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ABSTRACT 

Biobased fillers in thermoplastics have seen increased usage over the last several years. 

The increased usage of biobased fillers follows the ever-increasing thrust to reduce 

petroleum and synthetic petrochemical product consumption. Biocomposites made from 

polyolefin matrices have shown improved elastic moduli with moderate impact on strength. 

For engineering thermoplastics, the increased processing temperatures lead to degradation 

of the biomass, often detrimental for the mechanical performance. The goal of this work 

was to evaluate the effectiveness of agricultural byproducts as fillers in polyamides, while 

minimizing the effects of increased processing temperatures. Torrefaction has been 

identified as an effective means of preparing biomass for introduction into polyamide. 

Polyamide biocomposites were produced and shown to have comparable mechanical 

properties to the neat matrix. Torrefied biomass was shown to produce tensile strengths 

within 70% of the neat matrix, increase elastic modulus by 150%, flexural strength by 

170%, and flexural modulus by 154%. 
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CHAPTER 1.  INTRODUCTION 

Over the last decade the use of biobased materials as fillers in thermoplastics has seen a 

remarkable increase. The low cost to density ratio coupled with improved mechanical 

properties and processing conditions, have led to the increased acceptance of natural fibers 

as replacements for traditional synthetic fibers [1–6]. It is well known from previous work 

that adding natural fiber reinforcements to commodity polyolefin matrices (i.e. 

polyethylene, polypropylene, etc.) will in general increase the elastic modulus, decrease the 

tensile strength, increase the flexural performance, and decrease the impact resistance of 

the material. By adding reinforcements to the neat matrix, these rigid impurities in the 

material prevent the polymer chains from sliding past one another, thus causing an increase 

in modulus, a decrease in tensile strength, and induced brittle failure. The filler can be 

considered as the impurities in the biocomposite because of a lack in interfacial bonding 

between the filler and matrix. The lack of interfacial bonding comes from the mismatch in 

polarities between the matrix and filler; the matrix generally being hydrophobic and the 

filler being hydrophilic. However, these imperfections are the cause of increased elastic 

modulus by impeding the molecular chain movement within the polymer. They are also the 

cause of increased flexural performance and decreased impact resistance. In polyolefin 

matrices it has been determined the use of a compatibilizer can aid in improving the 

interfacial bond between filler and matrix. While the focus has thus far been on producing 

biobased composites out of commodity polyolefins or bio-derived resins, little work has 

been done in the realm of engineering thermoplastics [1-2, 4–7]. 
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1.1. Polyamide Composites 

For many years the increased rigidity, good resistance to creep, improved wear 

resistance, and increased heat deflection temperatures of polyamide composites have been 

used to replace metals in a vast array of applications. Due to the increased processing 

temperatures of polyamides only thermally stable fillers such as fiber glass, carbon fibers, 

and minerals have been used. Of all the fillers used in polyamide composites, fiber glass is 

the most common. It was estimated in 2003 that 200,000 tons of glass filled polyamides are 

used every year [8–9].  

The fastest growing use of polyamides is accredited to the automotive industry. Since 

the discovery of polyamides in 1939 the automotive industry has used it to replace weight 

expensive metals parts, with an immediate implementation for self-lubricating bearings 

after its introduction at that year’s World’s Fair. Initially designers limited the use of 

polyamides to non-critical components due to a lack of information on how polyamides 

performed in harsh environmental conditions [10–11].  

The 1960s brought about an increased use of polyamides in cars, with an average of 0.4 

pounds of polyamide per vehicle. The introduction of glass and mineral filled polyamides 

around 1968 changed the mindset of designers, who began designing polyamide radiator 

and fuel system components. An enhanced understanding of the high temperature 

performance and chemical resistance of polyamides along with government regulations for 

pollution control, pushed the consumption of polyamides and polyamide composites even 

higher in the 1970s. An average of 2 pounds of polyamide was in every car. It wasn’t until 

the 1980s that polyamides and their composites were really trusted for high performance 

components, such as air intake manifolds, and was consistently used across all lines of 
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vehicles. The polyamide and polyamide composite content of cars jumped to an average of 

8.8 pounds by 1995, including general acceptance of polyamide air and cam manifolds, and 

the United States automotive industry alone consumed 212 million pounds polyamides. 

This wide acceptance of polyamides in vehicle design made it the largest used engineering 

thermoplastic in the automotive industry. By 2000 every car contained on average 11.06 

pounds of polyamides and polyamide composites an increase of 30% from the introduction 

of polyamides automotive parts in 1960 [10–11].  

1.2. Polyamide Biocomposite Production 

For engineering thermoplastics, the increased processing temperatures cause 

degradation of the natural fiber. This degradation is the breakdown of hemicellulose (220 - 

320 °C), fats, residual waxes, etc. leaving behind the cellulose and lignin that do not fully 

degrade at these temperatures [12]. While the natural fiber does not degrade completely, 

volatiles deposited on the fiber surface are enough to hinder mechanical performance of the 

composite. One method of preventing the degradation of biobased fillers is to decrease the 

amount of time the filler is exposed to the increased temperatures. There have been several 

attempts at nylon biocomposites in which the biobased fillers were introduced in a manner 

that minimized the exposure time. Compression molding with a 2.5 minute cycle time to 

minimize the degradation of the filler and an extrusion process that introduce filler down-

stream just before the die are all methods of reducing filler degradation [1, 3].  

The introduction of Curauá fibers, the leaves from a tropical fruit much like the 

pineapple, during a twin screw extrusion process was shown to be successful in reinforcing 

polyamide 6 when the fibers were introduced just before the die. An intermeshing co-
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rotating screw was used for this work and a temperature profile from feeder to die of 215, 

220, 225, 230 °C was used. A fiber loading of 20 wt% was achieved during this extrusion 

process, however, the tensile and flexural properties fell short of the traditional glass or talc 

filled polyamide 6 (PA6) composites. Table 1.1 shows mechanical properties of the 20 

wt% filled polyamide composites. The tensile strength of the Curauá filled polyamide 

displays an 18% drop below the traditional glass filled polyamide. However the Curauá 

filler does show improved tensile strength over the talc composite. Thus the Curauá filled 

polyamide biocomposites are viable replacements for certain applications where glass or 

talc filled composites are currently used [3]. 

Table 1.1: Tensile, Flexural, and Density Comparison of 20 wt% Curauá, Glass, and 

Talc Filled Polyamide 6 Composites [3] 

Filler 

Tensile 

Strength 

(MPa) 

Tensile 

Modulus 

(GPa) 

Flexural 

Strength 

(MPa) 

Flexural 

Modulus 

(GPa) 

Impact 

Toughness 

(kJ/m
2
) 

Density 

(g/cm
3
) 

±0.01 

PA6 63 ± 1 1.3 ± 0.1 95 ± 1 2.2 ± 0.1 10 ± 1 1.13 

Curauá 83 ± 3 5.1 ± 0.4 116 ± 2 3.7 ± 0.1 9 ± 2 1.18 

Talc 73 ± 1 6.7 ± 06 114 ± 2 4.4 ± 0.1 9 ± 2 1.27 

Glass 101 ± 1 6.5 ± 0.5 160 ± 5 5.0 ± 0.1 7 ± 1 1.27 

 

A second method of limiting natural fiber exposure during processing is to utilize 

compression molding. Polyamide 6 fibers and wood fibers were combined and pressed into 

rectangular plaques using 50 kN of force at a temperature of 230 °C. The composite 

plaques were held under pressure at temperature for 2.5 minutes. Filler loadings of 2.5, 5, 

7.5, and 10 wt% were achieved using the compression molding process. Table 1.2 

summarizes the tensile properties measured from the compression molded specimens. It 

can be seen from the table that the incorporation of wood fiber into the polyamide matrix 

increased the tensile modulus by as much as 42% over the neat polyamide 6. The tensile 

strength also showed improvement with added wood fiber by as much as 53% [1]. 
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Table 1.2: Tensile Properties of Compression Molded Polyamide Wood Composites [1] 

Wt% Tensile Strength (MPa) Tensile Modulus (GPa) 

0 30 1.9 

2.5 46 3 

5 40 2.6 

7.5 31 2.4 

10 34 2.7 

 

In both the Curauá and wood fiber studies, the biocomposites produced showed 

improvements on both tensile and flexural properties. In a polyolefin biocomposite the 

tensile strength generally decreases due to the poor fiber-matrix interactions. For a 

polyamide based biocomposite the interfacial bond between fiber and matrix is stronger. 

Polyamides are more hydrophilic as compared to polyolefins which make their inherent 

compatibility with very hydrophilic biomass better. Without the need of an added 

compatibilizer to strengthen the fiber-matrix bond polyamide biocomposites are more 

economically appealing than polyolefin biocomposites [1, 3]. 

While the cost savings of replacing an expensive plastic such as polyamide with 

inexpensive fillers is appealing, moisture uptake is a concern. The hydrophilic nature of 

polyamide, while good for aiding in fiber-matrix bonding, is detrimental to maintaining 

mechanical integrity in harsh environmental conditions. Moisture is absorbed through the 

amorphous regions of polyamides and begins to modify the structure. Interchain hydrogen 

bonds begin to weaken as a result of absorbed moisture. This softening of bonds allows 

increased chain movement in the polymer, thus decreasing glass transition temperature and 

decreasing mechanical integrity. Figure 1.1 shows the chemical structure of polyamide 6 

and 6,6. The interaction of water molecules and polyamides occurs between the carbon 

oxygen double bonds and nitrogen hydrogen bonds where hydrogen bonding occurs 

between polymer chains. This hydrogen bond is what limits the chain movement in dry 
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polyamides. Figure 1.2 shows the interaction of water molecules in more detail, the red 

circles indicate the water molecules that have weakened the chain to chain hydrogen 

bonding [13]. For a greater acceptance of polyamide biocomposites, the issues of fiber 

degradation and moisture absorption need to be addressed. 

 
Figure 1.1: Chemical structure of polyamide 6 (top) and polyamide 6,6 (bottom). 

 

 
Figure 1.2: The interaction of water in polyamides [13]. 

1.3. Chemically and Thermally Modified Fillers 

Chemical modification of wood dates back to 1928 and is simply defined as covalently 

bonding molecules to reactive sites along the cell wall polymers of wood. While there is an 

array of chemicals suitable for chemical modification of wood fibers, the acetylation 

process using acetic anhydride is the most common. In 1928 the first acetylation of pine 

wood was performed with acetic anhydride and sulphuric acid catalyst to isolate lignin. The 
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acetylation of beach wood later in 1928 showed that through the isolation of lignin the 

hemicellulose present in the wood could be removed. Then in 1946 it was discovered that 

the acetylation of wood could prevent swelling during moisture absorption [14].  

While the acetylation of wood has been well studied over the years the process can also 

be applied to many biobased fibers. Acetylation is a chemical reaction that replaces one 

hydroxyl group in the biobased fiber molecule with an acetyl group from the acetic 

anhydride. Figure 1.3 shows the chemical reaction between natural fibers and acetic 

anhydride. The acetylation process is very simple; fibers are washed in acetic anhydride 

while heat is applied then dried before being processed into biocomposites. As Figure 1.3 

shows, the by-product of acetylation with acetic anhydride is acetic acid, a flammable 

irritant that has harmful vapors [14–18]. The addition of acetylated fiber has shown to 

improve the dimensional stability, hydrophobicity, and interfacial shear strength in polymer 

matrix biocomposites [15–18]. 

 

Figure 1.3: The chemical reaction that occurs during acetylation of natural fibers using 

acetic anhydride [18]. 

 

While acetylation will sufficiently modify the surface of natural fibers to improve 

mechanical performance over untreated fibers, the use of harsh chemicals can be 

undesirable. A more recent process known as thermal modification has shown to be 

promising at eliminating the need for harsh chemicals while maintaining the desired 

improvements of fiber modification. Thermal modification much like the acetylation 
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process is done at elevated temperatures, around 200 °C for several hours, but in an 

atmosphere low in oxygen content. At 140 °C the degradation of natural fibers begins to be 

significant when exposure times are lengthy. In an atmosphere low in oxygen the 

hemicellulose, and to a small extent the amorphous cellulose, begins to break down. It is 

not until the temperatures reach 230 °C that the amorphous cellulose decomposition 

becomes significant. Due to the low temperature of thermal modification the thermally 

stable crystalline cellulose will not see any structural changes. When added to polymer 

matrices, thermally modified fibers have been shown to improve the dimensional stability, 

hydrophobicity, and interfacial shear strength over untreated fibers [11, 12, 14]. However, 

as thermal modification is only conducted at 200 °C, well below the process temperatures 

of most engineering thermoplastics, a more aggressive method such as torrefaction must be 

employed before natural fibers can be introduced into engineering thermoplastics. 

1.4. Torrefaction 

Torrefaction, traditionally used to produce alternative energy sources, is a 

decomposition and densification process that removes low weight energy-light constituents 

from biomass. Three distinct phases are created during the torrefaction process: a solid 

carbonized mass, an acidic liquid phase, and syngas. One advantage of the solid by-product 

of torrefaction over untreated biomass, for the energy sector, is the production of a more 

homogeneous, dry lignocellulosic material high in energy content. Another advantage is 

the ability to store torrefied biomass for extended lengths of time without any concern of 

bacterial growth or biodegradation due to environmental exposure. The ability to store 

torrefied biomass for extended periods of time stems from the increased hydrophobicity of 
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the fiber. Although torrefaction of biomass has been studied extensively over the last 

several years, the exact chemical reactions occurring during the process are still unclear. It 

has been shown that the breakdown of hydroxyl groups on cellulose microfibrils is the 

cause of increased hydrophobicity [12], [20–25]. 

The solid by-product of torrefaction can be used in the traditional gasification or co-

firing processes for electricity production, but its heating value is lower than that of 

traditional coal. However, it also has the potential to be used in biocomposite production 

with high temperature thermoplastics such as polyamide. The increased hydrophobicity 

being a potential solution for the moisture absorption issues discussed earlier with 

polyamide biocomposites. The syngas produced during torrefaction can potentially be 

burned to power the next torrefaction process making it self-sustaining after the initial 

torrefaction run.  

As discussed with thermally modified fillers, natural fibers begin to significantly 

degrade at 140 °C when exposure times are lengthy. The major difference between the 

thermal modification and torrefaction is temperature range. Torrefaction is traditionally 

done in the range of 225-300 °C in an inert atmosphere for several hours. The length and 

temperature chosen for the process will determine the degree of torrefaction of the fibers. 

As with the thermal modification the hemicellulose, fats, waxes, and other low degradation 

point constituents within the fibers are driven off yielding a biomass consisting of mostly 

crystalline cellulose, degrading between 300–375 °C, and lignin, degrading slowly over 

250–500 °C [15–16]. In the mild degradation during thermal modification the amorphous 

cellulose saw minor structural changes; torrefaction will degrade the amorphous cellulose 

to a higher degree and begin to mildly degrade the crystalline cellulose.  
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While certain constituents are being stripped form the biomass all together, the 

remaining constituents are undergoing some molecular changes. As the temperature at 

which torrefaction is conducted increases, the amount of char produced from the remaining 

lignin and cellulose also increases as seen in Figure 1.4. Part A of Figure 1.4 shows the 

chemical characteristics of the components within natural fiber and part B shows the 

components of the solid torrefaction by-product or char. There are four distinct char 

regions depending on the torrefaction temperature. Transition char results from the mildest 

torrefaction. In this region the lignin begins to de-polymerize, the amorphous cellulose sees 

significant degradation, crystalline cellulose begins to see molecular changes, and char 

begins to form. The next degree of torrefaction yields amorphous char. In this region the 

amorphous cellulose and lignin are completely degraded and very little crystalline cellulose 

remains. The most severe degrees of torrefaction occurring above approximately 400 °C 

have stripped all forms of cellulose and lignin from the fibers. At these temperatures 

turbostatic crystallites form and continue to grow with increased temperature, but the char 

does not reach the order or crystallinity of graphite [21].  

As crystalline cellulose is the component within natural fibers that reinforces 

biocomposites, maximizing the survival of this component during torrefaction is critical to 

producing viable filler for polyamide biocomposites. For this reason the bulk of this work 

will focus on the production of transition char; more specifically the production of 

transition char that contains little to no hemicellulose. As it would be impractical to 

conduct the torrefaction of biomass for commercial composite production using thermal 

gravimetric analysis another method of determining the degree of torrefaction is needed. 
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Figure 1.4: Char characteristics and constituent break down at varying temperatures of 

torrefaction measured by thermal gravimetric analysis [21]. 

 

Knowing which of the constituents present in a biomass feed stock will be stripped 

form the fibers during torrefaction will indicate how much mass should be lost during the 

process. Calculating the percent yield of a torrefaction process will indicate the degree to 

which it was torrefied. This first requires knowing the break down by mass percentage of 

the various constituents present in biomass feedstock. There are many ways of determining 

the constituent makeup of a biomass feedstock, for this work wet chemical analysis was 

employed. As lignin and cellulose are the primary constituents remaining after torrefaction, 

the addition of their mass content will indicate how much of the biomass weight should 

remain after a successful process. Fourier transform infrared spectroscopy (FTIR) can also 

be used to indicate the changes to chemical bonding due to the torrefaction process.   
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CHAPTER 2. OBJECTIVES 

Biobased fillers in thermoplastics have seen a remarkable increase in usage over the 

last several years. The increased usage of biobased fillers follows the ever-increasing thrust 

to reduce petroleum and synthetic petrochemical product consumption [1–5]. Biocomposite 

research has been well established in polyolefins and thermoset matrices. However, the 

incorporation of biomass into engineering thermoplastics is a challenge. The increased 

processing temperatures lead to filler degradation, hindering the mechanical performance 

of the biocomposite. By pretreating the filler, the constituents with degradation 

temperatures below the processing temperatures of engineering thermoplastics can be 

modified. The first objective of this work is to identify a viable method of pretreating 

natural fibers for introduction into engineering thermoplastics. The second objective is to 

produce and evaluate the effectiveness of the pretreated fiber as reinforcement in 

engineering thermoplastic based biocomposites.  

The automotive industry, the single largest consumer of polyamides, is becoming a 

proponent of greater utilization of biobased materials [10]. This effort makes the addition 

of biobased fillers in engineering thermoplastics attractive for applications such as under-

the-hood shrouds. The incorporation of biobased fillers into the most consumed plastics 

can truly help offset the use of petroleum, while maintaining the mechanical integrity of 

manufactured parts. Furthermore with the right pretreatment, the incorporation of biobased 

fillers into engineering thermoplastics, traditional higher cost materials, the price of final 

goods could be reduced. 
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2.1. Experimental Goals 

 Identify a viable pretreatment method to remove constituents within natural 

fibers with low degradation points.  

 Pretreat various natural fibers and melt compound with engineering 

thermoplastics. 

 Evaluate the thermo-mechanical properties of the engineering thermoplastic 

based biocomposites. 

2.2. Analytical Goals 

 Compare pretreatment results to determine the efficiency of the pretreatment on 

the various biomass feedstocks.  

 Compare the thermo-mechanical property results of the engineering 

thermoplastic based biocomposites to those of the neat matrices to determine 

the effectiveness of the pretreated fiber as reinforcement in engineering 

thermoplastics. 

2.3. Intended Outcome 

The purpose of this work was to develop a viable method of pretreating natural fibers to 

remove constituents having low degradation temperatures, such that it could withstand the 

elevated processing temperatures of engineering thermoplastics. 
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CHAPTER 3. MATERIALS AND PROCESSING 

In this work the materials used were chosen due to current commercial usage and local 

supply. The polymers used are some of the most widely used materials in commercial 

production which provides a broad application base for the biocomposites produced 

throughout this work. Natural fibers were chosen based on the local agricultural waste 

streams available. One of the goals for this work was to produce a high melting 

temperature biocomposites using traditional production methods. In this section are the 

material specifications and processing procedures utilized throughout this work.  

3.1. Polyamide 

Due to their abundant usage in commercial applications, polyamide 6 (PA6) and 

polyamide 6,6 (PA66) were used for this work. Both PA6 and PA66 were obtained from 

PolyOne, Avon Lake, Ohio. Ultramid 8202 manufactured by BASF Corporation, a low 

viscosity general purpose homopolymer was chosen for the PA6. Ultramid 1000-11 NF 

2001 manufactured by BASF Corporation, a general purpose homopolymer was chosen for 

the PA66. Table 3.1 shows the published material properties for the two polyamides. Both 

grades of polyamide have comparable material properties with the largest difference 

coming in the melt temperatures. Choosing two materials with similar mechanical 

properties will allow the effects of varying processing temperatures to show in the 

biocomposite testing results.  
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Table 3.1: Material Properties for the Two Polyamides Used in this Work 

 

Melting 

Temperature 

(°C) 

Density 

(g/cm
3
) 

Elastic 

Modulus 

(GPa) 

Tensile 

Strength 

(MPa) 

Flexural 

Modulus 

(GPa) 

Flexural 

Strength 

(MPa) 

Impact 

Toughness 

(J/m) 

PA6 464 – 545 1.13 2.7 79.0 2.8 108.0 58.0 

PA66 536 - 581 1.14 3.0 83.0 2.9 117.0 53.0 

 

3.2. Biomass 

For this work two biomasses have been chosen based on the available agricultural 

waste streams in the Fargo, North Dakota area. As North Dakota is one of the leading 

growers of sunflowers in the country, there is a natural waste stream from commodity 

processors in the area processing the seeds of the sunflower into consumer goods. During 

commodity processing, the seeds of the sunflower are removed from the flower and roasted 

for human consumption, packaged for bird or pet feed, or the protective hull is removed so 

the seed can be processed into oil, butter, roasted for consumption, etc. The hulls or shells 

of the seeds removed during the commodity processing have very low nutritional value; 

hulls can be substituted at no more than 20% of the feed for livestock. As the demand of 

hulls for the purpose of livestock feed is low, the waste stream is abundant and inexpensive 

[26]. Figure 3.1 shows the sunflower hulls as received from Red River Commodities, 

Fargo, North Dakota. 

The second biomass chosen for this work is flax shive. Flax shive, unlike the outer 

protective nature of the sunflower hull, comes from the central woody core of flax stalk. 

Figure 3.2 shows a scanning electron microscopy image of a flax stem. The arrows point to 

the cuticle or protective outer layer of the flax stem. The area labeled F is the bast fiber 

which makes up flax fiber, underneath this is the cellulosic woody core of the stem, labeled 

area C, where shive comes from. Flax shive is a byproduct of flax fiber production. Flax 
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straw left on the field after flax seeds are harvested goes through a decortication process to 

remove flax fiber. By-products of decortication are then passed through sieves to remove 

any short fibers or seeds remaining and to sort out the various sizes of shive. The larger 

shive fractions are typically used as bedding for horses and the smaller fractions are used 

for biofuels and composite manufacturing. The flax shive used in this work was obtained 

from Flax Stalk Natural Fiber Solutions a subsidiary of Schweitzer-Mauduit International, 

Winkler, Manitoba, Canada. The as received flax shive can be seen in Figure 3.3. 

Wet chemical analysis was performed by the Animal Sciences Department at North 

Dakota State University to determine the constituent makeup of the sunflower hulls and 

flax shive. AOAC standard 930.15 was used in dry matter determination, AOAC standard 

920.39 was used to determine crude fat, and AOAC standard 2001.11 was used for the 

determination of crude protein. The USDA Agricultural Handbook No. 379 was followed 

for the analysis of neutral detergent fiber, acid detergent fiber, and acid detergent lignin. 

The constituent breakdown of the fibers used in this work can be seen in Table 3.2. 

 
Figure 3.1: Sunflower hulls as received from commodity processors (right) and ground. 
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Figure 3.2: SEM image of a flax stem [27]. 

 
Figure 3.3: Flax shive as received from commodity processors. 

Table 3.2: Constituent Breakdown for the Biomasses Used in this Study, All Numbers 

Are Weight Percentage. 

Biomass Lignin Cellulose 

Hemi-

cellulose Moisture Ash Starch Calcium Phosphorus 

Crude 

Fat 

Crude 

Protein 

Sunflower 

Hull 22.4 39.8 15.1 7.1 2.7 0.6 0.3 0.17 7.0 5.3 

Flax 

Shive 21.1 40.2 16.8 5.2 2.8 0.7 0.2 0.01 0.3 2.3 
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3.3. Torrefaction 

As-received biomass was torrefied using a Lucifer model 7021-GT-E high temperature 

convection furnace. The chamber size for this furnace was 0.25 m wide, 0.27 m tall, and 

0.51 m deep. The size of the chamber limited the amount of biomass that could be torrefied 

at one time. To prevent combustion of the biomass during the heating process an inert 

atmosphere was maintained using argon gas at a flow rate of approximately 5 psi/min. The 

biomass was heated to 300 °C and held at temperature for 8 hours. After the 8 hour 

torrefaction time the biomass was allowed to cool to room temperature while the inert 

atmosphere was maintained. After the torrefaction process, the torrefied flax shive (TFS) 

and sunflower hulls (TSFH) were stored in air tight containers until biocomposite 

processing was conducted. No fractionation of the TFS was done prior to biocomposite 

production. TSFH were fractionated using a blender prior to biocomposite processing. 

Figure 3.4 shows an example of biomass before and after the torrefaction process. Samples 

of the torrefied biomass were analyzed for moisture content prior to composite processing, 

moisture was undetected.  

3.4. Twin Screw Extrusion 

The biocomposites for this work were compounded using a Leistritz Micro-18/GL-

40D, co-rotating twin-screw extruder. All torrefied fillers and polymer matrices were dried 

overnight at 80 °C in a convection oven. The polymer matrices, PA6 and PA66, were first 

dry blended with the torrefied biomass, TFS and TSFH, based on weight percentage. Three 

varying weight percentages were used for each biomass, 10 wt%, 20 wt%, and 30wt%. A 

temperature profile of:  193, 210, 216, 227, 238, 232, 227 °C starting at the feeding zone 
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and ending with the metering zone was used for PA6. For PA66 a temperature profile of: 

236, 252, 258, 269, 280, 274, 269, 269 °C was used. The extruded biocomposites were 

water cooled, pelletized, and dried overnight at 80 °C in a convention oven prior to storing 

for injection molding.  

 
Figure 3.4: The differences between torrefied biomass (left) and untorrefied biomass. 

3.5. Injection Molding 

The pelletized biocomposites were dried at 80 °C overnight in a convection oven prior 

to injection molding. A Technoplas, Inc. Model Sim-5080 injection molder was used for 

injection molding. The Technoplas molder has a single screw with four heating zones plus 

the injection nozzle. Temperatures for these zones from feeding zone to nozzle were: 260, 

271, 277, 277, 277 °C was used for PA6. For PA66 a temperature profile of: 271, 282, 293, 

299, 304 °C was used. Geometries of the final specimens were dog bones and rectangular 

bars approximately 3.2 mm thick. 
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3.6. Specimen Preparation 

As stated in American Society of Testing and Materials (ASTM) testing standards the 

injection molded specimens were conditioned prior to mechanical testing. The specimens 

were placed in a Boekel dricycler for a minimum of 48 hours before testing was conducted. 

The specimens were then stored in the dricycler until all specimens were tested to ensure 

proper conditioned moisture content and temperature. 
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CHAPTER 4. EXPERIMENTAL PROCEDURES 

The ultimate goal of this work is to produce a polyamide biocomposite which exhibits 

improved mechanical properties to those of the base polymer. To evaluate the effectiveness 

of the torrefied filler in the polyamide matrix, a full mechanical and thermo-mechanical 

analysis was performed. This section describes all the procedures used to evaluate the 

biocomposites as well as the neat matrix. Unless otherwise noted, all testing was conducted 

at room temperature under laboratory standards.  

4.1. Tensile Modulus and Strength 

Tensile modulus and strength were evaluated according to ASTM standard D638, 

standard test method for tensile properties of plastics. An Instron Model 5567 load frame 

equipped with a 30 kN load cell was used for all tensile testing. An MTS model 632.35B-

200 extensometer was used to record strain during the first portion of the testing. Once the 

specimen reached 20% elongation, the test was paused while the extensometer was 

removed. Testing then continued until failure occurred or the load peaked and necking 

began. For each grade of material, five specimens were tested at a cross head rate of 5 

mm/min. Tensile modulus was calculated using the extensometer readings and tensile 

strength was recorded as the maximum stress achieved. 

4.2. Flexural Modulus and Strength 

Flexural modulus and strength were determined according to ASTM standard D790, 

standard test methods for flexural properties of unreinforced and reinforced plastics and 

electrical insulating materials. The Instron load frame described above was also used for all 
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flexural testing. For each grade of material, five specimens were tested using 3.2 mm 

diameter loading and support pins. Flexural strength was recorded as the maximum stress 

achieved and flexural modulus was calculated from extension readings.  

4.3. Impact Toughness 

ASTM standard D256, standard test methods for determining the Izod pendulum 

impact resistance of plastics, was used to evaluate the impact toughness of the 

biocomposites. A pendulum weight of 4.497 N was used, following procedure A . Each 

specimen was notched with a 2.54 mm notch prior to testing using a Veekay Testlab 

Veekay Notch Cutter. A total of six specimens were tested for each grade of material. 

Impact toughness was calculated using the energy absorbed by the specimen and the area at 

the notch region. In accordance with the ASTM standard any specimen with a crack 

propagation less than 90% of the width of the specimen were considered a non-failure. 

4.4. Immersion Density 

The densities of the materials being studied were determined using a Mettler Toledo 

33360 immersion density kit. All testing was conducted at room temperature in isopropyl 

alcohol to avoid any uptake of liquid during the testing. The density for each specimen (ρ) 

was calculated using the following equation: 

 

where mdry
 
is the dry mass of the specimen prior to immersion, mimmersed is the mass of the 

specimen when immersed in the fluid, and ρfluid is the density of the fluid. Six specimens 

were used to determine the density of each grade of material. 
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4.5. Moisture Uptake 

An Arizona Instruments Computrac 4000XL Moisture Analyzer was used to determine 

the moisture uptake of the materials. Specimens were soaked in distilled water for 24, 72, 

and 168 hour intervals. Adsorbed moisture was removed by towel drying the specimens 

prior to analysis. Each specimen was heated to 210 °C and while maintaining this 

temperature, mass loss was recorded. Once the mass loss slowed to 0.015% 

moisture/minute, the analysis was complete and the total mass loss measured was recorded 

as the total moisture absorbed. A total of three specimens were analyzed for each material 

grade at each soak length. To reduce the error from retesting specimens, a new specimen 

was used for each test. 

4.6. Dynamic Mechanical Analysis 

A TA Instruments Q-800 Dynamic Mechanical Analyzer (DMA) was used to 

determine the glass transition temperature of the materials. These tests were conducted 

according to ASTM standard D7028, standard test method for glass transition temperature 

of polymer matrix composites by dynamic mechanical analysis. Using a dual cantilever 

fixture, specimens were subjected to an amplitude of 20 µm at a frequency of 20 Hz while 

the temperature was raised at 3 °C/min up to 200 °C. The glass transition temperature was 

taken as the temperature at the peak of the tangent delta curve. Storage modulus was also 

studied. Figure 4.1 shows an example curve used to determine the glass transition 

temperature and storage modulus. A total of four specimens were tested for each material 

grade. 
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Figure 4.1: Example of a graph used to determine glass transition temperature. 

 

4.7. Heat Deflection Temperature 

A modified ASTM standard D648, standard test method for deflection temperature of 

plastics under flexural load in the edgewise position, was used to determine the heat 

deflection temperature of the materials. The ASTM standard was modified to use the TA 

Q-800 DMA with a three-point bending fixture installed. Specimens were subjected to a 

constant stress of 0.455 MPa while the temperature was increased at 3 °C/min up to 200 

°C. Due to the limit specimen size using the DMA, the specified deflection in D648 was 

converted to a strain based on the standard dimensions. This strain of 0.121 % was then 

used to determine at what deflection in the smaller DMA samples the standard strain was 

achieved. The temperature at which the determined deflection occurred was taken as the 

heat deflection temperature. A total of four specimens were tested for each material grade. 

4.8. Coefficient of Linear Thermal Expansion 

ASTM standard E831, standard test method for linear thermal expansion of solid 

materials by thermomechanical analysis, was used as a guide to determine the linear 
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thermal expansion of the materials. Using the above described DMA equipped with a film 

tension fixture, specimens were heated at 5 °C/min up to 200 °C. Using a strain versus 

temperature plot the slope of the linear region prior to the glass transition temperature is 

recorded as the coefficient of linear thermal expansion. Figure 4.2 shows an example of the 

strain versus temperature graph.  A total of four specimens were tested for each material 

grade. 

 

Figure 4.2: Example of a graph used to determine coefficient of linear thermal 

expansion. 

 

4.9. Melt Flow Index 

According to ASTM standard D1238, standard test method for melt flow rates of 

thermoplastics by extrusion plastometer, melt flow index (MFI) was measured for the 

materials. A Tinius Olsen Model MP600 melt flow indexer with a 225 g mass was used for 

this testing. Procedure A with a travel distance of 2.25 cm and a set temperature of 270 °C 

was used to capture the MFI. For each grade of material one sample was measured. 
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4.10. Microscopy 

Optical microscopy was used to analyze the void content of the molded specimens. 

Small specimens of the material were cast in vinyl ester and polished prior to microscopy 

with sandpaper. Images taken with a Zeiss Axiovert 40 MAT microscope equipped with a 

ProgRes C10 camera were used to evaluate void content. Figure 4.3 shows an example 

image used to determine the void content. 

 
Figure 4.3: Example image used to determine void content in polyamide 

biocomposites. 
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CHAPTER 5. RESULTS AND DISCUSSION 

5.1. Processing and Proof of Concept 

To ensure uniform effects from the processing parameters among all the grades of 

materials, an attempt at extruding the neat polyamide was made. However, a low melt 

viscosity made it very difficult to extrude a continuous strand and the strands that were 

produced had diameters of < 1 mm. The temperature profile for the neat polymer also had 

to be quite high (~300 °C) to prevent the polymer stream from freezing off at the die of the 

extruder. With the addition of torrefied biomass, the melt viscosity increased, improving 

the extrusion process. The addition of torrefied biomass blocked the movement of the 

polymer chains resulting in an increased melt viscosity. The addition of torrefied biomass 

also allowed the temperature profile to be decreased to the low end of the melting zone for 

polyamides. This decrease in melting temperature can be explained by a decrease in 

molecular weight when torrefied biomass is added to the polyamide matrix, this will be 

shown later through the investigation of melt flow index. 

The initial step for this work was to show the effectiveness of torrefaction in preparing 

the biomass for introduction into engineering thermoplastic matrices, whose processing 

temperatures exceed the degradation temperature of natural fibers. Two biocomposites 

were extruded and molded for testing, one using untreated sunflower hulls and the other 

using TSFH. Figure 5.1 shows the results of tensile testing for these two biocomposites. It 

can be seen from Figure 5.1 that the torrefaction leads to improved tensile performance 

over the untreated sunflower hulls. Also of note is the difference in variations. The TSFH 

filled biocomposites displayed lower variations than the untreated sunflower hulls. Table 
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5.1 shows the coefficients of variation computed for both the tensile strength and elastic 

modulus data; the untorrefied sunflowers hull biocomposites had coefficients of variation 

more than twice that of the TSFH biocomposites. During processing of the TSFH 

biocomposites the melt strength was observed to increase. There were noticeable 

differences in odor and off-gassing during processing too; the untorrefied filler had the 

distinct odor of burning biomass, while the torrefied filler displayed no noticeable odor. 

 
Figure 5.1: Tensile property results for torrefied and untorrefied sunflower hulls. 

 

Table 5.1: Coefficients of Variation for Torrefied and Untorrefied Sunflower Hull 

Biocomposites 

 Tensile Strength Coefficient of 

Variation (%) 

Elastic Modulus Coefficient of 

Variation (%) 

Torrefied Sunflower 

Hulls 
10.05 0.98 

Untorrefied 

Sunflower Hulls 
20.95 3.73 

 

Both PA6 and PA66 biocomposites were compounded for this study. During the 

injection molding process the PA66 biocomposites off-gassed. As the PA6 biocomposites 
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molded without any issues, it is believed this off-gassing is due to further degradation of 

the biomass fillers. Although the torrefaction was done at 300 °C the molding temperatures 

of PA66 are right around 300 °C, if the torrefaction of biomass was not completely 

successful further degradation could have taken place. If this was the case, it did not 

happen with the PA6 biocomposites because of the lower processing temperature, 277 °C. 

Several attempts were made to mold specimens but the polyamide biocomposites were too 

void ridden and did not survive the de-molding process. Figure 5.2 shows examples of the 

voids observed in the PA66 biocomposites. 

 

Figure 5.2: Voids observed in PA66 biocomposites. 

5.2. Torrefaction 

With the initial proof of concept experiment showing promising results for reinforcing 

high temperature thermoplastic biocomposites, larger batches of torrefied fillers were 

produced. Sunflower hulls were expected to have a yield of 62.6%, the total mass content 

of the dry untreated hulls accredited to cellulose and lignin as shown in Table 3.2. For flax 
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shive the yield was expected to be 61.3%. Figure 5.3 shows the sunflower hulls prior to and 

after the torrefaction process has taken place. The color of the TSFH is of note, the darker 

fibers are indicative of a full torrefaction, however the lighter brown fibers indicate a 

milder torrefaction. Figure 5.4 shows the difference in untreated flax shive and TFS. With 

the variation in colors it was concluded that the lab scale torrefaction used in this work was 

not a uniform and complete process. This is due to the equipment available; a more 

uniform consistent process would be needed to validate the use of torrefied biomass on a 

commercial scale. 

 
Figure 5.3: The difference between untreated sunflower hulls (left) and torrefied 

sunflower hulls (right). 

 

Figure 5.5 and Figure 5.6 show the FTIR results for the TFS and TSFH in comparison 

with the untreated biomass. FTIR indicated that for TFS the carbon-carbon double bond 

absorbance intensity increased, indicating the presence of more bonds in the TFS. The 

increase in carbon-carbon double bonds in indicative of the conversion of the constituents 

within lingo-cellulosic materials to carbon. The decreases observed in the intensity of the 

peaks between 3000-3600 cm
-1

 for both TFS and TSFH indicates the dehydration of 
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cellulose and lignin content. While the curves between the torrefied biomasses showed 

similar intensities, it is interesting that between the untreated sunflower hull and flax shive 

the FTIR intensities are rather different. Over all the sunflower hull produced higher 

intensities than the flax shive. For the TSFH the changes observed in peak intensity 

between 650 cm
-1

 and 1650 cm
-1

indicates that torrefaction is changing the chemical 

structure of the biomass. The TFS FTIR depicts a very different scenario; the lack of 

change in the peaks, beyond lower intensities, indicates the torrefaction was not complete. 

Some further investigation is need to truly understand how the torrefaction processed used 

in this work has changed the biomass. 

 
Figure 5.4: The difference between untreated flax shive (left) and torrefied flax shive 

(right). 

 

The small lab scale process employed in this work limited the size of a single 

torrefaction batch to approximately 200 g of untreated biomass to begin with, that only 

yields approximately 120 g of torrefied biomass. For this reason the torrefaction for all the 

biocomposite grades was done prior to any composite processing so the multiple batches 
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needed, could be mixed together. This helped ensure that any differences among 

torrefaction batches did not affect the mechanical performance of the biocomposites. 

 
Figure 5.5: FTIR of TFS and untreated flax shive. 

 

 
Figure 5.6: FTIR of TSFH and untreated sunflower hull. 
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5.3. Tensile Modulus and Strength 

Figure 5.7 and Figure 5.8 show the tensile property results of the PA6 biocomposites 

utilizing TFS and TSFH respectively. For both the TFS and the TSFH, the tensile strength 

saw minor decreases from that of the neat polymer. The TFS showed a very slight decrease 

in tensile strength with increased filler loading, while the TSFH biocomposites a slight 

increase in strength at the 20 wt% loading. From the literature reviewed, it was expected to 

see slight increases to the strength from the matched polarities of the biomass and matrix. 

However, as discussed prior, the torrefaction used in this work was not a complete and 

uniform process. It is possible that the filler is still undergoing some degradation during 

processing, hindering the fiber-matrix bond. It is a possibility that void content within the 

specimens may have played a role as well. This will be discussed later. 

 
Figure 5.7: Tensile properties for torrefied flax shive reinforced PA6. 
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As would be expected with the addition of fillers to a polymer matrix, the elastic 

modulus increased with increased filler loading. When filler is introduced into a polymer 

matrix of similar polarity, the fibers begin making hydrogen bonds with the matrix. These 

hydrogen bonds along with the addition of stiffer filler, chain movement is restricted within 

the material thus increasing stiffness and elastic modulus. TFS and TSFH both displayed 

similar tensile properties. TSFH displayed slightly higher tensile strengths than TFS at 

higher filler loadings while TFS displayed slightly higher elastic moduli than TSFH. 

However, neither TFS or TSFH showed to be significantly better than the other. 

 
Figure 5.8: Tensile properties for torrefied sunflower hull reinforced PA6. 
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showed a minor decrease as compared to the neat matrix, but there was a steady increasing 

trend with increased filler loading. This slight decrease could be due to thinner fibers that 

buckle under flexural stress. The TSFH showed an increase over the neat matrix but with 

added filler there was no significant change in the strength. For both the TFS and TSFH, 

tangent modulus exhibited an increasing trend with increased filler loading. TSFH 

displayed higher flexural strengths than the TFS; this may be due to the larger filler sizes 

going into the extrusion process. 

5.5. Impact Toughness 

Impact toughness for TFS and TSFH PA6 biocomposites can be seen in Figure 5.11 

and Figure 5.12, respectively. Both the TFS and TSFH fillers showed decreasing trends in 

impact toughness with increased filler loading. The bond between fiber and matrix restrict 

the polymer chain movement, transferring the applied loads from matrix to fiber. While 

these interactions are beneficial to increasing both elastic and tangent moduli, they hinder 

the ability of the biocomposite to absorb energy during impact events. Although there is 

decease observed with increased filler loading, the drop is not as detrimental as that seen in 

polyolefin biocomposites[28], this is likely due to the improved fiber-matrix bond of the 

hydrophilic polyamide and torrefied biomass. No clear differences are present between the 

impact toughness of TFS and TSFH reinforced PA6. 

5.6. Density 

Torrefaction is a densification process, meaning the biomass going into the process is 

much less dense than the torrefied biomass. This then leads to the expectation that the 
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torrefied biomass filled biocomposites will have increasing densities with increasing filler 

loadings. Figure 5.13 and Figure 5.14 show the densities of the TFS and TSFH 

biocomposites studied in this work, respectively. In Figure 5.13 at 10 and 20 wt% loading 

the densities increased over the neat matrix as would be expected. At 20 wt% loading 

however, the variation was quite high, indicative of voids in the specimens or irregularities 

among specimens. When the filler loading was increased to 30 wt% loading, the density 

dropped below the neat polyamide. Again this is likely due to voids within the specimens. 

Microscopy was used to evaluate the void content and will be discussed later. Figure 5.14 

shows the TSFH biocomposites displayed an increasing trend with increasing filler loading. 

At the 20 wt% and 30 wt% loadings the densities did increase but the variation was larger 

than the neat matrix and 10 wt% loading. This could again be due to voids within the 

specimens. No clear difference between the densities of TFS and TSFH biocomposites 

were observed. 

5.7. Moisture Uptake 

Polyamide materials are known for absorbing moisture form the environment. While 

the moisture saturation point is around 8% and equilibrium moisture content is 

approximately 2%, the addition of torrefied biomass has the potential to reduce moisture 

uptake during end use of the material. The biggest concern with the uptake of moisture for 

polyamides is the degradation of mechanical performance as the amount of moisture in the 

material increases [13].  
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Figure 5.9: Flexural properties for torrefied flax shive reinforced PA6. 

 

 
Figure 5.10: Flexural properties for torrefied sunflower hull reinforced PA6. 
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Figure 5.11: Impact toughness of torrefied flax shive reinforced PA6. 

 

 
Figure 5.12: Impact toughness of torrefied sunflower hull reinforced PA6. 
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Figure 5.13: Density of torrefied flax shive reinforced PA6. 

 

 
Figure 5.14: Density of torrefied sunflower hull reinforced PA6. 
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At 72 hours the biocomposites absorb less moisture than the neat matrix but the difference 

is not as significant as it was at 24 hours. At 168 hours the biocomposites absorb more 

moisture than the neat matrix. However, at the lower filler loadings the moisture absorption 

was lower than it was at 72 hours. To ensure the thermal effects of the moisture analysis 

did not play a role in the results, new specimens were used for every test in the moisture 

study. The presence of voids which will be discussed further could be playing a role in the 

phenomenon. Another explanation could be that the torrefied filler retards the rate at which 

moisture is absorbed until the material beings to become saturated. Full saturation was not 

reached in this study but some future work could shed some light on what is really 

happening with the TFS biocomposites. 

Figure 5.16 shows the moisture uptake results for the TSFH filled PA6 biocomposites. 

These materials displayed increasing trends with increasing soak times, which is to be 

expected. The more important trend to note is the decreased moisture uptake with the 

added filler. All the TSFH filled biocomposites displayed lower moisture uptake over the 

neat matrix. The higher filler loadings did display higher variations than the neat matrix. 

There are a number of explanations for the variation observed at higher filler loadings; 

voids within specimens filled with absorbed moisture increasing the ultimate moisture 

content, residuals oils on the fibers acted as a moisture absorption retardant, or the variation 

within the specimen sizes may have led to induced variation of the moisture absorbed. The 

TSFH biocomposites did display higher affinity to moisture at the 168 hour soak than the 

TFS biocomposites, however the questionable results for TFS may be the reason for this 

difference as the 24 and 72 hour results are very similar. 
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Figure 5.15: Moisture absorption of torrefied flax shive reinforced PA6. 

 

 
Figure 5.16: Moisture absorption of torrefied sunflower hull reinforced PA6. 
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5.8. Dynamic Mechanical Analysis 

Much like the increasing trends observed in the elastic and tangent moduli, the dynamic 

mechanical properties should see similar trends. The molecular chains with in the polymer 

are restricted in movement due to the added filler; this also translates into restricted 

movement under elevated temperatures. Figure 5.17 and Figure 5.18 show the glass 

transition temperatures for the TFS and TSFH biocomposites respectively. The TSFH 

biocomposites show a slight decrease with the added torrefied biomass, 10 °C at the most. 

The TFS biocomposites show no significant change with added filler content. Table 5.2 

and Table 5.3 show the ANOVA analysis of glass transition temperatures for the TFS and 

TSFH biocomposites respectively. TFS displayed high P-value thus indicating there is no 

significant influence of torrefied biomass content on the glass transition temperatures 

observed. The TSFH on the other hand displayed a very low P-value indicating the 

decrease observed with added filler content was significant. Between the TFS and TSFH 

biocomposites glass transition temperatures remained very close. 

Table 5.2: ANOVA Analysis of TFS PA6 Biocomposites 

Source Degrees of Freedom Sum of Squares Mean Square Error F P 

TFS Content 3 15.83 5.28 2.50 0.109 

Error 12 25.34 2.11   

Total 15 41.17    

 

Table 5.3: ANOVA Analysis of TSFH PA6 Biocomposites 

Source Degrees of 

Freedom 

Sum of 

Squares 

Mean Square 

Error 

F P 

TSFH 

Content 
3 278.145 92.715 105.08 0.000 

Error 12 10.587 0.882   

Total 15 288.733    
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Figure 5.17: Glass transition temperature of torrefied flax shive reinforced PA6. 

 

 
Figure 5.18: Glass transition temperature of torrefied sunflower hull reinforced PA6. 
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modulus of the TFS displays an increasing trend with increased filler loading. The 

decreasing trend with increased temperature is to be expected as the polymer chains relax 

with increased temperature, as they slide past one another much easier. The addition of 

torrefied biomass also decreased the rate at which temperature effects storage modulus. As 

the temperature increased and polymer chains relaxed the filler remains rigid and impedes 

the chain movement of the polymer. The TSFH storage modulus results are interesting; all 

four of the TSFH moduli curves are very close together and approximately 1000 MPa 

lower than the TFS composites. There are no clear differences between the varying filler 

loadings like with the TFS composites. There is a decreasing trend with temperature, and 

the biocomposites are all higher than the neat matrix above the glass transition temperature. 

However, below the glass transition temperature the neat matrix has a higher modulus. 

 
Figure 5.19: Storage modulus of torrefied flax shive reinforced PA6. 

 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 50 100 150 200 250

S
to

ra
g

e 
M

o
d

u
lu

s 
(M

P
a

) 

Temperature (
 

C) 

PA6 10% TFS PA6 20% TFS PA6 30% TFS PA6



45 

 
Figure 5.20: Storage modulus of torrefied sunflower hull reinforced PA6. 
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Figure 5.21: Heat deflection temperature of torrefied flax shive reinforced PA6. 

 

 
Figure 5.22: Heat deflection temperature of torrefied sunflower hull reinforced PA6. 
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5.10. Coefficient of Linear Thermal Expansion 

Similar to heat deflection temperature, the effects of increased rigidity should hold true 

for linear thermal expansion. The added fillers restrict the movement of the polymer chains 

resisting the expansion of the material. Figure 5.23 shows the coefficient of linear thermal 

expansion for the TFS PA6 biocomposites. The figure shows an increasing and then 

decreasing trend with increased filler loadings. With the high variation in the neat matrix, 

no clear difference is present with the added filler. The method with which the coefficients 

are determined leaves room for human error as well. Figure 5.24 shows the coefficient of 

linear thermal expansion for the TSFH PA6 biocomposites. Again no clear trend was 

observed. Both TFS and TSFH displayed similar coefficients of linear thermal expansion. 

 
Figure 5.23: Coefficient of linear thermal expansion of torrefied sunflower hull 

reinforced PA6. 
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Figure 5.24: Coefficient of linear thermal expansion of torrefied flax shive reinforced 

PA6. 
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to further evidence the torrefaction may not have been complete as the degradation of the 

biomass can act as a plasticizer. With increased filler loading there is an increased amount 

of effective plasticizer, thus an increase in melt flow index. Residuals oils on the fiber 

surface may have potentially played a role in the inverted melt flow index trends; increased 

oil content due to increased fiber loading created more lubrication for polymer chain 

movement. As sunflower hulls contain more oil than flax shive, this explains the enhanced 

effect in the TSFH reinforced biocomposites. It is possibly this residual oil explains the 

interesting results in tensile and flexural testing. 

5.12. Microscopy 

The investigation of the mechanical performance of torrefied biomass reinforced 

polyamides uncovered some evidence of voids present in the materials. To evaluate which 

of the materials contained voids, optical microscopy was used. Figures 5.27-5.35 show 

microscopy images taken of each of the biocomposites grades. Figure 5.27 shows the neat 

matrix which is void free. If voids had been present in the neat matrix this would have 

indicated moisture within the material. The lack of voids indicates the drying time prior to 

injection molding was sufficient to drive off any moisture from storage. The lack of voids 

also indicates the molding parameters such as temperature and pressure were correctly 

chosen for the given application. 

Figure 5.28 shows an image taken from a 10 wt% TFS specimen. The dispersion of 

fibers looks to be very even. The fiber particles although smaller than the starting material 

do appear to have maintained some aspect ratio throughout the processing. Over the entire 

specimen, no voids were found. 
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Figure 5.25: Melt flow indexes for torrefied flax shive reinforced PA6. 

 

 
Figure 5.26: Melt flow indexes for torrefied sunflower hull reinforced PA6. 
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Figure 5.27: 20X microscopy image of neat PA6. 

 

 
Figure 5.28: 20X microscopy image of 10 wt% TFS in PA6. 

 

Figure 5.29 shows an image taken from a 20 wt% TFS specimen. In the figure an 

approximately 100 µm diameter void can be seen. This confirms the suspicion from 

mechanical testing that voids were present in the material. Very few voids were found in 

the entire specimen examined however. Figure 5.30 shows another image taken of the same 
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specimen. The majority of the specimen resembled this figure. The fiber dispersion is good 

and some aspect ratio remains, approximately 2:1 to 5:1 length to width. 

Figure 5.31 shows a void ridden section of a 30 wt% TFS specimen. Again the 

mechanical results discussed earlier indicated some voids may be present in the molded 

specimens. The large void in the middle is approximately 300 µm in diameter. These voids 

were found scattered throughout the specimens with some voids being visible with the 

naked eye. Figure 5.32 shows an image form a non-void ridden section of the same 

specimen. Fiber dispersion and fiber aspect ratio appear to be very similar to the other TFS 

specimens. 

Figure 5.33 shows an image taken from a 10 wt% TSFH specimen. The entire specimen 

was examined under microscopy and no voids were found present in the sample. The 

image shows good dispersion of the fibers and it shows a range of aspect ratios within the 

fibers; ranging from approximately 3:1 to 4:1 length to width. The fibers for this work were 

not ground to a specific sieve size but they were coarsely ground in a household coffee 

grinder to reduce the size some prior to extrusion. As the average particle has an aspect 

ratio of 3:1 going into the extrusion process it is clear from the image the extrusion and 

injection molding processes did fractionate the fiber further. It is interesting to note the 

larger fibers in the upper left corner of the image; this shows that some aspect ratio is 

retained by not grinding the fiber prior to composite production. 

Figure 5.34 shows an image taken from a 20 wt% TSFH specimen. Once again the 

entire specimen being examined was void free. The fiber show good dispersion throughout 

the specimen. Once again there is indication of some aspect ratio surviving the composite 
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processing. The large fiber on the left hand side of the image has maintained an aspect ratio 

of approximately 3:1, that being the same as that of the fibers prior to processing. 

 
Figure 5.29: 20X microscopy image of void found in 20 wt% TFS in PA6. 

 

 
Figure 5.30: 20X microscopy image of 20 wt% TFS in PA6. 

 

Figure 5.35 is the image taken from a 30 wt% TSFH specimen. The fiber density has 

increased as is expected with increased filler loading and once again there appears to be an 

even dispersion within the matrix. No voids were found in this specimen either. The larger 
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particles on the right side of the image again indicate some aspect ratio is maintained 

throughout the processing of the composites. 

 
Figure 5.31: 10X microscopy image of voids found in 30 wt% TFS in PA6. 

 

 
Figure 5.32: 20X microscopy image of 30 wt% TFS in PA6. 

 

The TSFH specimens all showed to be void free indicating the torrefaction of the 

sunflower hulls may have been more successful than the flax shive. Even though no voids 

were found in the specimens, the discrepancies in mechanical property trends from the 
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literature does indicate that some degradation of the filler is still occurring during 

processing. This likely could be elevated by a torrefaction process that yields more 

homogenous and consistent results. 

 
Figure 5.33: 20X microscopy image of 10 wt% TSFH in PA6. 

 

 
Figure 5.34: 20X microscopy image of 20 wt% TSFH in PA6. 
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Figure 5.35: 20X microscopy image of 30 wt% TSFH in PA6. 
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CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS 

Through the torrefaction of flax shive and sunflower hulls, polyamide 

biocomposites have been successfully produced. By converting the hemicellulose, fats, 

waxes, et cetera that degrade at a lower temperatures, a biomass filler has been created that 

can withstand the increased processing temperatures of PA6. PA66 blends were also 

produced but the processing temperatures proved to still be too detrimental to the filler. 

The lack of a consistent and uniform torrefaction process lead to the failure of producing 

good quality PA66 biocomposites in this study. 

Torrefied flax shive was shown to improve the elastic modulus of PA6 while 

maintaining similar tensile strengths. Flexural properties were also improved with 

increased filler loading. As would be expected, the impact toughness of torrefied flax shive 

reinforced PA6 saw some decrease from the neat matrix. However, this decrease in impact 

toughness was not as dramatic as those seen in polyolefin biocomposites. Melt strength and 

viscosity were greatly improved with the addition of torrefied flax shive. The dynamic 

mechanical properties of heat deflection temperature and storage modulus all saw 

increasing trends with increased filler loading, surpassing the performance of the neat 

matrix. The glass transition temperature was maintained. Density results indicated the 

specimens contained voids and this was confirmed with microscopy analysis. The voids 

within the molded specimens give some indication that the torrefaction process was not 

complete or uniform.  

Torrefied sunflower hulls were shown to increase the elastic modulus of the neat 

PA6, while maintaining a tensile strength similar to that of the neat polymer. Flexural 
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properties were maintained or improved upon the neat matrix, with some loss in impact 

toughness. Thermal mechanical properties of the neat matrix were improved with the 

addition of torrefied sunflower hulls. The melt strength and viscosity were also increased as 

was heat deflection temperature. Glass transition temperature saw minor decreases from the 

neat matrix while the storage modulus was shown to increase over the neat matrix above 

the glass transition temperature. Microscopy images showed the specimens were clear of 

voids. The specimens being void free were an indication that the torrefaction of the 

sunflower hulls was more successful than that of the flax shive.  

In general the incorporation of torrefied biomass has shown to improve the heat 

deflection temperature, moisture resistance, and lowered the coefficient of linear thermal 

expansion, while maintaining the strength of the neat polyamide. These property changes 

make torrefied biomass filled biocomposites appealing for under the hood applications 

where components are exposed to elevated temperatures and humidity. It is critical for 

these under the hood components to maintain mechanical and physical integrity during the 

life of a vehicle. The utilization of torrefied biomass reinforced biocomposites does require 

some design considerations. Figure 6.1 shows several handles molded using neat 

polyamide and torrefied reinforced polyamide. This image shows the difference in final 

part dimensions when torrefied filler is added as well as how the surface quality changes. 

To accommodate the decreased mold shrinkage with torrefied biomass biocomposites 

tooling for existing molded parts would need to be re-tooled to ensure dimensional 

tolerances are maintained. Furthermore, to improve the surface quality of the biocomposite 

parts, mold heaters would need to be utilized. With the addition of torrefied biomass, 

cooling rates are increased resulting in skin formation at the flow front. 
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Figure 6.1: Molded final products made from neat polyamide (left) and torrefied 

biomass reinforced polyamide (center). 

 

While this is a good start to solving the problem of introducing natural fibers into 

engineering thermoplastics, there is a long ways to go. This study has looked at one method 

of torrefaction that is very energy and time intensive. One goal of biocomposites is to 

reduce the dependence on petroleum; however another goal is to reduce the cost of 

materials for the end user. As the method of torrefaction used for this work is energy 

intensive, the cost benefit is likely not there at this time. One task moving forward with this 

project is to determine the economics of this method while attempting alternate, less energy 

intensive, torrefaction methods.  

Other goals moving forward with this work would be to first replicate the results 

produced in this work or to improve upon them. If a more uniform consistent process could 

be implemented the properties indicated in literature could potentially be achieved. Some 

further investigation is needed to really determine why the flax shive filled biocomposites 

were void ridden at higher loadings. As was stated before it could have been due to 

incomplete torrefaction, however if further analysis reveals the torrefaction process was 
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successful, other phenomena need to be explored. Some of the other inconsistent 

mechanical and physical results, such as the moisture absorption results for torrefied 

sunflower hulls, need to be explored more.  

With the ever increasing use of biocomposites in everyday goods, it is imperative to 

explore a wide range of base matrices. It has been shown that torrefied biomass improves 

the storage characteristics of the mass; this could potential lead to a longer end user life for 

biocomposites as well, especially in biodegradable systems. It would be worthwhile to 

investigate the use of torrefied fillers in biodegradable systems to see how it effects their 

life cycle. As biomass feedstock is hard to justify transporting any distance, the exploration 

of various feedstocks from around the globe need to study for greater acceptance of this 

technology. 
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