
NOISE REMOVAL FROM ATTRIBUTE-GROUPS FOR CLASSIFICATION 

 
 
 

A Thesis 
Submitted to the Graduate Faculty 

of the 
North Dakota State University 

of Agriculture and Applied Science 
 
 
 
 

By 

Angshu Kar 

 
 
 
 
 

In Partial Fulfillment of the Requirements 
for the Degree of 

MASTER OF SCIENCE 
 
 
 
 
 

Major Program: 
Computer Science 

 
 
 
 

November 2012 

 

Fargo, North Dakota 

 
 
 



 

 North Dakota State University 

 Graduate School 
 
 
 Title 
  

NOISE REMOVAL FROM ATTRIBUTE-GROUPS FOR CLASSIFICATION 

 

 
 
 

By 

Angshu Kar 
  
 

    

     

 

The Supervisory Committee certifies that this disquisition complies with North Dakota 

State University’s regulations and meets the accepted standards for the degree of 

                                                 

MASTER OF SCIENCE 

 

SUPERVISORY COMMITTEE: 

Dr. Anne Denton 
Chair 

Dr. Sanku Mallik 
 

Dr. Kendall Nygard 
 

Dr. Vasant Ubhaya 

 

Approved by Department Chair: Dr. Kenneth Magel 

 
 
              11-20-2012 

 
 

 

                         Kenneth Magel 
 

Date 
 

 
 

Signature 

 



iii  

 

ABSTRACT 
 

In this work, we present a novel algorithm that considers attributes from different 

experimental sources as separate groups for the purpose of classification. We remove noise from 

each of these groups, combine them, and then run the classifier on the grouped data. Examples 

are considered to be noise if they do not contribute to the prediction but, rather, degrade the 

quality of the classification result. As part of this work, we identify a measure that appropriately 

labels noise without knowledge of the class labels. Our method shows that the classification 

result is better when run on such filtered, grouped data than when run on the entire grouped data. 

In this work, we have considered time-series data because of their noisy nature. Our approach 

can be viewed as unsupervised feature-subset selection in grouped attributes and at the level of 

each instance individually.  
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CHAPTER ONE. INTRODUCTION 

1.1. Overview 

Real-world data typically suffer from noise that may influence decisions. In this work, we 

present an algorithm to combine attributes from different experiments and to remove noise from 

these attribute-groups to improve the classification of experimental data. Time-series data are a 

common type of data used by data miners [Keogh and Kasetty (2002)]. In this thesis, we work 

with time-series data. A time series is a sequence of data points that are measured at successive 

time intervals. Time-series data mining is a very important problem in data-mining research 

[Yang and Wu (2006)]. Particularly, the problem of handling noise in time-series data is an open 

issue to tackle. Over the past decade, there has been a wave of interest in data-mining time series, 

with researchers attempting to index, cluster, classify, and mine association rules from increasing 

massive sources of data.  

It has been seen that the data-mining algorithms become less effective in databases with a 

large number of attributes. One way to approach this problem is to reduce the amount of data 

before applying the mining process. In particular, pre-processing of feature selection, applied to 

the data before mining, has been shown to be promising because it can eliminate the irrelevant 

attributes that cause the mining tools to become inefficient and ineffective. At the same time, it 

can preserve the classification quality of the mining algorithm (determined by F-measure [Yang 

and Wu (2006)]). There are some feature-selection algorithms reported in the literature that have 

been used on time-series data [Weiss and Provost (2001), Mörchen (2003)]. Some of them are 

effective, but very costly in computational time (e.g., wrappers methods) [Yoon et al. (2005)], 

and others are fast, but less effective for the feature-selection task (e.g., filter methods) [van der 
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Walt and Barnard (2006)]. Specifically, wrapper methods, although effective in eliminating 

irrelevant and redundant attributes, are very slow because they apply the mining algorithm many 

times, changing the number of attributes during each execution as they follow some search-and-

stop criteria. Filter methods are more efficient; they use some form of correlation measure 

between individual attributes and the class [Mörchen (2003)]. However, because they measure 

the relevance of each isolated attribute, they cannot detect if redundant attributes exist or if a 

combination of two (or more) attributes, apparently irrelevant when analyzed independently, are 

indeed relevant. In this thesis, we propose a method to consider attributes from different sources 

as grouped, which helps to distinguish between the relevant and the redundant sets of features. 

We use a measure to evaluate the relevance of an attribute block instead of a single attribute.  

1.2. Motivation and Contribution 

The goal of this classification algorithm is to classify m new examples, E’ = {en+1, …, e-

n+m }, that are characterized by tg time points per experiment (which are the attributes in this case 

and where g denotes the number of experiments; i.e., t1 is the number of time points in 

experiment 1; t2 is the number of time points in experiment 2; etc.). To generate this classifier, 

we have a set of n training samples, E = {e1,…,en}, characterized by tg time points, Dg = 

{T1,…,TDg}, and the class label, L = {c1,…,cn}, to which they belong. We know that not all time 

points (for each experiment) are necessarily beneficial for classification. Instead of using all 

available time points, we selectively choose experiments to use for classification. The main 

advantage here is that our selective choice of experiments results in reducing the noise to 

improve the classification results.  

It is often thought that the relevant attributes are independent of each other and carry 

separate information. However, the independence assumption may not be true always. One 
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possible reason could be the fact that, for gene-expression experiments, the overall experimental 

condition remains the same and varies only in the time lapse after the beginning of the 

experiment. Therefore, the question that comes to our mind is whether some of the t attributes 

are redundant for learning the classification rule. To respond to this question, we come up with a 

new algorithm to identify those time points (that we call “noise”) and to remove them from the 

data before running the classifier. In this research, we take each experiment; analyze whether it 

can be marked as noise for the given instance; and, if so, remove all the time points for that 

experiment before we train the classifier. Basically, we are always removing a given experiment 

when we conduct the comparison of data classification using Naïve Bayes classification with the 

original datasets and the ones with the noise blocked. The results demonstrate that our algorithm 

outperforms the detection rate when compared to classification done with the entire feature set. 

1.3. Problem Statement and Approach 

Time-series data are a common data type used by data miners. In this work, we are 

attempting to improve the classification of time-series data (created by combining multiple 

sources of information). Individual sources can be looked upon as a set of attributes (time 

points), each describing the same example with a common index such as the Gene ID. 

Specifically, our data consist of different time-series experiments conducted with the same set of 

genes to create a combined data source. The task is then to use the classifier (e.g., Bayesian) that 

predicts the class labels. Most classic machine-learning algorithms do not work well for time 

series. In particular, the high dimensionality and high-feature correlation present in time-series 

data have been viewed as an interesting research challenge. In addition to dimensionality and 

feature correlation, if high noise is considered, it complicates the classification. By “noise,” we 

mean data that degrade the classification performance. To tackle these problems, we have come 
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up with a novel algorithm to filter part of the data (described as noise) before running the 

classification task. Our approach is described in the following schematic representation (Figure 

1.1). Figure 1.1 shows how we combine data from different time-series experiments conducted 

on the same subject; e.g., in each dataset, we have data from a set of time-series experiments 

conducted on the same set of yeast genes. In Figure 1.1, Time Series Data 1 comes from 

Experiment 1 which is a time-series experiment conducted on a set of genes. Similarly, Time 

Series Data 2 and Time Series Data 3 come from independent experiments conducted on the 

same set of genes. 

Figure 1.1. Schematic Representation of Our Approach to the Problem. 

 We combine all three of these data groups to form our dataset where we run our noise-

blocking algorithm to remove the data points we consider noise. Then, we run the classifier on 



5 

 

the noise-blocked data. We compare the results of this classification with the findings for when 

the classifier is run on the entire dataset (without blocking noise). 

 Figure 1.2 represents how our final dataset looks. It is the dataset on which we run our 

algorithm. We see that g1, g2, and g3 are the common genes on which the three experiments 

(Experiment 1, Experiment 2, and Experiment 3) were conducted with the same set of yeast 

genes. The three experiments might have different numbers of time points.  Each dataset has 

many time-series-based microarray readings, and each row signifies the record for a particular 

yeast gene. Each gene in the training data belongs to a particular class label (which represents a 

particular biological function). Here, the class labels are binary (i.e., They are either 0 or 1.), and 

the binary lables tell whether a particular gene participates in that function. Class label 0 signifies 

that the gene did not participate in cell-cycle regulation while 1 means it took part in that 

function. In Figure 1.2, we see that, given the genes of the combined dataset, we predict the class 

label for a new gene that is denoted by g100. 

Yeast 
Gene 

Experiment 1 Experiment 2 Experiment 3 Class 
Label t1 t2 t1        t2 t3 t1 t2 t3 

g1 x x       x         x          x x x x 0 

g2 x x       x         x          x x x x 1 

g3 x x       x         x          x x x x 1 

:                 . 

: . 

g100 .. .. .. .. .. .. .. .. ? 

 

Figure 1.2. Schematic Representation of Combined Dataset. 

As we see from Figure 1.1, our algorithm only considers the relevant part of the data (by 

blocking the redundant attributes) and improves the classification problem. The blocking 

technique is equivalent to treating the noise as missing values. Using this noise-blocked dataset, 
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we perform the Naïve Bayes classification and examine the results. The process is described in 

more detail in Figure. 1.3. 

In Figure 1.3, we see that our dataset is composed of attributes from different 

experiments conducted on the same set of genes. For the sake of illustration, we mark the 100th 

gene (g100) as a test gene (representing the test set). The rest of the genes constitute the set used 

to train the classifier (the training set). In Step 2, we merge the three datasets. After merging the 

attributes from the different experiments, our algorithm blocks the genes identified as noise and 

they are not used in training the classifier. 

 

Figure 1.3. Schematic Representation of Attribute Grouping. 
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 We see that we block all the attributes (Here attributes are time points.) for a particular 

gene for a given experiment (denoted by blue rows). The dataset we obtain from Step 3 in Figure 

1.3 illustrates the novelty of how we group the attributes together for classification. As we see, 

this dataset contains less data than the one in Step 2. We show that the classification with the 

dataset in Step 3 is better than using the entire dataset (without grouping) as in Step 2, even 

though it has more instances.  

 

Figure 1.4. Schematic Representation of Naïve Bayes Classification. 

In Figure 1.4, we see how our classifier works. We use the noise-blocked data from the 

experiments and run the classifier using them. We show that the results are better than when we 

run the classifier on the unblocked datasets. 

1.4. Outline 

The organization of this paper is as follows: Chapter 2 describes the method of 

Classification, with an emphasis on Naïve Bayes Classification along with its significance for the 
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current thesis. It then goes on to talk about the Rare Class Classification which we used. It also 

gives an overview of Feature Subset Selection. It describes the process of outlier detection. This 

chapter also defines the Time-Series Data upon which our experiments are based. Finally, it talks 

about how we evaluate our algorithm.  

Chapter 3 describes Related Work. It discusses Time-Series Classification and 

Classification in the Presence of a Rarity because we deal with rare data in this thesis. We also 

review feature selection and noise detection as well as discuss the combination of multiple 

sources for data-mining purposes. 

Chapter 4 discusses Our Approach. It defines experiments, the concept of noise, and how 

we identify noise. The chapter then introduces our proposed metric. We also discuss the 

evaluation procedure. The metrics for evaluating the results are defined, and their significance is 

discussed. The metrics used are mainly f-measure and balanced error rate.  

Chapter 5 discusses the experimental procedure and the results and then talks about their 

significance. It compares the results given in the plots and talks about which technique gives the 

best results. Chapter 6 talks about possible future work in this field.  
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CHAPTER TWO. DEFINITIONS AND BACKGROUND 

In this chapter, we deal with a brief description of each concept used in this work. We 

talk in details about classification here.  

2.1. Classification 

Classification is the process of predicting some category (called the class) of a dataset 

(measured on the test data or the test set) by building a model based on some predictor variables 

(or features, measured by selecting a subset of the data called the training data or the training 

set). For example, in evaluating a store location, the success of a store may be determined by its 

neighborhood quality and the weather of the locality. A company is interested in identifying 

localities with ideal neighborhood quality and weather conditions. A model based on the values 

of all available attributes (neighborhood quality and weather) is built to classify each item into a 

particular class (whether the locality is suitable for business or not). The goal of classification is 

to analyze the training set and to develop a description for each class using the attributes 

presented in the data. There are numerous classification algorithms, such as decision trees 

[Mitchell (1997)], Bayesian classifiers, Support Vector Machines [Mitchell (1997)], etc. In this 

work, we deal with the Naïve Bayes Classifier for binary classification. (i.e., The class can take 

only 2 values; we call them the target class and the major class which are also called positive and 

negative class, respectively.) We also deal with a particular type of classification, known as Rare 

Class Classification [Weiss (2004)], which is described in Section 2.1.2. The task of 

classification is described in Figure 2.1. We see that the classifier is trained using the training 

data and run on the test data. The outcomes of classification are the predicted class labels. In this 

task, we train the classifier using the instances g1, g2, g3,… while we test using instances g100, 

g101, g102,…, i.e., how well we can predict the class labels for g100, g101. and g102. We 
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compare the predicted class labels with existing class labels to evaluate the classifier’s 

performance. 

 

Figure 2.1. Schematic Representation of Classification (where A1 and A2 are Attributes). 

2.1.1. Naïve Bayes Classification 

The Naïve Bayes Classifier is the most popular among the probabilistic classifiers, and it 

is used in many applications, such as bioinformatics, insurance, medical, etc. The goal in 

Bayesian classification [Domingos and Pazzani (1997)] is to compute the probability of Ci for a 

given point, Xj, where Xj = (X1
j , X

2
j ... X

d
j  ) is a point in d dimensions. Then, among all classes, 

we choose the one that has the largest probability and classify Xj as being of that class. That is, 

we predict the class of Xj as arg max {P (Ci|Xj)}. To compute P (Ci|Xj), we simply invert the 

probability using the Bayes theorem:  

                                        P (Ci|Xj) = 
 )P(X

)P(C × )C| P(X

j

iij               (2.1)                               
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 In Naïve Bayes, we make the naive assumption that attributes are all independent, and 

under this independence assumption, P(Ci|Xj) can be reduced to the equation below:  

                                     P (Ci|Xj) = ∏
=

d

a 1
i

a
j , )C|P(X                       (2.2) 

where a
jX  is the value of Xj in the ath dimension.  

 For numeric data, we assume that each dimension is normally distributed, and we, thus, 

have to estimate σ and µ for each class, Ci, separately, directly from the data. Once the mean and 

variance per class, Cj, for each dimension a (namely,ajσ and a
jµ ), are known, we compute 

              P ( a
jX |Ci) = N ( a

jX | a
jσ , a

jµ ) = 
�

√����
� �

	

��

�  ��
�  �

�

����
� ��

            (2.3) 

2.1.2. Rare Class Classification 

 A challenging complication in classification arises when the number of target class 

members is far outnumbered by the number of the other class (major class members in the 

training set). This situation is the scenario in rare class classification [Kubat et al. (1997), Kubat 

and Matwin (1997), Japkowicz (2000), Cieslak and Chawla (2008), Kotsiantis et al. (2006)]. In 

these scenarios, the number for the target class is outnumbered by the other class. Figure 2.2 

shows a rare-class classification scenario. In Figure 2.2, we see that the class being predicted is 

present in only 5% of the input data. Say that there are 100 genes in our input dataset and that we 

are predicting the function (class label) Lipid Metabolism; then, 5 of those 100 genes participate 

in Lipid Metabolism. The problem with this rarity is that the rare objects cannot be located under 

greedy-search heuristics [Weiss (2004)]; e.g., the k-NN (Nearest Neighbor) classifier may 

incorrectly classify many cases from the target class because the nearest neighbors of these cases 
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are examples belonging to the major class. In a situation where the noise is very high, the 

probability of the target class’ nearest neighbor being noise is likely to be high. In this work, we 

deal with rarity as low as 3%.  

Figure 2.2. Graphical Representation of Rarity. Here, only 5% of the data points belong to our 
target class (+) while the rest belong to the major class. 

2.2. Feature Subset Selection 

Any data-mining task is usually preceded by data preprocessing. Feature-subset selection is 

such a process that selects a subset of original features. The optimality of the feature-subset 

selection algorithm is measured by an evaluation criterion. The evaluation criterion broadly falls 

into three categories: 

• Filter model which relies on general characteristics of the data to evaluate feature subsets 

• Wrapper model which requires one mining algorithm to evaluate and  

• Hybrid model that uses a combination of both   
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2.3. Noise/Outlier Detection 

In data mining, there are certain objects that are irrelevant or weakly relevant to a 

particular data-analysis method [Xiong et al. (2006)]. In this thesis, we call them noise and try to 

identify them as observations that deviate greatly from the other observations with respect to 

some measure. This noise is then removed and the remaining data are evaluated on classification 

task. (Here, Naïve Bayes classification is used.) The amount of noise to be removed is taken as a 

user parameter. This work deals with experimentation that has a wide range of noise levels, 

ranging from 10% to as much as 90% of the experimental data.  

2.4. Time-Series Data 

Time-series data are a series of observations over a period of time. Mathematically, each 

observation is recorded at a specific time, t.  A time-series is given by Yoon et al. (2005): 

tx,i ; [i=1,…,N; x=1,…,M]             (2.4) 

and is a set of observation made serially through time, where i is the index of the measurement at 

time point t and x is the sample or the instance index. A time series is usually represented by the 

M×N matrix, where M is the number of instances and N is the number of observations. In this 

work, we will only be dealing with numeric time-series data. We will drop the term x according 

to convenience (and without loss of practicality), and in that case, it will mean that the series is 

for any given instance. An example of 3 × 7 time series is shown in Figure 2.3.  We see that there 

are three time series and that the observations (experiments) were recorded at seven time points 

(t1, t2, … , t7). The value of each time series is plotted along the Y-axis. 
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Figure 2.3. A Time Series. The figure shows three time series each having seven time points. 

2.4.1. Random-Walk Time Series 

A time series, ti, is a random walk [Denton (2005)] if  

                         ti = ti-1 + et   ,                                            (2.5) 

where et is called the white-noise time series (dependent on the gene) and E{et} = 0, var{et} = σ2, 

for all t, cov{et,es}= 0, for all t≠s. By white-noise time series, we mean {et} is a normally 

distributed sequence of values corresponding to time t. 

2.5. Evaluation 

A popular way to evaluate the performance of classifiers is based on the confusion-matrix 

analysis [Provost et al. (1998)]. The comparison parameters used here are mostly dependent on 

four values for each experimental result. These values are true positive (TP), true negative (TN), 

false positive (FP), and false negative (FN). The explanation of each is given as follows.  

• TP = the number of times when the prediction of a gene expression in the training set is 1 

while expression of the same gene in the testing set is 1 

-1.6

-1.4

-1.2
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• TN = the number of times when the prediction of a gene expression in the training set is 0 

while expression of the same gene in the testing set is 0 

• FP = the number of times when the prediction of a gene expression in the training set is 0 

while expression of the same gene in the testing set is 1 

• FN = the number of times when the prediction of a gene expression in the training set is 1 

while the expression of the same gene in the testing set is 0. 

Table 2.1 illustrates a confusion matrix for our binary class problem having target class 

and major class values. We use this table to compare all our results while running to various 

classifiers on various datasets. The tables presented in this chapter will tell us, at a glance, how 

many true positives and true negatives are predicted by each classifier. Using the data in the 

tables, we shall find accuracy, specificity, sensitivity, and precision for the experiments. 

From such a matrix, a large number of widely used metrics are derived to measure the 

performance of learning systems, such as  

error rate, defined as  

�� � ��
�� � �� � �� � ��

  

and accuracy (1-error rate), defined as  

 
�� � ��

�� � �� � �� � ��
 

 

 

 

 
 



16 

 

Table 2.1. Confusion Matrix for a Binary Problem        
                
 Predicted Target Class Predicted Major Class 

Actual Target Class True Positive (TP) False Positive (FP) 

Actual Major Class False Negative (FN) True Negative (TN) 

However, when there is a huge amount of noise, the use of such measures might lead to 

misleading conclusions. In our scenario, noise is defined as the examples that are degrading the 

classification task, and we are classifying data which have as low as 3% rarity. Now, for 

example, it is easy to say that the classifier has an accuracy of 97% (or an error rate of 3%) in a 

scenario where the major-class proportion corresponds to 97% of the examples by simply 

predicting every new example as belonging to the major class. However, predicting the rare class 

is of primary interest in this problem scenario. Let us take the example of a scenario for 

predicting 3% of the cancer patients. A cancer patient diagnosed as healthy might be a fatal error 

while a healthy patient diagnosed as having cancer is considered a much less serious mistake. 

We use two evaluation metrics in this problem scenario: F-Measure (FM) and Balanced Error 

Rate (BER). 

2.5.1. F-Measure (FM) 

This metric, denoted by F, is used widely by the information retrieval community [Joshi 

(2002)]. It is defined with respect to a given class. The general form of F with respect to a class, 

c, is as follows: 

Fλ = 
PR
11 )1(

1

λλ −+
,    0≤λ≤1    ,                         (2.6) 
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where P is the precision (P =
FPTP

TP

+
), R is the recall (R=

FNTP

TP

+
), and  λ is a parameter. We 

are interested in the classifier performance for the both normal and rare classes [Joshi (2002)]; 

hence, we use Fλ as the metric. We choose the value of λ = 0.5, giving recall and precision equal 

weights. Henceforth, we refer Fλ simply as FM = 2*R*P / (R + P). Note, that this expression for 

FM becomes the harmonic mean of R and P.  

2.5.2. Balanced Error Rate (BER) 

This statistic [Chen and Wasikowski (2008)] looks at the performance of the classifier on 

both classes. It is defined as the average of the error rates for the two classes. If the classes are 

balanced, the BER is equal to the global error rate. Global error rate is commonly used for rare-

class classification. The statistic is given by 

BER = 



+

+




+ TNFN

FN

TPFP

FP

2

1

        (2.7) 
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CHAPTER THREE. RELATED WORK 

3.1. Time-Series Classification 
 

Several machine-learning approaches have been developed [Keogh et al. (2003), Roddick 

et al. (2002)] to solve the time-series classification problem. We are also aware [Verleysen and 

Francois (2005)] how high-dimensional time series can be difficult to use for classification. 

Geurts (2001) has shown an algorithm to combine local patterns to improve classification. 

3.2. Classification in the Presence of a Rarity 
 

When we classify data with one or more classes being rare, it is called a rare-class 

classification or a class-imbalance problem. There has been extensive research done in this 

domain. Weiss and Provost (2001) have shown that there are two basic methods for dealing with 

class imbalance: i) under-sampling, where the major class elements are eliminated, and ii) over-

sampling which multiplies the values in the minority class. Kubat et al. (1997) also use a novel 

technique of one-sided sampling while Liu et al. (2006) use a sequential under-sampling. 

Drummond and Holte (2003) have shown that under-sampling is better than over-sampling. 

Weiss (2004) shows different types of rarity and how noise affects rarity. Also, different papers 

[Al-Shahib et al. (2006), Chen et al. (2008)] describe how feature selection can help to improve 

classifier performance with a class-imbalance scenario.  

3.3. Feature-Subset Selection 
 
  Feature-subset selection is a crucial step in classification. Several workers [Hall and 

Holmes (2003), Guyon and Elisseeff (2003), Blum and Langley (1997), etc.] have talked about 

different attribute-selection techniques and the two basic categories: wrapper and filter. We see 

in Bo and Jonassen (2002) how gene pairs are selected and evaluated as well as how gene sets 
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are formed for classification. There are also rough set-based feature selection algorithms which 

uses attribute dependency [Han et al. (2005)]. There are some unsupervised feature-selection 

algorithms [Varshavsky et al. (2006)] that use the variance of data collected for each feature. 

There are papers [Mitra et al. (2002), Yoon et al. (2005)] that also use hill-climbing approach 

and feature similarity for feature-selection. Hall (2000) also uses correlation between attributes 

for feature selection. Ding and Peng (2003) use mutual information to select the feature subset. 

There has been work on feature selection in microarray data [Xing et al. (2001)] using a series of 

filters.  

3.4. Noise Detection/Minority Detection/Outlier Detection 
 

The extensive survey by Hodge and Austin (2004) on outlier detection talks about three 

basic approaches to outlier detection: unsupervised clustering, where we find outliers with no 

prior knowledge of the data; supervised classification, where we have pre-labeled data and model 

the outliers; and semi-supervised, where there is a mixture of the other two methods.  Keogh et 

al. (2005) find time-series discords which are subsequences of a longer time series and are 

maximally different from all the rest of the time-series subsequences. Chandola et al. (2009) 

describe a window-based technique to find discords in time series. Ando (2007) talks about 

finding atypical objects in the dataset using information theoretic approaches. Deng et al. (2004) 

find informative genes based on a non-parametric rank-sum test method while Chen et al. (2007) 

introduce a method which ranks irrelevant features which have little effect on classification 

under uniform noise. Cheng et al. (2009) do random walk-based anomaly detection in graphs. 

There are certain papers [Muthukrishnan et al. (2004)] that mine values (deviants) where 

removal leads to an improved, compressed representation of the remaining items while some 

other papers bring in the concept of time-series subsequences (shapelets) [Ye and Keogh (2009)] 
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that maximally represent a class. There has also been research on finding unusual patterns in 

time series [Keogh et al. (2002)] based on suffix trees. We see from previous research [Zhu and 

Wu (2004), Cheng et al. (2009)] how noisy attributes can affect classification performance. 

Cheng et al. (2009) introduce a graph-based local anomaly detection technique in time-series 

data using dependence among variables. 

3.5. Naïve Bayes Classification 
 

The Naïve Bayes classifier is a remarkably successful, yet simple, classifier [Rish et al. 

(2001)].  It assumes that attributes are statistically independent. Although it is unrealistic [Jakulin 

and Bratko (2003)], it works well in most classification scenarios. Keller et al. (2000) describe 

how effective the Naïve Bayes classifier is on DNA expression data after feature-subset 

selection. 

3.6. Mixing Multiple Sources   
 

In the works of Costa et al. (2002), we see that, when multiple time-series, gene-

expression data are combined, it results in better clustering. Workers such as Rish et al. (2001) 

and Kundaje et al. (2005) have shown how time-series data and motif data can be combined to 

obtain better clustering results. This idea has also been used in the classification world (e.g., in 

classifier fusion). Multiple data sources for classification, where the different data sources 

involve the same set of genes, have been used before. In this work, we are combine those data 

sources that most help with classification. 
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CHAPTER FOUR. OUR APPROACH 

4.1. Overview 

In our data, the columns of the data matrix correspond to time points (or attributes) along 

some biological process. Intuitively, there will be some homogeneity along the attributes. As a 

part of data preprocessing, we have removed the time series which deviate from the other time 

series in that group based on our metric.  

4.2. Concept of Groups or Experiments in Data 
 

We introduce the concept of groups or experiments in our data related to the concept used 

by Costa et al. (2002). A group or experiment (henceforth, used interchangeably) is a subset of 

the attributes that is generated from a related source. A group of experiments is further illustrated 

in Table 4.1. 

Table 4.1. Concept of Experiments 

 

For example, we see in Table 4.1 that each instance consists of 12 time points and 3 

groups. Experiment 1 has 3 time points denoted by t1-t3; Experiment 2 has 4 time points denoted 

by t1-t4; and Experiment 3 has 5 time points, t1-t5. Thus, we can say that each instance is 

described by a vector of experiments and that each experiment is a collection of attributes. In this 

work, we analyze each group independently to detect noise.  
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4.3. Noise Identification 
 

The basic data preprocessing step we used here is called first-order differencing. The 

values of the first-order difference for a series (of N attributes), t1, t2,t3 ... tN, are given by a new 

series  

t'1, t'2 ... t'N-1, 

where  t'1 = t2 - t1 ; t'2 = t3 - t2; ... t'N-1 = t'N  – t'N-1. 

The operation of getting t'i = ti - ti-1 is called the first difference. 

4.3.1. Our Metric 
 

The statistic that we use to measure the relevance of an instance, x, in the time-series data 

is the normalized sum squares of first differences (SSFD) and is given by    

SSFDx = 
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where n is the number of time points in the group under consideration. The main motivation 

behind using this metric is identifying highly fluctuating time series in the group. If the SSFD 

value is high, we can conclude that the series is highly fluctuating. Mathematically, from 

equation (2), we have 
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Hence, we see that value of SSFD basically denotes the variance of the white noise (which is 

gene dependent). Minimizing SSFD basically means reducing the variance in the subsequence 

for which we are calculating the SSFD. 

Figure 4.1. Sorted SSFD Values. 

Figure 4.1 shows the sorted SSFD values. We calculate the SSFD for each gene in each 

experiment and then plot the sorted SSFD values (Y-axis) against the number of genes (X-axis) 
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used to calculate the value. We see that, for high SSFD, a small change in the number of training 

genes brings a huge change in the SSFD value. From the figure, we can say that, if we want to 

eliminate about 1,200 noisy samples for a given group, we need to choose the cutoff SSFD value 

corresponding to 2,000 which will be around 1.5. We use this idea to block experiments for 

individual genes. 

We see that the measure is helping us detect time series (for a given instance) which are 

different from other instances in a given experiment. The time-series which are different from 

the other instances are defined as noise because they deviate significantly from the normal 

behavior displayed by the group [Cheng et al. (2009)]. A representation of the measure is shown 

in Figure 4.2. We have generated some examples to show how the SSFD measure helps to 

differentiate high-fluctuating time series from the rest. We see that the noise detected by the 

SSFD method is behaving differently from the other time series in the figure; i.e., time series 4, 

5, and 6 have highly fluctuating behavior when compared to time series 1, 2, 3, and 7.  

Also, we can assume that the groups are uncorrelated because they come from completely 

different experimental sources. 

Now, we use this SSFD measure to detect noise in an unsupervised method. Again, under 

this method, we use this measure in two types of datasets: Rare and Normal. The goal of our 

research is not to show anything specific to rare class classification. We did this division of data 

to see how our algorithm performs under rare class scenario i.e. when the number of examples 

for the target class is low. We see that even in rare class scenario our algorithm outperforms the 

classification results that we get when we classify the entire dataset (versus the classification 

results that we obtain using the noise-blocked dataset that we get using our noise detection 

algorithm). 
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Figure 4.2. Noise Detection Based on SSFD. (Series 4, 5, and 6 are noise represented by broken 
lines.) 
 
4.3.2. Our Method 
 

In our algorithm, we use an unsupervised method for identifying noise. By unsupervised 

method, we mean we do not have any prior knowledge of the class distribution while identifying 

the noise; i.e., we do not know which instance belongs to the class of interest. We get the input 

dataset, detect the noise, and block them off. (Blocking off is the same as treating them as 

missing values.) Then, using this noise-blocked dataset, we perform the Naïve Bayes 

classification and examine the results. The steps of the algorithm are described in Table 4.2. (The 

program is provided in Appendix A.) 
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Table 4.2. Algorithm for Our Method 

 

 

 

 

 

 

 

 

 

For illustration, we randomly choose a time point, say time point 2, from Experiment 1 

and plot the time point against SSFD, as shown in Figure 4.3. There are 67% of the genes plotted 

in the figure which constitute the training set after the data are normalized. The blue hexagons in 

the figure indicate the target class that we want to predict. We notice that most of the genes are 

concentrated below SSFD = 0.5. Given that the user wants to eliminate 60% of the training 

instances (i.e., p=60%), we find that the corresponding SSFD cutoff value is 0.15. Hence, we 

eliminate all the instances where SSFD is greater than 0.15, as shown in Figure 4.4. This subset 

is used to train the classifier. 

As we described in Figure 4.3, we want to eliminate 60% of the genes from that 

particular experiment (i.e., Experiment 1) and see from Figure 4.3 that the cutoff needs to be 

0.15. We generate Figure 4.4 after eliminating (blocking) 60% of the genes. From Figure 4.4, we 

can see that any genes above 0.15 have been eliminated. We use these data for training the 

Data: Time-Series Data [m × n] 

Parameter: Percentage, p, of noise to be eliminated per group 

Result: The classification result (measured by F-Measure and the BER). 

1. Z-Normalize the dataset along each time point (column-wise) 

2. Calculate the SSFD of each instance per group for data 

3. Based on p, find the cutoff value, c, above which everything is considered 

noise 

4. Mark all instances above c as noise 

5. Block  the instances identified in Step 5 

6. Run the classifier on these noise-blocked data 
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classifier. From Figure 4.4, we see that the class labels (0 and 1) are much better separated than 

in Figure 4.3, which helps in classification. 

Figure 4.3. Data After Columnwise Z-Normalization. 
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Figure 4.4. The Example Dataset (After Noise Blocking). The blue hexagons indicate the 
target class. 

4.4. Classification  
 

The Naïve Bayes method (implemented as a customized Naïve Bayes in Matlab) is used 

on the training set, described above, and the results are predicted on the test set. We use a 

threefold cross validation in this work. 

4.5. Evaluation 

We evaluate the performance of our algorithm by comparing the result of the Naïve 

Bayes classification on the entire dataset versus the dataset generated after removal of the 
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instances. As discussed earlier, we use the F-Measure and BER to evaluate our result which 

takes into account the class distribution. We see that our algorithm outperforms the result when 

run with all the features. The results are further discussed in Chapter 5. We show that our 

attribute-grouping algorithm appears to separate the two classes better, helping the classification.  
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CHAPTER FIVE. EXPERIMENTS AND RESULTS 

5.1. Our Data 

We used two datasets (Tables 5.2 and 5.3) in this work. We created them from the 

Stanford Microarray Database (SMD) [Hubble et al. (2009)]. We called them Dataset 1a and 1b. 

Time-series microarrays captured expression profiles of a gene at discrete time points. 

Microarray experiments are routinely performed to measure the expression of genes. Thousands 

of DNA samples are arrayed on glass slides and labeled cDNA or genomic DNA from control 

and experimental samples are competitively hybridized to the array. Images of the slides are then 

processed to produce a data file that contains dozens of values per spot for several thousands of 

spots. The main information for each spot is the ratio between the experimental and the control 

samples. We created the datasets by merging 5 time-series datasets for yeast (Saccharomyces 

Cerevisiae) available in SMD: cell cycle, nutrient effects, sporulation, starvation, and stress. 

Each dataset was generated by measuring the expression level of every gene at a sequence of 

time points. The number of time points used in each of them is shown in Table 5.1. We replaced 

the missing values with 0s and replaced multiple readings on the same gene by their means. The 

reason why these readings were assumed to be 0 is that, if the red by green ratio is assumed to be 

1, the logarithmic value of red by green would then be 0.  The expression pattern of a gene in 

each experiment is a vector where the i th component is the expression level of the gene at the i th 

time point. Thus, Dataset 1 is a matrix with a row for every gene and a column for every time 

point; it has 4,889 genes and 69 time points. 
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   Table 5.1. Distribution of Time Points Among Groups in Dataset 1 

Experiment or Group Number of Time Points 

  Cell cycle 25 
Nutrient effects 17 
Sporulation 7 
  Starvation 10 
Stress 10 

 
69 

5.1.1. Class Labels for Dataset 1 

We used the class labels from the Go-Slim data available from the Saccharomyces 

Genome Database (SGD) [Hong et al. (2008)]. Initially, we got 113 classes but filtered out the 

ones which had less than equal to 3% rarity. The final dataset had 44 classes. 

5.1.2. Dataset 1a and Dataset 1b 
 

For the purpose of analyzing the classification performance of our algorithm on the 

dataset with an extremely rare target class, we divided our Dataset 1 into two datasets: Dataset 1a 

and Dataset 1b (shown in Figures 5.1 and 5.2, respectively). We created these two datasets with 

the goal of evaluating the algorithm under different experimental conditions. We created one 

dataset with 5% of the major class element, and we used the rest of the data to create our second 

dataset. Dataset 1a had 95% or more of the major class elements while dataset 1b had 70-95% of 

the major class elements. Hence, Dataset 1a is the rarest. Both the datasets, along with class 

labels, are shown in Tables 5.2 and 5.3. In Figures 5.1 and 5.2, we plot two random time points 

from Experiment 2 (2 and 10) and Experiment 3 (3 and 7), respectively, to show the data 

distribution. From Table 5.2, we see that the rarity (i.e., the percentage of the target class) ranges 

from 3.17% to 4.93%. From Table 5.3, we see that the rarity ranges from 5.42% to 31.60%. 
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Table 5.2. Dataset 1a 

 
 
Class 
ID Class Instances 

From Table 5.1 
Instances 
of the 
Target 
Class 

Percentage 
of Target 
Class 

Number of 
Experiments 
or Groups 

Number 
Of Time 
Points 

1 Golgi apparatus 4889 5 69 155 3.17% 
2 RNA binding 4889 5 69 158 3.23% 
3 Enzyme regulator 

activity 
4889 5 69 163 3.33% 

4 Signal transduction 4889 5 69 170 3.48% 
5 Carbohydrate 

metabolism 
4889 5 69 180 3.68% 

6 Molecular function 4889 5 69 181 3.70% 
7 DNA binding 4889 5 69 184 3.76% 
8 Amino acid and 

derivative 
metabolism 

4889 5 69 186 3.80% 

9 Oxidoreductase 
activity 

4889 5 69 188 3.85% 

10 Vacuole 4889 5 69 189 3.87% 
11 Cytoskeleton 4889 5 69 193 3.95% 
12 Morphogenesis 4889 5 69 199 4.07% 
13 Plasma membrane 4889 5 69 201 4.11% 
14 Cytoskeleton 

organization and 
biogenesis 

4889 5 69 204 4.17% 

15 Chromosome 4889 5 69 204 4.17% 
16 Lipid metabolism 4889 5 69 212 4.34% 
17 Nucleolus 4889 5 69 217 4.44% 
18 Ribosome 

biogenesis and 
assembly 

4889 5 69 230 4.70% 

19 Ribosome 4889 5 69 230 4.70% 
20 Mitochondrial 

envelope 
4889 5 69 241 4.93% 
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Figure 5.1. Dataset 1a (After Columnwise Z-Normalization). Blue hexagons denote target class. 

Figure 5.1 represents the z-normalized data for Experiment 2. The blue hexagons denote 

the class to be predicted, or the target class (i.e., for the class Ribosome biogenesis and 

assembly), and it is plotted against a time point (here, time point 10).  
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Table 5.3. Dataset 1b 

 
 
 
Class 
ID 

Class Instances 

From Table 5.1 

Instances 
of the 
Target 
Class 

Percentage 
of Target 
Class 

Number Of  
Experiments 
or Groups 

 Number  
of Time 
Points 

1 Endomembrane 
system 

4889 5 69 265 5.42% 

2 Cellular component 4889 5 69 270 5.52% 
3 Vesicle-mediated 

transport 
4889 5 69 286 5.85% 

4 Cell cycle 4889 5 69 293 5.99% 
5 Transcription 

regulator activity 
4889 5 69 299 6.12% 

6 Transporter activity 4889 5 69 299 6.12% 
7 Structural molecule 

activity 
4889 5 69 299 6.12% 

8 Endoplasmic 
reticulum 

4889 5 69 323 6.61% 

9 Transferase activity 4889 5 69 334 6.83% 
10 Response to stress 4889 5 69 391 8.00% 
11 Protein binding 4889 5 69 391 8.00% 
12 Hydrolase activity 4889 5 69 413 8.45% 
13 Membrane 4889 5 69 428 8.75% 
14 Protein biosynthesis 4889 5 69 429 8.77% 
15 RNA metabolism 4889 5 69 448 9.16% 
16 DNA metabolism 4889 5 69 461 9.43% 
17 Transcription 4889 5 69 480 9.82% 
18 Protein 

modification 
4889 5 69 507 10.37% 

19 Transport 4889 5 69 594 12.15% 
20 Organelle 

organization  
4889 5 69 641 13.11% 

21 Biological_process 4889 5 69 675 13.81% 
22 Mitochondrion 4889 5 69 759 15.52% 
23 Cytoplasm 4889 5 69 1536 31.42% 
24 Nucleus 4889 5 69 1545 31.60% 
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We observe from Figure 5.1 that the target class is extremely rare. From Table 5.2, we 

see that it is Class ID = 18 and has a 4.70% presence in the entire dataset. From Table 5.3, we  

Figure 5.2. Dataset 1b  (After Columnwise Z-Normalization). Blue hexagons denote target class. 
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see that the dataset has rare classes such as the Endomembrane system with 5.42% rarity while it 

has classes such as Nucleus which is in almost one-third (31.60%) of the data. 

           Figure 5.2 represents the z-normalized data for Experiment 3. The blue hexagons denote 

the class to be predicted (i.e., for the class Cytoplasm), and one time point in the Cytoplasm class 

(time point 7) is plotted against another time point (here, time point 3) in the same class. We 

observe from Figure 5.2 that the class to be predicted is not rare and that it is in over 30% of the 

total genes. 

5.2. Data Preprocessing 

The initial step before the time series are mined is to normalize them so that similar 

patterns can be effectively identified. In the raw data, there are usually large disparities in the 

expression level or the logarithmic ratio of red by green among the genes. For normalization, the 

bias (vertical shift) has been removed by subtracting the mean value of the time series per time 

point. Then, "rescaling" has been done by dividing the time series by their standard deviation, 

again per time point. The resulting time series before and after this normalization are depicted in 

Figure 5.1. The subtraction of the mean value, in conjunction with division by the standard 

deviation, is called z-normalization and is a necessary step for the identification of similar 

patterns. We divide the dataset into training data and test data in 2:1 ratio, respectively.  

5.3. Experimental Results 

The results of the three experiments using the two datasets (Table 5.2 and Table 5.3) are 

explained in the following sections. We show the results using our method. For a given p, we 

have the F-Measure and BER for all class labels in the dataset. We use the mean of the F-

Measures and BERs for all those classes for comparison. In all the figures, we have plotted the 

change in mean F-Measure and mean BER for the noise-blocked dataset when compared to the 
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entire normalized dataset; i.e., the baseline performance is that of a Naïve Bayes classifier using 

all the features. The term “mean” denotes the average over all the classes. For plotting, we have 

used the following measure: 

Mean F-Measure for noise-blocked data – Mean F-Measure for entire data 
Mean F-Measure for entire data 

 Similarly, we calculated the BER change as follows: 

Mean BER for noise-blocked data – Mean BER for entire data 
Mean BER for entire data 

 These measures are plotted it in Figures 5.3 and 5.4. 

We also see, for a fixed training-set size, to what extent different training-set class distributions 

affect classifier performance. We vary the training-set class distributions for all datasets as described in 

the following sections. 

5.3.1. Results for Our Method 

          The classification results for Dataset 1a are shown in Figure 5.3. The figure shows that the 

best classification result is obtained at the level of blocking 20% of the noise. Obviously, it 

results in an improvement of over 1.5% in the F-Measure, and the BER has also decreased. We 

can notice that the error rate slowly rises as we eliminate more instances as noise (as they are 

information), and at 60% blocking, we have the F-Measure decreasing and BER increasing, 

which denotes underperformance in classification. Hence, the optimal percentage of noise to be 

eliminated for this dataset is 20%. 

When we do classification on the Dataset 1b, we see that the best performance is when 

the percentage of noise eliminated is 40% (Figure 5.4). The improvement is because, at that level 

of blocking, we have more than a 3% increase in the F-Measure while the BER remains same. In 
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this algorithm, we increase p, the parameter that determines how many genes we want to 

eliminate per experiment, by increments of 10%; run the classifier; and record the result. 

 

Figure 5.3. Classification Results for Dataset 1a. 

 What we expect is that the F-Measure will first increase with an increasing p, until 

reaching a maximum, and will then drop. This drop can be attributed to the fact that, at that 

point, we are eliminating information needed to train the classifier instead of just redundant 

attributes. In this example, we see from p=60% that the error rate starts and the F-Measure starts 

to decrease. Hence, we can say that the classifier performs best at 40%, i.e., when 40% of the 

genes have been eliminated per experiment. 

5.4. Discussion 

We address the issue of finding and eliminating noise in time-series data to improve 

Bayesian classification using groups of attributes. Our algorithm performs feature reduction on 

two datasets by eliminating noise from the groups. For each group, we found that there is an  
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Figure 5.4. Classification Results for Dataset 1b.  
 

optimal noise-blocking level where the grouping by our algorithm outperforms the classification 

results performed on the entire feature set. The success of our algorithm could be attributed to 

the ability to identify and block the widely varying changes, which helped the Bayesian classifier 

[Rish et al. (2001)]. If we apply our algorithm in the unsupervised manner, we can block as much 

as 40% of the training data per group and, yet, achieve equal or better classification results. We 

see that, for unsupervised learning, it is not appropriate simply to choose the entire dataset for 

training even with a rare-class classification scenario. We have shown that we don’t need to use 

all the data to get good classification results. Also, we have shown a technique for using grouped 

data from different experiments for feature selection and classification. Especially in the 

biological domain, we believe that using groups of attributes in the feature-selection process may 

inspire new ways of modeling time-series learning.  
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CHAPTER SIX. CONCLUSION AND FUTURE WORK 

We described an algorithm to select genes using groups of attributes to optimize the 

classification performance for time-series data. We compared the performance of the Naïve 

Bayes method when applied to the entire dataset with that when applied to the noise-blocked 

dataset. We tried our experiments on two different datasets and found similar results. Our 

algorithm was based on a preprocessing technique of first-order difference which likely reduces 

the dependency between adjacent attributes. Our motivation for performing the preprocessing 

technique was to improve the classification performance by discarding redundant features called 

noise.  

Our results show that eliminating noise will likely enhance the classifier performance and 

that smaller subsets can be created. The smaller subsets are preferable as long as the BER does 

not increase significantly or the F-Measure does not fall much over 1%. In this research, we also 

provide insight about why one distribution might be better than another for training the classifier. 

We have also shown how combining different experiments (from different sources) can lead to 

affect learning. Our future work will focus on the following aspects:  

• Apply and improve more existing classification algorithms, besides the Naïve Baye,s to 

the results of our algorithm to see whether the classifier can be improved.  

• Try to get rid of parameter p, the percentage of genes to be eliminated from each 

experiment, in the algorithm. We can probably do that task by incorporating a search and 

finding the optimal value of p. 

• We can attempt to develop novel classification algorithms by integrating this concept of 

noise elimination into the process of learning. Something such as a classifier will pick 

only non-noisy examples to train itself. 
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• We can analyze the biological significance of noise (or the relevant attributes) for each 

experiment. 

 We can work on finding some other preprocessing techniques that may lead to even 

better results. Instead of taking successive differences, we can try measures such as standard 

deviation and can eliminate genes ranked on that basis. We can also use some intrinsic properties 

of the time series to come up with a metric for noise elimination. 
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