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ABSTRACT 

The Department of Energy has listed 5-hydroxymethylfurfural (HMF) and 2,5-

furandicarboxylic acid (FDCA) as two of the twelve building blocks derived from cellulosic 

biomass.  HMF can serve as a renewable platform for the production of fuels and chemicals. Our 

research goal is to develop novel methods for the conversion of renewable resources to feedstock 

chemicals for polymer synthesis.  The Diels-Alder reaction, the cycloaddition of alkenes and 

dienes, has become one of the most important synthetic methods used in organic chemistry.  We 

were interested in carrying out Diels-Alder reactions with derivatives of HMF.  Naphthalene 

analogs of terephthalic acid were synthesized by reacting HMF derivatives with benzyne which 

could lead to the formation of bio-based polyethylene terephthalate (PET) analogs.     
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CHAPTER 1. HYDROXYMETHYLFURFURAL: A CHEMICAL PLATFORM  

FROM BIOMASS 

 1.1. Introduction 

Based on the current environmental and political issues regarding our dependence on 

petroleum, a major focus in the scientific community is concentrating on new technologies for 

the conversion of renewable materials, such as biomass, into sources of energy and chemicals.  

Fossil fuels that include oil, coal and natural gas, are the source of 86% of the total energy and 

96% of the organic chemicals produced.
1
 The chemical industry is based on limited chemical 

building blocks: methanol, benzene, toluene, xylene, ethene, and butadiene.
2
  Biomass has the 

potential to serve as a platform for the fuel and chemical industries.  Biomass is composed of a 

broad class of compounds including carbohydrates, lignins, proteins, and fats.
3
  Biomass stands 

out as a potential source for the fuel and chemical industries due to its abundance, renewability 

and carbon neutrality.
4
  Currently biomass and other renewable energy sources such as wind, 

solar and tide represent only 0.9% of the total energy used.
5
  Much of the current research is 

focusing on using lignocellulose, which is the most abundant renewable biomass, or cellulose, 

the most abundant organic compound, making up 33% of all plant matter.
6
  However, the 

Department of Energy has also listed 5-hydroxymethylfurfural (HMF) and 2,5-furan 

dicarboxylic acid (FDCA) as 2 of the 12 building blocks derived from sugar.
7
  This chapter will 

focus on the different methods for the synthesis of HMF and FDCA and include some reactions 

that use HMF and FDCA. 
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1.2. Synthesis of 5-hydroxymethylfurfural 

Since the late 19
th

 century, 5-hydroxymethylfurfural (HMF) 1 has been of interest to 

many researchers.
8
  HMF can serve as a renewable platform for the production of fuels and 

chemicals. The derivatives 2,5-furan dicarboxylic acid, 2,5-furfuryldiamine, 2,5-

furfuryldiisocyanate and 5-hydroxymethyl furfurylidenester are suitable starting materials for 

polymeric materials.  Polyurethanes display very high resistance to thermal treatments.
9
 Kevlar-

like polyamides exhibit liquid crystal behavior.
9  

Polyconjugated polymers of these furan-based 

molecules possess good electrical conductivity.
9
  Due to HMF’s ability to serve as an 

intermediate in a wide range of applications, it has been called a “sleeping giant”.
10

   The triple 

dehydration of hexose, fructose or glucose, is the widely accepted method for the synthesis of 

HMF.  Substrates other than hexoses that can be used for the synthesis of HMF include 

oligosaccharides and polysaccharides.  The dehydration reactions can occur in either aqueous or 

non-aqueous conditions.  Compared to aqueous media, the dehydration of hexoses to HMF under 

non-aqueous conditions is found to be more efficient based on yield.
11

 Glucose and fructose are 

sources for the production of HMF; however, each presents its own challenges.  Glucose is 

desirable because of its abundance and low price, but fructose is readily converted to HMF.  

Glucose must isomerize to fructose before the dehydration can occur.
12

  The dehydration of 

fructofuranose to HMF has been demonstrated in several different media including water, 

organic solvents, multiphase systems, ionic liquids and enzymatically. Figure 1.1 shows the 

name and structure of the many different derivatives of HMF. This section will focus on the 

different methods for the synthesis of HMF.  
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Figure 1.1. HMF based derivatives  

1.2.1. Hexose dehydration 

 The first mechanism for the dehydration of fructose to HMF was proposed by Haworth 

and Jones.
13

  Work completed by van Dam et al.
14

, Kuster
15

, and Antal et al.
16

  proposed the 

dehydration of hexoses went through two possible pathways, cyclic or acyclic, as shown in 

Scheme 1.1. Evidence to support the acyclic pathway, were the fructofuranosyl intermediate or 

through a 1,2-enediol mechanism.
17,18,19

  In support of the cyclic pathway, Antal et al.
20

 and 

Newth
21

 gave this evidence: 1) conversion of 2,5-anhydro-D-mannose to HMF, 2) easy 

formation from fructose but challenging formation from glucose, and 3) lack of carbon-

deuterium bond formation from D2O in the keto-enol tautomerism present in the open chain 

pathway. 
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Scheme 1.1. Possible pathways for the dehydration of hexoses 
 

1.2.2. Dehydration in non-aqueous solvents (DMSO) 

Dimethyl sulfoxide (DMSO) is a polar aprotic solvent useful in the dehydration of hexose 

to HMF.  As of today, DMSO is the only solvent to efficiently promote dehydration of hexoses 

and limit unwanted side reactions while generating HMF in high yields.
22

 Amarasekara and 

coworkers were the first to identify a key intermediate (4R,5R)-4-hydroxy-5-hydroxymethyl-4,5-

dihydrofuran-2-carbaldehyde 21 in the dehydration of D-fructose to HMF as shown in Scheme 

1.2.
23

  To initiate the dehydration of fructose to HMF, the C2 hydroxyl was activated by the 

electrophilic (sulfur) end of DMSO and the oxygen on DMSO hydrogen bonded with a hydrogen 

atom on C1 on fructose; this eliminated the first water molecule due to the proton transfer and 

oxygen transfer of DMSO.
11

  The enol intermediate formed through the oxygen exchange 

between DMSO and the hydroxyl on the anomeric center of fructose and removal of a hydrogen 

from C1.
11

 The oxygen on the DMSO promoted the removal of the remaining two water 

molecules.
11
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Scheme 1.2. Mechanism for the dehydration of α–furanose/β–furanose to HMF in DMSO 

1.2.3. Synthesis of HMF in multiphase systems 

Dumesic and coworkers have developed a multiphase system for the production of 

HMF.
24

  The dehydration of fructose occurred in the aqueous phase which contained fructose, 

DMSO, a hydrophilic polymer and the acid catalyst.  The organic phase used for the HMF 

extraction contained methylisobutylketone (MIBK) and 2-butanol.
24

 The optimal system 

produced HMF in 77% yield at 92% conversion.
24

    In a later work by Román-Leshkov and 

Dumesic, different types of extracting solvents for the dehydration of fructose in a biphasic 

system in the presence of sodium chloride were explored.
2
  They found solvents that contained 

four carbon atoms such as 2-butanol, produced the highest HMF selectivity of 85% at 423K.
2
 

Increasing the reaction temperature from 423K to 453K improved HMF selectivity for both 2-

butanol and THF systems (85% to 90% and 83% to 89% respectively).
2
  Another important 

finding was that the addition of sodium chloride to the aqueous phase improved the partitioning 

of HMF into the extracting phase by the “salting-out effect” which increased the yield of HMF.
2 

http://www.chemspider.com/207215
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The production of HMF from glucose using a combination of Lewis and Brønsted acids 

in a biphasic reactor with an alkyl phenol solvent was recently reported.  In a biphasic system 

using AlCl3 and HCl as catalysts, HMF was produced in a 62% yield (Scheme 1.3).
25

 The 

formation of HMF proceeds by the tandem pathway involving the isomerization of glucose to 

fructose and the subsequent dehydration of fructose to HMF.  The organic phase extracts 

contained 97% of the HMF produced, while both the Lewis and Brønsted acids remained in the 

aqueous phase.   

 

Scheme 1.3. Formation of HMF from glucose 

1.2.4. Synthesis of HMF in ionic liquids 

Ionic liquids provide an acidic site which accelerates the isomerization of glucose.  Ionic 

liquids are a suitable solvent for the synthesis of HMF because of their inherent properties, such 

as low vapor pressure, good thermal stability, range of tunable hydrophobicity/hydrophilicity and 

their industrial applications.
26

  Binder and Raines produced HMF with 48% and 54% yields from 

untreated biomass and purified cellulose respectively, using a CrCl2 catalyst in N,N-dimethyl 

acetamide (DMA) solvent containing LiCl and 1-ethyl-3-imidazolium chloride ([EMIM]Cl) as 

depicted in Scheme 1.4.
27  
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Scheme 1.4. Synthesis of HMF from glucose
 

Zhang and coworkers explored the concept of using 1-ethyl-3-methylimidazolium 

chloride [EMIM]Cl.
28

  Ethyl outperformed or performed as well as octyl or butyl solvent 

systems.
26

  The use of mineral acids performed as expected; a yield of 80% was achieved when 

18% H2SO4 was used.
26

 The use of metal halides catalyzed the dehydration of fructose at 80°C 

and produced HMF yields in the range of 63-83%; however not all metal halides were effective 

such as LaCl3 and MnCl2 (Scheme 1.5).
14 

When changing the substrate to glucose only one 

catalyst CrCl2 gave high HMF yields.
26

  

 

Scheme 1.5. Comparing HMF production from glucose and fructose 

A later report by Zhang et al. produced 58% HMF from cellulose using two metal 

chloride catalysts CuCl2 and CrCl2 in ionic liquids.
29

 Moreau and coworkers explored the use of 

mordenites in the dehydration of fructose.
30

  They found that in the presence of mordenites, both 

fructose conversion and HMF selectivity were increased.
30

  The conversion of cellulose to HMF 
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was produced in a one-pot reaction using a Brønsted-Lewis surfactant-combined heteropoly acid 

(HPA), Cr[(DS)H2PW12O40]3 (DS = dodecyl sulfate) in a 53% yield.
31

 

In ionic liquids, 48% and 60% HMF yields were achieved using a CrCl2-NHC-

carbene/zeolite and combined CrCl2/RuCl3 catalytic systems.
32,33

 The cellulose transformation 

was reported to proceed by hydrolysis of cellulose using zeolite followed by the resulting 

glucose dehydration using NHC-CrCl2.
32  

In the hydrolysis reaction, a 4:1 M ratio of CrCl2/RuCl3 

was used at 120 °C for two hours.
33

 

 The aforementioned reactions used thermal heating as the energy source.  Microwave 

assisted reactions could be another source of energy for the synthesis of HMF.  In a reaction 

medium of ionic liquids, microwave-assisted synthesis of HMF from cellulose was performed.  

This rapid synthesis occurred in a 62% yield in two minutes.
34

  The synthesis of HMF from 

cellulose and sugarcane bagasse was investigated under microwave-assisted heating.  The most 

effective catalyst was Zr(O)Cl2/CrCl3 combined catalyst,  producing HMF yields of 57% and 

42% from cellulose and sugarcane bagasse respectively.
35

  In the presence of 1-butyl-3-

methylimidazolium chloride ([BMIM]Cl), HMF yields were improved due to the increased 

chloride ions concentration, which favors cellulose hydrogen bond disruption.
35

 The combined 

Zr(O)Cl2/CrCl3  catalyst also effectively converted sugarcane bagasse and HMF into a mixture of 

5-ethoxymethyl-2-furfural (EMF) 5, a promising biofuel, and ethyl levulinate (EL) 24 with 90% 

EMF selectivity as shown in Scheme 1.6.
35
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Scheme 1.6. Synthesis of EMF from sugarcane bagasse and HMF 

 Chidambaram and Bell reported that heteropoly acids effectively catalyzed the 

dehydration of glucose to HMF.  After three hours, using 12-molybdophosphoric acid (12-MPA) 

as the catalyst, in a mixture of [EMIM]Cl and acetonitrile, 98% conversion and 99% selectivity 

for HMF was achieved.
36

  This high selectivity for HMF was higher than observed using liquid 

acids.
36

 Upon hydrogenation of HMF in a mixture of [EMIM]Cl and acetonitrile promoted by 

Pd/C produced 2,5-dimethyl furan (DMF), in higher yields.
36

  DMF has been gaining interest as 

a biofuel. DMF energy density is 40% greater than ethanol, making it comparable to 

gasoline.
37,38,39

  DMF is less volatile than ethanol due to the higher boiling point 93 °C compared 

to 78 °C for ethanol.
40

 

Multiple metal chlorides in ionic liquids were investigated for the dehydration of fructose 

to HMF.  Niobium pentachloride was found to be an effective catalyst for the dehydration of 

fructose to HMF (Scheme 1.7).
41

 Other Group V metal chlorides like VCl3 and TaCl5 showed 

potential good yields; however, formation of humins resulted in slightly lower yields than 

reacting with NbCl5.    
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Scheme 1.7. Dehydration of fructose using niobium pentachloride 

1.2.5. Synthesis of HMF using catalysts 

Brønsted acids as well as Lewis acids are known to catalyze the dehydration of fructose 

to HMF.   In a review by Lewkowski,
 
nearly a hundred inorganic and organic compounds were 

named as a possible catalyst for the synthesis of HMF. The catalysts were grouped into five 

categories: organic acids, inorganic acids, salts, Lewis acids, and others.
8
 

Thananattanachon and Rauchfuss
42

 explored the use of organic acids in the conversion of 

fructose to HMF.  They found that the addition of organic acids accelerated HMF formation and 

that side reactions in DMSO were reduced as compared to water.  In comparing sulfuric acid and 

formic acid as catalysts, reactions with formic acid took slightly longer and required a higher 

temperature than sulfuric acid.
42

 However, the yield when using a formic acid/DMSO mixture 

was 99% compared to 93% with the sulfuric acid/DMSO mixture as displayed in Scheme 1.8.
42

 

They also found that oxalic acid and acetic acid catalyzed the formation of HMF from fructose 

with a 99% yield as well.
42 

 

 

Scheme 1.8. Formation of HMF from different acids 
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Ebitani
43

 and coworkers produced HMF from both monosaccharaides (glucose and 

fructose) and disaccharides (sucrose - a disaccharide of glucose and fructose and cellobiose - a 

disaccharide of glucose) by a one-pot synthesis using a solid Amberlyst-15 acid and hydrotalcite 

base.
43

  They reported high selectivity and conversion for simple monosaccharaides (>99% 

conversion and 76% HMF selectivity with fructose and 73% conversion and 58% HMF 

selectivity  with glucose) and high selectivity for the disaccharides (58% conversion and 93% 

HMF selectivity for sucrose and 52% conversion and 67% HMF selectivity for cellobiose).
43

  

Based on Zhang
28

 and coworkers findings that transition metals were good catalysts for the 

conversion of HMF from sugars, Ying
12

 and coworkers used an N-heterocyclic carbene 

(NHC)/metal complex as the catalyst for the dehydration of sugars.  They found that the catalyst 

with the most bulky NHC ligand such as 1,3-bis(2,6-diisopropylphenyl)imidazolylidene and 1,3-

bis(2,6-diisopropyl)phenylimidazolinylidene produced the highest yields of 96% from fructose 

and 81% from glucose (Scheme 1.9).
12

  In a recent report, a new catalytic system which 

incorporated an enzyme and acid catalysis produced HMF with a 63% yield.
44

 The isomerization 

of glucose to fructose was assisted by immobilized glucose isomerase in the presence of sodium 

tetraborate.
44  

This is the key step in producing high yields of HMF.  

 

Scheme 1.9. Production of HMF from fructose and glucose 

Lactose 25 is a disaccharide of glucose 22 and galactose 26, upon isomerization with a 

base catalyst, fructose 23 and tagatose 27 were formed, and then further dehydration with an acid 
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catalyst gave HMF.  The yield of HMF from glucose is much higher than that of galactose at all 

temperatures (Scheme 1.10).
45

  This is explained by the stereochemical configuration of 

galactose; consequently, there is inefficient dehydration of tagatose into HMF.  Galactose and 

tagatose are less reactive than glucose and fructose.   

 

Scheme 1.10. Synthesis of HMF from lactose 

 A 45% isolated yield was achieved when an acidic zeolite, H-ZSM-5, catalyzed the 

dehydration of glucose to HMF in [BMIM]Cl (Scheme 1.11).
46

 Further experiments showed that 
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tetrabutylammonium chloride (TBAC) was a more convenient, inexpensive and non-toxic 

solvent to work with than [BMIM]Cl. TBAC gave HMF yields in 50-55% yields.   

 

Scheme 1.11. H-ZSM-5 zeolite as a catalyst for the conversion of glucose to HMF  

Recent work demonstrated that NH4Br is an effective promoter for the conversion of 

glucose and fructose to HMF.
47

 Using a catalyst system of CrCl3 and NH4Br at 100 °C for one 

hour in DMA an 87% yield of HMF from sucrose 28 was achieved (Scheme 1.12).  

 

Scheme 1.12. Conversion of sucrose to HMF 

1.2.6. Reactions involving HMF 

 In organic synthesis, reductive amination is used frequently.  In recent work done by 

Cukalovic and Stevens, a library of compounds containing a hydroxymethyl and an aminomethyl 

moiety were produced (Scheme 1.13).
48

 The method was a straightforward, one-pot, two-step 

reductive amination, followed by a reduction with sodium borohydride. In an aqueous medium, 

aliphatic amines produced good results; complete conversion to imines and imine reduction took 

place in just a few hours.
48

  Up to 50% conversion was produced when aromatic imines were 
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used in aqueous solutions.  Methanol also gave poor results for aromatic amines; however, 

aliphatic amines showed improved reaction times, only 45 minutes in methanol compared to four 

hours needed for completion in water.
48 

 

Scheme 1.13. Synthesis of HMF based amines 

 The production of amides 31 by the aerobic oxidative coupling of alcohols or aldehydes 

using supported gold and base as the catalyst was highly effective.
49

  HMF was oxidized to the 

corresponding amide through the synthesis of a methyl ester in a 73% yield (Scheme 1.14).    

 

Scheme 1.14. HMF derived amide synthesis 

 In a one-pot process, fructose 23 can be converted into 2,5-bis(hydroxymethyl)furan 

(BHMF) 11 in an 83% yield.
42

  Formic acid acts initially as the acid catalyst for the dehydration 

and subsequently as the hydrogen donor for hydrogenation as displayed in Scheme 1.15.
42 

  

 

Scheme 1.15. Synthesis of 2,5-bis(hydroxymethyl)furan from fructose 
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 An effective and eco-friendly Cannizzaro reaction of HMF has been developed for the 

simultaneous synthesis of both BHMF 11 and HMFCA 4 using ionic liquids as the reaction 

media in good to high yields (Scheme 1.16).
50

  Key steps to this process include: the Cannizzaro 

reaction of HMF using ionic liquids, recovery and recycling of the ionic liquids and acid-base 

extraction to isolate both products.   

 

Scheme 1.16. Cannizzaro reaction of HMF to BHMF and HMFCA 

 Thananattanachon and Rauchfuss produced DMF 10 in an overall 51% yield by heating 

HMF, formic acid with Pd/C catalyst at 70 °C (Scheme 1.17).
51

  Formic acid played a key role in 

both the hydrogenation and hydrogenolysis.  This formation of DMF is believed to proceed 

through intermediates 2-hydroxy-methyl-5-methylfuran (HMMF) 33 and monoformate ester 

(FMMF) 34. 

 

Scheme 1.17. One-pot synthesis of DMF 
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 In recent work, Cu-doped porous metal oxides (PMO) converted HMF into valuable 

chemicals DMF 10, dimethyltetrahydrofuran 35, and 2-hexanol 36 in supercritical methanol by 

hydrogen transfer.
52

  The three products were produced in a 61% yield at 300 °C for two hours 

(Scheme 1.18).  Under milder reaction temperatures, DMF was obtained in a 50% yield. 

 

Scheme 1.18. One-pot reduction of HMF in supercritical methanol 

 The highly selective decarbonylation of HMF 1 to furfuryl alcohol (FFA) 37 was 

achieved in greater than 90% yields using an iridium phosphine catalyst in the presence of 

compressed carbon dioxide (Scheme 1.19).
53

    

 

Scheme 1.19. Catalytic decarbonylation of HMF 

HMF was converted to maleic anhydride (MA) 38 in 52% yield by the selective oxidation 

with molecular oxygen using VO(acac)2 as the catalyst in liquid phase (Scheme 1.20).
54

  The 

conversion of HMF and yields of MA were significantly increased with increasing the oxygen 

pressure.  Acetonitrile and acetic acid were solvents that favored the formation of MA 38 over 

DFF 6.  The carbon-carbon bond cleavage occurred due to the hydroxymethyl group of HMF 

rather than the aldehyde group. 
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Scheme 1.20. Synthesis of maleic anhydride 

(-)-Funebrine 39 was isolated in 1984 from the flowers of Quararibeafunebris.
55

 

Funebrine is based on the highly functionalized γ-butyrolactone core.  To date, only two total 

syntheses have been reported.
55

 HMF was used in the total synthesis of Funebrine.  First step was 

the protection of the hydroxyl group, followed by the reduction of the aldehyde to the 

corresponding alcohol, which was further protected with TES 40. Anhydrous mCPBA oxidized 

the furan ring which produced the enone 41.  Upon further reduction with Zn/AcOH, the 

unsymmetrical 1,4-diketone 42 was produced (Scheme 1.21).
55

 

 

Scheme 1.21. Steps in the total synthesis of (-)-Funebrine involving HMF
 

 The synthesis of 5,5’(oxy-bis(methylene))bis-2-furfural (OBMF) 43 has been receiving 

interest in the preparation of imine-based polymers and in the preparation of hepatitis antiviral 

precursors.
56

 Reacting OBMF and 1,4-diaminobenzene results in a polymer that exhibits high 

glass transition temperature (300 °C) and high thermal and electrical conductivity.
56

  The 

hepatitis application is produced by reacting OBMF with 4-amino-pyridine in the presence of 
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para-toluenesulfonic acid (pTSA) followed by a reduction with KBH4.
57

  Two different methods 

have been reported in literature for the synthesis of OBMF, 1) the etherification of two HMF 

molecules in organic solvent with an organic catalyst to obtain 72% yield
58,59,60

 and 2) 

Williamson reaction between HMF and 5-chloro-methyl-2-furfural 44 (Scheme 1.22).
57

 High 

conversion and selectivity of OBMF was achieved using molecular sieves with Brønsted and 

Lewis acid sites.  Mesoporous materials such as Al-MCM-41 and Sn-MCM-41 performed better 

than the zeolites.
56

  Al-MCM-41 bearing a Brønsted acid site performed better than a 

homogeneous acid catalyst such as pTSA.
56  

Trifluorotoluene as the solvent generated the highest 

yield of OBMF of 99%.
56

 

 

Scheme 1.22. Synthetic routes to OBMF  

 A four step synthesis generated 8-oxo-3-aza-bicyclo[3.2.1]octane hydrochloride 45 in 

53% yield starting from HMF (Scheme 1.23).
61

  This synthesis comprised a Raney nickel 

reduction followed by a protection, and finally a cyclization with benzylamine.  Pearlman’s 

catalyst helped in the hydrogenolysis of the N-benzyl group.
61
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Scheme 1.23. Synthesis of 8-oxo-3-aza-bicyclo[3.2.1]octane hydrochloride 

1.3. Synthesis of 2,5-furan dicarboxylic acid 

 2,5-Furan dicarboxylic acid (FDCA) also known as dehydromucic acid, is an oxidized 

furan derivative.  The early preparations of FDCA used mucic or saccharic acids with 

concentrated hydrobromic acid solution, giving poor yields of 20-30%.
62

 In 1953, the synthesis 

of FDCA (74% yield) by the oxidation of methyl 5-formyloxymethyl-2-furoate with 65% nitric 

acid was reported by Moldenhauer.
62

  Based on the difficult purification techniques, it was more 

convenient to esterfy and distill. Upon saponification, the desired diacid was produced in a 45% 

yield.
62

  In 1973, FDCA was first reported in human urine.
63

 A healthy human produces between 

3-5 mg/day.
63

  FDCA can also be obtained by the oxidation of HMF.  FDCA is chemically very 

stable and is a promising platform for biomass derived analogues, because of its potential as a 

terephthalic acid replacement.  Terephthalic acid (TPA) is used in the manufacturing of 

poly(ethyleneterephtalate) (PET), which is used in various polyesters, plastics, fine chemicals, 

pharmaceuticals, and agrochemicals (Scheme 1.24).
64

 Products produced from FDCA may be 

possible alternatives for the petroleum-based industry.  Current applications of FDCA include 

the preparation of furanic-modified amine based derivatives for polyureas, and polyester polyols 

for the manufacturing of corrosion and flame resistant coatings,
65

 which are used in small 

amounts in fire foams.
52,66

 Another application of FDCA is the use as a fungicide
67

 and in 

medicine for the removal of kidney stones.
66

 FDCA has been identified as one of the 12 building 

block compounds that can be produced from sugars. The first synthesis of FDCA was the 
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reaction of mucic acid with hydrobromic acid.
8  

Numerous reports have been made changing the 

dehydrating agent.
8
 

 

Scheme 1.24. Pathway for chemical products from renewable resources 

1.3.1. Oxidation of HMF  

HMF can be oxidized into FDCA.  The synthesis requires high temperature, high 

pressure, metal salts, and organic solvents.
8
  Gold has become an excellent catalyst for selective 

oxidation with molecular oxygen when dispersed on nanoparticles.  Christensen et al. 

transformed HMF directly into furan-2,5-dimethylcarboxylate (FDMC) 47 in excellent 98% 

yield in 3 hours.
68

  Pure FDMC was easily attained because FDMC can be purified by 

sublimation in contrast to FDCA.
68

 In just a few hours, HMF can readily be oxidized to 5-

hydroxymethyl methylfuroate (HMMF) 48 at a pressure of 1 atmosphere of oxygen.  This 

confirmed the aldehyde moiety was oxidized much faster than the hydroxymethyl side chain.
68

 

Upon raising the temperature, the alcohol can be oxidized to an aldehyde forming methyl-5-

formyl-2-furoate (MFF) 49, which can be oxidized to the ester FDMC 47 (Scheme 1.25).
68
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Scheme 1.25. Proposed oxidation pathway of HMF to FDMC 

Riisager et al. produced FDCA in a 71% yield with complete HMF conversion in an 

aqueous solution over an Au/TiO2 catalyst; however it required 20 equivalents of base as shown 

in Scheme 1.26.
69

  

 

Scheme 1.26. Oxidation of HMF to FDCA 

In recent work done by Casanova et al. HMF was oxidized to FDCA with gold 

nanoparticles in water, under mild conditions (65-130 °C, 1.0MPa air) as depicted in Scheme 

1.27.
65

 They found that Au-CeO2 and Au-TiO2 were the best performing catalysts. Comparing 

Au-CeO2 and Au-TiO2, Au-CeO2 gave higher activity and selectivity for FDCA.
65

.  
 

 

Scheme 1.27. HMF oxidation to FDCA 

 The oxidation of HMF to FDCA is a sequential reaction where the aldehyde side 

chain is rapidly oxidized by the solvent (Scheme 1.28).
70

  The mechanism started with the fast 

oxidation of HMF into 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) 4 via formation of a 
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hemiacetal 50, followed by the rate limiting step, the oxidation of HMFCA to FDCA.
65 

Following this step, hydroxide ions from the water with a metal catalyst promote O-H and C-H 

bond activation on the alcohol side chain to the aldehyde than further oxidation to the acid.  

Results from labeling experiments, indicate that hydroxide ions from water acts as the oxygen 

source rather than molecular oxygen.  
 

 

Scheme 1.28. Proposed mechanism for HMF oxidation to FDCA 

The synthesis of FDCA from glucose in different solvent systems was recently 

investigated.
71

  The highest obtained overall yield was 50% when THF was the solvent.  The 

yields were lower when using γ-valerolactone (GVL) and γ-hexalactone (GHL), 38% and 35%, 

respectively (Table 1.1).   
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Table 1.1. FDCA synthesis from glucose 

A variety of oxidants have been used for the oxidation of HMF to FDCA, however only a 

few use oxygen, the most economical oxidant.  The few reported methods for the oxidation of 

HMF with oxygen are with heterogeneous platinum catalysts.  Partenheimer and coworkers 

reported the first example of catalytic aerobic HMF oxidation catalyzed with a homogeneous 

metal/bromide system (Co/Mn/Zr/Br).
72

   The application of metal salts comprising of transition-

metal acetates and a bromide source, Co(OAc)2/HBr/Mn(OAc)2, is commonly known as Amoco 

Mid-Century (MC) catalyst.
73

 They found that HMF can be oxidized to 2,5-diformylfuran (DFF) 

52 and FCDA with 57 and 60% isolated yields, respectively.
72

  Navarro et al. produced DFF 

from HMF in a  >99% selectivity.
74

 This method used vanadyl-pyridine complexes in both 

homogeneous and heterogeneous forms in several solvents including toluene, trifluorotoluene 

and DMSO (Scheme 1.29). A drawback to this method was the very high catalyst loading (mol 

substrate/mol metal = 10).
74 

 

 

Scheme 1.29. Production of DFF from HMF 
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The oxidation of benzylic, allylic, and propargylic alcohols was shown to be catalyzed by 

8-quinolinate vanadium complex.  HMF containing an allylic alcohol was oxidized to DFF in a 

94% yield (Scheme 1.30).
75

 

 

Scheme 1.30. Oxidation of HMF using vanadium complex
 

Riisager et al. explored ruthenium hydroxide supported by magnesium-based materials 

spinel (MgAl2O4), magnesium oxide, and hydrotalcite (HT).
76

 All three catalysts effectively 

catalyzed the oxidation of HMF to FDCA in water without the addition of base.  Both the HT 

and MgO supports dissolved  partially resulting in Mg
2+ 

ions, making the system basic; however, 

the spinel remained stable throughout the reaction which allowed the oxidation to occur under a 

base free condition.
76

 Their data suggests the initial competitive oxidation to be relatively slow 

compared to the subsequent oxidation of DFF or HMFCA.
76

 For the selective, aerobic oxidation 

of HMF to FDCA, heterogeneous ruthenium-based catalysts were used according to a later report 

by Riisager et al (Scheme 1.31).
77

 The yield of FDCA after 6 hours was 38%; consequently, after 

18 hours the yield increased to 60%.
77

 Ceria-supported catalysts effectively oxidized HMF, 

which is in line with the previous work done by Corma et al.
77
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Scheme 1.31. Oxidation of HMF using ruthenium based catalysts 

Hydrotalcite-supported gold nanoparticle catalyst (Au/HT) was found to oxidize HMF to 

FDCA with excellent conversion 99% and selectivity 99% in water at 368 K under an ambient 

oxygen pressure without any addition of homogeneous base.
64

  HT consists of layered clays with 

HCO3
-
 and OH

-
 groups on the surface and is known for high activity base catalyzed reactions 

such as aldol condensation, Knoevenagel condensation and transesterification. In addition, 

metals supported on HTs function as excellent catalysts for alcohol oxidation.  Without any loss 

of activity or selectivity, the catalyst could be reused three times.
64

    

Noble metal catalysts such as carbon or alumina-supported platinum have been found to 

be effective for the oxidation of HMF to FDCA.
7 

 When the pH was controlled, HMF was 

favorably oxidized to the diacid.
54 

Ribeiro and Schuchardt explored a very efficient bifunctional 

acidic and redox catalyst, cobalt acetylacetonate encapsulated in sol-gel silica.
78

 They produced 

FDCA 2 with 99% selectivity with 72% conversion from D-fructose 23 at 160 °C under 2.0 MPa 

air (Scheme 1.32).
78

 

 

Scheme 1.32. Synthesis of FDCA from fructose 
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The oxidation of HMF over Pt/Pb catalysts was investigated by Gaset et al.
79

  They found 

the need for high pH for the reaction to succeed.  Another interesting finding was the oxidation 

of HMF to FDCA occurred in two stages; first the aldehyde side chain was oxidized to a 

carboxylic acid. After the production of HMFCA, the second stage oxidized the hydroxymethyl 

side chain, resulting in the production of FDCA.
79

 

Davis et al. explored the rate and product formation for HMF oxidation over supported 

metal catalysts, Pt/C, Pd/C, Au/C, and Au/TiO2.
80

  The rate of HMF oxidation using gold 

catalysts was an order of magnitude greater than Pt or Pd under standard conditions (295 K, 690 

kPa O2, 0.15 M HMF, 0.3 M NaOH).
80

 However, the gold catalysts produced the intermediate 

HMFCA, oxidation of the aldehyde side chain of HMF. Gold as the catalyst, produced 92% and 

8% selectivity for HMFCA and FDCA, respectively.
80

   It is interesting to note, that both Pt and 

Pd could activate the alcohol side chain and were effective at oxidizing HMFCA to FDCA.
80

 

High pressures of oxygen and high concentrations of base were required for the oxidation of 

FDCA from HMFCA when using gold catalysts; furthermore, the effect of base was more 

important than the pressure of oxygen.
80

  FDCA selectivity of 79% and 71% were achieved by 

Pt/C and Pd/C respectively.
80 

 Lilga et al. oxidized HMF in basic, neutral and acidic solutions.
81

  High yields and 

selectivity of FDCA were achieved in basic solutions.  Using stoichiometric amounts of aqueous 

Na2CO3, with air, over supported platinum metals like Pt/C and Pt/Al2O3 produced near 

quantitative yields of FDCA.
81

 FFCA was favored over FDCA when lower platinum loading was 

used. For example, 93% conversion and 83% selectivity for FFCA was achieved when 5% Pt/C 

was used; however, when decreasing the liquid hourly space velocity, the FDCA selectivity and 
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HMF conversions increased, 80% and 100%  respectively.
81

 Neutral solution reactions were 

slower and incomplete. Due to the fact, that inorganic supports absorb less than carbon supports, 

inorganic supports with very low surface areas and relatively high metal loadings were the most 

effective catalysts for the synthesis of FDCA.
81

 Complete HMF conversion and high selectivity 

(up to 98%) was achieved from Pt/ZrO2 catalysts.
81

 FDCA is relatively insoluble in water; 

however, carboxylic acid solvents such as acetic acid/water mixtures increased the solubility.  

The preferred product DFF was formed in about 70% selectivity.
81  

The oxidation of the primary 

alcohol of HMF produced FFCA in an 85% yield under a TEMPO-mediated oxidation.
82 

 Metal permanganates including lithium, sodium, magnesium, calcium, strontium, cesium, 

zinc and silver were investigated for the oxidation of HMF. In the presence of potassium 

permanganate in a basic solution under bubbling oxygen, FDCA was produced in an 89% 

yield.
83

 

 Vuyyuru and Strasser performed a comparison study on chemical catalysis and 

electrochemical catalysis comparing the effect of pH, the effect of oxygen pressure and the effect 

of the nature of the metal catalyst.
40 

At high pH, (pH ≥ 13), the aldehyde moiety oxidizes faster 

to the carboxylic acid relative to the alcohol moiety. The oxidation of the alcohol is slow due to 

the stabilizing electron effects of the furan ring and formyl group.
40

 The yields for FDCA 

increased with time by oxidizing both the aldehyde and the alcohol groups, 80% yield of FDCA 

after 8 hours of reaction time.
40

 At low pH, the formation of FDCA was significantly reduced; 

consequently, an increase in pH increased the formation of FDCA, as well as the solubility.
40

  

The effect of pressure influenced the FDCA yield; higher pressure proceeded with higher FDCA 

yields.  The increased oxygen pressure increased the amount of available dissolved oxygen for 
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the oxidation of HMF.
40  

Comparing the different metal nanoparticle catalysts, gold was superior.  

Gold effectively oxidized HMF with a yield of 80% FDCA.
50  

Ru, Rh, and Pd showed low 

activity for HMF oxidations.
40

 

 Kröger et al. developed a concept of “in situ oxidation of HMF”.
84

  This was performed 

by working in a two-phase system water/methyl isobutyl ketone (MIBK).  The water phase 

produced HMF and the oxidation reaction took place in MIBK.
84

 Oxidation products reached 

50% maximum selectivity.  The product yield of FDCA was 25%.
84

 

 Dehydration of carbohydrates can lead to 5-(chloromethyl) furfural (CMF) 44 which can 

be oxidized to FDCA 2 in 59% yield (Scheme 1.33).
85

  CMF can be used for other 

transformations as well, including hydrolysis to HMF, reduction to (5-methylfuran-2-

yl)methanol and reductive amination to symmetrical furan diamines. 

 

Scheme 1.33. CMF oxidation to FDCA 

1.3.2. Enzymatic conversions to FDCA 

 Chemical processes tend to have harsh reaction conditions. However biotransformations 

typically proceed under milder conditions and commonly require fewer toxic chemicals.
86

  The 

first reported enzyme to catalyze the oxidation of HMF was chloroperoxidase (CPO) from 

Caldariomyces fumago, which is a heme peroxidase, containing iron(III)protoporphyrin(IX) as 

the prosthetic group.
87

  However this process leads to incomplete HMF oxidation.  The oxidation 

of HMF by CPO and hydrogen peroxide proceeds with 60-74% selectivity to DFF, with a major 
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byproduct of HMFCA 4 and a minor byproduct of 5-formyl-2-furancarboxylic acid (FFCA) 3.
87 

With the incomplete oxidation and mixture of products, this biocatalyst was insufficient.
88

  A 

new promising biocatalyst Cupriavidus basilensis oxidoreductase HmfH has been reported.
88

 

The oxidation of HMF proceeded in two steps.  The first step can be catalyzed by either C. 

basilensis oxidoreductase HmfH or by a specific aldehyde dehydrogenases in C. basilensis 

HMF14 and P. putida S12; however the second step is only oxidized by HmfH (Scheme 1.34).
88 

Koopman et al. produced FDCA from HMF with a 97% yield using a whole-cell 

biotransformation.
88 

 

 

Scheme 1.34. Schematic representation of the oxidation of HMF to FDCA 

1.3.3. Reactions incorporating FDCA  

 Based on FDCA, 2,5-furandicarbonyl dichloride 53 and polyesters were synthesized 

using Fischer esterification under mild conditions (Scheme 1.35).
89

   

 

Scheme 1.35. Synthesis of polyesters from FDCA 
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 The synthesis of poly(ethylene 2,5-furandicarboxylate) (PEF) 57 was explored by various 

synthetic pathways including 1) the polycondensation of furandicarbonyl dichloride and ethylene 

glycol, 2) transesterification of the dimethyl ester with excess ethylene glycol followed by 

polytransesterification and 3) the polytransesterification of the diester diol.
90

  The best route was 

the polytransesterification of the diester diol producing PEF 57 in 98% yield (Scheme 1.36).   

 

Scheme 1.36. Synthesis of PEF  

Starting from ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, and 1,8-

octanediol, a series of furan based polyesters including poly(ethylene 2,5-furandicarboxylate) 

(PEF) 57, poly(trimethylene 2,5-furandicarboxylate) (PTF) 59, poly(butylene 2,5-

furandicarboxylate) (PBF) 60, poly(hexylene 2,5-furandicarboxylate) (PHF) 61, and 

poly(octylene 2,5-furandicarboxylate) (POF) 62 were synthesized  via direct esterification 

(Scheme 1.37).
91

   



 

31 

 

 

Scheme 1.37. Structures of PEF, PTF, PBF, PHF, and POF 

Novel furan containing copolyesters were synthesized by polytransesterification of 

FDCA and ethylene glycol (EG) 58 and 1,4-butylene glycol (BG) 63.
92

  Excess 58 and 63 were 

used for complete conversion of all carboxylic groups into ester linkages.  In order to remove 

any excess EG or BG, 1,2-dichlorobenzene was added as it will form azeotropes.  The product 

consisted of milk white fibrous copolyesters with the name PEF/PBF-x 64 was achieved in high 

yields. It was determined that EG was less reactive than BG based on kinetic studies; the 

reactivity of diols with FDCA increased with a longer carbon chain (Scheme 1.38).   

 



 

32 

 

 

Scheme 1.38. Synthesis of copolyesters PEF/PBF-x 

Upon esterification of FDCA and 1,4-butylene glycol 63, poly(butylene 2,5-

furandicarboxylate) (PBF) 60 was synthesized in 93% yield.
93

   The synthesis proceeds through 

an intermediate PBF-1 65 which has both ends completely capped with hydroxybutylene group 

(Scheme 1.39).  Based on NMR studies, the stages of polymerization were easily detected.     

 

Scheme 1.39. Synthesis of PBF 

The random copolymerization reactions of bis(2-hydroxyethyl) terephthalate (BHETP) 

66 and bis(hydroxyethyl)-2,5-furandicarboxylate (BHEFDC) 56 using different monomeric feed 
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ratios was recently reported.
94

  Incorporating 20% of the renewable furan units PET-ran-PEF 4/1 

67 showed similar properties to commercial PET (Scheme 1.40).   

 

Scheme 1.40. Copolymerization reaction of BHETP and BHEFDC 

By direct esterification and polycondensation, the synthesis of poly(butylene succinate-

co-butylene furandicarboxylate) (PBSF) 68 was recently reported from FDCA, succinic acid 

(SA) 69, and 1,4-butylene glycol 63 using tetrabutyl titanate (TBT) or TBT/La(acac)3 as the 

catalyst.
95

 The molecular weight, composition, Tg and crystallinity effect the mechanical 

properties of PBSF 68 (Scheme 1.41).    

 

Scheme 1.41. Synthesis of PBSF 

Fluorination of FDCA with sulfur tetrafluoride in the presence of anhydrous hydrogen 

fluoride produced mono 70 and bis(triflroromethyl)furans 71 (Scheme 1.42).
96
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Scheme 1.42. The fluorination of FDCA with sulfur tetrafluoride 

 A new synthetic approach of amidino 74 and 2-imidazolinyl-substituted 2-

aminothiophenol 75 was developed for the synthesis of bisamidino dibenzothiazolyl compounds 

76 and 77.
97

 Method A incorporated the condensation of FDCA and amidino-substituted 2-

aminothiophenole 74 in polyphosphoric acid in poor to moderate yields 30-60% of the desired 

compound 76 as a hydrochloride salt.  Method B increased the product yield to 72-80% by using 

diacyl chlorides 53 in acetic acid with the amidino-substituted 2-aminothiophenole 74 (Scheme 

1.43).  Compounds 76 and 77 showed a strong antiproliferative effect on all the tested cell 

lines.
97

  

 

Scheme 1.43. Diamidino-substituted derivatives of dibenzothiazolyl furans 

New europium (Eu) 78 and terbium (Tb) 79 complexes were synthesized with FDCA and 

characterized in the solid state.  The synthesis generated compounds with the general formula 

(H2NMe2)6Ln4Cl4(FDA)7 (Ln = Eu, Tb) 80 and 81 (Scheme 1.44).
98

  Both complexes exhibit 
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line-like luminescence characteristic of the lanthanide upon ligand centered excitation, 

consequently both cases the ligand acts as an antenna. However, due to low efficiency, both 

complexes are not suitable for LED applications. After drying, the compounds were produced in 

59% and 64% yields for europium and terbium, respectively.  

 

Scheme 1.44. Synthesis of lanthanide(III) complex 

Four new metal-organic frameworks (MOFs) based on linear homo/heterotrinuclear 

nodes with FDCA were synthesized.
99

  The building blocks of the four MOFs are all linear 

trinuclear clusters stabilized by the carboxylic groups; however, the three-dimensional 

frameworks are all different. The MOFs {[NH2(CH3)2]2[Co3(FDA)4(CH3OH)2]}n, 82 

{[NH2(CH3)2]2[Co3(FDA)4]·2DMF}n, 83 {[Gd2Co(FDA)4(H2O)4]·2H2O}n, 84 

{[Dy2Co(FDA)4(glycol)2]·2H2O}n 85 were synthesized in 59%, 63%, 59% and 49% yields, 

respectively (Scheme 1.45).
99
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Scheme 1.45. Synthesis of MOFs 

Three anionic porous MOFs were synthesized solvothermally using Zn(II), FDCA and 

DMF at different reaction temperatures.
100

  The first compound, [Zn1.5(FDA)2(Me2NH2)]·xG 

(G=guest) was synthesized at 90 °C, has a two-dimensional sheet structure.  The second 

compound, [Zn3(FDA)4(Me2NH2)]·xG was synthesized at 120 °C, has a three-dimensional 

structure as well as the third compound, [Zn1.5(FDA)2(Me2NH2)]·xG, which was synthesized at 

160 °C.  Increasing the temperature changed the local environment around the zinc center. This 

is the first reported example where simultaneous control over both dimensionality and 

supramolecular isomerism was achieved by changing the temperature.
100

  

The first reported example of two types of frameworks present in the same material was 

recently reported.
101

  The new material CPM-7 (crystalline porous materials) 91 was produced by 

a solvothermal reaction of Zn(NO3)2∙6H2O 90 and FDCA 2 (Scheme 1.46).  CPM-7 structure is 

built from four different building blocks, a Zn4O tetramer, two Zn3(OH) trimers and a Zn 

monomer.  Of the two crystallographicallly different trimers, one consists of no water (trimer 1) 

the other has water (trimer 2).  Due to the presence of water in trimer 2, the Zn is six-coordinated 
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compared to four-coordinated in trimer 1. CPM-7 consists of two types of polyhedral cages: a 

sodalite cage from the tetramers and a cubic cage from the trimers.
101

  

 

Scheme 1.46. Synthesis of CPM-7 

Using FDCA as the starting material to prepare C-nucleosides has proven ineffective.
102

   

It was thought that by reducing cis-2,5-dihydrofuran-2,5-carboxylate 93 to the corresponding 

diol 94; the diol could be tosylated or mesylated to the disulfonates.   The next step of the 

reaction with cyanide ion to form 96 failed.  So attention was switched to making the cyclic 

sulfate function 97, which had anticipated advantages of favorable geometry for backside SN2 

attack and the cyclic compound would only monocyanoate 98 (Scheme 1.47). However, the 

desired product did not form due to the attack on sulfur preferred carbon or elimination of 

bridgehead hydrogen was faster than the substitution reaction.
102

   

 

Scheme 1.47. Proposed route to C-nucleosides 
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Hydrolytic enzymes pig liver esterase (PLE) and porcine pancreatic lipase (PPL) 

catalyzed hydrolysis of diesters 99 with enantiotopic selectivity (Scheme 1.48).
103

  These 

products 100 could serve as possible precursors for the sugar moieties of C-nucleosides.   

 

Scheme 1.48. PLE and PPL catalyzed hydrolysis of different diesters 

The synthesis of furan-strapped calix[4]pyrrole 101 was synthesized from FDCA in an 

overall 18% yield (Scheme 1.49).
104

   In the solid state, the furan-strapped calix[4]pyrrole, which 

contains two methanol molecules, adopts a 1,2-alternate conformation.   

 

Scheme 1.49. Synthesis of the furan-strapped calix[4]pyrrole 
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Several homopiperazine derivatives 104 were synthesized with acid moiety and were 

found to be potent inhibitors of dipeptidyl peptidase IV (DPP-IV), with no CYP 3A4 inhibition 

(Scheme 1.50).
105

  The derivative with FDCA gave an IC50 value of 260 nM.  

 

Scheme 1.50. Homopiperazine derivative based on FDCA 

1.4. Conclusion  

 HMF is considered to be one of the most promising platform molecules that can be 

converted into a wealth of interesting chemicals.  HMF has been known as a product from 

hexose dehydration for over 100 years.  With the growing number of publications in the recent 

years, improvements have been made in understanding the mechanism and kinetics of the 

dehydration process to HMF.  By applying different solvent types, extraction methods, and 

bifunctional catalyst systems, the synthesis of HMF has improved.  

 FDCA, identified as one of the twelve building blocks, has great potential as a 

terephthalic acid replacement.  The oxidation of HMF to FDCA is a sequential reaction where 

the aldehyde side chain is rapidly oxidized than the alcohol side chain is oxidized. FDCA can be 

used in the synthesis of polymers and metal organic frameworks. 
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CHAPTER 2. HMF BASED DIELS-ALDER REACTIONS 

2.1. Introduction 

 The Diels-Alder reaction, the cycloaddition of alkenes and dienes, has become one of the 

most important synthetic methods used in organic chemistry. It is named after Professor Otto 

Paul Hermann Diels and his research student, Kurt Alder, who discovered and developed the 

reaction in 1928 and later received the Noble Prize in 1950.  The reaction of cyclopentadiene 105 

and quinone 106 resulted in the [4+2] cycloaddition product 108 (Scheme 2.1).
106

 The Diels-

Alder reaction has been exploited in numerous dimensions including inter- and intramolecular, 

heteroatom, and with various catalyzed reactions.   

 

Scheme 2.1. The discovery of the Diels-Alder reaction 

 The Diels-Alder reaction adopts a concerted pathway; consequently, the transition 

structure of the diene must adopt the s-cis conformation. The approach of the diene and 

dienophile is approximately in parallel planes.
107

  With respect to both the diene and dienophile, 

the reaction is a stereospecific syn (suprafacial) addition.  Many substituted dienes and 

dienophiles have been investigated to demonstrate the stereospecific addition, including the 

simplest example of ethene 110 and butadiene 109 with isotope labeling (Scheme 2.2).
108
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Scheme 2.2. Isotopic labeling experiment 

 There are two possible stereochemical orientations with respect to the diene, endo and 

exo, when a substituted dienophile is present.  In the exo transition state 113, the substituent is 

orientated away from the  orbitals of the diene.  The endo transition state 114 has the 

substituent orientated toward the  system.
107

 These two orientations are illustrated in Figure 2.1. 

 

Figure 2.1. Transition structures for the Diels-Alder reaction 

 When substituted dienes are present, the two transition states lead to two different 

stereoisomeric products.  When an electron withdrawing group (EWG) substituent such as a 

carbonyl group is present on the dienophile, the endo means of approach is usually preferred; this 

preference is referred to as the Alder rule. The Alder rule is a good rule of thumb to initially 

follow for the predication for the stereochemistry of the Diels-Alder reaction; however, 

frequently a mixture of both stereoisomers is formed or the exo product predominates.  The endo 

product is often the more sterically congested. An example of a more sterically congested 

product 116 is the addition of dienophiles to cyclopentadiene as shown in Scheme 2.3.
107
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Scheme 2.3. Diels-Alder reaction favoring the endo stereoisomer 

 The Diels-Alder reaction has a strong electronic substituent effect.  It has been known for 

a long time that when the dienophile contains one or more EWGs the reactions proceed 

efficiently and rapidly; this is favored even more when the diene also contains an electron 

donating group (EDG).  Some of the most reactive dienophiles are quinones, maleic anhydride 

and nitroalkenes. Nitriles, ketones, and ,-unsaturated esters are also effective dienophiles.
107

  

The reaction between unfunctionalized dienes and dienophiles is quite slow.  For example, the 

reaction of cyclopentadiene and ethane occurs around 200 °C.
109

  Diene reactivity is increased 

with EDG substituents.    

 When the diene is electron-poor, the best dienophiles are electron-rich alkenes such as 

vinyl ethers and enamines. Such reactions are called inverse electron demand Diels-Alder 

reactions and best understood in terms of frontier orbital theory (FMO).  Electron rich dienes 

have high energy highest occupied molecular orbital (HOMO) that interact strongly with the 

lowest unoccupied molecular orbital (LUMO) of the electron poor dienophile. When the 

substituent pattern is reversed and the diene is electron poor, the strongest interaction is between 

the dienophile HOMO and the LUMO of the diene. Using the FMO approach, the reactivity and 

regioselectivity of the Diels-Alder reaction can be predicted for a wide range of diene-

dieneophile combinations (Figure 2.2).
107
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Figure 2.2. FMO interactions for Diels-Alder reactions 

The nature of the substituents on the diene and dienophile determine the regioselectivity 

of the Diels-Alder reaction.  Scheme 2.4 displays the preferred regiochemistry for various 

substitution patterns.
107

  Case A and B arise from the combination of an electron donor diene and 

an electron acceptor dienophile.  The frontier orbitals will be the diene HOMO and the 

dienophile LUMO for cases A and B.   Inverse electron demand Diels-Alder reactions give rise 

to case C and D; the pairing of the diene LUMO and the dienophile HOMO is the strongest 

interaction.
107

   

 

Scheme 2.4. Regioselectivity of the Diels-Alder reaction 
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 An example of a Diels-Alder reaction using a derivative of HMF was reported by 

Toste.
110

  DMF 10 and acrolein which can be produced from glycerol, a side product of biodiesel 

production, were converted into a key intermediate p-xylene (Scheme 2.5).  The synthesis 

consisted of a sequential Diels-Alder reaction, oxidation, dehydration and decarboxylation.  

Although the reaction required low temperature, which presents a limitation economically for 

industrial scale, the bio-derived p-xylene was obtained in a 34% overall yield over four steps.   

 

Scheme 2.5. Bio-derived p-xylene synthesis 

2.2. Results and discussion 

 Our research goal was to develop novel methods for the conversion of renewable 

resources to feedstock chemicals for polymer synthesis.  We were interested in examining Diels-

Alder reactions with derivatives of HMF using different dienophiles such as ethyl vinyl ether, 

phenylacetylene, trimethylsilylacetylene, and ethoxy ethyne.  These dienophiles were chosen 

because they are electron rich.  An electron poor diene such as dimethyl-2,5-furandicarboxylate 

would be needed for a matched case. This type of Diels-Alder reaction would be an inverse 

electron demand reaction, since the diene is electron poor and the dienophile is electron rich.  
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Both alkene and alkyne dienophiles were examined. Alkyne dienophiles have an advantage over 

alkene dienophiles in that the Diels-Alder product gives the dihydro compound.   

We first evaluated the Diels-Alder reaction of the furan diene and the dienophile with and 

without molecular sieves (Table 2.1).   The presence of molecular sieves did not affect reaction, 

since starting material was fully recovered with or without molecular sieves. The energetics of 

this reaction were not met and starting material was recovered.   

 

Table 2.1. Basic Diels-Alder reaction 

The use of microwave heating was explored next. Microwave chemistry has its 

advantages over conventional heating.  Microwave chemistry can significantly increase the 

reaction rate of various liquid-phase chemical transformations, due to the instant volumetric 

heating of the reaction medium when compared to conventional methods.   Microwave chemistry 

also provides better conversion, selectivity and yield, achieves greater reproducibility, and helps 

for cleaner and greener production of chemicals.
111

 Table 2.2 shows the different microwave 

conditions tested with vinyl ethyl ether.  Changing the power or time did not do anything for the 

reaction.  Starting material was recovered.   
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Table 2.2. Microwave testing with ethyl vinyl ether 

Since no product formed, the focus was shifted to a different dienophile, phenylacetylene.  

Different microwave conditions were explored. However, no product was formed (Table 2.3).  

 

Table 2.3. Microwave conditions for phenylacetylene 

Since no product formed under microwave conditions, the focus switched to Lewis acid 

catalysts.  Our focus at first was mainly on environmentally friendly Lewis acids like indium and 

bismuth, to enhance the “green” aspect of this chemistry.  To investigate the substrates 

thoroughly, a Lewis acid scope was performed.  The goal was to get the derivatives of HMF to 

react in a Diels-Alder fashion. Table 2.4 shows the Lewis acid and molecular sieve screening.  

To our surprise, no combination of these Lewis acids or molecular sieves generated any product; 
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starting material was only present.  The reaction was monitored every twelve hours, and finally 

stopped after seven days of no product formation.   

 

Table 2.4. “Green” Lewis acid screening 

 Since the “green” Lewis acids did not catalyze the reaction, other Lewis acids were 

investigated such as copper acetate, copper iodide, and aluminum chloride (Table 2.5).  Just as 

before, these Lewis acids did not catalyze the formation of product.   

 

Table 2.5. Lewis acid screening  
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 A final attempt was made to react 7 with a different dienophile, potassium 

ethynyltrifluoroborate 137.  This dienophile is electron rich, pairing with an electron poor diene, 

resulting in an inverse electron demand Diels-Alder reaction.  This dienophile was chosen 

because if the Diels-Alder reaction proceeded, then the product could be used in cross coupling 

reactions.  Table 2.6 shows the temperature and solvent screening for this combination of diene 

and dienophile.  

 

Table 2.6. Solvent and temperature screening  

With a thorough Lewis acid and microwave chemistry scope, it can be concluded that the 

FDMC 7 does not react with the given dienophiles.  So the focus switched to a different diene, 

FDCA.  FDCA 2 was tested with the same Lewis acids as 7 with the different dienophiles 130, 

131, and 132 (Table 2.7).   
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Table 2.7. Lewis acid scope with FDCA 

 Based on the negative results, the diene was changed to the diol 11. A solvent screening 

was performed as seen in Table 2.8. No product was formed, starting material was recovered. 

The reaction may not have worked since both the diene and dienophile are electron rich.   

 

Table 2.8. Solvent screening 

 A comparison study was done on dienophiles having one or two electron withdrawing 

groups.  The Diels-Alder reaction of 11 and 138 is reported in literature.
112

  Having two electron 
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withdrawing groups was required for the reaction with the diol as displayed in Scheme 2.6. The 

two EWGs made the triple bond more electron poor, which reacted with electron rich 11.  

 

Scheme 2.6. Electron withdrawing group comparison 

 Another combination of diene and dienophile was explored.  An electron rich diene 10 

was paired with the electron poor dienophile 142 for a normal electron demand Diels-Alder 

reaction. In comparing solvents, toluene gave a higher yield than benzene (Scheme 2.7).  It is 

interesting to note that the bromine is present throughout these transformations, which is 

beneficial as it can be converted into other functional groups.   

 

Scheme 2.7. Solvent screening  

Another goal was to prepare C-10 diacids for the synthesis of polymers. The previous 

method included oxidation of HMF 1 to DFF 6, a Wittig reaction to form 146, then upon 

reduction and transesterfication gave 147. Base hydrolysis afforded the C-10 diacid 148 (Scheme 

2.8).   
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Scheme 2.8. Previous method for C-10 diacids 

 An alternative method for the generation of C-10 products is the Perkin condensation of 

DFF 6 with malonic acid.
113

  This new method requires one less step than the previous method.  

The aldehyde moiety condenses with malonic acid to form an acrylic acid substituent.  In the 

case of DFF 6, both of the aldehyde groups react with malonic acid, forming a C-10 product.  

The acrylic acid product can be hydrogenated to the saturated acid (Scheme 2.9).   

 

Scheme 2.9. Alternative method for C-10 diacids 

  Other substrates that contained an aldehyde moiety were investigated with the Perkin 

condensation including HMF. These substrates gave lower yields than DFF (Scheme 2.10).   

 

Scheme 2.10. Perkin condensation 
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The next area of focus was on the development of naphthalene analogs of terephthalic 

acid for the formation of bio-based polyethylene terephthalate (PET) analogs by reacting the 

HMF derivatives with benzyne. We first explored the in situ generation of benzyne with 2-

(trimethylsilyl) phenyl triflate 154; however, due to its high cost, it is not an attractive benzyne 

source. Upon optimizing the conditions, it was found that heating to 70 °C was more efficient 

than at room temperature (Scheme 2.11).   

 

 Scheme 2.11. Diels-Alder reaction with benzyne 

 A substrate scope was performed at 70 °C (Table 2.9).  FDCA 2 did not react with 

benzyne. Two possible reasons why FDCA 2 did not react with benzyne are 1) solubility issues 

and 2) acids are known to be trapped once benzyne is generated.
114

  This could also explain why 

148, which has the acid moiety, did not react as well.  It is interesting to note that 153, the 

protected diol, reacts whereas the diol 11 does not react with benzyne. It is still unclear why the 

dialdehyde substrate 6 does not react under these conditions.   
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Table 2.9. Substrate scope  

 Based on the substrates that reacted with benzyne 158a-d, they were aromatized to 

naphthalene analogs of terephthalic acid 159 (Table 2.10). These naphthalene analogs could be 

used for the formation of bio-based polyethylene terephthalate (PET).  It is interesting to point 

out that the reaction works excellently when the substituents are electron donating.  The reaction 

does not work or does not work well when the substituents are electron withdrawing as in the 

case of methyl ester and cyano substituents. Other conditions for the deoxygenation followed by 

aromatization may work better for the EWG containing substrates.   

 

Table 2.10. Naphthalene analogs of terephthalic acid 
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 An alternative approach was followed to avoid the expensive benzyne precursor 154. A 

tosyl analog 164 was synthesized through a nucleophilic substitution/protection of 2-

chlorophenol 160 (Scheme 2.12). 

 

Scheme 2.12. Synthesis of benzyne precursor   

A Diels-Alder reaction with the recently synthesized tosylate benzyne precursor 164 and 

DMF was attempted.  DMF was chosen as the diene since the reaction worked great (97% yield) 

with the triflate benzyne precursor 154.  However, the Diels-Alder reaction with DMF did not 

proceed (Scheme 2.13).  A possible explanation for why DMF did not react with the tosylate 

benzyne precursor 164 is that the triflate is a better leaving group than the tosylate.   

 

Scheme 2.13. Diels-Alder reaction with tosylate benzyne precuror 
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2.3. Conclusions and future work  

In conclusion, HMF serves as a versatile platform chemical made from biomass. The 

HMF derivatives can serve as starting materials for polymeric materials.  Diels-Alder reactions 

are an important method in synthetic organic chemistry.  In our work, the Diels-Alder reaction of 

HMF and FDCA derivatives did not work with ethyl vinyl ether, phenyl acetylene, trimethylsilyl 

acetylene, ethoxy ethyne or potassium ethynyltrifluoroborate. To our surprise, no combination of 

Lewis acids or molecular sieves generated any product.    

It was found that having two EWGs on the dienophile was required to react with the diol 

11.  The two EWGs made the triple bond more electron poor, which was needed for the 

electronics to match up.   

An alternative method for the generation of C-10 products was achieved through the 

Perkin condensation of 1, 6, and 150 with malonic acid.  The aldehyde moiety condenses with 

malonic acid to form an acrylic acid substituent.  In the case of DFF 6, both of the aldehyde 

groups react with malonic acid, forming a C-10 product.  The acrylic acid product can be 

hydrogenated to the saturated acid.  This alternative method generated the saturated product in 

good yields 80-90%.    

The development of naphthalene analogs of terephthalic acid for the formation of bio-

based polyethylene terephthalate (PET) analogs was achieved using 2-(trimethylsilyl) phenyl 

triflate.  The yields were good to excellent depending on which HMF derivative was used.  

FDCA did not react due to solubility reasons or the trapping of the acid when benzyne was 

generated.   

Due to the expensive benzyne precursor, another method for benzyne generation needs to 

be investigated.  Anthranilic acid 166 was investigated based on a reported procedure reacting 
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BHMF 11 with anthranilic acid (Scheme 2.14).
115

 This is a promising precursor as 11 did not 

react with 154, hopefully, this new method can be suitable for other substrates that did not react 

with 154.  Another benefit for this method of benzyne generation is the low cost of anthranilic 

acid 166 compared to 2-(trimethylsilyl) phenyl triflate 154. 

 

Scheme 2.14. Generation of benzyne from anthranilic acid 

2.4. Experimental 

2.4.1. General experimental information 

Methylene chloride was distilled from calcium hydride prior to use. Powdered molecular 

sieves 4 Å (MS 4Å) was purchased from Aldrich Chemical and dried at 250-300 ºC under 

vacuum before use.  Flash chromatography was performed using EM Science silica gel 60 (230-

400 mesh) or on an ISCO CombiFlash Companion with Analogix RS-4 columns.  Thin layer 

chromatographic analyses were performed on silica gel Whatmann-60F glass plates and 

components were visualized by illumination with UV light.  All glassware was oven dried, 

assembled hot and cooled under a stream of dry nitrogen before used.  Reactions with air 

sensitive materials were carried out by standard syringe techniques. 

Melting points were recorded on a Fisher-Johns melting point apparatus and are 

uncorrected. 
1
H NMR was recorded on a Varian Unity/Inova-500 NB (500 MHz), Varian 

Unity/Inova-400 NB (400 MHz), or Varian Mercury-300 (300 MHz) spectrometer.  Chemical 
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shifts are reported in parts per million (ppm) downfield from TMS, using residual CDCl3 (7.27 

ppm) as an internal standard.  Data are reported as follows: Chemical shift, multiplicity (s = 

singlet, d = doublet, t = triplet, q = quartet, qn = quintet, dd = doublets of doublets, dt = doublet 

of triplets, dq = doublet of quartets, m = multiplet, br = broad, AB sys = AB system), coupling 

constant(s) and integration.  
13

C NMR was recorded on a Varian Unity/Inova-500 NB (125 

MHz) or a Varian/Inova-400 (100 MHz) spectrometers using broadband proton decoupling.  

Chemical shifts are reported in parts per million (ppm) down field from TMS, using the middle 

resonance of CDCl3 (77.23) as an internal standard.  FT-IR spectra were recorded on a Mettler-

Toledo ReactIR-4000. High-resolution mass spectra (HRMS) [ESI+] were obtained from the 

Mass Spectrometry Laboratory, North Dakota State University, Fargo, North Dakota. 

5-(Hydroxymethyl)-2-furaldehyde (1): Fructose (10 g, 55.5 mmol, 1 

equiv.), lithium bromide (10.6 g, 122.04 mmols, 2.2 equiv.) and DMA 

(100 mL) were added to a 250 mL round bottom flask.  Sulfuric acid (0.32 

mL, 0.0055 mmol, 0.0001 equiv.) was then added. Reaction was allowed to stir at 100 °C for six 

hours. Reaction was filtered with celite to remove any fructose, distilled to remove DMA and 

filtered again over celite to remove LiBr.  Crude was purified by flash column chromatography 

(hexane/ethyl acetate 1:1). Yellow oil; yield: 4.71 g, 65%; 
1
H NMR (CDCl3, 400 MHz)  4.71 (s, 

2H), 6.50 (d, J = 3.6 Hz, 1H), 7.18 (d, J = 3.6 Hz, 1H), 9.59 (s, 1H); 
13

C NMR (CDCl3, 100 

MHz)  57.9, 110.2, 122.8, 152.6, 160.6, 177.9. Spectroscopic and analytical data for the product 

corresponded to those described in the literature.
116

 

Furan-2,5-dicarboxylic acid (2): To a solution of hydroxyl methyl 

furfural 1 (2 g, 16.13 mmol, 1 equiv.) in a sodium hydroxide solution 
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(14.81 g in 161 mL H2O, 371 mmol, 23 equiv.) crystals of potassium permanganate (5.85 g, 37.1 

mmol, 2.3 equiv.) were added at room temperature. The reaction was stirred for three hours.  

Solution was filtered and poured into a flask containing 20 mL of ice and placed in an ice bath.  

Hydrochloric acid was added to the filtrate to bring the pH to 1 or less thereby precipitating 

FDCA. The precipitate was filtered and washed with ice water and dried over MgSO4.  Residue 

was used for the next step without purification.  White solid; yield: 1.5 g, 60%; mp = >200 C; 

1
H NMR (DMSO-d6, 400 MHz)  7.24 (s, 1H), 13.61 (s, 1H); 

13
C NMR (DMSO-d6, 100 MHz)  

119.1, 147.7, 159.6. Spectroscopic and analytical data for the product corresponded to those 

described in the literature.
92 

 

2,5-Furandicarboxaldehyde (6): Manganese oxide (7.06 g, 81.2 mmol, 

4.3 equiv.) was added to a solution of HMF 1 (2.0 g, 15.8 mmol, 1 equiv.) 

in dichloromethane (50 mL). Reaction was allowed to stir for eight hours 

at 40 °C.  Reaction was filtered through celite and solution was concentrated under vacuum.  The 

residue was purified by flash column chromatography (hexane/ethyl acetate 1:1). Yellow solid; 

yield: 1.5 g, 65%; mp = 108-110 °C; 
1
H NMR (CDCl3, 400 MHz)  7.31 (s, 1H), 9.83 (s, 1H); 

13
C NMR (CDCl3, 100 MHz)  119.5, 154.4, 179.4. Spectroscopic and analytical data for the 

product corresponded to those described in the literature.
75

 

Dimethyl-2,5-furandicarboxylate (7): To a solution of FDCA 2 (2.0 

g, 12.82 mmol, 1 equiv.) in methanol (30 mL), thionyl chloride (3.44 

mL, 47.7 mmol, 3.72 equiv.) was added at 0 °C, then the reaction was 

heated to reflux and stirred overnight.  The solvent was removed under vacuum, washed with 

sodium bicarbonate solution, rinsed three times with dichloromethane then dried with sodium 
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sulfate. The solid was used for the next step without purification. White solid; yield: 2.16 g, 

92%; mp = 109-111 °C; 
1
H NMR (CDCl3, 400 MHz)  3.89 (s, 3H), 7.10 (s, 1H); 

13
C NMR 

(CDCl3, 100 MHz)  52.6, 118.7, 146.8, 158.6. Spectroscopic and analytical data for the product 

corresponded to those described in the literature.
113

   

2,5-Bis(hydroxymethyl)furan (11): HMF 1 (5.0 g, 39.6 mmol, 1 equiv.) 

was added to a 100 mL round bottom flask containing absolute ethanol 

(20 mL). Sodium borohydride (1.63 g, 43.1 mmol, 1.1 equiv.) was 

slowly added while flask was in an ice bath. The reaction stirred at room temperature overnight. 

Reaction was concentrated and crude was purified by column chromatography DCM/Methanol 

(95:5).  White solid; yield:  4.1 g, 89%; mp = 75-77 °C; 
1
H NMR (DMSO-d6, 400 MHz)  4.28 

(s, 2H), 6.11 (s, 1H); 
13

C NMR (DMSO-d6, 100 MHz)  56.3, 108.0, 155.2. Spectroscopic and 

analytical data for the product corresponded to those described in the literature.
113

  

2,5-Furandicarbonyl chloride (53): A mixture of FDCA 2 (1.0 g, 6.4 

mmol, 1 equiv.), thionyl chloride (1.73 mL,  23.8 mmol, 3.72 equiv.) and 

benzene (20 mL) was heated at 70 °C for 24 hours.  Excess thionyl 

chloride was removed under vacuum and residue was used for the next step without purification.  

White solid; yield: 1.21 g, 99%; mp = 77-79 °C; 
1
H NMR (CDCl3, 400 MHz)  7.5 (s, 1H); 

13
C 

NMR (CDCl3, 100 MHz)  123.2, 149.3, 155.9. Spectroscopic and analytical data for the product 

corresponded to those described in the literature.
89

   

 



 

60 

 

2-Bromo-3,6-dimethyl-3,6- epoxy ethylbenzoate (143): Dimethylfuran 10 

(160 mg, 1.66 mmol, 1 equiv.) and ethyl bromopropiolate (100 mg, 0.56 

mmol, 0.34 equiv.) were added to a 10 mL round bottom flask containing 

toluene (5 mL).  Reaction stirred at 90 °C for 12 hours. Residue was used for 

the next step without purification.  Yellow oil; yield: 316 mg, 70%; 
1
H NMR (CDCl3, 400 MHz) 

 1.31 (t, J = 1.2 Hz, 3H), 1.51 (s, 3H), 1.83 (s, 3H), 4.21 (d, J = 1.2 Hz, 2H), 6.83 (d, J = 4.8 Hz, 

1H). 6.94 (d, J = 4.8 Hz, 1H); 
13

C NMR (CDCl3, 100 MHz)  14.4, 15.8, 16.7, 60.8, 92.9, 93.4, 

145.5, 145.8, 148.1, 153.4, 163.3;  IR (Film) 3429, 1715, 1652, 1615, 1588, 1436, 1253 cm
-1

; 

HRMS calcd. for C11H13O3BrNa
+
 294.9940; found 299.9945. 

2-Bromo-3,6-dimethyl ethylbenzoate (144) To the starting material 143 (27 

mg, 0.1 mmol, 1 equiv.) in acetonitrile (2 mL) was added sodium iodide (45 

mg, 0.3 mmol, 3 equiv.) at room temperature to a 5 ml round bottom flask.  

The reaction was cooled to 0 °C, placed under argon, and trimethylsilyl 

chloride (40 µL, 0.3 mmol, 3 equiv.) was added slowly and the mixture was stirred at room 

temperature for 24 hours.  Yellow oil; yield: 18 mg, 70%; 
1
H NMR (CDCl3, 400 MHz)  1.39 (d, 

J = 1.2 Hz, 3H), 2.27 (s, 3H), 2.35 (s, 3H), 4.40 (q, J = 1.2 Hz, 2H), 7.02 (d, J = 7.6 Hz, 1H), 

7.12 (d, J = 7.6 Hz, 1H); 
13

C NMR (CDCl3, 100 MHz)  14.4, 19.3, 23.0, 61.8, 121.5, 129.0, 

130.2, 131.2, 134.3, 135.8, 137.8; IR (Film) 3048, 2961, 1734, 1588, 1474, 1402, 1162, 1134 

cm
-1

. HRMS calcd. for C11H13O2BrNa
+
 278.9950; found 278.9945. 

2,5-Furandipropanoic acid (148): Diacid 149 (50 mg, 0.24 

mmol, 1 equiv.) was added to a 5 mL round bottom flask 
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followed by the addition of methanol (1 mL). Pd/C (5 mg,  0.047 mmol, 0.2 equiv.) was then 

added. The flask was sealed and placed under vacuum to remove any air. A hydrogen balloon 

was placed into flask and vented three times.  The balloon was replaced in the flask and reaction 

was allowed to stir for 3.5 hours. The reaction turnes balck when reaction is complete.  Reaction 

was filtered over celite and washed with water. White solid; yield: 48.4 mg, 95%; mp = 133-137 

°C; 
1
H NMR (DMSO-d6, 400 MHz)  2.44 (t, J = 7.2 Hz, 4H), 2.71 (t, J = 7.2 Hz, 4H), 5.88 (s, 

2H), 12.90 (s, 2H); 
13

C NMR (DMSO-d6, 100 MHz)  31.3, 56.4, 58.2, 152.7, 167.8.  

5-Benzoyloxymethylfurfural (150): DMAP (0.1 g, 0.793 mmol, 0.1 

equiv.) was dissolved in dichloromethane (35 mL) in a 100 mL 2-neck 

flask. HMF 1 (1.0 g, 7.93 mmol, 1 equiv.) and triethyl amine (2.2 mL, 

15.86 mmol, 2 equiv.) were added at 0 °C, followed by a slow addition of benzoyl chloride (1.4 

mL, 11.90 mmol, 1.5 equiv.). Reaction was stirred for 14 hours at room temperature.  Reaction 

was quenched with NH4Cl aqueous solution and extracted with DCM. Organic layer was dried 

over sodium sulfate and concentrated under vacuum. Crude was purified by flash column 

chromatography (hexane/ethyl acetate 85:15). Yellow solid; yield: 1.46 g, 81%; mp = 49-52 °C; 

1
H NMR (CDCl3, 400 MHz)  5.36 (s, 2H), 6.65 (d, J = 7.2 Hz, 1H), 7.20 (d, J = 7.2 Hz, 1H), 

7.42 (d, J = 8.4 Hz,  2H), 7.55 (dd, J = 8.2, 8.4 Hz, 1H), 8.02 (d, J = 8.2 Hz, 2H), 9.63 (s, 1H); 

13
C NMR (CDCl3, 100 MHz)  58.4, 112.9, 121.9, 128.7, 129.5, 130.0, 133.6, 153.1, 155.7, 

166.1, 178.0. Spectroscopic and analytical data for the product corresponded to those described 

in the literature.
117
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5-Hydroxymethyl-2-furanacrylic acid (151a): Malonic acid (340 

mg, 3.35 mmol, 1 equiv.) was dissolved in pyridine (800 µL) and 

HMF 1 (422 mg, 3.35 mmol, 1 equiv.) and piperidine (330 µL, 6.7 

mmol, 2 equiv.) were added to 5 mL round bottom flask.  Reaction was stirred at reflux for 14 

hours.  After the 14 hours, the reaction was transferred to an Erlenmeyer flask and placed in an 

ice bath, and 2N HCl (25 mL) was added. A precipitate formed and was collected by filtration 

and was washed with water. Solid was used for the next step without purification. Brown solid; 

yield: 342 mg, 60%; mp = 109-112 °C; 
1
H NMR (DMSO-d6, 400 MHz)  2.44 (s, 2H), 6.04 (d, J 

= 14.6 Hz, 1H), 6.37 (d, J = 14.6 Hz, 1H), 6.79 (d, J = 7.2 Hz, 1H), 7.29 (d, J = 7.2 Hz, 1H), 

13.24 (s, 1H); 
13

C NMR (DMSO-d6, 100 MHz)  56.4, 110.3, 115.9, 117.1, 131.5, 150.2, 159.0, 

168.1.  

5-[(Benzoyloxy)methyl]-2-furanpropenoic acid (151b): Malonic 

acid (170 mg, 0.87 mmol, 1 equiv.) was dissolved in pyridine (200 

µL) and furan 150 (200 mg, 0.87 mmol, 1 equiv.) and piperidine 

(165 µL, 1.74 mmol, 2 equiv.) were added.  Reaction was stirred at reflux for 14 hours.  After the 

14 hours, the reaction was transferred to an Erlenmeyer flask and placed in an ice bath, and 2N 

HCl (25 mL) was added. A precipitate formed and was collected by filtration and was washed 

with water. Solid was used for the next step without purification.  Brown solid; yield: 158 mg, 

67%; mp = 96-101 C; 
1
H NMR (DMSO-d6, 400 MHz)  5.31 (s, 2H), 6.34 (d, J = 15.6 Hz, 1H), 

6.54 (d, J = 3.6 Hz, 1H), 6.63 (d, J = 3.6 Hz, 1H), 7.40 (d, J = 10.8 Hz, 2H), 8.03 (d, J = 13.6 Hz, 

1H), 8.05 (dd, J = 1.2, 5.6 Hz, 1H), 8.09 (d, J = 5.6 Hz, 2H), 12.98 (s, 1H); 
13

C NMR (DMSO-d6, 

100 MHz)  58.9, 114.1, 116.8, 117.4, 129.2, 129.5, 129.9, 131.2, 133.5, 134.3, 151.5, 152.5, 
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167.8. IR (Film) 3760, 3006, 1712, 1638, 1451, 1268, 1069, 711 cm
-1

; HRMS calcd. for 

C15H12O5Na
+
 295.0577; found 295.0579. 

3,3’-(2,5-Furandiyl)bis-2-propenoic acid (149): Malonic acid 

(680 mg, 6.6 mmol, 2 equiv.) was dissolved in pyridine (800 

µL) and furan 6 (422 mg, 3.3 mmol, 1 equiv.) and piperidine 

(660 µL, 6.6 mmol, 2 equiv.) were added.  Reaction was stirred at reflux for 14 hours.  After the 

14 hours, the reaction was transferred to an Erlenmeyer flask and placed in an ice bath, and 2N 

HCl (25 mL) was added. A precipitate formed and was collected by filtration and was washed 

with water. Solid was used for the next step without purification.  Brown solid; yield: 642 mg, 

90%; mp = 102-105 °C; 
1
H NMR (DMSO-d6, 400 MHz)  6.33 (d, J = 15.6 Hz, 1H), 6.97 (s, 

1H), 7.34 (d, J = 16.0 Hz, 1H), 13.04 (s, 1H); 
13

C NMR (DMSO-d6, 100 MHz)  118.2, 119.0, 

130.6, 152.7, 167.8.  

 5-Hydroxymethyl-2-furan propanoic acid (152a): 151a (200 mg, 

1.17 mmol, 1 equiv.) was added to a 5 mL round bottom flask 

followed by the addition of methanol (1 mL). Pd/C (20 mg, 0.234 

mmol, 0.2 equiv.) was then added. The flask was sealed and placed under vacuum to remove any 

air. A hydrogen balloon was placed into flask and vented three times.  Then balloon was placed 

in the flask and reaction was allowed to stir for 3.5 hours.  Reaction was filtered over celite and 

washed with water.  Brown solid; yield: 170 mg, 84%; mp = 127-129 °C; 
1
H NMR (DMSO-d6, 

400 MHz)  2.44 (s, 2H), 2.48 (t, J = 8.4 Hz, 2H), 2.75 (t, J = 7.2 Hz, 2H), 5.95 (d, J = 3.2 Hz, 

1H), 6.09 (d, J = 3.2 Hz, 1H); 
13

C NMR (DMSO-d6, 100 MHz)  31.4, 56.4, 62.1, 89.9, 117.1, 

131.1, 150.4, 159.3.  
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5-[(Benzoyloxy)methyl]-2-furanpropanoic acid (152b): 151b (200 

mg, 0.73 mmol, 1 equiv.) was added to a 5 mL round bottom flask 

followed by the addition of methanol (1 mL). Pd/C (20 mg, 0.146 

mmol, 0.2 equiv.) was then added. The flask was sealed and placed under vacuum to remove any 

air. A hydrogen balloon was placed into flask and vented three times.  Then balloon was placed 

in the flask and reaction was allowed to stir for 3.5 hours.  Reaction was filtered over celite and 

washed with water.  White solid; yield: 208 mg, 80%; mp = 126-128 °C;
 1

H NMR (DMSO-d6, 

500 MHz)  1.56 (t, J = 8.4 Hz, 2H), 1.31 (s, 2H), 2.01 (t, J = 8.4 Hz, 2H), 6.31 (d, J = 3.2 Hz, 

1H), 6.78 (d, J = 3.2 Hz, 1H), 7.05 (s, 2H), 7.38 (d, J = 5.6 Hz, 2H), 7.56 (d, J = 5.6 Hz, 2H); 
13

C 

NMR (DMSO-d6, 100 MHz)  31.2, 56.4, 58.7, 62.1, 89.9, 111.9, 117.1, 128.5, 129.9, 133.3, 

150.5, 159.3.  166.3.   

2,5-Furandicarbonitrile (157): 2,5-Furandicarboxamide (169): (200 mg, 

1.3 mmol, 1 equiv.) was added to flask. Then dioxane (12 mL), pyridine 

(0.90 mL, 11.18 mmol, 8.6 equiv.) and trifluoroacetic anhydride (0.78 mL, 

5.59 mmol, 4.3 equiv.) were added at 0 °C.  The reaction was stirred at room temperature 

overnight.  Solvent was removed under vacuum. White solid; 85 mg, yield: 55%; mp = 61-63°C; 

1
H NMR (CDCl3, 400 MHz)  6.12 (s, 2H); 

13
C NMR (CDCl3, 100 MHz)  31.0, 109.5, 122.3.  

Spectroscopic and analytical data for the product corresponded to those described in the 

literature.
118

 

2,5-Furandimethanol dibenzoate (153): DMAP (0.2 g, 0.78 mmol 0.1 

equiv.) was dissolved in dichloromethane (35 mL). Diol 11 (1.0 g, 7.8 
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mmol, 1 equiv.) and triethyl amine (4.4 mL, 15.6 mmol, 2 equiv.) were added at 0 °C, followed 

by a slow addition of benzoyl chloride (2.8 mL, 11.7 mmol, 1.5 equiv.). Reaction was stirred for 

14 hours at room termperature. Reaction was quenched with NH4Cl aqueous solution and 

extracted with DCM. Organic layer was dried over sodium sulfate and concentrated under 

vacuum. Crude was purified by flash column chromatography (hexane/ethyl acetate 50:50). 

Yellow solid; yield: 2.46 g, 95%; mp = 71-72 °C; 
1
H NMR (CDCl3, 400 MHz)  5.29 (s, 4H), 

6.46 (s, 2H), 7.42 (d, J = 7.6 Hz, 4H), 7.54 (d, J = 7.6 Hz, 2H), 8.04 (d, J = 7.6 Hz, 4H); 
13

C 

NMR (CDCl3, 100 MHz)  31.0, 58.7, 111.9, 128.5, 129.9, 133.3, 150.5, 166.3.  

1,4-Dihydro-1,4-dibenzoate-1,4-epoxynaphthalene (155):  To a stirred 

solution of furan (318 mg, 0.94 mol, 1 equiv.) and cesium fluoride (318 mg, 

2.07 mol, 2.2 equiv.) in acetonitrile (12 mL) was added a solution of 2-

(trimethylsilyl) phenyl triflate (300 µL, 1.22 mol, 1.3 equiv.) in acetonitrile 

(12 mL) drop wise by a syringe pump over 16 hours at 70 ° C.  Reaction was 

concentrated under vacuum and crude was purified by flash column chromatography 

(hexane/ethyl acetate 50:50). White solid; yield: 350 mg, 92%; %; mp = 119-123 C; 
1
H NMR 

(CDCl3, 400 MHz)  1.55 (s, 4H), 5.06 (d, J = 12.8 Hz, 2H), 5.26 (d, J = 12.4 Hz, 2H), 7.25 (m, 

J = 2 Hz, 2H), 7.41 (t, J = 7.6 Hz, 4H), 7.55 (t, J = 7.2 Hz, 2H). 8.06 (d, J = 8.0 Hz, 4H); 
13

C 

NMR (CDCl3, 100 MHz)  62.1, 91.3, 119.8, 125.7, 128.7, 129.9, 130.1, 133.5, 144.2, 149.4, 

166.6; IR (Film) 3112, 326, 1715, 1267, 1107 cm
-1

; HRMS calcd. for C26H20O5Na
+
 435.1203; 

found 435.1205. 
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1,4-Naphthalenedimethanol-1,4-dibenzoate (156): To the starting 

material 155 (130 mg, 0.315 mmol, 1 equiv.) in acetonitrile (6 mL) was 

added sodium iodide (141 mg, 0.945 mmol,  3 equiv.) at room temperature.  

The reaction was cooled to 0 °C, placed under argon, and trimethylsilyl 

chloride (120 µL, 0.945 mmol, 3 equiv.) was added slowly and the mixture 

was stirred at room temperature for 24 hours.  Reaction was quenched with NaHCO3 aqueous 

solution and extracted with DCM. Organic layer was dried over sodium sulfate and concentrated 

under vacuum. Crude was purified by flash column chromatography (hexane/ethyl acetate 

80:20). White solid; yield: 117 mg, 92%; mp = 122-126 C;   
1
H NMR (CDCl3, 400 MHz)  5.81 

(s, 2H), 7.39 (t, J = 8.0 Hz,  2H), 7.52 (t, J = 7.2 Hz,  2H),  7.62 (m, J = 3.2, 5.6 Hz,  2H), 8.03 

(d, J = 1.6 Hz,  2H), 8.05 (d, J = 8.0 Hz,  2H), 8.16 (dd, J = 3.2, 3.2 Hz,  2H); 
13

C NMR (CDCl3, 

100 MHz)  65.2, 124.5, 126.9, 127.1, 128.6, 129.9, 130.2, 132.2, 133.0, 133.3, 166.6; IR (Film) 

3123, 3062, 2965, 1716, 1266 cm
-1

; HRMS calcd. for C26H20O4Na
+
 419.1257; found 419.1254. 

1,4-Naphthalenedicarboxylic acid, 1,4-dimethyl ester (158b): To a 

stirred solution of furan 7 (175 mg,  0.951 mmol, 1 equiv.) and cesium 

fluoride (318 mg, 2.09 mmol, 2.2 equiv.) in acetonitrile (12 mL) was 

added a solution of 2-(trimethylsilyl) phenyl triflate (300 µL, 1.24 mmol, 

1.3 equiv.) in acetonitrile (12 mL) drop wise by a syringe pump over 16 hours at 70 ° C.  

Reaction was concentrated under vacuum and crude was purified by flash column 

chromatography (hexane/ethyl acetate 70:30). White solid; yield: 128 mg, 82%; mp = 84-86 °C; 

1
H NMR (CDCl3, 400 MHz)  3.97 (s, 3H), 7.05 (d, J = 2.8 Hz, 2H), 7.12 (d, J = 1.6 Hz, 2H), 
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7.36 (d, J = 3.2 Hz, 2H); 
13

C NMR (CDCl3, 100 MHz)  53.1, 90.4, 120.4, 126.2, 143.2, 146.3, 

167.4; HRMS calcd. for C14H12O5Na
+
 283.0577; found 283.0572. 

1,4-Dihydro-1,4-dimethyl-1,4-epoxynaphthalene (158c): To a stirred solution 

of furan 10 (100 µL, 0.95 mmol, 1 equiv.) and cesium fluoride (318 mg, 2.09 

mmol, 2.2 equiv.) in acetonitrile (12 mL) was added a solution of 2-

(trimethylsilyl) phenyl triflate (300 µL,  1.24 mmol, 1.3 equiv.) in acetonitrile (12 mL) drop wise 

by a syringe pump over 16 hours at 70 °C.  Reaction was concentrated under vacuum and crude 

was purified by flash column chromatography (hexane/ethyl acetate 50:50). White solid; yield: 

159 mg, 97%; mp = 33-35 °C; 
1
H NMR (CDCl3, 400 MHz)  1.88 (s, 3H), 6.72 (s, 2H), 6.95 (d, 

J = 7.2Hz, 2H), 7.17 (d, J = 7.2 Hz, 2H); 
13

C NMR (CDCl3, 100 MHz)  15.5, 88.8, 118.6, 

124.9, 147.1, 153.1. Spectroscopic and analytical data for the product corresponded to those 

described in the literature.
119

 

1,4-Dihydro-1,4-dicarbonitrile-1,4-epoxynaphthalene (158d):  To a stirred 

solution of furan 157 (110 mg,  0.93 mmol, 1 equiv.) and cesium fluoride (220 

mg, 2.05 mmol, 2.2 equiv.) in acetonitrile (12 mL) was added a solution of 2-

(trimethylsilyl) phenyl triflate (210 µL, 1.21 mmol, 1.3 equiv.) in acetonitrile 

(12 mL) drop wise by a syringe pump over 16 hours at 70 ° C. Reaction was concentrated under 

vacuum and crude was purified by flash column chromatography (hexane/ethyl acetate 50:50).  

Yellow solid; yield: 144 mg, 80%; mp = 156-159 C;  
1
H NMR (CDCl3, 400 MHz)  7.15 (s, 

1H), 7.21 (d, J = 2.8 Hz, 1H), 7.48 (d, J = 2.8 Hz, 1H); 
13

C NMR (CDCl3, 100 MHz)  79.9, 

113.4, 120.8, 127.8, 142.6, 143.7;  IR (Film) 3390, 3112, 2391, 2248, 1674, 1521, 1456, 1266, 

1197, 976 cm
-1

; HRMS calcd. for C12H6N2ONa
+
 217.0372; found 217.01370. 
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1,4-Dimethyl ester 1,4-naphthalenedicarboxylic acid (159b): To the 

starting material 158b (93 mg, 0.36 mmol, 1 equiv.) in acetonitrile (6 mL) 

was added sodium iodide (161 mg, 1.08 mmol, 3 equiv.) at room 

temperature.  The reaction was cooled to 0 °C, placed under argon, and 

trimethylsilyl chloride (137 µL, 1.08 mmol, 3 equiv.) was added slowly and the mixture was 

stirred at room temperature for 24 hours.  Reaction was quenched with NaHCO3 aqueous 

solution and extracted with DCM. Organic layer was dried over sodium sulfate and concentrated 

under vacuum. Crude was purified by flash column chromatography (hexane/ethyl acetate 

80:20). White solid; yield: 17.7 mg, 20%; mp = 65-67 °C; 
1
H NMR (CDCl3, 400 MHz)  3.97 (s, 

3H), 7.07 (s, 1H), 7.22 (d, J = 5.6 Hz, 1H), 7.34 (d, J = 5.6 Hz, 1H); 
13

C NMR (CDCl3, 100 

MHz)  52.7, 128.4, 128.6, 128.9, 130.2, 135.6, 168.4. Spectroscopic and analytical data for the 

product corresponded to those described in the literature. 
120

 

1,4-Dimethylnaphthalene (159c): To the starting material 158c (150 mg, 0.87 

mmol, 1 equiv.) in acetonitrile (6 mL) was added sodium iodide (388 mg, 2.6 

mmol, 3 equiv.) at room temperature.  The reaction was cooled to 0 °C, placed 

under argon, and trimethylsilyl chloride (331 µL, 2.6 mmol, 3 equiv.) was 

added slowly and the mixture was stirred at room temperature for 24 hours.  Reaction was 

quenched with NaHCO3 aqueous solution and extracted with DCM. Organic layer was dried over 

sodium sulfate and concentrated under vacuum. Crude was purified by flash column 

chromatography (hexane/ethyl acetate 95:5). Yellow oil; yield: 122 mg, 91%; 
1
H NMR (CDCl3, 

400 MHz)  2.67 (s, 3H), 7.21 (s, 2H), 7.53 (m, J = 3.2, 3.6 Hz, 2H), 8.02 (m, J = 3.2, 3.6 Hz, 
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2H); 
13

C NMR (CDCl3, 100 MHz)  19.7, 125.0, 125.7, 126.6, 132.7, 133.1. Spectroscopic and 

analytical data for the product corresponded to those described in the literature.
121

  

2,5-Furandicarboxamide (169): Ester 7 (500 mg, 2.72 mmol, 1 

equiv.), methanol (8.7 mL) and ammonia (6.2 mL) were added to a 

flask under nitrogen and stirred overnight at room temperature. 

Reaction was filtered and washed with water. White solid; yield: 205 mg, 55%; mp = >230 °C; 

1
H NMR (CDCl3, 400 MHz)  6.55 (s, 2H), 7.01 (s, 1H); 

13
C NMR (CDCl3, 100 MHz)  119.5, 

156.2, 162.4. 

N, N, N’, N’-Tetramethyl-2,5-furandicarboxamide (170): 

Dicarbonyl dichloride 53 (617 mg, 3.2 mmol, 1 equiv.) and 

dimethylamine (538 mg, 6.6 mmol, 2 equiv.) were dissolved in 

dichloromethane under argon. Triethylamine (1.05 mL, 7.48 mmol, 2.3 equiv.) was added slowly 

at 0 °C.  The reaction stirred at room temperature for three hours.  The reaction was quenched 

with water and extracted with DCM. White solid; yield: 504 mg, 75%; mp = 182-185 °C; 
1
H 

NMR (CDCl3, 400 MHz)  3.09, (s, 3H), 6.99 (s, 1H); 
13

C NMR (CDCl3, 100 MHz)  36.6, 38.5, 

116.7, 148.7, 159.9.  

2,5-tert-Butyldiphenylsilyl ether furan (171):  TBDPSCl 

(1.65 g, 6 mmol, 1.1 equiv.) was added slowly to imidazole 

(820 mg, 12 mmol, 2.2 equiv.) and diol (700 mg, 5.45 mmol, 1 

equiv.) in dimethylformamide (20 mL) at 0 °C. The reaction stirred at room temperature for 14 

hours. The solution was quenched with NH4Cl aqueous solution and extracted with 

dichloromethane, dried over MgSO4.  Crude was purified by flash column chromatography 



 

70 

 

hexane/ethyl acetate (98:2). White solid; yield: 2.27 g, 66%; mp = 79-82 C;    
1
H NMR (CDCl3, 

400 MHz)  1.02, (s, 2H), 4.56 (s, 3H), 6.00 (s, 1H), 7.33 (m, J = 5.4 Hz, 2H), 7.65 (d, J = 7.2 

Hz, 1H), 7.67 (d, J = 7.2 Hz, 2H); 
13

C NMR (CDCl3, 100 MHz)  19.4, 26.9, 31.3, 59.2, 108.1, 

127.8, 129.8, 133.6, 135.8, 153.7. IR (Film) 3070, 2957, 2930, 2857, 1427, 1111, 1067, 822, 700 

cm
-1

; HRMS calcd. for C38H44O3Si2Na
+
 627.2721; found 627.2724. 

5-Acetoxymethyl furfuraldehyde (172): To a stirred solution of HMF 1 

(500 mg, 3.96 mmol, 1 equiv.) and sodium acetate (680 mg, 8.24 mmol, 

2.08 equiv.) at 80 °C was added acetic anhydride (935 µL, 9.9 mmol, 2.5 

equiv.) drop wise. The mixture was stirred for 2.5 hours, then cooled to room temperature and 

hydrolyzed with water (2.5 mL).  The solution was evaporated, filtered and extracted with 

diethyl ether, then dried with sodium sulfate anhydrous.  Residue was used for the next step 

without purification. Yellow liquid; yield: 395 mg, 70%; 
1
H NMR (CDCl3, 400 MHz)  2.15, (s, 

3H), 5.17 (s, 2H), 6.60 (d, J = 3.6 Hz, 1H), 7.23 (d, J = 3.6 Hz, 1H), 9.64 (s, 1H); 
13

C NMR 

(CDCl3, 100 MHz)  20.1, 58.2, 113.4, 122.5, 154.6, 156.0, 170.1, 178.2. Spectroscopic and 

analytical data for the product corresponded to those described in the literature.
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