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ABSTRACT 
 

The Receptor for Advanced Glycation End products (RAGE) interacts with several 

classes of structurally unrelated ligands. The activation of RAGE by its ligands results in the 

cellular activation of several kinases and transcription factors including mitogen activated 

protein kinases (MAPKs) and nuclear factor kappa-light-chain-enhancer of activated B cells 

(NF-κB) resulting in sustained inflammation, which is involved in pathologies such as diabetes, 

cancer, Alzheimer’s disease, multiple sclerosis and other diseases associated with chronic 

inflammation. Current mouse models of human disease have shown that RAGE activity can be 

efficiently suppressed using either soluble RAGE (sRAGE) or anti-RAGE antibodies as 

inhibitors. Our goal was to generate new monoclonal antibodies against RAGE that can serve as 

diagnostic as wells as therapeutic tools in RAGE related pathologies.  

The chapters in this dissertation are a complete documentation of the development of 

these anti-RAGE antibodies. Additionally, an introductory review of antibodies, which includes 

structure and function, types of antibodies and production and basic understanding of RAGE and 

its ligands, has been provided to facilitate the understanding of the chapters. The first chapter 

details the development and characterization of anti-RAGE antibodies produced from 

hybridoma. The next chapter explores the effects of the generated antibodies to mammalian cells 

in in vitro settings and the final chapter applies the generated antibodies in vivo. 

During the course of this work, the antibodies developed showed binding to RAGE at 

nano-molar affinities which are comparable to the affinities of current antibodies used for 

therapeutic purposes, diagnostic and research purposes. We were also able to delineate that the 

possible mechanism of action of the antibodies is by preventing binding to RAGE. Lastly, we 

observed that one of the generated antibodies was able to reduce tumor growth in vivo in a 

melanoma xenograft mouse model. 
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INTRODUCTION/GENERAL OVERVIEW 

A Brief History of Antibodies 

 

The discovery of antibodies cannot be attributed to a single individual because the 

knowledge of antibodies has continued to evolve over time throughout history. Even before the 

activity of an antibody was demonstrated towards its antigen of interest, western civilization has 

indirectly relied on antibodies through vaccination of antigenic substances for therapeutic 

purposes as far back as the 1700’s [1]. Although Edward Jenner is highly regarded as the pioneer 

of immunization in the western world for demonstrating the vaccination of cow pox into healthy 

individuals, Lady Mary Wortley Montagu was the original crusader of the cause [1, 2]. 

Seventeenth and Eighteenth century Europe was plagued with a new epidemic, the small pox. It 

killed approximately half a million people per year [3] including Lady Montagu’s brother.   

In 1715, she was afflicted with a case of small pox but survived. Unfortunately, her 

revered beauty was severely marred because she lost her eyelashes and her face was riddled with 

pitted scars from the illness [4].  Two years later she accompanied her husband, a British 

ambassador to Turkey, where she observed the practices of the eastern people [4]. One of the 

practices she observed was the inoculation of the live small pox virus from a mild case of the 

disease into the veins of healthy individuals. She observed that the process prevented inoculated 

individuals from the deadly disease; therefore, she got her children inoculated [5].  

Upon her return to England, she promoted the procedure but was heavily criticized by the 

medical community because it was unconventional [6, 7]. To prove that it was safe, she made 

several convicted murderers and orphans undergo the procedure. The procedure was documented 

by Charles Maitland, a surgeon [2, 4, 8, 9].   When the outcome proved to be safe, several upper 

class citizens including members of the royal family underwent the procedure and it spread 

amongst the scientific population over the next few years [4, 9].  Many notable discoveries took 
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place after the popularization of vaccination as a preventative intervention in disease but 

scientists were still not certain of the mechanism of action involved in vaccination. 

Several decades later, diphtheria and tetanus became another leading cause of death 

especially amongst children [10]. In 1890, two physicians working in Robert Koch’s lab, Emil 

von Behring and Kitasato Shibasaburo, published several papers which demonstrated that the 

serum obtained from the blood of an animal, infected with a non-lethal form of both bacteria, 

could serve as an antitoxin for both diseases [10]. The first mankind application of the serum was 

on a boy suffering from diphtheria in 1891 [10]. Although favorable results were obtained from 

the treatment, there was no means of measuring the exact amount of the antitoxin needed for 

treatment.   

In the same year, Paul Ehrlich, another scientist under Koch’s supervision published a 

paper titled “Experimental studies on immunity”. In the conclusion of the article, he states that 

“if two substances give rise to two different antikörper, then they themselves must be different”. 

The term antikörper is the German word for antibody. This was the first time anyone ever used 

the term [11].  A few years later he established a standardization method for measuring the 

content of the antitoxins for diphtheria and tetanus. This critical process allowed for the mass 

production of a standardized serum [10, 12]. Ehrlich also proposed that side chains present on 

the cells, which we now know as receptors, can bind to toxins in a lock-and-key interaction and 

it is this interaction that leads to the generation of antibodies [13]. Together, all these findings 

gave grounds to the application of serum therapy as a prophylaxis and a treatment for both 

diphtheria and tetanus.  

Unfortunately, the use of the serum also resulted in a severe anaphylactic reaction [14].  

Behring proposed that the antitoxin effect was present in a particular protein fraction in the 
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serum.  He did further work on the serum by precipitating the protein fraction. This precipitated 

fraction reduced the side effects but did not completely eliminate them [14]. In the following 

years, a lot of work went into the isolation of antibodies from sera. In 1924, Lloyd B. Felton, a 

scientist at Harvard, was the first to announce the successful isolation of a white crystalline 

powder from the anti-sera of horses immunized with S. pneumonia [15]. He was able to 

demonstrate in mice that the powder was composed of similar therapeutic properties as 

compared to the anti-serum that generated it, without its usual side effects [15, 16]. 

Subsequently, Felton used the isolated white crystalline powder to treat human patients with 

pneumonia. It was observed that all the patients recovered from their infections without any of 

the side effects usually observed with the serum [16].  

After the first isolation of antibody from serum, several notable hypotheses and 

discoveries happened including John Marrack’s antigen-antibody binding theory. Marrack’s 

work focused on the interpretation of the reaction between antigen and antibody, specifically 

immunoprecipitation [17]. In his experiments, using diphtheria toxin and its antitoxin, he noted 

that increasing amounts of antigen resulted in an increase in the proportion of antibody found in 

the complexes [17]. He described the interaction between antigens and antibodies similar to that 

between molecules in a crystal lattice.  Marrack suggested that if the antibody, like the antigen, 

had more than one binding site, the antigen-antibody complexes would bind together in the form 

of a lattice [17, 18]. Many studies, in line with Marrack’s work, were confirmed by Michael 

Heidelberger and Frank Kendall between 1920 and 1940 [19-22].  

Another major contribution to the knowledge of antibodies took place in the 1940s, when 

Linus Pauling confirmed the lock-and-key theory which had been earlier proposed by Ehrlich in 

1897. Pauling was able to show that the interactions between antibodies and antigens depended 
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more on their shape than their chemical composition [23].  In 1948, Astrid Fagraeus was able to 

use her histological and tissue culture studies to show that antibodies were produced by B cells 

[24]. Her findings were subsequently corroborated in the article titled “Studies on antibody 

production. I. A method for the histochemical demonstration of specific antibody and its 

application to a study of the hyperimmune rabbit” published by Coon and his colleagues in 1955 

[25] .  

The next major development resulted in a Nobel Prize in physiology and medicine in 

1972 won by Gerald M. Edelman and Rodney R. Porter for their discoveries concerning the 

chemical structure of antibodies [26]. Rodney Porter was able to chemically split apart an 

antibody molecule. He was able to deduce that antibodies are made up of fragment antibody 

binding (Fab) and fragment crystalline (Fc) portions which gave them their Y-shaped structure. 

Around the same time, Edelman was also able to show that antibodies were composed of two 

types of polypeptide chains, referred to today as light and heavy chains [27]. He was also able to 

discern that the heavy and light chains were linked by disulfide bonds. Edelman went on to 

determine the complete amino acid sequence of the immunoglobulin which was a thirteen 

hundred amino acid sequence. This was considered a great feat as it was the longest amino acid 

sequence ever characterized at the time [26]. Their research work gave rise to many clinical 

applications of antibodies in the diagnostic field.  

Several significant efforts in the understanding of antibodies took place in the interim of 

immunoglobulin characterization between the 60s and the 70s. These included the discovery of 

other antibody isotypes such as immunoglobulin A (IgA), which were identified by Thomas 

Tomasi [28, 29], the identification of IgD by David S. Rowe and John L. Fahey [29] and the 

discovery of IgE by Kimishige Ishizaka and Teruko Ishizakathe [30].  As the knowledge of 
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antibodies expanded, so did their application in research, diagnosis and therapy. Unfortunately 

these accomplishments were also accompanied by several characteristics of polyclonal 

antibodies such as their heterogeneous property, their lack of consistency from batch to batch 

during production, purity issues [31] and side effects like fevers, itching, hives, rashes, joint pain 

and swollen lymph nodes that were observed when used as therapeutic agents [14].  

In 1975, Cesar Milstein and George Köhler were able to achieve what is perhaps 

regarded as the biggest landmark in the history of immunology, secondary to vaccination, the 

generation of the first monoclonal antibody [32].  Köhler and Milstein conducted independent 

studies on antibody production in a laboratory setting [33-35]. At the time, Milstein was able to 

successfully develop cancerous forms of antibody-producing cells that grew and multiplied 

forever. Unfortunately the antibodies produced from the cancerous cell line resulted in antibodies 

of unknown specificity [33]. Coincidentally, Kohler had successfully been able to generate 

normal antibody-producing cells to produce specific antibodies, but the antibody-producing cells 

were only able to survive for a few days in culture [35]. Together, they were able to fuse 

Kohler’s normal antibody-producing cells with Milstein’s tumor cells, which formed a hybrid 

that was both immortal and could create a specific antibody [34, 36, 37].  

At the time, the introduction of monoclonal antibodies to the scientific community 

proved to be immensely useful but scientists discovered that they were still unable to fulfill their 

inherent potentials as therapeutic intervention because of certain limitations. A major problem 

observed with the use of monoclonal antibody produced in rodents was that the generated 

antibodies were of rodent type and not human antibody [38]. Scientist observed that the 

difference between the two types of antibody was sufficient enough to invoke an immune 

response after the administration of multiple doses [38]. These immune responses were similar to 
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that observed in serum sickness. Additionally, rodent antibodies were not as effective as human 

antibodies in the activation of the immune system. Using recombinant technology, scientists 

were able to overcome these obstacles, by combining the genetic material from the rodent source 

with the genetic material from a human being [38]. However, there were still some reported 

cases of immunogenicity depending on the percentage of non-human genetic material used in the 

recombination of the chimeric antibody. This gave rise to the creation of fully human 

monoclonal antibody with the help of phage display technology in 1990 by McCafferty and 

colleagues. They were able to generate variable antibody domains using filamentous phage 

which could then be produced using a suitable expression organism [39].  

The quest for generation of full-sized monoclonal antibodies continued, and by the mid -

1990s transgenic mice were genetically engineered to generate full-sized human antibodies [40, 

41]. The use of recombinant technology and transgenic mice in the generation of monoclonal 

antibodies for therapeutic purposes has become standard and has been exploited by many 

commercial organizations to produce monoclonal antibodies in the treatment of diseases such as 

macular degeneration, multiple sclerosis, cardiovascular diseases, inflammatory diseases, 

transplant rejection, viral infection and cancer [42].  

Antibodies have consistently served as a major protector within living organisms from 

the harmful effect of microbes and/or toxins before mankind was aware of its vast potential. In 

the twenty first century, antibodies still continue to serve as one of the top selling bio-medical 

tools thanks to numerous important theories and discoveries that have expanded our current 

understanding of how antibodies work and how we can use them to our advantage. Together all 

these efforts have contributed irrefutably to our modern use of antibodies and continue to form 

the scientific basis of further antibody discoveries.  
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Structure and Function of Antibodies 

 

Antibodies are glycoprotein molecules generated by B lymphocytes to mediate a humoral 

immune response in the defense against extracellular microbes [43]. An antibody molecule 

belongs to the immunoglobulin (Ig) super family of cell surface molecules and soluble proteins 

[43]. An antibody typically consists of four different components, which are two heavy chains 

(50 kDa each) and two light chains (23 kDa each) [44, 45]. Structurally an antibody is composed 

of one heavy chain that is bound to a light chain and connected to the other heavy chain through 

a disulfide bound giving it a Y-shape configuration (Figure 1.1).  

Figure 1.1: Schematic representation of an antibody molecule. Image obtained from 

invitrogen.com [46]. 
 

 Antibodies are usually folded into several domains of three dimensional structures known 

as immunoglobulin domains. A heavy chain molecule typically has four or five domains which  

consist of one variable domain (V domain) and three to four constant domains (C domain).  A  

light chain has one V domain and one C domain [43]. The variable domains on the heavy (VH) 

and light chain (VL) typically have three complementarity determining regions (CDR1, CDR2 



8 

 

and CDR3), which are also known as hyper-variable regions. Out of the three regions, CDR3 has 

the highest amount of variability which is responsible for the specificity of an antibody towards 

its antigen of interest [43].  

  In 1959, R. R. Porter was able to separate IgGs, obtained from rabbit, into three 

fragments using papain from plant [47]. He discovered that two of the fragments were identical 

and still retained their ability to bind antigens. These identical units are now known as Fab 

fragment. Fabs are usually composed of the light chain of an antibody attached to the VH and 

first CH domain of the heavy chain molecule. The third fragment was shown to be able to 

perform effector functions and could also be crystallized [47].  This part of an antibody is 

referred to as the Fc portion. Therefore each immunoglobulin molecule consists of two antigen 

binding sites and one effector site. An antibody molecule also has a hinge region located between 

the Fab and Fc regions. The hinge region provides flexibility for each antigen binding site to 

move simultaneously and to allow independent binding on an antigen [43]. The flexibility 

provided by the hinge region of an antibody also allows the antigenic binding site to conform to 

a shape that can accommodate nearly any antigen. Therefore, antibodies are capable of binding a 

series of structurally different macromolecules [43].  

 The light chain of an antibody can either be expressed as a к or a λ chain. The difference 

between both types of light chain exists within the C domain but the chains do not differ in 

function [43]. Heavy chains can be expressed as five different types which are α, δ, ε, γ and µ. 

Each heavy chain can be expressed with any light chain which results into different classes of 

antibodies [43]. Human antibodies can be classified into five different classes based on the type 

of heavy chain expressed. The five classes of antibodies are IgA, IgD, IgE, IgG and IgM. These 
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classes of antibodies have different physical characteristics and therefore different physiological 

functions [48].  

 Mature B cells typically express membrane bound IgM and IgD. Stimulation of antigen 

specific clones of mature B lymphocytes by an antigen leads to expansion and differentiation of 

B cells into progenies that secrete the different classes of antibodies [43]. Figure 1.2 has a 

summary of different antibody classes, their corresponding heavy chain, physical characteristics 

and physiological functions. IgE, IgD and IgG are monomeric in nature and therefore have two 

binding sites [43]. IgA is a dimer and has four binding sites while IgM is expressed as a 

pentameric molecule and has ten binding sites. An increase in number of binding sites can 

increase the total strength of binding which is known as avidity [48]. It is important to note that 

increase in avidity is only possible when the epitopes to be recognized by the antibodies with 

multiple binding sites are identical and in close vicinity [48]. Antibodies recognize the portion of 

an antigen known as epitope or determinant. These epitopes can be recognized by an antibody 

based on the sequence of amino acids which could be a linear or “conformational” sequence 

[43]. The interactions between an antibody and its antigenic epitope are usually non-covalent, 

reversible interaction which consists of mainly electrostatic bonds in nature, although hydrogen 

bonds can also occur [48].  Typically, the interaction between an antigen and an antibody is 

measured in molar concentration as dissociation constant (KD). The KD or affinity measures the 

concentration of antigen necessary to bind to half the available antibodies present in a solution. 

Therefore a lower molar concentration translates to a higher affinity and a higher molar 

concentration means that the antibody has a low affinity for the antigen [43]. Antibodies 

affinities found in the immune system typically range from 10
-6

 to 10
-11

M [43]. 
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Figure 1.2: Summary of the characteristics of the different antibody classes (Iso-types). IgA has 

two different subtypes known as IgA1and IgA2a. IgG also has four different types IgG1, IgG2, 

IgG3 and IgG4. Image obtained from bioatlas.com and modified [49, 50]. 

 

 Typically, an antibody with a higher affinity has a more stable bond to its antigen of 

interest which allows for an efficient induction of the immune system but antibodies in the 

system with lower affinity also have crucial roles in the defense against pathogenic substances 

[48]. In 1968, Theis and Siskind detected persistence levels of low affinity antibodies within the 

immune system. They theorized that these low affinity antibodies may serve as a front line 

defense against foreign substances because they could bind to one site on the antigen, activate 

the complement system, dissociate quickly because of their low affinity and then subsequently 
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bind to a second site on the antigen, which could result in the amplification of the complement 

system [51].   

 Antibodies are capable of eliminating antigenic substances within an organism in a 

number of ways. Antibodies can offer protection by serving as neutralizing antibodies; they can 

bind to foreign substances and block the interaction between the receptor and toxins or viruses 

[43]. Furthermore, the interaction between cell surface receptors and the Fc portion of an 

antibody can enhance communication between the various cell types of the immune system to 

trigger several biological functions [43]. These include inflammation, B cell activation and 

enhanced engulfment of antibody-antigen complex by macrophages [43]. Although antibodies 

are not capable of direct destruction of antigenic substances, they can serve as markers on 

foreign molecules and tag them for destruction by phagocytic cells such as neutrophils and 

macrophages [43]. Additionally antibodies such as IgG and IgM can activate the complement 

system to phagocytose foreign substances and promote bacterial lysis [43]. Apart from activation 

of the complement system, interaction with a cell surface receptor to neutralize antigens, and 

activation of an effector cell, antibodies have also been involved in prenatal transfer to protect 

fetuses and regulate certain catabolic pathways [52-54].  

 The structural similarity and tremendous diversity between antibody molecules offer 

advantages to the humoral immune system as the major pathways for defense against microbes 

because B cells can produce antibodies in response to a variety of molecules regardless of their 

structural composition, size or type [43, 55].  

Methods of Antibody Production 
 

Antibodies have become an invaluable tool in the field of research, diagnosis, and 

therapeutics. Their ability to specifically bind target molecules, accessibility and adaptability to 
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several diagnostic and therapeutic applications has made them indispensable tools in the 

biomedical field. This section discusses the different techniques used in the production of 

antibodies and the types of antibodies that can be generated. 

Polyclonal Antibodies versus Monoclonal Antibodies; Factors to Consider 

 

 Polyclonal antibodies are the original products obtained from the serum of immunized 

animal. As indicated by its name, it is a mixture of thousands of different antibodies binding to 

several epitopes on an antigen [31]. Polyclonal antibodies typically have a large range of affinity 

for different epitopes on the antigenic molecule. In contrast, monoclonal antibodies are generated 

from a single type of immunoglobulin binding to a single epitope on the antigen used for 

immunization [31]. Therefore they are more selective as compared to polyclonal antibodies.  

There are several factors to consider in the generation of polyclonal versus monoclonal 

antibodies. The first should be based on the level of sensitivity toward the antigen of interest. 

The heterogeneous nature of polyclonal antibodies may reduce its ability to recognize minute 

amounts of antigenic material present on cells [56]. The second consideration is the supply of 

antibodies. The sera of immunized animals can contain large quantities of antibodies but the 

mixture of antibody generated can vary from one immunization to the next. Theoretically, 

hybridoma clones used in the generation of monoclonal antibodies are supposed to continuously 

produce antibodies indefinitely [56]. Unfortunately, this is not practically feasible because  

hybridoma clones typically end up over-grown with non-producing strains which eventually 

require cloning the antibody genes into a new expressing system that is time consuming and 

costly. The next factor to consider is ethical concerns surrounding the use of animals as there are 

many strict regulations in the use of animals. Initial immunization is required for both 

monoclonal and polyclonal antibodies although some recombinant procedures have greatly 
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reduced or totally eliminated the need for animals [56]. The fourth factor to consider is time. 

Typically, the generation of either a polyclonal or monoclonal antibody is time consuming 

without the guarantee of success. The fifth factor to consider is cost of production technique. 

Regardless of monoclonal or polyclonal antibody generation, the type of production method used 

and the antibody yield can vary greatly especially with the development of bioreactor for 

mammalian and bacterial cells [56]. Finally, patents can limit the use of certain techniques as 

there are many legal issues to consider. 

Regardless of the source of antibody, the final products are typically extremely useful 

because they can easily be transformed to suit many biotechnological applications for research, 

diagnostic and therapeutic needs, they are stable and can be stored in solution, frozen or 

lyophilized [56].  

Generation of Polyclonal Antibodies 

Polyclonal antibodies have continued to be an invaluable tool even with the introduction 

of monoclonal antibodies by Kohler and Milstein in 1975[33]. Polyclonal antibodies are 

important research tools used in virtually all areas in science to identify and quantify 

macromolecules and decipher the interaction between two molecules [31]. The heterogeneity of 

polyclonal antibodies makes their application non-specific; however, affinity purification of 

polyclonal antibodies using short peptide antigens that represent a specific epitope has resulted in 

the generation of mono-specific polyclonal affinity [56]. 

Polyclonal antibodies can be produced in virtually any animal that has an immune 

system. So far they have been raised in rabbits, rats, mice, hamsters, guinea pigs, goats, sheeps, 

cattle, horses, emus and chickens [56-58]. Choosing a host is typically dependent on the quantity 

of material needed for intended use. Therefore, the larger the quantity of antibody needed, the 
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larger the animal used in the immunization and vice versa [56]. Secondary to quantity needed, 

the type of immunogen used in the generation of antibodies is also a determinant factor. Certain 

antigenic substances can produce different immunogenicity. Large molecules >6 kDa will 

typically result in an immunogenic response. Smaller molecules can also give an immunogenic 

response but they typically have to be tagged onto carrier molecules such as keyhole limpet 

hemocyanin (KLC), bovine serum albumin (BSA), or ovalbumin. Conjugation of smaller-sized 

molecules to these proteins increase the size of the immunogen and presents to T-cells the 

necessary epitope to provide successful immune response [56]. 

The origin of antigen might also hinder proper immune response. Certain antigenic 

substances might not produce an immune response because of recognition by the immune system 

as self-antigen. Successful immune response can be achieved by using the immune system of a 

phylogenetically divergent species in relation to the source of antigenic substance. For example, 

the immune system of a chicken can be used with an antigenic substance obtained from 

mammals [56]. Unfortunately, it is impossible to predict the immunogenic response of an 

antigenic substance prior to immunization of the host. A researcher has to typically rely on 

previously published experimental data available to estimate the extent of immunogenicity [56]. 

The immunization procedure starts with primary injection of antigenic substance with 

complete adjuvant. An adjuvant is normally used to non-specifically stimulate the immune 

system, recruit antigen presenting cells, and preserve the half-life of the antigen. Some common 

adjuvants that are used are Freud’s adjuvant, precipitated aluminum hydroxide, hunter’s titer 

max, ribi adjuvant system, and GERBU adjuvant system [56]. After primary immunization, a 

rest period follows to allow the primary immune response and the memory cells to form. 

Typically, the immune response of the animal is determined by test bleeding the immunized 
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animals and performing serological tests. After the rest period, one or more booster injections of 

antigen is followed with incomplete adjuvant and serum is collected 10-14 days after last booster 

injection [56]. The route of injection can also depend on the amount of antigen and formulation. 

Certain routes are sometimes chosen to improve delivery of antigen to antigen presenting cells in 

specific sites in the animal. For example, immunization can take place orally to produce gut-

associated antibody or nasal immunization to stimulate secretory IgA. For bigger animals like 

rabbits and goats, the subcutaneous route is usually preferred. Small rodents like mice and rats 

are usually injected with antigen via the intraperitoneal route. Other routes of delivery have also 

been used but usually present some disadvantages. For instance, intramuscular and intradermal 

administration usually slows down exposure of immunogen to the immune system while 

intravenous administration allows for fast metabolism of antigenic substance [56]. 

The most important consideration in the use of animals for the production of antibodies is 

perhaps the expertise of handlers. Proper care needs to be provided when handling animals 

which typically require experience and patience from trained individuals to ensure proper 

treatment of animals [56]. 

Generation of Monoclonal Antibodies 

 

In many ways the production of monoclonal antibodies starts in a similar fashion as that 

of polyclonal antibodies. Like polyclonal antibodies, the generation of monoclonal antibodies 

starts with immunization of the animals to generate the proper immune response. Activation of 

the immune response typically results in the production of a pool of antibodies by many different 

B cells [31]. This pool of antibodies is composed of monoclonal antibodies and can be subjected 

to affinity purification to obtain mono-specific antibodies (Figure 1.3).  



16 

 

The discovery of hydridoma technology in 1975 allowed for the continuous production of 

the same antibody from a single B-cell clone. During this process, the animal is immunized in 

the same fashion that was described when generating polyclonal antibodies. Subsequently after 

the final boost with antigen, the spleen of the animal is isolated under standard protocols and B 

lymphocytes are isolated. Isolated lymphocytes are fused with myeloma cells that do not secrete 

immunoglobulin and are lacking the enzyme hypoxanthine guanine phosphoribosyl transferase 

(HGPRT) [56, 59, 60]. The most popular fusion agent used is polyethylene glycol (PEG). The 

chemical combination of both cells results in the combination of DNA of both cells. After the 

hybridization process, a mixture of unfused myeloma cells, unfused spleen cells and hybrid cells 

will remain in the culture. It is important to select for only hydrid cells during the process [56, 

60]. Typically the unfused spleen cells will eventually die but the unfused myeloma cells, if left 

in the culture, will eventually outgrow the hybrid cells. Spleen cells possess the enzyme 

(HGPRT) which is usually lacking in myeloma cells. Therefore the culture medium is 

supplemented with hypoxanthine, amphoterin and thymidine (HAT) [56]. Amphoterin leads to 

cell death by blocking the pathway of nucleic acid synthesis. The addition of hypoxanthine and 

thymidine allows the growth of cells possessing the enzyme, HGPRT, which uses a different 

salvage pathway for the synthesis of nucleic acid. Therefore culturing the fusion products in 

media containing HAT will eventually lead to cell death for unfused myeloma cells while fused 

cells will survive [59, 61].  

During the next phase, hybridoma cells producing monoclonal antibodies with desired 

specificity are screened. The typical screening test used is an ELISA procedure [56]. After 

screening for positive cells, the cells are subjected to cloning to ensure that each hybrid is 

monoclonal in nature. The most popular method used in cloning is limited dilution in either a 
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liquid or semi-solid phase such as agar to eventually achieve one cell per well [56]. After 

obtaining monoclonal clones, cells are cultured and subsequently frozen and stored for 

preservation. To produce monoclonal antibodies, individual clones are cultured using growth 

medium, appropriate growth temperature and humidity, in the appropriate cell culture 

compartments. Successful growth has been achieved using batch tissue culture flask, semi-

permeable membrane based-systems, and bioreactor. During cell growth, the monoclonal 

antibodies are secreted by hybridoma cells into the supernatant which is then harvested and 

purified [59, 60].  

In vivo production of ascites containing very large quantities of antibodies have been 

used for the generation of monoclonal antibodies in certain situations when hybridoma cells do 

not adapt well in vitro conditions. Antibody generation using ascites obtained from animals 

provides large quantities in a short amount of time which makes it relatively more economical 

than in vitro methods [62, 63]. However, the use of animals for this purpose is tightly regulated; 

therefore, researchers must provide evidence that the in vitro method used has failed to produce 

sufficient antibodies before approval can be granted for in vivo production. Another disadvantage 

to using in vivo production of antibodies in animals is possible contamination of monoclonal 

antibodies with other non-specific mouse antibodies. Antibodies obtained from the ascites fluid 

may also be contaminated with viruses and bacteria from the mouse [62, 63].  

Scientists have also taken advantage of modern technology and have discovered other 

ways to produce monoclonal antibodies. These include phage display and the use of transgenic 

mice. Phage display using recombinant technology has allowed for the construction of smaller 

antibody fragments like Fab or single chain variable fragment (scFv) in E.coli [65]. Typically the 
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DNA encoding for the heavy and light chain regions are amplified from the cDNA obtained from 

the mRNA of the spleen of mice immunized with the immunogenic substance. The DNA is the 

inserted into a phagemid genome which displays the proteins on its phage coat [66]. The  

 

immunogenic substance is introduced to the displayed protein on the phage coat and allowed to  

bind Phages that bind to the immunogenic material with desired affinity are selected by a 

screening process [67].  

Figure 1.3: Schematic representation of production of polyclonal and monoclonal antibodies. 

Image obtained from www.wiley.com/legacy/products/subject/life/elgert/CH04.pdf [64]. 

 

Apart from the obvious advantage of not using animals in the production of antibodies, 

the use of phage display to generate monoclonal antibodies of smaller fragments include certain 

desired pharmacokinetic properties and, reduced immunogenicity. Smaller antibody fragments 

can also be used in the generation of immunotoxins and gene therapy vectors [56]. However this 

method also has certain limitations which include time consumption and lack of efficiency as 

only a relatively small amount of antibodies with desired specificity are typically generated 

against immunogenic compound. Additionally, the amplification of heavy and light chain genes, 
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cloning of genes into vector, the number of transformed cells and the difficult expression of 

antibody fragments in bacteria can compound existing problems in the proper yield of antibody . 

Each method used in the generation of antibodies has several advantages and 

disadvantages. Although all the methods are well established, researchers have continued to fine-

tune the process to be less time-consuming, cost effective and accessible so that optimal yield 

can be attained with the use of each system. 

Current Therapeutic Antibodies 

 

For many decades, antibodies have been used for several biotechnological purposes in 

research, but their greatest potential as the magic bullet  lies in the field of therapeutics. In 1986, 

The Food and Drug Administration (FDA) approved the first monoclonal antibody called 

muromomab [68]. Muromomab is a murine antibody approved for steroid-resistant solid organ 

transplant recipient [68]. Since then, there has been 28 more FDA approved therapeutic 

antibodies (Table 1.1) [69]. These antibodies have been approved for use in treatment of diseases 

such as cardiovascular disorders, cancers, asthma, arthritis, psoriasis, Crohn's disease, 

autoimmune disorders and transplant rejection [69].  

The use of monoclonal antibodies in particular has garnered tremendous excitement and 

attention because of the continuous increase in available antigenic targets, the ability to 

specifically target these antigens and the advances in molecular engineering that has led to the 

optimization of producing a variety of monoclonal antibodies [69]. These advances have resulted 

in the generation of chimeric, humanized and fully human antibodies that have significantly 

lower immunogenicity [70]. Additionally, technological advances such as generation of antibody 

libraries with mutations within the variable regions by error-prone PCR, E. coli mutator strains, 
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and site-specific mutagenesis, chain-shuffling, randomization of complementarity determining 

regions have also resulted in the increase in affinity between antibodies and antigens [71, 72].  

In certain scenarios, monoclonal antibodies have been used to deliver cytotoxic agents to 

specific targets [73]. Apart from delivery of therapeutic agent, antibodies have also been used as 

hyper-immune antibody preparations [74]. These preparations are typically obtained from donors 

with an elevated titer of a specific antibody obtained as a result of either natural infection or 

vaccination. These antibodies are typically used for prophylactic purposes [74]. 

From an economic stand point, monoclonal antibodies form the largest group of biologics 

under development [75]. In 2007, the eight biggest selling biological therapeutic agents were all 

antibodies [75]. The increase in development, use and sales of monoclonal antibodies for 

therapeutics purposes is in part due to the major advances in technology, safety and efficacy 

established since the introduction of the very first therapeutic monoclonal antibody [75]. 
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Table 1.1: Current FDA approved therapeutic monoclonal antibodies. The table shows a list of 

all monoclonal antibodies approved as of Feburaary 13, 2013. Other monoclonal antibodies 

approved but not on the list include Pfizer’s Mylotarg (gemtuzumab ozogamicin) which was 

approved by the FDA in 2000 for acute myelogenous leukemia, but in 2010 Pfizer discontinued 

its commercial availability in the US and voluntarily withdrew the NDA and Genentech’s and 

Merck’s Raptiva (efalizumab) which was approved by the FDA in 2003 for psoriasis, but in 2009 

it was voluntarily withdrawn from the market. The contents of this table are a modified version 

obtained from a [69] published article by Dimitrov and Marks, 2009 [69]. 
 

Trade Name 
Generic 

Name 
Target Type 

Year of 

approval  

Therapeutic 

indications  

 

Orthoclone 

OKT3® 

Muromonab-

DC3 
CD3 murine 1986 Transplantation rejection 

ReoPro® abciximab GPIIb/IIIa chimeric 1994 High risk angioplasty 

Rituxan® rituximab CD20 chimeric 1997 

Non-Hodgkin’s 

lymphoma 

Chronic lymphocytic 

leukemia 

Rheumatoid arthritis 

Zenapax® daclizumab CD25 humanized 1997 Transplantation rejection 

Herceptin® trastuzumab HER-2 humanized 1998 

Breast cancer 

Metastatic gastric or 

gastro-esophageal 

junction adenocarcinoma 

Remicade® infliximab TNFα chimeric 1998 

Crohn’s disease 

Ulcerative colitis 

Rheumatoid arthritis 

Ankylosing spondylitis 

Psoriatic arthritis 

Plaque psoriasis 

Simulect® basiliximab CD25 chimeric 1998 Transplantation rejection 

Synagis® palivizumab 
RSV F 

protein 
humanized 1998 

Respiratory syncytial 

virus 

Campath® alemtuzumab CD52 humanized 2001 
B-cell chronic 

lymphocytic leukemia 

Humira® adalimumab TNFα human 2002 

Rheumatoid arthritis 

Juvenile idiopathic 

arthritis 

Psoriatic arthritis 

Ankylosing spondylitis 

Crohn’s disease 

Plaque psoriasis 
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Table 1.1: Current FDA approved therapeutic monoclonal antibodies (continued). 

Trade 

Name 

Generic 

Name 
Target Type 

Year of 

approval  

Therapeutic indications  

 

Zevalin® 
ibritumomab 

tiuxetan 
CD20   2002 Non-Hodgkin’s lymphoma 

Bexxar® 

Tositumomab 

and iodine 

131 

tositumomab 

CD20 murine 2003 Non-Hodgkin’s lymphoma 

Xolair® omalizumab IgE humanized 2003 Asthma 

Avastin® bevacizumab VEGF humanized 2003 

Metastatic colorectal cancer 

Non-small cell lung cancer 

Metastatic breast cancer 

Glioblastoma multiforme 

Metastatic renal cell 

carcinoma 

Erbitux® cetuximab EGFR chimeric 2004 
Head and neck cancer 

Colorectal cancer 

Tysabri® natalizumab VLA-4 humanized 2004 

Multiple sclerosis 

(relapsing) 

Crohn’s disease 

Lucentis® ranibizumab VEGF-A 

humanized 

antibody 

fragment 

2006 

Neovascular (wet) age-

related macular 

degeneration 

Macular edema following 

retinal vein occlusion 

Vectibix® panitumumab EGFR human 2006 

Metastatic colorectal 

carcinoma 

 

Soliris® eculizumab 
Complement 

C5 
humanized 2007 

Paroxysmal nocturnal 

hemoglobinuria 

Cimzia® 
certolizumab 

pegol 
TNFa 

humanized 

antibody 

fragment 

2008 
Crohn’s disease 

Rheumatoid arthritis 

Arzerra® ofatumumab CD20 human 2009 
Chronic lymphocytic 

leukemia 

Ilaris® canakinumab IL-1ß human 2009 

Cryopyrin-associated 

periodic syndromes, 

including familial cold 

autoinflammatory 

syndrome and Muckle-

Wells syndrome 
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Table 1.1: Current FDA approved therapeutic monoclonal antibodies (continued). 

Trade 

Name 

Generic 

Name 
Target Type 

Year of 

approval  

Therapeutic 

indications  

 

Simponi® golimumab TNFa human 2009 

Rheumatoid arthritis  

Psoriatic arthritis 

Ankylosing 

spondylitis 

Stelara® ustekinumab 

IL-12  

IL-23 

human 2009 Plaque psoriasis 

Actemra® tocilizumab IL-6 humanized 2010 Rheumatoid arthritis 

Prolia® 

Xgeva® 

denosumab RANKL human 2010 

Postmenopausal 

osteoporosis 

Prevention of SREs in 

patients with bone 

metastases from solid 

tumours 

Benlysta® belimumab BLyS human 2011 
Systemic lupus 

erythematosus (SLE) 

Vervoy® ipilimumab CTLA-4 human 2011 Melanoma 

Adcetris® brentuximab 

CD30 

(conjugate of 

Mab and 

MMAE) 

Chimeric 

ADC 

(antibody 

drug 

conjugate) 

2011 

Hodgkin lymphoma 

(HL), systemic 

anaplastic large cell 

lymphoma (ALCL) 

Receptor for Advanced Glycation End-Product (RAGE) 
 

RAGE is involved in various diseases such as diabetes, cancer, Alzheimer’s disease, 

multiple sclerosis, and other abnormal pathological conditions associated with chronic 

inflammation [77]. RAGE is a cell surface trans-membrane protein encoded by chromosome 6 at 

the major histocompatibility locus (MHC) class II/III junction [78]. It is classified as a member 

of the immunoglobulin superfamily because its extracellular region has an immunoglobulin-like 

fold which consists of a variable type domain commonly known as the V domain, and two 

constant type domains known as C1 and C2 domain [77] (Figure 1.3). The V domain which 

serves as the predominant ligand binding site possesses two N-glycosylation sites which have 

been shown to assist in proper ligand-receptor interaction [79]. In addition to the extracellular 
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domain, RAGE also consists of a trans-membrane domain and a cytoplasmic tail necessary for 

intracellular signal transduction [77].  

RAGE can also be expressed as soluble RAGE (Figure 1.4). This form of the receptor 

can either be generated by proteolytic cleavage of the membrane bound receptor [80] or by 

alternative splicing of the mRNA which results in the production of various isoforms of the 

receptor secreted from cells [81]. These are also referred to as endogenous secretory RAGE 

(esRAGE). Currently, five human variants of soluble RAGE have been found in different tissues 

[81, 82]. Recent studies have described the potential for sRAGE to be used as biomarker for 

RAGE related pathologies because it is secreted into the extracellular milieu [83-86].  

 

Figure 1.4: Representation of various isoforms of RAGE. Full-length RAGE, esRAGE (sRAGE), 

and N-terminally truncated RAGE are shown from top to bottom respectively. The signal 

sequence, variable domain, constant domain, transmembrane-spanning region, and cytoplasmic 

domain are represented by boxes colored red, yellow, blue, black, and white, respectively [76]. 

 

Unfortunately, the use of sRAGE as a biomarker is surrounded by several controversies 

because most studies that have compared the levels of sRAGE in a disease state versus 

homeostasis did not report total sRAGE [85]. Additionally, levels of sRAGE can vary based on 
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administration of certain medication.  Administration of angiotensin II type 1 receptor blocker 

(telmisartan) showed a decrease in the levels of sRAGE in patients with hypertension [87] while 

administration of an angiotensin-converting enzyme inhibitor (perindopril) increased sRAGE 

levels [88]. Additionally, administration of a statin (atorvastatin) in hypercholesterolemic 

subjects [89] and rosiglitazone, used in the treatment of type 2 diabetes, resulted in an increase in 

sRAGE levels [90]. As a result of these confounding factors, the use of sRAGE to evaluate 

disease progression and monitor effectiveness of therapeutic aid needs to be carefully evaluated. 

Depending on the type of cell and environment, engagement of RAGE by it ligand 

typically results in the activation of multiple downstream signaling events such as p38 mitogen-

activated protein (MAP) kinase pathways, stress-activated protein kinase/c-Jun-NH2-terminal 

kinase (SAPK/JNK), extracellular signal-regulated kinase 1/2 (ERK1/2) [91], and the Wnt 

signaling pathway [92]. Activation of some of these pathways has been shown to result in the 

activation of signal transducers and activators of transcription family (STAT3) and transcription 

factors such as nuclear factor (NF-κB) and cAMP response element-binding (CREB) protein 

[93]. Many of these pathways have been implicated in the progression of inflammation [77]. 

Although the full mechanism of activation of downstream signaling in RAGE/ligand 

interaction is still not clearly understood, because of the structural diversity in ligands, 

researchers have found RAGE to be present in many cells of the immune system. These 

inflammatory responses have been observed subsequently after interaction with its ligands [94]. 

Additionally, RAGE has an NF-κB binding site in its promoter which makes RAGE a direct 

target gene of NF-κB signaling and has been implicated in the generation of RAGE ligands such 

as AGE and S100B [95]. Thus, accumulation of RAGE ligand in an area results in the up-
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regulation of the receptor itself. The continuous expression of receptor and generation of ligands 

enables a cycle of sustained inflammation that is deleterious for cells.  

RAGE has been shown to be highly expressed during embryonic development but down-

regulated in normal healthy adults. The exception is the lung where RAGE is expressed at high 

levels throughout life [96]. A survey of the distribution of RAGE in tissue by Brett and 

colleagues in 1993 using monoclonal and polyclonal antibodies toward the receptor, showed that 

RAGE is also present in pheochromocytes, mononuclear cells, mesangial cells, vascular smooth 

muscle cells and endothelial cells [97]. They also observed significant amounts of the receptor in 

the skeletal muscles, lung, heart, liver, uterus, and brain [97]. The presence of the receptor in 

multiple types of tissue could explain why RAGE has been implicated in the progression of 

several pathologies such as Alzheimer’s, cardiovascular disorders, cancers, and many chronic 

inflammatory diseases.  

 RAGE was initially found to bind to adducts modified by non-enzymatic glycosylation 

occurring on proteins and lipids. These are known as advanced glycation end-products (AGE), 

hence the name of the receptor. The presence of immunoglobulin domains in the receptor led to 

the hypothesis that it might bind to other ligands apart from AGEs, as other members of the 

immunoglobulin superfamily exhibit this characteristic [98]. Subsequent studies discovered the 

expression of the receptor in conditions not associated with the presence of AGE. These studies 

implicated RAGE as a receptor modulating various pathophysiological dysfunctions upon 

interaction with several ligands of structural diversity [99-101]. The ability of RAGE to 

recognize a varied selection of ligands has led to the hypothesis that it is a pattern-recognition 

receptor, which suggests that its interaction with the various ligands depends upon recognition of 

three dimensional structures rather than peptide sequences. Another hypothesis regarding RAGE 
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and its many ligands has been linked to the large number of positively charged residues present 

on the surface of the receptor. Researchers have hypothesized that these positive charges form 

electrostatic interactions with macromolecules possessing an equal amount of negative charges 

[102]. Currently RAGE is known to recognize a wide range of endogenous ligands, such as 

amphoterin also known as high mobility group box 1 [91], oxidized low density lipoproteins, 

macrophage 1 antigen (Mac-1) [103], amyloid aggregates and fibrils [104], and S100 proteins 

[105]. The next section discusses the different ligands that have been shown to interact with 

RAGE. 

Ligands Associated with RAGE 

 

Advanced Glycation End-Product (AGE) 

 

AGEs have been implicated in chronic hyperglycemia and long-term diabetic 

complications long before RAGE was discovered [106-109]. AGE products are complex and 

heterogeneous in nature. Formation of AGEs is initiated by the association of a sugar molecule, 

particularly a reducing sugar like fructose or glucose, with the free amino groups of proteins, 

lipids, and nucleic acids. A series of subsequent reactions like dehydrations, oxidation-reduction 

reactions, and other arrangements, in a number of weeks or months, leads to the irreversible 

formation of AGEs [110]. This process is known as a maillard reaction. Typically, the formation 

of AGE products is catalyzed by transition metals but can also be inhibited by certain reducing 

compounds like ascorbate [111]. 

The excessive accumulation of AGEs has been shown to alter many physiologic 

functions like enzyme activity, binding of regulatory molecules, cross-linking of proteins, 

macromolecular recognition, and endocytosis [112-115]. Studies have shown that the interaction 

between AGEs and RAGE on the endothelium perturbs endothelial homeostasis by causing 
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abnormalities in the expression of pro-coagulant tissue factors, and by increasing cell adhesion 

molecules expression,  vascular permeability,  and transport of macromolecules across the 

monolayer [116-119]. This inability of endothelial cells to regulate the passage of small 

molecules and in some cases larger molecules is an early indicator of diabetic complications. 

Additionally, the interaction between AGEs and RAGE generates oxidative stress in various 

types of cells and subsequently induces macrophage and platelet activation, thrombosis, and 

vascular inflammation which are key players in the development and progression of vascular 

complications in diabetes [120].  

According to the Diabetes Control and Complications Trial (DCCT), intensive control of 

blood glucose levels can only assist in slowing down progressive complications such as 

retinopathy, diabetic nerve disease, and diabetic kidney disease [121].  Unfortunately, the 

proposed therapy includes multiple visits to health care professionals thereby doubling the cost 

of managing the disease. Additionally, these intensive interventions increase the risk in 

hypoglycemia which could further complicate patients’ health [121]. Consequently, the need for 

novel therapeutic agents to prevent diabetic vascular complications is paramount.  

Apart from diabetic complications, AGE products have also been implicated in end stage 

renal disease [122], rheumatoid arthritis [123] and Alzheimer’s [124]. Histological analyses have 

also shown accumulation of AGE products in the renal cortex, coronary atheroma, mesagium, 

cardiac muscles, liver and lung [120, 125].  AGE products can also accumulate within the body 

through exogenous sources such as food subjected to heat and many tobacco products [126, 127]. 

Many efforts have been made towards therapeutic interventions to target AGE products. 

These include the reduction of cross-link formation of AGE [120], enhanced cellular degradation 

of AGEs and subsequent uptake for clearance to prevent accumulation [128], quenching 
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hydroxyl radicals with the use of antioxidants such as aminoguanidine [129], vitamin C [130] 

and nicarnitine [131]. However, the heterogeneous nature of AGE products poses a substantial 

problem because the complex reaction involved in the formation of these products has not yet 

been completely elucidated. Additionally, the use of aminoguanidine in a phase three clinical 

trial showed the development of pernicious anemia, development of anti-nuclear antibodies, and 

crescentic glomerulonephritis [132]. Another area that has recently been explored is the use of 

antibodies that can target the receptor for AGE. Neutralizing antibodies will inhibit the 

interaction between AGE and RAGE and thus prevent AGE dependent intracellular signaling 

[133]. The use of a neutralizing antibody against the receptor that interacts with AGE could serve 

as a good candidate for therapeutic interventions in RAGE/AGE related pathologies. 

S100 Proteins 

 

Many scientific studies have shown compelling evidence associating the S100 family of 

proteins with various pathologies including cancers, cardiomyopathy, neurodegeneration, and 

inflammation [101, 134-136]. The S100 proteins are named as such because the first member of 

the family that was discovered is 100% soluble in ammonium sulfate at neutral pH [137]. So far, 

there are 21 members in the S100 family [138]. S100 proteins are typically small molecular 

weight calcium binding proteins that are expressed only in vertebrates. The calcium binding 

domains are connected by a hinge region [139] and are critical for conformational changes that 

result in the exposure of binding sites on the protein. Certain members of the family also bind to 

other metals such as copper and zinc [140]. S100 proteins can also form monomers, heterodimers 

and oligomers [105].  

S100 proteins are involved in a variety of normal physiological functions such as cell 

cycle progression and regulation, cell differentiation, signal transduction, protein 
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phosphorylation, cell motility regulation, calcium homeostasis, cell growth and migration, 

cytoskeletal interactions, and membrane trafficking [138]. Clustering of many S100 genes has 

been found in the chromosome (1q21) region, which is susceptible to rearrangements, linking 

S100 proteins to cancer [141]. For the most part, S100 proteins share a close amino acid 

sequence which allows several members of the family to bind to the same proteins but exhibit 

different cellular activities [138, 142, 143]. Therefore, depending on the type of cancer, some 

members in the family are tumor suppressors while some act as tumor promoters [143].  

In clinical settings, S100 proteins have been used to monitor diseases like chronic 

inflammation, neurodegeneration, cardiomyopathies, atherosclerosis, and cancers [144]. A 

significant difference in expression levels  of S100A8, S100A9 and S100A12 was observed in 

healthy patients as compared to patients with inflammatory diseases such as rheumatoid arthritis, 

peritonitis, and bowel diseases [143]. In 1998, Rabee and colleagues were able to show high a 

concentration of S100B protein in patients after a traumatic brain injury [145]. Subsequently, 

many researchers discovered an increase in S100B and S100A6 concentrations in neurological 

pathologies such as Alzheimer’s disease, Down syndrome and schizophrenia [134, 138, 142, 

146]. Researchers have discovered that many of these S100 driven processes are mediated by the 

interaction with RAGE [101, 147, 148]. Interaction between RAGE and S100 proteins can 

differentially modulate cellular activities which can either result to cellular apoptosis or 

increased cellular proliferation, depending on the type and concentration of the S100 protein, via 

downstream signaling pathways [149]. Inhibition of activation of signaling pathways, by 

blocking the binding site of S100 proteins on its extracellular receptor, will reduce deleterious 

cellular activities associated with S100 protein/RAGE interactions. 
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Beta Amyloid Peptides 

 

Although Alzheimer’s disease (AD) is not completely understood, the molecular events 

involved in Alzheimer’s disease include the cleavage of the amyloid precursor proteins (APP) by 

the secretase enzymes.  The extracellular domain of APP, which is normally expressed in many 

tissue types but is more prevalent in the brain [150], is cleaved by β-secretase (β-site amyloid 

precursor protein cleaving enzyme, BACE1) producing an APP C-terminal fragment (APPs β). 

APPs β is further cleaved within the trans-membrane domain by γ-secretase, resulting in the 

release of β-amyloid (Aβ) peptides [151-154]. The continuous accumulation of Aβ in the brain is 

a central pathological event in Alzheimer’s disease.  

Aβ can bind to RAGE present on neurons, astrocytes, microglia and cells of the blood-

brain barrier like endothelial and smooth muscle cells resulting in increased expression of the 

receptor as well as increased transport of Aβ across the blood brain barrier in a RAGE-dependent 

manner. Additionally, the central nervous system (CNS) employs microglia cells in its defense 

against infectious entities.  The deposition of extracellular Aβ in the brain results in the 

recruitment of activated microglia which serves as mediator for neuro-inflammation. Microglia 

can secrete several pro-inflammatory cytokines such as interleukin (IL)-1β, M-CSF, macrophage 

inflammatory protein (MIP)-1α, IL-6, and nitric oxide (NO) [155, 156]. Also, the interaction 

between Aβ and RAGE on microglia has been shown to result in the eventual induction of NF-

кB, as a result of generation of oxidative stress [100, 157-159].  

A combination of these events leads to the progressive decline of brain cells associated 

with AD. There are several existing drug therapies available for the treatment of AD; 

unfortunately, the blood brain barrier (BBB) efficiently and effectively controls the passage of 

substance to and from the brain. Current therapies available in the treatment of AD facilitate the 
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transport of drugs across the BBB by employing the use of transporters, pumps or receptors 

present on the brain endothelium. However, these strategies have shown limited success in 

delivering the drugs into the brain [160]. The use of anti-RAGE antibody has been shown to 

block the binding sites on RAGE on the surface of endothelial cells [161],  preventing the access 

of Aβ to RAGE which would decrease the amount of total Aβ uptake in the brain and generation 

of inflammatory cytokines such as TNFα [100].  

Antibodies generated against RAGE could be proteolytically processed to Fab Fragments 

which could pass through the leaky BBB that is characteristic of AD. These antibody fragments 

could also be used to monitor levels of RAGE relating to different stages in AD. Early diagnosis 

would allow for administration of therapeutic measures during the early onset of AD. The 

administration of therapeutic measures received during earlier stages of the disease could 

eliminate extensive cognitive impairments and deterioration of brain cells which is crucial in the 

prevention of advanced stages of the disease. 

High Mobility Group Box 1 (HMGB1)/Amphoterin 

Amphoterin is a small protein consisting of 215 amino acids and was named High 

Mobility Group Box 1 (HMGB1) because of its ability to migrate quickly during electrophoresis 

[162]. HMGB1 contains an unusual amount of positively charged amino acid and therefore 

migrates slightly further than expected from its actual molecular weight of approximately 25 kDa 

[163]. It consists of two DNA binding domains referred to as HMGB box A and B  and a 

negatively charged amino acid tail that regulates intercellular interactions [164]. HMGB1 is 

expressed abundantly in mammals, typically in the nucleus. Expression of HMGB1 has also been 

observed in the cytoplasm, the external side of the plasma membrane, and the extracellular 

milieu [165, 166].  
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HMGB1 was initially thought to bind to the surface of neuroblastoma cells and brain 

neurons to initiate neurite extension and was named heparin binding p30 protein (amphoterin) 

[167, 168].  A few years later, another protein extracted from the thymus of a calf named HMG1 

had an identical sequence as amphoterin [169, 170].  Intracellularly, HMGB1 binds to DNA to 

induce a bend in its structure which facilitates communication between DNA and regulatory 

proteins such as tumor suppressor (p53), NF-кB, recombination activating gene 1/2 (RAG 1/2), 

homeobox containing proteins, and steroid hormone receptor [171]. Therefore it has been linked 

to the regulation of transcription, replication, and DNA repair [172] . It has also been linked to 

regulation of pro-inflammatory activities  [173], oligomerization of amyloid β peptide [174], and 

cell differentiation [175].    

RAGE was first connected to HMGB1 when the search for ligands binding to the 

receptor was conducted using tissue extract [99]. The research conducted by the authors led to 

the discovery that HMGB1 binds to RAGE with nano-molar affinity. Interestingly, the C-

terminal motif of HMGB1 that interacts with the receptor shares similar sequence homology 

with the N-terminal motif of S100 protein that binds to RAGE [176]. In neuroblastoma cells, 

studies have shown that HMGB1/RAGE interaction induced cytosolic signaling involved in cell 

motility regulation and neurite extension [99, 177]. Downstream signaling induced by 

HMGB1/RAGE interaction involves classic RAGE-mediated activation of NF-кB, which is 

dependent on activation of MAPK pathway [91, 178, 179]. These signaling induced by  

HMGB1/RAGE interaction have been associated with intestinal barrier dysfunction [180], 

cancer progression [91, 181], and atherosclerosis [182]. Blocking the interaction between 

HMGB1 and RAGE with antibodies specific for the receptor will suppress downstream signaling 

and attenuate the progression of HMGB1/RAGE associated pathologies.  
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Hypothesis and Project Goal 
 

Although the role of RAGE in a large number of diseases has been demonstrated, there is 

currently no monoclonal antibody targeting RAGE in clinical trials. Blocking the interaction 

between RAGE and its ligands using either the soluble form of the receptor (sRAGE) or anti-

RAGE polyclonal antibodies has been shown to reduce RAGE mediated cellular damages in 

animal models. However, the use of sRAGE as a therapeutic agent to act as a decoy for the 

membrane bound receptor will not only act as an antagonist to RAGE but to other receptors that 

require interaction with those ligands to carry out normal physiological functions. Additionally, 

polyclonal antibodies recognize multiple epitopes which results in increased non-specificity and 

undesired cross reactivity.  

Hence, we generated new monoclonal antibodies against ligand specific domains of 

RAGE that will inhibit RAGE activation by its ligands.  We hypothesize that using the generated 

antibodies in the blockade of the ligand-RAGE interaction and eventual inactivation of 

downstream pathways may serve as a novel therapeutic strategy for the treatment of RAGE 

dependent pathologies. These antibodies could also be used as research and diagnostic tools . In 

order to achieve this goal, the generated panel of monoclonal antibodies was characterized in 

vitro on recombinant RAGE domains and on mammalian cells. Subsequently, the generated 

monoclonal antibodies were used in cell-based assays to determine their potential mechanisms of 

action and finally in an animal model to observe their potential diagnostic and therapeutic 

properties. 
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CHAPTER 1: DEVELOPMENT AND CHARACTERIZATION OF NEW 

MONOCLONAL ANTIBODIES AGAINST THE RECEPTOR FOR ADVANCED 

GLYCATION END-PRODUCT (RAGE) 

Introduction 

 

In the last decade, RAGE has been identified as a central signal transducing receptor 

responsible for mediating long-lasting downstream activation in various cell types and animal 

models [183-186]. Several publications have shown that RAGE-ligand interaction leads to 

activation of a variety of intracellular signaling pathways involving the generation of ROS, 

subsequent activation of NF-кB, and phosphorylation of several kinases [77]. These intracellular 

events can result in the expression of genes regulating cytokine production and growth factors 

such as interferon-γ, TNF-α, IL-1, IGF-1 and PDGF [77, 187].  Additionally, these events can 

also result in the accumulation of adhesion molecules (ICAM-1, VCAM-1) and migration of 

macrophages that leads to sustained inflammation and subsequent disruption of several 

biological processes [119].  

Blocking the interaction between RAGE and its ligands can diminish the pathological 

effect mediated via RAGE and prevent deleterious effects. In 1996, Wautier and colleagues were 

able to successfully use sRAGE to reduce hyperpearmeability in diabetic rats [118]. It was 

discovered that sRAGE can compete with membrane bound RAGE for ligands without activating 

downstream signaling pathways involved in a typical full-length receptor-ligand interaction 

because sRAGE is lacking the cytoplasmic tail necessary for signal transduction [118]. 

Subsequently, many efforts to block the interaction between RAGE and its ligands have 

predominantly revolved around the use of sRAGE. Researchers were able to use sRAGE to 

suppress the acceleration of advanced atherosclerosis in diabetic mice, restore wound healing in 



36 

 

diabetic mice, suppress tumor growth and metastases, and reduce several inflammatory 

responses involved in RAGE related pathologies [91, 118, 184, 188-194].  However, the use of 

sRAGE as a therapeutic agent to act as a decoy for the membrane bound receptor will not only 

act as an antagonist to RAGE but to other receptors that require interaction with those ligands to 

carry out normal physiological functions.  

Researchers have also been able to demonstrate the use of anti-RAGE polyclonal 

antibodies to block the interaction between RAGE and its ligands [104, 149]. Unfortunately, 

polyclonal antibodies recognize multiple epitopes which results in increased non-specificity and 

undesired cross reactivity therefore renders them undesirable candidate for therapeutic purposes. 

Blockade of RAGE has also been achieved with the use of monoclonal antibodies to reduce 

RAGE mediated cellular damages [195, 196]. Researchers have been able to show the 

neutralizing effects of anti-RAGE monoclonal antibodies in the suppression of adverse effects on 

the kidneys of diabetic animal models [195, 197] and the reduction of atherosclerosis on uremic 

mouse models [196]. Although the effectiveness of anti-RAGE antibodies has been demonstrated 

in a number of diseases, there is currently no monoclonal antibody targeting RAGE in clinical 

trials. Hence, we propose to generate new monoclonal antibodies against ligand specific domains 

of RAGE that will inhibit RAGE activation by its ligands.  Blockade of the ligand-RAGE 

interaction and eventual inactivation of downstream pathways may be novel therapeutic 

strategies for the treatment of RAGE-dependent pathologies. These antibodies could be used as 

new research, diagnostic and therapeutic candidates. 
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Materials and Methods 

 

Expression and Purification of sRAGE and the RAGE Domains  

 

DNA of human V and VC1C2 domains were amplified from pHGST-2T RAGE using a 

specific set of primers associated with the restriction sites, Xho1 and Nde 1, on pET-15b 

(Novagen). The amplified RAGE domains were subsequently ligated into pET-15b which has a 

T7/lac promoter and a gene for ampicillin resistance. The final construct contained a 6 x histidine 

tag at the N-terminal and the human V and VC1C2 domains at the C-terminal. pET-15b carrying 

human V and VC1C2 domains were transformed into T7 express competent E.coli cells (New 

England Biolabs) and plated on LB/ampicillin selective agar plates. Colonies present on selective 

agar plates were cultured in LB/ampicillin media until an optical density (OD) = 1.  Cells were 

then induced with isopropyl β-D-1-thiogalactopyranoside (IPTG). After induction, cells were 

grown overnight at 22
o
C. Following overnight incubation in a shaker, the bacterial cell pellet was 

collected by centrifugation and lysed by sonication to release recombinant V and VC1C2 domain 

into the supernatant.  The collected supernatant was filtered and passed onto a nickel 

chromatography column for purification. The purified fraction was eluted in a high concentration 

of imidazole and subsequently dialyzed twice in PBS pH 7.4. The dialyzed fraction was 

concentrated, aliquoted, and stored at -80ºC. SDS-PAGE indicated >98% purity of the final V 

and VC1C2 domain. Expression of V, C1, and C2 domain were purified as described by Dr. 

Leclerc [180]. The sRAGE was expressed in Pichia pastoris and purified as described previously 

[198]. 
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Expression and Purification of Recombinant Human S100B (Provided by Varsha Meghnani, 

Department of Pharmaceutical Sciences, NDSU) 

Recombinant S100B was expressed in E. coli and purified as previously described [199]. 

The purity of the protein was evaluated by SDS-PAGE. After dialysis against phosphate-

buffered saline (PBS), bacterial endotoxin was removed from the purified S100B by treatment 

with high capacity endotoxin removal resin (Pierce). The absence of endotoxin contamination 

was assayed Pierce LAL Chromogenic Endotoxin Quantitation Kit (Pierce).  

Expression and Purification of Recombinant Human S100A6 (Provided by Dr. Vetter, 

Department of Pharmaceutical Sciences, NDSU) 

Human S100A6 gene was cloned into the pEX-N-GST vector from Origene. The 

resulting fusion construct contains an N-terminal His6-tag, followed by GST, a tobacco etch 

virus (TEV) protease cleavage site and human S100A6 at the C-terminal end. The protein was 

expressed in BL21 (DE3) cells in LB medium at 37ºC for 6 h. The protein was expressed well 

and was found to be in the soluble fraction. S100A6 purification was done in three steps.  First, 

the GST-fusion was purified from the clarified cell lysate by GST-affinity chromatography using 

a GST-trap column (GE Healthcare). Next, the fusion protein was cleaved using TEV protease 

overnight. S100A6 was isolated after complete cleavage by hydrophobic interaction 

chromatography using a phenyl-sepharose column (GE Healthcare). S100A6 was eluted using 2 

mM EDTA, concentrated, aliquoted, and stored frozen at -80ºC. SDS-PAGE indicated >98% 

purity of the final S100A6 protein.  

Recombinant Human S100A8/A9 

 

S100A8/A9 was a generous gift from Professor T. Vogl, University of Münster, 

Germany. 
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Preparation of Amyloid Beta Aggregates (AβA) 

 

AβA were prepared by dissolving the lyophilized peptide, AβA1-40 (CalBiochem), at 

1mM in PBS. The dissolved protein was incubated for 2h at room temperature (RT). 

Generation of Monoclonal Antibodies (Mab) in Hybridomas 

 

Mice were immunized with sRAGE, which was produced in the yeast Pischia pastoris as 

previously described [198, 200]. The Hybridoma Core Facility of the University of Florida at 

Gainesville performed the immunization of the animals according to standard protocols. Briefly, 

female Balb/CByj mice between 6-8 weeks were immunized with sRAGE. Subsequently, the 

mice received additional immunization and were test bled. The serum of the immunized mice 

was tested for the presence of antibodies against sRAGE using standard ELISA. Additional 

immunization and serum testing was continued until the serum reached a high titer. The 

immunized mouse showing the best titer was boosted with sRAGE four days prior to the 

extraction of the lymphocytes. The mouse was sacrificed according to standard procedures and 

its spleen was extracted. The lymphocytes in the spleen were isolated and fused with mouse 

myeloma cells using 50% polyethylene glycol (PEG) 1500 as fusion agent.  The fused cells were 

grown in media selective for B-cells myeloma hybrids.  The supernatants of hundreds of 

hydridomas were characterized by ELISA against sRAGE produced from yeast. The hybridoma 

supernatants that gave the strongest positive signals in ELISA against sRAGE were further tested 

against the isolated recombinant RAGE domains expressed in E.coli: V, C1, C2, C1C2 and 

VC1C2. The 10 strongest hybridomas were then cloned into single colonies by limited dilution. 

The recombinant domains of RAGE and sRAGE were expressed in E.coli and yeast respectively 

and purified as previously described [198, 200]. 
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Production and Purification of Monoclonal Antibodies (IgGs) 

 

In a small scale production, hybridoma cells were cultured in batches of 75 cm
2
 cells 

culture flasks, in DMEM containing 10% ultra-low IgG FBS (Invitrogen), 50 μg/ml gentamicin 

(Gibco) in the presence of antibiotic-antimycotic solution (ABAM) (Gibco).  To obtain larger 

amounts of antibodies, approximately 1.5 x 10
6
 viable cells / ml from a pre-culture was collected 

and re-suspended in 15 ml fresh medium (DMEM, 15% ultra-low IgG FBS, 50μg/ml gentamicin 

in the presence of ABAM solution.) The re-suspended cells were cultured in a CELLine CL 1000 

flask (Integra). Supernatants from both production methods were collected every week and IgGs 

were purified from the supernatant of cultured hybridoma cells using a single step affinity 

chromatography method. Briefly, Protein G Sepharose 4 beads (GE Healthcare) were packed in a 

low pressure gravity chromatography column (Bio-rad) using PBS pH 7.4 as a binding buffer. 

Supernatants of cultured hybridoma cells were passed through the column and washed with PBS. 

An elution buffer containing 20 mM glycine at pH 2.2 was used to elute the IgGs. The eluted 

fractions were immediately neutralized with 1M Tris HCl pH 8.0 (10% volume of fraction). The 

percentage purity of the purified IgGs was determined by SDS-PAGE that were stained with 

commassie blue. 

Enzyme Linked Immunosorbent Assay 

 

High binding microtiter ELISA plates (Santa cruz) were coated with 50 μl of recombinant 

RAGE domains (V, C1, C2 & VC1C2) at a concentration of 50 μg/ml and with sRAGE at 100 

μg/ml. Following adherence of recombinant RAGE domains and sRAGE overnight at 4
o
C, the 

coated wells were blocked with 3% BSA/TBS for 2 hours. Titrated concentrations of IgGs were 

added to the wells, in the presence of 1.5% BSA/PBS. After incubation at room temperature for 

1 h, the wells were washed eight times with 0.05% TBS-T. An alkaline phosphatase (AP) 
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conjugated anti-mouse IgG secondary antibody (Jackson ImmunoResearch) was added in the 

presence of 1% BSA/PBS (diluted 1:3000). After 1 hour incubation at RT and a final wash with 

0.05% TBS-T, the plates were developed with an AP substrate, para-nitrophenylphosphate 

(pNPP) (Gold biotechnology), the optical density was measured at 405 nm with a Biotek ELx-

800 universal plate reader.  

Surface Plasmon Resonance 

 

The experiment was run on a Reichert SR7500DC instrument. The surface plasmon 

resonance experiments were run as previously described with some slight modifications [149]. 

Briefly, carboxy-methyl dextran-coated sensor chips were activated with 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide. The RAGE domains and sRAGE at 

a concentration of 50 μg/ml in 20 mM sodium acetate at pH 5 were injected over the sensor chip. 

After immobilization of the proteins, the surface of the sensor chip was blocked with 

ethanolamine prior to measurements. A series of increasing concentrations of IgGs was injected 

over the flow cells in PBS. Between each cycle of binding, the surface was regenerated by 1-min 

contact with 20 mM glycine at pH 2.2 containing 10% glycerol. The sensorgrams were analyzed 

by global analysis using the Scrubber 2.0, Biologic software. 

Cell Culture Treatment 

 

HEK-293/RAGE cells (Gift from Professor Heizmann, Children’s Hospital, Zürich 

Switzerland) were grown in OPTI-MEM I, reduced medium supplemented with 4% fetal bovine 

serum (FBS), 1 mg/ml G418 solution (Gibco), 100 IU/ml penicillin, and 100 μg/ml streptomycin 

(Gibco). The cells were maintained at 37°C in a humidified incubator containing 95% air and 5% 

CO2.  
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Fluorescence Activated Cell Sorting 

 

HEK-293/RAGE cells were cultivated to approximately 60% confluence and detached 

using 5 mM EDTA/PBS.  The detached cells were washed with 1% FBS/PBS and seeded in 96 

well plates. The IgGs at titrated concentrations in the presence of 1% FBS/PBS were added to 

the wells. After incubation at 4
o
C for 30 minutes, the wells were washed with 1% FBS/PBS, and 

FITC conjugated anti-mouse IgG secondary antibody (Jackson ImmunoResearch) in 1% 

FBS/PBS was added for 20 mins at 4
o
C. After a final wash with 1% FBS/PBS, the fluorescence 

of the bound antibody was measured by an Accuri C6 flow cytometer (Core Biology, 

Department of Chemistry and Biochemistry, NDSU). 

Immunofluorescence 

HEK-293/RAGE cells were cultured on collagen coated slide until a confluence of 

approximately 60% was obtained. Cells were subsequently fixed with 4% paraformaldehyde in 

PBS. Fixed cells were then blocked with 1% BSA in PBS for 30 minutes and incubated with 100 

nM IgGs diluted in 1% BSA/PBS for an hour at room temperature. Following incubation, cells 

were washed with PBS and incubated with FITC conjugated anti-mouse IgG secondary antibody 

(Jackson ImmunoResearch) in 1%BSA/PBS (diluted 1:1000) for 1 hour at room temperature. 

Cell nuclei were stained with Hoechst dye (Invitrogen) which stains DNA with bright fluorescent 

blue. After a final wash with PBS, the fluorescence of the antibody bound to RAGE on the cell 

surface was revealed using an Olympus fluorescence microscope.  

Competition Assay 

 

RAGE ligands specific for their extracellular domains were selected to compete against 

the generated antibodies.   First, 50 μl of RAGE domain at a concentration of 50 μg/ml was 

coated on high binding ELISA plates and incubated overnight at 4
o
C. The coated wells were 
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blocked with 3% BSA/PBS. The IgGs were added at a fixed concentration (100 nM) in the 

presence of increasing concentrations (0 to 50 μM) of RAGE ligands (S100A6, S100A8/A9, 

S100B or AβA). The antibody/ligand mixtures were incubated at room temperature for 30 mins 

before the complexes were added to the wells and incubated for an hour at room temperature. 

Following incubation, the wells were washed with TBS/Tween and incubated with AP 

conjugated anti-mouse IgG secondary antibody (Jackson ImmunoResearch) in 1% BSA/PBS 

(1:3000) for 30 mins. After a final wash, the bound antibodies were detected with pNPP and the 

plates were read at 405nm with a Biotek ELx-800 universal plate reader.  

Statistical Analysis 

Unless specified, data shown are presented as means ± standard deviation (SD). The 

binding curves on the ELISA and FACs were fitted with a 1:1 binding site model. 

Results 

  

Purified Recombinant RAGE Domains 

 

We utilized the E.coli’s system for the expression of recombinant RAGE domains, 

S100A6 and S100B. We chose E.coli because it is the most wildly used host for the production  

of recombinant proteins. The percentage purity of purified RAGE domains was determined by 

SDS-PAGE. Staining with commassie blue confirmed that the eluted V and VC1C2 domains 

were of > 95% pure and that they migrated at approximately 15 kDa (actual size is 14406.7) and 

approximately 37 kDa (actual size is 35050.9), respectively, in reducing conditions (Figure 2.1).  
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Figure 2.1: Purified fraction of V and VC1C2 recombinant RAGE domain. From left: purified V 

and VC1C2 recombinant RAGE domains under reducing conditions. Right: a representative 

image of the purified IgGs  (From left to right, lane 1; ladder, lane 2; non-reduced form of IgG at 

~150kDa and lane 3; reduced form of IgG at ~50 kDa and at ~25 kDa). 

 

Panel of Generated Monoclonal Antibodies 

 

Using the mouse immune system and hybridoma technology, we have successfully 

developed a series of monoclonal antibodies (IgGs) that specifically bind to the various domains 

on RAGE (Table 2.1). The antigen of interest, sRAGE, used in the immunization of the mice was 

generated in the yeast Pischia pastoris. We have chosen the yeast system to express sRAGE, 

because expression of sRAGE in yeast results in glycosylation of the protein. Glycosylation of 

protein has been known to assist in protein-protein interaction [79, 201]. We selected 10 out of 

32 hybridoma supernatants that gave the strongest positive signals in ELISA against sRAGE. 

These 10 selected clones were further cloned by limited dilution and the resulting monoclonal 

hybridoma clones were further characterized for specificity against the isolated recombinant 

RAGE domains (V, C1, C2, C1C2 and VC1C2) expressed in E.coli. Out of the 10 clones 

selected, 5 clones (2A11, 3D1, 4D3, 5H5 and 2H9) showed specificity towards the V domain of 

RAGE, 3 clones (2A12, 2B6 and 6B8) showed specificity towards the C2 domain and 1 clone 

(2D3) showed specificity to the C1 domain. The clone 6B12 did not react against a single 

domain but was reactive against VC1C2, suggesting binding to a conformational epitope. The 

percentage purity of the purified IgGs was determined by sodium dodecyl sulfate polyacrylamide 
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gel electrophoresis (SDS-PAGE). Staining with commassie blue confirmed that the eluted 

proteins were of > 95% purity and that they migrated at approximately 150 kD in non-reducing 

conditions (Figure 2.1). The heavy chains and light chains migrated at approximately 50 kD and 

25 kD respectively in reducing conditions (Figure 2.1).  

Table 2.1: Reactivity of hybridoma supernatants against purified RAGE domains (V, C1, C2, 

C1C2 and VC1C2) by ELISA. + indicates a positive signal; - indicates a signal of the same level 

as the background. 

 

 

 

 

 

 

Binding Affinity on Recombinant RAGE Domains and sRAGE 

The interaction between the purified IgGs and the recombinant domains of RAGE was 

evaluated by ELISA. In certain cases, glycosylation can alter the interaction between an antibody 

and its target [202]. Therefore, our aim was to evaluate the effects of glycosylation between the 

generated antibodies and RAGE.  The glycosylation properties occurring on sRAGE might 

interfere with proper adherence to the wells on the ELISA plate; therefore, the concentration 

used to coat the ELISA plates was doubled compared to that of the non-glycosylated domains of 

sRAGE. We examined the titration curves obtained from the binding of the generated antibodies 

with recombinant VC1C2 domain and sRAGE. As expected, all generated antibodies bound to 

sRAGE and VCIC2 with nanomolar affinity (Table 2.2). We also observed that the titration 

curves obtained from all generated antibodies display similar binding pattern with VCIC2 and 

sRAGE except for 6B12 (Figure 2.2 & 2.3).  

 

 

2A11 2A12 2B6 6B8 6B12 2D3 3D1 4D3 5H5 2H9 

V + - - - - - + + + + 

C1 - - - - - + - - - - 

C2 - + + + - - - - - - 

C1C2 - + + + - + - - - - 

VC1C2 + + + + + + + + + + 
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Figure 2.2: Binding of IgG 2A11, 3D1 and 5H5 to V, VC1C2, sRAGE, C1 and C2 as determined 

by ELISA. From left to right, binding of IgG 2A11, 3D1 and 5H5 to V, VC1C2, sRAGE, C1 and 

C2 as determined by ELISA. Binding affinities were as follows: For IgG 2A11, KD (V domain): 

7.01 +/- 0.37 nM, KD (VC1C2): 3.6 +/- 0.09 nM; KD (sRAGE): 2.7 +/-0.14 nM. For IgG 3D1, 

KD (V domain): 7.6+/- 0.43 nM, KD (VC1C2): 2.6 +/- 0.09 nM; KD (sRAGE): 4.1 +/-0.4 nM. For 

IgG 5H5, KD (V domain): 7.1 +/- 0.9 nM, KD (VC1C2): 1.9 +/- 0.14 nM; KD (sRAGE): 2.5 +/-

0.4 nM. All experiments were performed in triplicates. The standard deviation is indicated by the 

error bar on each point on the curve. 
 

Figure 2.3: Binding of IgG 2B6, 6B8, 2D3 and 5H5 to V, VC1C2, sRAGE, C1 and C2 as 

determined by ELISA. From left to right, binding of IgG 2B6, 6B8, 2D3 and 5H5 to V, VC1C2, 

sRAGE, C1 and C2 as determined by ELISA. Binding affinities were as follows: For IgG 2B6, 

KD (C2 domain): 1.36 +/- 0.09nM, KD (VC1C2): 1.16 +/- 0.08nM; KD (sRAGE): 1.07 +/-

0.06nM. For IgG 6B8, KD (C2 domain): 1.46+/- 0.13nM, KD (VC1C2): 1.1 +/- 0.07nM; KD 

(sRAGE): 0.9 +/-0.08nM. For IgG 2D3, KD (C1 domain): 1.97 +/- 0.09nM, KD (VC1C2): 3.5 +/- 

0.15nM; KD (sRAGE): 2.95 +/-0.11nM. For IgG 6B12, KD (VC1C2) > 72.6 +/- 5.55nM; KD 

(sRAGE): 8.3 +/-0.3nM. All experiments were performed in triplicates. The standard deviation is 

indicated by the error bar on each point on the curve. 
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We observed that 6B12 bound with a stronger affinity (KD = 8.3 +/- 10.3 nM) to sRAGE 

than to VCIC2 (KD > 72.6 +/- 5.55 nM). This suggests that the interaction of 6B12 to the receptor 

is glycosylation dependent while the interaction of the other antibodies to the receptor (2A11, 

5H5, 3D1, 2B6, 6B8 and 2D3) is glycosylation independent. The titration curves obtained from 

the ELISA also confirmed the specificity of 2A11, 5H5 and 3D1 to the V domain (Figure 2.2), 

the specificity of 2B6 and 6B8 to the C2 domain (Figure 2.3) and that of 2D3 to the C1 domain 

(Figure 2.3). 

Table 2.2: KD Values of the generated antibodies for their specific domains by ELISA. (-) 

represents non-specific binding to RAGE domain. Hybridoma clone 2H9, 2A12 and 4D3 (not 

included in table) did not generate antibodies; no values were obtained for binding affinity. The 

standard deviation is indicated. All values are expressed as nanomolars (nM). 

 

 

 

Binding Affinity as Determined by Surface Plasmon Resonance (SPR) 

 

We used SPR to further investigate the binding affinity of the generated antibodies to 

recombinant RAGE domains. SPR can be used to study biomolecular interactions in real time by 

providing high-quality kinetic data that can be calculated from association ('on rate', ka) and 

dissociation rates ('off rate', kd) provided by the SPR signal (response unit) [203]. Table 2.3 

summarizes the affinity parameters obtained from the interaction between RAGE domains and 

all the generated antibodies. Analysis of the sensorgrams obtained from each antibody with its 

Clones 

Domain 

2A11 3D1 5H5 2B6 6B8 2D3 6B12 

V 7.01 +/- 

0.37 

 

7.6 +/- 

0.43 

7.1 +/- 0.9 - - - - 

C1 - - - - - 1.97 +/- 

0.09 

 

- 

C2 - - - 1.36 +/- 

0.09 

1.46 +/- 

0.13 

- - 

VC1C2 3.6 +/- 0.09 2.6 +/- 

0.09 

1.9 +/- 

0.14 

1.16 +/- 

0.08 

1.1 +/- 0.07 3.5 +/- 0.15 >72.6 +/- 

5.55 

sRAGE 2.7 +/- 0.14 4.1 +/- 0.4 2.5 +/- 0.4 1.07 +/- 

0.06 

0.9 +/- 0.08 2.95 +/- 

0.11 

8.3 +/- 0.30 
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specific domain after fitting with a 1:1 binding site model (Figure 2.4, 2.5 and 2.6), revealed 

binding constants at a nano-molar affinity except for 6B12 and 2D3 (Table 2.3) which revealed a 

binding constant at a sub-micromolar affinity to VC1C2 and C1, respectively. The sensogram of 

6B12 (Figure 2.6) could not be fitted with a 1:1 binding model. 

Figure 2.4: Sensogram showing binding of IgG 2A11, IgG 3D1 and IgG 5H5 to the recombinant 

V domain. From left to right; Sensogram showing binding of IgG 2A11, IgG 3D1 and IgG 5H5 

to the recombinant V domain. For IgG 2A11 and IgG 3D1 concentrations used in the titration 

ranged from 6.25 to 100nM. Concentration ranging from 3.125 to 12.5nM was used for IgG 5H5.  

The red, blue and green sensograms represent the fits. 

 

Figure 2.5: Sensogram showing binding of IgG 2B6 and IgG 6B8 to the recombinant C2 domain. 

From left to right; Sensogram showing binding of IgG 2B6 and IgG 6B8 to the recombinant C2 

domain. Concentrations ranging from 6.25 and 100nM were used in the experiments. The purple 

and orange sensograms represent the fits. 



49 

 

Figure 2.6: Sensogram showing binding of IgG 2D3 against C1 domain and IgG 6B12 to the 

recombinant VC1C2 domain. From left to right; Sensogram showing binding of IgG 2D3 against 

C1 domain and IgG 6B12 to the recombinant VC1C2 domain. Concentration ranging from 6.25 

and 25nM was used in the experiments. The pink sensograms represents the fit for IgG 2D3.  

 

Table 2.3: Ka, Kd and KD Values of the generated antibodies for their specific domains by SPR. 

Hybridoma clone 2H9, 2A12 and 4D3 (not included in table) did not generate antibodies, no 

values were obtained for binding affinity 

 

 

 

 

 

 

Binding Affinity on Mammalian Cells (HEK-293/RAGE) 

 

To provide insights into the binding affinity of the generated antibodies on the surface of 

mammalian cells, FACS was used. This technique allows us to monitor the interaction between 

our antibodies and RAGE expressed on cell surface. As compared to ELISA, where adsorption 

of RAGE domain to the ELISA plate can result in distortion of binding sites available for 

binding, the principle of FACS allows us to measure the fluorescence intensity obtained from the 

interaction between our generated antibodies and RAGE on the surface of cells in suspension. 

IgG Domain SPR Ka (M
-1

 s
-1

) SPR Kd s
-1

 SPR KD (M) 

2A11 V 1.59 x 10
5
 6.05 x 10

-5
 3.8 x 10

-10
 

3D1 V 8.45 x 10
4
 1 x 10

-6
 1.18 x 10

-11
 

5H5 V 1.45 x 10
5
 1.72 x 10

-4
 1.18 x 10

-9
 

6B12 VC1C2 8.3 x 10
5
 8.7 10

-3
 1.05 x 10

-8
 

6B8 C2 5.24 x 10
5
 1 x 10

-6
 1.9 x 10

-12
 

2B6 C2 1.74 x 10
5
 5.9 x 10

-5
 3.4 x 10

-10
 

2D3 C1 8 X 10
3
 3.9 x 10

-4
 4.88 x 10

-8
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5H5 2A11 3D1 

Additionally, the fluorescence intensity obtained from viable cells and non-viable cells can be 

sorted. We examined the binding affinity of the generated antibodies, at titrated concentrations, 

on RAGE expressed on HEK-293 cells. We observed that all the generated antibodies bound to 

RAGE on the cell surface at a nano-molar affinity except for 6B12 which binds at a sub-

micromolar affinity (Figure 2.7 and 2.8). The lower affinity of 6B12 to cell surface RAGE 

suggests that 6B12 would not constitute a good antibody in experiment involving cells. 

 

 

 

 

 

 

 

 

 

Figure 2.7: Binding of IgG 2A11, 3D1 and 5H5 to HEK-RAGE as determined by flow cytometry 

and corresponding immunochemistry image is shown above the binding curve for each antibody. 

From left to right, binding of IgG 2A11, 3D1 and 5H5 to HEK-RAGE as determined by flow 

cytometry. Binding affinities were as follows: For IgG 2A11, KD: 1.8 +/- 0.66 nM. For IgG 3D1, 

KD: 1.2+/- 0.44 nM. For IgG 5H5, KD: 4.7 +/- 0.34nM. All experiments were performed in 

triplicates. The standard deviation is indicted by the error bars on each point on the curve. The 

corresponding immunochemistry image is shown above the binding curve for each antibody 
 

Immunochemistry Analysis 

 

With the aid of immunochemistry, we were able to visualize the IgGs bound to RAGE on 

cell surface with a FITC conjugated secondary antibody (green fluorescence).  All the IgGs 

except for 6B12 show distinct binding to RAGE on cell surface (Figure 2.8). The 
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6B12 6B8 2D3 2B6 

immunochemistry image of 6B12 shows non-specific binding of IgG 6B12 to RAGE on the 

surface of cells. 

 

Figure 2.8: Binding of IgG 2B6, 6B8, 2D3 and 6B12 to HEK-RAGE as determined by flow 

cytometry and corresponding immunochemistry image is shown above the binding curve for 

each antibody. From left to right, binding of IgG 2B6, 6B8, 2D3 and 6B12 to HEK-RAGE as 

determined by flow cytometry. Binding affinities were as follows: For IgG 2A11, KD: 1.8 +/- 

0.66 nM. For IgG 3D1, KD: 1.2+/- 0.44 nM. For IgG 5H5, KD: 4.7 +/- 0.34nM. All experiments 

were performed in triplicates. The standard deviation is indicted by the error bars on each point 

on the curve. The corresponding immunochemistry image is shown above the binding curve for 

each antibody. 
 

Competition for Binding Sites on RAGE Domains 

 

We have designed the competition experiments to examine the ability of the generated 

antibodies to compete for RAGE ligand binding sites on recombinant RAGE domains. RAGE 

ligands specific for their extracellular domains were selected to compete against the generated  

antibodies. For the generated antibodies that bind specifically to the V domain (2A11, 3D11 and 

5H5), S100B was used as a competitive ligand, because it has previously been shown to bind to 

the V domain of RAGE [149]. At a constant antibody concentration of 50 nM, lower 

concentrations of S100B do not compete with IgG 2A11, 3D1, and 5H5. We showed that S100B 
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was able to compete with IgG 2A11, 3D1, and 5H5 for binding to RAGE (Figure 2.9, 2.10 and 

2.11). S100A6 has been shown to bind to the C2 domain [149]; therefore we used it as a 

competitive ligand against the generated antibodies that bind to the C2 domain (2B6 & 6B8). 

However, we did not observe any competition between S100A6 and IgG 2B6 and 6B8 (Figure 

2.10). AβA was used as a competitive ligand against 2D3 because Sturchler and colleagues were 

able to use an antibody against the C1 to block activation of downstream signaling [104].  

Similarly, we did not observe any binding competition between IgG 2D3 and AβA (Figure 2.11).  

Figure 2.9: Competition between S100B/IgG 2A11, S100B/IgG 3D1 and S100B/ IgG 5H5. From 

left to right; Competition between S100B/IgG 2A11, S100B/IgG 3D1 and S100B/ IgG 5H5. The 

experiment was performed in triplicate. The standard deviation is indicted by the error bars on 

each point on the curve. 
 

 

 

 

 

 

 

Figure 2.10: Competition between S100A6/IgG 2B6 and S100A6/ IgG 6B8. From left to right; 

Competition between S100A6/IgG 2B6 and S100A6/ IgG 6B8. The experiment was performed 

in triplicate. The standard deviation is indicated by the error bar present on each concentration 

point. 
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Figure 2.11: Competition between S100A8/A9/IgG 2D3 and AβA/IgG2D3. From left to right; 

Competition between S100A8/A9/IgG 2D3 and AβA/IgG2D3. The experiment was performed in 

triplicate. The standard deviation is indicated by the error bar present on each concentration 

point. 

Discussion 

 

Engagement of RAGE by its ligands results in the activation of various signaling 

pathways involved in a large number of pathologies such as diabetes, cancer, and Alzheimer’s 

disease [77]. RAGE signaling is complex due to the large heterogeneity of its ligands. Blocking 

the interaction between RAGE and its ligand has been shown to reduce deleterious effects 

involved in RAGE related pathologies [91, 149, 193, 204].  

In the present study, our goal was to generate new monoclonal antibodies that bind 

specifically to individual RAGE domains and sRAGE. These antibodies were generated with the 

intention to block the interaction between RAGE and its various ligands. With the help of 

hydridoma technology, we have used the immune system of the mice to generate hybridoma 

clones. The supernatants obtained from hybridoma clones were screened for specificity against 

sRAGE and recombinant RAGE domains. Out of several hundred clones, 10 clones were 

selected based on the highest positive signals in ELISA (Table 2.1). Upon further 

characterization of antibody isotypes, we discovered that nine out of the ten selected clones were 
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IgGs. The tenth clone, 4D3, was discovered to be an IgM.   We decided to set aside the 

characterization of 4D3 because of the physical characteristics of IgMs. IgMs are multivalent 

proteins with 10 antigen binding sites. This means that the total avidity is much greater than that 

of an IgG, which has two antigen binding sites. It is important to note that increase in avidity is 

only possible when the epitopes to be recognized by the antibodies with multiple binding sites 

are identical and in close vicinity. Therefore, depending on the orientation of the epitopes on the 

antigen, only about half of the binding sites on an IgM may eventually bind to an antigen.  

To produce the remaining nine antibodies, we used two approaches. In one approach, the 

hybridoma cells were cultured in batches of 75cm
2
 cells culture flasks, using Dulbecco’s 

modified eagle medium (DMEM), 10% ultra-low IgG FBS, 50 µg/ml gentamicin in the presence 

of ABAM solution. Using FBS with extremely low concentration of immunoglobulin prevented 

the purified anti-RAGE IgG fractions from having a substantial fraction of non-specific 

immunoglobulin contaminants. However, culturing hybridoma in small flasks is only suitable for 

small scale antibody production because it requires using several hundred flasks at once and 

large incubation space.  

A second approach involves the use of special culture vessels partitioned by a semi-

permeable barrier with low molecular weight cut off, the CELLine 1000.  This method allows for 

the separation of the hybridoma cells and antibody produced in a small chamber to be isolated by 

the filter, with a cut off of 10KD, from a larger compartment that contains the culture media. The 

barrier allows for small molecules like nutrients and cell waste products to diffuse across the 

partition while the hybridoma cells and produced antibodies are retained in a smaller volume. 

This method allows for cells to grow to a very high density in the cell compartment allowing 

high concentrations of antibody to be retained. The supernatant is then harvested periodically 
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from the cell compartment and replaced with fresh media. The disadvantage of using this method 

is the need to use very large volume of media at once. Therefore, in the event of an infection, the 

entire system would suffer from contamination that cannot be isolated as compared to using 

separate smaller batches.  

We were able to use the former approach to successfully produce significant amounts of 

antibody to perform the initial characterization of the IgGs in vitro except for clones 2A12 and 

2H9. We have characterized the generated antibodies in vitro using ELISA, SPR, FACS, 

immunofluorescence, and by competition assay. The results obtained from the assays show that 

all antibodies except 6B12 bind to their domains of specificity at a nano-molar affinity (Table 

2.3). Binding measurements with antibody 6B12 showed significantly low binding affinity for 

VC1C2 although 6B12 supernatant showed strong “binding signal” (Figure 2.2). Therefore 6B12 

was selected to be specific for VC1C2 domain during the screening process of supernatant 

clones. It is possible that the supernatant used for screening had relatively higher amount of 

antibody as compared to the other clones.  The increase in antibody concentration in the 

supernatant could have compensated for the weaker binding affinity observed during the 

screening process of 6B12 to VC1C2. For all antibodies, SPR measurements showed similar 

binding affinity values as compared to ELISA (Table 2.4).  

Table 2.4: Summary of KD values of generated antibodies for their specific domains by ELISA 

and SPR and binding to RAGE on cell surface obtained by FACs. 

IgG Domain ELISA KD (nM) SPR KD (nM) FACs KD (nM) 

2A11 V 7.01 +/- 0.37 0.38 0.94+/-0.36 

3D1 V 7.6 +/- 0.43 0.0118 1.79+/-0.43 

5H5 V 7.1 +/- 0.9 1.18 4.71+/-0.33 

6B12 VC1C2 72.6 +/-5.55 10.5 > 85 

6B8 C2 1.46 +/- 0.13 0.0019 4.75+/-0.24 

2B6 C2 1.36 +/- 0.09 0.34 6.79+/-0.55 

2D3 C2 1.97 +/- 0.09 48.8 1.70+/-0.19 
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The slight difference in KD between the ELISA and SPR experiments could be attributed 

to the orientation of the domains when anchored to the sensor chip. Covalent coupling of RAGE 

domains to the sensor chip requires an amine functional group. In the event that a lysine residue 

is required in the epitope of RAGE domain to carry out proper ligand-antigen interaction, the 

antibody epitope could be altered, depending on the number of lysine residues present on the 

RAGE domain. The sensograms obtained from the binding of the generated antibodies to 

specific RAGE domains showed fast association and very slow dissociation except for 6B12 

which exhibits fast association but also fast dissociation (Figure 2.4 – 2.6).  

Immunofluorescence images (Figure 2.7 – 2.8) and FACs analysis revealed that the 

generated antibodies bound to RAGE expressed on the cell surface at a nano-molar range except 

for 6B12 which exhibits non-specific binding to cell surface RAGE (Figure 2.7 – 2.8). Since 

RAGE ligands bind to the V, C1 and C2 domains, we chose S100B, AβA and S100A6 

respectively as competitive ligands against the generated antibodies because their binding 

affinities to the individual domains were recently described by Leclerc and colleagues [104, 

149]. Competition for binding sites on the V domain of RAGE shows that S100B competed 

against 2A11, 3D1, and 5H5 for binding to the V domain. The data suggests that S100B, 2A11, 

3D1 and 5H5 all bind to the V domain of the receptor. S100A6 did not displace bound 2B6 and 

6B8 on the C2 domain. The data suggests that S100A6, 2B6 and 6B8 do not share the same 

binding site on the C2 domain. Similarly, AβA did not displace 2D3 on the C1 domain which 

suggests that 2D3 does not share similar epitope with 2D3 on the C1 domain of the receptor.  

Conclusion 
 

In conclusion, we have successfully developed and characterized a panel of monoclonal 

antibodies which are specific to RAGE domains and have nano-molar binding affinity towards 



57 

 

the receptor on cell surface. IgG 2A11, 3D1 and 5H5 were able to compete with an endogenous 

ligand of RAGE (S100B) for binding to the receptor. Based on these results we can conclude that 

IgG 2A11, 3D1, 5H5, 2B6, and 6B8 can potentially serve as good therapeutic candidates because 

of their nano-molar binding affinity (KD). In the next chapters we will investigate the inhibitory 

activity of the generated antibodies in mammalian cells and in tumors in vivo by identification of 

suppressed RAGE/ligand dependent signaling pathway(s) and monitoring tumor size in mice 

model. 
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LIGAN

 
 

CHAPTER 2: TARGETING RAGE WITH MONOCLONAL ANTIBODIES IN 

MAMMALIAN CELLS 

Introduction 

 

The search for cell surface receptors responsible for the mediation of cellular interaction 

of the advanced glycation end-products (AGE) led to the identification of a 35 kDa polypeptide 

present on endothelial cells [101]. This receptor was named the receptor for advanced glycation 

product (RAGE). It was eventually discovered that RAGE has the ability to bind to a variety of 

structurally unrelated ligands [100, 101, 205]. Binding of these ligands to RAGE leads to 

activation of several pro-inflammatory signaling molecules including CDC42/Rac, 

phosphoinositol-3 kinase, JAK/STAT, p38, SAPK/JNK and, ERK1/2(p44/p42) MAP kinases 

(Figure 3.1) [206]. 

 

 

 

 

 

 

 

 

 

Figure 3.1: Schematic of RAGE signaling. Interaction between RAGE ligands and RAGE results 

in the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) which 

ultimately leads to the activation of several pro-inflammatory signaling molecules such as 

CDC42, p38, ERK/MAPK, JNK, PI3K/Akt and JAK/STAT. Image modified from Calcutt et al, 

2009 [206].  
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 A key factor that promotes downstream activation of these processes is the generation of 

reactive oxygen species (ROS). ROS have been known to exert their effects in many patho-

physiological conditions by acting as intracellular signaling cascade modulators [206].  This 

signaling can lead to alterations in transcription factors and the resultant protein expression 

linked to various RAGE-related pathologies [207, 208].  Generation of reactive oxygen species 

can also lead to the subsequent activation of NF-кB, various adhesion molecules and the 

eventual recruitment of macrophages, neutrophils and production of various cytokines [209-214]. 

The translocation of activated pro-inflammatory transcription factor, NF-кB, into the nucleus 

leads to increased expression of RAGE. Additionally, generation of ROS such as hydrogen 

peroxide and superoxide can potentially react with NO normally secreted in endothelial cells to 

form peroxynitrite, a reactive nitrogen species (RNS), which is associated with the formation of 

RAGE ligands [215]. Therefore at sites where there is an accumulation of RAGE ligands, there 

is usually an up-regulation of RAGE [215].  

Several publications have also linked the production of oxidative stress to the activation 

of RAGE-mediated NADPH oxidase, a superoxide producing enzyme, which is a major source 

of ROS [161, 216, 217].  NADPH oxidase is a membrane-bound enzyme consisting of two 

membrane-bound elements (gp91-phox and p22-phox), three cytosolic components (p67-phox, 

p47-phox, and p40-phox), and a low-molecular-weight G protein. Activation of NADPH oxidase 

is associated with the migration of the cytosolic components to the cell membrane and 

assembling with its membrane subunits [218, 219]. Recent publications have shown evidence 

that interrogating RAGE with anti-RAGE antibody could potentially attenuate intracellular 

pathways involved in RAGE related pathologies. We have successfully characterized a panel of 

anti-RAGE antibodies in vitro (Chapter 1). These antibodies show specific binding to the 
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receptor on the surface of mammalian cells (HEK-293/RAGE) at a nano-molar affinity. In the 

current study, we have investigated the inhibitory activity of one of our generated antibody (IgG 

2A11) in cell-based assays. IgG 2A11 was used to prevent generation of reactive oxygen species 

and subsequent activation of NADPH oxidase complex.  

We also used IgG 2A11 to identify suppressed RAGE/ligand dependent signaling 

pathway(s) and altered protein expression such as changes in Akt and activation of NF-кB and 

eventual cellular proliferation.  The current study suggests that blocking the interaction between 

RAGE and its ligands using the generated anti-RAGE antibody can suppress downstream 

signaling pathways that have been shown to result into complications in diabetic patients, 

amyloidosis, chronic inflammatory response, tumor progression, angiopathy, and neurite 

extension [77]. 

Materials and Methods 
 

Preparation of AGE Product (Provided by Venkata Indurthi, Department of Pharmaceutical 

Sciences, NDSU) 

Bovine serum albumin (BSA) (Amresco, BSA Biotechnology Grade) was dissolved in a 

buffer containing 50 mM potassium phosphate at pH 8.0. Subsequently, 200 mM ribose was 

added to the protein. The ribose-BSA mixture was then incubated at 37
o
C for 21 days. After the 

incubation, the unreacted ribose was removed by dialysis against 300 volumes of a 50 mM 

phosphate buffer, pH 7.4. The final concentration of the protein was determined by the BCA 

assay. The samples were aliquoted and stored at -80
o
C. 

Preparation of S100B 

 

*Please, refer to Chapter 1* 
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WM115-RAGE and WM115-MOCK Cell Cultures (Provided by Varsha Meghnani, Department 

of Pharmaceutical Sciences, NDSU) 

The human melanoma cell line, WM-115,  was purchased from ATCC (Manassas, VA) 

and grown in Opti-MEM (Invitrogen, Carlsbad, CA) supplemented with 4% FBS (Invitrogen) in 

the presence of penicillin and streptomycin (JRScientific, Woodland, CA) at 37°C temperature 

and in the presence of 5% CO2. The cells, at 70% confluence, were transfected with pcDNA3 

(Invitrogen) that had been engineered to expressed full-length RAGE. The plasmid pcDNA3-

RAGE was a generous gift from Prof. C.W. Heizmann (Children’s Hospital, University of 

Zurich, Switzerland). The transfection was performed with SatisFection (Stratagene, Santa Clara, 

CA) according to the manufacturer’s protocols. Prior transfection, the pcDNA3-RAGE plasmid 

was digested with the unique restriction site MfeI (NEB, Ipswich, MA) to improve the 

integration of the plasmid into the chromosomal DNA. The empty pcDNA3 vector was used as 

negative control for the transfection (WM115-MOCK). The transfected cells were selected in the 

presence of 1mg/ml G418 (WM115-RAGE) or 0.5 mg/ml G418 (WM115-MOCK).  

Fluorescence Activated Cell Sorting 

 

WM115-MOCK and WM115-RAGE cells cultivated to 70% confluence were detached 

using 5mM EDTA/PBS.  The detached cells were washed with 1%FBS/PBS and seeded in 96 

well plates. IgG 2A11 at titrated concentrations (0 nM to 200 nM) was added to wells in the 

presence of 1% FBS/PBS. After incubation at 4
o
C for 30 mins, the wells were washed with 1% 

FBS/PBS, and FITC conjugated anti-mouse IgG secondary antibody (Jackson ImmunoResearch) 

in 1% FBS/PBS was added for 20 mins at 4
o
C. After a final wash with 1% FBS/PBS, the 

fluorescence of the bound antibody was measured by an Accuri flow C6 cytometer. 
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Immunofluorescence 

 

WM115-MOCK and WM115-RAGE cells were cultured on collagen coated slide until a 

confluence of approximately 60% was obtained. Cells were subsequently fixed with 4% 

paraformaldehyde in PBS. Fixed cells were then blocked with 1% BSA in PBS for 30 minutes 

and incubated with 100 nM IgG 2A11 diluted in 1% BSA/PBS for an hour at room temperature. 

Following incubation, cells were washed with PBS and incubated with FITC conjugated anti-

mouse IgG secondary antibody (Jackson ImmunoResearch) in 1% BSA/PBS (diluted 1:1000) for 

1 hour at room temperature. Cells were counterstained using Hoechst dye (Invitrogen). After a 

final wash with PBS, the fluorescence of the antibody bound to RAGE on the cell surface was 

revealed using an Olympus fluorescence microscope.  

ROS Formation 

 

WM115-MOCK and WM115-RAGE cells maintained in serum-free media for 24 hours 

were cultured in 96 well plates. Following 24 hours of serum starvation, cells were treated with 2 

µM of S100B or 3 µM of AGE product.  As a positive control, acrolein (Sigma-Aldrich) at a 

concentration of 10 µM was added as a treatment group.  Negative control cells were treated 

with a similar volume of PBS. IgG 2A11 at 25 µg/ml was simultaneously added to the groups 

treated with S100B and the AGE product.  The cells were also treated with IgG 2A11 alone to 

observe whether antibody alone had any effect on the cells. After treatment, the cells were 

incubated at 5% CO2 at 37°C for 24 hrs. The cells were incubated with 10 μM cell permeable 

fluorescent dye 2′, 7′-dichlorofluorescein diacetate and washed with PBS, and fluorescence was 

measured with a microplate reader (excitation, 485 nm; emission, 520 nm).  
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Estimation of NADPH Oxidase Activity 

 

The presence of NADPH-oxidase subunit, p47
Phox

, in the cell membrane was investigated 

by Western blot. WM115-MOCK and WM115-RAGE cells maintained in serum free media for 

24 hours were cultured in 6 well plates. Following 24 hours of serum starvation, the cells were 

treated with 2 µM of S100B or 3 µM of AGE product. For the control, the cells were treated with 

a similar volume of PBS. IgG 2A11 at 25 µg/ml was simultaneously added to the groups treated 

with S100B and AGEs.  The cells were also treated with IgG 2A11 alone to observe whether the 

antibody alone had any effect on the cells. After treatment, the cytosolic and membrane fractions 

were prepared using Mem-PER Eukaryotic Membrane Protein Extraction kit (Pierce). 50 µg of 

membrane protein was loaded on a 12% SDS gel, followed by a transfer to a nitrocellulose 

membrane. The membrane was blocked with 3% BSA in TBS overnight at 4
o
C. The primary 

antibodies for p47
Phox

 (Cell Signaling Technologies) and Na
+
/K

+
-ATPase (Cell Signaling 

Technologies) were added at a dilution of 1:2,000 in the presence of 1%BSA/TBS-T and 

incubated overnight at 4°C. The blot was then washed three times in TBS-T and incubated for 1 

hour with HRP conjugated secondary antibody (Jackson ImmunoResearch) at a 1:10,000 dilution 

in the presence of 1%BSA/TBS-T. The membrane was washed three times in TBS-T at 15 min 

intervals and developed with ECL Western blotting substrate (Pierce). Blots were scanned and 

quantified with Image J (PC version of Windows). 

Transfection and NF-κB Activation Assay 

 

WM115-RAGE and WM115-MOCK cells were co-transfected with the pNFκB-Luc 

construct (Clontech) and a plasmid containing the β-galactosidase gene using the X-treme GENE 

HP DNA transfection reagent (Roche Applied Science) for 24 h in the presence of serum 

according to the manufacturer's instructions. The cells were serum-starved for 24 h before being 



64 

 

treated with S100B or S100A6. After 24 hrs in culture, the cells were washed with PBS and 

lysed in Reporter Lysis Buffer (Promega). Luciferase activity was monitored using the 

Luciferase Assay System (Promega) using a luminometer. The β-Galactosidase activity was 

quantified by mixing cell lysate with an equal volume of 2× β-galactosidase assay mixture (120 

mM Na2HPO4, 80 mM NaH2PO4, 2 mM MgCl2, 100 mM β-mercaptoethanol, and 1.33 mg/ml O-

nitrophenyl β-d-galactopyranoside) and incubation at 37 °C; the absorbance was read at 420 nm. 

The luciferase activity was normalized to β-galactosidase activity.  

Western Blot Analysis 

 

The cells were washed twice with PBS and scraped from the plates in the presence of cell 

disruption buffer (Life Technologies) supplemented with 1 mM Na3VO4 and 0.5 mM PMSF. The 

collected samples were centrifuged at 2,000 rpm for 2 min at 4 °C. The supernatant was 

collected, aliquoted and stored at –80°C. The protein concentration was determined using the 

BCA protein assay kit (Pierce). 50 µg of protein was loaded on a 12% SDS gel, followed by a 

transfer to a nitrocellulose membrane. The membrane was blocked with 3% BSA in TBS at room 

temperature for 2 hours. The primary antibodies for pAkt and Akt (Cell Signaling Technologies) 

were added at a dilution of 1:2,000 in the presence of 1% BSA/TBS-T and incubated overnight 

at 4°C. The blot was then washed three times in TBST and incubated for 1h with HRP 

conjugated secondary antibody (Jackson ImmunoResearch) at a 1:10,000 dilutions in the 

presence of 1% BSA/TBS-T. The membrane was washed three times in TBS-T at 15 min 

interval and developed with ECL Western blotting substrate (Pierce). The scanned images were 

analyzed with Photoshop and Image J (software obtained from NIH). 
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Cell Proliferation Assay 

 

WM115-MOCK and WM115-RAGE cells maintained in serum free media for 24 hours 

were cultured in 96 well plates. Following 24 hours of serum starvation, the cells were treated 

with 2 µM of S100B or 3 µM of AGEs.  As a positive control, naltrexone hydrochloride (Sigma-

Aldrich) at a concentration of 10 µM was added as a treatment group.  Negative control cells 

were treated with a similar volume of PBS. IgG 2A11 at 25 µg/ml was simultaneously added to 

the groups treated with S100B or AGEs.  The cells were also treated with IgG 2A11 alone to 

observe whether the antibody alone had any effect on the cells. After treatment, the cells were 

incubated in the presence of 5% CO2 at 37 °C for 24 hrs. 1/10th volume of Alamar Blue reagent 

(Abd Serotec) was directly added to the cells in culture medium and incubated for 6-8 hrs. The 

fluorescence intensity was measured using a microplate reader at an excitation of 540 nm and 

emission of 590 nm. 

Statistical Analysis 

Data from at least three independent experiments were averaged and reported as mean 

±SD. Mean differences between experimental groups were tested with unpaired t-test. Values 

were considered significantly different at the P≤0.05 level. Statistical analyses were performed 

on the Kaleidagraph Software 4.1.0 (Windows PC version). 

Results 

 

Binding of IgG 2A11 to RAGE on Cell Surface 

 

We were able to show binding of IgG 2A11 to RAGE on the surface of non-cancerous 

cells (HEK293-RAGE). We were able to evaluate the binding affinity to be at a nanomolar range 

which is characteristic of a good antibody for therapeutic puposes (Chapter 1). To further 

provide evidence that the generated antibody can bind to RAGE on the cell surface of cancerous 
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cells, we examined with immunofluorescence microscopy and fluorescence activated cell 

sorting, the binding of IgG 2A11 at titrated concentrations to RAGE on WM115-RAGE and 

WM115-MOCK cells. Using FITC-conjugated secondary antibodies, we observed significantly 

lower fluorescence intensity on the WM115-MOCK cells as compared to the WM115-RAGE 

cells (Figure 3.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Binding of IgG 2A11 to WM115-RAGE and WM115-MOCK cells as determined by 

flow cytometry. All experiments were performed in triplicates. The standard deviation is shown 

by the error bars on each point of the curve. The blue curve represents IgG 2A11 bound to 

WM115-RAGE. The red curve represents IgG 2A11 bound to WM115-MOCK. 

 

Suppression of Induced ROS Production with the Use of Generated Antibodies 

 

To investigate ROS production in cells, we used 2', 7’-dichlorodihydrofluorescein 

diacetate (DCFH-DA). DCFH-DA crosses the cell membrane and undergoes deacetylation by 

intracellular esterases to form DCHF [220]. DCHF can react with intracellular hydrogen 

peroxide or other oxidizing ROS to give a green fluorescent compound, DCH. Figure 3.3 shows 

the quantitative analysis for each cell line. Treatment with RAGE ligand, S100B or AGE, for 24 

hours did not result in an increase in the generation of ROS. We compared the results obtained 
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with a positive control, acrolein. Acrolein is an unsaturated aldehyde that has been reported to 

induce generation of reactive oxygen species [221].  Figure 3.3 showed an increase of 75% in 

fluorescence intensity as compared to the control when cells were treated with acrolein.  We also 

confirmed that IgG 2A11 alone had no effect on fluorescence intensity and therefore does not 

trigger the generation of ROS. 

Figure 3.3: Generation of ROS using S100B or AGE in WM115-MOCK and WM115-RAGE 

cells. Generation of ROS using S100B or AGE in WM115-MOCK (left) and WM115-RAGE 

(right) as inducer. 10 µM of acrolein (ACR) was used as a positive control. *** indicates a 

significance of p≤ 0.0001 as compared with negative control 

  

Suppression of Induced NADPH Oxidase Activation with the Use of Generated Antibodies 

  

NADPH oxidase is a membrane-bound protein that is responsible for catalyzing the 

production of ROS from oxygen and NADPH. The NADPH oxidase system consists of a 

membrane bound component, a cyctosolic component and a low-molecular-weight G protein. 

The membrane bound complex has two subunits which are gp91-phox and p22-phox and the 

cytosolic subunits have three components which are p67-phox, p47- phox, and p40-phox [222].  

Activation of the NADPH oxidase complex typically results in the assembling of its cytosolic 
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complex with the membrane bound elements on the membrane. We wanted to observe whether 

IgG 2A11 could block the interaction between RAGE and S100B or AGE and prevent 

subsequent activation of NADPH oxidase. To confirm the role of NADPH oxidase activation 

from exposure of S100B and AGE to cells, we analyzed the presence of the cytosolic subunit, 

p47-phox, on cell membrane.  We did not observe the presence of any band upon analysis of 

membrane extract by western blot. However, we also did not observe the presence of Na
+
/K

+
-

ATPase, which was used as a positive control for membrane extract. 

Suppression of Induced Akt Activation with the Use of Generated Antibodies 

Interaction between RAGE and its ligands has been shown to induce certain kinase 

signaling pathways; therefore, our goal was to investigate which kinases are activated by 

interrogating the receptor with its natural ligands. We also aimed to observe whether IgG 2A11 

could block the activation of these downstream signaling molecules. We exposed WM115-

RAGE and WM115-MOCK cells to S100B and AGE to induce phosphorylation of Akt. Figure. 

3.4 shows that AGE significantly increased phosphorylation of Akt in WM115-RAGE and IgG 

2A11 was able to reduce activation of Akt. We did not observe a significant phosphorylation of 

Akt in WM115-MOCK cells as compared to the WM115-RAGE cells. Additionally S100B did 

not induce the activation of Akt in both WM1115-RAGE and WM115-MOCK cells. We also 

treated both cell lines with IgG 2A11 alone and we observed no effect on the phosphorylation of 

Akt.  
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Figure 3.4: Western blot images showing changes in the activation of Akt in WM115-RAGE and 

WM115-MOCK. From left to right, western blot images showing changes in the activation of 

Akt in WM115-RAGE and WM115-MOCK. AGE was able to increase phosphorylation of Akt 

in WM115-RAGE cells (1.7 +/1 0.18 fold) and was subsequently suppressed upon the addition 

of IgG 2A11 (left). S100B did not show any effect on Akt activation. No significant difference 

was observed for WM115-MOCK cells in any of the conditions (right).  

 

Inactivation of Transcription Factors  

Several RAGE ligands have been shown to activate the transcription factor NF-κB 

following the interaction with the receptor [101, 215]. To investigate the inhibitory activity of 

IgG 2A11, we have used a luciferase reporter plasmid system to monitor induced NF-κB 

transcriptional activity. The reporter gene, luciferase, is placed downstream from response 

elements of NF-κB in the same DNA plasmid, which is then inserted into the cell. We chose the 

luciferase system because it is not natively expressed in WM115 cells. Addition of stimulants to 

the cell culture medium will result in the induction of the binding of transcription factors to the 

enhancer element, thereby initiating transcription of the secreted luciferase reporter gene. Figure 

3.5 shows that treatment of WM115-RAGE cells with AGE increased NF-κB activity, and the 

presence of IgG 2A11 blocked AGE-mediated NF-κB activity. In comparison, WM115-MOCK 

cells showed negligible increase in NF-кB activity (Figure 3.5).  In contrast, NF-κB activity was 

not significantly altered when both cells were exposed to S100B (Figure. 3.5). We also treated 

both cell lines with IgG 2A11 alone and we observed no effects on activation of NF-кB. 
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Figure 3.5: Inactivation of induced NF-кB using S100B or AGE in WM115-MOCK (left) and 

WM115-RAGE (right). MEKK was used as a positive control. *** indicates a significance of p≤ 

0.001, p≤ 0.05 as compared with negative control (PBS treated). 

 

Suppression of Induced Cell Proliferation 

 

Figure 3.6 shows the results obtained from suppression of induced cell proliferation. To 

determine the effects of IgG 2A11 in the RAGE/ligand interaction, we induced cell proliferation 

using S100B and AGE. We used Alamar Blue to monitor the changes in proliferation of 

WM115-RAGE and WM115-MOCK after addition of RAGE ligands. Typically viable cells 

maintain a reducing environment in the cytosol. Alamar Blue contains resazurin, a cell 

permeable dye which has a blue color and is non-fluorescent [223]. After addition to the 

reducing environment of the cells, resazurin is converted to resorufin, a red highly fluorescent 

compound when reduced in the cells. Therefore Alamar Blue assay can quantitatively measure 

the proliferation of cells. An increase in cell proliferation will result in higher reducing 

conditions and therefore will continuously convert resazurin to resorufin, increasing the overall 
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fluorescence and color of the media surrounding the cells [223]. Several studies have shown 

increases in proliferation when cells expressing RAGE were exposed to RAGE ligands.  

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Inactivation of induced proliferation using S100B or AGE in WM115-MOCK (left) 

and WM115-RAGE (right). *** indicates a significance, p≤ 0.001, * ,p ≤ 0.05 as compared with 

control. 

 

Therefore we investigated whether IgG 2A11 was capable of inhibiting induced 

proliferation. Figure 3.6 shows an increase in fluorescence when WM115-RAGE cells were 

exposed to AGE, and a subsequent reduction in fluorescence when simultaneously treated with 

IgG 2A11. Similarly, WM115-MOCK cells also showed a statistically significant increase in 

fluorescence when exposed to AGE. We did not observe an increase in fluorescence for both 

WM115-RAGE and WM115-MOCK cells when exposed to S100B. Additionally, treatment 

alone with IgG2A11 did not have any effect on fluorescence. 

Discussion 
 

The engagement of RAGE by its ligands typically activates signaling pathways that are 

dependent on the ligand, environment and cell type [206, 209, 224]. The signaling molecules that 

**
 

* 
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have been shown to be activated during RAGE/ligand interaction include Ras-extracellular 

signal-regulated kinase 1/2 (ERK1/2) [93], Cdc42/Rac [177], stress-activated protein kinase/c-

Jun-NH2-terminal kinase (SAPK/JNK) and p38 mitogen-activated protein (MAP) kinase [91], 

transcription factors like NF-κB [212], cAMP response element-binding (CREB) protein [93] 

and  signal transducers and activators of transcription proteins (STAT3) [225]. The engagement 

of RAGE by its ligand has also been shown to result in a positive feedback loop which sustains 

NF-кB activation thereby sustaining an inflammatory response [226].  

The results from this study provided support for the involvement of AGE/RAGE in 

downstream activation of several signaling pathways in human melanoma cells. Specifically, we 

demonstrated that IgG 2A11 can bind to RAGE on human melanoma cells and prevent binding 

of AGE to RAGE at the surface of the cells resulting in reduction of Akt phosphorylation and 

activation of NF-кB. Interestingly, our data also suggested ROS production was not required for 

AGE-induced activation of Akt and NF-кB in melanoma cells.  

Blockade of the interaction between RAGE and its ligands has shown promising results 

in several studies [161, 196]; therefore, we aimed to investigate the inhibitory activity of IgG 

2A11 on cells expressing RAGE. We chose human melanoma cells because the involvement of 

RAGE in this area is still poorly understood. Recently, the interaction of AGE with RAGE was 

shown to be involved in progression of melanoma [133, 227]; therefore, we used AGE as a 

stimulant for RAGE. Several evidences have also shown that RAGE functions as a signal 

transducing cell surface receptor for S100B [135, 228, 229], although there are no published 

papers showing that the interaction between S100B and RAGE is involved in the tumorigenesis 

of melanoma. Our data demonstrated that binding of AGE to RAGE mediated alterations in the 

phosphorylation state of Akt, activation of NF-кB, and also increased cell proliferation, all of 
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which were reversed with simultaneous addition of IgG 2A11 in WM115-RAGE cells. We 

observed a smaller change in Akt phosphorylation, NF-кB activation, or proliferation in 

WM115-MOCK cells when exposed to AGE. The difference in results could be accounted for by 

the difference in the levels of RAGE between WM115-MOCK and WM115-RAGE cells (Figure 

3.2).  

AGEs have been implicated in the development of diabetic complications, cardiovascular 

diseases, strokes, AD, and other age related diseases [230-233]. In diabetic-related 

complications, hyperglycemia which is directly related to the formation of AGE products has 

been linked to the generation of NADPH and subsequent production of reactive oxygen species 

by mitochondria [230]. NADPH has also been linked to the synthesis of nitric oxide, a potent 

vasodilator.  Any shift in the production of NADPH could result in cardiovascular complications 

[234]. The involvement of RAGE in AD has been linked to oxidative stress generated from 

NADPH and downstream activation of MAP Kinase pathway through the interaction of RAGE 

with  amyloid beta complexes [235].  

Although there is evidence that oxidative stress is a major contributor to cellular 

dysfunction in many diseases where RAGE-ligand interaction has been involved [100, 216], we 

did not observe an increase in the generation of ROS in both WM115-RAGE and WM115-

MOCK cell lines. One possible explanation could be that melanoma cells naturally generate 

significant amounts of ROS; therefore, an induction of additional ROS might not result in further 

significant difference. Additionally, the mechanism for the production of RAGE-ligand induced 

ROS has not been clearly elucidated because of heterogeneity of ligands; therefore, AGE and 

S100B may not be suitable ligands to induce additional ROS. Generation of ROS has also been 

linked to the activation of NADPH complex composed of a membrane bound subunit and a 



74 

 

cytosolic subunit. In 2011, Askarova and colleagues were able to show the activation of the 

NADPH oxidase complex through the interaction of amyloid beta protein and RAGE [161].  

Activation of NADPH oxidase complex typically results in the migration of cytosolic 

components to the membrane. Unfortunately, our experiments were not conclusive and will need 

to be repeated. In all the experiments, S100B did not induce any response as compared to AGE. 

It is possible that S100B is not the proper ligand to induce downstream signaling in human 

melanoma cells even though melanoma cells secrete S100B in large amounts. 

Conclusion 
 

In conclusion, IgG 2A11 was able to block cellular responses triggered by the interaction 

between AGE and RAGE on WM115-RAGE and WM115-MOCK cell lines. The AGE/RAGE 

dependent suppressed signaling pathways involved Akt, NF-кB and correlated with alteration in 

cell proliferation of WM115-RAGE cells 
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CHAPTER 3: NEW MONOCLONAL ANTIBODIES TARGETING THE RECEPTOR 

FOR ADVANCED GLYCATION END-PRODUCT (RAGE) IN VIVO AS DIAGNOSTIC 

AND THERAPEUTIC TOOL 

Introduction 

 

Ever since Paul Ehrlich described antibodies as magic bullets [236], antibodies have 

emerged to become the ideal diagnostic and therapeutic tools. [237]. They are regarded as ideal 

tools because of their ability to discern specific components on different cell types without the 

complications of toxicity observed with other conventional tools [238]. Furthermore, 

technological advances have refined the production of antibodies into fragments of varying sizes, 

delivery vehicles, and diagnostic tools that can be mass produced [38, 238]. Monoclonal 

antibodies have been approved for the treatment of pathologies associated with inflammation, 

autoimmune disorders, cardiovascular disorders, and various cancers (Table 1.1) [69, 238].  

Of all the cancers, melanoma is the least prevalent as it only constitutes approximately 

1% of all cancers [237, 239]. However, it is also the most dangerous because of its poor survival 

rates and limited treatment options with low efficacy profiles [240]. Typically, the treatment of 

melanoma consists of surgery, however the diagnosis of melanomas from other skin cancers is a 

problem for surgical pathologists [237]. Conventional methods used in the histological 

distinction of melanomas from other neoplasms include the detection of DOPA oxidase and, the 

staining of melanin using Masson-Fontana silver and argyrophil stains [241, 242]. However, the 

use of  the DOPA detection method is limited to postfixed cryostat sections [242]. Additionally, 

staining methods such as Masson-Fontana silver stains can also react with pigments other than 

melanin [241]. A recent biomarker shown to be important in the prognosis of melanoma is the 

S100B protein [243]. S100B is a prognostic marker for advanced melanoma stages, and levels of 
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S100B strongly correlate with survival rate [228, 244-246]. Although several evidences 

implicating RAGE in tumor progression and metastasis have been shown in several cancers, 

there are only a few publications that have examined the role of RAGE in melanoma [133, 229]. 

Researchers have suggested that oxidative stress in melanoma cells could lead to an increased 

production of AGEs which could contribute to melanoma progression through the interaction 

with RAGE [133, 247].   

Consequently, the need for new diagnostic and therapeutic intervention is becoming more 

paramount.  Blockade of RAGE interaction with its ligands either with the use of sRAGE or anti-

RAGE antibodies has been shown to reduce progression of RAGE related pathologies [195, 

197].  Researchers have shown evidence that sRAGE can suppress the acceleration of advanced 

atherosclerosis and restore wound healing in diabetic mice, suppress tumor growth and 

metastases, and reduce several inflammatory responses involved in RAGE related pathologies 

[91, 118, 184, 188-194]. The use of antibodies against RAGE was demonstrated in the 

suppression of adverse effects on the kidneys of diabetic animal models [195, 197] and the 

reduction of atherosclerosis on uremic mice models [196]. We have generated a panel of 

monoclonal antibodies with the aim of targeting RAGE. Characterization of these antibodies 

showed binding to RAGE in vitro with nano-molar affinity and inhibition of AGE-induced 

proliferation and activation of NF-кB and Akt activation in mammalian cells in vitro. Our next 

aim was to observe the inhibitory effects of the antibodies on RAGE in vivo in a mouse model. 

*This work was done in collaboration with Dr. Benedict Law’s laboratory (Department of 

Pharmaceutical Sciences, NDSU)*. 
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Materials and Methods 

 

Human Tumor Xenograft (Work Performed by Anil Wagh, Department of Pharmaceutical 

Sciences, NDSU 

5-6 week-old female severe combined immune-deficiency (SCID) mice at an initial body 

weight of 20-25 g (Charles River Laboratory, Wilmington, MA) were maintained in a 

temperature-regulated environment for two weeks before experiments were carried out. Human 

melanoma tumors were induced in mice as previously described [248]. Briefly, 10
6 

WM115-

RAGE or WM115-MOCK cells (50 µl) were subcutaneously injected in mice under anesthesia 

(90 mg/kg of ketamine obtained from Hosperia Inc, IL and 5mg/kg of Xylazine obtained from 

Lloys Inc, IA). Tumor growth of mice was followed twice a week by measuring bi-directionally 

with a digital caliper. To determine tumor volume, we used the equation: 0.52 x L x W
2 

(L is the 

length and W
2
 is the squared width). All animal experimentation and surgical procedures were 

carried out in compliance with NIH’s principle of Laboratory Animal Care and according to the 

guidelines of NDSU’s Institutional Animal Care and Use Committee (IACUC). All animals were 

also provided with irradiated food and sterile water throughout the study.  

Conjugation of Infra-red Dye to IgG2A11 (Work Performed by Anil Wagh, Department of 

Pharmaceutical Sciences, NDSU) 

Cy5.5 was labeled to IgG 2A11 as previously described [249]. Briefly, 1 mg of IgG 2A11 

dissolved in 1ml of PBS (10 mM, pH 7.4) was added to 46 µg of Cy5.5 monofunctional N-

hydroxysuccinimide ester (Cy5.5-NHS) (GE Healthcare) at room temperature for 15 mins. The 

complex was subsequently purified by size exclusion chromatography using a Sephadex G-50 

column (GE Healthcare). The concentration of protein from the purified complex was 

determined by BCA assay (Thermo Scientific). To determine the number of Cy5.5 fluorophores 
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per antibody, the absorbance of the conjugate was measured between 250-750 nm by using a 

spectrophotometer (Spectramax Molecular Device).  

In vivo Spectral Imaging Studies (Work Performed by Anil Wagh, Department of Pharmaceutical 

Sciences, NDSU 

0.75 mg/ml of Cy5.5-labeled IgG 2A11 was administered via tail vein injection to both 

RAGE positive tumor-bearing mice (mice carrying WM115-RAGE tumor) and RAGE negative-

tumor bearing mice (mice carrying WM115MOCK tumor) under intraperitoneal anesthesia. The 

mice were subsequently subjected to Near Infra-Red Fluorescence (NIRF) reflectance imaging 

(Kodak FX Pro, Carestream Health Incorporation) at 0, 4, 24 and 48 hours after injection as 

previously described [250, 251]. The acquisition time for images was set to 1 min and the images 

were analyzed using Kodak Digital Science ID software. The fluorescence images were 

normalized by subtracting the average fluorescence intensities of the region of interest from the 

background of the adjacent skin of the mice. A 150W halogen was used as the excitation light 

source. Corresponding band pass filters (Carestream Health Incorporation) to adjust excitation to 

a wavelength between 615-645 nm and emission to a wavelength of 680-720 nm was used for all 

in vivo imaging purposes. Eight mice were used per group and the average tumor volume used 

for all imaging purpose was 80 mm
3
 

Histological Analysis (Work Performed by Anil Wagh, Department of Pharmaceutical Sciences, 

NDSU) 

An intraperitoneal injection of 150 mg/kg pentobarbital (Ovation Pharma), as an 

anesthesia, was administered to the mice for 48 hours before subsequent euthanasia and 

extraction of tumor. The mice were sacrificed according to standard protocol. Histological 

analysis was performed as previously described  with some slight modification [248]. Briefly, 
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the extracted tumors were washed in PBS, preserved in Tissue-Tek OCT solution (Sankura 

Finetek USA Inc.) and snap frozen. The tumors were cryo-sectioned into 7 μm-thick slices and 

stained with hematoxylin-eosin (Sigma-Aldrich). NIRF fluorescence microscopy was performed 

on air-dried sections mounted on slides. To detect fluorescence, prepared slides were viewed 

using an epifluorescence microscope (Olympus IX-81). Slides were excited using a band pass 

filter with a wavelength between 635-675 nm and an emission band pass filter with a wavelength 

of 696-736 nm. The images were captured using a Hirakuchi camera interfaced with a computer 

and analysed with HCImage software (Hirakuchi). 

Treatment of Tumor Bearing Mice with IgG 2A11 (Work Performed by Anil Wagh, Department 

of Pharmaceutical Sciences, NDSU) 

Human melanoma tumor was induced in mice using the WM115-RAGE cell line. Five to 

six-week old female SCID mice under anesthesia were subcutaneously injected with (1 x 

10
6
cells/50 µl) of WM115-RAGE cells. Tumor growth was measured twice a week. At a volume 

of approximately 80 mm
3 

the mice were randomly divided into two groups of eight. To one 

group, IgG 2A11 was administered at a concentration of 0.5 mg/ml intravenously. To the other 

group, PBS was administered. The treatment with IgG 2A11 or PBS was repeated for both 

groups every 5 days for a total of 4 weeks.  

Estimation of Kinase Activity 

 

Mice were sacrificed according to standard procedures and tumors from both IgG 2A11-

treated and PBS groups were extracted. Total protein lysate was obtained from tumor by 

homogenizing tumor sample in the presence of cell disruption buffer (Life Technologies) 

supplemented with 1 mM Na3VO4 and 0.5 mM PMSF. The homogenized sample was centrifuged 

at 2,000 rpm for 2 min at 4°C. The supernatant was collected, aliquoted, and stored at –80°C. 
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The protein concentration was determined using the BCA protein assay kit (Pierce). 50 µg of 

protein was loaded on a 12% SDS gel, followed by a transfer to a nitrocellulose membrane. The 

membrane was blocked with 3% BSA in TBS at room temperature for 2 hours. Primary 

antibodies for pAkt, Akt, pERK, ERK, p-p53, p-53, GSK3β and β-catenin (Cell Signaling 

Technologies) were added at a concentration of 1:2,000 in the presence of 1% BSA/TBS-T and 

incubated overnight at 4°C. The blot was then washed three times in TBS-T and incubated for 1h 

with HRP conjugated secondary antibody (Jackson ImmunoResearch) at a 1:10000 dilutions in 

the presence of 1%BSA/TBS-T. The membrane was washed three times in TBS-T at 15 min 

interval and developed with ECL Western blotting substrate (Pierce). Blots were scanned and 

quantified with Image J (PC version of Windows). 

Estimation of NF-кB Pathway Activity 

 

To observe translocation of NF-кB to the nucleus, nuclei extracts were obtained from 

excised tumor as previously described with some modification to the original protocol [252]. 

Briefly, frozen tissue between 100 mg-200 mg was homogenized in buffer containing 0.6% 

Nonidet P-40 (Thermo Scientific), 150 mM NaCl, 10mM HEPES pH 7.4, 1mM EDTA, 0.5mM 

PMSF supplemented with a cocktail of protease inhibitor (Promega) using a Omni polytron 

homogenizer set at medium speed. To remove any unbroken tissue, the homogenized tissue was 

subsequently centrifuged for 1min at 2000rpm. The supernatant was incubated on ice for 5 mins 

and centrifuged at 5000 rpm for 5 mins to collect pelleted nuclei. The pellet of nuclei was re-

suspended in HEPES pH 7.4 buffer, aliquoted and stored at -80
o
C. The extraction process was 

carried out at 4
o
C. 50 µg of protein denatured at 40

o
C for 30 mins in the presence of sample 

buffer containing 8 M urea, glycerol, SDS, bromophenol blue, β-mercaptoethanol and 0.5 M Tris 

pH 6.8 was loaded on a 12% SDS gel, followed by a transfer to a nitrocellulose membrane. The 
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membrane was blocked with 3% BSA in TBS at room temperature for 2 hours. Primary 

antibodies for NF-кB and pNF-кB (Cell Signaling Technologies) were added at a 1:2,000 

dilution in the presence of 1% BSA/TBS-T and incubated overnight at 4°C. 50 µg of total tumor 

lysate was also blotted onto a membrane and primary antibodies for pIкBα, IкBα, pIKKα/β, 

IKKα/β and β-actin (Cell Signaling) were added at a 1:2,000 dilution in the presence of 1% 

BSA/TBS-T and incubated overnight at 4° C. Blots were then washed three times in TBS-T and 

incubated for 1 hour with HRP conjugated secondary antibody (Jackson ImmunoResearch) at a 

1:10,000 dilution in the presence of 1% BSA/TBS-T. The membrane was washed three times in 

TBS-T at 15 min intervals and developed with ECL Western Blotting Substrate (Pierce). Blots 

were scanned and quantified with Image J. 

Statistical Analysis 

Data are presented as mean ± SEM. Statistical analysis were performed between two 

groups using two-tailed paired student’s t-test for both in vivo imaging  (n=8). Values were 

considered significantly different at the P≤0.05 level. Statistical analyses were performed on the 

Kaleidagraph 4.1.0  

Results 
 

Targeting of Tumor Expressing RAGE In vivo with IgG 2A11 

Figure 4.1 shows the results of imaging with IgG 2A11-Cy5.5 conjugates in both 

WM115-RAGE (RAGE-positive tumor) and WM115-MOCK (RAGE negative) tumor bearing 

mice. Using fluorescently tagged IgG 2A11, we were able to detect tumor expressing RAGE in 

vivo not only in the RAGE over-expressing tumor but also in the control tumor, although the 

signal was higher in the targeted tumor. Mice carrying WM115-MOCK tumors showed a lower 

fluorescent intensity as compared to mice carrying WM115-RAGE tumors. In addition, near 
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infra-red fluorescence imaging of both WM115-RAGE and WM115-MOCK showed primary 

localization of IgG 2A11 at the tumor bearing site, the mammary fat pads, as compared to any 

other region in the mice.  

Figure 4.1: Fluorescence images of the whole animals injected with Cy5.5-IgG2A11. The images 

for whole body animal were obtained after injection of the IgG2A11-Cy5.5 conjugate (left). Ex-

vivo fluorescence images of excised tumor sections (right). 

 

Histologic Results  

Results of in vivo NIRF imaging were confirmed with fluorescence microscopy. Ex vivo 

NIRF images of both tumors confirmed the marked differences in RAGE positive and RAGE 

negative tumors when bound to fluorescently labeled IgG 2A11. Excised tumor specimen of 

WM115-RAGE showed considerably higher fluorescence intensity as compared to sections 

obtained from WM115-MOCK tumor which exhibit significantly lower fluorescence intensity 

(Figure 4.1). 

Estimation of the Inhibitory Effects of IgG2A11 on Tumor Growth In vivo 

 

We analyzed the effects of anti-RAGE (IgG 2A11) antibody on the growth of melanoma 

tumors using human melanoma xenografts in vivo. The inhibitory activity of IgG 2A11 on tumor 
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growth was investigated by treating mice with several doses of the antibody. The mouse tumors 

treated with the control (PBS) continued to grow aggressively, reaching a size of approximately 

1,200 mm
3
 by day 30 (Figure 4.2). In contrast, treatment with IgG 2A11 antibody resulted in a 

significant reduction in tumor size (tumor volume at day 30 for control group was 1260 mm
3
 

while that treated with IgG 2A11 was 780 mm
3
).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Efficacy of IgG 2A11 treatment in mice model. The mice (n=8) treated with 

IgG2A11 show significantly lower tumor volumes than the mice (n=8) treated with saline only 

(PBS). 
 

Investigation of Inhibitory Activity of IgG 2A11 on Kinases from Treated Tumor 

We showed in Chapter 2 that we were able to decrease Akt activation by blocking the 

interaction of RAGE and its ligand with IgG 2A11 (Refer to Chapter 2). We therefore wanted to 

investigate whether IgG 2A11 could reduce Akt and ERK1/2 kinase activities in vivo. Western 

blot analysis was performed on tumor lysate of PBS and IgG 2A11 treated groups. Two out of 

three PBS treated tumors showed higher levels of phosphorylated Akt as compared to IgG 2A11 

treated groups (Figure 4.3). We also examined the activation of ERK-1/2. We observed that the 

difference in the phosphorylation for both PBS treated tumor and IgG 2A11 tumor was not 
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significant (Figure 4.3). We also did not observe the presence of GSK or phosphorylated β-

catenin in the cytosol. The nuclei extracts showed the presence of β-catenin, but there was no 

significant difference observed between the groups. 

 

 

 

 

 

 

 

Figure 4.3: Western blot analysis of total tumor lysate and nuclei extract. Significant increase in 

Akt phosphorylation is observed in two out of three PBS treated groups (left). No difference in 

ERK 1/2 in PBS and IgG 2A11 groups. Analysis of nuclei extract obtained from tumor showed 

no significant difference between PBS and IgG 2A11 treated groups (Right). Tumor lysate was 

obtained from three different tumors from each group.  
 

Investigation of Inhibitory Activity of IgG 2A11 on Transcription Factor (NF-кB) Activation 

from Treated Tumor 

Western blot analysis of nuclei extract did not reveal the presence of NF-кB or its 

phosphorylated form in either PBS or IgG 2A11 treated groups. We also analyzed total tumor 

lysate for intermediate proteins (for pIкBα, IкBα, pIKKα/β, and IKKα/β) involved in the 

activation of the transcription factor, but we did not observe the presence of any band (data not 

shown). 

Discussion 
 

Early detection for any disease state can greatly improve the efficacy of therapeutic 

intervention especially in cancers like melanoma where metastasis and invasion are aggressive 

and survival rate is very low [239, 253]. The traditional route to treat any disease starts with 
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diagnosis which is followed by treatment and finally in some but not all cases, prognosis. In high 

risk disease state like cancers, a patient is typically required to undergo many tests and a 

complete evaluation to determine the stage of the disease, the extent to which the cancer has 

metastasized and the type of treatment most suitable for the individual. The heterogeneity of 

cancer cells makes them very difficult to accurately diagnose and provide the proper therapy 

suited to the patient. Therefore, considerable amount of effort has been devoted to the diagnosis 

and treatment of cancer so that a better prognosis can be provided.  

An interesting prospect is the combination of diagnostic tools with therapeutic tools 

[254]. These theranostic tools are becoming an emerging biomedical platform because they are 

capable of reaching the target site, provide information of disease state, perform therapeutic 

functions, and monitor therapeutic response [254]. Several imaging techniques have become 

standard in the diagnosis of cancers. Fortunately, many of these imaging agents can be tagged 

onto molecules that serve as specific biomarkers for the intended target. In many cases, 

especially cancer cells, it is necessary to identify cell surface proteins that are abundantly 

expressed and that can act as biomarkers to distinguish from normal healthy cells [255].   

RAGE is a cell surface receptor that has been shown to be abundantly expressed in many 

cancers [256]. Therefore, we have generated antibodies to target RAGE (Chapter 1). In the 

present study, we have used one of our generated antibodies, IgG 2A11, in animal models to 

target melanoma tumors in vivo and to use it as a diagnostic and therapeutic tool. We were able 

to detect tumors expressing RAGE in vivo with the use of generated antibody by conjugating IgG 

2A11 with a fluorophore.  

Several limitations usually accompany the use of certain flurophores in in vivo imaging 

of tissue when used as diagnostic tools. These limitations include absorption of fluorescence by 
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macromolecules in the extracellular milieu, intense light scattering, autofluorescence, and 

reduction in depth penetration within tissue [249]. Researchers have often used high efficiency 

fluorescence proteins [257] and quantum dots to solve these problems [258, 259]. Unfortunately, 

the use of quantum dots in clinical settings has raised issues of toxicity because oxidation can 

result in the emission of selenium and cadmium from the dots [259]. Additionally, high 

efficiency fluorescent proteins are very large molecules [260] and are typically not tagged onto 

other large molecules like antibodies [249]. For these reasons, near-infrared dyes are the ideal 

fluorophore for diagnostic purposes because they are smaller than their counterparts, they are 

organic compounds and have the advantage of better depth penetration within tissue [261].  

The size of an antibody makes it kinetically more advantageous; its bulkiness prevents it 

from being immediately cleared by the kidney. Therefore, a full-sized antibody can typically stay 

longer in circulation than an antibody fragment, with a half-life of 21 days for IgGs. This 

extended circulation within the system is advantageous from a therapeutic perspective because it 

can result in the continuous delivery of a drug to its target. Treatment of tumor with IgG 2A11 

resulted in a significant decrease in tumor volume as compared to the control group treated with 

PBS. Recently, over-expression of RAGE in cancers has been associated with alteration of 

normal physiological molecular mechanisms such as over-expression of certain kinases and 

transcription factors like NF-кB [224, 247]. Akt, ERK1/2, and p53 have been known to play 

crucial roles in progression and development of tumors associated with the over-expression of 

RAGE [262-264]. 

The Wnt pathway has also been implicated in the progression of cancer through the β-

catenin–TCF/LEF transcription complex [265]. Typically, β-catenin is present in the cytoplasm 

and complexed with GSK-3β, axin and APC, tumor suppressor. In a normal physiological 
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setting, APC and axin assist GSK-3β in the phosphorylation of β-catenin. Phosphorylation of β-

catenin results in its subsequent proteasomal degradation which prevents its translocation into the 

nucleus and subsequent activation of TCF/LEF family transcription factors.  Deregulation of this 

pathway can prevent GSK from phosphorylating β-catenin which can lead to the accumulation of 

β-catenin in the nucleus and results in tumor progression [266]. We therefore aimed to examine 

the inhibitory effects of IgG 2A11 on these downstream signaling pathways.  

Western blot analysis of extracted tumor samples shows a significant decrease in the 

activation of Akt in two out of three groups of IgG 2A11 treated tumors. We did not observe 

GSK3β activity and subsequent phosphorylation of β-catenin in the control group as well the in 

the IgG 2A11 group. However we did observe the presence of β-catenin in the nucleus but there 

was no significant difference between the control group and IgG 2A11 treated groups. The data 

obtained suggest that IgG 2A11 does not inhibit the Wnt pathway.  We also did not observe a 

significant change in the activation of ERK. This data suggest that IgG 2A11 does not inhibit the 

activation of ERK. We analysed the nuclei extract but we did not observe the presence of NF-кB 

in the extracted nuclei. We also analyzed the total tumor lysate for other key proteins in the NF-

кB pathway. We did not observe the presence of pIкBα, IкBα, pIKKα/β or IKKα/β. A possible 

explanation for the absence of the proteins involved in this pathway can be attributed to their 

short half-lives. In 2001, Nelson and colleagues performed a multi-parameter analysis of the 

kinetics of NF-kB signaling and transcription in living cells and their data suggested that NF-кB 

protein is present in the nucleus for only a relatively short period of time of approximately 12 

minutes [267].  Additionally, the other proteins involved in the pathway are quickly subjected to 

proteosomal degradation [268].  

  



88 

 

Conclusion 
 

In conclusion, the generated full-sized monoclonal antibody IgG 2A11 was able to 

specifically target RAGE-positive tumors in vivo. Furthermore, IgG 2A11 was able to 

significantly reduce tumor size in vivo. The data obtained from this study suggest that IgG 2A11 

could be used as a diagnostic and therapeutic tool in clinical setting. 
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GENERAL REMARKS AND FUTURE PERSPECTIVE 
 

Involvement of RAGE in many diseases has led many research groups to develop anti-

RAGE therapies. Many of these RAGE related diseases, especially melanoma, have one of the 

highest mortality rate and morbidity rate. Consequently, several efforts have gone into finding 

proper intervention. These efforts have been complicated due to the structurally diverse nature of 

ligands that interact with RAGE. The heterogeneity of ligands that bind to RAGE makes it 

difficult to properly decipher the downstream signaling pathways that are affected during 

RAGE/ligand interaction. One of our goals was to use the antibodies generated in this project to 

properly understanding of RAGE/ligand interaction.  

We chose human melanoma cell lines for our cell based assays because these are cells 

where the effects of RAGE/ligand interaction have not yet been studied well. Our results 

confirmed previously published studies regarding downstream RAGE signaling. We observed an 

increase in Akt activation, NF-кB activation, and proliferation when RAGE was exposed to AGE 

products and a subsequent decrease when IgG 2A11 was added to the culture. We were also able 

to confirm these results in two out of three xenograft mice carrying human melanoma tumors 

treated with IgG 2A11. We observed a significant decrease in size in tumors treated with IgG 

2A11 as well as a decrease in Akt activation.  

Based on the promising results obtained from IgG 2A11, we will repeat similar cell based 

assays and animal studies to observe the effects of the remaining antibodies generated in Chapter 

1. However it is possible that some or all of the other antibodies might not have an inhibitory 

effect on proliferation as IgG 2A11 had in cell based assays and in vivo because of the domain of 

specificity. In the cell based assays performed in Chapter 2, AGE, which has been shown to bind 

to the VC1 domain, was used as a cell proliferative inducer of RAGE. The data obtained from 
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this project suggest that IgG 2A11 was able to prevent the binding of AGE to RAGE because 

IgG 2A11 also binds to the V domain.  

Therefore, in the future studies, we will use other RAGE ligand to interrogate RAGE and 

observe the effects that the remaining antibodies exert in the system. This can provide some 

answers as to the potential mechanism of action of the generated antibodies. We anticipate that 

the remaining antibodies will display similar effectiveness in the diagnostic ability to detect 

RAGE specific tumors in vivo and can be used as a therapeutic intervention in RAGE related 

pathologies. In order for any of the generated antibodies to be deemed therapeutically effective, 

in addition to showing appropriate efficacy in an animal model, all the antibodies will need to 

undergo several human clinical trials that demonstrate safety, effectiveness and a low adverse 

effect profile. 
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