff<0 %break when get further than car length 
            break 
        end 
    end 
        min=inf; 
        for i=points:-1:1;  %go through all points ahead of rear to see 
                     %which is closest to the car length 
        length=((x(i)-x(points))^2+(y(i)-y(points))^2)^.5; 
        diff=base/2-length; 
         
        if diff<min 
            min=diff; 
            ending=i; 
        end 
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        if diff<0 %break when get further than car length 
            break 
        end 
    end 
    sizeindex=ending-start; 
 
%Now find slope at all center points 
count=start; 
for k=1:sizeindex; 
    CGx(k)=x(count); 
    CGy(k)=y(count); 
  %use central diff approx 
        dfdx(k)=(y(count+1)-y(count-1))/(2*dx); 
        %dfdx(k)=(y(count-2)+8*y(count+1)-8*y(count-1)-y(count+2))/(12*dx); 
  %Now find radius of curvature at all center points 
  %use central diff approx 
  d2fdx2(k)=(y(count-1)-2*y(count)+y(count+1))/(dx^2); 
   R(k)=(1+(dfdx(k))^2)^(3/2)/(d2fdx2(k)); 
    
   min=inf; 
   for i=1:points 
       %find rearx and reary and boundary 
        length=((x(count-i)-x(count))^2+(y(count-i)-y(count))^2)^.5; 
        diff=base/2-length; 
         
         if diff<0 %break when get further than car length 
            break 
        end 
         
        if diff<min 
            min=diff; 
            rearx(k)=x(count-i); 
            reary(k)=y(count-i); 
            sloper(k)=(y(count-i+1)-y(count-i-1))/(2*dx); 
        end 
 
   end 
   min=inf; 
      for i=1:points 
       %find frontx and fronty and boundary 
        length=((x(count+i)-x(count))^2+(y(count+i)-y(count))^2)^.5; 
        diff=base/2-length; 
         
         if diff<0 %break when get further than car length 
            break 
        end 
         
        if diff<min 
            min=diff; 
            frontx(k)=x(count+i); 
            fronty(k)=y(count+i); 
            slopef(k)=(y(count+i+1)-y(count+i-1))/(2*dx); 
        end 
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    end  
    
   count=count+1; 
end 
 
%Now find coordinates of ICR 
for l=1:sizeindex; 
     
    %Define Vars 
    heading(l)=dfdx(l); 
    %atan(-1/dfdx(l)) 
%     ICx(l)=CGx(l)-R(l)*cos(heading(l)); 
%     ICy(l)=CGy(l)-R(l)*sin(heading(l)); 
 
end 
 
for k=1:sizeindex; 
%Find ideal xy coord 
        w1xi(k)=frontx(k)-(track/2)*sin(atan(slopef(k))); 
        w1yi(k)=fronty(k)+(track/2)*cos(atan(slopef(k))); 
        w2xi(k)=frontx(k)+(track/2)*sin(atan(slopef(k))); 
        w2yi(k)=fronty(k)-(track/2)*cos(atan(slopef(k))); 
        w4xi(k)=rearx(k)-(track/2)*sin(atan(sloper(k))); 
        w4yi(k)=reary(k)+(track/2)*cos(atan(sloper(k))); 
        w3xi(k)=rearx(k)+(track/2)*sin(atan(sloper(k))); 
        w3yi(k)=reary(k)-(track/2)*cos(atan(sloper(k)));    
 
        end 
 
 
Error=0; 
% %%%%% Calculate Wheel Angles 
for n=1:sizeindex; 
df(n)=atan((base/2)/R(n)); 
dr(n)=-1*df(n); 
 
% %Wheel 1 
 w1xpos(n)=CGx(n)+cardiag*cos(atan(heading(n))+carang); 
 w1ypos(n)=CGy(n)+cardiag*sin(atan(heading(n))+carang); 
 d1(n)=acot(cot(df(n))-(track/(2*base))*cot(df(n))*(tan(df(n))-tan(dr(n)))); 
 w1rot(n)=atan(heading(n))+d1(n); 
%  
% %Wheel 2 
 w2xpos(n)=CGx(n)+cardiag*cos(atan(heading(n))-carang); 
 w2ypos(n)=CGy(n)+cardiag*sin(atan(heading(n))-carang); 
d2(n)=acot(cot(df(n))+(track/(2*base))*cot(df(n))*(tan(df(n))-tan(dr(n)))); 
 w2rot(n)=atan(heading(n))+d2(n); 
%  
% %Wheel 3 
 w3xpos(n)=CGx(n)+cardiag*cos(atan(heading(n))+pi+carang); 
 w3ypos(n)=CGy(n)+cardiag*sin(atan(heading(n))+pi+carang); 
 d3(n)=acot(cot(dr(n))-(track/(2*base))*cot(dr(n))*(tan(dr(n))-tan(df(n)))); 
 w3rot(n)=atan(heading(n))+d3(n); 
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%  
% %Wheel 4 
 w4xpos(n)=CGx(n)+cardiag*cos(pi+atan(heading(n))-carang); 
 w4ypos(n)=CGy(n)+cardiag*sin(pi+atan(heading(n))-carang); 
 d4(n)=acot(cot(dr(n))+(track/(2*base))*cot(dr(n))*(tan(dr(n))-tan(df(n)))); 
 w4rot(n)=atan(heading(n))+d4(n); 
 
 w1e(n)=((w1xpos(n)-w1xi(n))^2+(w1ypos(n)-w1yi(n))^2)^.5; 
 w2e(n)=((w2xpos(n)-w2xi(n))^2+(w2ypos(n)-w2yi(n))^2)^.5; 
 w3e(n)=((w3xpos(n)-w3xi(n))^2+(w3ypos(n)-w3yi(n))^2)^.5; 
 w4e(n)=((w4xpos(n)-w4xi(n))^2+(w4ypos(n)-w4yi(n))^2)^.5; 
 Error=Error+w1e(n)+w2e(n)+w3e(n)+w4e(n); 
end 
Error=Error/(points*4) 
 
 
plot(x,y,'k','linewidth',1.5) 
plot(CGx,CGy,'k-.','linewidth',1.5) 
 plot(w1xpos,w1ypos,'g','linewidth',1.5) 
 plot(w2xpos,w2ypos,'g','linewidth',1.5) 
 plot(w3xpos,w3ypos,'g','linewidth',1.5) 
 plot(w4xpos,w4ypos,'g','linewidth',1.5) 
  plot(w1xi,w1yi,'b','linewidth',1.5) 
  plot(w2xi,w2yi,'b','linewidth',1.5) 
   plot(w3xi,w3yi,'b','linewidth',1.5) 
  plot(w4xi,w4yi,'b','linewidth',1.5) 
plot(ICx,ICy,'c.') 
legend('Tracking Path','CG Path','Instant Center Path','Location','NorthWest') 
 
%  
% % %%% Calculate Wheel Speeds 
% % % Wheel speeds are simply a ratio of lengths to instant center 
%  
% W1R = ((w1xpos-ICx).^2+(w1ypos-ICy).^2).^.5; %Distance to each of the wheels from 
IC 
% W2R = ((w2xpos-ICx).^2+(w2ypos-ICy).^2).^.5; 
% W3R = ((w3xpos-ICx).^2+(w3ypos-ICy).^2).^.5; 
% W4R = ((w4xpos-ICx).^2+(w4ypos-ICy).^2).^.5; 
%  
% w1speed = velocity*W1R./R; 
% w2speed = velocity*W2R./R; 
% w3speed = velocity*W3R./R; 
% w4speed = velocity*W4R./R; 
 
% %%% Second Figure to show Wheel Information 
%  
% fig2 = figure(2); % get the handle to a new figure window 
% set(fig2,'Position',[75,75,625,625],... 
%     'NumberTitle','off','Name',... 
%     'Wheel Information') 
% subplot(2,1,1) 
% plot(rearx,phi1,'b') 
% axis([0,pathend/2,-90,90]); 
% hold on 
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% title('Wheel Angles vs. Postion') 
% xlabel('Position') 
% ylabel('Wheel Angle with Respect to Vehicle (Degrees)') 
% plot(rearx,phi2,'m') 
% plot(rearx,phi3,'r') 
% plot(rearx,phi4,'g') 
% hold off 
%  
% subplot(2,1,2) 
% plot(rearx,w1speed,'b') 
% axis([0,pathend/2,0,2]); 
% hold on 
% title('Wheel Speed vs. Postion') 
% xlabel('Position') 
% ylabel('Wheel Speed') 
% plot(rearx,w2speed,'m') 
% plot(rearx,w3speed,'r') 
% plot(rearx,w4speed,'g') 
% hold off 
 
figure(2) 
plot(w1e) 
hold on 
plot(w2e) 
plot(w3e) 
plot(w4e) 
 
% =============== 
% Animation 
% =============== 
elseif strcmp(option,'animate'); 
%sizeindex = number of frames in animation 
 
for index = 1:sizeindex; 
 
    %Car Body 
car(translateme(CGx(index),CGy(index))*rotateme((pi/2)+atan(heading(index)))); % draw 
the car in new posn 
%line1(CGx(index),CGy(index),ICx(index),ICy(index)); 
 
% %Wheel 1 
wheel1(translateme(w1xpos(index),w1ypos(index))*rotateme(w1rot(index))); 
% % %line1(w1xpos(index),w1ypos(index),ICx(index),ICy(index)); 
% %  
% % %Wheel 2 
wheel2(translateme(w2xpos(index),w2ypos(index))*rotateme(w2rot(index))); 
% % % %line2(w2xpos(index),w2ypos(index),ICx(index),ICy(index)); 
% % %  
% % % %Wheel 3 
  wheel3(translateme(w3xpos(index),w3ypos(index))*rotateme(w3rot(index))); 
% % % %line3(w3xpos(index),w3ypos(index),ICx(index),ICy(index)); 
% % %  
% % % %Wheel 4 
  wheel4(translateme(w4xpos(index),w4ypos(index))*rotateme(w4rot(index))); 
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% %line4(w4xpos(index),w4ypos(index),ICx(index),ICy(index)); 
 
drawnow; % flush the buffer 
pause(0.01); % slow it down a little 
end 
 
hold off 
end; %animate program 

A.5.  AWS  ST EERI NG CON FI GUR ATION ,  FRON T AN D REAR  WHEEL TRACKI NG  

A.5.1.  ANI MAT E .M  

 
function animate(option) 
%============================ 
% Author: Jon Nistler 
% Date: September 25, 2009 
% For: HW3 
%============================ 
% Key Variables: 
% gateHandle : points to the "step" graphical object 
% gateLength : length of the step (arbitrary right now) 
% x,y : location of the gate 
 
%======================================================== 
global carHandle slopef sloper x y 
global line1Handle 
global line2Handle 
global line3Handle  
global line4Handle  
global wheel1Handle  
global wheel2Handle  
global wheel3Handle  
global wheel4Handle  
global w1xpos w1ypos w1rot phi1 w1speed 
global w2xpos w2ypos w2rot phi2 w2speed 
global w3xpos w3ypos w3rot phi3 w3speed 
global w4xpos w4ypos w4rot phi4 w4speed 
 
%============================================================ 
 
global base track sizeindex heading 
global rearx reary frontx fronty ICx ICy  
base=1; %wheelbase of vehicle 
track=base*.75; 
velocity=1; 
 
cardiag=(((track/2)^2+base^2)^.5); 
carang=atan((track/2)/base); 
 
points=1001; %number of points to use 
pathend=7.5; 
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%%initialize on first call 
if nargin<1 
option = 'initialize'; 
end; 
 
%============================== 
% initialize 
%============================== 
 
if strcmp(option,'initialize') 
tic 
%initialize the program 
clf; % clears the figure window 
hold on; hold off; % clean up any previous holds 
% create the figure window 
fig1 = figure(1); % get the handle to a new figure window 
set(fig1,'Position',[50,50,600,600],... 
    'NumberTitle','off','Name',... 
    'AWS Robot Animation'); 
set(gca,'drawmode','fast'); 
set(fig1,'Backingstore','off'); 
 
 
%===================================== 
% Menus 
%===================================== 
set(gcf,'MenuBar','none'); 
 
%File menu 
file_menu = uimenu(fig1,'label','File'); 
print_option = uimenu(file_menu,'Label','Print',... 
'Callback','printdlg'); 
export_option = uimenu(file_menu,'Label','Export',... 
'Callback','print -djpeg'); 
exit_option = uimenu(file_menu,'Label','Exit','Callback','exit'); 
 
%Action menu 
action_menu = uimenu(fig1,'Label','Actions'); 
animate_option = uimenu(action_menu,'Label','Animate',... 
'Callback','animate(''animate'')'); 
 
%Initialize coordinate system 
plot(0,0,'k','linewidth',1.5) 
hold on 
plot(0,0,'k-.','linewidth',1.5) 
plot(0,0,'c.') 
legend('Tracking Path','CG Path','Instant Center Path','Location','NorthWest') 
axis ([0 7.5 0  7.5]); 
axis square 
axis('on'); 
grid('on'); 
title('Animation Showing Instant Center for Steering Control'); 
xlabel('X Coordinate'); 
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ylabel('Y Coordinate'); 
 
%Initialize 'gate' graphics 
carHandle=0; 
car(translateme(0,0)); 
 
wheel1Handle=0; 
wheel1(translateme(0,0)); 
 
wheel2Handle=0; 
wheel2(translateme(0,0)); 
 
wheel3Handle=0; 
wheel3(translateme(0,0)); 
 
wheel4Handle=0; 
wheel4(translateme(0,0)); 
 
line1Handle=0; 
line1(0,0,0,0); 
 
line2Handle=0; 
line2(0,0,0,0); 
  
line3Handle=0; 
line3(0,0,0,0); 
 
line4Handle=0; 
line4(0,0,0,0); 
 
% =============== 
% Calculation of Coordinates 
% =============== 
x=linspace(0,7.5,points+1);  %curve to follow 
y=zigzag(x); 
 
dx=x(2)-x(1); 
%See where to end path 
min=inf; 
    for j=(points-1):-1:1;  %go through all points ahead of rear to see 
                     %which is closest to the car length 
        length=((x(points)-x(j))^2+(y(points)-y(j))^2)^.5; 
        diff=base-length; 
         
        if diff<min 
            min=diff; 
            ending=j; 
            sizeindex=ending; 
        end 
                if diff<0 %break when get further than car length 
            break 
                end 
                 
    end 
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%first find point that is closest to car distance away 
for i=1:ending; 
     
    rearx(i)=x(i); %Store rear position values 
    reary(i)=y(i); 
    indexr(i)=i; 
     
    min=inf;%reinitialize min for minimum search 
     
    for j=i+1:points;  %go through all points ahead of rear to see 
                     %which is closest to the car length 
        length=((x(j)-x(i))^2+(y(j)-y(i))^2)^.5; 
        diff=base-length; 
         
        if diff<min 
            min=diff; 
            frontx(i)=x(j); 
            fronty(i)=y(j); 
            slopef(i)=(y(j+1)-y(j-1))/(2*dx); 
        end 
         
         if diff<0 %break when get further than car length 
            break 
         end 
         
    end 
end 
 
%Now find slope at all rear points 
for k=1:sizeindex; 
    if k==1  %use forward difference 
        sloper(k)=(y(k+1)-y(k))/(dx); 
    else  %use central diff approx 
        sloper(k)=(y(k+1)-y(k-1))/(2*dx); 
    end 
end 
 
%Now find intersection of normals 
for l=1:sizeindex; 
    %transform variables so they are easy to use 
    %eq's for lines are (ICy-B)=S(ICx-A) & (ICy-D)=T(ICx-C) 
     
    %Define Vars 
    A=rearx(l); 
    B=reary(l); 
    C=frontx(l); 
    D=fronty(l); 
    S=-1/sloper(l);%Vector normal to slopes 
    T=-1/slopef(l); 
     
    ICx(l)=(T*C-S*A+B-D)/(T-S); 
    ICy(l)=S*(ICx(l)-A)+B; 
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    %line([ICx(l) frontx(l)],[ICy(l) fronty(l)]) 
    %line([ICx(l) rearx(l)],[ICy(l) reary(l)]) 
end 
 
%Now find heading angle of car and path of CG 
for m=1:sizeindex; 
   heading(m)=atan2((fronty(m)-reary(m)),(frontx(m)-rearx(m))); 
    CGx(m)=rearx(m)+base/2*cos(heading(m)); 
    CGy(m)=reary(m)+base/2*sin(heading(m)); 
end 
 
%%%%% Calculate Wheel Angles 
for n=1:sizeindex; 
         df(n)=atan(slopef(n))-atan(heading(n)); 
         dr(n)=atan(sloper(n))-atan(heading(n)); 
 
%Wheel 1 
 w1xpos(n)=rearx(n)+cardiag*cos(heading(n)+carang); 
w1ypos(n)=reary(n)+cardiag*sin(heading(n)+carang); 
 d1(n)=acot(cot(df(n))-(track/(2*base))*cot(df(n))*(tan(df(n))-tan(dr(n)))); 
 w1rot(n)=atan(heading(n))+d1(n);%d1(n); 
  
%Wheel 2 
w2xpos(n)=rearx(n)+cardiag*cos(heading(n)-carang); 
w2ypos(n)=reary(n)+cardiag*sin(heading(n)-carang); 
 d2(n)=acot(cot(df(n))+(track/(2*base))*cot(df(n))*(tan(df(n))-tan(dr(n)))); 
 w2rot(n)=atan(heading(n))+d2(n);%d2(n); 
 
%Wheel 3 
w3xpos(n)=rearx(n)+(track/2)*sin(pi-heading(n)); 
w3ypos(n)=reary(n)+(track/2)*cos(pi-heading(n)); 
  d3(n)=acot(cot(dr(n))+(track/(2*base))*cot(dr(n))*(tan(df(n))-tan(dr(n)))); 
w3rot(n)=atan(heading(n))+d3(n);%d3(n); 
  
%Wheel 4 
w4xpos(n)=rearx(n)-(track/2)*sin(pi-heading(n)); 
w4ypos(n)=reary(n)-(track/2)*cos(pi-heading(n)); 
  d4(n)=acot(cot(dr(n))-(track/(2*base))*cot(dr(n))*(tan(df(n))-tan(dr(n)))); 
 w4rot(n)=atan(heading(n))+d4(n);%d4(n); 
 
end 
 
    Error=0; 
    for k=1:sizeindex; 
        %Find ideal xy coord 
        w1xi(k)=frontx(k)-(track/2)*sin(atan(slopef(k))); 
        w1yi(k)=fronty(k)+(track/2)*cos(atan(slopef(k))); 
        w2xi(k)=frontx(k)+(track/2)*sin(atan(slopef(k))); 
        w2yi(k)=fronty(k)-(track/2)*cos(atan(slopef(k))); 
        w4xi(k)=rearx(k)-(track/2)*sin(atan(sloper(k))); 
        w4yi(k)=reary(k)+(track/2)*cos(atan(sloper(k))); 
        w3xi(k)=rearx(k)+(track/2)*sin(atan(sloper(k))); 
        w3yi(k)=reary(k)-(track/2)*cos(atan(sloper(k))); 
        w1e(k)=((w1xpos(k)-w1xi(k))^2+(w1ypos(k)-w1yi(k))^2)^.5; 
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        w2e(k)=((w2xpos(k)-w2xi(k))^2+(w2ypos(k)-w2yi(k))^2)^.5; 
        w3e(k)=((w3xpos(k)-w3xi(k))^2+(w3ypos(k)-w3yi(k))^2)^.5; 
        w4e(k)=((w4xpos(k)-w4xi(k))^2+(w4ypos(k)-w4yi(k))^2)^.5; 
        Error=Error+w1e(k)+w2e(k)+w3e(k)+w4e(k); 
    end 
    Error=Error/(points*4) 
 
% plot(rearx,reary,'k','linewidth',1.5) 
% plot(frontx,fronty,'k','linewidth',1.5) 
plot(x,y,'k','linewidth',1.5) 
plot(CGx,CGy,'k-.','linewidth',1.5) 
plot(ICx,ICy,'c.') 
 plot(w1xpos,w1ypos,'g','linewidth',1.5) 
 plot(w2xpos,w2ypos,'g','linewidth',1.5) 
 plot(w3xpos,w3ypos,'g','linewidth',1.5) 
 plot(w4xpos,w4ypos,'g','linewidth',1.5) 
 plot(w1xi,w1yi,'b','linewidth',1.5) 
 plot(w2xi,w2yi,'b','linewidth',1.5) 
  plot(w3xi,w3yi,'b','linewidth',1.5) 
 plot(w4xi,w4yi,'b','linewidth',1.5) 
legend('Tracking Path','CG Path','Instant Center Path','Location','NorthWest') 
 
%%% Calculate Wheel Speeds 
% Wheel speeds are simply a ratio of lengths to instant center 
% CGR = ((((frontx+rearx)./2)-ICx).^2 + (((fronty+reary)./2)-ICy).^2 ).^.5; %Distance 
from CG to IC 
%  
% W1R = ((w1xpos-ICx).^2+(w1ypos-ICy).^2).^.5; %Distance to each of the wheels from 
IC 
% W2R = ((w2xpos-ICx).^2+(w2ypos-ICy).^2).^.5; 
% W3R = ((w3xpos-ICx).^2+(w3ypos-ICy).^2).^.5; 
% W4R = ((w4xpos-ICx).^2+(w4ypos-ICy).^2).^.5; 
%  
% w1speed = velocity*W1R./CGR; 
% w2speed = velocity*W2R./CGR; 
% w3speed = velocity*W3R./CGR; 
% w4speed = velocity*W4R./CGR; 
 
% %%% Second Figure to show Wheel Information 
%  
% fig2 = figure(2); % get the handle to a new figure window 
% set(fig2,'Position',[75,75,625,625],... 
%     'NumberTitle','off','Name',... 
%     'Wheel Information') 
% subplot(2,1,1) 
% plot(rearx,phi1,'b') 
% axis([0,pathend/2,-90,90]); 
% hold on 
% title('Wheel Angles vs. Postion') 
% xlabel('Position') 
% ylabel('Wheel Angle with Respect to Vehicle (Degrees)') 
% plot(rearx,phi2,'m') 
% plot(rearx,phi3,'r') 
% plot(rearx,phi4,'g') 
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% hold off 
%  
% subplot(2,1,2) 
% plot(rearx,w1speed,'b') 
% axis([0,pathend/2,0,2]); 
% hold on 
% title('Wheel Speed vs. Postion') 
% xlabel('Position') 
% ylabel('Wheel Speed') 
% plot(rearx,w2speed,'m') 
% plot(rearx,w3speed,'r') 
% plot(rearx,w4speed,'g') 
% hold off 
 
    figure(2) 
    plot(w1e) 
    hold on 
    plot(w2e) 
    plot(w3e) 
    hold on 
    plot(w4e) 
 
% =============== 
% Animation 
% =============== 
elseif strcmp(option,'animate'); 
%sizeindex = number of frames in animation 
for index=1:sizeindex 
    %line([ICx(l) frontx(l)],[ICy(l) fronty(l)]) 
    %line([ICx(l) rearx(l)],[ICy(l) reary(l)]) 
     
     
    %Car Body 
car(translateme(rearx(index),reary(index))*rotateme(heading(index))); % draw the car 
in new posn 
 
%Wheel 1 
wheel1(translateme(w1xpos(index),w1ypos(index))*rotateme(w1rot(index))); 
%line1(w1xpos(index),w1ypos(index),ICx(index),ICy(index)); 
 
%Wheel 2 
wheel2(translateme(w2xpos(index),w2ypos(index))*rotateme(w2rot(index))); 
%line2(w2xpos(index),w2ypos(index),ICx(index),ICy(index)); 
 
%Wheel 3 
wheel3(translateme(w3xpos(index),w3ypos(index))*rotateme(w3rot(index))); 
%line3(w3xpos(index),w3ypos(index),ICx(index),ICy(index)); 
 
%Wheel 4 
wheel4(translateme(w4xpos(index),w4ypos(index))*rotateme(w4rot(index))); 
%line4(w4xpos(index),w4ypos(index),ICx(index),ICy(index)); 
 
drawnow; % flush the buffer 
%pause(0.01); % slow it down a little 
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end 
 
hold off 
end; %animate program 
 

A.6.  CODE CO MMON  TO  ALL SI MULATION S  

A.6.1.  CA R .M  

% This program is the primitive to draw the car 
% it takes in an instance transformation matrix 
%============================ 
% Author: Jon Nistler 
% Date: October 6, 2009 
% For: Project 1 
%============================ 
% Key Variables: 
% cylinderHandle : points to the "cylinder" graphical object 
% cylinderPoints : coordinates to draw the arm 
% itf : instance transformation matrix passed from 'animate' 
%============================ 
 
function car(itf) 
global carHandle carPoints initcar base track 
 
initcar=translateme(-2,-2); 
 
if (carHandle==0) %put the figure at the location given 
    carPoints=     [track/2        track/2      -track/2   -track/2; 
                            -base/2         base/2       base/2    -base/2; 
                            1  1   1   1 ]; 
    newPoints=initcar*carPoints; 
    carHandle=patch(newPoints(1,:),newPoints(2,:),'w'); 
     
else %modify the figure by redrawing it at the location given 
newPoints=itf*carPoints; 
set(carHandle,'XData',newPoints(1,:),'YData',newPoints(2,:)); 
end 

A.6.2.  CURVY .M  

function [y] = curvy(x) 
%determines definition of path that vehicle will take 
y1 =[ 
0 
6-1 
6.62-1 
6-1 
1.5 
0.88 
1.5 
6 
6.62 
6 
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1.5+1 
0.88+1 
1.5+1 
7.5 
] 
 
 
x1 =[ 
0 
1.26 
1.88 
2.5 
2.51+.25; 
3.13+.25; 
3.75+.25; 
3.76+0.5; 
4.38+.5; 
5+0.5; 
5.01+.75; 
5.63+.75; 
6.25+.75; 
7.5; 
] 
 
x1 =[ 
0 
1.26-.25; 
1.88-.25; 
2.5-.25; 
2.51; 
3.13; 
3.75; 
3.76+0.25; 
4.38+.25; 
5+0.25; 
5.01+.5; 
5.63+.5; 
6.25+.5; 
7.5; 
] 
 
cf=fit(x1,y1,'pchipinterp'); 
 
[m,n]=size(x); 
for i=1:n  
y(i)=cf(x(i)); 
end 
 
end 
 

A.6.3.  L INE(1,2,3,4).M  

% This program is the primitive to draw the line 
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% it takes in an 
% instance transformation matrix 
%============================ 
% Author: Jon Nistler 
% Date: October 6, 2009 
% For: Project 1 
%============================ 
% Key Variables: 
% cylinderHandle : points to the "cylinder" graphical object 
% cylinderPoints : coordinates to draw the arm 
% itf : instance transformation matrix passed from 'animate' 
%============================ 
 
function line1(x1,y1,x2,y2) 
global line1Handle 
 
if (line1Handle==0) %put the figure at the location given 
    line1Handle=line([0 0],[0 1],'color','k'); 
     
else %modify the figure by redrawing it at the location given 
set(line1Handle,'XData',[x1 x2],'YData',[y1 y2]); 
end 

A.6.4.  ORI GIN AL .M  

function [y] = original(x) 
%determines definition of path that vehicle will take 
x1=[0.19 
0.565 
1.002 
1.73 
2.395 
3.319 
4.111 
4.861 
5.514 
6.018 
6.284 
6.403 
6.432 
6.6 
6.974 
7.579 
8.568 
9.694 
10.451 
10.761 
11.215 
11.878 
12.98 
14.383 
15.789 
16.625]; 
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y1=[0.583 
1.692 
2.728 
3.886 
4.52 
4.973 
5.108 
5.097 
5.087 
5.176 
5.375 
5.839 
6.34 
6.765 
6.972 
7.091 
7.227 
7.508 
8.151 
8.917 
10.111 
10.873 
11.48 
11.806 
11.836 
11.722]; 
x1=x1./2; 
y1=y1./2; 
 
cf=fit(x1,y1,'smoothingspline'); 
 
[m,n]=size(x); 
for i=1:n  
y(i)=cf(x(i)); 
end 
 

end 

A.6.5.  ROTAT EME .M  

% This program is the the basic matrix 
% transformation to rotate the figures by 'degrees' 
% A positive rotation is counterclockwise 
%============================ 
% Author: Jon Nistler 
% Date: October 6, 2009 
% For: Project 1 
%============================ 
% Key Variables: 
% degrees : angle of rotation in degrees 
% rads : angle of rotation in radians 
% itf : instance transformation matrix passed to 'animate' 
%============================ 
function itf=rotateme(radians); 
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rads=radians;%-1*degrees/180*pi; 
itf = [cos(rads) -sin(rads) 0; 
    sin(rads) cos(rads) 0; 
    0 0 1]; 

A.6.6.  TR AN SLAT EME .M  

% This program is the the basic matrix 
% transformation to translate the figures 
%============================ 
% Author: Jon Nistler 
% Date: October 6, 2009 
% For: Project 1 
%============================ 
% Key Variables: 
% deltax : change in x coordinate 
% deltay : change in y coordinate 
% itf : instance transformation matrix passed to 'animate' 
%============================ 
 
function itf = translateme(deltax,deltay); 
 
itf=[1 0 deltax; 0 1 deltay; 0 0 1]; 

A.6.7.  UTURN .M  

function [y] = uturn(x) 
%determines definition of path that vehicle will take 
y1 =[ 
    0 
    1 
    4.63 
    6.5 
    4.63 
    1 
    0 
] 
 
 
x1 =[ 
0 
1 
1.88 
3.75 
5.62 
6.5 
7.5 
] 
cf=fit(x1,y1,'pchipinterp'); 
 
[m,n]=size(x); 
for i=1:n  
y(i)=cf(x(i)); 
end 
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end 
 

A.6.8.  WHEEL(1,2,3,4). M  

% Author: Jon Nistler 
% Date: October 6, 2009 
% For: Project 1 
%============================ 
% Key Variables: 
% cylinderHandle : points to the "cylinder" graphical object 
% cylinderPoints : coordinates to draw the arm 
% itf : instance transformation matrix passed from 'animate' 
%============================ 
 
function wheel1(itf) 
global wheel1Handle wheel1Points base 
wheelwidth=base/8; 
wheelheight=wheelwidth*2; 
%global lengthL lengthA alphad alphar 
 
%initial alpha in deployed position 
%alphar=atan((lengthA*sin(radians(175)))/(lengthL+lengthA*cos(radians(175)))); 
%initial alpha in retracted position 
%alphad=atan((lengthA*sin(radians(30)))/(lengthL+lengthA*cos(radians(30)))); 
%initcylinderd=translateme(61,34+lengthL)*rotateme(degrees(alphad));%initial position 
deployed 
%initcylinderr=translateme(61,34+lengthL)*rotateme(degrees(alphar));%initial position 
retracted 
 
if (wheel1Handle==0) %put the figure at the location given 
    wheel1Points=     [-wheelheight/2  wheelheight/2  wheelheight/2  -wheelheight/2; 
                    wheelwidth/2 wheelwidth/2 -wheelwidth/2 -wheelwidth/2; 
                    1  1   1   1]; 
 
%     wheel1Points=     [-wheelheight/2  wheelheight/2  wheelheight/2 3*wheelheight/4 
3*wheelheight/4 wheelheight ... 
%         3*wheelheight/4 3*wheelheight/4 wheelheight/2 wheelheight/2 -wheelheight/2; 
%                     wheelwidth/2 wheelwidth/2 wheelwidth/4 wheelwidth/4 
wheelwidth/2 0 -wheelwidth/2 -wheelwidth/4 ... 
%                     -wheelwidth/4 -wheelwidth/2 -wheelwidth/2; 
%                     1  1   1   1 1 1 1 1 1 1 1]; 
 
    newPoints=wheel1Points;%initcylinderd*cylinderPoints; 
    wheel1Handle=patch(newPoints(1,:),newPoints(2,:),'b'); 
     
else %modify the figure by redrawing it at the location given 
newPoints=itf*wheel1Points; 
set(wheel1Handle,'XData',newPoints(1,:),'YData',newPoints(2,:)); 
end 
 

A.6.9.  Z IGZAG .M  

function [y] = zigzag(x) 
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%determines definition of path that vehicle will take 
x1 =[ 
 0 
 2 
 4 
 6 
7 
 7.5 
]; 
 
 
y1 =[ 
2 
4 
2 
4 
3 
3 
]; 
 
cf=fit(x1,y1,'linearinterp'); 
 
[m,n]=size(x); 
for i=1:n  
y(i)=cf(x(i)); 
end 
 
end 
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APPENDIX B. FULL S IMULATION RESULTS  

B.1.  FRONT  WHEEL STEER  –  2WF  

 

 FIGURE B.1 – 2WF U-TURN NO VEHICLE 

 

FIGURE B.2 – 2WF  U-TURN WITH VEHICLE 
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FIGURE B.3 – 2WF  ZIG-ZAG NO VEHICLE 

 

FIGURE B.4 – 2WF  ZIG-ZAG WITH VEHICLE 
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FIGURE B.5 – 2WF  S-CURVE NO VEHICLE 

 

FIGURE B.6 – 2WF  S-CURVE WITH VEHICLE 
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B.2.  FRONT  AX LE TRACKI N G –  4FM  

 

FIGURE B.7 – 4FM  U-TURN NO VEHICLE 

 

FIGURE B.8 – 4FM  U-TURN WITH VEHICLE 
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FIGURE B.9 – 4FM  ZIG-ZAG NO VEHICLE 

 

FIGURE B.10 – 4FM ZIG-ZAG WITH VEHICLE 
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FIGURE B.11 – 4FM S-CURVE NO VEHICLE 

 

FIGURE B.12 – 4FM S-CURVE WITH VEHICLE 
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B.3.  CENT ER  O F GRAVI TY  TRACKIN G  –  4CG  

 

FIGURE B.13 – 4CG  U-TURN NO VEHICLE 

 

FIGURE B.14 – 4CG  U-TURN WITH VEHICLE 
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FIGURE B.15 – 4CG  ZIG-ZAG NO VEHICLE 

 

FIGURE B.16 – 4CG  ZIG-ZAG WITH VEHICLE 
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FIGURE B.17 – 4CG  S-CURVE NO VEHICLE 

 

FIGURE B.18 – 4CG  S-CURVE WITH VEHICLE 
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B.4.  FRONT  AND REAR AXLE TR ACKIN G –  4FM  

 

FIGURE B.19 – 4FM U-TURN NO VEHICLE 

 

FIGURE B.20 – 4FM U-TURN WITH VEHICLE 
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FIGURE B.21 – 4FM ZIG-ZAG NO VEHICLE 

 

FIGURE B.22 – 4FM ZIG-ZAG WITH VEHICLE 
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FIGURE B.23 – 4FM S-CURVE NO VEHICLE 

 

FIGURE B.24 – 4FM S-CURVE WITH VEHICLE 
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FIGURE C.1 – 2WF  TRACKING U-TURN 
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FIGURE C.2 – 2WF  TRACKING ZIG-ZAG 
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FIGURE C.3 – 2WF  TRACKING S-CURVE 
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FIGURE C.4 – 4CG TRACKING U-TURN 
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FIGURE C.5 – 4CG TRACKING ZIG-ZAG 
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FIGURE C.6 – 4CG TRACKING S-CURVE 
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FIGURE C.7 – 4FR TRACKING U-TURN 
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FIGURE C.8 – 4FR TRACKING ZIG-ZAG 
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FIGURE C.9 – 4FR TRACKING S-CURVE
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FIGURE D.1 – 4FM  TRACKING U-TURN 
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FIGURE D.2 – 4FM  TRACKING 90° TURN 
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FIGURE D.3 – 4FM  TRACKING S-CURVE 
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FIGURE D.4 – 4FR TRACKING U-TURN 
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FIGURE D.5 – 4FR TRACKING 90° TURN 
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FIGURE D.6 – 4FR TRACKING S-CURVE
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APPENDIX E.  INDIVIDUAL WHEEL UNIT CONTROLLER C  CODE (4X) 

E.1.  WCU_MAIN .C  

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~  WCU_Main.c  ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
//<editor-fold defaultstate="collapsed" desc="Program Heading"> 
/********************************************************************** 

 * � 2005 Microchip Technology Inc. 
 * 
 * FileName:        WCU_Main.c 
 * Dependencies:    Header (.h) files if applicable, see below 
 * Processor:       dsPIC33FJ128MC802 

 * Compiler:        MPLAB� C30 v3.00 or higher 
 * Module:         Local Wheel Control Unit 
 * 
 * 
 * REVISION HISTORY: 
 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 * Author            Date      Comments on this revision 
 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 * Jon Nistler      05/26/11  Revision based on Nikhil Gupta's code 
 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 * 
 * ADDITIONAL NOTES: 
 * This code is tested on target board with dsPIC33FJ128MC802 controller 
 * The Processor starts with the Internal oscillator without PLL enabled 
 * and then the Clock is switched to PLL Mode. 
 **********************************************************************/ 
//</editor-fold> 
 
//<editor-fold defaultstate="collapsed" desc="uC Pin Configuration"> 
// Needs to be updated 
//                           ============ 
//       Steering Pot - AN1 -|1       28|- Capacitor1? 
//                    - AN2 -|2       27|- Capacitor1? 
//      Serial Clock - SPI1 -|3       26|- PWM1L1 - ?? 
//        Not Connected - x -|4       25|- Not Connected - x 
//    Serial Data In - SPI1 -|5       24|- Not Connected - x 
//      Slave Select - SPI1 -|6       23|- PWM1H2 - Tractive DC Motor PWM 
//             Ground - Vdd -|7       22|- Not Connected - x 
//        Not Connected - x -|8       21|- Not Connected - x 
//    OscillatorPin1 - OSC1 -|9       20|- Capacitor 2? 
//    OscillatorPin2 - OSC2 -|10      19|- Capacitor 2? 
//                          -|11      18|- LATB9 - Steering Brake 
//Steering Left/Right - RA4 -|12      17|- LATB8 - Steering Speed Control? 
//              +3.3v - Vss -|13      16|- Not Connected - x 
//                          -|14      15|- LATB6 - Steering Motor Brake 
//                           ============ 
//</editor-fold> 
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//<editor-fold defaultstate="collapsed" desc="Definitions and Libraries"> 
#include "p33FJ128MC802.h" 
#include "math.h" 
#include "WCU_Drivers.h" 
 
_FGS(GWRP_OFF & GCP_OFF); 
_FOSCSEL(FNOSC_FRC); 
_FOSC(FCKSM_CSECMD & IOL1WAY_OFF & OSCIOFNC_OFF & POSCMD_HS); 
_FWDT(FWDTEN_OFF); 
_FPOR(PWMPIN_OFF & HPOL_ON & LPOL_ON) 
//</editor-fold> 
 
//<editor-fold defaultstate="collapsed" desc="Global Variables"> 
// Declare Global Variables 
double df; 
double dr; 
double Vg; 
 
double old_df = 0.0; //hold angles to check if there has been a change 
double old_dr = 0.0; 
 
int Mode = 1; //Determines steering mode of robot 
int RemoteEnable=1; //Doesn't allow robot to break steering while loop 
 
int PWMZero; //Duty which represents zero velocity 
int ErrorFlag = 1; //When this is set, an error has occurred and the unit 
//has lost contact with the VCU set speed and 
char breaksteer = 0; //Steering while loop will remain until it gets a new variable 
 
double steering_angle = 0.0; // Radians 
 
int speed = 0; // 0-100%, will be calculated from Vg 
int old_speed = 0; 
 
//</editor-fold> 
 
//**** Define Wheel Unit **** 
int unit = 2; // Unit: 1=FL, 2=FR, 3=RR, 4=RL 
 
#define MaxDuty 800 //Define the maximum duty of the DC wheel motor 
//100=min, 800=max (forward) 
#define PotWindow 3  //Error window (in bits) for steer controller (plus or minus) 
//~3 bits/degree 
 
//============== Speed and Angle Calculation  ================ 
void Calc_Speed_n_Angle(float Vg1, float df1, float dr1) 
{ //Takes in Vg (units of duty 0-100%), df (radians), and dr(radians) 
    //and adjusts global variables steering_angle and speed. 
    float W = 26.0; 
    float H = 23.0; 
 
    double wheelangle; 
    double wheelspeed; 
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    //<editor-fold defaultstate="collapsed" desc="AWS Calculated"> 
    // Each wheel represents a different case 
    if (Mode == 1) //AWS Calculated Angles 
    { 
        switch (unit) { 
                // Unit: 1=FL, 2=FR, 3=RR, 4=RL 
                // Equations from Selekwa CDC Paper 
 
                //========== Front Left  ========= 
            case 1: 
                if (df1 == 0) { 
                    wheelangle = 0.0; 
                    wheelspeed = Vg1; 
                } else { 
                    wheelangle = (atanf(1.0 / ((1.0 / tanf(df1))+(W / (2.0 * H))*(1.0 
/ tanf(df1))*(tanf(df1) - tanf(dr1))))); 
                    wheelspeed = ((Vg1 * (tanf(df1) / sin(wheelangle))) / (sqrt(1.0 + 
0.25 * (pow((tanf(df1) + tanf(dr1)), 2.0))))); 
                } 
                break; 
 
                //========== Front Right ========= 
            case 2: 
                if (df1 == 0) { 
                    wheelangle = 0.0; 
                    wheelspeed = Vg1; 
                } else { 
                    wheelangle = (atanf(1.0 / ((1.0 / tanf(df1))-(W / (2.0 * H))*(1.0 
/ tanf(df1))*(tanf(df1) - tanf(dr1))))); 
                    wheelspeed = ((Vg1 * (tanf(df1) / sin(wheelangle))) / (sqrt(1.0 + 
0.25 * (pow((tanf(df1) + tanf(dr1)), 2.0))))); 
                } 
                break; 
 
                //========== Rear Right ========= 
            case 3: 
                if (dr1 == 0) { 
                    wheelangle = 0.0; 
                    wheelspeed = Vg1; 
                } else { 
                    wheelangle = (atanf(1.0 / ((1.0 / tanf(dr1))-(W / (2.0 * H))*(1.0 
/ tanf(dr1))*(tanf(df1) - tanf(dr1))))); 
                    wheelspeed = ((Vg1 * (tanf(dr1) / sin(wheelangle))) / (sqrt(1.0 + 
0.25 * (pow((tanf(df1) + tanf(dr1)), 2.0))))); 
                } 
                break; 
 
                //========== Rear Left ========= 
            case 4: 
                if (dr1 == 0) { 
                    wheelangle = 0.0; 
                    wheelspeed = Vg1; 
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                } else { 
                    wheelangle = (atanf(1.0 / ((1.0 / tanf(dr1))+(W / (2.0 * H))*(1.0 
/ tanf(dr1))*(tanf(df1) - tanf(dr1))))); 
                    wheelspeed = ((Vg1 * (tanf(dr1) / sin(wheelangle))) / (sqrt(1.0 + 
0.25 * (pow((tanf(df1) + tanf(dr1)), 2.0))))); 
                } 
                break; 
 
                //========== Default ========= 
            default: 
                wheelangle = 0.0; 
                wheelspeed = 0.0; 
                break; 
 
        } 
    } 
  //</editor-fold> 
    //<editor-fold defaultstate="collapsed" desc="AWS Mirror"> 
    if (Mode == 2)//AWS Mirrored Angles 
    { 
        switch (unit) 
        { 
                // Unit: 1=FL, 2=FR, 3=RR, 4=RL 
                // Equations from Selekwa CDC Paper 
 
                //========== Front Left  ========= 
            case 1: 
                wheelangle = df1; 
                wheelspeed = Vg1; 
                break; 
 
                //========== Front Right ========= 
            case 2: 
                wheelangle = df1; 
                wheelspeed = Vg1; 
                break; 
 
                //========== Rear Right ========= 
            case 3: 
                wheelangle = dr1; 
                wheelspeed = Vg1; 
                break; 
 
                //========== Rear Left ========= 
            case 4: 
                wheelangle = dr1; 
                wheelspeed = Vg1; 
                break; 
 
                //========== Default ========= 
            default: 
                wheelangle = 0.0; 
                wheelspeed = 0.0; 
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                break; 
 
        } 
    } 
    //</editor-fold> 
    //<editor-fold defaultstate="collapsed" desc="FWS Calculated"> 
    if (Mode == 3)//FWS Calculated Angles 
    { 
        switch (unit) { 
                dr1 = 0; 
                // Unit: 1=FL, 2=FR, 3=RR, 4=RL 
                // Equations from Selekwa CDC Paper 
 
                //========== Front Left  ========= 
            case 1: 
                if (df1 == 0) { 
                    wheelangle = 0.0; 
                    wheelspeed = Vg1; 
                } else { 
                    wheelangle = (atanf(1.0 / ((1.0 / tanf(df1))+(W / (2.0 * H))*(1.0 
/ tanf(df1))*(tanf(df1) - tanf(dr1))))); 
                    wheelspeed = ((Vg1 * (tanf(df1) / sin(wheelangle))) / (sqrt(1.0 + 
0.25 * (pow((tanf(df1) + tanf(dr1)), 2.0))))); 
                } 
                break; 
 
                //========== Front Right ========= 
            case 2: 
                if (df1 == 0) { 
                    wheelangle = 0.0; 
                    wheelspeed = Vg1; 
                } else { 
                    wheelangle = (atanf(1.0 / ((1.0 / tanf(df1))-(W / (2.0 * H))*(1.0 
/ tanf(df1))*(tanf(df1) - tanf(dr1))))); 
                    wheelspeed = ((Vg1 * (tanf(df1) / sin(wheelangle))) / (sqrt(1.0 + 
0.25 * (pow((tanf(df1) + tanf(dr1)), 2.0))))); 
                } 
                break; 
 
                //========== Rear Right ========= 
            case 3: 
                wheelangle = 0.0; 
                wheelspeed = Vg1; 
                break; 
 
                //========== Rear Left ========= 
            case 4: 
                wheelangle = 0.0; 
                wheelspeed = Vg1; 
                break; 
 
                //========== Default ========= 
            default: 
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                wheelangle = 0.0; 
                wheelspeed = 0.0; 
                break; 
        } 
    } 
    //</editor-fold> 
    //<editor-fold defaultstate="collapsed" desc="FWS Same"> 
    if (Mode == 4)//FWS Same Angles 
    { 
        switch (unit) { 
                dr1 = 0; 
                // Unit: 1=FL, 2=FR, 3=RR, 4=RL 
                // Equations from Selekwa CDC Paper 
 
                //========== Front Left  ========= 
            case 1: 
                wheelangle = df1; 
                wheelspeed = Vg1; 
                break; 
 
                //========== Front Right ========= 
            case 2: 
                wheelangle = df1; 
                wheelspeed = Vg1; 
                break; 
 
                //========== Rear Right ========= 
            case 3: 
                wheelangle = 0.0; 
                wheelspeed = Vg1; 
                break; 
 
                //========== Rear Left ========= 
            case 4: 
                wheelangle = 0.0; 
                wheelspeed = Vg1; 
                break; 
 
                //========== Default ========= 
            default: 
                wheelangle = 0.0; 
                wheelspeed = 0.0; 
                break; 
        } 
    } 
    //</editor-fold> 
 
    steering_angle = wheelangle; 
    speed = wheelspeed; 
} 
 
//=====================  SPI Decoder  ======================== 
void Decode(unsigned int varstring) 
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{ 
    // varstring is a 16 bit string, 
    // 1st 8 bits = address 
    // 2nd 8 bits = value 
 
    char address; 
    signed char value; 
 
    //   1st split string into two characters 
    address = varstring >> 8; 
    value = varstring; 
 
    // Assign global variables 
 
    //Steer Mode 
    //0x01=AWS, Calculated Steer Angles 
    //0x02=AWS, Mirrored Steer Angles 
    //0x03=FWS, Calculated Steer Angles 
    //0x04=FWS, Same Steer Angle 
    if (address == 'M') { 
        Mode = value; 
    } 
 
    //Remote Enable will not allow steer controller to move on until it has 
    //reached its setpoint 
    if (address == 'X') 
    { 
    RemoteEnable = value; 
    } 
 
    // Change Vg to percent, i.e. 0,33,66,100% 
    if (address == 'V') { 
        Vg = value; 
    } 
 
    //Convert df & dr to radians, max is pi/2 
    if (address == 'F') { 
        df = ((value * 1.0 / 128.0)*(3.14159 / 2.0)); 
    } 
    if (address == 'R') { 
        dr = ((value * 1.0 / 128.0)*(3.14159 / 2.0)); 
    } 
 
    if(RemoteEnable==0) 
    { 
    if ((df != old_df) || (dr != old_dr)) 
    { 
        breaksteer = 1;//Angles are new so break out of steering while loop} 
    } 
    old_df = df; 
    old_dr = dr; 
    } 
} 
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//================  Wheel Motor Controller  ================== 
void Speed_Controller(signed int x1) 
{ 
    //Takes in a percentage (0-100 integer) and sets the wheel duty 
    //Duty Range = 250-1850 | 250=full backwards; 1850=full forward; 1080=stop 
 
    if (x1 != 0) //If speed is not zero calculate duty and turn off motor brake 
    { 
        unsigned int duty; 
        duty = ((((x1 * 1.0) / 100.0)*(MaxDuty)) + PWMZero); 
        //duty=((((x1*1.0)/100.0)*(MaxDuty-1080))+1080); 
 
        if (duty > (PWMZero + MaxDuty)) //Check for too high of duty 
        { 
            duty = (PWMZero + MaxDuty); 
        } 
 
        if (duty < (PWMZero - MaxDuty)) //Check for too low of duty 
        { 
            duty = (PWMZero - MaxDuty); 
        } 
 
        LATBbits.LATB9 = 1; // Motor brake off 
        P1DC2 = duty; // Apply calculated duty 
 
    } else //Otherwise turn on motor brake and duty to 0 
    { 
        LATBbits.LATB9 = 0; // Motor brake on 
        P1DC2 = 0; // Duty = 0 
    } 
 
} 
 
//================  Steer Motor Controller  ================== 
void Steer_Controller(float y1)  
{ // Takes in an angle (radians) loops steer motor until it is 
    // within the error window 
    // Direction may need to be reversed 
 
    int pot_reading = 0; 
    int des_steer; 
    signed int steer_error = 30; 
    // y1=desired steering angle in radians 
    // convert to pot "points" using the following conversion 
    // 242 = 90 deg CW , 787 = 90 deg CCW , 512 = Center 
    // 3 bits/deg (approximately) 
 
    des_steer = ((-1.0 * (y1 / (3.14159 / 2.0))*270) + 512); //Desired steer in bits 
 
    pot_reading = (ain0Buff[0] + ain0Buff[1]) / 2; //Reads potentiometer 
    steer_error = (pot_reading - des_steer); 
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    if ((abs(steer_error))>(PotWindow * 2)) 
    { 
        while (((abs(steer_error))>(PotWindow)) && (breaksteer == 0)) 
        { 
            pot_reading = (ain0Buff[0] + ain0Buff[1]) / 2; //Reads potentiometer 
            steer_error = (pot_reading - des_steer); //Pot Reading - Desired Steer 
 
 
            if (steer_error < 0) //Steer counterclockwise 
 
                // Use a buffer zone of +10 to -10 so motor isn't constantly jerky 
            { 
                LATBbits.LATB6 = 0; // Steer motor brake off 
                LATBbits.LATB8 = 1; // Steer motor on 
                LATAbits.LATA4 = 0; // Direction = counterclockwise 
            } 
            else if (steer_error > 0) //Steer clockwise 
            { 
                LATBbits.LATB6 = 0; // Steer motor brake off 
                LATBbits.LATB8 = 1; // Steer motor on 
                LATAbits.LATA4 = 1; // Direction = clockwise 
            } 
        } 
        // Motor is within error window so turn it off 
        LATBbits.LATB6 = 1; // Steer motor brake on 
        LATBbits.LATB8 = 0; // Steer motor off 
        LATAbits.LATA4 = 0; // Direction = counterclockwise 
    } 
    breaksteer = 0; //reset break flag for steer controller 
} 
 
//================  Timer 2 Interrupt  =============== 
void __attribute__((interrupt, no_auto_psv)) _T2Interrupt(void) 
{ //If module loses communication with central controller, command to zero 
    //steer and zero speed. 
    if (ErrorFlag != 0) { 
        Speed_Controller(0); 
        Steer_Controller(0); 
    } 
 
    ErrorFlag = 1; // Set Error Flag to get reset before this triggers 
    IFS0bits.T2IF = 0; // Clear Timer5 Interrupt Flag 
} 
 
//====================  SPI Interrupt  ======================= 
void __attribute__((interrupt, no_auto_psv)) _SPI1Interrupt(void) 
{ // SPI Interrupt service routine 
    ErrorFlag = 0; //Communication Established, No error 
    int read = 0; 
    read = SPI1BUF; 
    Decode(read); //Send 16 bit string to be decoded into speed, df, and dr 
    IFS0bits.SPI1IF = 0; // Clear the SPI1 Interrupt Flag 
} 
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/*============================================================ 
                            Main 
============================================================*/ 
int main(void) 
{ 
    int temp; 
 
    initOSC(); // Initialize Oscillator to 40 MHz 
    initRemappablePins(); // Intialize Remappable Peripheral Pins 
    initSPI1(); // Intialize SPI module 
    initADC1(); // Initialize ADC module 
    initPWM1(); // Intialize PWM moudel 
 
    temp = SPI1BUF; // Read SPI Buffer to clear it 
    Speed_Controller(0); 
    Steer_Controller(0); 
    initTmr2(); // Start 1 Hz error check 
 
    while (1) 
    { 
        Calc_Speed_n_Angle(Vg, df, dr); 
 
        Steer_Controller(steering_angle); 
 
        if (speed != old_speed) 
        { 
            Speed_Controller(speed); 
            old_speed = speed; 
        } 
    } 
    return (0); 
} 
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E.2.  WCU_DRIV ER S .C  

//~~~~~~~~~~~~~~~~~~~~~~~~~  WCU_Drivers.c  ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
//<editor-fold defaultstate="collapsed" desc="Program Heading"> 
/********************************************************************** 
 *  2005 Microchip Technology Inc. 
 * 
 * FileName:        WCU_Drivers.c 
 * Dependencies:    Header (.h) files if applicable, see below 
 * Processor:       dsPIC33FJ128MC802 
 * Compiler:        MPLAB C30 v3.00 or higher 
 * Module:          Wheel Control Unit 
 * 
 * REVISION HISTORY: 
 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 * Author            Date      Comments on this revision 
 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 * Jon Nistler       05/26/11  Revision based on Nikhil Gupta's Code 
 * Jon Nistler       06/27/11  Switched Everything to MPLabX and aggregated 
 *                             all drivers into one 
 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 * 
 * ADDITIONAL NOTES: This file is for setup of peripheral modules on WCU 
 **********************************************************************/ 
//</editor-fold> 
 
#include "p33FJ128MC802.h" 
#include "WCU_Drivers.h" 
 
#define  SAMP_BUFF_SIZE  2  // Size of the input buffer per analog input 
#define  NUM_CHS2SCAN   2   // Number of channels enabled for channel scan 
 
//====================== Oscillator ========================== 
 
void initOSC(void) { 
    /* Configure Oscillator to operate the device at 40Mhz 
       Fosc= Fin*M/(N1*N2), Fcy=Fosc/2 
       Fosc= 20M*40/(2*4)=80Mhz for 8M input clock */ 
    PLLFBD = 30; // M=32 p. 144 in datasheet 
    CLKDIVbits.PLLPOST = 0; // N1=2 
    CLKDIVbits.PLLPRE = 2; // N2=4 
 
    // clock switch to incorporate PLL, builtin functions p. 168 in C30 guide 
    __builtin_write_OSCCONH(0x03); // Initiate Clock Switch to Primary 
    // Oscillator with PLL (NOSC=0b011) 
    __builtin_write_OSCCONL(0x01); // Start clock switching 
    while (OSCCONbits.COSC != 0b011) { 
    }; // Wait for Clock switch to occur 
    while (OSCCONbits.LOCK != 1) { 
    }; // Wait for PLL to lock 
} 
//=============== Initialize Remappable Pins ================= 
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void initRemappablePins(void) { 
 
    //REMAPPABLE PINS CONFIGURATION 
    __builtin_write_OSCCONL(OSCCON & ~(1 << 6)); //Unlock the registers 
    //Configure SPI1 Port for SLAVE mode 
    AD1PCFGL = 0x00FF; //analogue pins configured as digital IO 
    RPINR20 = 0x0002; //SCK1 Input is associated to pin RP00 (bit 8-12) (pin 4 of 
dsPIC) 
    //SDI1 input is associated to pin RP02 (bit 0-4) (pin 6 of dsPIC) 
    //  RPOR0=0x0700;           //SDO1 output associated to pin RP01 (pin 5 of the 
dsPIC) 
    RPINR21 = 0x0003; //SS1 associated to RP03 (pin 7 of dsPIC) 
    __builtin_write_OSCCONL(OSCCON | (1 << 6)); //Lock the registers 
 
 
    TRISBbits.TRISB0 = 1; //pin RB0/RP0 is configured as input for clk 
    TRISBbits.TRISB1 = 1; // pin RB1/RP1 is configured as an ON/OFF 
    TRISBbits.TRISB2 = 1; //pin RB2/RP2 is configured as input for data (MOSI) 
    TRISBbits.TRISB3 = 1; // SS1 input 
 
    // SETTING TRISx REGISTER FOR OUTPUT 
    TRISAbits.TRISA4 = 0; 
 
    TRISBbits.TRISB4 = 0; 
    TRISBbits.TRISB5 = 0; 
    TRISBbits.TRISB6 = 0; 
    TRISBbits.TRISB7 = 0; 
    TRISBbits.TRISB8 = 0; 
    TRISBbits.TRISB9 = 0; 
    TRISBbits.TRISB10 = 0; 
    TRISBbits.TRISB11 = 0; 
    TRISBbits.TRISB13 = 0; 
    TRISBbits.TRISB14 = 0; 
 
    //SETTING TRISx REIGISTERS FOR INPUT 
 
    //Redundant, already done in RPInit 
    TRISBbits.TRISB0 = 1; //B0, B2, and B3 used for SPI 
    TRISBbits.TRISB2 = 1; 
    TRISBbits.TRISB3 = 1; 
 
    // INTIALIZING PORTx VALUE TO ZERO 
 
    PORTAbits.RA4 = 0; 
 
    PORTBbits.RB3 = 0; 
    PORTBbits.RB4 = 0; 
    PORTBbits.RB5 = 0; 
    PORTBbits.RB6 = 1; // Turn on steer motor brake 
    PORTBbits.RB7 = 0; 
    PORTBbits.RB8 = 0; 
    PORTBbits.RB9 = 0; // Turn on wheel motor brake 
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    PORTBbits.RB10 = 0; 
    PORTBbits.RB13 = 0; 
    PORTBbits.RB14 = 0; 
} 
//========= Initialize Serial Peripheral Interface =========== 
 
void initSPI1(void) { 
 
    //SPI1 configuration (p. 227) 
    IFS0bits.SPI1IF = 0; // Clear SPI1 interrupt flag 
    IEC0bits.SPI1IE = 0; // Disable interrupt 
 
    SPI1CON1bits.PPRE = 0b10; //Primary prescaler 4:1 
    SPI1CON1bits.SPRE = 0b110; //Secondary prescaler 2:1, gives final frequency of 5 
MHz 
    SPI1CON1bits.MSTEN = 0; //1 = Master mode 
    SPI1CON1bits.CKP = 0; //0 = Idle state for clock is a low level; active state is 
a high level 
    SPI1CON1bits.SSEN = 1; //1 = SS1 (Slave Select) Pin input enabled 
    SPI1CON1bits.CKE = 1; //1 = Serial output data changes on transition from active 
    //clock state to Idle clock state (see bit 6) 
    SPI1CON1bits.SMP = 0; //0 = Input data sampled at middle of data output time 
    SPI1CON1bits.MODE16 = 1; //1 = Communication is word-wide (16 bits) 
    SPI1CON1bits.DISSDO = 1; //1 = Disable SDO1 Pin 
 
    SPI1STATbits.SPIROV = 0; //make sure the overflow flag is cleared 
    SPI1STATbits.SPIEN = 1; //enable SPI1 module 
 
    IFS0bits.SPI1IF = 0; // make sure the SPI interrupt flag is cleared 
    IPC2bits.SPI1IP = 4; // Interrupt priority 4 (high) 
    IEC0bits.SPI1IE = 1; // Interrupt enabled 
} 
//========= Initialize Analog to Digital Converter =========== 
 
void initADC1(void) { 
    // p. 275 
 
    AD1CON1bits.AD12B = 0; // 10-bit ADC operation 
    AD1CON1bits.FORM = 0; // Data Output Format: Integer 
    AD1CON1bits.SSRC = 2; // Sample Clock Source: GP Timer starts conversion 
    AD1CON1bits.ASAM = 1; // ADC Sample Control: Sampling begins immediately after 
conversion 
 
    AD1CON2bits.CSCNA = 1; // Scan Input Selections for CH0+ during Sample A bit 
    AD1CON2bits.CHPS = 0; // Converts CH0 
 
    AD1CON3bits.ADRC = 0; // ADC Clock is derived from Systems Clock 
    AD1CON3bits.ADCS = 63; // ADC Conversion Clock Tad=Tcy*(ADCS+1)= (1/40M)*64 = 
1.6us (625Khz) 
    // ADC Conversion Time for 10-bit Tc=12*Tad = 19.2us 
 
    AD1CON2bits.SMPI = (NUM_CHS2SCAN - 1); // 2 ADC Channel is scanned 
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    //AD1CSSH/AD1CSSL: A/D Input Scan Selection Register 
 
    AD1CSSLbits.CSS0 = 1; // Enable AN0 for channel scan 
    AD1CSSLbits.CSS1 = 1; // Enable AN1 for channel scan 
 
    //AD1PCFGH/AD1PCFGL: Port Configuration Register 
    AD1PCFGLbits.PCFG0 = 0; // AN0 as Analog Input 
    AD1PCFGLbits.PCFG1 = 0; // AN1 as Analog Input 
 
    IFS0bits.AD1IF = 0; // Clear the A/D interrupt flag bit 
    IPC3bits.AD1IP = 2; 
    IEC0bits.AD1IE = 1; // Enable A/D interrupt 
    AD1CON1bits.ADON = 1; // Turn on the A/D converter 
 
    initTmr3(); 
} 
//========= Initialize Timer 2 (Steer_Controller) ============ 
 
void initTmr2() { 
    //Timer 2 is setup to time-out every 0.5 ms (2 kHz Rate). 
 
    //Timer 2 initialization 
    T2CONbits.TON = 0; // Disable Timer 
    T2CONbits.TCS = 0; // Select internal instruction cycle clock 
    T2CONbits.TGATE = 0; // Disable Gated Timer mode 
    T2CONbits.TCKPS = 0b11; // Select 1:256 Prescaler 
    T2CONbits.T32 = 0; // Disable 32 bit 
 
    TMR2 = 0x00; // Clear timer register 
 
    //Period = 40000000/(256*IMU_sample_rate) 
    PR2 = 0xFFFF; // Load the period value (maximum) 
 
    IPC1bits.T2IP = 3; //Interrupt priority 3 
    IFS0bits.T2IF = 0; // Clear Timer5 Interrupt Flag 
    IEC0bits.T2IE = 1; // Enable Timer5 interrupt 
 
    T2CONbits.TON = 1; // Start Timer 
 
} 
//================= Initialize Timer 3 (ADC) ================= 
 
void initTmr3() { 
    /*Timer 3 is setup to time-out every 125 microseconds (8Khz Rate). As a result, 
     *  the module will stop sampling and trigger a conversion on every Timer3 
     * time-out, i.e., Ts=125us.*/ 
 
    TMR3 = 0x0000; 
    PR3 = 4999; 
    IFS0bits.T3IF = 0; 
    IEC0bits.T3IE = 0; 
 
    //Start Timer 3 
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    T3CONbits.TON = 1; 
 
} 
//=== Initialize Pulse Width Modulation (Tractive DC Motor) == 
 
void initPWM1(void) { 
    P1TCONbits.PTMOD = 0b00; // Free running mode 
    P1TCONbits.PTCKPS = 0b00; // Input clock period= 1 Tcy 
    P1TCONbits.PTOPS = 0b00; // Output post scale is 1:1 
    P1TCONbits.PTSIDL = 0; // Runs in idle mode 
 
    P1TPER = 999; // Pwm frequency of 40 Khz 
 
    PWM1CON1bits.PMOD1 = 0; // Pwm1 pair 1 is in independent mode **Actually in 
complementary mode 
    PWM1CON1bits.PMOD2 = 0; // Pwm1 pair 2 is in independent mode **Actually in 
complementary mode 
 
    PWM1CON1 = 0; // Disable all PWM Pins 
    PWM1CON1bits.PEN2H = 1; // Enable Pwm1H2 pin is set acitve 
    PWM1CON1bits.PEN1L = 1; // Enable Pwm1L1 pin is set acitve 
 
    PWM1CON2bits.IUE = 1; // Immediate updates for PWM 
 
    P1DTCON1bits.DTAPS = 0b00; // Dead time for unit A is Tcy 
    P1DTCON1bits.DTBPS = 0b00; // Dead time for unit B is Tcy 
    P1DTCON1bits.DTA = 0; // Dead time for unit A is '0' 
    P1DTCON1bits.DTB = 20; // Dead time for unit B is '20' 
 
    P1DTCON2bits.DTS1A = 0; // Dead time for the PWM1L1 active signal is provided by 
unit A 
    P1DTCON2bits.DTS1I = 0; // Dead time for the PWM1L1 inactive signal is provided 
by unit A 
    P1DTCON2bits.DTS2A = 1; // Dead time for the PWM1H2 active signal is provided by 
unit B 
    P1DTCON2bits.DTS2I = 0; // Dead time for the PWM1H2 inactive signal is provided 
by unit A 
 
    P1OVDCONbits.POVD1L = 1; // Output on  PWM1L1 is controlled by the PWM generator 
    P1OVDCONbits.POVD2H = 1; // Output on  PWM1H2 is controlled by the PWM generator 
    P1DC1 = 1400; // Duty cycle of PWM1L1 (2%) ?? 
    P1DC2 = 1023; // Duty cycle of PWM1H2 (1.5%) ?? 
 
    PWM2CON1 = 0; 
    P1TCONbits.PTEN = 1; // PWM  module is ON 
 
    switch (unit) { 
            // Unit: 1=FL, 2=FR, 3=RR, 4=RL 
 
        case 1: 
        { 
            PWMZero = 1085; 
        } 
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            break; 
 
        case 2: 
        { 
            PWMZero = 1000; //962 
        } 
            break; 
 
        case 3: 
        { 
            PWMZero = 1077; 
        } 
            break; 
 
        case 4: 
        { 
            PWMZero = 1013; 
        } 
            break; 
    } 
} 
//============== ADC Interrupt Service Routine =============== 
 
int ain0Buff[SAMP_BUFF_SIZE]; 
int ain1Buff[SAMP_BUFF_SIZE]; 
int scanCounter = 0; 
int sampleCounter = 0; 
 
void __attribute__((interrupt, no_auto_psv)) _ADC1Interrupt(void) { 
 
    switch (scanCounter) {// If this is the first scan put value in buffer 0 
        case 0: 
            ain0Buff[sampleCounter] = ADC1BUF0; 
            break; 
            // On second scan put value in buffer 1 
        case 1: 
            ain1Buff[sampleCounter] = ADC1BUF0; 
            break; 
 
        default: 
            break; 
 
    } 
 
    scanCounter++; // Increments scan counter 
 
    if (scanCounter == NUM_CHS2SCAN) //Checks to see if we have reached desired 
samples 
    { 
        scanCounter = 0; // Reset scan counter 
        sampleCounter++; 
    } 
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    if (sampleCounter == SAMP_BUFF_SIZE) //Checks to see if we have reached desired 
samples 
        sampleCounter = 0; 
 
    IFS0bits.AD1IF = 0; // Clear the ADC1 Interrupt Flag 
}  



 

 
185 

 

E.3.  WCU_DRIV ER S .H  

/********************************************************************** 

* � 2005 Microchip Technology Inc. 
* 
* FileName:        VCU_Drivers.h 
* Dependencies:    Other (.h) files if applicable, see below 
* Processor:       dsPIC33FJ128MC802 

* Compiler:        MPLAB� C30 v3.00 or higher 
* 
* 
* 
* REVISION HISTORY: 
*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
* Author            Date      Comments on this revision 
*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
* Jonathan Nistler  10/12/11  Release used during experimentation 
*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~* 
* ADDITIONAL NOTES: 
* 
**********************************************************************/ 
#ifndef __VCU_DRIVERS_H__ 
#define __VCU_DRIVERS_H__ 
 
//definitions 
#define Accel 0xA6   //Write address for acclerometer and gyro on IMU 
#define Gyro  0xD0 
 
#define X_Accel  0x32 //Read registers for various axes 
#define Y_Accel  0x34 
#define Z_Accel  0x36 
#define X_Gyro  0x1D 
#define Y_Gyro  0x1F 
#define Z_Gyro  0x21 
 
 
//Enable axes by changing these to 1 
#define Enable_X_Accel  0 
#define Enable_Y_Accel  0 
#define Enable_Z_Accel  0 
#define Enable_X_Gyro  0 
#define Enable_Y_Gyro  0 
#define Enable_Z_Gyro  1 
 
 
extern void delay32(unsigned long cycles); 
// External Functions 
extern void initOSC(void); 
extern void initRemappablePins(void); 
extern void initSPI1(void); 
extern void initSPI2(void); 
extern void initI2C(void); 
extern void initUART1(void); 
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extern void initADC1(void); 
extern void initIMU(void); 
extern void initCMP(void); 
extern void initTmr2(); 
extern void initTmr3(); 
extern void initTmr4(); 
extern void initTmr5(); 
extern void __attribute__((__interrupt__)) _ADC1Interrupt(void); 
 
extern void StartI2C(void); 
extern void StopI2C(void); 
extern void RestartI2C(void); 
extern void WriteI2C(unsigned char byte); 
extern unsigned int ReadI2C(void); 
extern void IdleI2C(void); 
extern void ACKI2C(void); 
extern void NACKI2C(void); 
extern void IMUwrite(unsigned char control, unsigned char address, unsigned char 
data); 
extern int IMUread(unsigned char control, unsigned char address); 
extern signed int AccelRead(unsigned char address); 
extern signed int GyroRead(unsigned char address); 
extern void __delay32(unsigned long cycles); 
 
extern int  ain0Buff[2]; 
extern int  ain1Buff[2]; 
 
extern float X_Accel_Offset; 
extern float Y_Accel_Offset; 
extern float Z_Accel_Offset; 
extern float X_Gyro_Offset; 
extern float Y_Gyro_Offset; 
extern float Z_Gyro_Offset; 
 
#endif 
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E.4.  WCU_TRAPS .C  

/********************************************************************** 

* � 2005 Microchip Technology Inc. 
* 
* FileName:        traps.c 
* Dependencies:    Header (.h) files if applicable, see below 
* Processor:       dsPIC33FJ128MC802 

* Compiler:        MPLAB� C30 v3.00 or higher 
* 
*  
* 
* REVISION HISTORY: 
*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
* Author            Date      Comments on this revision 
*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
* NIKHIL G.         08/19/09  First release of source file 
*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
* 
* ADDITIONAL NOTES: 
* 1. This file contains trap service routines (handlers) for hardware 
*    exceptions generated by the dsPIC33F device. 
* 2. All trap service routines in this file simply ensure that device 
*    continuously executes code within the trap service routine. Users 
*    may modify the basic framework provided here to suit to the needs 
*    of their application. 
* 
**********************************************************************/ 
 
 
#include "p33FJ128MC802.h" 
 
 
void __attribute__((__interrupt__)) _OscillatorFail(void); 
void __attribute__((__interrupt__)) _AddressError(void); 
void __attribute__((__interrupt__)) _StackError(void); 
void __attribute__((__interrupt__)) _MathError(void); 
void __attribute__((__interrupt__)) _DMACError(void); 
 
void __attribute__((__interrupt__)) _AltOscillatorFail(void); 
void __attribute__((__interrupt__)) _AltAddressError(void); 
void __attribute__((__interrupt__)) _AltStackError(void); 
void __attribute__((__interrupt__)) _AltMathError(void); 
void __attribute__((__interrupt__)) _AltDMACError(void); 
 
/* 
Primary Exception Vector handlers: 
These routines are used if INTCON2bits.ALTIVT = 0. 
All trap service routines in this file simply ensure that device 
continuously executes code within the trap service routine. Users 
may modify the basic framework provided here to suit to the needs 
of their application. 
*/ 
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void __attribute__((interrupt, no_auto_psv)) _OscillatorFail(void) 
{ 
        INTCON1bits.OSCFAIL = 0;        //Clear the trap flag 
 
        LATBbits.LATB9 = 0;         // Motor brake on 
    P1DC2 = 0;              // Duty = 0 
        LATBbits.LATB6 = 1; // Steer motor brake on 
        LATBbits.LATB8 = 0; // Steer motor off 
    LATAbits.LATA4 = 0; // Direction = counterclockwise 
        while (1); 
} 
 
void __attribute__((interrupt, no_auto_psv)) _AddressError(void) 
{ 
        INTCON1bits.ADDRERR = 0;        //Clear the trap flag 
        LATBbits.LATB9 = 0;         // Motor brake on 
    P1DC2 = 0;              // Duty = 0 
        LATBbits.LATB6 = 1; // Steer motor brake on 
        LATBbits.LATB8 = 0; // Steer motor off 
    LATAbits.LATA4 = 0; // Direction = counterclockwise 
        while (1); 
} 
void __attribute__((interrupt, no_auto_psv)) _StackError(void) 
{ 
        INTCON1bits.STKERR = 0;         //Clear the trap flag 
        LATBbits.LATB9 = 0;         // Motor brake on 
    P1DC2 = 0;              // Duty = 0 
        LATBbits.LATB6 = 1; // Steer motor brake on 
        LATBbits.LATB8 = 0; // Steer motor off 
    LATAbits.LATA4 = 0; // Direction = counterclockwise 
        while (1); 
} 
 
void __attribute__((interrupt, no_auto_psv)) _MathError(void) 
{ 
        INTCON1bits.MATHERR = 0;        //Clear the trap flag 
        LATBbits.LATB9 = 0;         // Motor brake on 
    P1DC2 = 0;              // Duty = 0 
        LATBbits.LATB6 = 1; // Steer motor brake on 
        LATBbits.LATB8 = 0; // Steer motor off 
    LATAbits.LATA4 = 0; // Direction = counterclockwise 
        while (1); 
} 
 
void __attribute__((interrupt, no_auto_psv)) _DMACError(void) 
{ 
        INTCON1bits.DMACERR = 0;        //Clear the trap flag 
        LATBbits.LATB9 = 0;         // Motor brake on 
    P1DC2 = 0;              // Duty = 0 
        LATBbits.LATB6 = 1; // Steer motor brake on 
        LATBbits.LATB8 = 0; // Steer motor off 
    LATAbits.LATA4 = 0; // Direction = counterclockwise 
        while (1); 
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} 
 
 
 
 
 
/* 
Alternate Exception Vector handlers: 
These routines are used if INTCON2bits.ALTIVT = 1. 
All trap service routines in this file simply ensure that device 
continuously executes code within the trap service routine. Users 
may modify the basic framework provided here to suit to the needs 
of their application. 
*/ 
 
void __attribute__((interrupt, no_auto_psv)) _AltOscillatorFail(void) 
{ 
        INTCON1bits.OSCFAIL = 0; 
        LATBbits.LATB9 = 0;         // Motor brake on 
    P1DC2 = 0;              // Duty = 0 
        LATBbits.LATB6 = 1; // Steer motor brake on 
        LATBbits.LATB8 = 0; // Steer motor off 
    LATAbits.LATA4 = 0; // Direction = counterclockwise 
        while (1); 
} 
 
void __attribute__((interrupt, no_auto_psv)) _AltAddressError(void) 
{ 
        INTCON1bits.ADDRERR = 0; 
        LATBbits.LATB9 = 0;         // Motor brake on 
    P1DC2 = 0;              // Duty = 0 
        LATBbits.LATB6 = 1; // Steer motor brake on 
        LATBbits.LATB8 = 0; // Steer motor off 
    LATAbits.LATA4 = 0; // Direction = counterclockwise 
        while (1); 
} 
 
void __attribute__((interrupt, no_auto_psv)) _AltStackError(void) 
{ 
        INTCON1bits.STKERR = 0; 
        LATBbits.LATB9 = 0;         // Motor brake on 
    P1DC2 = 0;              // Duty = 0 
        LATBbits.LATB6 = 1; // Steer motor brake on 
        LATBbits.LATB8 = 0; // Steer motor off 
    LATAbits.LATA4 = 0; // Direction = counterclockwise 
        while (1); 
} 
 
void __attribute__((interrupt, no_auto_psv)) _AltMathError(void) 
{ 
        INTCON1bits.MATHERR = 0; 
        LATBbits.LATB9 = 0;         // Motor brake on 
    P1DC2 = 0;              // Duty = 0 
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        LATBbits.LATB6 = 1; // Steer motor brake on 
        LATBbits.LATB8 = 0; // Steer motor off 
    LATAbits.LATA4 = 0; // Direction = counterclockwise 
        while (1); 
} 
 
void __attribute__((interrupt, no_auto_psv)) _AltDMACError(void) 
{ 
        INTCON1bits.DMACERR = 0;        //Clear the trap flag 
        LATBbits.LATB9 = 0;         // Motor brake on 
    P1DC2 = 0;              // Duty = 0 
        LATBbits.LATB6 = 1; // Steer motor brake on 
        LATBbits.LATB8 = 0; // Steer motor off 
    LATAbits.LATA4 = 0; // Direction = counterclockwise 
        while (1); 
} 
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APPENDIX F.  CENTRAL VEHICLE BODY CONTROLLER C  CODE  

F.1.  VCU_MAI N .C  

//~~~~~~~~~~~~~~~~~~~~~  VCU_Main.c  ~~~~~~~~~~~~~~~~~ 
 
    //<editor-fold defaultstate="collapsed" desc="Program Heading"> 
/********************************************************************** 
*  2005 Microchip Technology Inc. 
* 
* FileName:        VCU_Main.c 
* Dependencies:    Header (.h) files if applicable, see below 
* Processor:       dsPIC33FJ128MC802 
* Compiler:        MPLAB C30 v3.00 or higher 
* Module:          Vehicle body controller 
* 
* 
* REVISION HISTORY: 
*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
* Author            Date      Comments on this revision 
*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
* Jon Nistler       5/23/11   Revision based on Nikhil Gupta's Code 
*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
* 
* ADDITIONAL NOTES: 
* This code is tested on target board with dsPIC33FJ128MC802 controller 
* The Processor starts with the Internal oscillator without PLL enabled 
*  and then the Clock is switched to PLL Mode. 
**********************************************************************/ 
    //</editor-fold> 
 
    //<editor-fold defaultstate="collapsed" desc="uC Pin Configuration"> 
//                          =========== 
//             uC Reset MCLR-|1     28|-AVdd 
//        Remote Pot 1 - AN1-|2     27|-AVss 
//        Remote Pot 2 - AN2-|3     26|-RB15 - Sonar Sensor 4 Slave Select 
//       Serial Clock - SPI1-|4     25|-RB14 - Sonar Sensor 3 Slave Select 
//Odometer Comparator C2IN+ -|5     24|-RB13 - Sonar Sensor 2 Slave Select 
//    Serial Data Out - SPI1-|6     23|-RB12 - Sonar Sensor 1 Slave Select 
//       Slave Select - SPI1-|7     22|-UART1 - Rx Sonar Sensor Data 
//              Ground - Vss-|8     21|- 
//     OscillatorPin1 - OSC1-|9     20|-Vcap - Capacitor?? 
//     OscillatorPin2 - OSC2-|10    19|-Vss - Ground (Accel Gnd) 
//              Ground - RB4-|11    18|-SDA1 - Serial Data Accel/Gyro (I2C) 
//               +3.3v - RA4-|12    17|-SCL1 - Serial Clock Accel/Gyro (I2C) 
//               +3.3v - Vdd-|13    16|- 
//                          -|14    15|- 
//                   =========== 
    //</editor-fold> 
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    //<editor-fold defaultstate="collapsed" desc="Definitions and Libraries"> 
// Includes 
#include "p33FJ128MC802.h" 
#include "VCU_Drivers.h" 
#include "math.h" 
#include <stdio.h> 
#include <stdlib.h> 
 
 
//Definitions 
#define Sonar1 LATBbits.LATB12 
#define Sonar2 LATBbits.LATB13 
#define Sonar3 LATBbits.LATB14 
#define Sonar4 LATBbits.LATB15 
 
#define NumberofSonars 4 
 
#define ON 1 
#define OFF 0 
 
#define linear_units 981.0 //9.81=meters, 981.0=cm, etc 
#define angular_units 57.3 //57.3= 180/pi =radians, 1.0=degrees 
 
// Builtin functions 
_FGS(GWRP_OFF & GCP_OFF); 
_FOSCSEL(FNOSC_FRC);        //Fast RC Oscillator 
_FOSC(FCKSM_CSECMD & IOL1WAY_OFF & OSCIOFNC_OFF & POSCMD_HS); 
_FWDT(FWDTEN_OFF); 
_FPOR(PWMPIN_OFF & HPOL_ON & LPOL_ON) 
 
    //</editor-fold> 
 
    //<editor-fold defaultstate="collapsed" desc="Global Variables"> 
//=================  Global Variables  =============== 
    int ADCcount=0;         //Track initialization of ADC 
 
    signed int Vg=0;        //percent -100 to 100 
    signed int df=0;        //integer -127 to 127 = -pi/2 to pi/2 
    signed int dr=0;        //integer -127 to 127 
    signed int Mode=1; 
    signed int RemoteEnable=1; 
 
    int CurrentSensor=1;    //Keeps track of which sensor is being sampled 
    int UARTdatacount=1;    //To track which character the UART is sending 
 
    int Range1=255; 
    int Range2=255; 
    int Range3=255; 
    int Range4=255; 
    int max; 
 
    float X_Accel_Offset; 
    float Y_Accel_Offset; 
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    float Z_Accel_Offset; 
    float X_Gyro_Offset; 
    float Y_Gyro_Offset; 
    float Z_Gyro_Offset; 
 
    int IMUcount2=0; 
 
    int X_Accel_Sum=0; 
    int Y_Accel_Sum=0; 
    int Z_Accel_Sum=0; 
    int X_Gyro_Sum=0; 
    int Y_Gyro_Sum=0; 
    int Z_Gyro_Sum=0; 
 
    float X_Accel_Avg=0; 
    float Y_Accel_Avg=0; 
    float Z_Accel_Avg=0; 
    float X_Gyro_Avg=0; 
    float Y_Gyro_Avg=0; 
    float Z_Gyro_Avg=0; 
 
    float X_Acceleration = 0;       //cm/s^2 
    float X_Speed = 0;              //cm/s 
    float X_Position = 0;           //cm 
    float Y_Acceleration = 0;       //cm/s^2 
    float Y_Speed = 0;              //cm/s 
    float Y_Position = 0;           //cm 
    float Z_Acceleration = 0;       //cm/s^2 
    float Z_Speed = 0;              //cm/s 
    float Z_Position = 0;           //cm 
 
    float X_Angular_Speed = 0;      //cm/s^2 
    float X_Angular_Position = 0;   //cm/s 
    float Y_Angular_Speed = 0;      //cm/s^2 
    float Y_Angular_Position = 0;   //cm/s 
    float Z_Angular_Speed = 0;      //cm/s^2 
    float Z_Angular_Position = 0;   //cm/s 
 
    float Time=0; 
    long double distance = 0.1;     //cm 
 
    signed int headingint=0;        //Store heading in same units as df,dr 
    float heading = 0;              //radians 
    float old_heading = 0; 
 
    signed int FWAngOTF[50]={0}; //Used to store front wheel angle on the fly 
    int OTFindex = 1; 
    //</editor-fold> 
 
    //**** Put Paths Here **** 
    // Example: 
    #define pathlength 1000 
    const signed char dfmem[pathlength]={0}; 
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    const signed char drmem[pathlength]={0}; 
    //**** 
 
//==================     Encode    =================== 
    int Encode(char address,signed int value) 
    { 
    int varstring; 
        varstring=(address<<8)|(0x00FF&value); //Address 8MSB, Value 8LSB 
    return (varstring); 
    } 
//==================     Remote    =================== 
    void Remote(void) 
    { 
    //Samples ADC on two channels and converts those to 
    //signals for speed and turning 
 
    int joystick1; 
    int joystick2; 
 
    joystick1 = (ain0Buff[0]+ain0Buff[1])/2; //Grab average of  
    joystick2 = (ain1Buff[0]+ain1Buff[1])/2;    //two values from ADC 
 
    df=(((joystick1*1.0-512.0)/512.0)*90); 
    dr = (-1 * df); //AWS 
 
        //Speed Control 
        Vg =(((joystick2*1.0-512.0)/512.0)*70); 
 
        if(abs(Vg)<5) 
        {Vg=0;} 
 
    } 
//===================  Range Pulse  ================== 
    void RangePulse(void) 
    { 
 
    // Sends a pulse on portB to the sonar range finders 
    // must be held high for at least 20 us. Range finders 
    // are pulsed in order 
 
    // When data comes back, the interrupt drives UARTData function to 
    //capture the value and index CurrentSensor 
 
        switch (CurrentSensor) { 
            // Sensor 1 - Far Left 
        case 1: 
            Sonar1 = ON; 
            break; 
            // Sensor 2 - Near Left 
        case 2: 
            Sonar2 = ON; 
            break; 
            // Sensor 3 - Near Right 
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        case 3: 
            Sonar3 = ON; 
            break; 
            // Sensor 4 - Far Right 
        case 4: 
            Sonar4 = ON; 
            break; 
    } 
    __delay32(2000); // Delay 
    Sonar1 = OFF; 
    Sonar2 = OFF; 
    Sonar3 = OFF; 
    Sonar4 = OFF; 
} 
//================== ASCII to Number  ================ 
    int ascii2num(int ascii) 
    { 
    // Takes in a character in ASCII format and converts 
    // it to a number 
    char num; 
 
    switch (ascii) { 
        case '0':num = 0; 
            break; 
        case '1':num = 1; 
            break; 
        case '2':num = 2; 
            break; 
        case '3':num = 3; 
            break; 
        case '4':num = 4; 
            break; 
        case '5':num = 5; 
            break; 
        case '6':num = 6; 
            break; 
        case '7':num = 7; 
            break; 
        case '8':num = 8; 
            break; 
        case '9':num = 9; 
            break; 
        default: num = 0; 
            break; 
    } 
    return num; 
} 
//===================  Range Data  =================== 
    void RangeData(int RangeDistance2) 
    { 
    //Upon transmission of 5th character from sonar sensor 
    //RangeData assigns the distance to one of four vars 
    //representing the distance of that sonar sensor 
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    switch (CurrentSensor) 
    { 
            // 1st Sensor - Far Left 
        case 1: 
            Range1 = RangeDistance2; 
            break; 
            // 2nd Sensor - Near Left 
      case 2: 
            Range2 = RangeDistance2; 
            break; 
 
            // 3rd Sensor - Near Right 
        case 3: 
            Range3 = RangeDistance2; 
            break; 
            // 4th Sensor - Far Right 
        case 4: 
            Range4 = RangeDistance2; 
            break; 
    } 
} 
//====================  UART Data  =================== 
    void UARTData(int Character) 
    { 
    //Takes in a character sent from the UART interrupt 
    //writes to five vars, when last var is written, 
    //the 2nd 3rd and 4th are converted to a distance 
 
    //Data comes in from the sensor in the form of 
    // 9600 baud, 8 bit, no parity, 1 stop bit 
    // 'R' '#' '#' '#' 'Carraige Return' (ASCII 13) 
    // where ### is the distance in inches 
 
    int Data1; 
    int Data2; 
    int Data3; 
    int Data4; 
    int Data5; 
    int RangeDistance; 
 
    switch (UARTdatacount) 
    { 
            // 1st Data - Should be ascii 'R' 
        case 1: 
            if(Character=='R') 
            { 
                Data1 = Character; 
            } 
            else 
            { 
                UARTdatacount=0;    //If synchronization gets off keep resetting 
                                    //until next range reading comes in 
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            } 
            break; 
 
            // 2nd Data - Should be ascii '#' 
        case 2: 
            Data2 = Character; 
            break; 
 
            // 3rd Data - Should be ascii '#' 
        case 3: 
            Data3 = Character; 
            break; 
 
            // 4th Data - Should be ascii '#' 
        case 4: 
            Data4 = Character; 
            break; 
 
            // 5th Data - Should be ascii 'Carriage Return' (13) 
        case 5: 
            Data5 = Character; 
            UARTdatacount = 0; 
            if (Data5 == 0x000D) 
            { 
                RangeDistance = 
((ascii2num(Data2))*100)+((ascii2num(Data3))*10)+((ascii2num(Data4))*1); 
                RangeData(RangeDistance); 
                CurrentSensor=CurrentSensor+1; //Data is good, clear to go on to next 
sensor 
                Data1=0; 
                Data2=0; 
                Data3=0; 
                Data4=0; 
                Data5=0; 
                if (CurrentSensor==(NumberofSonars+1)) //Reset CurrentSensor when 
overflow 
                    {CurrentSensor=1;} 
            } 
            break; 
    } 
    UARTdatacount = UARTdatacount + 1; 
} 
//=================  IMU Measurement  ================ 
    void SampleIMU(void) 
    { 
        // Every 20ms Timer2 expires and calls SampleIMU 
        // SampleIMU samples the specified axes of the acclerometer 
        // and gyroscope. It then updates the values for X,Y, and Z 
        // acceleration and angular velocity. It then integrates to find 
        // velocity, position, and orientation. 
 
        // Enable or disable axes in VCU_Drivers.h 
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        //=====Accelerometer====== 
        //  X-Axis 
        if(Enable_X_Accel) 
        { 
            X_Acceleration = ((AccelRead(X_Accel)-
X_Accel_Offset)*linear_units/256.0);    //cm/s^2 
            X_Speed = X_Speed+X_Acceleration*0.02;        //cm/s 
            X_Position = X_Position+X_Speed*0.02;        //cm 
        } 
 
        //  Y-Axis 
        if(Enable_Y_Accel) 
        { 
            Y_Acceleration = (AccelRead(Y_Accel)-Y_Accel_Offset)*linear_units/256.0;    
//cm/s^2 
            Y_Speed = Y_Speed+Y_Acceleration*0.02;        //cm/s 
            Y_Position = Y_Position+Y_Speed*0.02;        //cm 
        } 
 
        //  Z-Axis 
        if(Enable_Z_Accel) 
        { 
            Z_Acceleration = (AccelRead(Z_Accel)-Z_Accel_Offset)*linear_units/256.0;    
//cm/s^2 
            Z_Speed = Z_Speed+Z_Acceleration*0.02;        //cm/s 
            Z_Position = Z_Position+Z_Speed*0.02;        //cm 
        } 
        //=====Gyroscope====== 
        //  X-Axis 
        if(Enable_X_Gyro) 
        { 
            X_Angular_Speed = (GyroRead(X_Gyro)-
X_Gyro_Offset)*1.0/(14.375*angular_units);    //rad/s 
            X_Angular_Position = X_Angular_Position+X_Angular_Speed*0.02; //rads 
        } 
 
        //  Y-Axis 
        if(Enable_Y_Gyro) 
        { 
            Y_Angular_Speed = (GyroRead(Y_Gyro)-
Y_Gyro_Offset)*1.0/(14.375*angular_units);    //rad/s 
            Y_Angular_Position = Y_Angular_Position+Y_Angular_Speed*0.02; //rads 
        } 
 
        //  Z-Axis 
        if(Enable_Z_Gyro) 
        { 
            Z_Angular_Speed = (GyroRead(Z_Gyro)-
Z_Gyro_Offset)*1.0/(14.375*angular_units);    //rad/s 
            Z_Angular_Position = 
fmodf((Z_Angular_Position+Z_Angular_Speed*0.02),6.283); //rads 
        } 
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    } 
 //=================  Follow Target  ================= 
    void Follow(void) 
    { 
     max = 300; 
    int sens = 1; 
 
    if (Range1 < max) 
        { 
        sens = 1; 
        max = Range1; 
        } 
    if (Range2 < max) 
        { 
        sens = 2; 
        max = Range2; 
        } 
 
    if (Range3 < max) 
        { 
        sens = 3; 
        max = Range3; 
 
        } 
    if (Range4 < max) 
        { 
        sens = 4; 
        max = Range4; 
        } 
 
/* 
    switch (sens) { 
        case 1: 
            df = -20; 
            dr = 20; 
            break; 
        case 2: 
            df = 20; 
            dr = -20; 
            break; 
        case 3: 
            df = 10; 
            dr = -10; 
            break; 
        case 4: 
            df = -20; 
            dr = 20; 
            break; 
                    } 
*/ 
 
        if(max>18) 
        {Vg=15;} 
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        else 
        { 
            if(max<12) 
            {Vg=-15;} 
            else 
            {Vg = 0;} 
        } 
    df=0; 
    dr=0; 
} 
//=================  Obstacle Avoidance  ============= 
    void Avoid(void) 
    { 
        df=(((Range1*1.0-Range4*1.0)/(Range1*1.0+Range4*1.0)))*100; 
 
        if(df<-70) 
        {df=-70;} 
        if(df>70) 
        {df=70;} 
    } 
//========  On The Fly path memory function  ========= 
    void OTFPathMem() 
    { 
        float dfF; 
        float drF; 
        float A; 
        float B; 
        float C; 
        float l; 
        float m; 
        float theta; 
        int turn; 
 
        int OTFindexr; 
        //Driven by comparator(odometer) interrupt 
 
 
        if((df==0&&dr==0)||(df==dr)) 
        {theta=0;} 
        else 
        {//Convert df, dr to radians 
 
 
        dfF=fabs(df*1.571/128.0); 
        drF=fabs(dr*1.571/128.0); 
 
        //Figure out geometry 
 
        //First Check Signs 
        //Same Sign 
 
        if(((df>0)&&(dr>0))||((df<0)&&(dr<0))) 
        { 
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            if(dfF>drF)//df>dr 
            { 
                A=1.571-dfF; 
                B=1.571+drF; 
                turn=1;//Same sign as df 
            } 
            else//dr>df 
            { 
                A=1.571+dfF; 
                B=1.571-drF; 
                turn=-1;//Opposite sign as df 
            } 
        } 
        else //Opposite sign 
        { 
        A=1.571-dfF; 
        B=1.571-drF; 
        turn=1;//Same sign as df 
        } 
 
        if(df<0) 
        {turn=-1*turn;} 
 
        C=3.1416-B-A; 
        m=fabs(58.42*sinf(B)/sinf(C)); 
        l=sqrtf(fabs(853.22+powf(m,2)-(58.42*m*cosf(A)))); 
 
        //Change in heading 
        theta=atanf(1.3744/l); 
        } 
 
        heading=old_heading+theta*turn; 
 
/* 
        if(heading>3.14) 
        {heading=3.14;} 
        if(heading<-3.14) 
        {heading=-3.14;} 
*/ 
 
        old_heading=heading; 
 
        headingint = (signed int)(floorf((heading*127.0/1.5707))); 
 
        //Store absolute angle at front wheels 
        FWAngOTF[OTFindex]=(df+headingint);//127 or 254 
        //FWAngOTF[OTFindex]=0; 
 
        OTFindexr=OTFindex+1; 
        if (OTFindexr==44) 
        {OTFindexr=1;} 
 
        dr=FWAngOTF[OTFindexr]-headingint;// the path 
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        OTFindex=OTFindex+1; 
        if(OTFindex == 44) 
        {OTFindex=1;} 
 
        if(dr<-90) 
        {dr=-90;} 
        if(dr>90) 
        {dr=90;} 
 
    } 
//=================  Path Programming  =============== 
    void Path() 
    { 
        //Driven by comparator(odometer) interrupt 
         
        int pathindexint; 
 
        pathindexint=floor(distance); 
 
        df=-1*dfmem[pathindexint];//assign df and dr according to distance along 
        dr=-1*drmem[pathindexint];// the path 
 
        //dr=0; 
        //dr=-1*df; 
    } 
//====================  SPI Transmit  ================ 
    void SPITransmit(void) 
    { 
    //Transmits these values every 50ms, driven by Timer4 
    int TRANSMIT; 
 
    //Speed 
    TRANSMIT = Encode('V',Vg); //Vg, -100 to 100 
    SPI1BUF = TRANSMIT; 
    while (SPI1STATbits.SPITBF); //Wait for buffer to empty 
    __delay32(1000); 
 
    //Front Angle 
    TRANSMIT = Encode('F',df); //df -127 to 127 
    SPI1BUF = TRANSMIT; 
    while (SPI1STATbits.SPITBF); //Wait for buffer to empty 
    __delay32(1000); 
 
    //Rear Angle 
    TRANSMIT = Encode('R',dr); //dr -127 to 127 
    SPI1BUF = TRANSMIT; 
    while (SPI1STATbits.SPITBF); //Wait for buffer to empty 
    __delay32(1000); 
    } 
//===============  UART Interrupt (Sonar) ============ 
    void __attribute__((interrupt, no_auto_psv)) _U1RXInterrupt(void) 
    { 
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    int UARTReceive; 
    UARTReceive = U1RXREG; // Read data from recieve register 
    UARTData(UARTReceive); // Assign it to the appropriate var 
                           // and translate it if its the 5th character 
    IFS0bits.U1RXIF = 0; // clear RX interrupt flag 
} 
//========  Comparator 2 Interrupt (Odometer) ======== 
    void __attribute__((interrupt, no_auto_psv)) _CMPInterrupt(void) 
    { 
    __delay32(20000);           //Wait so it doesn't count noise more than once 
    // Distance is in cm 
    distance=distance+1.3744; 
     
/* 
    if (Vg>=0)                  //Check if going forward or backward 
    {distance=distance+1.3744;} //(3.1416*14.0/32.0) projected distance/increment 
    else 
    {distance=distance-1.3744;} 
*/ 
     
    //Path();       //Experiment 1 - 
                    //loads df and dr according to preprogrammed path 
     
    OTFPathMem();   //Experiment 2 - 
                    //loads df from sonars, memorizes angle for dr 
 
    CMCONbits.C2EVT= 0; //Clear Comparator 2 Event 
    IFS1bits.CMIF =0;   //Clear Flag 
    } 
     
//================  Timer 2 Interrupt  =============== 
    void __attribute__((interrupt, no_auto_psv)) _T2Interrupt(void) 
    { 
        SampleIMU(); 
        IFS0bits.T2IF = 0; // Clear Timer5 Interrupt Flag 
    } 
//================  Timer 4 Interrupt  =============== 
    void __attribute__((interrupt, no_auto_psv)) _T4Interrupt(void) 
    { 
    SPITransmit(); 
    //Time=Time+0.1; 
    IFS1bits.T4IF = 0; // Clear Timer5 Interrupt Flag 
    } 
//================  Timer 5 Interrupt  =============== 
    void __attribute__((interrupt, no_auto_psv)) _T5Interrupt(void) 
    { 
    RangePulse(); 
    IFS1bits.T5IF = 0; // Clear Timer5 Interrupt Flag 
    } 
/*==================================================== 
|                         MAIN                       | 
====================================================*/ 
 



 

 
204 

 

    int main(void) 
    { 
    ///////////Steer Mode////////////// 
                 Mode=1;             // 
    //1=AWS, Calculated Steer Angles // 
    //2=AWS, Mirrored Steer Angles   // 
    //3=FWS, Calculated Steer Angles // 
    //4=FWS, Same Steer Angle        // 
    /////////////////////////////////// 
    /////////////Remote//////////////// 
    ////Uses stabilizing while loop//// 
            RemoteEnable=0;          // 
    //When disabled will make the vehicle 
    //more responsive but noisier 
    //(got rid of this on wheel unit program 
    // but haven't yet reprogrammed them 
    /////////////////////////////////// 
 
    //<editor-fold defaultstate="collapsed" desc="Initialization"> 
    // Initialize local main variables 
    int TRANSMIT2; 
    int i; //counting variables 
    int j; 
 
    initOSC();              //Initialize Oscillator 
    initRemappablePins();   //Initialize Remappable Pins 
    initSPI1();             //Initialize SPI1     
     
    //First pass 
    TRANSMIT2 = SPI1BUF; // Read SPI Buffer to clear it 
 
    Vg=0;           // Reinitialize variables 
    df=0; 
    dr=0; 
    SPITransmit(); 
 
    // wait for some time 
    for (i = 0; i < 10000; i++) { 
        for (j = 0; j < 3000; j++) { 
        } 
    } 
 
 
    TRANSMIT2 = Encode('M',Mode); //Enter Steer Mode Here 
    SPI1BUF = TRANSMIT2; 
    while (SPI1STATbits.SPITBF); //Wait for buffer to empty 
    __delay32(2000); 
 
    // Won't be needed once WCU's are reprogrammed 
    TRANSMIT2 = Encode('X',RemoteEnable); // Stabilizing while loop 
    SPI1BUF = TRANSMIT2; 
    while (SPI1STATbits.SPITBF); //Wait for buffer to empty 
    __delay32(2000); 
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    initTmr4();         //Initialize Timer 4 (begins SPI transmission) 
 
    //===== Odometer 
    //initCMP();        //Initialize Comparator (Odometer) 
 
    //===== Sonar Sensors 
    //initUART1();        //Initialize UART1 (Sonar) 
    //__delay32(40000000); //Delay for a second so all sonars stop 
    //initTmr5();         //Initialize Timer 5 (begins ranging sonar) 
 
    // wait for some time 
    for (i = 0; i < 10000; i++) { 
        for (j = 0; j < 5000; j++) { 
        } 
    } 
     
    //===== Remote Control 
    initADC1();       //Initialize AtoD Converter, used by remote control 
 
    //===== Inertial Measurement Unit 
    //initI2C();        //Initialize I2C, used by Accelerometer (IMU) 
    //initIMU();        //Initialize Inertial Measurement Unit (Accel & Gyro) 
    //initTmr2();       //Initialize Timer 2 (begin inertial measurement) 
 
    //</editor-fold> 
 
    if (0) 
    //<editor-fold defaultstate="collapsed" desc="Track G zigzag path"> 
  { 
      //Straight 
      Vg=0; 
      df=0; 
      dr=0; 
      __delay32(40000000); 
      distance=0; 
      while(distance<123.6) 
      {Vg=15;} 
      //Turn Left 
      Vg=0; 
      df=-118; 
      dr=118; 
      __delay32(80000000); 
      Z_Angular_Speed = 0;    //rad/s 
      Z_Angular_Position = 0; //rads 
      while(Z_Angular_Position<0.52359) 
      {Vg=1;} 
      //Straight 
      Vg=0; 
      df=0; 
      dr=0; 
      __delay32(80000000); 
      distance=0; 



 

 
206 

 

      while(distance<200.0) 
      {Vg=15;} 
      //Turn Right 
      Vg=0; 
      df=118; 
      dr=-118; 
      __delay32(80000000); 
      Z_Angular_Speed = 0;    //rad/s 
      Z_Angular_Position = 0; //rads 
      while(Z_Angular_Position>-1.0472) 
      {Vg=1;} 
      //Straight 
      Vg=0; 
      df=0; 
      dr=0; 
      __delay32(80000000); 
      distance=0; 
      while(distance<400.0) 
      {Vg=15;} 
      //Turn Left 
      Vg=0; 
      df=-118; 
      dr=118; 
      __delay32(80000000); 
      Z_Angular_Speed = 0;    //rad/s 
      Z_Angular_Position = 0; //rads 
      while(Z_Angular_Position<1.0472) 
      {Vg=1;} 
      //Straight 
      Vg=0; 
      df=0; 
      dr=0; 
      distance=0; 
      __delay32(80000000); 
      while(distance<200.0) 
      {Vg=15;} 
      //Turn Right 
      Vg=0; 
      df=118; 
      dr=-118; 
      __delay32(80000000); 
      Z_Angular_Speed = 0;    //rad/s 
      Z_Angular_Position = 0; //rads 
      while(Z_Angular_Position>-0.52359) 
      {Vg=1;} 
      //Straight 
      Vg=0; 
      df=0; 
      dr=0; 
      __delay32(80000000); 
      distance=0; 
      while(distance<123.6) 
      {Vg=15;} 
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      Vg=0; 
      while(1){} 
  } 
    //</editor-fold> 
 
    while (1) 
    //<editor-fold defaultstate="collapsed" desc="Remote Control Loop"> 
    //Remote Control Function 
  { 
          Remote(); 
 
          for (i=1;i<20;i++) 
          {j=1; 
          j=2;} 
           
  } 
    //</editor-fold> 
 
    while (0) 
    //<editor-fold defaultstate="collapsed" desc="Experiment 1"> 
    //Experiment 1 - Use preprogrammed path to determine df and dr 
  { 
        if (distance<(pathlength-1)) 
        {Vg=15;} 
        else 
        { 
        Vg=0; 
        df=0; 
        dr=0; 
        } 
  } 
    //</editor-fold> 
 
    while (0) 
    //<editor-fold defaultstate="collapsed" desc="Experiment 2"> 
    //Experiment 2 - Use on board sensors to determine df, odometer dr, and Vg 
 
  { 
      Avoid(); 
 
 
/* 
      if((Range2>15)&&(Range3>15)) 
      {Vg=5;} 
      else 
      {Vg = 0;} 
*/ 
       
      //dr=-1*df; 
       
      Vg=5; 
 
      __delay32(10000000); 



 

 
208 

 

  } 
    //</editor-fold> 
 
 
 
    //<editor-fold defaultstate="collapsed" desc="Catchall"> 
    // Too Far!!! 
    // Catchall 
    while(1) 
    { 
        Vg=0; 
        df=0; 
        dr=0; 
    } 
    //</editor-fold> 
 
    return(0); 
         
} 
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F.2.  VCU_DRIV ER S .C  

/********************************************************************** 
* Ã¯Â¿Â½ 2005 Microchip Technology Inc. 
* 
* FileName:        VCU_Drivers.c 
* Dependencies:    Header (.h) files if applicable, see below 
* Processor:       dsPIC33FJ128MC802 
* Compiler:        MPLABÃ¯Â¿Â½ C30 v3.00 or higher 
* 
* 
* REVISION HISTORY: 
*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
* Author            Date      Comments on this revision 
*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
* Jon Nistler       05/26/11  Revision based on Nikhil Gupta's Code 
*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
* 
* ADDITIONAL NOTES: This file is for setup of ADC module. 
**********************************************************************/ 
#include "p33FJ128MC802.h" 
#include "VCU_Drivers.h" 
 
#define  SAMP_BUFF_SIZE         2       // Size of the input buffer per analog input 
#define  NUM_CHS2SCAN           2       // Number of channels enabled for channel 
scan 
 
//int Xzero[2000]; 
//====================  Oscillator Initialization  ================== 
    //<editor-fold defaultstate="collapsed" desc="Oscillator Setup"> 
void initOSC(void) 
{ 
    /* Configure Oscillator to operate the device at 40Mhz 
       Fosc= Fin*M/(N1*N2), Fcy=Fosc/2 
       Fosc= 20M*32/(2*4)=80Mhz for 20M input clock */ 
    PLLFBD = 30; // M=32 p. 144 in datasheet 
    CLKDIVbits.PLLPOST = 0; // N1=2 
    CLKDIVbits.PLLPRE = 2; // N2=4 
    // clock switch to incorporate PLL, builtin functions p. 168 in C30 guide 
    __builtin_write_OSCCONH(0x03); // Initiate Clock Switch to Primary 
    // Oscillator with PLL (NOSC=0b011) 
    __builtin_write_OSCCONL(0x01); // Start clock switching 
    while (OSCCONbits.COSC != 0b011) { 
    }; // Wait for Clock switch to occur 
    while (OSCCONbits.LOCK != 1) { 
    }; // Wait for PLL to lock 
} 
    //</editor-fold> 
//==============  Remappable Pin Initialization  ==================== 
    //<editor-fold defaultstate="collapsed" desc="Remappable Pins"> 
void initRemappablePins(void) 
{ 
    // Data direction for pins 
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    AD1PCFGLbits.PCFG0 = 0; // AN0 as Analog Input 
    AD1PCFGLbits.PCFG1 = 0; // AN1 as Analog Input 
    AD1PCFGLbits.PCFG2 = 1;     // Digital Input 
    AD1PCFGLbits.PCFG3 = 0; // AN3 as Analog Input 
    AD1PCFGLbits.PCFG4 = 1;     // Digital Input 
    AD1PCFGLbits.PCFG5 = 1;     // Digital Input 
 
    PWM1CON1 = 0x0000; 
    PWM2CON1 = 0x0000; 
 
    ///////// Remappable Pin Config  /////////////////// 
    __builtin_write_OSCCONL(OSCCON & 0xbf); //clear the bit 6 of OSCCONL to unlock 
Pin Re-map 
    // Configure SPI1 Port for MASTER mode (p. 162-166 datasheet) 
    RPINR20bits.SDI1R = 0b11111; // SDI1 input is associated to Vss 
    RPOR0bits.RP0R = 0b01000; //remappable pin RP00 (pin 4 of the dsPIC) is 
associated to SCK 
    RPOR1bits.RP2R = 0b00111; //RP02=SDO1 are output (p.164 & 184) 
    RPOR1bits.RP3R = 0b01001; //RP03=SS (Slave Select) 
 
    // I2C Module, pins are automatically configured when module is enabled 
    // Pin 18, RP9 is SDA1 for data 
    // Pin 17, RP8 is SCL1 for clocking 
 
 
    // Configure UART Module 
    RPINR18 = 0x000B; // UART Rx is associated to pin 22 RP11 
 
    __builtin_write_OSCCONL(OSCCON | 0x40); //Locks IOLOCK in OSCCONL register 
 
    // Inputs 
    TRISBbits.TRISB1 = 1; 
 
    // Outputs 
 
    TRISBbits.TRISB0 = 0; // pin RB0/RP0 (pin 4) for SClock1 
    TRISBbits.TRISB2 = 0; // pin RB2/RP2 (pin 6) for data (MOSI) 
    TRISBbits.TRISB3 = 0; // pin RB3/RP3 (pin 7) for SS1 (slave select) 
 
    TRISBbits.TRISB11 = 0; // pin RB11/RP11 (pin 22) UART Rx 
    TRISBbits.TRISB12 = 0; // pin RB12/RP12 (pin 23) Sonar Sensor 1 Tx 
    TRISBbits.TRISB13 = 0; // pin RB13/RP13 (pin 24) Sonar Sensor 2 Tx 
    TRISBbits.TRISB14 = 0; // pin RB14/RP14 (pin 25) Sonar Sensor 3 Tx 
    TRISBbits.TRISB15 = 0; // pin RB15/RP15 (pin 22) Sonar Sensor 4 Tx 
    LATB=0; 
} 
//</editor-fold> 
//=================  Comparator Initialization ====================== 
    //<editor-fold defaultstate="collapsed" desc="Comparator Setup"> 
void initCMP(void) 
{ 
    //CMCONbits.C1NEG = 1; //Connected to V+ 
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    //CMCONbits.C1POS = 0; // Internal Vref 
 
    CMCONbits.C2NEG = 1; //Connected to V+ 
    CMCONbits.C2POS = 0; // Internal Vref 
 
    CVRCONbits.CVRSS =0; // Device Supply 
    CVRCONbits.CVR = 7; //VRef = 1.5v 
 
    CVRCONbits.CVREN =1; //Internal Voltage On 
    //CMCONbits.C1EN = 1; //Enable Comparator 
    CMCONbits.C2EN = 1; //Enable Comparator 
 
    CMCONbits.C1EVT= 0; //Clear Comparator 1 Event 
    CMCONbits.C2EVT= 0; //Clear Comparator 2 Event 
 
    IPC4bits.CMIP = 5; //High Priority 5 
    IFS1bits.CMIF =0; //Clear Flag 
    IEC1bits.CMIE =1; //Enable Interrupt 
} 
    //</editor-fold> 
//=========  Serial Peripheral Interface Initialization  ============ 
    //<editor-fold defaultstate="collapsed" desc="SPI1 Setup"> 
 void initSPI1(void) 
 { 
     //SPI1 configuration (p. 227) 
    IFS0bits.SPI1IF = 0; // Clear SPI1 interrupt flag 
    IEC0bits.SPI1IE = 0; // Disable interrupt 
 
    SPI1CON1bits.PPRE = 0b10; //Primary prescaler 4:1 
    SPI1CON1bits.SPRE = 0b110; //Secondary prescaler 2:1, gives final frequency of 5 
MHz 
    SPI1CON1bits.MSTEN = 1; //1 = Master mode 
    SPI1CON1bits.CKP = 0; //0 = Idle state for clock is a low level; active state is 
a high level 
    SPI1CON1bits.SSEN = 1; //0 = SSx pin not used by module. Pin controlled by port 
function. 
    SPI1CON1bits.CKE = 1; //1 = Serial output data changes on transition from active 
clock state to Idle clock state (see bit 6) 
    SPI1CON1bits.SMP = 0; //0 = Input data sampled at middle of data output time 
    SPI1CON1bits.MODE16 = 1; //1 = Communication is word-wide (16 bits) 
 
    SPI1STATbits.SPIROV = 0; //make sure the overflow flag is cleared 
    SPI1STATbits.SPIEN = 1; //enable SPI1 module 
 } 
    //</editor-fold> 
 //=========  Inertial Measurement Unit Initialization  ============= 
    //<editor-fold defaultstate="collapsed" desc="IMU Setup"> 
 void initIMU(void) 
 { 
     int IMUcount=0; 
     int IMUtotal=0; 
 
     //See ADXL345 and ITG3200 data sheets for settings 
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     IMUwrite(Accel,0x2C,0b00001001);   //Data output 50 Hz, Bandwidth 25 Hz 
     IMUwrite(Accel,0x31,0b00000000);   //Disable Self Test, Full Resolution, 
                                        //Justify, and Range = 2g 
     IMUwrite(Accel,0x38,0b00011111);   //Disable FIFO, FIFO buffer=32 
     IMUwrite(Accel,0x2D,0b00001000);   //Enable measurement 
 
     IMUwrite(Gyro,0x15,0b00000000); 
     IMUwrite(Gyro,0x16,0b00011101);    //Full Scale Range, Low Pass Filter 10Hz 
     IMUwrite(Gyro,0x17,0b00000000);    //Disable all interrupts on chip 
     IMUwrite(Gyro,0x3E,0b00000001);    //Normal mode, X Gyro clock source 
 
        //Need to zero all enabled axes 
        // Enable or disable axes in VCU_Drivers.h 
 
        //=====Accelerometer====== 
        //  X-Axis 
        if(Enable_X_Accel) 
        { 
            for(IMUcount=0;IMUcount<1000;IMUcount++) 
            { 
               //Xzero[IMUcount]=AccelRead(X_Accel); 
               //IMUtotal=IMUtotal+Xzero[IMUcount]; 
 
               IMUtotal=IMUtotal+AccelRead(X_Accel); 
               __delay32(800000); 
            } 
            X_Accel_Offset=IMUtotal*1.0/1000.0; 
            IMUtotal=0; 
        } 
 
        //  Y-Axis 
        if(Enable_Y_Accel) 
        { 
            for(IMUcount=0;IMUcount<50;IMUcount++) 
            { 
               IMUtotal=IMUtotal+AccelRead(Y_Accel); 
               __delay32(400000); 
            } 
            Y_Accel_Offset=IMUtotal*1.0/50.0; 
            IMUtotal=0; 
        } 
 
        //  Z-Axis 
        if(Enable_Z_Accel) 
        { 
            for(IMUcount=0;IMUcount<50;IMUcount++) 
            { 
               IMUtotal=IMUtotal+AccelRead(Z_Accel); 
               __delay32(400000); 
            } 
            Z_Accel_Offset=IMUtotal*1.0/50.0; 
            IMUtotal=0; 
        } 
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        //=====Gyroscope====== 
        //  X-Axis 
        if(Enable_X_Gyro) 
        { 
            for(IMUcount=0;IMUcount<50;IMUcount++) 
            { 
               IMUtotal=IMUtotal+GyroRead(X_Gyro); 
               __delay32(400000); 
            } 
            X_Gyro_Offset=IMUtotal*1.0/50.0; 
            IMUtotal=0; 
        } 
 
        //  Y-Axis 
        if(Enable_Y_Gyro) 
        { 
            for(IMUcount=0;IMUcount<50;IMUcount++) 
            { 
               IMUtotal=IMUtotal+GyroRead(Y_Gyro); 
               __delay32(400000); 
            } 
            Y_Gyro_Offset=IMUtotal*1.0/50.0; 
            IMUtotal=0; 
        } 
 
        //  Z-Axis 
        if(Enable_Z_Gyro) 
        { 
            for(IMUcount=0;IMUcount<100;IMUcount++) 
            { 
               IMUtotal=IMUtotal+GyroRead(Z_Gyro); 
               __delay32(800000); 
            } 
            Z_Gyro_Offset=IMUtotal*1.0/100.0; 
            IMUtotal=0; 
        } 
 
 
 } 
    //</editor-fold> 
  //===========  Inter-Integrated Circuit Initialization ============ 
    //<editor-fold defaultstate="collapsed" desc="I2C Setup"> 
 void initI2C(void) 
 { 
     //I2C configuration 
     I2C1BRG=395;//95 = 400k 
     I2C1CON=0x1000; // Use all default values for I2C module 
     I2C1RCV = 0x0000; 
     I2C1TRN = 0x0000; 
     I2C1CONbits.I2CEN=1; //Enable module 
 } 
     //</editor-fold> 
  //==============  Inter-Integrated Circuit Commands =============== 
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    //<editor-fold defaultstate="collapsed" desc="I2C Commands"> 
 void StartI2C(void) 
{ 
    //This function generates an I2C start condition 
 
    I2C1CONbits.SEN = 1;        //Generate Start COndition 
    while (I2C1CONbits.SEN);    //Wait for Start COndition 
} 
 
 void StopI2C(void) 
{ 
    //This function generates an I2C stop condition 
 
    I2C1CONbits.PEN = 1;        //Generate Stop Condition 
    while (I2C1CONbits.PEN);    //Wait for Stop 
} 
 
 void RestartI2C(void) 
{ 
    //This function generates an I2C Restart condition 
 
    I2C1CONbits.RSEN = 1;       //Generate Restart 
    while (I2C1CONbits.RSEN);   //Wait for restart 
} 
 
 void WriteI2C(unsigned char byte) 
{ 
    //This function transmits the byte passed to the function 
    //while (I2C1STATbits.TRSTAT);  //Wait for bus to be idle 
    I2C1TRN = byte;         //Load byte to I2C1 Transmit buffer 
    while (I2C1STATbits.TBF);       //wait for data transmission 
 
} 
 
 unsigned int ReadI2C(void) 
{ 
    I2C1CON=(I2C1CON & 0xFF20); 
    I2C1CONbits.RCEN = 1;       //Enable Master receive 
    while(!I2C1STATbits.RBF);   //Wait for receive buffer to be full 
    return(I2C1RCV);        //Return data in buffer 
} 
 
 void IdleI2C(void) 
{ 
    while (I2C1STATbits.TRSTAT);        //Wait for bus Idle 
} 
 
 void ACKI2C(void) 
{ 
        // Generates an Acknowledge. 
    I2C1CONbits.ACKDT = 0;          //Set for ACk 
    I2C1CONbits.ACKEN = 1; 
    while(I2C1CONbits.ACKEN);       //wait for ACK to complete 
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} 
 
 void NACKI2C(void) 
{ 
        //Generates a NO Acknowledge on the Bus 
    I2C1CONbits.ACKDT = 1;          //Set for NotACk 
    I2C1CONbits.ACKEN = 1; 
    while(I2C1CONbits.ACKEN);       //wait for ACK to complete 
    I2C1CONbits.ACKDT = 0;          //Set for NotACk 
} 
 
 void IMUwrite(unsigned char control, unsigned char address, unsigned char data) 
{ 
        IdleI2C();      //wait for bus Idle 
    StartI2C();     //Generate Start Condition 
    WriteI2C(control);  //Write Control Byte (A6,A7,D0,or D1) 
    IdleI2C();      //wait for ACK 
    WriteI2C(address);  //Write register address 
    IdleI2C();      //wait for ACK 
        WriteI2C(data);         //write data 
        IdleI2C();              //wait for ACK 
        StopI2C();              //Generate Stop Condition 
} 
 
 int IMUread(unsigned char control, unsigned char address) 
 {      int I2Cdata; 
 
        IdleI2C();      //wait for bus Idle 
    StartI2C();     //Generate Start Condition 
    WriteI2C(control);  //Write Control Byte 
    IdleI2C();      //wait for ACK 
    WriteI2C(address);  //Write start address 
    IdleI2C();      //wait for bus Idle 
 
    RestartI2C();       //Generate restart condition 
    WriteI2C((control+1));  //Write control byte for read 
    IdleI2C();      //wait for bus Idle 
 
    I2Cdata=ReadI2C();  //read data from I2C buffer 
    NACKI2C();      //Send Not ACK 
    StopI2C();      //Generate Stop 
 
        return(I2Cdata);        //return Data 
 } 
 
 signed int AccelRead(unsigned char address) 
 {    //Reads 2 consecutive registers from IMU (Axis High, Axis Low) and 
      //concantenates them 
 
        unsigned int Acceldata2a; 
        unsigned int Acceldata2b; 
        signed int Acceldata; 
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        IdleI2C();      //wait for bus Idle 
    StartI2C();     //Generate Start Condition 
    WriteI2C(0xA6); //Write Control Byte 
    IdleI2C();      //wait for ACK 
    WriteI2C(address);  //Write start address 
    IdleI2C();      //wait for bus Idle 
 
    RestartI2C();       //Generate restart condition 
    WriteI2C((0xA7));  //Write control byte for read 
    IdleI2C();      //wait for bus Idle 
 
    Acceldata2a=ReadI2C();  //read data (LSB) from I2C buffer 
    ACKI2C();       //Send ACK 
    Acceldata2b=ReadI2C();  //read data (MSB) from I2C buffer 
        NACKI2C();              //Send Not ACK 
        StopI2C();      //Generate Stop 
 
        //Concantenate data 
        Acceldata2b=Acceldata2b<<8; 
        Acceldata=Acceldata2b+Acceldata2a; 
 
        return(Acceldata);        //return Data 
 } 
 
 signed int GyroRead(unsigned char address) 
 {    //Reads 2 consecutive registers from IMU (Axis Low, Axis High) and 
      //concantenates them 
      //Reverse of gyro, high/low 
 
        unsigned int Gyrodata2a; 
        unsigned int Gyrodata2b; 
        signed int Gyrodata; 
 
        IdleI2C();      //wait for bus Idle 
    StartI2C();     //Generate Start Condition 
    WriteI2C(0xD0); //Write Control Byte 
    IdleI2C();      //wait for ACK 
    WriteI2C(address);  //Write start address 
    IdleI2C();      //wait for bus Idle 
 
    RestartI2C();       //Generate restart condition 
    WriteI2C((0xD1));  //Write control byte for read 
    IdleI2C();      //wait for bus Idle 
 
    Gyrodata2a=ReadI2C();   //read data (LSB) from I2C buffer 
    ACKI2C();       //Send ACK 
    Gyrodata2b=ReadI2C();   //read data (MSB) from I2C buffer 
        NACKI2C();              //Send Not ACK 
        StopI2C();      //Generate Stop 
 
        //Concantenate data 
        Gyrodata2a=Gyrodata2a<<8; 
        Gyrodata=Gyrodata2b+Gyrodata2a; 
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        return(Gyrodata);        //return Data 
 } 
      //</editor-fold> 
 //==  Universal Asynchronous Receiver/Transmitter Initialization === 
    //<editor-fold defaultstate="collapsed" desc="UART1 Setup"> 
 void initUART1(void) 
 { 
     //UART1 configuration 
    U1MODEbits.STSEL = 0; // 1-stop bit 
    U1MODEbits.PDSEL = 0; // No Parity, 8-data bits 
    U1MODEbits.BRGH = 0; //Low Speed 
    U1MODEbits.URXINV = 1; //Idle state is low 
    U1MODEbits.ABAUD = 0; // Auto-Baud Disabled 
    U1MODEbits.UEN = 0; //Disable CTS and RTS 
    U1MODEbits.USIDL = 0; //Continue in idle mode 
 
    U1BRG = 259; // BAUD Rate Setting for 9600 
 
    U1STAbits.URXISEL = 0b00; //Interrupt when buffer has only 1 char 
    U1STAbits.UTXEN = 0; // Disable UART Tx 
 
    IPC2bits.U1RXIP = 0b010; // Interrupt priority 2 
    IFS0bits.U1RXIF = 0; // clear RX interrupt flag 
    IEC0bits.U1RXIE = 1; // Enable UART Rx interrupt 
    IEC0bits.U1TXIE = 0; // Disable UART Tx interrupt 
 
    U1MODEbits.UARTEN = 1; // Enable UART 
    } 
     //</editor-fold> 
 //==============  Analog to Digital Initialization  ================ 
    //<editor-fold defaultstate="collapsed" desc="ADC Setup"> 
void initADC1(void) 
{ 
// p. 275 
 
    AD1CON1bits.AD12B  = 0; // 10-bit ADC operation 
    AD1CON1bits.FORM   = 0; // Data Output Format: Integer 
    AD1CON1bits.SSRC   = 2; // Sample Clock Source: GP Timer starts conversion 
    AD1CON1bits.ASAM   = 1; // ADC Sample Control: Sampling begins immediately after 
conversion 
 
    AD1CON2bits.CSCNA = 1;  // Scan Input Selections for CH0+ during Sample A bit 
    AD1CON2bits.CHPS  = 0;  // Converts CH0 
 
    AD1CON3bits.ADRC = 0;   // ADC Clock is derived from Systems Clock 
    AD1CON3bits.ADCS = 63;  // ADC Conversion Clock Tad=Tcy*(ADCS+1)= (1/40M)*64 = 
1.6us (625Khz) 
                // ADC Conversion Time for 10-bit Tc=12*Tad = 19.2us 
 
    AD1CON2bits.SMPI    = (NUM_CHS2SCAN-1); // 2 ADC Channel is scanned 
 
    //AD1CSSH/AD1CSSL: A/D Input Scan Selection Register 
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    AD1CSSLbits.CSS0=1; // Enable AN0 for channel scan 
    AD1CSSLbits.CSS1=1; // Enable AN1 for channel scan 
 
    //AD1PCFGH/AD1PCFGL: Port Configuration Register 
    AD1PCFGLbits.PCFG0 = 0; // AN0 as Analog Input 
    AD1PCFGLbits.PCFG1 = 0; // AN1 as Analog Input 
 
        IPC3bits.AD1IP = 1; //Interrupt Priority 1 
        IFS0bits.AD1IF = 0; // Clear the A/D interrupt flag bit 
        IEC0bits.AD1IE = 1; // Enable A/D interrupt 
 
        AD1CON1bits.ADON = 1;   // Turn on the A/D converter 
} 
    //</editor-fold> 
//============  Timer2 (Accelerometer) Initialization  ============== 
    //<editor-fold defaultstate="collapsed" desc="Timer2 Setup"> 
void initTmr2() 
{ 
    //Timer 2 is setup to time-out every 0.5 ms (2 kHz Rate). 
 
    //Timer 2 initialization 
    T2CONbits.TON = 0; // Disable Timer 
    T2CONbits.TCS = 0; // Select internal instruction cycle clock 
    T2CONbits.TGATE = 0; // Disable Gated Timer mode 
    T2CONbits.TCKPS = 0b11; // Select 1:256 Prescaler 
    T2CONbits.T32 = 0; // Disable 32 bit 
 
    TMR2 = 0x00; // Clear timer register 
 
    //Period = 40000000/(256*IMU_sample_rate) 
    PR2 = 3125; // Load the period value 
 
    IPC1bits.T2IP = 3; //Interrupt priority 3 
    IFS0bits.T2IF = 0; // Clear Timer5 Interrupt Flag 
    IEC0bits.T2IE = 1; // Enable Timer5 interrupt 
 
    T2CONbits.TON = 1; // Start Timer 
 
} 
   //</editor-fold> 
//=================  Timer3 (ADC) Initialization  =================== 
    //<editor-fold defaultstate="collapsed" desc="Timer3 Setup"> 
void initTmr3() 
{ 
/*Timer 3 is setup to time-out every 125 microseconds (8Khz Rate). As a result, the 
module 
will stop sampling and trigger a conversion on every Timer3 time-out, i.e., 
Ts=125us.*/ 
 
        TMR3 = 0x0000; 
        PR3 = 4999; 
        IFS0bits.T3IF = 0; 



 

 
219 

 

        IEC0bits.T3IE = 0; 
 
        //Start Timer 3 
        T3CONbits.TON = 1; 
 
} 
   //</editor-fold> 
//================  Timer4 (SPI) Initialization  ==================== 
    //<editor-fold defaultstate="collapsed" desc="Timer4 Setup"> 
void initTmr4() 
{ 
    //Timer 4 is setup to time-out every 100 ms (10 Hz Rate). 
 
    //Timer4 initialization 
    T4CONbits.TON = 0; // Disable Timer 
    T4CONbits.TCS = 0; // Select internal instruction cycle clock 
    T4CONbits.TGATE = 0; // Disable Gated Timer mode 
    T4CONbits.TCKPS = 0b11; // Select 1:256 Prescaler 
    T4CONbits.T32 = 0; // Disable 32 bit 
 
    TMR4 = 0x00; // Clear timer register 
 
    PR4 = 15620; // Load the period value 
 
    IPC6bits.T4IP = 4; // Set high interrupt priority of 4 
    IFS1bits.T4IF = 0; // Clear Timer5 Interrupt Flag 
    IEC1bits.T4IE = 1; // Enable Timer5 interrupt 
 
    T4CONbits.TON = 1; // Start Timer 
} 
   //</editor-fold> 
//================  Timer5 (Sonar) Initialization  ================== 
    //<editor-fold defaultstate="collapsed" desc="Timer5 Setup"> 
void initTmr5() 
{ 
    //Timer 5 is setup to time-out every 50 ms (20 Hz Rate). 
    //This is near maximum because of the time delay between when the sensor 
    //is pulsed and when it returns data ~0.045 s 
 
    //Timer5 initialization 
    T5CONbits.TON = 0; // Disable Timer 
    T5CONbits.TCS = 0; // Select internal instruction cycle clock 
    T5CONbits.TGATE = 0; // Disable Gated Timer mode 
    T5CONbits.TCKPS = 0b10; // Select 1:64 Prescaler 
 
    TMR5 = 0x00; // Clear timer register 
 
    PR5 = 31250; // Load the period value 
 
    IPC7bits.T5IP = 2; // Set interrupt priority of 2 
    IFS1bits.T5IF = 0; // Clear Timer5 Interrupt Flag 
    IEC1bits.T5IE = 1; // Enable Timer5 interrupt 
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    T5CONbits.TON = 1; // Start Timer 
} 
   //</editor-fold> 
//=================  ADC Interrupt Service Routine ================== 
    //<editor-fold defaultstate="collapsed" desc="ADC ISR"> 
// initialize variables 
int  ain0Buff[SAMP_BUFF_SIZE]; 
int  ain1Buff[SAMP_BUFF_SIZE]; 
int  scanCounter=0; 
int  sampleCounter=0; 
 
//ISR 
void __attribute__((interrupt, no_auto_psv)) _ADC1Interrupt(void) 
{ 
 
    switch (scanCounter) 
    {// If this is the first scan put value in buffer 0 
        case 0: 
            ain0Buff[sampleCounter]=ADC1BUF0; 
            break; 
     // On second scan put value in buffer 1 
        case 1: 
            ain1Buff[sampleCounter]=ADC1BUF0; 
            break; 
 
        default: 
            break; 
 
    } 
 
    scanCounter++; // Increments scan counter 
 
    if(scanCounter==NUM_CHS2SCAN) //Checks to see if we have reached desired samples 
    { 
        scanCounter=0;// Reset scan counter 
        sampleCounter++; 
    } 
 
    if(sampleCounter==SAMP_BUFF_SIZE) //Checks to see if we have reached desired 
samples 
        sampleCounter=0; 
 
    IFS0bits.AD1IF = 0;     // Clear the ADC1 Interrupt Flag 
 
} 
   //</editor-fold> 
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F.3.  VCU_DRIV ER S .H  

/********************************************************************** 

* � 2005 Microchip Technology Inc. 
* 
* FileName:        VCU_Drivers.h 
* Dependencies:    Other (.h) files if applicable, see below 
* Processor:       dsPIC33FJ128MC802 

* Compiler:        MPLAB� C30 v3.00 or higher 
* 
* 
* 
* REVISION HISTORY: 
*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
* Author            Date      Comments on this revision 
*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
* Jonathan Nistler  10/12/11  Last Release of this file 
*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~* 
* ADDITIONAL NOTES: 
* 
**********************************************************************/ 
#ifndef __VCU_DRIVERS_H__ 
#define __VCU_DRIVERS_H__ 
 
//definitions 
#define Accel 0xA6   //Write address for acclerometer and gyro on IMU 
#define Gyro  0xD0 
 
#define X_Accel  0x32 //Read registers for various axes 
#define Y_Accel  0x34 
#define Z_Accel  0x36 
#define X_Gyro  0x1D 
#define Y_Gyro  0x1F 
#define Z_Gyro  0x21 
 
 
//Enable axes by changing these to 1 
#define Enable_X_Accel  0 
#define Enable_Y_Accel  0 
#define Enable_Z_Accel  0 
#define Enable_X_Gyro  0 
#define Enable_Y_Gyro  0 
#define Enable_Z_Gyro  1 
 
 
extern void delay32(unsigned long cycles); 
// External Functions 
extern void initOSC(void); 
extern void initRemappablePins(void); 
extern void initSPI1(void); 
extern void initSPI2(void); 
extern void initI2C(void); 
extern void initUART1(void); 
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extern void initADC1(void); 
extern void initIMU(void); 
extern void initCMP(void); 
extern void initTmr2(); 
extern void initTmr3(); 
extern void initTmr4(); 
extern void initTmr5(); 
extern void __attribute__((__interrupt__)) _ADC1Interrupt(void); 
 
extern void StartI2C(void); 
extern void StopI2C(void); 
extern void RestartI2C(void); 
extern void WriteI2C(unsigned char byte); 
extern unsigned int ReadI2C(void); 
extern void IdleI2C(void); 
extern void ACKI2C(void); 
extern void NACKI2C(void); 
extern void IMUwrite(unsigned char control, unsigned char address, unsigned char 
data); 
extern int IMUread(unsigned char control, unsigned char address); 
extern signed int AccelRead(unsigned char address); 
extern signed int GyroRead(unsigned char address); 
extern void __delay32(unsigned long cycles); 
 
extern int  ain0Buff[2]; 
extern int  ain1Buff[2]; 
 
extern float X_Accel_Offset; 
extern float Y_Accel_Offset; 
extern float Z_Accel_Offset; 
extern float X_Gyro_Offset; 
extern float Y_Gyro_Offset; 
extern float Z_Gyro_Offset; 
 
#endif 
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F.4.  VCU_TR AP S .C  

/********************************************************************** 

* � 2005 Microchip Technology Inc. 
* 
* FileName:        traps.c 
* Dependencies:    Header (.h) files if applicable, see below 
* Processor:       dsPIC33FJ128MC802 

* Compiler:        MPLAB� C30 v3.00 or higher 
* 
*  
* 
* REVISION HISTORY: 
*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
* Author            Date      Comments on this revision 
*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
* NIKHIL G.         08/19/09  First release of source file 
*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
* 
* ADDITIONAL NOTES: 
* 1. This file contains trap service routines (handlers) for hardware 
*    exceptions generated by the dsPIC33F device. 
* 2. All trap service routines in this file simply ensure that device 
*    continuously executes code within the trap service routine. Users 
*    may modify the basic framework provided here to suit to the needs 
*    of their application. 
* 
**********************************************************************/ 
 
 
#include "p33FJ128MC802.h" 
 
void __attribute__((__interrupt__)) _OscillatorFail(void); 
void __attribute__((__interrupt__)) _AddressError(void); 
void __attribute__((__interrupt__)) _StackError(void); 
void __attribute__((__interrupt__)) _MathError(void); 
void __attribute__((__interrupt__)) _DMACError(void); 
 
void __attribute__((__interrupt__)) _AltOscillatorFail(void); 
void __attribute__((__interrupt__)) _AltAddressError(void); 
void __attribute__((__interrupt__)) _AltStackError(void); 
void __attribute__((__interrupt__)) _AltMathError(void); 
void __attribute__((__interrupt__)) _AltDMACError(void); 
void exit_SPI(void); 
/* 
Primary Exception Vector handlers: 
These routines are used if INTCON2bits.ALTIVT = 0. 
All trap service routines in this file simply ensure that device 
continuously executes code within the trap service routine. Users 
may modify the basic framework provided here to suit to the needs 
of their application. 
*/ 
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void __attribute__((interrupt, no_auto_psv)) _OscillatorFail(void) 
{ 
        INTCON1bits.OSCFAIL = 0;        //Clear the trap flag 
        exit_SPI(); 
        while (1); 
         
} 
 
void __attribute__((interrupt, no_auto_psv)) _AddressError(void) 
{ 
        INTCON1bits.ADDRERR = 0;        //Clear the trap flag 
        exit_SPI(); 
        while (1); 
} 
 
void __attribute__((interrupt, no_auto_psv)) _StackError(void) 
{ 
        INTCON1bits.STKERR = 0;         //Clear the trap flag 
        exit_SPI(); 
        while (1); 
} 
 
void __attribute__((interrupt, no_auto_psv)) _MathError(void) 
{ 
        INTCON1bits.MATHERR = 0;        //Clear the trap flag 
        exit_SPI(); 
        while (1); 
} 
 
void __attribute__((interrupt, no_auto_psv)) _DMACError(void) 
{ 
        INTCON1bits.DMACERR = 0;        //Clear the trap flag 
        exit_SPI(); 
        while (1); 
} 
 
/* 
Alternate Exception Vector handlers: 
These routines are used if INTCON2bits.ALTIVT = 1. 
All trap service routines in this file simply ensure that device 
continuously executes code within the trap service routine. Users 
may modify the basic framework provided here to suit to the needs 
of their application. 
*/ 
 
void __attribute__((interrupt, no_auto_psv)) _AltOscillatorFail(void) 
{ 
        INTCON1bits.OSCFAIL = 0; 
        exit_SPI(); 
        while (1); 
} 
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void __attribute__((interrupt, no_auto_psv)) _AltAddressError(void) 
{ 
        INTCON1bits.ADDRERR = 0; 
        exit_SPI(); 
        while (1); 
} 
 
void __attribute__((interrupt, no_auto_psv)) _AltStackError(void) 
{ 
        INTCON1bits.STKERR = 0; 
        exit_SPI(); 
        while (1); 
} 
 
void __attribute__((interrupt, no_auto_psv)) _AltMathError(void) 
{ 
        INTCON1bits.MATHERR = 0; 
        exit_SPI(); 
        while (1); 
} 
 
void __attribute__((interrupt, no_auto_psv)) _AltDMACError(void) 
{ 
        INTCON1bits.DMACERR = 0;        //Clear the trap flag 
        exit_SPI(); 
        while (1); 
} 
 
void exit_SPI(void) 
{ 
    //While Stabilizing 
    SPI1BUF = 0x5801; 
    while (SPI1STATbits.SPITBF); //Wait for buffer to empty 
    __delay32(1000); 
     
    //Speed 
    SPI1BUF = 0x5600; 
    while (SPI1STATbits.SPITBF); //Wait for buffer to empty 
    __delay32(1000); 
 
    //Front Angle 
    SPI1BUF = 0x461E; 
    while (SPI1STATbits.SPITBF); //Wait for buffer to empty 
    __delay32(1000); 
 
    //Rear Angle 
    SPI1BUF = 0x52E2; 
    while (SPI1STATbits.SPITBF); //Wait for buffer to empty 
    __delay32(1000); 

} 
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