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ABSTRACT

In this work, we present a novel algorithm thatsidars attributes from different
experimental sources as separate groups for tip@geiof classification. We remove noise from
each of these groups, combine them, and then mudl&issifier on the grouped data. Examples
are considered to be noise if they do not contelatthe prediction but, rather, degrade the
quality of the classification result. As part ofstlvork, we identify a measure that appropriately
labels noise without knowledge of the class lal@ls. method shows that the classification
result is better when run on such filtered, grougath than when run on the entire grouped data.
In this work, we have considered time-series databse of their noisy nature. Our approach
can be viewed as unsupervised feature-subsetisel@éttyrouped attributes and at the level of

each instance individually.
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CHAPTER ONE. INTRODUCTION

1.1. Overview

Real-world data typically suffer from noise thatymafluence decisions. In this work, we
present an algorithm to combine attributes fronfedént experiments and to remove noise from
these attribute-groups to improve the classificatibexperimental data. Time-series data are a
common type of data used by data miners [Keoghkasettty (2002)]. In this thesis, we work
with time-series data. A time series is a sequefcata points that are measured at successive
time intervals. Time-series data mining is a venportant problem in data-mining research
[Yang and Wu (2006)]. Particularly, the problemhaindling noise in time-series data is an open
issue to tackle. Over the past decade, there l@sdwave of interest in data-mining time series,
with researchers attempting to index, cluster,sifgsand mine association rules from increasing
massive sources of data.

It has been seen that the data-mining algorithrosrbe less effective in databases with a
large number of attributes. One way to approachphoblem is to reduce the amount of data
before applying the mining process. In particytee-processing of feature selection, applied to
the data before mining, has been shown to be phogniecause it can eliminate the irrelevant
attributes that cause the mining tools to becora#fiaient and ineffective. At the same time, it
can preserve the classification quality of the mgnalgorithm (determined by F-measure [Yang
and Wu (2006)]). There are some feature-seleclgorithms reported in the literature that have
been used on time-series data [Weiss and Prov@81)2Morchen (2003)]. Some of them are
effective, but very costly in computational timege wrappers methods) [Yoon et al. (2005)],

and others are fast, but less effective for theufeaselection task (e.g., filter methods) [van der



Walt and Barnard (2006)]. Specifically, wrapper haats, although effective in eliminating
irrelevant and redundant attributes, are very slesause they apply the mining algorithm many
times, changing the number of attributes durindnesae@cution as they follow some search-and-
stop criteria. Filter methods are more efficiehgyt use some form of correlation measure
between individual attributes and the class [Monct&003)]. However, because they measure
the relevance of each isolated attribute, they aadetect if redundant attributes exist or if a
combination of two (or more) attributes, apparentiglevant when analyzed independently, are
indeed relevant. In this thesis, we propose a nietb@onsider attributes from different sources
as grouped, which helps to distinguish betweendlevant and the redundant sets of features.

We use a measure to evaluate the relevance ofrdyutg block instead of a single attribute.

1.2. Motivation and Contribution

The goal of this classification algorithm is tosddy m new examples’ = {enp+1, ..., €-
n+m}, that are characterized hytime points per experiment (which are the attelsun this case
and where g denotes the number of experimentstjiiethe number of time points in
experiment 1;4is the number of time points in experiment 2; efEg generate this classifier,
we have a set of training sample<: = {e;,...,@}, characterized bty time points Dy =
{T1,...,Tog}, and the class labdl,= {c,,...,G}, to which they belong. We know that not all time
points (for each experiment) are necessarily berafior classification. Instead of using all
available time points, we selectively choose experits to use for classification. The main
advantage here is that our selective choice ofréxpats results in reducing the noise to
improve the classification results.

It is often thought that the relevant attributes imdependent of each other and carry

separate information. However, the independenagngsison may not be true always. One
2



possible reason could be the fact that, for gemeemsion experiments, the overall experimental
condition remains the same and varies only inithe tapse after the beginning of the
experiment. Therefore, the question that comesitarond is whether some of thattributes

are redundant for learning the classification rilile respond to this question, we come up with a
new algorithm to identify those time points (that wall “noise”) and to remove them from the
data before running the classifier. In this reseane take each experiment; analyze whether it
can be marked as noise for the given instance;itsd, remove all the time points for that
experiment before we train the classifier. Basjgalle are always removing a given experiment
when we conduct the comparison of data classi@oatising Naive Bayes classification with the
original datasets and the ones with the noise leldckhe results demonstrate that our algorithm

outperforms the detection rate when compared &sitleation done with the entire feature set.

1.3. Problem Statement and Approach

Time-series data are a common data type used byndaers. In this work, we are
attempting to improve the classification of timeisg data (created by combining multiple
sources of information). Individual sources cardmked upon as a set of attributes (time
points), each describing the same example withmanoon index such as the Gene ID.
Specifically, our data consist of different timaise experiments conducted with the same set of
genes to create a combined data source. The t#skngo use the classifier (e.g., Bayesian) that
predicts the class labels. Most classic machinetieg algorithms do not work well for time
series. In particular, the high dimensionality &igh-feature correlation present in time-series
data have been viewed as an interesting reseaatierogpe. In addition to dimensionality and
feature correlation, if high noise is considerédomplicates the classification. By “noise,” we

mean data that degrade the classification perfocemaro tackle these problems, we have come
3



up with a novel algorithm to filter part of the dgtdescribed as noise) before running the
classification task. Our approach is describedhénfollowing schematic representation (Figure
1.1). Figure 1.1 shows how we combine data frorfed#ht time-series experiments conducted
on the same subject; e.g., in each dataset, wedaadrom a set of time-series experiments
conducted on the same set of yeast genes. In Figly&ime Series Data 1 comes from
Experiment 1 which is a time-series experiment cotetl on a set of genes. Similarly, Time
Series Data 2 and Time Series Data 3 come fronparent experiments conducted on the

same set of genes.

Time Series Data 1 Time Series 2 Data 2 Time Series 3 Data 3
from Experiment 1 from Experiment 2 from Experiment 3
A 4

Time Series Sources Combined to form our Dataset

Blocking of Noise

Y
MNoise-blocked Data

Classification

v

Results

Figure 1.1.Schematic Representation of Our Approach to tiodlEm.
We combine all three of these data groups to foumdataset where we run our noise-

blocking algorithm to remove the data points westder noise. Then, we run the classifier on



the noise-blocked data. We compare the resultsi@ttassification with the findings for when

the classifier is run on the entire dataset (withmacking noise).

Figure 1.2 represents how our final dataset lothks.the dataset on which we run our

algorithm. We see that g1, g2, and g3 are the camgeaes on which the three experiments

(Experiment 1, Experiment 2, and Experiment 3) vaeneducted with the same set of yeast

genes. The three experiments might have differentbers of time points. Each dataset has

many time-series-based microarray readings, aru reac signifies the record for a particular

yeast gene. Each gene in the training data belmnggparticular class label (which represents a

particular biological function). Here, the claskdés are binary (i.e., They are either 0 or 1.3l an

the binary lables tell whether a particular gengigipates in that function. Class label O sigrsfie

that the gene did not participate in cell-cycleulagon while 1 means it took part in that

function. In Figure 1.2, we see that, given theegeof the combined dataset, we predict the class

label for a new gene that is denoted by g100.

Yeast Experiment 1 Experiment 2 Experiment 3 Clg

Gene ™7 2 1 2 3 t 2 t3 | Label
gl X X X X X X X 0
g2 X X X X X X X
g3 X X X X X X X

g100 ?

Figure 1.2.Schematic Representation of Combined Dataset.

SS

As we see from Figure 1.1, our algorithm only cdess the relevant part of the data (by

blocking the redundant attributes) and improvescthssification problem. The blocking

technique is equivalent to treating the noise asimg values. Using this noise-blocked dataset,
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we perform the Naive Bayes classification and erartiie results. The process is described in

more detail in Figure. 1.3.

In Figure 1.3, we see that our dataset is compofattributes from different
experiments conducted on the same set of geneth&sake of illustration, we mark the Y00
gene (gog) as a test gene (representing the test set).egt@f the genes constitute the set used
to train the classifier (the training set). In S&pve merge the three datasets. After merging the
attributes from the different experiments, our alipon blocks the genes identified as noise and

they are not used in training the classifier.

| Step 1: Three Experiments conducted on the same set of genes

Experiment 1 Experiment 2 Experiment 3
T1 - T3 Class T1 —_ - |Class T1 —_ 0 Class
B ) Label B " |Label B ’ ’ ’ ) Label
gl | 036 0.76 0.8% 0 0.36 47 0.8% 0 0.66 | 0.77 08% ) 0
g2 | 048]0 023 1 0.81 | -0.36 0.5% 1 52008 . . 0.72 1
22000| 0.78 | 0 0 0. 0 0 0.69 0.2
Step 2: Three Experiments merged to form our starting datset
Experiment 1 Experiment 2 Experiment 3
- - - - - - - - Class
1 T2 TI8 | T1 2 T 1 T2 T20
Label
gl | 036 | 0.76 0.89 | 0.36 | 047 089 ) 066 | O 082 ) 0
g2 | 048] 04 023] 0. -0.36 059 ) 032|016 0.72 1
23.333 078 | 0 0.21 ) 0.37 0.76 ] 0.88 | 0.69 . . . 0.23
Step 3: grouping Attributes for Classification
Experiment 1 Experiment 2 Experiment 3
- - - - - —_ - - - Class
T1 T2 . . . TI8 | T1 T2 . . . T T1 T2 . . . T20
Label
z1 | 0356 | 0.76 . . . 080 0.36 | -047 . . . 0.89 | 0.66 | 0.77 082 ) 0
g2 | 049 043 . . . |25 081 | 036 . . . 0587 -0.32 ) -0.16 0.72 1
220000 0.78 [ 0 02 7 7610 0 02

Figure 1.3.Schematic Representation of Attribute Grouping.



We see that we block all the attributes (Herelattes are time points.) for a particular
gene for a given experiment (denoted by blue roWsg. dataset we obtain from Step 3 in Figure
1.3 illustrates the novelty of how we group theiltites together for classification. As we see,
this dataset contains less data than the one jmZS#d/e show that the classification with the
dataset in Step 3 is better than using the enditaset (without grouping) as in Step 2, even

though it has more instances.

01

Class Label

Moise-blocked
Experiment 3

Moise-blocked
Experimentl

Mumeric

MNumeric

Noiﬁe-blm
Experiment 2

Mumeric

Figure 1.4.Schematic Representation of Naive Bayes Classditat

In Figure 1.4, we see how our classifier works. e the noise-blocked data from the
experiments and run the classifier using them. Wsvsthat the results are better than when we

run the classifier on the unblocked datasets.

1.4. Outline
The organization of this paper is as follows: Ckeagtdescribes the method of

Classification, with an emphasis on Naive Bayes$ii@ation along with its significance for the
7



current thesis. It then goes on to talk about tareRClass Classification which we used. It also
gives an overview of Feature Subset Selectioredtdbes the process of outlier detection. This
chapter also defines the Time-Series Data uponhwduc experiments are based. Finally, it talks
about how we evaluate our algorithm.

Chapter 3 describes Related Work. It discusses-Barees Classification and
Classification in the Presence of a Rarity becaveseeal with rare data in this thesis. We also
review feature selection and noise detection akasgalliscuss the combination of multiple
sources for data-mining purposes.

Chapter 4 discusses Our Approach. It defines exyaaris, the concept of noise, and how
we identify noise. The chapter then introducespyoposed metric. We also discuss the
evaluation procedure. The metrics for evaluatirggrésults are defined, and their significance is
discussed. The metrics used are mainly f-measurdalanced error rate.

Chapter 5 discusses the experimental proceduréhanmeésults and then talks about their
significance. It compares the results given inglues and talks about which technique gives the

best results. Chapter 6 talks about possible futiard in this field.



CHAPTER TWO. DEFINITIONS AND BACKGROUND

In this chapter, we deal with a brief descriptidneach concept used in this work. We

talk in details about classification here.

2.1. Classification

Classification is the process of predicting somegary (called the class) of a dataset
(measured on the test data or the test set) bglibgih model based on some predictor variables
(or features, measured by selecting a subset afateecalled the training data or the training
set). For example, in evaluating a store locatilba,success of a store may be determined by its
neighborhood quality and the weather of the logalt company is interested in identifying
localities with ideal neighborhood quality and wesatconditions. A model based on the values
of all available attributes (neighborhood qualibdaveather) is built to classify each item into a
particular class (whether the locality is suitalolebusiness or not). The goal of classification is
to analyze the training set and to develop a detsoni for each class using the attributes
presented in the data. There are numerous clagsiicalgorithms, such as decision trees
[Mitchell (1997)], Bayesian classifiers, Supportcie Machines [Mitchell (1997)], etc. In this
work, we deal with the Naive Bayes Classifier foraoy classification. (i.e., The class can take
only 2 values; we call them the target class aedhjor class which are also called positive and
negative class, respectively.) We also deal wiplricular type of classification, known as Rare
Class Classification [Weiss (2004)], which is désed in Section 2.1.2. The task of
classification is described in Figure 2.1. We $eg the classifier is trained using the training
data and run on the test data. The outcomes difitadion are the predicted class labels. In this
task, we train the classifier using the instancdesyg, g3,... while we test using instances g100,

gl101, g102,..., i.e., how well we can predict thesslmbels for g100, g101. and g102. We
9



compare the predicted class labels with existiagslabels to evaluate the classifier’s

performance.

Training Data
Instances Al A2 | Class Labels
gl 0.56 0.57 0
g2 011 -0.14 1
a3 012 0.15 1
Test Data
Instances
Al A7 — Predicted
gl00 0.77 |0.87 L] Class
g101 -0.33 |-0.45 1] Labels
gl02 091 [(0.83%9 L

Figure 2.1.Schematic Representation of Classification (wheteaAd A2 are Attributes).

2.1.1. Naive Bayes Classification
The Naive Bayes Classifier is the most popular ajrtbe probabilistic classifiers, and it
is used in many applications, such as bioinformnsatitsurance, medical, etc. The goal in

Bayesian classification [Domingos and Pazzani (JJ987%o compute the probability &; for a
given point,X;, whereX; = (X%, XJ2 X? ) is a point in d dimensions. Then, among all classe
we choose the one that has the largest probabilidyclassifyX; as being of that class. That is,
we predict the class &f as arg max B (G|X;)}. To computeP (G|X;), we simply invert the
probability using the Bayes theorem:

P(X;[C;)xP(C)
P(X;)

Pi[X) = (2.1)

10



In Naive Bayes, we make the naive assumptiondttalbutes are all independent, and

under this independence assumpt®(Gi|X;) can be reduced to the equation below:

d
Pig)= [ [PCSIC), (2.2)

where X is the value ok in thea™” dimension.

For numeric data, we assume that each dimensioormsally distributed, and we, thus,

have to estimate andp for each classCi, separately, directly from the data. Once the neeah

variance per clas€j, for each dimension a (named;{a,andyja), are known, we compute

2
G -

P (XIC) =N (%167, 1) = gz 17 (2:3)

2o

2.1.2. Rare Class Classification

A challenging complication in classification assehen the number of target class
members is far outhumbered by the number of theratlass (major class members in the
training set). This situation is the scenario irerelass classification [Kubat et al. (1997), Kubat
and Matwin (1997), Japkowicz (2000), Cieslak andla (2008), Kotsiantis et al. (2006)]. In
these scenarios, the number for the target clamstmmimbered by the other class. Figure 2.2
shows a rare-class classification scenario. Infei@2, we see that the class being predicted is
present in only 5% of the input data. Say thatdtsee 100 genes in our input dataset and that we
are predicting the function (class label) Lipid sledlism; then, 5 of those 100 genes participate
in Lipid Metabolism. The problem with this rarity that the rare objects cannot be located under
greedy-search heuristics [Weiss (2004)]; e.g.kehN (Nearest Neighbgrclassifier may

incorrectly classify many cases from the targesslaecause the nearest neighbors of these cases

11



are examples belonging to the major class. Inuastn where the noise is very high, the
probability of the target class’ nearest neighb&ing noise is likely to be high. In this work, we

deal with rarity as low as 3%.

5% Rarity

o
o o
% % ao @ o8& HE
0@ g 2 o @0 o & o Q
I R
" i & .05 o
o o o o o + @ o0& o
e gy O g g g o B
L o
1} og o @ g o oy 0y go Q
o
o o o
a % w& o p [ e % n &
ol L + c o o o
Ca e} o Qo s}
Q & o oo e [
o o o
1 o8 o o
o0 b & @ & eI} 5
o i B ] o 3 @
o o o o
2 )

Figure 2.2.Graphical Representation of Rarity. Here, only &%he data points belong to our
target class (+) while the rest belong to the melass.

2.2. Feature Subset Selection

Any data-mining task is usually preceded by dagppocessing. Feature-subset selection is
such a process that selects a subset of origiaalres. The optimality of the feature-subset
selection algorithm is measured by an evaluatideraon. The evaluation criterion broadly falls
into three categories:

e Filter model which relies on general charactersstitthe data to evaluate feature subsets

e Wrapper model which requires one mining algoritlonevaluate and

e Hybrid model that uses a combination of both

12



2.3. Noise/Outlier Detection

In data mining, there are certain objects thairaeéevant or weakly relevant to a
particular data-analysis method [Xiong et al. (200 this thesis, we call them noise and try to
identify them as observations that deviate grefatiyn the other observations with respect to
some measure. This noise is then removed and ti&@mang data are evaluated on classification
task. (Here, Naive Bayes classification is usedg damount of noise to be removed is taken as a
user parameter. This work deals with experimematiat has a wide range of noise levels,

ranging from 10% to as much as 90% of the experiaielata.

2.4. Time-Series Data
Time-series data are a series of observationsaperiod of time. Mathematically, each

observation is recorded at a specific titneA time-series is given by Yoon et al. (2005):

ti; [i=1,...,N; x=1,...,M] (2.4)

and is a set of observation made serially throurgk,twherd is the index of the measurement at
time pointt andx is the sample or the instance index. A time sasiesually represented by the
MxN matrix, whereM is the number of instances aNds the number of observations. In this
work, we will only be dealing with numeric time-ge=3 data. We will drop the termaccording

to convenience (and without loss of practicalignd in that case, it will mean that the series is
for any given instance. An example of 3 x 7 timeeseis shown in Figure 2.3. We see that there
are three time series and that the observationme(arents) were recorded at seven time points

(t1, t2, ... , t7). The value of each time seriegl@dted along the Y-axis.

13



0 T T T T T T 1
t1 12 t3 t4 t5 t6 t7
-0.2
=Time Series 1
-0.4
= Time Series 2
0.6 Time Series 3
-0.8
-1 \ /
1.2 \\I /
AN v
-1.4
-1.6

Figure 2.3.A Time Series. The figure shows three time sex@sh having seven time points.

2.4.1. Random-Walk Time Series

A time seriest;, is a random walk [Denton (2005)] if

ti=ti+e , (2.5)

wheree is called the white-noise time series (dependarthe gene) anB{e} = 0, var{e} = ¢,
for all t, cov{a,e}= O, for all t#s. By white-noise time series, we meaag {s a normally

distributed sequence of values corresponding te tim

2.5. Evaluation

A popular way to evaluate the performance of cfassiis based on the confusion-matrix
analysis [Provost et al. (1998)]. The comparisorapeeters used here are mostly dependent on
four values for each experimental result. Thesaashre true positive (TP), true negative (TN),
false positive (FP), and false negative (FN). Tkigl@ation of each is given as follows.

e TP =the number of times when the prediction oéaggexpression in the training set is 1

while expression of the same gene in the testibgsse
14



e TN = the number of times when the prediction okagexpression in the training set is 0
while expression of the same gene in the testihg <k

e FP =the number of times when the prediction oéaegexpression in the training set is 0
while expression of the same gene in the testibgsse

e FN =the number of times when the prediction okagyexpression in the training set is 1

while the expression of the same gene in the gseis 0.

Table 2.1 illustrates a confusion matrix for oundriy class problem having target class
and major class values. We use this table to coemgdbour results while running to various
classifiers on various datasets. The tables predentthis chapter will tell us, at a glance, how
many true positives and true negatives are pratiloyeeach classifier. Using the data in the
tables, we shall find accuracy, specificity, sangit, and precision for the experiments.

From such a matrix, a large number of widely usedrits are derived to measure the
performance of learning systems, such as

error rate, defined as

FP+ FN
TP+FN+FP+TN

and accuracy (1-error rate), defined as

TP+TN
TP+FN+FP+TN
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Table 2.1.Confusion Matrix for a Binary Problem

Predicted Target Class Predicted Major Class
Actual Target Class True Positive (TP) False Pasii-P)
Actual Major Class False Negative (FN) True NegafliVN)

However, when there is a huge amount of noiseusieeof such measures might lead to
misleading conclusions. In our scenario, noisesfnéd as the examples that are degrading the
classification task, and we are classifying dat&ctvihave as low as 3% rarity. Now, for
example, it is easy to say that the classifierdraaccuracy of 97% (or an error rate of 3%) in a
scenario where the major-class proportion corredpom 97% of the examples by simply
predicting every new example as belonging to thpndass. However, predicting the rare class
is of primary interest in this problem scenariot us take the example of a scenario for
predicting 3% of the cancer patients. A cancergpdtiliagnosed as healthy might be a fatal error
while a healthy patient diagnosed as having caiscawnsidered a much less serious mistake.
We use two evaluation metrics in this problem sgen&-Measure (FM) and Balanced Error

Rate (BER).

2.5.1. F-Measure (FM)
This metric, denoted by, is used widely by the information retrieval commity [Joshi
(2002)]. It is defined with respect to a given slaEhe general form df with respect to a class,

c, is as follows:

Fﬂ«:—, <1<1 , 2.
iira-p & (2.6)
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whereP is the precisionR = ), R is the recallR= ), and 1 is a parameter. We

TP+FP TP+FN

are interested in the classifier performance fertibth normal and rare classes [Joshi (2002)];
hence, we usE; as the metric. We choose the valué ef0.5, giving recall and precision equal
weights. Henceforth, we reféy;, simply asFM = 2*R*P / (R + P). Note, that this expression for

FM becomes the harmonic mean of R and P.

2.5.2. Balanced Error Rate (BER)

This statistic [Chen and Wasikowski (2008)] lookshee performance of the classifier on
both classes. It is defined as the average ofrioe tes for the two classes. If the classes are
balanced, the BER is equal to the global error. i@tebal error rate is commonly used for rare-

class classification. The statistic is given by

BER=1(_FP_, FN j
2\ FP+TP  FN +TN

(2.7)
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CHAPTER THREE. RELATED WORK

3.1. Time-Series Classification

Several machine-learning approaches have beenapede[]Keogh et al. (2003), Roddick
et al. (2002)] to solve the time-series classifaaproblem. We are also aware [Verleysen and
Francois (2005)] how high-dimensional time serias be difficult to use for classification.
Geurts (2001) has shown an algorithm to combinal Ipatterns to improve classification.
3.2. Classification in the Presence of a Rarity

When we classify data with one or more classesgheire, it is called a rare-class
classification or a class-imbalance problem. There been extensive research done in this
domain. Weiss and Provost (2001) have shown tleae thre two basic methods for dealing with
class imbalance: i) under-sampling, where the maass elements are eliminated, and ii) over-
sampling which multiplies the values in the minpgtass. Kubat et al. (1997) also use a novel
technique of one-sided sampling while Liu et a0(J@&) use a sequential under-sampling.
Drummond and Holte (2003) have shown that underpiamis better than over-sampling.
Weiss (2004) shows different types of rarity anavhmmise affects rarity. Also, different papers
[Al-Shahib et al. (2006), Chen et al. (2008)] ddsehow feature selection can help to improve
classifier performance with a class-imbalance sgena

3.3. Feature-Subset Selection

Feature-subset selection is a crucial step ssifiaation. Several workers [Hall and
Holmes (2003), Guyon and Elisseeff (2003), Blum hadgley (1997), etc.] have talked about
different attribute-selection techniques and the basic categories: wrapper and filter. We see

in Bo and Jonassen (2002) how gene pairs are sdlaod evaluated as well as how gene sets
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are formed for classification. There are also rosghbased feature selection algorithms which
uses attribute dependency [Han et al. (2005)]. 8hee some unsupervised feature-selection
algorithms [Varshavsky et al. (2006)] that usevhaance of data collected for each feature.
There are papers [Mitra et al. (2002), Yoon e{2005)] that also use hill-climbing approach
and feature similarity for feature-selection. H2ID00) also uses correlation between attributes
for feature selection. Ding and Peng (2003) useualubformation to select the feature subset.
There has been work on feature selection in micagadtata [Xing et al. (2001)] using a series of
filters.
3.4. Noise Detection/Minority Detection/Outlier Degction

The extensive survey by Hodge and Austin (20049 wttier detection talks about three
basic approaches to outlier detection: unsuperwiestering, where we find outliers with no
prior knowledge of the data; supervised classikegtwhere we have pre-labeled data and model
the outliers; and semi-supervised, where theremsxéure of the other two methods. Keogh et
al. (2005) find time-series discords which are ggjoences of a longer time series and are
maximally different from all the rest of the timerges subsequences. Chandola et al. (2009)
describe a window-based technique to find discordsne series. Ando (2007) talks about
finding atypical objects in the dataset using infation theoretic approaches. Deng et al. (2004)
find informative genes based on a non-parametnk-saum test method while Chen et al. (2007)
introduce a method which ranks irrelevant featuvkgh have little effect on classification
under uniform noise. Cheng et al. (2009) do raneaik-based anomaly detection in graphs.
There are certain papers [Muthukrishnan et al. 40bat mine values (deviants) where
removal leads to an improved, compressed repragante# the remaining items while some

other papers bring in the concept of time-serigseqguences (shapelets) [Ye and Keogh (2009)]
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that maximally represent a class. There has alen kesearch on finding unusual patterns in
time series [Keogh et al. (2002)] based on suffees. We see from previous research [Zhu and
Wu (2004), Cheng et al. (2009)] how noisy attrilsutan affect classification performance.
Cheng et al. (2009) introduce a graph-based lawainaly detection technique in time-series
data using dependence among variables.
3.5. Naive Bayes Classification

The Naive Bayes classifier is a remarkably sucoésgét simple, classifier [Rish et al.
(2001)]. It assumes that attributes are statibyicadependent. Although it is unrealistic [Jakuli
and Bratko (2003)], it works well in most classifion scenarios. Keller et al. (2000) describe
how effective the Naive Bayes classifier is on Ddpression data after feature-subset
selection.
3.6. Mixing Multiple Sources

In the works of Costa et al. (2002), we see thaemmultiple time-series, gene-
expression data are combined, it results in beltestering. Workers such as Rish et al. (2001)
and Kundaje et al. (2005) have shown how time-setada and motif data can be combined to
obtain better clustering results. This idea has b&en used in the classification world (e.g., in
classifier fusion). Multiple data sources for cléisation, where the different data sources
involve the same set of genes, have been usedebdfiathis work, we are combine those data

sources that most help with classification.
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CHAPTER FOUR. OUR APPROACH

4.1. Overview

In our data, the columns of the data matrix comesipto time points (or attributes) along
some biological process. Intuitively, there will f@me homogeneity along the attributes. As a
part of data preprocessing, we have removed the senies which deviate from the other time
series in that group based on our metric.
4.2. Concept of Groups or Experiments in Data

We introduce the concept of groups or experimentaur data related to the concept used
by Costa et al. (2002). A group or experiment (leéoith, used interchangeably) is a subset of
the attributes that is generated from a relatedcso group of experiments is further illustrated
in Table 4.1.

Table 4.1.Concept of Experiments

Experiment 1| Experiment 2 Experiment 3
2|3 |l | 2|3 ||l |23 ||

Instance 1

Instance 2

For example, we see in Table 4.1 that each instamesists of 12 time points and 3
groups. Experiment 1 has 3 time points denoted-by Experiment 2 has 4 time points denoted
by t1-t4; and Experiment 3 has 5 time pointstst Thus, we can say that each instance is
described by a vector of experiments and that eapkriment is a collection of attributes. In this

work, we analyze each group independently to deteise.
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4.3. Noise ldentification
The basic data preprocessing step we used headled first-order differencing. The
values of the first-order difference for a serigSN attribute$, t;, t,,t5 ... y, are given by a new
series
t'y, t' ... ther,
wheret'y =t -t th=t3- 1 ... 1= t'y — thee
The operation of gettinty = t; - ti.; is called the first difference.
4.3.1. Our Metric
The statistic that we use to measure the relevahar instancex, in the time-series data

is the normalized sum squares of first differen&SFD) and is given by

1 n 2 1 - 2
SSFR= 7= Dty —tys) = G
R (n-17) i_l( L ) (n-1) ; ' (4.1)

where n is the number of time points in the grondar consideration. The main motivation
behind using this metric is identifying highly flwating time series in the group. If the SSFD
value is high, we can conclude that the seriegisly fluctuating. Mathematically, from

equation (2), we have
(ti _ti—l)z = etz

= ;(ti _ti—1)2 = Zerz

n

= 3t —t,,) =Y - nu?, (since, E{g = 0 or x =0)
= LSt e
i i-1 n—l - n_l/l

n-15
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LSt P= P
:>n_1n(ti t,) =var{g}=c (4.2)

Hence, we see that value of SSFD basically dertbeegariance of the white noise (which is
gene dependent). Minimizing SSFD basically meadsaiag the variance in the subsequence

for which we are calculating the SSFD.

Surn of Squared First-difference (for Normal Dataset)
P
I I

Sarted “alue

== — 1 = + I
a &00 1000 1500 2000
MNumber of Training Samples

300
Figure 4.1.Sorted SSFD Values.
Figure 4.1 shows the sorted SSFD values. We caéctlie SSFD for each gene in each

experiment and then plot the sorted SSFD valueax(¥)} against the number of genes (X-axis)
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used to calculate the value. We see that, for Bi§RD, a small change in the number of training
genes brings a huge change in the SSFD value. #refigure, we can say that, if we want to
eliminate about 1,200 noisy samples for a giverugreve need to choose the cutoff SSFD value
corresponding to 2,000 which will be around 1.5. Wige this idea to block experiments for
individual genes.

We see that the measure is helping us detect emesyfor a given instance) which are
different from other instances in a given experitm&he time-series which are different from
the other instances are defined as noise becaegeléviate significantly from the normal
behavior displayed by the group [Cheng et al. (3P@9representation of the measure is shown
in Figure 4.2. We have generated some exampldsoiw kow the SSFD measure helps to
differentiate high-fluctuating time series from ttest. We see that the noise detected by the
SSFD method is behaving differently from the ottiie series in the figure; i.e., time series 4,
5, and 6 have highly fluctuating behavior when caneg to time series 1, 2, 3, and 7.

Also, we can assume that the groups are uncordeteteause they come from completely
different experimental sources.

Now, we use this SSFD measure to detect noise imanpervised method. Again, under
this method, we use this measure in two types tafseés: Rare and Normal. The goal of our
research is not to show anything specific to rémescclassification. We did this division of data
to see how our algorithm performs under rare ctagegario i.e. when the number of examples
for the target class is low. We see that evenri@ ciass scenario our algorithm outperforms the
classification results that we get when we clastfigyentire dataset (versus the classification
results that we obtain using the noise-blockedsddtédat we get using our noise detection

algorithm).
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Analysis of SSFD
2.5

1.5
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e SEriQS7
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Figure 4.2.Noise Detection Based on SSFD. (Series 4, 5, aare 6oise represented by broken
lines.)

4.3.2. Our Method

In our algorithm, we use an unsupervised methoddfmtifying noise. By unsupervised
method, we mean we do not have any prior knowledglee class distribution while identifying
the noise; i.e., we do not know which instance hgdoto the class of interest. We get the input
dataset, detect the noise, and block them off.dBim off is the same as treating them as
missing values.) Then, using this noise-blocke@skt; we perform the Naive Bayes
classification and examine the results. The stépiseocalgorithm are described in Table 4.2. (The

program is provided in Appendix A.)
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Table 4.2.Algorithm for Our Method

Data: Time-Series Data [m % n]

Parameter: Percentage, p, of noise to be eliminated per group

Result: The classification result (measured by F-Measuckthe BER).

1. Z-Normalize the dataset along each time point ([oolwise)

2. Calculate the SSFD of each instance per groupdta d

3. Based on p, find the cutoff value, ¢, above whietrgthing is considered
noise

4. Mark all instances above c as noise

5. Block the instances identified in Step 5

6. Run the classifier on these noise-blocked data

For illustration, we randomly choose a time posay time point 2, from Experiment 1
and plot the time point against SSFD, as showngarg 4.3. There are 67% of the genes plotted
in the figure which constitute the training seteafthe data are normalized. The blue hexagons in
the figure indicate the target class that we warpredict. We notice that most of the genes are
concentrated below SSFD = 0.5. Given that the uwserts to eliminate 60% of the training
instances (i.e., p=60%), we find that the corresijiogn SSFD cutoff value is 0.15. Hence, we
eliminate all the instances where SSFD is gre&i@n 0.15, as shown in Figure 4.4. This subset
is used to train the classifier.

As we described in Figure 4.3, we want to elimir@&6 of the genes from that
particular experiment (i.e., Experiment 1) and fsem Figure 4.3 that the cutoff needs to be
0.15. We generate Figure 4.4 after eliminatingdkilng) 60% of the genes. From Figure 4.4, we

can see that any genes above 0.15 have been dhhinde use these data for training the
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classifier. From Figure 4.4, we see that the diassls (0 and 1) are much better separated than

in Figure 4.3, which helps in classification.
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Expetiment 1 - Time Paint 2
Figure 4.3.Data After Columnwise Z-Normalization.
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Expefiment 1 - Time Point 2
Figure 4.4.The Example Dataset (After Noise Blocking). Theebhexagons indicate the
target class.

4.4. Classification
The Naive Bayes method (implemented as a custonNa#e Bayes in Matlab) is used
on the training set, described above, and theteearg predicted on the test set. We use a

threefold cross validation in this work.

4.5. Evaluation
We evaluate the performance of our algorithm by garmg the result of the Naive

Bayes classification on the entire dataset vetseigiataset generated after removal of the
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instances. As discussed earlier, we use the F-Neasul BER to evaluate our result which
takes into account the class distribution. We kaedur algorithm outperforms the result when
run with all the features. The results are furtiscussed in Chapter 5. We show that our

attribute-grouping algorithm appears to separadwo classes better, helping the classification.
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CHAPTER FIVE. EXPERIMENTS AND RESULTS

5.1. Our Data

We used two datasets (Tables 5.2 and 5.3) in tbik.WVe created them from the
Stanford Microarray Database (SMD) [Hubble et 2009)]. We called them Dataset 1a and 1b.
Time-series microarrays captured expression psofifea gene at discrete time points.
Microarray experiments are routinely performed &asure the expression of genes. Thousands
of DNA samples are arrayed on glass slides andddlm®NA or genomic DNA from control
and experimental samples are competitively hybeidito the array. Images of the slides are then
processed to produce a data file that containsrdoakvalues per spot for several thousands of
spots. The main information for each spot is the taetween the experimental and the control
samples. We created the datasets by merging 5s@mes datasets for yeast (Saccharomyces
Cerevisiae) available in SMD: cell cycle, nutrieffiects, sporulation, starvation, and stress.
Each dataset was generated by measuring the exprésgel of every gene at a sequence of
time points. The number of time points used in ezdem is shown in Table 5.1. We replaced
the missing values with Os and replaced multipteliregs on the same gene by their means. The
reason why these readings were assumed to bdntjsftthe red by green ratio is assumed to be
1, the logarithmic value of red by green would tlhher0. The expression pattern of a gene in
each experiment is a vector where ifheomponent is the expression level of the genbeit’t
time point. Thus, Dataset 1 is a matrix with a fowevery gene and a column for every time

point; it has 4,889 genes and 69 time points.
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Table 5.1.Distribution of Time Points Among Groups in Datase

Experiment or Group Number of Time Points
Cell cycle 25
Nutrient effects 17
Sporulation 7
Starvation 10
Stress 10
69

5.1.1. Class Labels for Dataset 1

We used the class labels from the Go-Slim datdablaifrom the Saccharomyces
Genome Database (SGD) [Hong et al. (2008)]. Imytiale got 113 classes but filtered out the
ones which had less than equal to 3% rarity. Tihal filataset had 44 classes.
5.1.2. Dataset 1la and Dataset 1b

For the purpose of analyzing the classificatiorfgrenance of our algorithm on the
dataset with an extremely rare target class, wieleldzour Dataset 1 into two datasets: Dataset 1a
and Dataset 1b (shown in Figures 5.1 and 5.2, ctispsy). We created these two datasets with
the goal of evaluating the algorithm under différexperimental conditions. We created one
dataset with 5% of the major class element, andseel the rest of the data to create our second
dataset. Dataset 1a had 95% or more of the maes @lements while dataset 1b had 70-95% of
the major class elements. Hence, Dataset la isthst. Both the datasets, along with class
labels, are shown in Tables 5.2 and 5.3. In Figbrésand 5.2, we plot two random time points
from Experiment 2 (2 and 10) and Experiment 3 (@ @)) respectively, to show the data
distribution. From Table 5.2, we see that the ydiie., the percentage of the target class) ranges

from 3.17% to 4.93%. From Table 5.3, we see tharahnity ranges from 5.42% to 31.60%.
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Table 5.2.Dataset 1a

From Table 5.1
Instances Percentage
Class Number of | Number | of the
D Class InstancesEX . d Of Ti Taroet of Target
periments ime g Class
or Groups | Points | Class
1 Golgi apparatus 4889 5 69 155 3.17%
2 RNA binding 4889 5 69 158 3.23%
3 Enzyme regulator | yaaq | g5 69 163 3.33%
activity
4 Signal transduction 4889 5 69 170 3.48%
= Carbohydrate | yg0q9 | 5 69 180 3.68%
metabolism
6 Molecular function| 4889 5 69 181 3.70%
7 DNA binding 4889 5 69 184 3.76%
8 Amino acid and
derivative 4889 5 69 186 3.80%
metabolism
9 Oxidoreductase | yggq9 | g5 69 188 3.85%
activity
10 Vacuole 4889 5 69 189 3.87%
11 Cytoskeleton 4889 5 69 193 3.95%
12 Morphogenesis 4889 5 69 199 4.07%
13 Plasma membrang 4889 5 69 201 4.11%
14 Cytoskeleton
organization and | 4889 5 69 204 4.17%
biogenesis
15 Chromosome 4889 5 69 204 4.17%
16 Lipid metabolism | 4889 5 69 212 4.34%
17 Nucleolus 4889 5 69 217 4.44%
18 Ribosome
biogenesis and 4889 5 69 230 4.70%
assembly
19 Ribosome 4889 5 69 230 4.70%
20 Mitochondrial 4889 5 69 241 4.93%
envelope
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Dataget 1:Rare [Class: Ribosome biogenesis and assembly]
0

Experiment 2: Timepoint 10

Experiment 2 Titepoint 2

Figure 5.1.Dataset 1a (After Columnwise Z-Normalization). @lvexagons denote target class.

Figure 5.1 represents the z-normalized data foeErgent 2. The blue hexagons denote
the class to be predicted, or the target class faethe class Ribosome biogenesis and

assembly), and it is plotted against a time pdiet€, time point 10).
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Table 5.3.Dataset 1b

From Table 5.1

Instances

Number Of | Number| of the Percentage
Class | Class Instances . , of Target
Experiments of Time | Target
ID ) Class
or Groups | Points | Class
1 Endomembrane | jggq 5 69 265 5.42%
system
2 Cellular component 4889 5 69 270 5.52%
3 Vesicle-mediated 4889 5 69 286 5 850
transport
4 Cell cycle 4889 5 69 293 5.99%
5 Transcription | ygaq 5 69 299 6.12%
regulator activity
6 Transporter activity] 4889 5 69 299 6.12%
7 Str_uc_:tural molecule 4889 5 69 299 6.12%
activity
8 Endoplasmic 4889 5 69 323 6.61%
reticulum
9 Transferase activity 4889 5 69 334 6.83%
10 Response to stress 4889 5 69 391 8.00%
11 Protein binding 4889 5 69 391 8.00%
12 Hydrolase activity | 4889 5 69 413 8.45%
13 Membrane 4889 5 69 428 8.75%
14 Protein biosynthesis4889 5 69 429 8.77%
15 RNA metabolism 4889 5 69 448 9.16%
16 DNA metabolism 4889 5 69 461 9.43%
17 Transcription 4889 5 69 480 9.82%
18 | Protein 4889 5 69 507 10.37%
modification
19 Transport 4889 5 69 594 12.15%
20 | Organelle 4889 5 69 641 13.11%
organization
21 Biological process| 4889 5 69 675 13.81%
22 Mitochondrion 4889 5 69 759 15.52%
23 Cytoplasm 4889 5 69 1536 31.42%
24 Nucleus 4889 5 69 1545 31.60%
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Experimmnent 3: Timepaoint &

We observe from Figure 5.1 that the target clagxieemely rare. From Table 5.2, we

see that itis Class ID = 18 and has a 4.70% poeserthe entire dataset. From Table 5.3, we

Dataset 1:Normal [Class: Cytoplasm]

¥
ﬂﬂ
o
:
0 0
8
0
0
§
| | | | | |
4 2 0 2 ! b

Experiment 3. Timepoint 3
Figure 5.2.Dataset 1b (After Columnwise Z-Normalization)uBlhexagons denote target class.
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see that the dataset has rare classes such asdbm&mbrane system with 5.42% rarity while it
has classes such as Nucleus which is in almosthoree(31.60%) of the data.

Figure 5.2 represents the z-normalizad ¢or Experiment 3. The blue hexagons denote
the class to be predicted (i.e., for the class flgtm), and one time point in the Cytoplasm class
(time point 7) is plotted against another time pdirere, time point 3) in the same class. We
observe from Figure 5.2 that the class to be ptedis not rare and that it is in over 30% of the

total genes.

5.2. Data Preprocessing

The initial step before the time series are mirsei inormalize them so that similar
patterns can be effectively identified. In the rdata, there are usually large disparities in the
expression level or the logarithmic ratio of redgrgen among the genes. For normalization, the
bias (vertical shift) has been removed by subtngdthe mean value of the time series per time
point. Then, "rescaling” has been done by dividhmgtime series by their standard deviation,
again per time point. The resulting time serieot®efind after this normalization are depicted in
Figure 5.1. The subtraction of the mean valuepmjunction with division by the standard
deviation, is called z-normalization and is a neaeg step for the identification of similar
patterns. We divide the dataset into training daua test data in 2:1 ratio, respectively.
5.3. Experimental Results

The results of the three experiments using thedatasets (Table 5.2 and Table 5.3) are
explained in the following sections. We show th&utes using our method. For a given p, we
have the F-Measure and BER for all class labetkerdataset. We use the mean of the F-
Measures and BERs for all those classes for cosgrarin all the figures, we have plotted the

change in mean F-Measure and mean BER for the-btos&ed dataset when compared to the
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entire normalized dataset; i.e., the baseline pedoce is that of a Naive Bayes classifier using
all the features. The term “mean” denotes the @eower all the classes. For plotting, we have

used the following measure:

Mean F-Measure for noise-blocked data — Mean F-Mesaf®r entire data
Mean F-Measure for entire data

Similarly, we calculated the BER change as follows

Mean BER for noise-blocked data — Mean BER forrerdata
Mean BER for entire data

These measures are plotted it in Figures 5.3 ahd 5

We also see, for a fixed training-set size, to vehxaént different training-set class distributions
affect classifier performance. We vary the trairgeg class distributions for all datasets as diesdrin
the following sections.
5.3.1. Results for Our Method

The classification results for Datasetii@shown in Figure 5.3. The figure shows that the
best classification result is obtained at the lefddlocking 20% of the noise. Obviously, it
results in an improvement of over 1.5% in the F-Mea, and the BER has also decreased. We
can notice that the error rate slowly rises as kmeigate more instances as noise (as they are
information), and at 60% blocking, we have the FaBlge decreasing and BER increasing,
which denotes underperformance in classificatioend#, the optimal percentage of noise to be
eliminated for this dataset is 20%.

When we do classification on the Dataset 1b, welsatethe best performance is when
the percentage of noise eliminated is 40% (Figu4g 3he improvement is because, at that level

of blocking, we have more than a 3% increase irFtheasure while the BER remains same. In
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this algorithm, we increase p, the parameter tetgrdhines how many genes we want to

eliminate per experiment, by increments of 10%;thenclassifier; and record the result.

Change in Mean F-Measure and BER (Rare Dataset)

10%

5%

0% . -7 .- I- l. _I I
40 50 60 0

10 20 30

-5%

Change

M F-Measure M BER

-10%

-15%
Percentage of Instances eliminated

Figure 5.3.Classification Results for Dataset l1a.

What we expect is that the F-Measure will firgtrease with an increasing p, until
reaching a maximum, and will then drop. This drap be attributed to the fact that, at that
point, we are eliminating information needed tanttthe classifier instead of just redundant
attributes. In this example, we see from p=60% thaterror rate starts and the F-Measure starts
to decrease. Hence, we can say that the clasgdiforms best at 40%, i.e., when 40% of the

genes have been eliminated per experiment.

5.4. Discussion
We address the issue of finding and eliminating@an time-series data to improve
Bayesian classification using groups of attribu@sr algorithm performs feature reduction on

two datasets by eliminating noise from the grodjus.each group, we found that there is an
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Figure 5.4.Classification Results for Dataset 1b.

optimal noise-blocking level where the groupingday algorithm outperforms the classification
results performed on the entire feature set. Tleeess of our algorithm could be attributed to

the ability to identify and block the widely vargrthanges, which helped the Bayesian classifier
[Rish et al. (2001)]. If we apply our algorithmtime unsupervised manner, we can block as much
as 40% of the training data per group and, yetieaehequal or better classification results. We
see that, for unsupervised learning, it is not appate simply to choose the entire dataset for
training even with a rare-class classification scen We have shown that we don’t need to use
all the data to get good classification resultsoAwe have shown a technique for using grouped
data from different experiments for feature setectand classification. Especially in the

biological domain, we believe that using groupsidfibutes in the feature-selection process may

inspire new ways of modeling time-series learning.
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CHAPTER SIX. CONCLUSION AND FUTURE WORK

We described an algorithm to select genes usingpgrof attributes to optimize the
classification performance for time-series data. mpared the performance of the Naive
Bayes method when applied to the entire dataséttét when applied to the noise-blocked
dataset. We tried our experiments on two diffedatasets and found similar results. Our
algorithm was based on a preprocessing techniqtiestbrder difference which likely reduces
the dependency between adjacent attributes. Ouvation for performing the preprocessing
technique was to improve the classification perfamoe by discarding redundant features called
noise.

Our results show that eliminating noise will likedphance the classifier performance and
that smaller subsets can be created. The smalbsetiare preferable as long as the BER does
not increase significantly or the F-Measure doddalbmuch over 1%. In this research, we also
provide insight about why one distribution mightlster than another for training the classifier.
We have also shown how combining different expeniséfrom different sources) can lead to
affect learning. Our future work will focus on tfa@lowing aspects:

« Apply and improve more existing classification aiguns, besides the Naive Baye,s to

the results of our algorithm to see whether thesifeer can be improved.

e Tryto getrid of parameter p, the percentage okgdo be eliminated from each
experiment, in the algorithm. We can probably dat task by incorporating a search and
finding the optimal value of p.

« We can attempt to develop novel classification athms by integrating this concept of
noise elimination into the process of learning. 8trimg such as a classifier will pick

only non-noisy examples to train itself.
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e We can analyze the biological significance of ndwsethe relevant attributes) for each
experiment.
We can work on finding some other preprocessinprigjues that may lead to even
better results. Instead of taking successive diffees, we can try measures such as standard
deviation and can eliminate genes ranked on thesb@/e can also use some intrinsic properties

of the time series to come up with a metric forsea@limination.
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