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ABSTRACT 

One major issue of wind generation is its intermittence and uncertainty due to the highly 

volatile nature of wind resource, and it affects both the economy and the operation of the wind 

farms and the distribution networks. It is thus urgently needed to develop modeling methods for 

accurate and reliable forecasts on wind power generation. Meanwhile, along with the ongoing 

electricity market deregulation and liberalization, wind energy is expected to be directly 

auctioned in the wholesale market. This brings the wind generation companies another issue of 

particular importance, i.e., how to maximize the profits by optimizing the bids in the gradually 

deregulated electricity market based on the improved wind forecasts. As such, the main objective 

of this dissertation research is to investigate and develop reliable modeling methods for tackling 

the two issues.  

To reach the objective, three main research tasks are identified and accomplished. Task 1 

is about testing forecasting models for wind speed and power. After a thorough investigation into 

currently available forecasting methods, several representative models including autoregressive 

integrated moving average (ARIMA) and artificial neural networks (ANN) are developed for 

short-term wind forecasting. The forecasting performances are evaluated and compared in terms 

of mean absolute error (MAE), root mean square error (RMSE), and mean absolute percentage 

error (MAPE). The results reveal that no single model can outperform others universally. This 

indicates the need of generating a single robust and reliable forecast by applying a post-

processing method. As such, a reliable and adaptive model for short-term forecasting the wind 

power is developed via adaptive Bayesian model averaging algorithms in Task 2. Experiments 

are performed for both long-term wind assessment and short-term wind forecasting. The results 

show that the proposed BMA-based model can always provide adaptive, reliable, and 
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comparatively accurate forecast results in terms of MAE, RMSE, and MAPE. It also provides a 

unified approach to tackle the challenging model selection issue in wind forecasting applications. 

Task 3 is about developing a modeling method for optimizing the wind power bidding process in 

the deregulated electricity wholesale market. The optimal bids on wind power must take into 

account the uncertainty in wind forecasts and wind power generation. This research investigates 

the application of combining improved wind forecasts with agent-based models to optimize the 

bid and maximize the net earnings. The WSCC 9-bus 3-machine power system network and the 

IEEE 30-bus 9-GenCo power system network are adopted. Both single-sided and double-sided 

auctions are considered. The results demonstrate that improving wind forecasting accuracy helps 

increase the net earnings of wind generation companies, and that the implementation of agent 

learning algorithms further improves the earnings. The results also verify that agent-based 

simulation is a viable modeling tool for providing realistic insights about the complex 

interactions among different market participants and various market factors. 
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1. INTRODUCTION 

With the deterioration of the environment and the gradual depletion of conventional 

energy sources, wind energy has become the world’s fastest growing source of renewable energy. 

Wind-powered generation, or shortly wind power, is one typical way to utilize the energy carried 

in wind. The world has seen an average annual growth rate of 27.6% in terms of installed wind 

power capacity from 2006 and 2010 (Global Wind Energy Association, 2011). Correspondingly, 

the penetration level of wind power into electricity market is also rising rapidly. The penetration 

is expected to reach 8% by the year of 2018 globally (Renewableenergyworld.com, 2009). 

Especially, the U.S. Department of Energy (2008) sets an ambitious goal that wind energy 

contributes to 20% U.S. electricity consumption by 2030. 

The major part of current wind power generation is still sold with a long term power 

purchase agreement (PPA). Nevertheless, along with the fast development of wind power and its 

increasing penetration into the electricity markets, wind generation companies (WGenCos) are 

encouraged to directly participate into the wholesale electricity market by presenting supply 

offers and committing the delivery of the settled amount of wind energy at given or agreed 

moments. Meanwhile, the electricity markets are undergoing reconstruction or liberalization, 

which aims to develop a deregulated but secure environment to enable fair competition, 

unbundling electricity services, and open access to the network (Liu and Wu, 2006). For example, 

one commonly adopted market structure is the day-ahead power exchange, in which an 

independent system operator (ISO) matches the supply offers and the demand bids, both in the 

form of simple quantity-price blocks for a given period. In such electricity markets, the sellers 

mainly compete by submitting supply offers and guaranteeing the delivery of the settled amount 

of energy at each specified moment of the given period. Especially, only limited information 
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about other participants and various market uncertainties such as load variations, competitor’s 

behavior, and power system contingencies (Hu, Grozev, and Batten, 2005) is available for the 

sellers to make their decisions. Therefore, it is of great interest and importance for the generation 

companies (GenCos) to strategically optimize their supply offers so as to maximize their benefits 

by participating in the deregulated electricity markets (Krause, Beck, Cherkaoui, Germond, 

Andersson, and Ernst, 2006).  

1.1. Motivation 

The bidding strategy optimization issue is especially critical for WGenCos. Compared 

with the traditional GenCos, WGenCos participating in the electricity market have to deal with 

the large variations and intermittence of the distributed wind power production in addition to 

load swings and possible outages of production capacity (Georgilakis, 2008). Participation into 

deregulated electricity markets implies that the WGenCos need to present offers and commit the 

delivery of the settled amount of wind power at an agreed moment. Reliable delivery of electrical 

energy to load centers entails a continuous process of scheduling and adjusting electricity 

generation in response to the constantly changing demand. If the actual delivered energy by one 

generator is larger or less than the committed, the generator will be charged with a cost for other 

generators’ rescheduling their generations to maintain the balance between the generation and 

the load. However, the intermittent and stochastic nature of wind makes it critical and yet very 

difficult for the WGenCos to accurately forecast their wind-powered generation in the following 

weeks, days, hours, and even minutes (Usaola and Angarita, 2007). It is estimated that the cost 

impact of wind’s variability can reach about 10% of the wholesale value of the wind energy 

(Demeo, Grant, Milligan, and Schuerger, 2005).  
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In short, one major challenge of wind power is its intermittence and uncertainty due to 

the highly volatile nature of wind resource, and this affects both the economy and the operation 

of the WGenCos and the distribution networks. Novel modeling methods are thus urgently 

needed for generating accurate and reliable forecasts of wind power. Another issue of particular 

importance is how to maximize WGenCos’ net earnings by optimizing their bids in the gradually 

deregulated electricity market. Accordingly, research is also urgently needed to develop methods 

for optimizing the WGenCo’s bidding strategy in the deregulated wholesale market. However, 

the existing research efforts towards the above-mentioned challenges are still far from sufficient. 

This is the direct motivation of the dissertation research. 

1.2. Objectives, Tasks and Framework 

1.2.1. Research objectives 

Many techniques and models have been developed for short-term wind forecasts (Ma, 

Luan, Jiang, Liu, and Zhang, 2009), but their performances vary with model settings, application 

scenarios, and evaluation metrics. The industry usually prefers a final single forecast that is 

always better than or at least close to the individual best forecasts from various models for all 

evaluation metrics. Meanwhile, the studies on bidding wind power in the electricity market have 

just started recently, and thus the relevant literature is very scarce. In order to maximize the 

revenue from selling wind power in the wholesale market, the WGenCos must take into account 

the uncertainty in wind generation in addition to other constraints in preparing their bidding 

strategies. As such, the objectives of this dissertation research are (1) building a flexible and 

reliable forecasting model to enhance the wind forecasting accuracy, and then, (2) investigating 

and developing methods for optimizing the WGenCos bidding in the electricity wholesale market 

by integrating the uncertainty of wind forecasts. 
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1.2.2. Research tasks and significances 

To reach the above-mentioned objectives, three main tasks are identified and their 

significances are described as follows: 

Task 1: Building and implementing forecasting models for wind speed and power. 

Forecasting plays a key role in improving energy markets efficiency, reducing the amount of 

reserves while maintaining system security. After a thorough investigation into currently 

available forecasting methods, several representative models are developed, implemented, and 

evaluated. This builds a solid base for the following research tasks; it also provides a good 

reference for other related research. 

Task 2: Developing adaptive and reliable methods for wind power forecasting. Based on 

the findings obtained above, a reliable and adaptive model for forecasting the wind power under 

different forecasting horizons is developed via adaptive Bayesian model averaging.  

Task 3: Investigating and developing methods for optimizing the bidding process of wind 

power in the deregulated electricity wholesale market. Nowadays, all the GenCos with wind 

power in their generation mix, bidding to the liberalized electricity market, need wind forecasts 

to support their bidding decision. Regulation power must be reserved for dealing with the fast 

load variations and unforeseen problems with production capacity. The regulation power needed 

will further increase with a higher penetration of wind generated electricity. Therefore, the 

optimal bids in the electricity market must take into account this uncertainty in order to obtain 

the maximum net earnings from selling wind energy. This research investigates the application 

of combining improved wind forecasts with agent-based modeling algorithms to optimize the bid 

and maximize the net earnings. 
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1.2.3. Research framework 

Figure 1 shows the schematic framework for the thesis research. Based on the above-

mentioned tasks, the research work can be divided into the following major phases.  

 

Figure 1. Research framework. 

Firstly, a thorough investigation into currently available forecasting methods is 

performed. Based on this, several representative models, including autoregressive integrated 

moving average (ARIMA) and artificial neural networks (ANN), are developed, implemented, 

evaluated, and compared. The results reveal that no single model can outperform others 

universally in terms of multiple performance evaluation metrics. In other words, the best one 

among the models studied will be different based on different performance metrics, even for the 

same wind dataset. Moreover, the selection of the best model is also affected by, or dependent 

upon, the data sources. These findings indicate the need of generating a single robust and reliable 

forecast by applying a post-processing method.  

Secondly, after an investigation into the literature, the Bayesian model averaging 

algorithm, which is an emerging approach in other research areas, is creatively introduced to the 

field of wind forecasting. Experiments are performed for both long-term and short-term wind 

forecasting. The results show that the proposed BMA-based model can always provide adaptive, 

reliable and comparatively accurate forecast results. It provides a unified approach to tackle the 
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challenging model selection issue in wind forecasting applications. The BMA model is also 

characterized by its ability to generate probabilistic forecasts, which can correspondingly provide 

more information than those point estimation models.  

Thirdly, agent-based simulation approach is selected, for the first time, to investigate the 

bidding optimization of a wind GenCo in the deregulated day-ahead electricity wholesale 

markets, by considering the effect of short-term forecasting accuracies of wind power generation. 

The results clearly demonstrate that improving wind forecasting accuracy helps increase the net 

earnings of WGenCos and that agent-based simulation is a viable modeling tool for providing 

realistic insights about the complex interactions among different market participants and various 

market factors. 

1.3. Dissertation Outline 

The remainder of this dissertation is structured as follows. In Chapter 2 an extensive 

review is conducted on the existing literature related to this dissertation research, which includes 

the topics of long-term wind prediction, short-term wind forecasting, and bidding strategy 

analysis. In Chapter 3, several ARIMA and ANN models are developed and implemented for 

short-term wind forecasting, mainly based on the philosophy of point estimation. The forecasting 

performances are evaluated and compared in terms of root mean square errors (RMSE), mean 

absolute errors (MAE), and mean absolute percentage errors (MAPE), respectively. In Chapter 4, 

the adaptive BMA algorithm is firstly tried on long-term wind potential estimation, and then 

employed to perform short-term wind forecasting. In Chapter 5, the agent-based modeling 

method is employed to analyze the issues of WGenCos bidding strategy optimization in the 

deregulated day-ahead electricity wholesale markets, especially by considering the probabilistic 

wind forecasting errors. The effects of improving wind forecasting accuracy and the utilization 
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of agent-based simulation are analyzed. Finally, conclusive remarks are drawn and several 

possible directions for further research in the near future are pointed out in Chapter 6. 
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2. LITERATURE REVIEW 

This chapter presents an extensive review on the existing literature related to the 

proposed research. For the issue of wind forecasting, various methods and tools have been 

investigated and applied, which are already reviewed in several publications (Wu and Hong, 

2007; Ma, Luan, Jiang, Liu, and Zhang, 2009; Soman, Zareipour, Malik, and Mandal, 2010). 

Therefore, this chapter first provides a brief summary of the above-mentioned several review 

papers and presents a concise review on the typical short-term wind forecasting techniques in 

Section 2.1. The methods for estimating long-term wind distribution are then reviewed in Section 

2.2. After that, the fundamental knowledge about electricity markets and their deregulations is 

introduced in Section 2.3. For the issue of bidding strategy optimization, many methods, models, 

and tools have also been introduced in the literature, but no comprehensive review on GenCos 

bidding strategy analysis is available. In view of this, a thorough review on literature related to 

this issue is finally provided in Section 2.4. 

2.1. Short-Term Wind Forecasting 

Short-term wind forecasting can provide useful information for the operations of wind 

generation systems (Monfared Rastegar, and Kojabadi, 2009; Pinson, Chevallier, and 

Kariniotakis, 2007) and the integration of wind power with the power grids (Ma et al., 2009). For 

instance, short-term forecasts can help with the daily or intraday wholesale market, system 

management and maintenance scheduling, which are usually of great importance to system 

operators, electricity companies, and wind farm promoters (Sfetsos et al., 2000; Costa et al., 

2008). Accurate short-term forecasts of wind power are vital for the efficiency of wind power 

generation systems (Monfared, Rastegar, and Kojabadi, 2009) as well as for the integration of 

wind energy into the power systems. As aforementioned, wind power generation has been 
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growing at an unprecedented rate in recent years, and this exponential increase is expected to 

continue in the following decade. However, a specific challenging problem in wind power 

generation is its intermittence and uncertainty due to the highly volatile wind resource. It is 

estimated that the cost impact of this variability is around 10% of the wholesale value of the 

wind energy (Demeo et al., 2005). The intermittence and uncertainty of the wind power 

production affect the operations and management of both wind farms and power system 

(Georgilakis et al., 2008; Durán et al., 2007; Lerner et al., 2009) and the influence exists on all 

time scales (Giebel et al., 2003).  

In the past decades, research efforts have been made to develop sound short-term 

forecasting methods. In this regard, Giebel et al. (2003) and Costa et al. (2008) provide a fairly 

good summary of the developments pertaining to short-term wind power forecasting methods 

and techniques, including physical models, conventional statistical models, hybrid physical-

statistical models, the artificial intelligence based models, and others. Statistical models describe 

the problem mathematically based on the random time series of historical data by pattern 

identification, parameter estimation, and model checking methods. Box-Jenkins models (Box et 

al., 1994), often called auto regressive integrated moving average (ARIMA) models, are widely 

used in this area because of the model robustness and explicit model expression. Artificial neural 

network (ANN) technology is also widely used. ANNs can learn from past data, recognize 

hidden patterns or relationships in historical observations and use them to forecast future values 

(More et al., 2003). The ANN models trained with time series have the ability to model 

arbitrarily linear and nonlinear functions. Support vector machine (SVM) is essentially a kernel-

based learning algorithm for solving nonlinear classification and regression problems, and has 

been applied in a wide variety of areas. The SVM model for wind forecasting demonstrates 
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better performance than multilayer perceptron (MLP) models (Ji et al., 2007; Mohandes et al., 

2004). 

Wu and Hong (2007) explain the characteristics of wind speed time series, i.e., high 

degree of volatility and deviation firstly. The wind forecasting models published in 2006 and 

earlier are grouped into four types: persistence models, numeric weather prediction (NWP), 

statistical and ANN models, and hybrid models. This may not be a very good classification 

nowadays, but it does provide a concise overview of those earlier wind forecasting publications. 

Besides, the difference between wind speed forecasting and wind power forecasting is pointed 

out, and the non-linear complex relationship between wind speed and wind turbine generation is 

emphasized. 

Ma et al. (2009) perform a bibliographical survey on the general background of research 

and developments in the fields of wind forecasting. Various wind forecasting methods are 

divided into two broad groups: the physical methods, which usually employ many physical 

considerations to reach a good forecasting precision, and the statistical methods, which focus on 

revealing and utilizing the hidden relationship of the real-time wind power data. It is noted that 

in typical wind forecasting process, both physical and statistical models are utilized 

simultaneously. In view of this, the existing forecasting models are further classified into four 

categories: the physical model, the conventional statistical model, the spatial correlation model, 

and the artificial intelligence and other new methods. It is concluded that further study on 

artificial intelligence methods and their training algorithms should be one promising research 

topic, that combining different forecasting models should be a good way to achieve satisfactory 

results in both long-term wind prediction and short-term wind forecasting. 



 11 

Soman et al. (2010) provide a simple classification based on the time scale of forecasting 

horizon, as shown in Table 1. Note that this classification is somehow vague. For example, the 

“mid-term” in the table can be regarded as short-term in this study and other studies, whereas the 

“long-term wind” prediction can refer to several months or even several years, as interpreted in 

this study as well as other studies.  

Table 1. Classification of wind forecasting based on horizons. 

Type Horizon Main applications 

Long-term One day to one week 
Unit commitment decisions 
Reserve requirement decisions 
Maintenance scheduling to obtain optimal operating cost 

Mid-term Six hours to one day 
Generator online/offline decisions 
Operational security in day-ahead electricity market 

Short-term Half an hour to six hours 
Economic load dispatch planning 
Load-changing decisions 

Very short-term Several seconds to half an hour Electricity market clearing; Regulation actions 

 

The dilemma in choosing the forecasting model for best performance is that no particular 

models are universally superior to other models for all types of applications and under all 

conditions (Burnham et al., 2002; Li and Shi, 2010a). The performances of the short-term 

forecasts from various models can vary with model settings, application scenarios, and 

performance metrics. Also, it is not unusual that more than one model might provide plausible 

forecasts. Thus, a final single forecast is often expected which should take advantage of all 

plausible forecasts. It will be ideal that this final single forecast is better than the individual ones, 

or at least always close to the best available forecast (Sanchez, 2008). In this regard, an adaptive 

combination procedure is necessary for generating such an efficient single forecast.  
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2.2. Long-Term Wind Speed Distribution 

Wind speed is the most important parameter to be considered in the design and operations 

of wind power systems. Especially, its probability density distribution can provide abundant 

information for and affect the operational decisions and performance of the wind energy systems. 

Therefore, a large number of studies have been published on modeling the wind speed frequency 

distributions with probability density functions (PDFs). There are a few parametric distributions 

that work well for this purpose, such as lognormal (Luna and Church, 1974), inverse Gaussian 

(Bardsley, 1980), Weibull and Rayleigh (Van der Auwera, Meyer, and Malet, 1980; Lun and 

Lam, 2000), and generalized extreme value (Bauer, 1996). Besides these univariate models, 

some multivariate distributions are also evaluated while considering both wind speed and wind 

direction such as anisotropic distribution and angular-linear distribution (Weber, 1997; Carta, 

Ramírez, and Bueno, 2008) Recently, the concept of maximum entropy principle (MEP) was 

also introduced to derive the PDF of wind speed distribution (Li and Li, 2005; Akpinar and 

Akpinar, 2007). A detailed review on modeling the probability distributions in wind energy 

analysis can be found in literature (Carta, Ramírez, and Velázquez, 2009).  

Although extensive efforts have been made on modeling wind speed distributions, the 

conventional statistical approach faces challenges. Typically, when a candidate PDF is proposed, 

one needs to know whether the proposed distribution is viable in describing the wind speed data. 

This is often performed by either comparing with the popular Weibull distribution and/or 

evaluating the goodness-of-fit by some statistic metrics. The reality is that Weibull distribution 

might not be the most appropriate model for benchmark. Also, heavily relying on particular 

evaluation metrics could make the results biased and misleading since different goodness-of-fit 

statistics may generate different preference ranks among the PDF models tested. Moreover, these 
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approaches mainly focus on the uncertainty in the parameters of a specific model by assuming a 

fixed model structure, and a “best” model is usually determined based on some model selection 

criteria with the uncertainty between the models being neglected (Burnham and Anderson, 

2002).The uncertainty between models may be important in making inference especially in the 

cases where more than one candidate distribution is considered plausible while those candidate 

distributions differ in predictions. These problematic situations reflect the urgent need for new 

methodologies.  

Recently, Bayesian model averaging (BMA) has gained popularity in various fields, such 

as management science, medicine, and meteorology, because it can produce more accurate and 

reliable predictions than other techniques (Hoeting, Madigan, Raftery and Volinsky, 1999; 

Viallefont, Raftery, and Richardson, 2001). The output of BMA is a weighted average of the 

model PDFs centered on the bias-corrected predictions, where the weights reflect the relative 

contributions of the component models to the ensemble over the sample data. The variance of the 

BMA PDF contains two components, the within-model error variance and the between-model 

variance, both estimated from the sample data. BMA is originally developed as an approach of 

combining inferences and predictions from multiple statistical models, and applied to statistical 

linear regression and related models (Kass and Raftery, 1995). Raftery, Gneiting, Balabdaoui, 

and Polakowski (2005) apply BMA as a statistical post-processing method to generate 

probabilistic forecasts in the form of PDF, and this yields calibrated and sharp predictive PDFs 

of the surface temperature and sea level pressure whose true distributions are approximately 

normal. Sloughter, Raftery, Gneiting, and Fraley (2007) and Duan, Ajami, Gao, and Sorooshian 

(2007), respectively, modify this method and apply it to forecast the quantitative precipitation 

which has a skewed distribution. These efforts indicate that BMA can provide a more reliable 
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description of the total predictive uncertainty than the original element, leading to a sharper and 

better calibrated PDF for the probabilistic predictions. As such, it is appealing to apply BMA 

method to derive the predictive model of long-term wind speed distribution.  

2.3. Deregulated Electricity Wholesale Markets 

In a traditional monopolistic or vertically integrated electricity market, power providers 

mainly aim to minimize the expected costs while maintaining an adequate security of supply 

(Liu, Jiang, and Yan, 2008). Since 1980s, however, the electricity markets have been gradually 

evolving towards liberalized or deregulated structures, which are characterized by open 

competitive energy markets, unbundling electricity services, open access to the network, etc. To 

establish a competitive electricity market and improve its efficiency, the restructured market 

allows for gaming on the market power and tends to stimulate the emergence of new 

technologies (Liu and Wu, 2006). The electricity wholesale market can be regarded as a market 

where the electricity can be sold or purchased at varying prices and delivered either immediately 

or at a given moment. Participants have to make decisions independently under complicated 

situations with insufficient information about their rivals and various uncertainties in the market 

such as load variations, competitor’s behavior, and power system contingencies. 

The deregulated electricity market behaves more like an imperfect competition or 

oligopoly market due to the special characteristics of the actual electricity market, such as a 

limited number of suppliers, long construction periods of power plants, large capital investment 

sizes, transmission constraints, and transmission losses (Wen and David, 2001). Typically, only a 

few dominating generation companies (GenCos) serve a given geographic region. In such an 

oligopolistic market, an individual GenCo has its market power, that is, it can affect and 

manipulate market price via its strategic bidding behavior (David and Wen, 2000). This indicates 
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an opportunity for the GenCos to increase their profits through strategic bidding. Therefore, it is 

possible for the GenCos to maximize their profits by optimizing the bidding strategy in the 

deregulated electricity wholesale market while minimizing the associated risks. Also, the 

electricity market is a complex dynamic system with complicated interactions among physical 

structures, market rules and participants. As such, each participating agent faces risks and 

uncertainties while pursuing profit maximization (Vahidinasab, Jadid, 2010; Hu, Grozev, and 

Batten, 2005). 

Meanwhile, renewable energies such as wind, solar, and biomass are regarded as a key 

factor in tackling global climate change and energy shortage crisis (Guler, 2009). For example, 

wind energy has globally experienced fast growth during the past decade (Li and Shi, 2010c; 

Saidur, Islam, Rahim, and Solangi, 2010). Along with the ongoing worldwide utilization of wind 

power and its increasing penetration into electricity markets, more wind GenCos (WGenCos) are 

encouraged and expected to participate in the electricity market by presenting offers and 

committing the delivery of the agreed amount of wind power at a given moment (Giabardo, 

Zugno, Pinson, and Madsen, 2010). However, regulation power must be reserved to deal with the 

possible fast load variations and unforeseen problems with production capacity (Amjady and 

Keynia, 2009). With a high penetration of such intermittent generations, the regulation power 

needed will further increase in that such generations are characterized by large variations in 

addition to the load swings and outages of production capacity (Cormack, Hollis, Zareipour and 

Rosehart, 2010). When bidding in the electricity markets, wind GenCos must pay for energy 

production deviations resulted from the prediction error, which can be as much as 10% of the 

total generator energy incomes (Fabbri, Gómez, Rivier, and Méndez, 2005). The optimal bidding 

strategy, especially in the deregulated electricity markets with higher penetration of intermittent 
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renewable energy, must consider the cost paid for the energy imbalance in relation with the 

above-mentioned uncertainties and constraints. Therefore, one critical problem faced by the 

WGenCos is how to optimize their supply offers in the electricity markets to maximize their net 

earnings according to not only the available information of the markets and participants but also 

the forecasts on wind energy production. 

It should be noted that the intermittent nature of wind energy production with large 

variations could affect various aspects of the power system as well, such as the transmission and 

distribution grids (Ostergaard, 2003; Garcés, Conejo, García-Bertrand, and Romero, 2009; Burke 

and O’Malley, 2010; Baringo and Conejo, 2011), the ancillary services (Ostergaard, 2006), the 

system operation and development (Strbac, Shakoor, Black, Pudjianto, and Bopp, 2007; Klobasa, 

2010), the generation technology mix (De Jonghe, Delarue, Belmans, and D’Haeseleer, 2011), 

and the costs (Dale, 2004; Denny, and O’Malley, 2007). 

Haas and Auer (2006) emphasize six prerequisites for effective competition in reformed 

wholesale electricity markets: (1) separation of the grid from generation and supply; (2) 

wholesale price deregulation; (3) sufficient transmission capacity for a competitive market and 

non-discriminating grid access; (4) excess generation capacity from many competing generators; 

(5) an equilibrium relationship between short-term wholesale markets and long-term financial 

instruments for marketers to manage wholesale-market price volatility; and (6) an essentially 

hands-off government policy that encompasses reduced oversight and privatization. 

A variety of electricity market reconstruction models have been proposed, which 

generally can be categorized into three types: (a) market pools (PoolCo), (b) bilateral contract 

(BC) markets, and (c) hybrid markets (HM) (Yucekaya, Valenzuela, and Dozier, 2009). PoolCos 

are popular among the approaches to organizing electricity trading. Essentially, a PoolCo is a 
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more centralized marketplace where an Independent System Operator (ISO) clears the market 

according to the bids from both the sellers and the buyers, operates and manages the entire 

system, and maintains its reliability. In a PoolCo, different GenCos compete not for specific 

customers but for the right to supply energy to the grid. A bilateral contract model defines a 

flexible market where the participants can specify and negotiate the terms and conditions of 

trading agreements independent from the ISO. The ISO mainly ensures enough transmission 

capacity and security.  

 
Figure 2. The general market structure of deregulated electricity markets. 

Generally, the market structure of a fully deregulated hybrid electricity market can be 

illustrated by Figure 2. It may contain not only power pools and bilateral contracts but also 

ancillary services (AS) such as frequency and voltage controls, load following, energy 

imbalance, spinning reserve, and supplementary reserve and standby reserve (Foley, Gallachóiró, 

Hur, Baldick, and McKeogh, 2010). Competing generators offer their electricity output to 

retailers in a wholesale electricity market. The retailers then re-price the electricity and take it to 

the retail market. Although the wholesale pricing used to be the exclusive domain of large 

retailing suppliers, the markets are increasingly opening up to large end-buyers as well. The 

participants can directly sign bilateral contracts with others and/or bid in the PoolCos. Also, a 

fully deregulated hybrid market should allow the end buyers to choose among different 
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competing suppliers in the electricity retail market. It should be mentioned that this study mainly 

focuses on the electricity wholesale market in view that the GenCos usually do not interact with 

the end consumers directly. 

Participating in electricity market implies presenting bids and committing the delivery of 

the agreed amount of energy at a given moment. Reliable delivery of electrical energy to load 

centers entails a continuous process of scheduling and adjusting electricity generation in 

response to constantly changing demand (Hu, Grozev, and Batten, 2005). If the actual energy 

delivered by one generator is greater or smaller than what is committed, the GenCo will pay for 

additional cost of maintaining the balance between the generation and the load. In deregulated 

electricity markets, a GenCo is usually an entity owning generating facilities and participating in 

the market with the sole objective of maximizing its benefit (Kang, Kim, and Hur, 2007). Most 

evidently, individual bidding strategies are of essence to the interactions where the participants’ 

actions affect others’ possible outcomes.  

Generally, a bid may include several energy price segments together with the 

corresponding quantity of electricity. As the most common structure, the pool-based market is an 

auction center in which all competitive participants are required to submit quantity-price 

pairwise bids that they commit to receive from or pay to the pool. As illustrated in Figure 3, once 

the bidding period ends, an ISO ranks and then matches the selling offers with buying bids so 

that the buying bids of the highest price are matched with the selling offers of the lowest price 

(Ott, 2003). When all the demands are met, the price of either the last accepted offer or the first 

rejected offer will be set as the market clearing price (MCP). The pricing mechanism for all the 

rest dispatched GenCos can be either uniform pricing (UP) or pay-as-bid (PAB). The UP auction 
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indicates that all the winning suppliers are paid at an MCP. The PAB auction means that each 

winning supplier bidder is paid at its bidding price of the committed amount of electricity. 

 
Figure 3. Market clearing mechanism. 

Each different market structure has its own auction rules and bidding protocols. Various 

auction rules can be categorized into two types: static or dynamic. In static auctions, the bidders 

submit sealed bids, whereas dynamic auctions allow the bidders to observe others’ bids so that 

they can revise their bids sequentially (David and Wen, 2000). The static auction may work 

based on either the UP or PAB rule. Bidding strategy in PAB-based market is more complex and 

potentially more important than that in UP-based market. In this case, the GenCos should 

estimate the uncertain MCP and bid slightly less than it. The PAB rule represents the future trend 

in the deregulated electricity markets and is expected to lower the market prices and reduce the 

price volatility (Xiong, Okuma, and Fujita, 2004). Although the majority of operating electricity 

markets currently still employs the sealed bid auction with the UP auction rule, extensive 

research has been carried out on the applications of PAB rule as well (Rahimiyan and 

Rajabimashhad, 2008). According to different market designs, the bidding protocols can be 

divided into two types: single-part bids or multipart bids (David and Wen, 2000). Under the 

single-part bidding protocol, as adopted in the California type power exchange (PX) market, the 

(a) 



 20 

GenCos bid independent prices for each hour; the winning bid and the schedules for each hour 

are determined via a simple market clearing process according to the intersection of supply and 

demand bid curves. This decentralized approach does not require the ISO to make unit 

commitment decisions. Instead, the GenCos have to consider all involved costs and constraints in 

preparing their bids. Therefore, whenever a significant physical or technical constraint occurs in 

a generation unit, a modification mechanism should be applied to the schedule, e.g., via short-

term balancing market. In contrast, a multipart bid, as addressed in the England–Wales or British 

type electricity market, may include separate prices for ramps, start-up costs, shut-down costs, 

no-load operations, and energy. Although this type of bidding protocol can reflect the cost 

structure and the technical constraints of generation units, the non-convex Unit Commitment 

(UC) problem might not converge to a global optimal solution for large scale systems, possibly 

resulting in inequitable dispatches for different GenCos. 

2.4. Bidding Electricity in Wholesale Markets 

In 1988, Schweppe (1988) firstly noticed that some electricity utilities changed their price 

structures from rigid fixed prices to a wholesale price marketplace. Later, David (1993) formally 

addressed the strategic bidding issue for competitive power suppliers and developed a conceptual 

optimal bidding model and a dynamic programming method for England–Wales type electricity 

markets, in which each GenCo bids a fixed price for each generation block. From then on, the 

strategic bidding problem for competitive GenCos has attracted more attention, and various 

modeling approaches have thus been proposed to generate strategic bidding strategies (Song, Ni, 

Wenb, Hou, and Wu, 2003). Based on different modeling bases, various modeling methods for 

bidding strategy analysis in the electricity wholesale market can be divided into four general 
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groups: (1) single GenCo optimization models, (2) game theory based models, (3) agent-based 

models, and (4) hybrid or other models, as illustrated in Figure 4. 

Figure 4. Modeling methods for bidding electricity in the wholesale market. 

Each group of models may be further divided into small subgroups according to the 

model formulation and solution algorithms. For example, the single GenCo optimization models 

include many mathematical programming methods such as Mixed Integer Programming (MIP), 

Nonlinear Programming (NLP), and Dynamic Programming (DP); the game theory models 

might adopt different competition rules: Bertrand competition, Cournot competition, Supply 

Function Equilibrium (SFE), and some other newly proposed competition rules; the agent-based 

models can be categorized in terms of different learning algorithms such as model-based 

adaptation algorithms (MA), genetic algorithms (GA), Q-Learning (QL), computational learning 

(CL), Ant Colony Optimization (ACO), etc.  

Generally, the single GenCo optimization models focus on only one specific player while 

simplifying other players and the influencing factors as a set of deterministic or stochastic 

independent variables, whereas game theory and agent-based approaches deal with the situation 

of more than one player in the market. Game theory equilibrium models investigate the bidding 
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strategies from the perspective of players’ mutual interactions. Agent-based models tend to 

mimic human behaviors and simulate optimal bidding strategies (Gao and Sheble 2010).  

Table 2. Characteristics of three types of models. 

Models Characteristics 

Single 
GenCo 

optimization 

Developing optimization models to describe the entities in the electricity market with the 
objective of finding an optimal solution: 
• Well-established and solid mathematical foundation 
• Generally focusing on one specific player in the system by simplifying the rest of the 

system as a set of exogenous variables 
• Usually modeling no aspects of players’ intelligent behaviors 
• Difficult to model the complex, uncertain and dynamic systems or analytically derive the 

optimal bidding strategy for the GenCos in the deregulated electricity markets 

Game theory Modeling the market as a game and mathematically capturing the players’ behavior in the game 
where one player's success in making choices depends on the others’ choices 
• Usually mathematically well-defined, involving a set of game players, a set of bidding 

strategies, and a specification of payoffs for each possible combination of bidding strategies 
• Analyzing the economic equilibria of the electricity market by focusing on the players’ 

interactions 
• Capable of providing analytical rationale and explanation on how strategic bidding 

behaviors affect the GenCos’ market power and profits 
• All players are assumed to be rational, which does not generally hold in the reality 
• The frustrating issue of multiple equilibria often occurs in solving the model 

Agent-based Modeling the complex electricity market as collections of rule-based agents interacting with one 
another dynamically and intelligently, simulating human beings’ behavior to make optimal 
bidding strategies 
• Only a few simple rules are specified for and followed by various agents that situated in the 

network and behave intelligently in the system 
• Agents usually have and only require imperfect, local information and visibility 
• No centralized control or planning is required although random elements often exist either 

among variable agents or in the system 
• Agents can interact with each other directly or through the environment, resulting in 

complex emergent global behavior of dynamic-equilibrium and adaptation 
• More flexible, robust, and easily implemented compared with analytical approaches 
• Capable of capturing the details about agents behaviors, which is helpful in figuring out the 

relationships between individual decisions and system behavior 
• Capable of modeling the dynamics of systems that are not in equilibrium as well 
• The underlying mathematical foundation is still not well developed 

Requiring computation-intensive procedures 
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The main characteristics of the three modeling approaches are provided in Table 2. 

Recently, some hybrid and non-conventional methods have also been proposed. The 

representative publications in the four groups are reviewed and summarized in the following 

sections, respectively. 

2.4.1. Single GenCo optimization models 

In earlier publications, the issue of optimal bidding strategy selection is often addressed 

as a cost-minimization problem and solved via traditional cost-based UC algorithms (Borghetti, 

Frangioni, Lacalandra, Nucci, and Pelacchi, 2003). More recently, under the assumption that the 

MCP could be regarded as an exogenous variable (Valenzuela and Mazumdar, 2003), many 

mathematical programming approaches have been applied to address the problem of optimal 

bidding strategy selection. The majority of model formulations incorporate stochastic 

probabilistic elements, either in the problem data (e.g., the objective function and the 

constraints), or in the algorithm (through random parameter values, random choices, etc.), or in 

both (Spall, 2003). An insightful discussion on the application of stochastic programming 

methods to the energy market can be found in (Wallace and Fleten, 2003). The typical 

optimization methods adopted in the literature include Integer Linear Programming (ILP), Mixed 

Integer Programming (MIP), Multi-Objective Linear Programming (MOLP), Nonlinear 

Programming (NLP), Dynamic Programming (DP) (Foley et al., 2010), newsvendor, and Markov 

decision process (MDP) models. As mentioned before, the literature adopting these models 

typically optimizes the bidding strategy for a single market participant while ignoring or 

simplifying the behavior aspects of other players. 

As reviewed by Conejo and Prieto (2001), many mathematical programming problems in 

a competitive electric energy framework can be modeled as mixed integer linear programming 
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(MILP) models. De la Torre, Arroyo, Conejo, and Contreras (2002) formulate an MILP model 

for a price-maker GenCo to solve the self-scheduling problem and maximize the profit in a pool-

based electricity market. Conejo, Nogales, and Arroyo (2002) propose several mathematical 

programming models for a price-taking thermal GenCo to derive the optimal bidding strategy in 

a pool-based market with highly uncertain MCPs. The problem is first modeled as a stochastic 

mixed-integer linear programming (SILP) model and then transformed to two MILP models, one 

of which could be easily solved using a commercial ILP solver. Then a simple but informative 

bidding rule is derived from the solution. Similarly, from the perspective of a price-taking 

hydropower GenCo (HGenCo) participating in the PX of Nord Pool, a day-ahead power market, 

Fleten and Kristoffersen (2007) transform a two-stage SILP model to an MILP model for 

determining optimal bidding strategies by taking into account the discrete market price scenarios.  

The effect of market price uncertainty on bidding optimization is explicitly explored by 

comparing the stochastic approach to the deterministic counterpart. Angarita, Usaola, and 

Martínez-Crespo (2009) present the application of stochastic optimization technique in 

maximizing the joint profit of hydro and wind generators in a pool-based electricity market. To 

handle the uncertainty of wind prediction, the hourly wind power is regarded as a discrete 

random variable in the optimization problem. Compared to other bid strategies that make use of 

the expected wind power value, the combined bidding strategy gives rise to significant 

improvements. Also, it is a useful tool for GenCos to avoid penalty costs or income reduction.  

Sen, Yu, and Genc (2006) propose a multi-stage SILP model for scheduling and hedging 

in wholesale electricity markets. This SILP model captures stochastic electricity demand, 

electricity forward price, gas forward price, and wholesale price of electricity. Based on the 

structure of the SILP model, a nested column generation decomposition strategy is proposed to 
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decompose the model into three interrelated sub-problems. The experimental results demonstrate 

that the proposed approach could provide robust decisions for scheduling and hedging problems. 

Besides, Ni, Luh, and Rourke (2004) develop a stochastic mixed-integer program (SMIP) to 

systematically handle the MCP uncertainties, bidding risk management, and self-scheduling 

requirements for a hydrothermal GenCo to maximize profits under a deregulated market. The 

model is solved by the proposed algorithm combining Lagrangian relaxation and stochastic 

dynamic programming (SDP) method. 

De Ladurantaye, Gendreau, and Potvin (2007) introduce an SILP model to maximize the 

profits for a hydropower GenCo of multiple power plants along a river in a deregulated market. 

The proposed model aims to support the price-taking GenCo in its day-ahead bidding decisions. 

Morales, Conejo, and Perez-Ruiz (2010) address a multi-stage SILP problem which determines 

the best bidding strategy for a WGenCo in an electricity market including various trading floors. 

In the SILP problem, four uncertain sources are considered: wind power generation, day-ahead 

market price, adjustment market price and imbalance energy price. The multi-stage SILP 

problem is formulated as a linear programming (LP) model, and a case study for a WGenCo in 

Kansas is conducted for the illustration of solving the LP model. 

Gross, Finlay, and Deltas (1999) develop a nonlinear programming (NLP) model to 

optimize strategic bids of a GenCo in a multi-period auction market under the assumption of 

perfect competition, and propose a Lagrangian relaxation (LR) method to solve the NLP model. 

Similarly, to deal with the GenCo’s bidding optimization and self-scheduling problem, Zhang, 

Wang, and Luh (2000) develop an NLP model by considering uncertain bidding information of 

other participants, and solve this model by an LR method.  
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Yucekaya, Valenzuela, and Dozier (2009) present two particle swarm optimization (PSO) 

algorithms to determine bid prices and quantities under the rules of the Pennsylvania, New 

Jersey, and Maryland market. The first one employs a conventional PSO technique whereas the 

second uses a decomposition technique in conjunction with the PSO approach. It is found that 

the latter algorithm can dramatically outperform the former. Also, it is shown that for nonlinear 

cost functions, PSO solutions provide higher expected profits than marginal cost-based bidding.  

Similarly, in considering the non-convex operating cost functions of thermal generating 

units and minimum up/down time constraints, Boonchuay and Ongsakul (2011) propose an 

optimal risky bidding strategy for a GenCo by self-organizing hierarchical particle swarm 

optimization with time-varying acceleration coefficients. With rivals’ behavior in competitive 

environment being simulated via the Monte Carlo method, the significant risk index based on 

mean–standard deviation ratio (MSR) is maximized to generate the optimal bid. The proposed 

approach is concluded to be capable of providing a higher MSR than other PSO methods. 

Wen and David (2001a) propose a stochastic nonlinear programming (SNLP) model for 

deciding optimal bidding strategies for competitive power suppliers in a sealed bid auction based 

electricity market. The model assumes that the power supplier bids a linear supply function and 

is paid at the MCP with the system dispatch levels being stipulated by a market operator to 

minimize customers’ payments. It is shown that the MCP can be significantly higher than the 

competitive levels if the suppliers bid strategically, and that the market power of the suppliers 

will be reduced if the load is elastic to the price of electricity. Similarly, they build more SNLP 

models and propose a genetic algorithm based method to build bidding strategies for power 

suppliers in the California-type day-ahead energy market in which power suppliers are required 

to simultaneously bid 24 linear energy supply functions, one for each hour, and the system 
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dispatch levels are stipulated separately for each hour by utilizing the UP pricing rule. The 

method is believed to be especially suitable for those suppliers with marginal or near-marginal 

generating units (Wen and David, 2001b).  

Ma, Wen, Ni, and Liu (2005) develop an SNLP model for optimizing bidding strategies 

by considering the risks for the GenCos participating in a pool-based single-buyer electricity 

market. Each GenCo is assumed to bid a linear supply function and the system is dispatched to 

minimize the total purchasing cost of the single-buyer. Each GenCo chooses the coefficients in 

the linear supply function for making tradeoff between two conflicting objectives: profit 

maximization and risk minimization.  

Guan, Ho, and La (2001) develop a bidding strategy based on the theory of ordinal 

optimization. The basic idea is using an approximate model to describe the influence of bidding 

strategies on the MCP. A nominal bid curve is obtained by solving optimal power generation for 

a given set of MCPs via Lagrangian relaxation. The best bid is then selected by solving full 

hydrothermal scheduling or unit commitment problems.  

Usaola, and Angarita (2007) formulate a stochastic linear programming model by 

including the probability density of wind forecasting and analyze the optimal bidding strategy for 

a WGenCo in a wholesale market. It is found that the most accurate prediction is achieved when 

bids are updated in intraday markets by using more recent predictions. However, the most 

accurate prediction cannot ensure the highest revenues due to the different prices of spilled and 

bought energy and the bias of the prediction programs. In order to generate maximum revenue, 

the uncertainty of the power prediction must be considered.  

Zhang (2009) uses a dynamic random effect ordered probit model to analyze the GenCo’s 

bidding behavior in the NYISO day-ahead wholesale market. The results show that the 
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generators in higher-priced groups tend to withhold their capacity strategically to push up market 

prices. It is also verified that demand conditions might greatly affect market prices. Rahimiyan 

and Rajabimashhadi (2007) formulate the bidding decision-making problem from a supplier’s 

viewpoint in a PAB auction wholesale market by assuming a normally distributed MCP, and 

analyze the effect of some risk factors on the supplier-expected benefit and selling amount.  

Song, Liu, Lawarrée, and Dahlgren (2000) propose a bidding decision-making strategy in 

which the impacts of production limit and market share on the optimal bidding strategies are 

considered. It is concluded that the Markov decision process (MDP) model is able to optimize 

the decision over a planning horizon. However, the model makes a few strong assumptions such 

as ignoring the operational constraints of power systems and giving no provision for 

incorporating risk attitude in an ordinary MDP.  

Gajjar, Khaparde, Nagaraju, and Soman (2003) formulate the GenCo optimal bidding in a 

deregulated power market in the framework of MDP. An optimal strategy is devised to maximize 

the profit by employing the temporal difference technique and actor-critic learning algorithm. 

The method is concluded to be especially useful for long-term profit maximization under 

stochastic risks.  

Bathurst, Bathurst, Weatherill, Weatherill, Strbac, and Strbac (2002) present a strategy 

for bidding a few hours before the operation time for the wind producers under the New 

Electricity Trading Arrangements (NETA), changed to British Electricity Trading Transmission 

Arrangements since 2005, by using Markov processes for simulating a wind farm. The method 

demonstrates substantial reductions in the imbalance costs as well as the effect of market closure 

delays and window lengths of wind forecasting.  
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Pinson, Chevalier, and Kariniotakis (2007) study daily bidding by using the rules of the 

Dutch APX electricity market, where bids are presented only once per day and not updated in 

intraday markets. It is found that as a result of reduced regulating market costs from better hourly 

predictions to the market, wind power producer could obtain up to 8% more profit if the time 

between market bids and delivery is shortened from the day-ahead Elwholesale market. They 

also formulate a general methodology for deriving optimal bidding strategies based on 

probabilistic forecasts of wind generation in the form of predictive distribution. This flexible 

methodology can be tailored based on the needs of a specific market participant (Pinson et al. 

2007).  

Besides, bi-level optimization is often applied either to represent the strategic interaction 

among suppliers or in hybrid markets where electrical energy and spinning reserve are 

simultaneously traded (Haghighat, Seifi, and Kian, 2007; Soleymani, Ranjbar, and Shirani, 2007) 

or in the presence of future contracts (Yuan, Liu, and Jiang, 2007) and bilateral contracts (Badri, 

Jadid, Rashidinejad, and Moghaddam, 2008). Also, the influence of extra objectives such as the 

minimization of supplier emission of pollutants (Vahidinasab and Jadid, 2009), or the influence 

of unit reliability (Soleymani, Ranjbar, and Shirani, 2008) has been analyzed using optimization 

models. The competition process can be represented as a dynamic feedback system as well (Liu 

and Wu, 2006). Attaviriyanupap, Kita, Tanaka, and Hasegawa (2005) propose an algorithm for 

determining the optimal bidding strategy for a GenCo in the deregulated day-ahead power and 

reserve markets. The optimal bidding parameters for both markets are determined by solving an 

optimization problem, which considers unit commitment constraints such as generating limits 

and unit minimum up/down time constraints. In the study, evolutionary programming (EM) 

technique is used to solve the problem. 
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2.4.2. Game theory models 

Game theory models, also called equilibrium models, optimize the bidding strategies by 

investigating players’ interactions and analyzing economic equilibria of the system. Typically, in 

a game, each player chooses the strategy from its own strategy set; then a payoff will be assigned 

to each player by the payoff function; as a result the optimal solution can be reached via Nash 

equilibrium. Nash equilibrium is a strategy combination of all players in which no player can 

increase its payoff by changing its own strategy alone so that every player will finally choose its 

strategy exactly as the equilibrium strategy combination. Game theory models provide analytical 

rationale and explanation on how market power can be exercised via strategic bidding behavior, 

but the assumption that all players are rational usually does not hold in practice (Gao and Sheble, 

2010). Also, it is limited by the requirement of common knowledge on all GenCos’ actual 

production costs (Song , Ni, Wenb, Hou, and Wu, 2003). 

One major criterion for classifying game theory based methods is the level of 

competition: cooperative and non-cooperative (Shahidehpour, Yamin, and Li, 2002). According 

to the competition level in the liberalized electricity market, three general types of game models 

in imperfect competition, namely, Bertrand, Cournot, and SFE, have been proposed in the recent 

literature. As the most competitive model, a Bertrand competition model is an oligopolistic 

framework where the GenCos compete with one another by using prices as the strategic variables 

and ignore their capacity constraints. In classic Cournot models, however, the GenCos compete 

by using quantities as strategy choices, under the assumptions of homogenous products, price-

responsive demand, and an MCP is determined by the intersection of aggregated supply and 

market demand curves. In the SFE models, the GenCos compete through the simultaneous 

choice of supply functions (Soleymani, Ranjbar, and Shirani, 2008). The competition level as 
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well as the derived price equilibria generally lies between the Bertrand and Cournot model 

(Younes and Ilic, 1999). Recently, some other methods are also used to model and analyze the 

strategic behavior in deregulated electricity markets.  

In a standard Bertrand competition model, identical sellers are assumed to have constant 

unit costs and no capacity constraints in competing on the price offers to consumers, and this will 

inexorably cause the identical sellers to price at marginal cost (von der Fehr, and Harbord, 2002). 

However, the electricity wholesale market deviates from the standard Bertrand price game. It is a 

capacity-constrained oligopoly and the marginal cost pricing is unlikely to be an optimal bidding 

strategy (Armstrong, Cowan, and Vickers, 1994). Therefore, only a few relevant references can 

be found in recent publications.  

Federico and Rahman (2003) analyze the effects of changing auction rule from UP in the 

wholesale market to PAB under two polar market structures (i.e., a perfect competition or 

Bertrand structure and a perfect collusion or monopoly bidding) with demand uncertainty. It is 

found that under Bertrand structure there is a trade-off between efficiency and consumer surplus 

while changing to the PAB rule. Also, a move from UP to PAB under monopoly conditions has a 

negative impact on profits and output (weakly), a positive impact on consumer surplus, and 

ambiguous implications for welfare and average prices. Based on generalized Bertrand game, 

Ernst, Minoia, and Marija (2004) propose to optimize the profit and obtain a strategic bid by 

assuming that each GenCo has a constant marginal cost over its domain of generation and its 

rivals do not change their bids from the last round of market to the next one. They further adopt 

quadratic cost functions for GenCos and include a supply function in the bids instead of playing 

a Bertrand game (Minoia, Ernst, and Marija, 2004). Hu, Kapuscinski, and Lovejoy (2010) define 

Bertrand-Edgeworth (B-E) auctions as a modified version of Bertrand-Edgeworth games where 
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the demand is inelastic and a price cap is set exogenously. B-E auctions are motivated by the 

discriminatory procurement auctions used in some wholesale electricity markets. They 

characterize the equilibrium structure for B-E auctions with multiple asymmetric bidding 

suppliers. Based on a proposed numerical algorithm, it is numerically illustrated that a weak 

(low-capacity) bidder does not necessarily price more aggressively in an oligopoly market. Bunn 

and Oliveira (2003) develop a stylized Bertrand game with constraints to explore the main 

strategic decisions faced by the GenCos in the England and Wales (E&W) market based on the 

proposed NETA. 

Compared with Bertrand price-setting strategies, the quantity-setting equilibrium is more 

realistic for the electricity market. The Bertrand equilibrium assumes that by providing a lower 

price than others, a firm can capture the entire market demand and then meet it by expanding its 

output. However, such assumption is not tenable in view of the increasing marginal cost of 

electricity generation at a time point and the generation capacity constraints. Because the 

GenCos provide a homogeneous product, the Cournot assumption that firms make strategic 

decisions by quantity-setting behavior is considered to be a better approximation to reality than 

the price-setting assumption (Borenstein, Bushnell and Knittel, 1998; Hobbs, 1999). The 

representative Cournot competition based models are summarized as follows. 

Borenstein and Bushnell (1999) use demand and plant-level cost data to simulate the 

competition in a restructured California electricity market. This approach recognizes that firms 

might have an incentive to restrict output in order to raise price, and it enables the explicit 

analysis on each firm's ability to do so. It is found that, while the results make the deregulation of 

generation less attractive than where there is no market power, they do not suggest that 

deregulation is a mistake. It is argued that policies promoting the responsiveness of both 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VFT-3YRVPDW-1&_user=513528&_coverDate=09%2F30%2F1999&_alid=1465698639&_rdoc=1&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=6019&_sort=r&_st=5&_docanchor=&_ct=2&_acct=C000025359&_version=1&_urlVersion=0&_userid=513528&md5=09f2390813cc3b9efb71d812b1a0aa2a&searchtype=a#bbib5�
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consumers and producers to price fluctuations can significantly affect the reduction of market 

power. Willems (2002) studies a Cournot competition based game with two GenCos who share 

one transmission line with a limited capacity to supply price-taking consumers. In the model, 

three different rules for the network operator to allocate transmission capacity are investigated, 

namely, all-or-nothing, proportional, and efficient rationing. Their effects on the GenCos 

competition and revenue are analyzed. Kian, Cruz, and Thomas (2005) use feedback Nash-

Cournot strategies for the market participants to bid in dynamic electricity double-sided auctions. 

The simulation results show that compared with single-sided auctions, double-sided auctions are 

more efficient and lead to more stable and competitive MCPs. Tamaschke, Docwra, and Stillman 

(2005) focus on measuring the extent to which market power has been exercised in a deregulated 

electricity generation sector, and emphasize the need to consider the concept of market power in 

a long-term dynamic context. A market power index is constructed by considering the 

differences between the actual market returns and long-term competitive returns, and it is 

estimated by using a mathematical optimization model. The results suggest that generators have 

exercised significant market power from deregulation. To investigate whether individual 

participants can increase profits by withholding generation from the market, Ahn and Niemeyer 

(2007) develop a Cournot-based model of Korean power system for a set of loads representing 

the load duration curve for Korea's system loads in 2002. The results indicate a strong possibility 

for the exercise of market power to increase market price in Korean market.  

Krause, Beck, Cherkaoui, Germond, Andersson, and Ernst (2006) perform a Nash 

equilibrium analysis by defining a pool market as a repeatedly played matrix game and compare 

it with an agent-based model. It is concluded that GenCos may act strategically by bidding above 

their marginal production costs. Kang, Kim, and Hur (2007) also propose a bidding model by 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V7G-4X7GMGX-2&_user=513528&_coverDate=03%2F31%2F2010&_alid=1465646345&_rdoc=3&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5842&_sort=r&_st=5&_docanchor=&_ct=69&_acct=C000025359&_version=1&_urlVersion=0&_userid=513528&md5=514fcc0c96b71a1c2a8ee52257a620d9&searchtype=a#bib43�
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using a two-player static game theory and analyze both demand-fixed and demand-under-

uncertainty scenarios. The objective is to exploit a methodology to build the optimal bidding 

strategies for competitive power suppliers in day-ahead auction-based electricity markets with 

only the information on their possible future profits estimated from forecast system demand. It is 

indicated that a precise forecast of the demand can help the player to gain the advantage in the 

game. Under the Cournot assumption, Park, Ki, Kim, Jung, and Park (2001) analyze the power 

transactions in a deregulated energy marketplace such as PoolCo by modeling it as a non-

cooperative game with complete information and determining the solution in a continuous 

strategy domain. A new hybrid solution approach employing a two-dimensional graphical 

approach as well as an analytical method is proposed to provide more apprehensible analysis. 

Supply function equilibrium (SFE), originally introduced by Klemperer and Meyer 

(1989), is a way of describing how competitors could maximize profits in the competitive market 

of a single product with uncertain demands. In such a market, the participants prefer to set supply 

functions rather than compete in prices (Bertrand competition) or quantities (Cournot 

competition). Green and Newbery (1992) further advance the SFE theory by considering 

capacity constraints in analyzing the competition in the British electricity wholesale market, and 

they develop a model for the market of privatization. It is verified that supply curve bidding 

(SCB) can better benefit the GenCos compared to fixed quantity-price bids.  

The advantages of SFE model compared with other models are also discussed by Baldick, 

Grant, and Kahn (2004). The SFE model, which constitutes a good compromise between the 

Cournot and Bertrand models, is believed to most accurately reflect the actual behavior of 

players in the real power markets. Also, it is more appropriate for the centralized markets where 

each GenCo bids in terms of a supply curve (Vahidinasab and Jadid, 2010). Therefore, the 
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worldwide on-going deregulation of the electric market has been stimulating the SFE based 

modeling analysis of strategic bidding behavior. Representative SFE based models are 

summarized and discussed below. 

Li and Shahidehpour (2005) propose an SFE based modeling method for analyzing the 

competition and bidding strategy among GenCos with incomplete information while taking into 

account transmission constraints. The competition is modeled as a bi-level problem in which the 

upper subproblem maximizes individual GenCos’ payoffs and the lower subproblem clears the 

market. Sensitivity functions are developed for each GenCo’s payoff with respect to its bidding 

strategies in order to solve the bi-level problem. An eight-bus system is employed to illustrate the 

proposed method, and the numerical results show the impact of transfer capability on GenCos’ 

bidding strategies.  

In the Standard Market Design (SMD) setup for electricity markets, Al-Agtash (2010) 

presents an SCB approach that iteratively alters the SFE model solutions and selects the best bid 

based on both the market-clearing locational marginal prices (LMP) and network conditions. 

This enables the GenCos to derive their best offering strategy in both the DAM and the long-

term contractual markets. However, the results could vary significantly from one system to 

another according to the system characteristics such as network topology and suppliers’ 

associated generation capacities.  

It is observed that the SFE models are difficult in embracing congestion conditions, 

capacity constraints, and large systems with significant number of generators, unless strong 

restrictions are placed (Haghighat, Seifi, and Rahimikian, 2008). The supply curve bids obtained 

from the SFE models may not lead to a maximum profit, especially when the network is highly 

constrained. In view of this, Alagtash and Yamin (2004) reformulate the supply function 
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equilibrium model for a GenCo owning a number of generators and present a new approach for 

optimal supply curve bidding (OSCB) using Benders decomposition. In their model, the offers of 

individual generators are simultaneously optimized to maximize the GenCo’s total profit by 

taking into account physical constraints as well as transmission security constraints.  

Many existing applications found in literature are limited to small systems due to the 

difficulty of analytically calculating the SFE for large systems. In view of this, Bompard et al. 

(2010) present an analytical approach to represent the strategic bidding behavior of the GenCos 

using an SFE model for large systems, in which the decision variables are the slopes of the 

supply function. The proposed approach proves to be rather precise in determining the SFE and it 

can consider the GenCos’ capacity limits. It is also shown that generation capacity constraints 

may contribute to GenCos’ market power. One GenCo may be pivotal if its rivals are capacity 

constrained. It could substantially raise the market price by unilaterally withholding the output.  

To fully consider the impact of capacity constraints and pivotal firms on equilibrium 

predictions, Genc and Reynolds (2011) characterize the set of symmetric SFEs for capacity-

constrained GenCos in the UP-auction wholesale market. It is shown that the rise of GenCos’ 

capacities could lead to the increase of this set of equilibria. Holmberg (2009) also numerically 

studies the asymmetric supply function equilibrium with capacity constraints and shows that in 

this case, the valid SFE can be calculated by means of an algorithm that combines numerical 

integration with an optimization procedure that searches for an end condition. 

To develop optimal bidding strategies for the GenCos of oligopolistic energy markets, 

Vahidinasab and Jadid (2010) study the impacts of GenCos’ pollutant emission on their bidding 

strategies. By neglecting demand side bidding and bilateral contracts, the GenCos are assumed to 

submit quadratic bidding curves to the market and bid the quadratic coefficient of bidding curves 
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under the locational marginal pricing mechanism. The model employs SFE to represent each 

supplier’s strategic behavior. Normal boundary intersection approach is used for generating 

Pareto optimal set and fuzzy decision making is employed to select the best compromise 

solution. The MCP is obtained via the multi-objective optimal power flow method. The optimal 

bidding strategies are mathematically developed by using a bi-level optimization problem 

solution.  

In view that most previous research mainly focuses on a single-period, single-market 

model, Gao and Sheble (2010) develop an SFE model for GenCos' bidding optimization in a 

multiple-period and multi-market scenario.  For the proposed SFE model, they obtain the 

equilibrium condition by using discrete time optimal control which considers fuel resource 

constraints. The multiple-period optimal bid strategy is analytically derived by manipulating the 

intercept parameters of the SFE model. Both electricity and fuel markets are simultaneously 

considered, and the SFEs with resource constraint and transmission constraint are investigated, 

respectively.  

Sahraei-Ardakani and Rahimi-Kian (2009) propose an n-player dynamic game model to 

analyze the bidding strategy in an oligopolistic electricity market with either fixed or variable 

demands. In this analytical short-term model, all players first choose their own strategy, and 

then, define an improvement matrix to improve the bidding strategy after seeing one another’s 

strategy and the resulting payoff. A state-space approach is used to obtain the supply function 

equilibrium strategy for the model under many realistic constraints such as production bounds, 

ramping limits, up/down times, system contingencies, and transmission congestions. 

Generally, in a centralized market, where the power pool collects suppliers’ bids and 

loads and determines the dispatching schedule, the competition level as well as the model type is 



 38 

dependent upon the bidding procedure and the pricing rule. The GenCos may bid on prices 

without worrying about quantities (Bertrand competition), but they may also bid on their 

production quantity as a function of the prices to be received from the equilibrium prices (SFE). 

In a decentralized market, the transactions are performed in bilateral or multilateral markets and 

the type of short-term competition is endogenous. The GenCos may compete by choosing the 

quantity they are willing to put on the market and the MCP is to be determined by an ISO 

(Cournot competition). The supply function model is a good compromise between Cournot and 

Bertrand competitions in a highly decentralized market (Younes and Ilic, 1999). 

2.4.3. Agent-based models 

The restructured electricity markets typically involve price-quantity pairwise bids for the 

sale of large amounts of electricity by a small number of GenCos, resulting in extremely 

complex market processes in which traditional analytical and statistical tools are difficult to be 

applied (Tesfatsion, 2002). In an agent-based model, market participants are modeled as adaptive 

agents with different bidding preferences and strategies, and the suppliers are enabled to utilize 

their past experiences to improve their behaviors in the market. Each agent may develop the 

optimal bidding strategy by learning from its past experiences obtained from the direct 

interaction with environment. This brings a new type of numerical analysis theory to deal with 

complex trading issues in the restructured electricity market (Tesfatsion, 2006). Generally, the 

agent-based modeling procedure can be described as follows: (1) define the research questions to 

be resolved; (2) construct a model comprising an initial population of agents; (3) specify the 

initial model state by defining the agents’ attributes and the structural and institutional 

framework of the electricity market within which the agents operate; (4) have the model evolve 
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over time without further intervention; (5) analyze simulation results and evaluate the regularities 

observed in the data (Weidlich  and Veit, 2008) 

Agent-Based Computational Economics (ACE) is a fairly young research paradigm that 

offers methods for realistic electricity market modeling to overcome some shortcomings of the 

other methods discussed above (Weidlich and Veit (2008). A growing number of researchers 

have developed many agent-based models for simulating electricity markets (Sueyoshi and 

Tadiparthi, 2005; 2007). However, compared with single GenCo optimization models and game 

theory based models, agent-based modeling studies for bidding strategy analysis are much less in 

literature. The representative publications are reviewed as follows. 

Rahimiyan and Rajabimashhadi (2008) compare the Q-learning (QL) approach and the 

model-based (MB) approach in optimizing supplier's bidding strategy under electricity PAB 

auction rule. The suppliers’ behaviors are modeled in a multi-agent system, and the simulation 

results show that the Q-learning algorithm can enable the suppliers to find the optimal bidding 

strategy in the PoolCo market. For different PDFs, the QL algorithm can always converge to the 

optimal solution obtained using the model-based approach. The results also show that the 

suppliers could adopt the bidding strategy according to their rivals’ behavior and other effective 

factors in power system operation using the QL algorithm. Sheble (2001) proposes a genetic 

algorithm (GA) and an ACE framework for optimizing sellers’ bidding strategies in a double-

sided auction market where some players attempt to benefit from applying different strategies to 

cause economic instabilities and intentionally drive market prices. It is demonstrated that the 

market power can be significantly experienced by some players under the UP rule. Naghibi-

Sistani, Akbarzadehtootoonchi, Javididashtebayaz, and Rajabimashhadi (2006) propose a Q-

learning algorithm for the participants to find the optimal bidding strategy in the PoolCo 
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electricity market. In this method, each bidder, independent of the others, learns about its state 

and the wholesale price. The results show that with the temperature variation reinforcement 

learning, the suppliers can learn the optimal policy found by game theory and can be adaptive to 

the parameter variations in the market  

Wen and David (2001d) adopt Monte Carlo simulation and a refined genetic algorithm to 

build optimally coordinated bidding strategies for competitive suppliers in energy and spinning 

reserve markets. Under the assumptions that each supplier bids a linear supply function into the 

energy and spinning reserve markets, respectively, and that the two markets are dispatched 

separately, each supplier chooses the coefficients in the two linear supply functions to maximize 

the total benefits, considering the rivals’ possible bidding policy. They also apply a similar GA-

based method to develop an overall bidding strategy for the suppliers in the day-ahead market 

(Wen and David, 2001).  

Gountis and Bakirtzis (2004) propose a GA approach to optimize the profits of individual 

GenCos with multiple generating units. The model uses Monte Carlo simulation to calculate the 

expected profit and GA to find the optimal strategy. It is assumed that each supplier bids a linear 

supply function and considers the other bidders’ bidding behaviors in the forms of PDF. 

However, such an assumption is usually not realistic since the rational generator can be expected 

in a competitive bidding environment. Therefore, the profits estimated by the proposed algorithm 

are not realizable. Earlier agent-based simulations employing GA algorithm for bidding strategy 

analysis can be found in (Richter and Sheble, 1998; Richter and Sheble, 2000).  

Besides, some other learning algorithms have also been investigated. For example, Fujii, 

Okamura, Inagaki, and Yamaji (2004) apply a multi-agent model, which learns a bidding 

strategy autonomously through trial-and-error search action, to numerically analyze the price 
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formation process of an open electric market. The model is believed to be helpful in analyzing 

more general electricity markets which have several different types of power plants with unit 

commitment costs, seasonal and hourly demand fluctuation, real-time regulation market and 

operating reserve market. Bunn et al. (2010) develop an agent-based simulation model by using 

computational learning (CL) algorithm to investigate the impact of vertical integration between 

electricity generators and retailers on market power in a competitive wholesale market setting. It 

is found that in various cases, whilst vertical integration generally reduces wholesale prices, it 

can increase or decrease the market power of other generators, depending upon the market share 

and the technology segment of the market. 

Azadeh, Skandari, and Maleki-Shoja (2010) propose an agent based simulation model 

based on Ant Colony Optimization (ACO) algorithm to compare three wholesale electricity 

market clearing strategies: UP, PAB, and generalized Vickrey rules. The proposed model is 

suitable for high-dimension bidding functions and enables modelers to avoid “curse of 

dimensionality”. They investigate step-wise discrete bid functions and their impacts on the 

efficiency of the market under different available market settlement rules. The assumptions in the 

proposed algorithm include: inelastic and fixed demand; call market with different price 

settlement rules (UP, PAB, and generalized Vickrey rules); no transmission constraint; and a 

step-wise discrete bid function. The method can solve dynamic and static combinatorial 

optimization problems of market strategy optimization. 

Besides, there are a few other studies on agent-based modeling applications in literature. 

Xiong, Okuma, and Fujita (2004) compare the UP and PAB auction rules by using a multi-agent 

approach, where each adaptive GenCo develops the bidding prices based on Q-learning 

algorithm. The experimental results show that the PAB auction can result in lower expected 
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market prices and price volatility. It is also shown that the demand-side response has less effect 

in reducing market prices under the PAB auction rule since in this auction the bidders bid as 

close to the market prices as possible, which makes the aggregate supply curve more flattened 

than that under the UP rule. Xiong, Hashiyama, and Okuma (2002) propose an evolutionary 

daily bidding strategy for the supplier in a perfectly competitive day-ahead electricity auction 

market under the PAB auction rule. The feasibility of the proposed bidding strategy is verified by 

agent-based simulations. Walter and Gomide (2003) present a GA-based approach to obtain 

evolutionary GenCo bidding strategies in the power market. Simulation results illustrate that the 

strategies derived by this approach is superior in enhancing the GenCo’s profitability over the 

commonly adopted marginal cost-based approaches. They also introduce a co-evolutionary 

algorithm to obtain a profitable bidding strategy for the participant by using information 

commonly available in a much dynamic environment. The results demonstrate that this approach 

can further improve the GenCo’s profits (Walter and Gomide, 2008). Gao, Gutierrez-Alcaraz, 

and Sheble (2006) build an adaptive multi-agent model to analyze and compare the application 

performances of genetic algorithm, evolutionary programming, and particle swarm in simulating 

participants’ bidding behaviors. Sueyoshi and Tadiparthi (2008) develop an agent-based decision 

support system (DSS) for analyzing the dynamic price change in the competitive electricity 

wholesale environment. The proposed DSS is effective in assessing new trading strategies in the 

electricity PoolCo market. 

Agent-based models can mimic human behaviors and simulate optimal bidding 

procedures. In such models, market participants are handled as adaptive agents with different 

bidding preferences and strategies, and their bidding decisions are influenced by many 

uncontrollable factors. This group of models is more flexible, robust, and easily implemented 
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compared with the previous two groups of approaches, and thus it opens up a new type of 

modeling analysis to deal with business complexity of electricity trading. However, the 

underlying mathematical foundation for agent-based modeling has not yet been clearly verified 

to date (Gao and Sheble, 2010). 

2.4.4. Hybrid models and other modeling methods 

Besides the above three major groups of modeling approaches, there are a few other 

innovative methods developed recently for strategic bidding analysis. In particular, the hybrid 

approach that combines multiple modeling methods stimulates enormous interests among the 

researchers. 

Yamin and Shahidehpour (2003) develop a hybrid model combining LR algorithm and 

GA for the GenCos to generate a proper unit commitment scheduling and derive the optimal 

supply curves. It is shown that the proposed hybrid model is better than the LR approach and the 

traditional unit commitment approach in terms of helping the GenCos to increase profits. They 

also adopt the augmented Lagrangian relaxation algorithm to solve self-scheduling and energy 

bidding problems in competitive electricity markets constrained by transmission congestions, 

fuel, and emission. The supply curve is derived as a function of generation schedule to achieve 

the maximum profit. The slope of the supply curve is dependent upon the forecast price and the 

power output obtained in the self-scheduling result (Yamin and Shahidehpour, 2004).  

Sueyoshi (2009) proposes an agent-based approach equipped with game theory for 

analyzing the strategic collaboration among learning agents during a dynamic market change in 

the 2000-2001 California electricity crisis. The concept of partial reinforcement learning is 

incorporated into trading agents who can learn from both the dynamic market change and the 

collaboration with other traders. It is found that the learning speed of traders becomes slow when 
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a large fluctuation occurs in the power exchange market. Azevedo and Correia (2006) propose a 

model by combining Bayes' rule and the game theory for the participants in the first stage of an 

electric energy bilateral contract auction in the Brazilian market. The model can help one agent 

to attribute bids to the other agents and observe the consequences. 

In addition, Song, Ni, Wenb, Hou, and Wu (2003) present the concept of conjectural 

variation (CV) and its applications to the strategic bidding of GenCo in the oligopolistic 

electricity wholesale market. The conjecture of a firm is defined as its belief or expectation of 

how its rivals will react to the change of its output. It is verified that, in a real wholesale market 

containing multiple players, CV based bidding strategy (CVBS) enables a GenCo to integrate its 

rivals’ responses into one pseudo-competitor's response and to make optimal decision 

accordingly based on available imperfect information announced in the market. It is also 

demonstrated that classical game theoretical bidding strategies (GTBS), such as Bertrand, 

Cournot, Stackelberg and monopoly (collusion), are actually the special cases in the CVBS 

solution family. 
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3. TIME SERIES BASED SHORT-TERM WIND FORECASTING 

In this chapter, two kinds of typical forecasting models, autoregressive integrated moving 

average (ARIMA) and artificial neural networks (ANN) are built, implemented, evaluated, 

compared, and comprehensively investigated in performing short-term wind forecasting. The 

time series based modeling methods of ARIMA and three types of ANNs are concisely presented 

in Section 3.1 first. After a brief introduction to the performance metrics is given in Section 3.2, 

the study on the application of ARIMA and different ANN modeling methods for one-hour-

ahead wind speed forecasting is performed and presented in Sections 3.3 and 3.4, respectively. 

Section 3.5 presents a short discussion on the results. 

3.1. Time Series Models 

A time series is a set of measurements or observations collected at successive points or 

over successive periods. Time series methods, e.g., ARIMA and ANN, can generate forecasts 

based solely on the hidden patterns in the historical data by using time as independent variable. 

Especially, the ANN trained with time series have the ability to model arbitrarily linear and 

nonlinear functions. Having been widely utilized in various different fields including transient 

detection, pattern recognition, approximation, and time series forecast, artificial neural network 

(ANN) is a promising technology in the field of wind forecasting applications. For example, 

Alexiadis, Dokopoulos, Sahsamanoglou, and Manousaridis (1998) claim that their ANN 

predictor is about 10% better than persistence model for one-step-ahead forecast.  

3.1.1. Box & Jenkins models 

The mathematical description of the wind pattern recognition or forecast problem aims to 

find an estimate f(t+k) of the wind vector y(t+k) based on the previous n measurements y(t), y(t-
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1),..., y(t-m+1). In order to have accurate wind speed forecast, k is chosen to be small and this is 

called short-term wind speed forecast.  

Box and Jenkins (1994) propose an interactive approach for fitting such ARIMA models 

to time series. The linear expression of a random time series is as follows: 
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where iϕ  is the ith autoregressive parameter, jφ  is the jth moving average parameter, te  is the 

error term at time t, and ty  is the value of wind speed at time t. 

This is a typical ARMA model, denoted as ARMA(p, q). If q is assumed to be zero, i.e., 

the model only involves autoregressive terms, it is usually referred as an AR model, denoted as 

AR(p). Similarly, the model only involving moving average terms is usually referred to as an 

MA model, MA(q). Especially, the persistence model is the simplest ARMA model which 

applies the present value as the prediction value of next time. If the time series is not stationary 

or a linear trend exists in the data, an ordered differential transformation can be applied and an 

ARIMA model can be obtained correspondingly, usually denoted as ARIMA(p,d,q), in which d 

represents the order of the differential transformation (Ma et al., 2009). The application of such 

an approach usually involves identifying the possible model structure, estimating the model 

parameters, checking model adequacy, and forecasting the objective of interest, which are 

explained in the following context when the application results are presented and discussed. 

3.1.2. BP neural networks 

As one of the most popular ANN techniques, feed forward back-propagation (BP) neural 

network is a kind of supervised learning neural network. It is usually composed of one input 

layer, one or more hidden layers, and one output layer. The source nodes in the input layer of the 
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network supply respective elements of the activation pattern or input vector, which constitute the 

input signals applied to the neurons in the hidden layer. The hidden neurons function to intervene 

between the external input and the network output. The output signals of the hidden layer are 

used as inputs to the output layer. The output signals of the neurons in the output layer of the 

network constitute the overall response of the network to the activation patterns applied by the 

input-layer neurons (More and Deo, 2003). Figure 5 illustrates the common topology of one 

three-layer BP neural network model, which is adopted in this dissertation study. A BP network 

with biases, a sigmoid layer, and a linear output layer is capable of approximating any function 

with a finite number of discontinuities. 

 
Figure 5. Topology of a BP neural network. 

With the network weights and biases initialized, the neural network must be trained 

before it can help solve any particular problem. Generally, the BP learning algorithms iteratively 

perform two phases, error propagation and weight updating, until the network performance is 

satisfactory. During the process of propagation, a training sample's inputs are first forward 

propagated through the network to generate the output activations, which are then compared with 

the training pattern's target and backward propagated through the network to generate the delta or 

“errors” of all output and hidden neurons. During the weight-updating phase, the output delta are 
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multiplied by the input activation to obtain the gradient of the weight; and the weight is updated 

or changed in the opposite direction of the gradient by subtracting a ratio of it (usually called as 

learning rate) from the weight. With n input neurons, m hidden neurons, a brief description of 

general training process of BP neural networks with n input neurons, m hidden neurons, and one 

output neuron could be found in (Li and Shi, 2010a). The general input-output relationship of 

neuron j in layer l can be expressed as: 
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where )(l
jf  is the activation function of neuron j, )(l

ijω  is the connection weight between neuron 

i in layer (l-1) and neuron j in layer k, )(l
jb  is the bias or threshold value of neuron j, and ln  is the 

number of neurons in layer l. 

The activation function of the node in the hidden layer is usually a sigmoid function, as 

given in Eq. (3), whereas a linear activation function is usually used for the output layer, 
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The Levenberg-Marquardt algorithm is adopted as the training methods in this study in 

view that it is usually the fastest method for BP models. The Levenberg-Marquardt algorithm 

updates the weights and bias as follows:  
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where xk is a vector of current weights and biases, J is the Jacobian matrix that contains first 

derivatives of the network errors with respect to the weights and biases, e is a vector of network 

errors, and μ is a scalar. The detailed description of the algorithm can be found in (Press, 

Flannery, Teukolsky, and Vetterling, 1992). 
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3.1.3. RBF neural networks 

The RBF neural network is a multi-input, single-output forward network, which is 

composed of an input layer, a hidden layer, and an output layer, as illustrated in Figure 6. 

 
Figure 6. Topology of RBF neural network. 

RBF consists of two layers whose output nodes form a linear combination of the basis 

functions in the hidden layer produce a significant nonzero response to input stimulus only when 

the input falls within a small localized region of the input space. Transformation of the inputs is 

essential for fighting the curse of dimensionality in empirical modeling. The type of input 

transformation of the RBF is the local nonlinear projection using a radial fixed shape basis 

function. After nonlinearly squashing the multidimensional inputs without considering the output 

space, the radial basis functions play a role as regressors. The weights of the regressors can 

therefore be determined using the linear least square method, which gives an important 

advantage for convergence (Kisi, 2007). 

It is assumed that, given N n-dimension different points { }NiRx n
i ,,2,1, =∈  and N 

real numbers { }NiRyi ,,2,1, =∈ , a nonlinear function )(xf  can be found satisfying 

Niyxf ii ,,2,1,)( == . This function is called an RBF when it depends only on the radial 

distance txr −= , where t refers to the centre of point x. 
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The RBF approach consists in choosing f from a linear space of dimension N, depending 

on the data points { }NiRx n
i ,,2,1, =∈ . The basis of this space is chosen to be the set of 

functions  

( ){ }Nixxh i ,,2,1, =− ,                                                    (5) 

where ⋅  is the Euclidean norm on Rn. Therefore, the solution of the above-mentioned 

interpolation problem has the following form: 
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where coefficients ci can be obtained by imposing the interpolation conditions 

Niyxf ii ,,2,1,)( ==  on the above equation. Thus, the following solution can be derived. 

( ) Njxxhcxf N

i iji ,,2,1,)(
1

=−= ∑ =
 .                                               (7) 

By defining the vectors y, c and the symmetric matrix H as jj y=)(y , jj c=)(c , 

( )ijij xxh −=)(H , the coefficients ci can be obtained from yHc 1−= . 

3.1.4. Adaptive linear element networks (ADALINE) 

The structure of a simple ADALINE used in this paper is illustrated in Figure 7, where 

the weight matrix of W has only one row, corresponding to the one-column input vector p. The 

network output is  
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where 0y  represents the threshold of bias b with a weight of 10 =w . 

First developed by Widrow and Lehr (2002), the ADALINE networks can only solve 

linearly separable problems. However, the least mean squared (LMS) or Widrow-Hoff learning 

rule can minimize the mean squared error (MSE) and search for the global minimum point in 
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space, thus moving the decision boundaries as far as it can from the training patterns. During the 

learning process, the LMS rule diminishes MSE, a mathematical function is defined in the multi-

dimension space of weights for a set of given training patterns as follows, 
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where L  is the number of patterns in the training dataset, ld  and lf  represent the desired value 

and the forecast one of the network, respectively. 

 
Figure 7. Topology of a simple ADALINE network. 

The changes in weights at time (t+1) and time t are proportional to the descendent 

gradient of the error function, which is commonly defined as the learning rate α  

illlii yfdtwtw )()()1( −+=+ α .                                                (10) 

3.2. Performance Metrics 

The performance metrics adopted in this dissertation study include mean absolute error 

(MAE), root mean square error (RMSE), and mean absolute percentage error (MAPE). MAE is a 

linear score with all the individual differences being weighted equally in the average. RMSE is a 

quadratic scoring rule which measures the average magnitude of the error. Since the errors are 

squared before being averaged, the RMSE gives a comparatively high weight to large errors. 
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This makes it most useful when large errors are particularly undesirable. MAPE is measure of 

accuracy in a fitted time series value in statistics, specifically trending. 

Their calculation equations are expressed as follows: 
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where yt and fj,t denote the measurements or observations and the forecast value from model j, for 

a given time point t. respectively, T is the length of testing samples of data employed for 

performance evaluation and comparison. 

3.3. Box & Jenkins Modeling for One-Hour-Ahead Wind Speed Forecasting 

In order to quantitatively investigate, evaluate and compare the performances of the 

above-mentioned time series based forecasting methods, different Box & Jenkins models are first 

developed to perform one-hour-ahead wind speed forecasting.  

The hourly mean wind speed collected at an observation site, Hannaford (Hann) in North 

Dakota, is adopted. Table 3 gives the geographical information of the site and its wind speed 

characteristics during the whole year of 2002. It should be noted that the wind speeds at the 

height of 10 meter are used as recommended by the World Meteorological Organization (WMO) 

(Mathew, 2006). 

As afore-introduced, the application of this modeling method involves identifying the 

plausible models, estimating the parameters, checking model adequacy, and forecasting the 

objective of interest, here, the next hourly wind speed. The plausible models can be identified by 

http://en.wikipedia.org/wiki/Trend�
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examining the time series plot, the autocorrelation function (ACF) and partial autocorrelation 

function (PACF) plots, as shown in Figures 8 – 10, respectively.  

Table 3. Information of the observation site and its wind speed characteristics. 

Site Latitude 
(North) 

Longitude 
(West) 

Elevation 
(m) 

Wind speed at 10 m above ground 
level (m/s) 

Mean Min Max 

Hannaford (Hann) 47º19'39" 98º12'34" 448 7.404 0.362 25.562 

 

Figure 8 indicates that the hourly wind speed varies randomly within a limit. The trend 

that large autocorrelations die out individually can be observed in Figure 9, indicating that a 

constant mean might exist. Thus, the data might be regarded as stationary approximately. 

However, in order to verify this judgment, and more importantly, to evaluate and compare the 

forecasting performances of different Box & Jenkins models, the 1-order differencing model is 

also investigated in the following forecasting process. 

Time series plot of hourly wind speeds
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Figure 8. Time series plot of hourly wind speed data. 

In order to identify proper autoregressive or moving average components to be included 

in the Box-Jenkins model, the ACF and PACF plots of the stationary data should be further 

examined. Generally, for a stationary time series, an ACF with large spikes at initial lags that 
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decay to zero or a PACF with a large spike at the first and possibly at the second lag indicates an 

autoregressive process, whereas an ACF with a large spike at the first lag and a PACF with large 

spikes at initial lags that finally die out indicates a moving average process. If the ACF and the 

PACF both exhibit large spikes gradually decaying to zero, both autoregressive and moving 

averages processes should be considered (Brockwell and Davis, 2002). It can be observed from 

Figures 9 and 10 that the autoregressive process is significant compared with the moving average 

component for the selected dataset. In this study, however, besides AR models, ARMA models 

and ARIMA models are also investigated in the following forecasting process for purpose of 

double-checking and comparison. 
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Figure 9. ACF plot of hourly wind speed data. 

Based on the process, different plausible AR, ARMA, and ARIMA models are fitted with 

the significance of their model parameters is examined. Table 4 gives the testing results for AR 

models for purpose of demonstration. AR(2) is tested first and its parameters are estimated. 

Based on the p-values of t-tests, it can be seen that besides the constant parameter, both the two 

AR components are significant (p-values <0.05). In this case, the AR(3) model is further 
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investigated and its parameters are estimated as shown in Table 4.  It can be easily figured out 

that the third parameters can be ignored since its p-value is greater than 0.05.  

9080706050403020101

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

Lag

Pa
rt

ia
l A

ut
oc

or
re

la
ti

on
Partial Autocorrelation Function for Wind Speed(m/s)

(with 5% significance limits for the partial autocorrelations)

 
Figure 10. PACF plot of hourly wind speed data. 

Table 4. Estimates of model parameters of AR(3) and AR(2). 

Type 
AR(2) AR(3) 

Parameter P-value Parameter P-value 
AR1 1.0788 0.000 1.0795 0.000 
AR2 -0.1532 0.000 -0.1582 0.000 
AR3 / / 0.0046 0.665 

Constant 0.54542 0.000 0.54286 0.000 
 

Similarly, different ARMA models and ARIMA models are tested and examined. As a 

result, three models, AR(2), ARMA(1,1), and ARIMA(1,1,1), are determined as the plausible 

models for fitting the data adopted in this study. These models are then used to perform one-

hour-ahead forecasts for the observed wind speeds during the last five days of December, 2012 

(120 points). The MAE, RMSE and MAPE values of their forecasting results are calculated as 

the performance indices, which are shown in Table 5. The time series plots of their forecasts are 

demonstrated in Figure 11 as well. 
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Table 5. Performances of different BOX-JENKINS forecasting models. 
BOX-JENKINS 

Models MAE RMSE MAPE 

AR(2) 0.974 1.277 0.211 
ARMA(1,1) 0.972 1.273 0.209 

ARIMA(1,1,1) 0.985 1.282 0.197 
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Figure 11. Time series plots of BOX-JENKINS model forecasts. 

It can be observed from both Table 5 and Figure 11 that all the three models can provide 

satisfactory one-hour-ahead forecasts on wind speed. There is no significant difference in their 

forecasting performances. Especially, depending on the performance indices used, different 

models could be deemed as the ‘best’ one. For example, the forecasting model of ARMA(1,1) 

has slightly better performance than AR(2) and ARIMA(1,1,1) in terms of both MAE and RMSE, 

but it is slightly ‘worse’ than ARIMA(1,1,1) in terms of MAPE.  

3.4. ANN Based Modeling for One-Hour-Ahead Wind Speed Forecasting 

A comprehensive comparison study is further performed to quantitatively evaluate the 

performance of the above-mentioned three different ANN models (BP, RBF, and ADLINE) in 

their short-term wind forecasting applications. The results further verify that even for the same 

wind dataset, no single neural network model outperforms others universally in terms of different 
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performance indices. Moreover, the selection of the type of neural network for best performance 

is also dependent upon the data sources. Among the optimal models obtained, the relative 

difference in terms of one particular performance metric could reach as much as 20%. This 

indicates the need of generating a single robust and reliable forecast by applying some post-

processing algorithms.  

For purpose of comparison, the same dataset collected from site Hannaford (Hann) is 

adopted. Besides, another observation site, Killdear (Kill) in North Dakota is also employed in 

order to further investigate the performance consistency of ANN models with different wind 

datasets. Their geographical information and its wind speed characteristics during the entire year 

of 2002 are summarized in Table 6.  

Table 6. Information of two ND sites and their wind speed characteristics. 

Site Latitude 
(North) 

Longitude 
(West) 

Elevation 
(m) 

Wind speed at 10 m above ground 
level (m/s) 

Mean Min Max 

Hannaford (Hann) 47º19'39" 98º12'34" 448 7.404 0.362 25.562 

Killdear (Kill) 47º22'48" 102º45'36" 788 7.736 0.349 21.373 

 

3.4.1. ANN model building 

The models adopted here have the same structures as illustrated in Section 3.1. Similarly, 

for the input layer, the ACF and PACF plots could provide useful information. For purpose of 

comparison, however, the inputs of the ANN models varies from previous 1 to 8 observations for 

all models. Correspondingly, each previous n (n=1, 2, …, 8) observations are preprocessed and 

converted into one input vector of the format for ANN-based models. The preprocessed data are 

further divided into three subsets: training, evaluation, and testing datasets, respectively. With 

the last 120 (five days) input vectors being separated as the testing dataset, 5000 other input 
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vectors are randomly selected as the training dataset, and the rest is used to construct the 

validation dataset.  

For the hidden layer, as previously noted, gradually increasing the number of hidden 

neurons might be a good trial-and-error solution to the difficulty in creating a sufficiently 

accurate BP neural network. However, according to Wanas, Auda, Kamel, and Karray (2002), 

the optimal number of hidden-layer neurons for BP and ADALINE models can be selected as the 

integer number close to log(T), where T is the number of training vectors. In this study, their 

numbers of hidden-layer neurons are thus selected as 4. As for RBF model, the number will be 

optimized iteratively during training process.  

The output layer of all three types of ANN models only contains one neuron representing 

the forecast value of next hourly average wind speed. For BP and ADALINE models, different 

learning rates are examined in the study. For BP, it is from 0.025 to 0.5 with 0.025 increments, 

while for ADALINE, it is from maximum learning rate (MLR) to one tenth of MLR with one 

tenth of MLR decrement. For RBF models, different spread constants are examined in the study, 

namely, from 0.5 to 1.5 with 0.1 increments. 

The data collected at each site are preprocessed and transformed into the specific input 

format for ANN models according to n, the number of previous hourly wind speeds in each input 

vector. The formatted data are further divided into training dataset DT, validation dataset DV, and 

testing or evaluation dataset DE. During the NN process, all the models of ADALINE, BP, and 

RBF networks are trained and evaluated with the corresponding datasets at various learning rates 

as mentioned in Chapter 3. After that, each model is applied to forecast the next hour wind 

speeds corresponding to the testing data and the values of MAE, RMSE, and MAPE are 
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calculated. The models of each type, which generate the smallest MAE, RMSE, or MAPE, are 

selected. They are regarded as the best model among the tested models of the same type. 

3.4.2. Forecasting results for the site of Hann 

Through extensive calculation, the corresponding MAE, RMSE, and MAPE values are 

obtained according to the forecasting results from different ANN models. For the purpose of 

brevity, the details of each possible combination of parameters are not provided. Table 7 only 

gives the results about the optimal ANN models that generate the smallest MAE, RMSE, and/or 

MAPE values, for the dataset collected from the site of Hann.  

Table 7. Optimal ANN models (Hann). 

Best model MAE RMSE MAPE CT(s) 

LNN_Obs_2_lr_8.9e-8 0.965 1.271 0.196 1.482 

LNN_Obs_4_lr_4.5e-8 0.980 1.290 0.194 1.529 

BP_Obs_8_LR_0.075 0.945 1.269 0.206 3.323 

BP_Obs_6_LR_0.1 0.951 1.254 0.211 2.777 

RBF_Obs_2_spread_0.5 0.989 1.297 0.232 0.047 

RBF_Obs_3_spread_0.5 0.997 1.294 0.234 0.047 
RBF_Obs_7_spread_0.7 1.058 1.390 0.221 0.046 

 

Among all the 160 BP models tested, the combination of using 6 previous observations 

and learning at a rate of 0.1 generates the smallest RMSE value (1.254), while using eight 

previous observations and a 0.075 learning rate resulted into the smallest MAE (0.945) and 

MAPE (0.206). For all the ADALINE models (denoted as LNN in the table), using 4 previous 

observations and a learning rate of 4.49e-8 gives the smallest MAPE (0.194), while using 2 

previous observations and a learning rate of 8.86e-8 gives the smallest MAE (0.965) and RMSE 

(1.271). The situation is more complicated with the RBF models, in which each smallest MAE, 

RMSE, or MAPE metric corresponds to a different combination of parameters.  
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More importantly, Table 7 indicates that different types of ANN models could 

demonstrate different performances. The BP model using previous 6 observations and trained at 

a learning rate of 0.1 seems to be the best in terms of both MAE and RMSE, while the 

ADALINE model using 4 previous observations and learning at 4.49e-8 learning rate appears to 

be the best on in term of MAPE. The best ADALINE model outperforms the best BP model by 

4.8% and the best RBF model by 14.0% in terms of MAPE.  

Besides, the convergence times (CT) for the seven models are also summarized in Table 

7. It can be seen that the RBF models generally converge most swiftly whereas the BP models 

take the longest time for convergence. 

0

5

10

15

20

0 10 20 30 40 50 60 70 80 90 100 110 120

Time (h) (12/27/2002-12/31/2002)

W
in

d 
sp

ee
ds

 (m
/s)

Observations BP_Obs_6_LR_0.1 RBF_Obs_7_spread_0.7

 
Figure 12. Forecasts of the models generating the smallest/largest RMSE (Hann). 

For purpose of illustration, the forecasts time series from the BP and RBF models that 

generate the smallest and the largest RMSE values, respectively, are plotted in Figure 12. In the 

meantime, Figure 13 provides the time series plots of the corresponding forecast errors for the 

two specific models. It can be observed from both figures that the BP model performs better than 

the RBF model in terms of RMSE (as well as MAE/MAPE) for the total 120-time-point 

forecasts. The forecasts from the BP model are more consistent with the observations compared 
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to the forecasts from the RBF model. However, at some specific time points, the RBF model is 

still able to generate smaller forecast errors, e.g., around time point 85. This verifies that the 

forecasting performance of ANN models changes with not only time but also the selected 

prediction lengths. 
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Figure 13. Forecast errors of the models having the smallest/largest RMSE (Hann). 

Besides, the forecasting results confirm that different learning rates or spread constants, 

as well as different number of inputs, affect the forecasting performance in terms of MAE, 

RMSE or MAPE. Figure 14 only shows the influences of learning rates and observation number 

on the performances of BP models. In view that MAE follows the same trend as MAPE, only 

RMSE and MAPE are presented in the figure. It can be observed that with 6-observation inputs, 

the effect of learning rate on RMSE is not as significant as that on MAPE. The relative variation 

of MAPE is close to 10% in this case study. On the other hand, while adopting the same fixed 

learning rate of 0.1, the influences of using different number of observations as inputs on both 

RMSE and MAPE are relatively less significant. These observations indicate that while building 

the ANN forecasting models, their model parameters should be cautiously determined. 
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Figure 14. Effects of learning rates and input numbers on forecasting accuracy (Hann). 

3.4.3. Forecasting results for the site of Kill 

The forecasting results as well as the model convergence time are summarized in Table 8. 

Similarly, for the purpose of brevity, only the ANN models that generated either the smallest 

MAE, or RMSE, or MAPE values are presented.  

The forecasting results for the site of Kill further confirmed the findings concluded in last 

subsection. It can be seen from Table 8 that different types of models demonstrate different 

forecast performances for site Kill. The RBF model trained with 5 previous observations at a 0.6 

spread performs the best among the seven optimal models in term of RMSE (1.519), whereas the 
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performance of BP model trained with 6-previous-observation inputs at a learning speed of 0.175 

can be deemed as the best one in terms of both MAE(1.137) and MAPE(0.180). The best two of 

all tested ADALINE models, however, perform not so well as the best BP and RBF models. 

Meanwhile, it can also be observed that, among all the tested models of each specific ANN type, 

the best performing ones are not consistent with respect to different performance metrics. For 

example, the BP model adopting 7 previous observations as inputs and trained at a 0.545 

learning rate performs the best in terms of RMSE, whereas the model adopting 6 previous 

observations and trained at a learning rate of 0.175 can be deemed as the best in terms of MAE. 

Table 8. Optimal ANN models (Kill). 

Best model MAE RMSE MAPE CT(s) 

BP_Obs_6_LR_0.175 1.137 1.530 0.180 3.412 

BP_Obs_7_LR_0.475 1.140 1.525 0.180 2.336 

RBF_Obs_1_spread_0.7 1.157 1.534 0.185 0.047 
RBF_Obs_5_spread_0.6 1.175 1.519 0.186 0.045 
RBF_Obs_5_spread_0.7 1.169 1.522 0.184 0.046 

LNN_Obs_1_lr_1.8e-6 1.157 1.538 0.186 1.405 

LNN_Obs_2_lr_9.2e-8 1.168 1.557 0.185 1.436 

 

The forecast time series from the RBF and ADALINE models that generated the smallest 

and the largest RMSE values, respectively, are shown in Figure 15. In this case, the difference is 

really minor almost across the entire time span. Similarly, Figure 16 shows the time series plots 

of corresponding forecast errors. Again, it can be observed that the performance advantage of the 

RBF model is not that significant. Although it performs slightly better than the ADALINE model 

in terms of RMSE as well as MAE/MAPE for the total 120-time-point forecasts, the ADALINE 

model still can produce smaller forecast errors at some specific time points, e.g., at time points 

72 and 73. 
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Figure 15. Forecasts of the models generating the smallest/largest RMSE (Kill). 
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Figure 16. Forecast errors of the models having smallest/largest RMSE (Kill). 

3.5. Discussion 

The forecasting results presented above verify that the time series based models 

investigated in this dissertation, both the ARIMA models and the ANN based models, can 

provide plausible forecasts in their one-hour-ahead wind forecasting applications. Especially, the 

results demonstrate the truth of no universally ‘best’ model and the necessity of post-processing 

the forecasts from different plausible models.  
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By comparing Table 6 and Table 7, it can be seen that for the same dataset and 

application case, the ANN based models have demonstrated no significant advantage over the 

ARIMA models. Considering the complexity of modeling process, the ARIMA model could be a 

good choice in such application cases. However, ANN methods have more flexibility and 

robustness. For example, it can be directly applied without considering the linear or nonlinear 

trend of the time series.  

The forecasting results also verify that artificial neural networks trained with different 

inputs or at different learning rates demonstrate varying accuracy in performing one-hour-ahead 

wind speed forecasting. For instance, for site Kill, the RBF models (shown in Table 8) trained 

with 1 and 5 previous observations produce inconsistent MAE, RMSE and MAPE values, 

although both models are trained with the same spread of 0.7. On the other hand, the two RBF 

models trained with same inputs (5 previous observations) but with different spread rates also 

demonstrate slightly different performances. Therefore, while building the ANN based 

forecasting models, factors such as model inputs and learning/spread rates, should be properly 

determined since this decision could directly affect the forecasting accuracy. 

By observing both Table 7 and Table 8, it can be observed that different types of ANN 

models could demonstrate significantly different forecasting accuracies. This observation 

confirms that multiple types of ANN models should be evaluated and compared before the most 

suitable type can be determined. Nevertheless, the complicated issue is that different evaluation 

metrics often give inconsistent ranking among candidate models. This presents a major challenge 

on which metric(s) to be adopted in practice. Some publications can be found in developing a 

single general performance index by combining different evaluation criteria for measuring the 

forecasting accuracy so that the above-mentioned confusion can be avoided in the process of 
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model selection. Meanwhile, it can be seen that, among all tested models, the optimal one 

selected for a specific site might not be suitable for another site. It is thus not recommended to 

employ only one type of ANN model in forecasting the wind speed at different sites.  

Actually, as argued by Sanchez (2008), a final single forecast that could take advantage 

of a set of plausible forecasts has to be produced in many practical situations of the wind energy 

industry. For example, forecasts from alternative forecast agencies should be used since there is 

not a superior agency. Meanwhile, the forecast agencies themselves should perform forecasting 

tasks for the client by adopting alternative models or procedures. Therefore, it is apparent that an 

efficient forecast combination procedure might be of great importance for wind speed forecast. 

In this case, the Bayesian model averaging (BMA) method (Wasserman, 2000), an adaptive 

model combination method, might be used for post-processing different plausible forecasts to 

form a single forecast. This is the motivation for the research of the next chapter. 
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4. BMA-BASED WIND DISTRIBUTION AND SHORT-TERM FORECASTING 

As suggested in the previous chapter, one solution to the challenge of forecasting model 

selection could be adopting some advanced algorithms to utilize the information from different 

forecast time series to generate one single forecast time series. With its demonstrated success in 

many other fields, BMA is determined to be a promising choice and thus investigated in this 

chapter. The BMA algorithm is firstly introduced in Section 4.1, and it is then investigated in 

estimating the long-term wind distribution in Section 4.2. This method is further employed for 

short-term wind speed forecasting practice, and a two-step adaptive forecasting method is thus 

proposed and tested in Section 4.3. The forecasting results demonstrate that the proposed 

methodology not only is an enhancement for reliable wind speed forecast using ANN models, 

but also opens up the opportunity for utilizing the information from any other types of 

forecasting models. 

4.1. Bayesian Model Averaging 

4.1.1. BMA algorithms  

As a statistical procedure to infer consensus forecasts, the BMA method weighs 

individual forecasts based on their posterior model probabilities, with the better-performing 

forecasts receiving larger weights than the worse-performing ones. As the result, it generates an 

averaged single model, especially in cases where more than one models have a non-negligible 

posterior probability (Wasserman, 2000; Congdon, 2006).  

A model space M composed of J distributional models Mj (j=1, 2, …, J) is considered for 

forecasting y. Let D denote the training data of observations and fj the forecast value of model j. 

The probability density function (PDF) of the BMA probabilistic forecasts of y can be 

represented as follows, 
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For a particular model space, this is actually an average on the posterior distributions, p(y 

| fj , D), of the component models, weighted by their posterior probabilities, wj = P(fj | D), where 
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where the marginal likelihood of each model is calculated by 
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where kθ  is the vector of parameters in model Mk. 

The posterior mean of the BMA forecasts can then be calculated by 
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and correspondingly, the variance of the BMA forecasts can be calculated by 
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where 2
jσ  is the variance associated with the model forecast fj given the observation data of D. 
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4.1.2. Applications procedures of BMA  

Generally, a proper set of candidate models must be selected first. This is then followed 

by a reliable and adaptive combination as explained above. The basic idea and general 

application procedures of BMA method is illustrated in Figure 17.  

 
Figure 17. Application algorithm of BMA. 

While the BMA method is theoretically attractive, two technical challenges exist for its 

practical application. The first challenge is how to properly select a set of candidate models. One 

simple approach is employing the complete set of models when the number of component 

models is limited and their structures are not too complex. An alternative approach is selecting a 

subset of plausible models to avoid using obviously poorly performing models (Gibbons et al., 

2008). The criteria such as Akaike Information Criterion (AIC) (Akaike, 1974), Bayesian 

Information Criterion (BIC) (Kass and Wasserman, 1995) can be used in this case. The second 

challenge is the difficulty in calculating the marginal model likelihood. The marginal model 

likelihood may be analytically intractable, especially in many cases where no closed form 

integral is available. Therefore, a number of approximation methods have been proposed such as 

Laplace approximation, AIC, and BIC. These approximations can be obtained either from the 

(a) 
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output of common statistical routines (Laplace) or by hands (AIC and BIC). Recently, several 

Monte Carlo (MC) numerical methods have been developed for computing either marginal 

likelihoods or ratios of marginal likelihoods such as importance sampling, harmonic mean 

estimator, and CHIB’s method (Gelman, Carlin, Stern, and Rubin, 2003). Monte Carlo 

integration draws samples from the required distribution and then generates sample averages to 

approximate expectations. The popular Markov Chain Monte Carlo (MCMC) approach draws 

these samples by running a properly constructed Markov chain. 

4.1.3. MCMC sampling  

The basic idea of MCMC is constructing a sampler which simulates a Markov chain 

converging to the posterior distribution. After a large number of iteration steps, the chain 

converges and its state can then be used as a sample from the desired distribution. Among many 

available MCMC algorithms, the Gibbs sampler and the Metropolis–Hastings algorithm are two 

simplest and yet most popular methods. 

Gelfand and Smith (1990) suggest the Gibbs sampling approach for Bayesian 

computation. Let p(θ) denote the probability density of unknown parameter vector θ of interests, 

the key idea of Gibbs sampling is to generate a Markov chain and update the component of (θ1, 

…, θk) in turn by drawing from the following full conditionals, 
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This scheme is a Markov chain, with equilibrium distribution p(θ). Thus, for a large 

enough t, θ(t) can be viewed as a simulated observation from p(θ). That is, provided a suitable 

“break-in” time for convergence, θ(t), θ(t+1), θ(t+2), … can be handled as dependent samples from 

p(θ). 
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Metropolis–Hastings algorithm is a generalized form of Gibbs sampler. At time t, a 

candidate point β is firstly sampled from a proposal distribution q(·|θt). This candidate β might 

then be accepted as θ(t+1) with probability  
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If the candidate β is accepted, the next state becomes θ(t+1) = β. Otherwise, θ(t+1) =  θ(t). 

The proposal distribution is arbitrary and the equilibrium distribution of the chain will be p(θ) 

given the chain is irreducible and aperiodic. 

Constructing a Markov chain with the desired properties is usually not difficult. It is hard, 

however, to determine how many steps are needed for the chain to converge to the stationary 

distribution within an acceptable error range. A simple method for convergence diagnostics is 

observing the history plotting of the time series for each quantity of interest or the plotting of 

auto-correlation functions. An alternative is using the convergence measures such as the Brooks-

Gelman-Rubin (BGR) statistic R (Brooks and Gelman, 1998), which can be calculated as follows 
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where W denotes the mean of the empirical variance for each of multiple (m) MCMC chains 

(each with n different samples) with the “break-in” period excluded and the chain thinned, B 

denotes the variance of the mean across all the chains. If the chains converge, both estimates 

should be unbiased, i.e., B=W, and thus R will be equal to 1. 

4.1.4. Marginal likelihood calculation 

MCMC method enables one to draw samples from any complex unknown distributions. 

Once the samples of each model parameters are drawn from their posterior distributions, the 

marginal likelihood can then be calculated by many different methods. In view that the models 
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tested are not complex and that the observations are large, we adopt the following harmonic 

mean of the likelihood values, originally proposed by Newton and Raftery(1994).  
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where the values of parameter vector ikθ  are randomly sampled from the posterior density 

),|( kk MDp θ  via MCMC sampling and G is the total number of samples ikθ  for model kM . 

By drawing enough samples from the Monte Carlo Markov chain, the integral for the 

desired distribution could then be approximated. In the actual computation where a large number 

of observations are considered, the following strategy is adopted to avoid numerical overflows or 

underflows in computation. Denote 
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The values of [ ]{ }1),|(log)log( −= kikik MDpR θ  are stored separately for each sampled 

value of ikθ . By introducing a dummy variable, maxc , we have 
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Given dataset D, the posterior probability of each element kM  can then be calculated by 
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where maxc  denotes the maximum of )log( jS− , namely, { }JjSc j ,1),log(maxmax =−= . 

4.2. BMA-Based Long-Term Wind Probabilistic Prediction 

By combining BMA and Markov Chain Monte Carlo (MCMC) sampling methods, a new 

approach is proposed for deriving a reliable and robust approximation of wind speed. The 

derived BMA probability density function (PDF) of the wind speed is an average of the model 

PDFs included in the model space weighted by their posterior probabilities over the sample data. 

The MCMC method provides an effective way for numerically computing marginal likelihoods, 

which are essential for obtaining the posterior model probabilities. The approach is applied to 

multiple sites with high wind power potentials in North Dakota, as listed in Table 9. The mean 

hourly wind speed data at these sites are collected over two years (2001 and 2002).  

Table 9. Geographical information of observation sites and their wind speeds. 

Site Latitude 
(North) 

Longitude 
(West) 

Elevation 
(m) 

Wind speed at 10 m above ground 
level (m/s) 

Mean Min Max 

Alfred (Alf) 46º35'15" 99º00'46" 631 6.248 0.005 26.030 

Green River (Gre) 47º04'05" 102º55'38" 818 5.437 0.005 21.977 

Olga (Olg) 48º46'48" 98º02'16" 475 4.954 0.005 19.125 

Ray/Wheelock (Ray) 48º15'57" 103º11'52" 750 5.872 0.005 21.488 

Powers Lake (Powe) 48º23'32" 102º37'20" 777 8.008 0.362 26.442 

Hannaford (Hann) 47º19'39" 98º12'34" 448 7.404 0.362 25.562 

Kulm (Kulm) 46º17'56" 98º51'58" 600 8.786 0.362 23.859 

Luverne (Luve) 47º19'47" 97º54'27" 460 7.632 0.362 23.412 

West Finley (West) 47º30'02" 97º52'22" 469 7.777 0.362 23.769 

 

4.2.1. Selection of candidate models 

In order to implement BMA method, a proper set of candidate models must be selected at 

the beginning. In the case of estimating wind speed distribution, many conventional statistical 
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distribution models are shown to be viable options according to literature. These model forms are 

listed in Table 10.  

Table 10. Candidate distribution models and the prior of their parameters. 

Model Probability density function Priors of model parameters 

Weibull 
(Weib-3) 


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It can be seen that this list is comprehensive and covers most typical models for 

estimating wind speed distribution, and thus it can be regarded as a good model space. Certainly, 
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this list still cannot be deemed as exhaustive since other potential distribution models may exist. 

Two-parameter Weibull distribution (Weib-2) is a special case of the general Weibull 

distribution which uses the default location parameter. Weib-2 is included because it is by far the 

most popular statistical distribution for wind speed. Rayleigh distribution is a special case of 

two-parameter Weibull distribution, and it is included for the same reason (Li and Shi, 2010c). 

4.2.2. Determination of model priors and model parameter priors  

For a given set of models, the effectiveness of the BMA approach heavily relies on the 

specification of the model priors and the model parameter priors. As for the model priors, it is 

ideal that we can quantify and include prior knowledge in model development. When little prior 

information is available about the relative plausibility of the models, however, a simple and 

reasonable method is adopting the uniform distribution as the non-informative prior to favor all 

models equally (Hoeting and Madigan, 1999). This method is adopted in this study considering 

that all models ever demonstrated their good performance in describing the distribution of wind 

speed and that no prior information is available before applying them for any site.  

A prior distribution of the model parameter is considered proper if it satisfies the 

requirements for the probability distribution. It should be noted that, however, not all priors need 

to be proper in order to yield a proper posterior distribution for the model parameters (Congdon, 

2006). Especially, to reduce the influence of the priors on the parameters, the most common and 

practical approach for prior specification in this context is to specify non-informative priors that 

allow the posterior to accumulate probability at or near the actual data-generated model. Such a 

posterior can serve as a heuristic device to identify promising models for BMA applications. The 

prior distributions for each model tested in this research are listed in the right column of Table 
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10. Each model parameter prior can be regarded as uninformative since little information about 

the parameters is available.  

4.2.3. MCMC sampling and posterior probability calculation 

To estimate the marginal likelihood, model parameters are sampled from their posterior 

distributions using the coded WinBUGS programs. WinBUGS is statistical software used for 

MCMC-based Bayesian modeling (http://www.mrc-bsu.cam.ac.uk/bugs/). The application 

procedures of using WinBUGS for MCMC sampling are as follows. To perform convergence 

diagnostics, each distribution model is simulated by two chains with 20,000 iterations for each 

chain. The convergence diagnostics can be performed by observing the history plotting and/or 

the plotting of Brooks-Gelman-Rubin (BGR) convergence statistic. After the convergence, 

another 5,000 samples are drawn for each parameter of each model from their posterior 

distributions, respectively. Once enough parameter samples for each model have been drawn 

from the posterior distributions, the marginal likelihood is calculated according to the harmonic 

mean estimator proposed by Newton and Raftery (1994). The advantage of this estimator is that 

no knowledge on the form of the posterior distribution is required.  

The BGR convergence diagnosis of the MCMC simulation via WinBUGS is performed 

for each model and the wind speed data from each site. It is observed that all models converge 

approximately after 15,000 iterations. As an example, Figure 18 illustrates the convergence of 

simulations on the parameters of the 3-parameter Weibull distribution for site Alfred. In this 

figure, the dotted (blue) line represents the width of the central 80% interval of the pooled runs, 

the dashed (green) line represents the average width of the 80% intervals within the individual 

runs, and the solid (red) line is their ratio R. Convergence is obtained if R is close to 1 and with 

both the two widths converging to stability. It can be observed that the MCMC simulation for the 

http://en.wikipedia.org/wiki/Statistical_software�
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parameters of 3-parameter Weibull distribution for site Alfred clearly converges after 15,000 

iterations.  

 
 

 
Figure 18. BGR convergence diagnostics plot of Weib-3 model parameters (Alf). 

Once convergence is achieved, the simulation is run for a further number of iterations to 

obtain samples that can be used for posterior inference. In MCMC simulation for each model, 

after the 15,000 “break-in” iterations, the simulation converges and then another 5,000 samples 

are drawn for each parameter from their posterior distributions. Usually, the more samples saved, 

the more accurate is the posterior estimates. The Monte Carlo error for each parameter is one 

statistic to assess the accuracy of the posterior estimates. It is an estimate of the difference 

between the estimated posterior mean of the sampled values and the true posterior mean. The 

simulation should be run until the Monte Carlo error for each parameter of interest is less than 
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about 5% of the sample standard deviation. It is found that this rule is satisfied by the 5,000 

samples for each model parameter. For purpose of illustration, Table 11 shows the statistical 

results of the model parameters of the 3-parameter Weibull distribution for site Alfred. It can be 

seen that the standard deviations of parameter estimates are small compared with their means. 

Besides, the small MC errors indicate that the parameter estimates should have been stabilized. 

The quantity reported in the MC error column gives an estimate of the Monte Carlo standard 

error of the mean, which is an indicator that the chains have mixed and further simulation will 

not change inferences appreciably.  

Table 11. Simulation results of model parameters of Weibull-3 distribution (Alfred). 

Parameter Mean S.D. MC error 2.5% Median 97.5% Sample 

α  1.973 0.01272 2.636E-4 1.949 1.973 1.998 5000 

β  7.094 0.03336 6.764E-4 7.03 7.094 7.158 5000 

γ  -0.03281 0.01241 2.394E-4 -0.06061 -0.03172 -0.01089 5000 

 

The kernel density estimation is a non-parametric way of estimating the probability 

density function of a random variable, which makes it possible to extrapolate the data to the 

entire population. Figure 19 illustrates the kernel density plotting of the model parameter 

samples for the same distribution and site. For a symmetric distribution, the mode usually equals 

the mean. For a skewed distribution, however, the mode is usually better than the mean or the 

median in capturing important information about the random variable or the population. It can be 

seen that, with each parameter being regarding as random variable, the posterior distribution of 

the location parameter is skewed to the right although the shape and scale parameter densities 

seem to be approximately symmetric. Therefore, it is more appropriate to use the mode as the 

model parameter to estimate the distributional density of each model for each site.  
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Figure 19. Posterior densities of parameter samples of Weibull-3 distribution (Alfred). 

4.2.4. BMA-based prediction results 

Once all these posterior samples have been generated, the marginal likelihood and the 

corresponding posterior probability for each model can then be calculated as explained in 

Section 4.1. Table 12 shows the posterior probability of each distribution model for the nine 

sites. The posterior probability of zero in the table means that the value is extremely small, less 

than 0.000001. Since a larger posterior probability means a better fit for distribution models, the 

results can serve the purpose of model selection - the best model should be the one with the 

highest posterior probability value. For example, lognormal distribution can be regarded as the 

best model for modeling the wind speed distribution at site Green River since its posterior 

probability is the highest one. The traditional χ2 statistic is 273.5 for this numerically derived 

lognormal distribution, while it is larger than 400 for any other candidate distributions. This 
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further proves lognormal distribution is the predominating distribution for describing the wind 

data at site Green River.  

Table 12. Posterior probabilities of distribution models for selected sites. 

Site 
Distribution 

Weib-2 Rayl Weib-3 LogN-3 IG-3 Gam-3 PS5 EL EV 

Alf 0 0 0 0 0 0.941733 0 0.058267 0 

Gre 0 0 0 0.999992 0.000003 0 0 0 0.000005 

Olg 0 0 0 0 0 0.122127 0 0.877873 0 

Ray 0 0 0 0.991982 0.005647 0.002130 0 0 0.000241 

Powe 0.000017 0 0.999983 0 0 0 0 0 0 

Hann 0.023673 0 0.046151 0.000002 0 0.930174 0 0 0 

Kill 0.001711 0 0.998289 0 0 0 0 0 0 

Luve 0 0 0 0.746703 0 0.253297 0 0 0 

West 0.579722 0 0.420278 0 0 0 0 0 0 

 

However, the table also shows that more than one model demonstrates a non-ignorable 

posterior probability for almost half of the sites. A good example is site Luverne. For this site, 

lognormal distribution has a posterior probability of 0.746703 and Gamma distribution has a 

value of 0.253297, indicating that both models are acceptable for describing the wind speed 

distribution. This can again be confirmed by the χ2 statistics. The χ2-square values are 198.0 and 

219.8 for lognormal and Gamma distributions, respectively, while it is larger than 400 for the 

rest distributions. Here, the difference between lognormal and Gamma distributions is 

insignificant. In such cases, we must be cautious about interpreting lognormal as the best model 

since Gamma distribution might be preferred based on a different criterion.  

The BMA PDF can now be derived by using the derived posterior model probability and 

the estimated posterior likelihood of each model. For purpose of brevity, Figure 20 illustrates the 

histograms and estimated densities for sites Alf and Hann only. In the figure, the dotted curve 
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(blue) represents one of the insignificant models, the dashed curve (green) is the probability 

density curve of the “best” model, and the solid line (red) is the derived BMA PDF.  
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Figure 20. Histograms and estimated probability density plots for sites Alf and Hann. 

It can be seen that the previous numerically-derived ‘best’ model for each site can 

describe the distribution of the real observations well. However, it can also be observed that the 

wind speed distributions are skewed at various sites with different ‘best’ models, but the derived 

BMA PDF always agrees well with the wind speed distribution for each site. More importantly, 

the BMA PDF always completely overlaps with the distributions with non-negligible posterior 

probabilities, which makes them nearly indistinguishable in the plots. The overlapping in the 

plots seems to be an issue for visualization purpose. However, it indicates that the derived BMA 

PDF is accurate, and that the BMA approach is universally reliable and robust in modeling the 

wind speed distributions.  

The results also indicate that no distribution universally outperforms others for all North 

Dakota sites considered in this study. For instance, for site Alfred, Gamma distribution, with a 

0.941733 posterior probability, is superior over all the rest models while for site Green River, it 

is substituted by the log-normal distribution which has a posterior probability of 0.99992. On the 
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other hand, BMA provides a unified approach to solve the dilemma. The BMA model derived 

from weighing different models with their posterior probabilities can always match the real wind 

speed distribution well since it automatically considers the variability between different models. 

As found in literature, the studies of estimating wind speed distribution usually follow 

two approaches. One is that a statistical distribution form is assumed, and the parameters of the 

distribution are obtained and the goodness-of-fit is evaluated. The other more general approach is 

via selecting several possible distribution forms. The best model is determined based on some 

goodness-of-fit (GOF) metrics (Celik, 2004; Rogersa, Rogersb, and Manwell, 2005). However, 

different GOF metrics often produce contradicting ranking of fitting among the candidate 

distributions (Zhou, Erdem, Li, and Shi, 2010). Actually, the uncertainty of the parameters of 

each model can be regarded as within-model error variance, and the uncertainty of selecting the 

best model can be regarded as the between-model error variance. The common GOF test 

statistics can only evaluate the within-model variance with the between-model one being ignored. 

However, the variance of the BMA PDF always includes both the between-model variance and 

the within-model variance, both estimated from the sample data. This is a typical advantage of 

BMA estimation compared with any model element in the model space.  

Based on the posterior probabilities of all the models, the traditional model selection is 

made possible and the best model for each site can be determined. Actually, once the elements of 

the model space are determined, there is no need to consider whether the performance of any 

individual candidate model is good or not. This is because its performance will be automatically 

considered and weighted as its posterior probability in deriving the BMA PDF. It is also 

unnecessary for the set of models under consideration to have common structure. Different 

distributions in the model space can be derived from entirely different principles. The only 
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requirement is that they predict the same quantities of interest. To this point, any type of model 

forms can be included in the model space. This is another advantage of applying the BMA 

approach to estimate the distribution of wind speeds. 

4.3. Two - Step Method for Short - Term Wind Speed Forecasting 

In view that BMA algorithm has been successfully applied and demonstrated its 

advantages in estimating the long-term wind speed distribution, it is of great interest to further 

investigate into its feasibility and reliability in performing probabilistic short-term wind 

forecasting. Based on the BMA algorithm and the three aforementioned ANN models (BP, RBF, 

and ADALINE), a robust two-step methodology for forecasting hourly wind speeds is thus 

proposed. For purpose of comparison, the hourly wind speed data adopted in Chapter 3 are used 

to demonstrate the effectiveness of the proposed modeling method. The three performance 

metrics adopted in Chapter 3, namely, MAE, RMSE, and MAPE, are again employed to evaluate 

the forecasting accuracy. The results indicate that, although the performances of different ANN-

based models are different in performing one-hour-ahead wind speed forecasting for different 

sites or under different evaluation metrics, the proposed Bayesian combination method can 

always provide adaptive, reliable and comparatively accurate forecast results. It also provides a 

unified approach to tackle the challenging model selection issue in the field of wind speed 

forecasting.  

4.3.1. Procedures of two-step wind speed forecasting 

The application procedures of the entire analysis process are shown in Figure 21. The 

first major step is to obtain best time series forecasts from each type of ANN models in terms of 

each of the three performance metrics. The second step is to combine the multiple time series 

forecasts into one single time series by adopting Bayesian combination algorithm.  
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Figure 21. BMA-based two-step wind forecasting procedure. 

The first step is the same as mentioned in Chapter 3, the data collected at each site, D0 are 

first preprocessed and transformed into the specific format according to n, the number of 

previous hourly wind speeds in each input vector. The formatted data are further divided into 

training dataset DT, validation dataset DV, and testing or evaluation dataset DE. All the models of 

ADALINE, BP, and RBF network models are then trained and evaluated with the corresponding 

datasets at various learning rates. After that, each model is applied to forecast the next hour wind 

speeds corresponding to the testing data and the values of MAE, RMSE, and MAPE are 

calculated. The models of each type, which generate the smallest MAE, RMSE, or MAPE, are 

selected. They are regarded as the best model among the tested models of the same type. 

In the second step, the forecast time series of each best model, together with the 

observation time series in the testing dataset, are first post-processed via Box-Cox transformation 
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so that each of these transformed time series would be approximately normally distributed. After 

that, the EM algorithm is applied to each observation-forecast combined time series for 

estimating the corresponding model parameter vector ],[ 2
jjw σθ = (j=1,2,…, J), where wj 

represents the posterior probability of the jth forecasting model being the best one among the 

model space, and 2
jσ  is the estimated average variance of the jth model forecast, as presented 

and explained in Chapter 3. The Bayesian combination postprocessing is thereafter performed 

and the corresponding Bayesian forecasting values, forecasting variances as well as the values of 

three performance metrics are calculated, respectively. 

4.3.2. Expectation-maximization and Box-Cox transformation 

As indicated in Chapter 3, although the Markov Chain Monte Carlo (MCMC) method can 

simulate any complex probability distribution, it usually involves high computational complexity 

that is comparatively time-consuming (Li and Shi, 2010c). As an alternative, the Expectation-

Maximization (EM) algorithm is also powerful in estimating the posterior probabilities of 

component models. Especially, compared with the MCMC method, the EM algorithm is 

significantly more efficient although it functions well mainly for normal or approximately 

normal distributions (McLachlan and Krishnan, 1997; Liu, 2001). In view of the advantage of 

computational efficiency, the EM method is employed in this study to estimate the model 

parameter vector ],[ 2
jjw σθ = ( Jj ,1= ) via the following log-likelihood function, 
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The EM iterative algorithm alternates between the Expectation (E) step and 

Maximization (M) step repeatedly until certain convergence criteria are satisfied. EM algorithm 
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employs an unobservable or latent variable, tjz , , which will be equal to 1 if the jth model 

forecast is the best one at time point t; otherwise zero. At any random time point t, only one tjz ,  

can be 1 and the rest should be zero (McLachlan and Krishnan, 1997). 

In the E step of the (k+1)th iteration, the tjz , are estimated as given in Eq. (29), based on 

current estimate of parameter vector θ , 
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In the M step of the (k+1)th iteration, the parameter vector θ , the weights and the 

variances, are estimated as follows based on current estimates of tjz , , 
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The detailed description of the EM algorithm can be found in (McLachlan and Krishnan, 

1997). However, since the distribution of wind speed is usually skewed, as verified in Section 

4.2, the transformation of wind speed data to a Gaussian distribution is required before the EM 

algorithm can be applied. In this case, the Box-Cox transformation is a straightforward and 

simple procedure for non-normality correction (Carta, Ramírez, and Velázquez, 2009), and it is 

thus adopted in this study. The Box-Cox transformation algorithm can be briefly presented by 

the following equations: 
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where y is the wind speed data in this study, and the optimal value of λ can be determined by 

choosing the value that maximizes the following log-likelihood function for each time series, 
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4.3.3. Forecasting results for the site of Kill 

The three types of ANN forecasting models are built in the same way as explained in 

Section 3.3. The model structures are exactly the same as those employed previously. For each 

type of neural networks (i.e., BP, RBF, and ADALINE), the models are first trained with specific 

n-observation input vectors at a specific learning rate or spread constant, and the final 

performances are calculated in terms of the metrics (i.e. MAE, RMSE, and MAPE). For the 

purpose of brevity, only the ANN models of each type that generated either the smallest MAE, or 

RMSE, or MAPE values are adopted. Moreover, these best NN models are the component 

models for the sequential BMA approach. The weight and variance of each component model are 

obtained, and then the performance of the BMA time series forecast is evaluated. The results are 

summarized and shown in Table 13. 

It can be seen that different types of models demonstrate different forecast performances 

for site Kill. The RBF model trained with 5 previous observations at a 0.6 spread performs the 

best in term of RMSE (1.519), whereas the performance of BP model trained with 6 previous 

observations at a learning speed of 0.175 can be deemed as the best one in terms of both 

MAE(1.137) and MAPE(0.180). The best two of all tested ADALINE models, however, perform 

not so well as the best BP and RBF models. Meanwhile, it can also be seen that, among all the 

models of each ANN type, the best performing ones are not consistent with respect to different 

performance metrics. For instance, the BP model using 7 previous observations and trained at a 
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0.545 learning rate performs the best in terms of RMSE, whereas the model trained with 6 

previous observations at a learning rate of 0.175 can be deemed as the best in terms of MAE. 

Table 13. Best ANN models and their parameters in combined forecast (Kill). 

Best model MAE RMSE MAPE Weight Variance 
BP_Obs_6_LR_0.175 1.137 1.530 0.180 0.1336 0.2367 
BP_Obs_7_LR_0.475 1.140 1.525 0.180 0.1669 1.2335 

RBF_Obs_1_spread_0.7 1.157 1.534 0.185 0.1302 0.2724 
RBF_Obs_5_spread_0.6 1.175 1.519 0.186 0.1594 0.9093 
RBF_Obs_5_spread_0.7 1.169 1.522 0.184 0.1558 0.8806 
LNN_Obs_1_lr_1.8e-6 1.157 1.538 0.186 0.1275 0.2239 
LNN_Obs_2_lr_9.2e-8 1.168 1.557 0.185 0.1267 0.1919 

BMA 1.137 1.508 0.181 / / 
 

Regarding the BMA results from EM iterations, it can be seen that the estimated posterior 

probabilities (i.e., weights) are different for the seven models. The BP model trained with the 

inputs of previous 7 observations at a 0.475 learning rate is assigned the largest weight value of 

0.1669. However, the weights of the component models do not deviate from each other too 

much. This indicates that all the 7 component models contribute to the final BMA forecast to 

certain extent. Actually, the weight estimated by EM algorithm via maximum likelihood 

estimation can be regarded as another model selection or performance evaluation criterion if 

needed, but this is not the main task of the BMA method. With the forecasts and the posterior 

probabilities of all the seven component models, the Bayesian combination forecast could be 

readily obtained. The corresponding performances of the combination forecast in terms of MAE, 

RMSE, and MAPE are listed in the last row of Table 13. It can be seen that the BMA model 

forecasts with the closest accuracy to the best model in terms of MAPE, the same accuracy in 

terms of MAE, even more accurate than the best model in terms of RMSE, confirming the 

adaptive, reliable, and comparatively accurate nature of Bayesian combination forecasts. 
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Figure 22. Distribution and normal probability plots of observations and forecasts. 
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Figure 23. Distribution and normal probability plots of transformed data and forecasts. 

As afore-mentioned, due to the non-Gaussian nature of wind speeds at site Kill, Box-Cox 

transformation is needed for each forecast time series before the BMA step. For consistency, the 

data transformation of the same parameters is applied to all the time series including the original 

observations and the forecast ones. Figures 22 and 23 demonstrate the distributions and the 

normal probability plots of the observation time series and the two forecast time series with the 

lowest and highest RMSE values, before and after the Box-Cox transformation respectively. It 

can be seen that the transformed data satisfactorily follow normal distribution although the 

original observation is skewed or non-Gaussian. 
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Figure 24 shows the forecasting error time series for the 120 consecutive hours from the 

RBF model (generating the smallest RMSE value, as shown in Table 13) and the ADALINE 

model (generating the largest RMSE value, as shown in Table 13), respectively. Especially, the 

forecasting errors of the corresponding Bayesian combination forecasts are plotted for purpose of 

comparison. It can be observed that, although RBF model forecasts are generally more accurate 

than the ADALINE model in terms of RMSE, ADALINE model still has smaller forecast errors 

at some specific time points, e.g., time points 11 and 12.  
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Figure 24. Forecast errors of BMA model and the two ‘best’ component models (Kill). 

More importantly, the BMA forecasting errors are always close to, if not less than, the 

smallest error of the best-performing component model at any time point. This indicates that the 

performance of each forecasting model varies from time to time, but the BMA forecast error 

stays within the variation range at any time point. Due to the performance inconsistency along 

the time scale among component forecasting models, in long-run BMA forecasting can always 

manage to achieve an overall performance close to, or even better than, that of the best model. 

This confirms the adaptive and reliable nature of the Bayesian combination forecasts. 
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Besides, another advantage of the BMA forecast is that it can also provide the probability 

information corresponding to the forecast. After the EM iterations optimize the model parameter 

vector ],[ 2
jjw σθ = (j=1,2,…, J), the variance or the standard deviation of each specific Bayesian 

combination forecast can be calculated in that all variables in the equation are known. Therefore, 

the preferred probability information of the Bayesian combination forecast can be obtained. For 

example, the 95% confidence interval of the Bayesian forecast can be calculated 

as BMABMAf σ96.1± .  
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Figure 25. Time series plots of forecasts, observations, and 95% CI of BMA forecasts. 

Figure 25 shows the forecast time series from the above-mentioned RBF and ADALINE 

models that generate the smallest and the largest RMSE values for site Kill, respectively, and the 

Bayesian combinations forecasts as well as the corresponding 95% confidence intervals. 

Encompassing the range of values in which the hourly averaged observation falls in a given 

percentage of the time, such an interval can be incorporated into the decision making process for 

production scheduling and control. The financial implications of failing to use wind power 

forecasts is obvious. For example, imbalance charges resulting from deviations in scheduled 
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output will increase project operating costs. Fortunately, Bayesian combination forecasts can 

help to reduce or minimize these penalties. Such information can also reduce the significant 

opportunity costs of being too conservative in bidding output into a forward market, due to 

uncertainty of availability. 

4.3.4. Forecasting results for the site of Hann 

Similarly, Table 14 presents the results about the best ANN models that generate the 

smallest MAE, RMSE, and/or MAPE values, for the wind dataset from the site of Hann. Some 

similar findings can be observed for this site as compared with site Kill. Take the RBF models as 

an example, each smallest MAE, RMSE, or MAPE corresponds to a different combination of 

model parameters, indicating that different learning rates or spread constants, as well as different 

number of inputs, can affect the forecast accuracy of some specific NN model.  

Table 14. Best component NN models and their weights and variances (Hann). 

Best model MAE RMSE MAPE Weight Variance 

LNN_Obs_2_lr_8.9e-8 0.965 1.271 0.196 0.1336 0.028 

LNN_Obs_4_lr_4.5e-8 0.980 1.290 0.194 0.1669 0.033 

BP_Obs_8_LR_0.075 0.945 1.269 0.204 0.1302 0.049 

BP_Obs_6_LR_0.1 0.951 1.254 0.211 0.1594 0.047 

RBF_Obs_2_spread_0.5 0.989 1.297 0.232 0.1558 0.030 

RBF_Obs_3_spread_0.5 0.997 1.294 0.234 0.1275 0.024 

RBF_Obs_7_spread_0.7 1.058 1.390 0.221 0.1267 0.061 

BMA 0.954 1.257 0.207 / / 

 

It is also verified by Table 14 that different types of NN models usually forecast with 

different performances. For instance, in terms of RMSE, the BP model using previous 6 

observations and trained at a learning rate of 0.1 seems to be the best, whereas the RBF model 

trained with 7 previous observations at a learning spread of 0.7 appears to be the worst in term of 
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RSME. Compared with Table 13, it can be seen that the performance of NN models also varies 

from site to site. This further verifies the necessity of developing a robust and accurate 

combination method for short-term wind speed forecasts. 

Similarly, all the time series are transformed into approximately normally distributed 

ones, and the posterior probabilities are thereafter estimated via EM iterations, in term of weight. 

After the BMA combination forecasts are generated for the testing data, the model performances 

are calculated and listed in the last row of Table 14. Again, it can be seen that the performance of 

BMA model is always close to the best ones in terms of all performance metrics. 

-6

-3

0

3

6

0 10 20 30 40 50 60 70 80 90 100 110 120

Time (h) (12/27/2001-12/31/2002)

Fo
re

ca
st

 e
rr

or
s (

m
/s)

BP_6_0.1_err RBF_7_0.7_err BMA_err

 
Figure 26. Forecast errors of BMA model and the two component models (Hann). 

Figure 26 illustrates the plots of the forecast error time series from the BP and RBF 

models that generate the smallest and largest RMSE values, respectively, as well as the Bayesian 

combination forecast errors. It can be observed that the best BP model in term of RMSE does not 

always perform better than RBF model. The BMA model can always stay within the inconsistent 

discrepancy among the component models, and this in long run helps produce the performance 

close to (or even better than) the best component model in terms of any metrics. Meanwhile, 
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after the estimation of model parameter vectors by EM algorithm, the probability information of 

the Bayesian combination forecast also becomes available.  

Figure 27 shows the forecast time series from the above-mentioned three models as well 

as the 95% confidence interval for Bayesian combinations forecasts. As mentioned previously, 

this information is very useful for decision making in wind energy production. 
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Figure 27. Plots of forecasts, observations, and 95% CI of BMA forecasts (Hann). 

4.3.5. Discussion 

The results indicate that learning rates or spread constants, as well as number of inputs, 

affect the forecast performance of NN models. Therefore, in building the NN models for 

forecasting wind speed, these factors should be properly determined. More importantly, the 

choice of best NN model varies between sites Kill and Hann and among the evaluation criteria 

MAE, RMSE, and MAPE. This confirms the needs of evaluating multiple types of neural 

network based on multiple performance metrics. Otherwise, the results can be misleading and 

biased. However, it poses a challenge to the practical application of the NN forecasting models 

in industry – if only one time series forecast can be adopted, which one should we use? This is 

very real for wind energy industry, where the direct operation relies on one clear and definite 



 95 

forecast instead of multiple choices. A traditional model selection process among the NN models 

may not be the good answer to the question.  

The alternative is to generate a final single forecast that could take advantage of a set of 

plausible forecasts. For example, the forecasts from alternative forecast agencies should be 

considered before making a decision. Each forecast agency might make forecasts for the client 

by adopting alternative models or procedures such as different NN models as introduced in this 

paper. In such cases, the agency also has to combine all the available information in order to 

provide a single forecast (Sánchez, 2008). Therefore, it is apparent that an efficient forecast 

combination procedure should be of great importance for short-term wind speed forecasts. 

Ideally, this single time series forecast should have close-to-optimal performance under each 

evaluation metric.  

The proposed two-step methodology adds the step of Bayesian combination analysis on 

top of the extensive evaluation of various NN models. The applications of the BMA algorithm 

into the datasets collected from two North Dakota sites verify that, by weighting the forecast 

from each specific model with the corresponding posterior probability, the algorithm can 

generate adaptive, reliable and comparatively high-accuracy forecasts. The robustness and 

reliability lie in that, once the candidate models are included in the model space, the Bayesian 

combination analysis is universal and thus avoids the confusion and ambiguity of model 

selection. A significantly plausible model will be weighted highly whereas the influence on the 

Bayesian combination forecast of whichever insignificant model could be automatically 

minimized to the lowest degree. Besides, the BMA algorithm can also provide the confidence 

interval on the combined forecast value, supplying abundant helpful information for related 

decision-makings for wind energy conversion. Clearly, this methodology not only is an 



 96 

enhancement for reliable wind speed forecast using NN models, but also provides the 

opportunity for other types of forecasting models – the same methodology should be applicable 

to ARIMA and other models.  
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5. AGENT-BASED SIMULATION ON WGENCO’S BIDDING WIND POWER 

In this chapter, agent-based simulation models are employed to analyze the issue of 

WGenCos’ bidding strategy optimization while considering the uncertainty in wind generation or 

wind forecasting accuracies. Section 5.1 briefly explains the market structure and auction rules 

as well as the fundamental agent-based simulation modeling method adopted in this study. 

Section 5.2 then presents the details of the agent-based simulation on the single-sided bidding of 

wind power in the day-ahead electricity market which is connected to a 9-bus 3-generator power 

grid, by using the BP-based point estimates of wind power. To evaluate the effects of forecasting 

accuracy on the WGenCos net earnings, bidding with the forecasts from the persistence model is 

also simulated as the benchmark for comparison. Considering that the future deregulated 

electricity market should be a double-sided one, the agent-based simulations are further 

employed to study the bidding of wind power in a double-sided day-ahead electricity market 

assumed to be connected to a modified IEEE 30-bus 6-generator power system. The results are 

presented and analyzed in Section 5.3. It should be noted that emphasis is placed on the 

economic benefits of combining and improving the short-term forecasting accuracy of wind 

generation in the day-ahead electricity markets in all the case studies. The results clearly 

demonstrate that improving wind forecasting accuracy helps to increase the net earnings of the 

wind generation company. Also, it is demonstrated that agent-based simulation is a viable 

modeling tool which can provide realistic insights for the complex interactions among different 

participants and various market factors. 

5.1. Agent-Based Simulation and Deregulated Electricity Markets 

In an agent-based model, market participants are modeled as adaptive agents with 

different bidding preferences and strategies. Each agent may develop the optimal bidding 
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strategy by learning from its past experiences obtained from the direct interaction with 

environment (Tesfatsion, 2006). Generally, the agent-based modeling procedures include the 

following steps (Weidlich and Veit, 2008): (1) defining the research questions to be resolved; (2) 

constructing a model comprising an initial population of agents; (3) specifying the initial model 

state by defining the agents’ attributes and the structural and institutional framework of the 

electricity market; (4) having the model evolve over time; and (5) analyzing simulation results 

and evaluating the regularities observed in the data. 

5.1.1. Market structure and auction procedures 

The Western System Coordinating Council (WSCC) 9-bus 3-machine power system 

network (Anderson and Fouad, 2003) is adopted to represent the transmission grid since it has 

been widely used as a benchmark system in power system related research (Babulal and Kannan, 

2006; Gallardo and Ledesma, 2008; Nwohu, 2010). Figure 28 illustrates the market structure and 

its auctions procedures, which will be adopted in Section 5.2. As can be seen in Figure 28, three 

GenCos (sellers) are located at buses 1, 2, and 3, and three loads (buyers) are at buses 5, 7, and 9, 

respectively. The generator at bus 2 is a WGenCo, and the other two generators at buses 1 and 3 

are traditional GenCos. The market structure and the logical flow of daily market operations are 

depicted as follows. 

• The day-ahead electricity market is operated by an ISO over the 9-bus 3-generator AC 

transmission grid. The GenCos and the buyers intensively maximize their net earnings 

via optimally bidding actions, whereas the ISO mainly ensures the operational reliability 

and efficiency of the market while maximizing the total net surplus under constraints. 

• The simulation starts from day 1 to the user-specified last day (i.e., day 31 in this study), 

with each day consisting of 24 hours (0, 1, …, 23). At the beginning of each day D 
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(H00), the hourly wind generations are forecasted via the persistence model and the BP 

neural network model [Li and Shi, 2011], respectively for each hour of the next day, and 

scaled into two corresponding penetration levels, namely, 5% and 20%, respectively. 

 
Figure 28. Framework of the day-ahead electricity market and grid network. 

• At the beginning of each day D (H00), each GenCo reports a supply offer consisting of a 

linear marginal cost function defined within the reported capacity interval for day D+1. 

The GenCos have learning capabilities enabling them to choose different supply offers 

according to their current supply choice probabilities. Meanwhile, each buyer presents to 

the ISO a demand bid for day D+1, which is assumed to be a fixed 24-hour load profile 

for every day during the simulation period.  

• After receiving the supply offers and the demand bids during the early morning of day D, 

the ISO determines and publicly declares the hourly locational marginal prices (LMPs) 

and power supply settlement for day D+1 via solving the hourly bid/offer-based direct 

current optimal power flow (DC-OPF) problem. It should be noted that LMP is better 

than MCP especially when transmission congestions exist. MCP mainly reflects the cost 

of serving energy demand without considering transmission, whereas LMP is a pricing 

mechanism that reflects the costs of re-dispatching out-of-merit energy and delivering 

energy to the location with transmission congestions. LMP can reflects the actual cost for 
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buyers and sellers to deliver energy at their locations on the transmission system. 

Therefore, LMP encourages the efficient use of the transmission system by assigning 

costs to users based on the way energy is actually delivered.  

• At the end of each day D, according to the LMPs and the commitments settled by the ISO 

for day D+1 of the day-ahead market. Each GenCo updates its action choice probability 

based on its net earnings from the settlement of day D+1. 

Necessary assumptions are made in this study, which include: (1) only the day-ahead 

electricity markets are considered, that is, the GenCos do not update their supply offers by 

participating in the real-time markets; (2) no GenCo adopts the control strategy, e.g., combining 

energy storage strategy or cooperating with other participants; (3) no system disturbances (e.g., 

weather changes) or shocks (e.g., line or generation outages) exist during the simulation period; 

(4) neither the number of the participants nor the participants themselves will decrease, increase, 

or be substituted during the simulation period. 

5.1.2. Agent-based modeling methodology 

Each GenCo is modeled as an agent who reports at the beginning of day D a single 

supply offer ),,,( RU
i

RL
i

R
i

R
i

R
i CapCapbas =  for use in each hour H of day D+1 in the day-ahead 

market, representing its reported marginal cost function: 

R
Gi

RR
Gi

R
i pbapMC

ii
⋅⋅+= 2)( ,                                                  (34) 

which is defined over a reported power generation interval of GenCo i, ),( RU
i

RL
i CapCap , that is, 

RU
i

R
Gi

RL
i CappCap ≤≤ .                                                     (35) 

Generally, the total cost is composed of two parts, namely, total fixed cost and total 

variable cost. The total fixed cost of a GenCo is the unavoidable production cost independent of 
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its generation level, whereas the total variable cost refers to the GenCo’s cost that could be 

avoidable and varies with the generation level (Li and Tesfatsion, 2009). 

The true variable cost of GenCo i for each hour H can be calculated as the integral of its 

marginal cost function over its real-time settled generation Gip  of hour H. 

( )2

0
)()( GiiGii

p

iGii pbpadppMCpTVC Gi ⋅+⋅== ∫ .                                   (36) 

The net earnings are defined as the revenue minus the true total avoidable cost. For 

example, if GenCo i located at bus k(i) is dispatched at a generation level D
Gip  at price )(ikLMP  

for hour H of day D+1 in the day-ahead market, the net earnings of GenCo i for hour H of day 

D+1, won at the end of day D, is calculated as 

)(),( )(
D
Gii

D
Giiki pTVCpLMPDHNE −⋅= ,                                       (37) 

The total net earnings of GenCo i over all 24 hours of day D+1, won at the end of day D, 

can then be calculated as 

∑ =
=

23

00
),()(

H ii DHNEDNE .                                                (38) 

All GenCos should ensure the delivery of the amount committed to and settled by the 

ISO. For the traditional GenCos, they can ensure that the real generation is equal to the 

dispatched, that is, D
GiGi pp = . However, more calculation is needed for the WGenCo because of 

the uncertainty of wind generation. In this study, it is assumed that the difference between the 

real wind generation and the dispatched one could be balanced in the following way. If 

D
GiGi pp > , the access will be sold at the system selling price sel

ikC )(  of bus k(i), the net earnings for 

hour H of day D+1 is calculated as 

sel
ik

D
GiGi

D
Gii

D
Giiki CpppTVCpLMPDHNE )()( )()(),( ⋅−+−⋅= .                              (39) 
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Otherwise, if D
GiGi pp < , the shortfall will be filled in by purchasing power at the system buying 

price, buy
ikC )( , and the net earnings for hour H of day D+1 will be calculated as 

buy
ikGi

D
Gi

D
Gii

D
Giiki CpppTVCpLMPDHNE )()( )()(),( ⋅−−−⋅= ,                              (40) 

where the imbalance prices of sel
ikC )(  and buy

ikC )(  are assumed to equal to a certain proportion of the 

)(ikLMP , e.g., 90% and 110%, respectively, as recommended by the Federal Energy Regulatory 

Commission (FERC) under order number 890. The total net earnings can then be calculated by 

summing up the benefits for 24 hours of day D+1. 

As aforementioned, at the beginning of each day D, each GenCo i should choose a supply 

offer ),,( RU
i

R
i

R
i

R
i Capbas =  for each hour H of day D+1 from its action domain ADi and report 

them to the ISO of the day-ahead market. For purpose of earning profits, the reported marginal 

cost should be above or at least on the real marginal cost function; also, it is usually in an 

upward-sloping format, i.e., 0>R
ib . Besides, the reported capacity interval should be within the 

real capacity interval ),( U
i

L
i CapCap , that is,  

U
i

RU
iGi

RL
i

L
i CapCappCapCap ≤≤≤≤≤0 .                                         (41) 

Under these assumptions, the action domain matrix ADi with finite positive cardinality 

Mi, defined as the supply offer choice set of GenCo i, is constructed as follows (Li, Sun, and 

Tesfatsion, 2009).  

For any GenCo i, given any positive value of base-slope parameter bsi, three integer-

value density-control parameters (M1i, M2i, and M3i; iiii M3M2M1=M ⋅⋅ ) are specified to 

control the number of possible ordinate values R
ia , slope values R

ib , and upper capacity limits 

RU
iCap , respectively. Meanwhile, three percentage-format range-index parameters ( L

iRIMax , 
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U
iRIMax , and C

iRIMin ) are defined to control the ranges of R
ia , R

ib , and RU
iCap , respectively. 

As verified in (Sun and Tesfatsion, 2007), each supply offer ),,,( RU
i

RL
i

R
i

R
i

R
i CapCapbas =  

corresponds to and can be represented by a percentage-format vector 
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i RCapCapRCap /= . Therefore, once bsi, 

M1i, M2i, M3i, L
iRIMax , U

iRIMax , and C
iRIMin  are specified, ADi is specifically defined for 

GenCo i to adaptively choose its offer ),,( RU
i

R
i

R
i

R
i Capbas =  by learning from its own past daily 

net earnings. 

The learning process is realized via Variant Roth-Erev reinforcement learning (VRE-RL), 

a variant of a stochastic reinforcement learning algorithms proposed by Sun and Tesfatsion 

(2007). Compared with the simplest RE-RL, the VRE-RL algorithm can ensure the updating of 

propensities even with zero-valued net earnings and it can handle negative propensity values as 

well. The learning procedure is briefly described below. 

Step 1: Specify the initial propensity and the initial selected action. At the beginning of 

day D=1, the current propensity of GenCo i’s offer ∈R
imi

s ADi is given by )(DIP
iim  for mi = 1, ..., 

Mi. In this study, GenCo i’s Mi initial propensities are all assumed to be )1(
0imIP , a user-specified 

real number, that is, under this assumption, the initial action R
ims

0
can thus be randomly specified.  

Step 2: Calculate the daily net earnings of day D.  The auction market is run and the 

actually daily net earnings )(
0

DNEim  can then be updated accordingly.  

Step 3: Update the propensities of Mi possible actions. At the end of day D, the current 

propensity )(DIP
iim  of each supply offer ∈R

imi
s ADi is updated via the following equations, 
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where )(DR
iim  refers to the response component, ri is the recency parameter acting as a damper 

on the growth of the propensities over time, ei is the experimentation parameter encouraging the 

continued experimentation of reinforcement with various offers at the beginning of the learning 

process. 

Step 4: Update the choice probabilities for GenCo i to select an offer for day D+1, 
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where Ti is a cooling parameter that affects the degree to which GenCo i makes use of propensity 

values in determining its choice probabilities.  

Step 5: If the maximum day is not reached, let D=D+1 and repeat Steps 2-4.  

5.2. Agent-Based Single-Sided Bidding of Wind Power 

In order to evaluate the effects of wind forecasting accuracy on the net earnings of 

WGenCo participating in the deregulated electricity wholesale market as described above, the 

agent-based simulation approach is employed. The simulation models, especially the agent-

learning algorithms are built based on the Agent-based Modeling of Electricity Systems of 

AMES Market package V2.05, an open-source Wholesale Power Market Test Bed developed in 

the Java environment (Li, Sun, and Tesfatsion, 2009). 

Four simulation scenarios of WGenCo bidding in the day-ahead electricity market are 

investigated, which are reflected by two wind penetration levels (5% and 20%) and two 
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algorithms (with or without learning). The forecasts of wind power generation are obtained by 

two time series forecasting models (i.e., persistence, BP neural network), which generates 

different forecasting accuracies. 

5.2.1. Modeling procedures and parameters 

This study includes the following experimental modules: wind power forecasting, 

learning algorithms programming, integration with the DC-OPF dispatch module, and data post-

processing. The experiments are performed as mapped in Figure 29. Basically, the ISO calculates 

the optimal power flow and decides on the LMPs. After the offers and bids are collected, the ISO 

solves this optimization problem via calling DC-OPF dispatch module and declares the quantities 

and LMPs; the sellers and the buyers then call the learning module to generate their optimal 

strategies for the next day’s offers or bids. 

 
Figure 29. Schematic of the experimental design and auction process. 

In view that no wind generation data are available for the observation sites adopted in 

previous study, the hourly wind generation data employed in this study are collected from a real 

wind farm located in North Dakota, U.S. during November 1, 2008 – May 31, 2009, among 

which the dataset during May 1 - 31, 2009 are reserved as for forecasting purpose. It should be 
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noted that, as has been verified in many literatures, the short-term forecasting methods and 

models previously presented are also applicable to short-term wind power forecasting.  

As shown in Figure 29, the BP forecasting model and the persistence model are adopted 

to generate forecasts of different accuracies in this study. For BP neural network forecasting, all 

the earlier observations are used for training and testing the BP models. Wind energy penetration 

level is calculated as the total amount of wind energy produced divided by gross electricity 

demand during the same period (Wind energy the facts, 2011). Milligan, Lew, Corbus, Piwko, 

Miller, Clarke, et al. (2009) further define three wind power penetration levels in the U.S. power 

systems, and the three levels are 10%, 20%, and 30% for low, high, and even higher 

penetrations, respectively. In this study, by directly scaling the total wind generations, we obtain 

the wind energy penetration levels of 5% and 20%. The two levels are used to approximate low 

and high penetration levels, respectively. 

The VRE-RL learning process is realized via programming in the Matlab environment. 

To construct the action domains, only bsi, M1i, M2i, M3i, L
iRIMax , U

iRIMax , and C
iRIMin  need 

to be specified. These parameters are selected by referring to (Li et al., 2009), as shown in Table 

15, with the densities of ordinates and slopes being increased. 

Table 15. Action domain parameters. 

GenCo i bsi M1i M2i M3i L
iRIMax  U

iRIMax  C
iRIMin  

1 0.001 5 5 1 0.75 0.75 1 

2(WGenCo) 0.001 5 5 1 0.75 0.75 1 

3 0.001 5 5 1 0.75 0.75 1 

 

The initial propensity of each action indicates the GenCo’s expectation on the net 

earnings from adopting this action. Too high an initial propensity may lead to the GenCo’s 
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cycling through various admissible actions. Too low an initial propensity could result in the early 

fixation of the agent on some non-optimal action at the beginning stage, thus reducing the 

probability of choosing other actions. The cooling parameter can help control the degree to 

which each GenCo i makes use of propensity values in determining its choice probabilities. The 

initial propensity )1(iq  and cooling parameters iT  are selected according to the best combined 

parameter ii Tq /)1(  proved in (Li et al., 2009), that is, each GenCo’s initial propensity )1(iq  is 

set to equal its estimated maximum daily net earnings (MaxDNEi) and the cooling parameter iT  

is set as one percent of the initial propensity.  

However, in order to verify the possible impacts on the learning results of recency 

parameter ri, and experimental parameter ei, different values of these parameters are tested in this 

study, as shown in Table 16. It can be seen that three representative values, namely, 0.05, 0.5, 

and 0.95, for both ri and ei where 1][0,∈ir  and 1)[0,∈ie , are used  to cover the entire study 

range (Pentapalli, 2008). Besides, the fixed 24-hour loads from three buses are adopted from the 

case study of (Shahidehpour, Yamin, and Li, 2002), as shown in Table 17. 

Table 16. Different values of learning parameters. 

GenCo i ri ei qi(1)/MaxDNEi qi(1)/Ti 

1 (0.05, 0.5, 0.95) (0.05, 0.5, 0.95) 1 100 

2(WGenCo) (0.05, 0.5, 0.95) (0.05, 0.5, 0.95) 1 100 

3 (0.05, 0.5, 0.95) (0.05, 0.5, 0.95) 1 100 

 
The power flow data of the network built on the WSCC 9-bus 3-generator power system 

are shown in Table 18 (Zimmerman, Murillo-Sanchez, and Thomas, 2011). It should be noted 

that, to reflect the fixed 24-hour daily loads, the values of Pd at the corresponding buses are 

dynamically changed and updated during the simulation. Besides, three buyers are modeled as 
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fake GenCos with negative generations and negative marginal cost functions. Also, by referring 

to literature (Li et al., 2009), the true marginal costs of three GenCos are selected and illustrated 

in Figure 30, and the corresponding parameters are summarized in Table 19. 

Table 17. Profiles of three fixed daily loads. 

Pd (MW) H00 H01 H02 H03 H04 H05 H06 H07 H08 H09 H10 H11 

1(bus 5) 350 322.93 305.04 296.02 287.16 291.59 296.02 314.07 358.86 394.8 403.82 408.25 

2(bus 7) 300 276.8 261.47 253.73 246.13 249.93 253.73 269.2 307.6 338.4 346.13 349.93 

3(bus 9) 250 230.66 217.89 211.44 205.11 208.28 211.44 224.33 256.33 282 288.44 291.61 

Pd (MW) H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 

1(bus 5) 403.82 394.8 390.37 390.37 408.25 448.62 430.73 426.14 421.71 412.69 390.37 363.46 

2(bus 7) 346.13 338.4 334.6 334.6 349.93 384.53 369.2 365.26 361.47 353.73 334.6 311.53 

3(bus 9) 288.44 282 278.83 278.83 291.61 320.44 307.67 304.39 301.22 294.78 278.83 259.61 

 

The recency parameter acts as a damper on the growth of the propensities over time and it 

allows the agent to ignore the past learning effect by the factor of recency parameter, with larger 

recency parameter indicating higher forgetting effect. The experimentation parameter controls 

the degree of exploration during the online learning process, with the larger parameter value 

increasing the propensity of those actions that are not chosen currently, thus encouraging 

continued experimentation of reinforcement with various offers at the beginning days of the 

learning process (Pentapalli, 2008). 

To compare the effects of recency parameters and experimentation parameters on the 

simulation results, the scenario of 20% wind penetration level is examined and the total net 

earnings are summarized in Table 20 for simulation cases with different recency parameters and 

experimentation parameters. 
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Table 18. Power flow data of WSCC 9-bus, 3-generator test bed. 
System MVA Base  

Base MVA = 100 
Bus Data 

Bus  type   Pd   Qd   Gs   Bs  area  Vm   Va  baseKV  zone  Vmax  Vmin 
1      3        0      0      0      0     1      1       0    345         1         1.1       0.9 
2      2        0      0      0      0     1      1       0    345         1         1.1       0.9 
3      2        0      0      0      0     1      1       0    345         1         1.1       0.9 
4      1        0      0      0      0     1      1       0    345         1         1.1       0.9 
5      1   448.62  30    0      0     1      1       0    345         1         1.1       0.9 
6      1        0      0      0      0     1      1       0    345         1         1.1       0.9 
7      1   384.53  35    0      0     1      1       0    345         1         1.1       0.9 
8      1        0      0      0      0     1      1       0    345         1         1.1       0.9 
9      1   320.44  50    0      0     1      1       0    345         1         1.1       0.9 

Branch data 
Fbus  Tbus    r         x         b       rateA  rateB  rateC  ratio  angle  status 
1        4         0     0.0576     0       10000    250    250     0        0         1 
4        5   0.017    0.092    0.158   10000    250    250     0        0         1 
5        6   0.039    0.17      0.358   10000    150    150     0        0         1 
3        6       0       0.0586     0       10000    300    300     0        0         1 
6        7  0.0119   0.1008  0.209   10000    150    150     0        0         1 
7        8   0.0085  0.072    0.149   10000    250    250     0        0         1 
8        2        0      0.0625      0      10000    250    250     0        0         1 
8        9   0.032    0.161    0.306   10000    250    250     0        0         1 
9        4   0.01      0.085    0.176   10000    250    250     0        0         1 

Area Data 
area   refbus 
1          5 

Generator Data 
Bus    Pg   Qg   Qmax  Qmin   Vg  mBase  status  Pmax  Pmin 
1    550.26  0     100     -100      1      100      1        600     100 
2     Forecast   0     100     -100      1      100      1     600      0  
3    650.53  0     100     -100      1      100      1        600      100 
5    -30     -15      0       -15        1      100       1          0       -30 
7    -30     -12      0       -12        1      100       1          0        -30 
9    -30     -7.5     0       -7.5       1      100       1          0        -30 

Generator Cost Data 
Type  start  shut    n     x1      y1      x2     y2        x3     y3       x4        y4 
1        0       0        4      0        0      100   3140    350  12215    600    23040 
1        0       0        4      0        0      100   2680    400  10955    600    21480 
1        0       0        4      0        0      100   2160    400  8960      600    17760 
1        0       0        4    -30  -3000   -20   -2000   -10 -1000         0         0 
1        0       0        4    -30  -3000   -20   -2000   -10 -1000         0         0 
1        0       0        4    -30  -3000   -20   -2000   -10 -1000         0         0 

 



 110 

15

20

25

30

35

40

0 200 400 600
Power (MW)

M
ar

gi
na

l c
os

t (
$/

M
W

h)
   

.

GenCo1 GenCo2 GenCo3

 
Figure 30. Real marginal costs of three GenCos in the network. 

Table 19. True marginal cost functions and capacity limits of GenCos. 

GenCo ai ($/MWh) bi ($/MW2h) CapL (MW) CapU (MW) 

1 30 0.006 100 600 

2(WGenCo) 25 0.005 0 Forecast values 

3 20 0.007 100 600 

Table 20. Total net earnings of WGenCo vs. learning parameters (20% wind). 

Total net earnings (103$) Experimentation parameter ei 
0.05 0.5 0.95 

Recency 
parameter ri 

0.05 1266.203 1337.677 1389.162 
0.5 1317.676 1348.456 1340.178 

0.95 1351.342 1342.869 1283.078 
 

It can be observed that among the tested cases, the one with a recency parameter ri of 

0.05 and an experimental parameter ei of 0.95 seems to be the best one, which leads to a total net 

earnings of $1,389,162. This is about 9.7% more than the output of the worst combination of 

ei=0.05 and ri=0.05. In addition, it can also be seen that the impact of recency parameter is less 

significant when the experimentation parameter is 0.5, and similarly the impact of 

experimentation parameter is less significant when the recency parameter is 0.5. To provide a 

common comparison platform, all the following simulation results are obtained with the recency 

parameter of 0.05 and an experimentation parameter of 0.95, without losing the generalization. 
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5.2.2. Forecasting results 

Recall that we use two approaches to obtain forecasts of wind power generation, namely, 

persistence method, and BP neural network model. The persistence model simply uses the last 

observation of current day as the possible observations of each of the following 24 hours in the 

next day. For BP models, different input parameters and learning rates are tested, and the model 

generating the smallest mean absolute errors (MAE) and root mean squared errors (RMSE) is 

selected to compare with the persistence model. 

The forecasting results of the persistence and BP models are summarized and compared 

as in Table 21. The forecasting errors of the two models are plotted in Figure 31 as well.  

Table 21. Performances of two forecasting models. 

Model MAE RMSE MAPE 

BP 193.632 229.726 559.690 

Persistence 232.362 300.849 662.447 
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Figure 31. Wind forecasting errors of persistence and BP models. 

It can be seen from both Table 21 and Figure 31 that the BP model is more accurate than 

the persistence model in terms of all three performance measures. To be exact, the BP model is 

16.7%, 23.6%, and 15.5% more accurate compared with the persistence model in terms of MAE, 
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RMSE, and MAPE, respectively, even though the persistence model is often regarded as a 

reliable and robust method for short-term forecasting. 

5.2.3. Bidding for scenarios with 5% wind power 

The wind penetration level of 5% approximates the case of low-medium wind power 

penetration level. The simulated auction results for the scenarios at this penetration level are 

summarized in Table 22. It can be seen that the total net earnings of WGenCo using BP 

forecasting results are higher than that using persistence forecasting results, no matter if GenCo 

learning is adopted or not. Without the adoption of learning algorithm, the net earnings of 

WGenCo by using BP forecasts in the day-ahead market is $495,030, about 5.5% more than that 

of using the forecasts of persistence model ($469,420). When learning capability is empowered, 

this percentage of extra earnings is also around 4.5%. This verifies that improving the forecasting 

accuracy can help increase the net earnings for the WGenCo participating in the day-ahead 

electricity market under the same other conditions. 

Table 22. Auction results for the WGenCo at 5% penetration level. 

Scenarios Qty_Sel(MWh) Ave_LMP($/MWh) Tot_NE(103$) 

W/O 
learning 

BP 47850.178 39.244 495.030 

Persistence 48732.784 39.412 469.420 

W/ 
learning 

BP 47850.181 44.151 741.704 

Persistence 49057.782 44.274 710.018 

 

Meanwhile, it can also be observed that the cases of empowering GenCos with learning 

ability could obtain more earnings compared with the cases without learning capability. When 

the BP forecasts are used, the net earning increases by 49.8%, from $495,030 (without learning) 

to $741,704 (with learning). When the persistence model forecasts are used, the net earnings 
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increase by 51.3%, from $469,420 (without learning) to $710,018 (with learning). The advantage 

of GenCo’s adopting reinforcement learning algorithms in optimizing its bidding strategy in the 

day-ahead electricity market is also directly reflected by the average locational market price. For 

instance, based on BP forecasts, the case with GenCos’ learning generates a high average market 

clearing price of $44.151/MWh whereas the case of without GenCos’ learning leads to a low 

price of $39.244/MWh. 

5.2.4. Bidding for scenarios with 20% wind power 

The simulated auction results for the scenarios at the wind penetration level of 20% are 

summarized in Table 23. Again, it can be seen that more accurate forecasting results can increase 

the net earnings for the WGenCo. For the cases with learning capability, using BP forecasts 

brings the WGenCo a total net earning of $2,383,078, about 2.2% more than that earned by using 

the persistence model forecasts, i.e., $2,330,971. For the cases without learning, the 

improvement is 3.7%. Both improvements demonstrate the benefit of improving forecasting 

accuracy of wind power generation.  

Table 23. Auction results for the WGenCo at 20% penetration level. 

Scenarios Tot_Qty(MWh) Ave_LMP($/MWh) Tot_NE(103$) 

W/O 
learning 

BP 173666.203 37.677 1389.162 

Persistence 141971.143 38.094 1340.188 

W/ 
learning 

BP 178472.676 42.456 2383.078 

Persistence 143513.342 42.869 2330.971 

 

Similarly, it can be seen that adopting reinforcement learning is beneficial to GenCos. 

For instance, by using BP forecasts and without adopting learning algorithm, the WGenCo earns 

$1,389,162, whereas with learning the WGenCo obtains the net earnings of $2,383,078. This is 
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an increase of around 71.5%. The advantage of GenCo learning in optimizing bidding strategy in 

the day-ahead electricity market is also reflected by the average locational market price. For 

instance, the average clearing prices for the WGenCo using BP forecasting results are 

$42.456/MWh and $37.677/MWh for using learning and not using learning, respectively.  

5.2.5. Comparison and discussion 

Agent-based modeling approach can also provide detailed information about the complex 

interactions among different market participants and influencing factors, such as the hourly 

LMPs for each day, the supply and demand curves at some specific hour and/or for some specific 

day, etc. Based on the simulation results, more insights about the market structure as well as 

bidding optimization can be derived. For instance, Figure 32 illustrates the LMPs for the cases 

with and without GenCo learning at a 5% wind penetration level at bus 2 where the WGenCo is 

located, respectively. It can also be observed that with GenCo learning, the average clearing 

price is significantly higher, which means that the GenCos can increase their net earnings by 

adopting reinforcement learning in optimizing their bidding strategy. 

A further comparison of Tables 22 and 23 reveals that the wind penetration level of 20% 

generally leads to comparatively low clearing prices compared with the lower level of 5%. For 

instance, with GenCo learning and using BP forecasts for the WGenCo, the average locational 

market price changes from $44.148/MWh at the level of 5% to $42.456/MWh at the level of 

20%. This observation can be repeated for all the other cases as well. Moreover, more details can 

be revealed by checking the LMP evolution with respect to time. Figure 33 illustrates how LMP 

changes at bus 2 during the last day of the simulation period. It can be seen that, for the majority 

of the 24 hours, the LMPs at the higher wind penetration level are lower than those at the lower 

level, while for the remaining hours, the LMPs of the two penetration levels are equal. This 
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explains why the average LMPs at 20% wind penetration level is higher than those at 5%. 

Therefore, it can be cautiously concluded that high wind penetration levels can generally help 

bring down the market clearing price of the day-ahead electricity market.  
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(a) Average LMPs without GenCo learning 
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(b) Average LMPs without GenCo learning 

Figure 32. LMP evolutions at bus 2 for the scenarios at 5% wind penetration level. 
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Figure 33. LMPs for the 24 hours of last auction day. 
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It should be mentioned that the LMPs at all nine buses are the same according to the 

simulation results. One main reason is that the transmission capacity of the grids is high enough 

so that no physical constraint exists. In this case, the MCP is the same as the LMP. 

5.3. Agent-Based Double-Sided Bidding of Wind Power 

Section 5.2 demonstrates the impacts of forecasting accuracy on WGenCo bidding 

optimization and provides some important insightful information. However, only the simplest 

electricity network with single-sided auction rule is considered. Further research is conducted in 

this section. The modified IEEE 30-bus 6-generator power system network (Anderson and 

Fouad, 2003) is adopted to represent the transmission grid in view that it is widely used in power 

system related research and more complex than the simple 9-bus system adopted in the previous 

section. The scenarios investigated also consider the influences of short-term wind power 

forecasts at two different wind penetration levels, 5% and 20%. The agent-based models are built 

for the double-sided auction market with limited upper price, based on the modified IEEE 30-bus 

grid system with constrained transmission capacities. One main intension of this study is to 

verify if the previous findings can repeat with this more complex and more realistic set-up.  

5.3.1. Scenarios and simulation environment 

Similarly, the WGenCo bids in the day-ahead electricity market by using the BP-based 

point estimates data, same as the one used in Section 5.2. However, to better represent the low 

and high penetration levels, the wind power capacity are scaled into 5% and 20% penetration 

levels, respectively. Also, two algorithms, with or without GenCos learning, are considered. So, 

there are totally four scenarios. 

The auction procedures and pricing rules of the day-ahead electricity market, the agents’ 

action domain construction and learning procedures, the calculation of costs and net earnings are 



 117 

all similar to those introduced in Section 5.2. The differences include (1) the price-sensitive 

demand bids are considered besides the fixed daily demand; (2) a modified IEEE 30-bus 9-

GenCo power system network is assumed to be connected with the market operations. 

Figure 34 gives the single ling diagram of the IEEE 30-bus 9-GenCo power system 

network, which has been widely used in power system related research (Li and Jiang, 2011; Liao 

and Wu, 2011). The generator at bus 30 is assumed to be the WGenCo, and the rest eight sellers 

are regarded as traditional GenCos. The GenCos’ marginal cost function, the price-sensitive 

demand bid function and the power flow data of the modified IEEE 30-bus 9-generator 21-buyer 

power system are adopted from the case study of (Li et al., 2009). 

 
Figure 34. Single line diagram of the IEEE 30-bus network. 
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The upper capacity of WGenCo at bus 30 is specified according to the average of daily 

forecast wind power, as summarized in Table 24, where 47.153MW is the average hourly 

capacity of the last simulation day at the 20% penetration level. For purpose of illustration, the 

maximum demands and the original parameter c for the price-sensitive bid function of buyer 21 

at bus 30 on the last simulation day are plotted in Figure 35, where its original parameter d for 

the price-sensitive bid function is set to be constant $0.04/MW2h under the assumption of linear 

marginal cost function. 

Table 24. True marginal cost functions and capacity limits of the nine GenCos. 

GenCo Bus No. ai ($/MWh) bi ($/MW2h) CapL (MW) CapU (MW) 

GenCo1 1 11.295 0.005 0 90.000 

GenCo2 2 17.212 0.007 0 90.000 

GenCo3 5 13.123 0.008 0 60.000 

GenCo4 8 13.254 0.009 0 40.000 

GenCo5 11 37.859 0.013 0 30.000 

GenCo6 13 19.326 0.012 0 60.000 

GenCo7 15 18.325 0.007 0 50.000 

GenCo8 24 38.895 0.016 0 30.000 

WGenCo 30 20.158 0.007 0 47.153 
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Figure 35. Demands and demand bid function parameters of buyer 21 at bus 30. 
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The VRE-RL learning algorithms is realized and combined with the DC-OPF dispatch 

module for all market participants.  The action domains are constructed by bsi, M1i, M2i, M3i, 

L
iRIMax , U

iRIMax , and C
iRIMin  which are selected as shown in Table 25. Besides, for the purpose 

of a fair comparison, all the GenCos learning processes are simulated with a recency parameter 

of 0.05 and an experimentation parameter of 0.95. Also, each GenCo’s initial propensity )1(iq  is 

set to equal its estimated maximum daily net earnings (MaxDNEi) and the cooling parameter iT  

is set as one percent of the initial propensity. 

Table 25. Parameters of action domain and learning parameters. 

GenCo i bsi M1i M2i M3i L
iRIMax  U

iRIMax  C
iRIMin  

1-9 0.001 10 10 1 0.75 0.75 1 

 

5.3.2. Forecasting results 

For BP-based forecasting, different input parameters and learning rates are tested to 

select the best combination in terms of mean absolute errors (MAE) and root mean squared 

errors (RMSE), and the model outputs are selected to generate the scaled wind power forecasts at 

5% and 20% penetration levels. The average observed value, the average BP forecast, and the 

forecasting errors of wind power are summarized in Table 26, together with two average wind 

power values scaled to represent two penetration levels. In order to evaluate the influence of 

forecasting errors on the net earnings of the WGenCo, the total net earnings in the “perfect” case 

that all real hourly wind generations could be sold at the LMPs of bus 30 are also calculated for 

each scenario in the following results.  

Figure 36 illustrates the real observations of wind power and the corresponding day-

ahead forecasts from the best-performing BP model. It can be seen that for the 24-hour-ahead 
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forecasting application, the forecasting errors of the BP model are not ignorable although they 

are still acceptable. In order to evaluate the above-mentioned influence of forecasting errors on 

the net earnings of the WGenCo, the total net earnings in the “perfect” case that all real hourly 

wind generations are assumed to be sold at the LMPs of bus 30 are also calculated for each 

scenario in the following results. 

Table 26. BP forecasting results of wind power and average scaled generation values. 

Ave_Obs Ave_Forecast MAE RMSE Ave_5% Ave_20% 

345.468KW 347.290KW 188.135 230.269 11.788MW 47.153MW 
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Figure 36. Time series plots of observations and BP forecasts. 

5.3.3. Bidding for scenarios with 5% wind power 

For the scenarios with the low (5%) wind penetration level, the simulated auction results 

for the WGenCo are summarized in Table 27. It can be seen that based on the same BP 

forecasting results, the total net earning of the WGenCo with the adoption of learning algorithm 

is $397,945, which is around 1.54 times more than the net earnings without GenCo learning 

($156,629). This clearly shows the advantage of GenCo learning. It should be noted that the total 

quantity settled by the ISO for the case with learning is less than that without learning.  
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Table 27. Auction results for the WGenCo at 5% wind penetration level. 

Scenarios 
Qty_Gen 
(MWh) 

Qty_Se 
t(MWh) 

Ave_LMP 
($/MWh) 

Tot_NE 
(103$) 

Tot_NE_P 
(103$) 

No_Learning 
8724.241 

6337.20 19.476 156.629 169.701 

Learning 5037.200 49.556 397.945 429.587 

 

Figure 37 illustrates the quantities of wind power settled by the ISO during the last five 

simulation days, for the cases both with and without learning. It is observed that without learning, 

the wind power could be either sold at a high amount or no power could be settled by the ISO. 

However, the LMPs determined for the case with learning are comparatively higher than those 

without learning. For example, in terms of the average value, the LMP at bus 30 for WGenCo 

with learning is $49.556/MWh, which is around 1.54 times more than the one obtained without 

learning ($19.476/MWh). This explains why the total net earnings with the adoption of learning 

are still much more than those obtained without learning.  
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Figure 37. Quantities settled for last five simulation days. 

Besides, it can be seen that the net earnings based on the wind power forecast with 

forecasting errors is less than the one that could be earned in the “perfect” case. To be exact, if 

the future wind generation were perfectly available, without learning, the WGenCo’s total net 

earnings could be $169,701, which is about 8.3% more than current one ($156,629). For the 
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cases with the adoption of GenCos learning, the improvement could be around 8.0% as well. 

Both indicate that the forecasting errors could bring negative impacts on the maximization of the 

net earnings for the WGenCo.  

5.3.4. Bidding for scenarios with 20% wind power 

The simulated auction results for the scenarios at the 20% wind penetration level are 

summarized in Table 28. Again, the influences of GenCo learning and forecast errors can be 

observed from this table. For the case with learning, the WGenCo obtains a total net earning of 

$1,397,618, which is about 1.24 times more than that obtained from the case without learning 

($622,865), both based on the same BP forecast values. This advantage of GenCo’s adopting 

learning algorithms in optimizing its bidding strategy in the day-ahead electricity market can be 

directly observed from the average LMP as well. For instance, the average LMP of the case with 

GenCo learning reaches $43.454/MWh, about 1.24 times higher than that obtained in the case 

without GenCo learning ($19.405/MWh). Similarly, compared with the “perfect” case, the case 

based on the wind power forecast with errors, generates obviously less net earnings, either with 

or without the adoption of learning, indicating the negative impacts of forecasting errors. If the 

future real wind generation were perfectly available, without learning, the WGenCo’s total net 

earnings could be $676,499, which is about 8.6% more than current one ($622,865). For the 

cases with GenCos learning, this improvement could be around 8.2% as well. 

Table 28. Auction results for the WGenCo at 20% wind penetration level. 

Scenarios 
Qty_Gen 
(MWh) 

Qty_Set 
(MWh) 

Ave_LMP 
($/MWh) 

Tot_NE 
(103$) 

Tot_NE_P 
(103$) 

W/O learning 
34896.963 

21912.040 19.405 622.865 676.499 

W/ learning 17780.130 43.454 1397.618 1511.737 
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Besides, it could be observed that the quantities of wind power settled in all scenarios are 

less than the real wind generations. One possible reason lies in the simplification of using the 

daily average to represent the upper capacity of the WGenCo. It could be better to use the real-

time forecast value as the reference of the reported upper capacity instead of using the daily 

average value. Besides, after checking the physical constraint and local demand, it can be seen 

that the maximum capacity of the two branches, from bus 30 to bus 29 and bus 27, respectively, 

are both 30MW. This indicates that whenever the wind power is larger than 60MW, the surplus 

definitely cannot go through the power grid. Therefore, with the increased wind power 

installation, the WGenCos need to either broaden of the grid network or combine their wind 

generation with some other energy storage or conversion systems. 

Figure 38 illustrates the evolution of LMPs at bus 30 determined for the last day of each 

simulation scenario. It can be seen that without the adoption of learning algorithm, the WGenCo 

just simply bids on its real marginal cost function; and correspondingly, the LMPs at two 

penetration levels are almost the same. 
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Figure 38. Comparison of LMPs at bus 30 during the last simulation day. 

However, at each specific penetration level, with the adoption of GenCo learning, the 

corresponding LMP values increase significantly. In particular, it can be observed that overall, 
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smaller LMPs are achieved at the higher penetration level. Without learning, the average LMP at 

bus 30 (for WGenCo) with 20% wind penetration is only about 0.4% less than the one with 5% 

penetration level; with learning, the decrease will be slightly large, around 12.3%. This implies 

that a higher wind penetration level may help reduce the LMPs. However, it should also be noted 

that with a higher wind penetration level, other costs as well as the security concern could 

increase, which is not considered in current simulation scenarios though. The optimal penetration 

level by considering the balance of benefits and negative effects is an interesting topic worth 

further investigation. 

Besides, it should be noted that based on the agent-based models, the GenCos can learn 

from not only their own experiences but also their competitors and the entire market, even 

though part of such information is absent or not publicly announced. This is one of the typical 

advantages of agent-based modeling methods. During the bidding process, the WGenCo actually 

does not know the competitors’ reported capacity or marginal price information. However, with 

learning ability, the WGenCo can dynamically change and select the best actions within the 

action domains, Based on the newest prosperities, which are dynamically affected by the 

competitor’s bidding behavior as well as other market factors, the action of the highest 

probability to increase the WGenCo’s net earnings will be automatically selected. In other words, 

the learning module can automatically take into account the changes of the bidding environment 

which are affected by all market components including both the sellers and their competitors. 
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6. CONCLUSIONS AND FUTURE WORK 

This chapter mainly summarizes the findings and contributions of this dissertation. 

Besides, some meaningful topics and directions are suggested for future research. 

6.1. Conclusions 

Wind energy is becoming the world’s fastest growing source of clean and renewable 

energy. The predictability of wind generation is essential for both wind farm operations 

management and the integration of wind energy into the power system. This is highly related to 

accurate and reliable short-term wind forecasting, which remains a challenge due to the 

continuous temporal and spatial fluctuations of the wind resource. Therefore, adaptive and 

reliable modeling methods are urgently needed for accurate and reliable forecasts of wind speed 

and wind power. Meanwhile, with the ongoing electricity market liberalization as well as the 

increasing wind power capacity, wind generation companies are expected to directly trade the 

wind energy in the electricity markets. Another issue of particular importance for wind 

generation companies is how to maximize their net earnings by optimizing their bids in the 

gradually deregulated electricity market. However, the existing research efforts towards the 

above-mentioned two issues are still far from sufficient. This has directly stimulated this 

dissertation research. The research tasks conducted in this dissertation study, as well as the 

corresponding findings and contributions, are summarized as follows. 

First, after a thorough review on currently available forecasting methods, two types of 

time series forecasting models, Box-Jenkins models and artificial neural networks are 

investigated, implemented, and evaluated, respectively. A comprehensive study is firstly 

performed to evaluate and compare the forecasting accuracies of different Box-Jenkins models 

including AR, ARMA, and ARIMA, followed by a further study on the applications of three 
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typical kinds of artificial neural networks, namely, BP, RBF, and ADALINE, in performing 

short-term wind speed forecasting. The results indicate that for one-hour-ahead wind forecasting, 

no significant difference in the forecasting accuracies among the models studied. Especially, the 

results show that the forecasting performances of different models change from site to site, from 

time to time. This confirms the need of this study – multiple types of ANN models should be 

evaluated before the most suitable type can be determined. Also, it provides a useful reference 

for future research.  

Meanwhile, in many practical situations of the wind energy industry, a final single 

forecast that could take advantage of a set of plausible forecasts needs to be produced. For 

example, the forecasts from alternative forecast agencies should be used since there is not a 

superior agency. Meanwhile, the forecast agencies themselves might make forecasts for the 

client by adopting alternative models or procedures such as different ANN models. In order to 

provide a single forecast, the agency needs to combine all the available information. Therefore, it 

is apparent that an efficient forecast combination procedure might be of great importance for 

wind speed forecast. In view of this, after a survey over various methods applied in other 

research fields, the adaptive Bayesian model averaging based modeling method is adopted and 

investigated. 

The BMA algorithm is, for the first time, adopted for modeling long-term wind speed 

distribution. The results reveal that while no single candidate distribution in the model space 

universally outperforms others in estimating the wind distributions, whereas the BMA PDFs, 

derived by averaging many candidate models with their posterior model probabilities, are always 

suitable for describing the wind speed distributions with high accuracy. In this way, the BMA 

approach could provide a unified solution for statistical modeling of long term wind speed 
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distribution with high reliability and robustness. By applying this approach, the confusion of 

using traditional goodness-of-fit metrics for model evaluation can also be avoided. If more than 

one distribution is considered plausible, the BMA model will include all the plausible models 

into its PDF. In the cases where only one outperforming model exists according to the posterior 

probability, the BMA PDF will overlap with that distributional PDF. The findings together with 

the proposed model could benefit the users greatly in wind farm siting, long-term wind potential 

estimation, etc. 

Motivated by this success, we further apply the BMA method to improve the short-term 

wind speed forecasts of typical neural network models. It is discovered that the preferred choices 

of ANN models (in terms of type and optimal parameters) are inconsistent with different 

performance metrics and vary from site to site. In other words, none of the models are 

universally superior to others. However, by applying the proposed two-step forecasting method 

to the candidate models, one single time series of forecasts are derived. Especially, the BMA 

model always performs well for different sites, demonstrating its capability of being highly 

adaptive and robust. This contribution could benefit the industry in the operation of wind farms 

and the integration of wind energy into the power systems. As a result, risks due to forecast error 

can be minimized. 

Finally, to analyze the effects of the forecasting accuracies of wind power on the bidding 

strategy optimization or the maximization of selling wind power in the electricity markets, we 

conduct two agent-based simulation studies on bidding wind power in a day–ahead electricity 

market with either single-sided or double-sided auction protocols, by using the point estimation 

of hourly wind generation. Two wind penetration levels, low (5%) and high (20%), are also 

investigated and compared, respectively. Under the assumed market and system settings, it is 
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found that (1) generally, higher forecasting accuracy of wind power generation can lead to higher 

net earnings for the WGenCo; (2) applying learning algorithms can help increase the net earnings 

of the day-ahead electricity market participants; (3) increasing wind penetration level could help 

reduce the market clearing price; and (4) the agent-based modeling approach can provide 

insights for the interactions among different market structures and influence factors. 

6.2. Future Work 

While the wind installation capacity keeps increasing and the electricity market 

continuously experiences reconstruction or liberalization, both issues studied in this dissertation 

still remain as hot challenging research topics. 

As for the first issue on how to improve the short-term wind forecasting accuracy, the 

following directions and areas are of high interest and importance. 

• Applying BMA and other Bayesian methods: As reviewed in (Li and Shi, 2012), 

Bayesian methods provide powerful tools for short-term wind forecasting as well as 

for solving other issues during the wind energy utilization process. However, the 

attention paid to this direction is far from enough. One possible reason is that 

Bayesian methods usually involve large complexity and computations. Along with 

the development of high-speed computation technology, this will not be the 

obstacle any longer. Meanwhile, it is also attractive to include different types of 

component models in applying BMA method. Currently, the model space only 

contains time series based models. However, other types of models, e.g., physic 

models can also be included if possible. 

• Developing advanced artificial intelligence models and novel training algorithms: 

Currently, some advanced artificial intelligence models have been proposed and 
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successfully employed in other application areas. Therefore, it is attractive to 

introduce them into the area of wind forecasting so as to further improve the 

forecasting accuracy. Meanwhile, for ANN models currently applied in this area, 

some advanced training algorithms are expected to improve models’ convergence 

speeds or deal with such problems as over-fitting, non-convergence, etc. 

• Developing new hybrid models: One way is to integrate currently available models, 

e.g., using the output from the physical models as the inputs of statistical models so 

as to improve the forecasting accuracy. Another method is borrowing ideas from 

other research areas. 

• Forecasting wind power over a large area: Examining larger areas might result in 

better overall forecasts since the wind forecasting errors or the wind power 

variations between different wind turbines distributed over a large area could 

usually compensate or cancel out to some degree. This has been demonstrated in 

several studies (Focken et al., 2001; Holttinen, 2005; Ostergaard, 2008). Along with 

the rapid development of wind power, this area is to be further investigated.  

As for the second issue on how to optimize the WGenCo’s bidding strategy in the 

electricity market, since the electricity wholesale market is still under reconstruction, many 

interesting and meaningful issues related to bidding optimization under various possible market 

designs should be investigated and tackled, which include, but are not limited to, the following 

topics: 

• Bidding with probabilistic wind forecasts: The application of probabilistic wind 

forecasts has demonstrated its effectiveness in optimizing the bidding strategy in 

some literature. However, such researches are expected to be further carried out. 
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Due to the limitation of resources, this part has not been investigated. A preliminary 

cast study based on the BMA forecast indicates that this direction can be a great 

research topic in the near future. 

• Bidding under double-sided auction mechanism: Allowing the buyers as well as the 

sellers to submit their competitive bids, double-sided auctions are commonly 

regarded as a better setting for deregulating the electricity markets. However, 

bidding under such settings may also face with increased uncertainty and risks, and 

this calls for quantitative modeling analysis. 

• Bidding under different market prototypes: Various electricity market structures are 

being designed and tested to ensure free access, fair competition, high efficiency, 

and systems security and reliability. The analysis on GenCos’ strategic bidding or 

market power is important for the market design efforts. 

• Bidding under PAB auction rule: Bidding strategy under the discriminatory pricing 

rule has its advantages and disadvantages in deregulating the market. However, the 

relevant research efforts are still far from enough. 

• Bidding in hybrid or combined markets: The hybrid market often exists in which 

electrical energy is traded together with spinning reserves simultaneously or in the 

presence of future contracts and bilateral contracts. Also, with the combination of 

day-ahead, hour-ahead, and real-time markets, many reconstructed electricity 

markets allow the participants to update day-ahead supply offers and purchasing 

bids before the actual delivery. Besides, the future electricity markets, by 

combining the wholesale and retailing markets, should allow the end users to bid in 
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the markets directly. Bidding optimization in the combined markets will be a 

significant topic for research.  

• Advance in modeling methods and algorithms: To better represent the transaction 

behaviors in complex electricity markets, the shortcomings of each method should 

be overcome by continuously pushing for new theoretical developments. 

• Bidding cooperatively or with internal control strategy: Without affecting the 

oligopolistic nature of the deregulated electricity market, locational GenCos, 

especially for those owning different generation resources, could bid in the market 

cooperatively. For example, a WGenCo can cooperate with neighboring WGenCos 

or other type of GenCos, or the WGenCo can adopt some internal balancing 

strategies, e.g., integrating the wind generation with storage technology. The effects 

of such cooperative bidding strategies or internal controls should be further 

investigated. 

• Risk management under uncertainty: To deal with the risks of bidding under the 

uncertainty in demand, price and production, different risk control measures and 

operational scenarios need to be investigated. This is especially important for those 

renewable GenCos with distributed and intermittent productions. For instance, 

besides the uncertain load and electricity price, the wind generators should also 

consider the uncertain wind generations before submitting their supply offers to the 

electricity markets. 
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