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ABSTRACT 

In 2008, a novel and distinct Fusarium species was reported in west central 

Minnesota causing early-season yellowing and severe decline of sugarbeet. This study was 

conducted to (i) establish optimum conditions for fungal growth and (ii) determine the host 

range of the novel Fusarium. The optimum temperature for fungal growth is 24°C and root 

injury is not needed to penetrate, infect, and cause disease of sugarbeet plants. Of the 

fifteen common crops and weeds tested for susceptibility to the new Fusarium sp. in field 

and greenhouse trials, disease symptoms were only observed in sugarbeet. Host range 

plants were tested for the presence of latent infection by root isolations and PCR. The 

pathogen was only present in canola and sugarbeet. The results suggest that canola has 

implications in the sugarbeet production system and management strategies for the novel 

Fusarium species. The name and description of the new Fusarium sp. is pending. 
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INTRODUCTION 

Sugarbeet (Beta vulgaris L.), which originated in north-west Europe (de Bock, 1985), 

has become an economically important crop because of its high sucrose content. In 2011, 

the world production of sugarbeet was 271.6 million tons. The United States is the third 

largest producer in the world producing 26.1 million tons from 490,930 ha (FAO, 2013). 

In the United States, sugarbeet production is concentrated in Minnesota and North 

Dakota (Upper Midwest), California, Idaho, Oregon, and Washington (Far West), Colorado, 

Montana, Nebraska, and Wyoming (Great Plains region), and Michigan in the Great Lakes 

region (Harveson et al., 2002). From these states, Minnesota, Idaho, and North Dakota are 

the main producers. In 2012, Minnesota produced nearly 12.3 million tons of sugarbeets, 

compared to 6.4 million tons produced by Idaho and more than 6 million tons of sugarbeet 

in North Dakota (USDA-NASS, 2013). 

In the Red River Valley (RRV) of Minnesota and North Dakota, the sugarbeet industry 

suffers significant losses annually, because of the different diseases that affect the crop. 

Among the more common diseases are Cercospora leaf spot, Rhizoctonia root and crown 

rot, Aphanomyces root rot, Rhizomania and Fusarium yellows (Bolton et al., 2012; Bolton et 

al., 2010; Dyer et al., 2004; Bradley et al., 2006; Windels et al., 2005). 

Within this group, Fusarium yellows disease represents a constant constraint to 

sugarbeet production in the area. Seven Fusarium species have been associated with 

Fusarium yellows disease of sugarbeet, of which Fusarium oxysporum f. sp. betae is the 

main causal organism (Hanson and Hill 2004; Burlakoti et al., 2012). Fusarium yellows of 

sugarbeet was identified for the first time in United States in 1931 (Stewart, 1931), and in 

the RRV of Minnesota and North Dakota in 2002 (Windels et al., 2005). Affected plants 

develop interveinal yellowing of the leaves, chlorosis, scorching and wilting, which are 

accompanied by vascular discoloration of the taproot (Hanson and Hill, 2004). This disease 
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can cause substantial reduction in root yield, sucrose content, and juice quality (Hanson et 

al., 2009; Campbell et al., 2011). Economic losses due to this disease have been estimated 

to be 5 to 50 percent due to yield reduction (American Crystal Sugar Company, 2010). 

In 2005, symptoms similar to those of Fusarium yellows disease were observed in 

American Crystal Fusarium screening trials near to Sabin, MN, as well as in a few fields in 

the Moorhead factory district in west-central Minnesota. However, this disease exhibited 

distinctive symptoms differing from yellows, including severe root rot, vascular discoloration 

of the petiole and earlier death of the plants 30 to 45 days after planting. Preliminary 

isolations from affected plants resulted in consistent recovery of an unknown Fusarium 

species (Burlakoti, 2007; Rivera et al., 2008). Cultures of the unidentified Fusarium in 

potato dextrose agar (PDA) medium, presented bright pink-orange color on the underside of 

the culture (Rivera et al., 2008); and production of abundant microconidia, but sparse 

macroconidia, which separated this new Fusarium from F. oxysporum. 

Restriction fragment length polymorphism (RFLP) patterns of the internal transcribed 

spacer (ITS) regions of the rDNA of the uncharacterized Fusarium, using the restriction 

enzymes Alu1, Fnu4HI, HaeIII and HhaI, revealed a distinct pattern that did not match any 

known Fusarium species (Rivera et al., 2008). In addition, the gene for the translation 

elongation factor 1-alpha (TEF-1α) from 12 single-spore isolates was partially sequenced. 

Comparisons of the TEF gene sequence data using the FUSARIUM-ID and GenBank online 

databases also did not match any described Fusarium species (Burlakoti, 2007; Rivera et 

al., 2008). Based on field symptoms, culture morphology, pathogenicity, RFLP patterns, and 

TEF sequence analysis the unknown Fusarium species was identified as a novel Fusarium 

species (Rivera et al., 2008). Recently, phylogenetic analysis of three Fusarium genes 

sequences (TEF-1α, Calmodulin, and mtSSU rDNA) showed F. novum to be distinct from all 

others Fusarium species, but most closely related to F. acutatum in the F. fujikuroi group 

(Secor et al., 2013 in preparation). 
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Since the novel Fusarium species is more aggressive and can affect sugarbeet plants 

very early in the season causing seedling death, petiole infection, and severe root rot, the 

disease produced by the new Fusarium has been named Fusarium yellowing decline (Rivera 

et al., 2008), to differentiate it from Fusarium yellows disease caused by F. oxysporum 

which affects the sugarbeet late in the season. 

Monocyclic diseases produced by soil-borne pathogens can be managed by reducing 

the amount of initial inoculum by soil fumigation and crop rotation (Harveson and Rush, 

1994). However, these management practices are not reliable for Fusarium species, 

because fumigants generally do not work and are expensive. Also Fusarium resistance 

structures such as chlamydospores, can survive in soil for many years (Khan, 2003). To 

date, the most effective and practical disease control strategy for soil-borne Fusarium 

pathogens is to use resistant or tolerant cultivars (Burlakoti, 2007). However, most of the 

resistance screening studies have been directed at F. oxysporum, the causal agent of 

Fusarium yellows, and not towards the novel Fusarium species which is more aggressive 

than F. oxysporum, and sugarbeet may have different resistance mechanisms to this new 

Fusarium (Burlakoti, 2007). Crop rotation can reduce fungal populations especially when 

rotated with crops not susceptible to the disease. In order to develop crop rotation 

schedules, it is important to know the susceptibility of rotational crops and weeds. 

Thus, given that Fusarium yellowing decline on sugarbeet is a new disease in the Red 

River Valley of Minnesota and North Dakota, this study was conducted to determine the host 

range of the novel Fusarium species, referred in this paper as Fusarium novum, with the 

intention of understanding the biology of the pathogen as well as the possible implications 

on crop production system and management strategies. 
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LITERATURE REVIEW 

Biomolecules, one of the main components of living organisms, are typically 

classified into proteins, carbohydrates, lipids, nucleic acids, and other small molecules. Of 

the carbohydrates, saccharides function in energy storage, and as structural components of 

the cell wall in plants and the exoskeleton of arthropods. One of the most common 

saccharides is sucrose. This molecule is a disaccharide composed of the monosaccharides 

glucose and fructose, which molecular formula is C12H22O11. The structure is presented in 

Figure 1. 

 

Figure 1. Structure of sucrose. 

 

In plants, sucrose is produced in mesophyll cells of leaves and transported via the 

phloem to heterotrophic sink organs such as meristems, roots, flowers, and seeds, where it 

is finally stored. Thus, sucrose provides carbon skeletons to organ growth and carries 

energy at the same time (Lemoine, 2000; Künh and Grof, 2010). 

Sucrose may be produced by many plants; however the world’s commercial sucrose 

is primarily produced in two domesticated crops: sugarcane (Saccharum officinarum L.) and 

sugarbeet (Beta vulgaris L.). Although sugarcane provides about 80 percent of the world’s 

sucrose, sugarbeet represents an alternative source of sucrose in cool temperate regions of 
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the world, whereas sugarcane grows mainly in tropical and subtropical regions of the world 

and does not tolerate frost. 

Sugarbeet History and Significance 

According to Winner (Campbell, 2010), fodder beets from Silesia, a region between 

Poland, Czech Republic, and Germany, were the ancestors of the first sugarbeet variety 

“White Silesian”. The first sugar extraction from beets occurred in 1747, when the physics 

professor Andreas Marggraf discovered sucrose in beets (Rolph, 1917). Franz Karl Achard 

(Marggraf’s student) developed processing methods to produce refined sugar from beets; it 

allowed him to establish in 1799 the first sucrose factory from beets at Cunern, Silesia, 

using the “White Silesian” beet, which had about 6% sucrose (de Bock, 1986). 

Soon, Napoleon Bonaparte became interested in Achard’s work and began to build 

factories in France. This was accompanied by laws allocating money to establish sugar 

schools and sugarbeet production, as well as restrictions to the importation of sugar from 

sugarcane in 1813. As a result, the sugarbeet industry rapidly developed in France (Rolph, 

1917; de Bock, 1986). After the fall of Napoleon, excess sugar supplies caused prices to 

collapse and most of the sugarbeet factories were closed. However, the beet sugar industry 

arose again after decline of slavery in the West Indies and was successfully established in 

most of Europe (Rolph, 1917; Harveson et al., 2009). 

In the early 1800s, beetroots brought by American colonists were already grown in 

gardens in United States, but efforts to develop beet sugar industry were unsuccessful. 

These attempts occurred during the mid-1800s in Philadelphia, Massachusetts, Wisconsin, 

Illinois, Michigan, and Utah (Harveson et al., 2009). Finally, during the 1870’s, the 

commercial production of beet sugar was established in California. By 1879, E. H. Dyer built 

the first successful beet sugar factory in Alvarado (now Union City), California. Two other 

factories were established in California, one in Watsonville by Claus Spreckels (1888) and 
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the other in Chino by the Oxnard brothers (1891), who constructed other factories in 1890 

in Grand Island and Norfolk, Nebraska (de Bock, 1986; Rolph, 1917; Harveson et al., 

2009). 

Soon after, sugarbeet production and factories expanded very quickly in United 

States. To date, the sugarbeet crop is concentrated in the Upper Midwest (Minnesota and 

North Dakota), the Far West (California, Idaho, Oregon, and Washington), the Great Plains 

region (Colorado, Montana, Nebraska, and Wyoming), and the Great Lakes region 

(Michigan) (Harveson et al., 2002). Of these areas, Minnesota and North Dakota leads the 

US in sugarbeet production in 2012, providing 52% of the total U.S. production (USDA-

NASS, 2013). 

Beet sugar production in the Red River Valley (RRV) of Minnesota and North Dakota 

began in 1926, when the first factory was established in East Grand Forks, MN. This factory, 

plus four others located in Drayton, Hillsboro, Crookston, and Moorhead are property of 

American Crystal Sugar Company, one of the three grower-owned cooperatives in the 

region. The other two cooperatives, Minn-Dak Farmers Cooperative and Southern Minnesota 

Beet Sugar Cooperative, began sugarbeet processing in 1974 and 1975 respectively, 

operating one factory each (Shoptaugh, 1997; Windels et al., 1998; Khan, 2005; Secor et 

al., 2010). In 2012, these cooperatives were responsible for 57% of the total U.S. area 

planted, which produced 18.3 million tons of sugarbeets (USDA-NASS, 2013). 

Currently, sugarbeet is grown in about 50 countries, with the highest production in 

France, Russia, and United States. This crop, which is considered an important agricultural 

export commodity, had exports of 649,241 tons of sugar in 2010 with a value of more than 

$42.8 million. In addition, sugarbeet production in 2011 reached 271.6 million tons 

harvested from 5 million ha land (FAO, 2013). 
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Sugarbeet Diseases in the Red River Valley 

Under favorable environmental conditions, pathogens that attack plants have a 

tremendous impact on food production, ecosystem stability, and worldwide economy. In the 

sugarbeet case, the crop is susceptible to many diseases caused by bacteria, fungi, viruses, 

nematodes, phytoplasmas, oomycetes, and parasitic plants. 

During most of the 1980’s and 1990’s, Aphanomyces root rot was the predominant 

disease in the Red River Valley (RRV) of Minnesota and North Dakota (American Crystal 

Sugar Company, 2011a). Aphanomyces root rot is caused by Aphanomyces cochlioides 

Drechsler. Plants can be infected by the fungi during the seedling stage as well as older 

roots. Visible symptoms are seedlings with yellowed leaves that wilt during hot, sunny days 

and appear to recover overnight. The roots develop water-soaked lesions with tan-yellow 

color. The pathogen survives as oospores in plant debris and soil, and is stimulated to 

germinate by root exudates when wet soils provide favorable conditions for infection 

(Harveson et al., 2009; Dyer et al., 2004). 

Rhizomania appeared late in the 1990s affecting several fields in the region, and now 

most field are infected. The disease is caused by the virus Beet Necrotic Yellow Vein Virus 

(BNYVV), which is transmitted by the protozoan Polymyxa betae Keskin by zoospores. Root 

symptoms are present as an extended mass of fine secondary roots that prevent water 

uptake by the plant; consequently, leaves exhibit chlorosis and a fluorescent yellow 

appearance (Bradley et al., 2006; Harveson et al., 2009; American Crystal Sugar Company, 

2011a). Resistance to the virus is used to manage the disease, but resistance-breaking 

strains of the virus have appeared. 

This decade, the greatest concern has been Rhizoctonia, a pathogen that although 

has always been present in the region, seldom was a problem (American Crystal Sugar 

Company, 2011a; American Crystal Sugar Company, 2013). Rhizoctonia root and crown rot 



8 

is produced by Rhizoctonia solani Kühn. Most of the infections are initiated in the crown; 

typical symptoms are wilting of the leaves and black lesions of petioles at the point of 

attachment to the crown, which spread quickly to the root tissue. Rhizoctonia solani 

survives as mycelium or sclerotia in plant debris and soil. The pathogen becomes active at 

soil temperatures of 12 to 35°C and 26.7°C is the optimum for infection (Khan et al., 2009). 

The disease is favored by poorly-drained soil (Harveson et al., 2009; Bolton et al., 2010). 

Other diseases such as Cercospora leaf spot and Fusarium yellows have been 

detected during the last years affecting commercial fields and causing significant economic 

losses (American Crystal Sugar Company, 2010; American Crystal Sugar Company, 2011a; 

American Crystal Sugar Company, 2011b; Burlakoti et al. 2010). 

Cercospora leaf spot, caused by the fungus Cercospora beticola (Sacc.), is favored by 

warm weather, frequent rains, and high humidity. Leaf spots about 3-to 4-mm in diameter 

with ash-gray center and dark-brown borders are typical symptoms of the disease. The 

fungus survives over winter on plant debris, and when moisture is adequate, conidia are 

formed again to infect new plants via splashing water (Harveson et al., 2009; Secor et al., 

2010, Bolton et al., 2012). Fungicide resistance management is critical for disease control. 

Fusarium yellows is a disease primary induced by F. oxysporum f. sp. betae. It is 

characterized by interveinal chlorosis and wilting of the older leaves, as well as vascular 

discoloration of the taproot without external root symptoms. The pathogen survives as 

macroconidia, chlamydospores, and mycelium in soil and plant material; temperatures over 

25 to 28°C are favorable to optimal symptoms development (Windels et al., 2005; Hanson 

and Hill, 2004; Harveson et al., 2009). 
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Fusarium Species Causing Disease in Sugarbeet 

Fungal species belonging to the genus Fusarium are worldwide and can be found in a 

wide range of crops causing significant yield and quality reductions. The sugarbeet crop is 

not an exception. At the moment there are more than seven species of the genus Fusarium 

associated with foliar yellowing, wilting, and root rot in sugarbeet plants. The diseases 

induced by these Fusarium species cause significant reduction in yield and quality of the 

roots, resulting in low sucrose content and juice impurity. 

In United States, foliar symptoms are characterized by interveinal chlorosis and 

wilting, as well as vascular discoloration of the taproot, which were described for first time 

in sugarbeet in 1931 (Stewart, 1931). Stewart identified the causal agent of this disease, 

Fusarium yellows, as F. conglutinans var. betae, however the pathogen was reclassified 

later as F. oxysporum f. sp. betae (Ruppel, 1991). 

By 1991, Ruppel reported that isolates of F. acuminatum, F. avenaceum, F. 

sambucinum, F. equiseti, F. proliferatum, F. solani, and F. oxysporum were isolated from 

diseased sugarbeet plants on seven states in the U.S. and Canada. However, only F. 

acuminatum and F. oxysporum infected 3-month old sugarbeet plants and produced 

symptoms typical of Fusarium yellows, while F. avenaceum just affected seedlings. Ruppel 

also reported that F. solani produced necrosis in the taproot and secondary roots of 

seedlings without visible wilting or foliar chlorosis (Ruppel, 1991). 

In a subsequent study, Harveson and Rush (1998) established that F. oxysporum 

isolates producing root-rot symptoms on sugarbeet seedling in Texas, were in fact a formae 

speciales different to that producing yellows disease, and were designated as F. oxysporum 

f. sp. radicis-betae Harv. & Rush. Furthermore, from isolates collected in the western U.S. 

during 2001, four species, F. acuminatum, F. avenaceum, F. solani, and F. moniliforme, 
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induced symptoms identical to those caused by F. oxysporum f. sp. betae on sugarbeet in 

greenhouse tests (Hanson and Hill, 2004)  

Fusarium oxysporum f. sp. betae, the cause of yellows disease, was identified for 

first time in the RRV of Minnesota and North Dakota in 2002 (Windels et al., 2005). By 

2004, eight F. graminearum isolates were associated with yellowing in sugarbeet fields from 

Minnesota; however, only three of those isolates were pathogenic to sugarbeet after 

pathogenicity tests (Hanson, 2005). In 2005, three species of Fusarium, F. oxysporum, F. 

graminearum and what appeared to be F. sambucinum were isolated from sugarbeet 

affected with yellows disease in Minnesota (Secor and Rivera, 2005). After further 

examination, F. sambucinum first found in 2005 was actually a previously non-characterized 

Fusarium species. Subsequently, this novel Fusarium species was tentatively called F. 

novum and documented as the cause of yellow decline of sugarbeet (Rivera et al., 2008). 

Of these Fusarium species reported to infect sugarbeet, only Fusarium oxysporum f. 

sp. betae and recently F. novum, have been recognized as the main causal organisms of 

Fusarium yellows disease and Fusarium yellowing decline on sugarbeet respectively (Ruppel, 

1991; Rivera et al., 2008). Although both species have been implicated to induce yellowing 

symptoms in the field, little is still known about the biology of F. novum. However, it is 

known that F. oxysporum can survive in soil and plant residues as spores, chlamydospores, 

and mycelium between growing seasons. At the beginning of the growing season, the 

fungus penetrates susceptible sugarbeet roots forming new spores and colonizing the 

vascular system. Once the fungus has become established, it moves through the vascular 

system producing the typical foliar symptoms of the disease. In addition, colonization of the 

plant tissue accelerates wilting of the plant, followed by necrosis of the roots and petiole 

vascular elements which ultimately lead to death of the plant. Thus, the fungus returns to 

the soil as macroconidia to overwinter as chlamydospores and infect new plants the next 

season (Khan et al., 2003; Harveson et al., 2009). 
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Taxonomy of the Genus Fusarium 

Within the ascomycetous fungi, the genus Fusarium is highlighted as one of the most 

important groups due to it is wide distribution around the world and the many species 

associated with destructive diseases in several economically important crops. Since the 

genus Fusarium was described in 1809 by Link, based only in the morphological character of 

its banana-shaped maconidia (Leslie and Summerell, 2006), almost a thousand species 

have been assigned to this genus. 

Several taxonomic systems have been proposed during the last decades, most of 

them supported by Wollenweber and Reinking’s work in Die Fusarien. They proposed a 

system based on 16 sections of Fusarium containing 65 species, 55 varieties, and 22 forms 

(Moretti, 2009). This system was replaced by the system of Snyder and Hansen in 1940, 

which regrouped the genus into just nine species using single conidia cultures. One of these 

was F. oxysporum, which clustered species in section Elegans (Snyder and Hansen, 1940). 

By 1983, Nelson and collaborators published an identification manual with photographs of 

structures such as macroconidia, microconidia, conidiophores, and chlamydospores, which 

were produced on carnation leaf agar for proper identification (Nelson et al., 1983). This 

manual basically was a bridge between the most important taxonomic systems previously 

developed. Fusarium oxysporum and F. solani were the only species that continued 

unchanged from Snyder and Hansen taxonomy (Nelson, 1991). The last identification 

manual available for the Fusarium genus was developed by Leslie and Summerell (2006), in 

which they present 70 species whose classification is based on morphological and 

phylogenetic information. 

At the moment there are reported more than 80 species in the genus Fusarium, from 

which F. oxysporum f. sp. betae, F. graminearum, F. sambucinum, F. acuminatum, F. 

avenaceum, F. solani, and F. moniliforme have been reported as pathogenic on sugarbeet 
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(Ruppel, 1991; Harveson et al., 2002; Hanson and Hill, 2004; Hanson 2005; Secor and 

Rivera, 2005; Burlakoti, 2007). In 2005, a previously non-characterized Fusarium was 

implicated as the etiological agent of yellowing decline disease on sugarbeets (Rivera et al., 

2008). For this pathogen, the temporary taxonomy is: 

Kingdom: Fungi 

Phylum: Ascomycota 

Class: Sordariomycetes 

Order: Hypocreales 

Family: Nectriaceae 

Genus: Fusarium 

Species: Fusarium novum (Formal name pending final approval) 

Source: G. Secor (personal communication) 

History of Fusarium Yellowing Decline 

Fusarium yellows disease, produced by F. oxysporum f. sp. betae, is one of the most 

significant diseases of sugarbeet in the Red River Valley of Minnesota and North Dakota 

because of the monetary losses that it produces (Windels et al., 2005). Nevertheless, in 

2005, a serious Fusarium yellows-like disease was noticed for first time in American Crystal 

Fusarium screening trials near to Sabin, MN, as well as in a few fields in the Moorhead 

factory district in west-central Minnesota. Even though symptoms of this disease resembled 

those of Fusarium yellows disease, affected sugarbeet plants were noticed very early in the 

season with vascular discoloration of the petiole vascular elements and a severe root rot 
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that resulted in death of seedling just 30 to 40 days after planting (Burlakoti, 2007; Rivera 

et al., 2008; G. Secor, personal communication). 

Morphological characterization of the pathogen linked to the disease on sugarbeets 

was possible from isolates recovered from infected fields, indicating that it belongs to the 

genus Fusarium. Because the symptoms observed in sugarbeet were more aggressive and 

similar but different to those normally observed in Fusarium yellows, the disease was 

referred as Fusarium yellowing decline, to differentiate it from the disease caused by F. 

oxysporum (Rivera et al., 2008). 

Symptoms of Fusarium yellowing decline disease have been observed in commercial 

fields in west-central and southern Minnesota, including several cultivars with reported 

resistance to yellows (Rivera et al., 2008). In 2013, several fields with yellowing decline 

were documented in the Crookston factory district. This indicates that the disease has 

spread to other sugarbeet production areas in the Red River Valley of Minnesota and North 

Dakota since it was found in 2005. However, the complete distribution and range of the 

disease are not yet known (G. Secor, personal communication). 

This unknown Fusarium species has been tentatively reported as F. novum, based on 

restriction fragment length polymorphism (RFLP) of the internal transcribed spacer (ITS) 

region and phylogenetic analysis of three gene sequences, TEF-1α, Calmodulin, and mtSSU 

rDNA, that did not match any previously reported Fusarium spp from Fusarium ID (Geiser et 

al., 2004). This species appears to be most closely related to F. acutatum in the F. fujikuroi 

complex with 98% homology (Figure 2) (Rivera et al., 2008; Secor et al., 2013 in 

preparation). Fusarium acutatum, is a pathogen recently found in chickpeas (Cicer arietinum 

L.) and potato (Solanum tuberosum L.) in India, Pakistan, and Egypt, and it is not known to 

be a pathogen of sugarbeet or found in the U.S. (Gopalakrishnan and Strange, 2005; 

Gopalakrishnan et al., 2005; Abo-Elnaga et al., 2013). Plants affected by the novel 
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Fusarium species typically develop interveinal chlorosis and yellowing of the leaves early in 

the season, as soon as 4 to 6 weeks after emergence or even as seedlings (G. Secor, 

personal communication). Because the pathogen and any associated toxins are transported 

via vascular system (xylem), at the beginning of the disease is very common to see affected 

only one side of the older leaves, which show the characteristic yellowing moving distally 

while the other side still remains green. Eventually, the older leaves wilt and scorched with 

each passing day, and plants may die early. Vascular discolorations of the taproot and 

petiole vascular elements, as well as death of seedlings are strong evidence of Fusarium 

yellows decline (Figure 3) (Rivera et al., 2008).  
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Figure 2. Phylogenetic analysis inferred from the partial EF-1α, CAL, and mtSSU rDNA 
sequence datasets. Fusarium novum groups next to F. acutatum in trees inferred from the 
combined datasets. Fusarium oxysporum was used as outgroup to root the tree. 

 



Figure 3. Fusarium yellows decline symptoms on sugarbeet. Interveinal chlorosis and 
yellowing of leaves (A and B), scorching of leaves (C), and vascular discoloration of the root 
in cross and longitudinal sections (D).
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spp. crop rotation is unreliable because of alternate hosts which increase inoculum and 

inoculum longevity in the soil. 

Although the pathogen associated with Fusarium yellowing decline on sugarbeet has 

been successfully characterized as a new species in the genus Fusarium, little information is 

available about alternate hosts that can be a reservoir of inoculum. The identification of 

alternate hosts may have significant implications for disease management strategies based 

on inoculum reduction, particularly by crop rotation. Understanding the range of 

symptomatic and asymptomatic plants able to support the survival and reproduction of the 

novel Fusarium species is critical to managing this disease. 

The most effective and practical disease management strategy for soil-borne 

pathogens such as Fusarium, and potentially F. novum, is tolerant or resistant cultivars 

(Burlakoti, 2007). In sugarbeet most of the resistance screening studies have been directed 

at F. oxysporum and towards F. novum only in recent years. Resistance to Fusarium 

yellowing decline has been scored in the foliage of sugarbeet cultivars in the Red River 

Valley region of Minnesota and North Dakota, but root resistance has not been documented 

(Niehaus, 2011). Continuing work will be necessary to produce new sugarbeet varieties with 

good resistance to F. novum. 
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OBJECTIVES 

General Objective 

The overall objective of this study was to determine the host range of F. novum, in 

order to understand the biology and possible implications on crop production system and 

disease management. 

Specific Objectives 

1. Determine optimum conditions for growth of F. novum  

� Determine in vitro the optimum temperature for growth of F. novum in growth 

chambers 

� Evaluate the effects of wounding on infection of sugarbeet in greenhouse trials. 

2. Determine the host range of F. novum from crops commonly grown in rotation with 

sugarbeet as well as weeds commonly found in sugarbeet fields by field and greenhouse 

trials. 
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MATERIALS AND METHODS 

Locations 

This research was carried out at North Dakota State University in Fargo, North 

Dakota, between 2012 and 2013. Temperature assessment, molecular characterization, and 

pathogenicity studies were conducted on the research laboratories of the Department of 

Plant Pathology and AES-Research Greenhouse Complex. Field experiments were conducted 

at American Crystal Sugar Company Fusarium screening nursery near Moorhead, Minnesota. 

Isolates of Fusarium Used in this Study 

The isolates used for this research were F. novum 670-10, 670-48 and 757-1, and F. 

oxysporum 742-23 (Table 1). All were single spore isolates from the collection of Dr. Gary 

Secor, NDSU, which originated from symptomatic sugarbeet collected in the American 

Crystal Sugar Company Fusarium screening nursery in Moorhead, MN, in 2005 and 2006. 

Identity was confirmed by morphological characteristics and RFLP patterns of the internal 

transcribed spacer (ITS) regions of the rDNA (Rivera et al., 2008). These isolates were 

selected for this study based on aggressiveness showed in previous pathogenicity assays. 

Isolate 670-10 is the holotype for F. novum which has been designated Fusarium secorum 

nom. prov. and reported in the US National Fungus Collection with the BPI number 892692: 

Fusarium secorum 2006, USA NRRL 62593. Because F. secorum acceptance is provisional, 

F. novum will be used in this thesis. 
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Table 1. Fusarium species isolates used in this study. 

Isolate Fusarium Species Origin Year collected 

670-10 F. novum Moorhead, MN 2005 

670-48 F. novum Moorhead, MN 2005 

742-23 F. oxysporum Moorhead, MN 2006 

757-1 F. novum Moorhead, MN 2006 

 

Determining Optimum Conditions for Growth of F. novum 

Temperature Evaluation 

Single spore F. novum isolates 670-10, 670-48, and 757-1 and F. oxysporum isolate 

742-23 were prepared and used to evaluate optimum temperature for growth. Each isolate 

was grown on three plates containing PDA medium (Appendix A) and incubated under 

continuous light at room temperature for seven days. After incubation, each replicate plate 

was processed for each isolate by removing 3 mm diameter discs, at 10 mm from the 

colony edge at two day intervals. Discs were placed at the center of a 10 cm diameter 

plastic petri dish (BD Falcon TM, San Jose, California) containing PDA medium. Petri dishes 

were incubated in growth chambers (Percival, Perry, IA) at seven different temperatures (5, 

10, 15, 20, 25, 30, and 35±1°C) in the dark. The temperatures were evaluated by two 

separated experiments, first experiment evaluated temperatures range from 5 to 25°C and 

second experiment temperatures from 15 to 35°C. Both experiments were conducted in a 

randomized complete block design (RCBD) with three replicates, and three petri plates per 

treatment. Colony diameters were recorded at two day intervals for each replicate at all 

temperatures for nine days. Each colony was measured four times and then discarded. An 

analysis of variance was conducted to establish temperature and isolate effects on fungal 

growth using SAS program version 9.3 (Statistical Analysis System, Cary, NC). The rate of 
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growth for each isolate, dy/dt, was calculated for each temperature as the product between 

the colony area at the end of the experiment and the number of days needed to reach the 

area (cm2 d-1). A regression equation was developed for each isolate to describe the effects 

of temperature on fungal growth using Excel program (Microsoft Excel 2010). The minimum 

temperature (Tmin) and optimum temperature (Topt) required for fungal growth were 

estimated from the quadratic-order polynomial temperature-response function per isolate. 

Inoculation Methods 

Three greenhouse inoculation methods were compared for infection efficacy using F. 

novum isolates 670-10, 670-48, and 757-1, and F. oxysporum 742-23. Sugarbeet seeds of 

the Fusarium susceptible variety 4010RR (Syngenta Seeds, Minnetonka, MN) were used for 

these trials. For all experiments, seeds were sown in cylindrical plastic pots, 20 cm diameter 

pots (National Polymers Inc., Lakeville, MN), filled with growing medium Sunshine® Mix 1 

(Sun Gro Horticulture, Bellevue, WA). Fertilization was performed with 10 g of Osmocote 

15-9-12 (Scotts-Sierra Horticultural Products Co., Marysville, OH) per pot. Each experiment 

was conducted twice in a randomized complete block design (RCBD) with five replicates, 

each with five plants. Plants were maintained into the greenhouse at a constant 

temperature room of 24°C supplemented with 16 h light and at 16°C with 8 h without 

supplemental light. 

Inoculation method 1: pre-plant infested soil 

Sugarbeet seeds were sown in Sunshine® Mix 1 growing medium infested with F. 

novum inoculum prior to planting. Inoculum to infest growing medium was prepared for 

each isolate by mixing mycelium scraped from a sporulating 10-day-old culture with 200 g 

of a sterile mix of sand (80%) and corn meal (20%) (Quaker Oats Company ©, Chicago, IL) 

previously moistened with 150 mL of distilled water. This inoculum mix was incubated under 
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continuous light at room temperature for ten days. The fungal concentration of sand/corn 

meal was calculated by the MPN (Most Probable Number) serial dilutions method (Fernández 

et al., 2006) using water agar medium, and was adjusted with sterile sand/corn meal mix to 

7x104 colony-forming units (CFU). 

Previously moistened Sunshine® Mix 1 was infested with 25 g of inoculum in each 

pot, which was lightly mixed to a depth of 1 cm. For negative control treatment, sterile 

sand/corn meal mix alone was used as inoculum. Sugarbeet seeds cv. 4010RR were placed 

on infested Sunshine® Mix 1 surface, covered with 100 g of non-infested Sunshine® Mix 1 

and gently moistened. Pots were covered with plastic film during 10 days to maintain 

humidity into the growing medium. Plants were grown for four weeks. The experiment was 

conducted twice. 

Inoculation method 2: post-emergence inoculation without injury 

Five weeks old (4-leaf stage) greenhouse grown sugarbeet plants cv. 4010RR, were 

inoculated with a F. novum spore suspension at 4x104 conidia mL-1 from 10-day-old cultures 

grown under continuous light at room temperature. Inoculation was performed by applying 

2 mL of inoculum directly onto the crown of the plants using a pipette. For negative control 

treatment, distilled water was used as inoculum. Plants were grown for four months. Re-

isolations from plant roots were conducted at the end of the experiment on PDA-medium to 

confirm infection by F. novum and detect symptomless infections. The experiment was 

conducted twice. 

Inoculation method 3: root-dip of injured seedlings 

Inoculation was done based on the procedure of Hanson and Hill (2004). Briefly, 5-

week-old plants (4-leaf stage) were removed from pots by pulling them from the soil to 

produce wounds in the roots. Growing mix residues were brushed from the roots by hand. 
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Roots were washed with distilled water, and soaked in a conidial suspension from 10-days-

old cultures of F. novum at 4x104 conidia mL-1 for 8 min under constant agitation. Distilled 

water was used as inoculum for the negative control treatment. Plants were quickly re-

planted in clean and moistened growing mix, and gently sprayed with water to minimizer 

transplanting shock. Plants were grown for 4.5 months. Re-isolations were conducted at the 

end of the experiment on PDA-medium to confirm infection by F. novum and to detect 

asymptomatic infections. The experiment was conducted twice. 

Data analysis of infection methods 

Disease severity for pre-plant infested soil method was determined by counting the 

emergence and death of seedlings. Data were recorded every two days after germination for 

three weeks. Results were analyzed by ANOVA with the GLM procedure in SAS program. 

For post-emergence and root-dip inoculation methods, disease severity was 

evaluated by weekly assessment of all plants for foliar symptoms. Assessment began two 

weeks after inoculation for post-emergence method and five weeks after inoculation for 

root-dip method, and continued for nine weeks. Disease severity was rated using the rating 

system of Burlakoti (2007) for Fusarium yellows disease in percentage, where: 0= healthy 

plants, 1= plants stunted and wilted with few yellowing leaves (1-24%), 2= chlorosis and 

necrosis of the leaves (25-59%), 3= crown becoming dried and brown to black in color, 

leaves dying (60-89%), and 4= death of entire plant (90-100%). 

Disease severities rating in percentage were used to calculate area under disease 

progress curve (AUDPC) of each isolate inoculated as: 

AUDPC = � ��������� 	 
��� � ���
��

��
   (Shaner and Finney, 1977) 
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where Xi = Disease severity in percentage at the ith observation, ti = time (weeks between 

ratings) at the ith observation, and n = total number of observations. Levene’s test for 

homogeneity of variances was conducted to determine if data from the two trials could be 

combined for analysis. Data was evaluated by analysis of variance using SAS macro 

program version 9.3 (Statistical Analysis System, Cary, NC). 

Host Range Study 

Crop plants grown in rotation with sugarbeet, and weeds commonly found in 

sugarbeet fields were tested for susceptibility to F. novum in field and greenhouse studies. 

Host Range Plants Tested 

Fifteen common crops and weeds were tested in field and greenhouse (Table 2) for 

susceptibility to F. novum. Seeds of the different plant species were not treated with a 

fungicide, insecticide, or other compound prior to planting. 
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Table 2. Crops and weeds tested for susceptibility to F. novum. 

Crops Scientific name 

Variety 

Field Greenhouse 

Dry bean Phaseolus vulgaris L. Pinto (147) Pinto (147) 

Potato Solanum tuberosum L. Red La Soda Russet Burbank 

Wheat Triticum aestivum L. Select Select 

Barley Hordeum vulgare L. Tradition Tradition 

Corn Zea mays L. DKC 35-43VT3 DKC 35-43VT3 

Soybean Glycine max L. Peterson 12RR05 Peterson 12RR05 

Canola Brassica napus L. InVigor 8440 InVigor 8440 

Sunflower Helianthus annuus L. Mycogen 8N270 Mycogen 8N270 

Flax Linum usitatissimum  L. Omega Omega 

Oat Avena sativa L. Souris Souris 

Sugarbeet Beta vulgaris L. 4010RR 4195RR 

Redroot pigweed Amaranthus retroflexus L. Unspecified Unspecified 

Lambsquarters Chenopodium album L. Unspecified Unspecified 

Wild oat Avena fatua L. Unspecified Unspecified 

Green foxtail Setaria viridis L. Unspecified Unspecified 

 

Field Trial 

A preliminary trial was conducted at two American Crystal Sugar Company Fusarium 

screening nursery sites in 2011, but was partially lost due to flooding. The trial of crops and 

weeds was repeated in the American Crystal Sugar Company’s Fusarium screening nursery, 

a field localized in Moorhead, MN, in 2012. The site is naturally infested with F. novum 

based on previous trials (Secor unpublished). The experiment was conducted in a 

randomized complete block design (RCBD). A total of eleven treatments (crops and weeds) 

organized in four replicates were planted in the field. Each treatment (plot) was 3.3 x 7.5 

m. Crops were planted individually in each plot, while weeds (redroot pigweed, 



27 

 

lambsquaters, wild oat, and green foxtail) were planted together in the same plot. 

Separation between plots and repetitions was approximately 1 m and 7.5 m respectively. 

Crop plants and weeds were evaluated every two weeks for foliar symptoms for a total of 

four times after emergence. A total of five plants were collected randomly per treatment in 

each repetition at each observation date (20 plants x four times = 80 total plants/species). 

The lower stem was separated from whole plant and thoroughly washed with tap water to 

remove soil, disinfected by immersion in 10% sodium hypochlorite (Clorox®, Pleasanton, 

CA) plus 0.06% Tween 20 (Agdia, San Marcos, CA) for eight minutes and rinsed with 

deionized water twice. A single small subsample was removed from each lower stem piece 

and placed on PDA to determine the presence of F. novum. 

Molecular confirmation of Fusarium spp. isolates from field trial 

Eleven Fusarium isolates from dry bean, corn, wheat, canola, soybean plants and 42 

sugarbeet plants with yellowing decline were used to determine the identity of Fusarium in 

the field trial in 2012. Approximately 0.5 g of mycelial tissue was obtained by filtering 5-

day-old cultures grown on half strength PDB-medium. DNA was extracted from each culture 

using cetyltrimethylammonium bromide (CTAB) procedure with modifications (Nicholson et 

al., 1997). Briefly, mycelium was disrupted in a Fast Prep Machine (FP120, Bio101, Thermo 

Electron Corporation, Carlsbad, CA) for 4.5 sec at 6.5 m/sec of speed. Samples were 

centrifuged and incubated at 60°C after addition of β-mercaptoethanol. 

Phenol/chloroform/isoamyl alcohol mixture (25:24:1) and chloroform:isoamyl alcohol 

mixture (24:1) were used to denaturalize proteins and lipids. Precipitation of DNA was 

performed with isopropanol and washed with 70% ethanol. DNA was finally resuspended in 

50 µL of sterile distilled water (Appendix C). 

For these isolates the ITS region was amplified using the primers ITS-1F and ITS-4 

designed by Gardes and Bruns (1993) and White et al. (1990) respectively, cited by 
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Harrington et al. (2000) (Table 3). PCR amplifications were carried out in 25 µL reactions 

containing 30 ng of genomic DNA. A total of 22 µl master mix, which contained 1X PCR Gold 

Buffer (Applied Biosystems, Foster City, CA), 1.5 mM MgCl2, 0.2 mM dNTPs, 0.2 µM of 

primer, and 0.02 unit of AmpliTaq Gold ® DNA polymerase (Applied Biosystems, Foster 

City, CA) were added to the reaction mixture. 

Table 3. Nucleotide sequences of primers used for internal transcribed spacer region (ITS) 
amplification. 

Primer Sequence 5’ to 3’ 

ITS4 TCCTCCGCTTATTGATATGC 

ITS1F CTTGGTCATTTAGAGGAAGTAA 

 

Reactions were amplified in a PTC-200 thermocycler (MJ. Research, Inc., Watertown, 

MA) through a predenaturation at 95°C for 10 min, denaturation at 95°C for 30 sec, 40 sec 

at 52°C (Annealing), 72°C for 2 min (elongation), followed by 34 cycles since denaturation, 

and a final elongation during 10 min at 72°C. As a control, sterile water was used instead of 

fungal DNA in order to test for primer dimerization and contamination. To confirm DNA 

amplification, PCR products were separated by electrophoresis on 1% agarose gel stained 

with GelRed (Biotium, Hayward, CA), and visualized using the UV AlphaImager® HP System 

(ProteinSimple, Santa Clara, CA). 

The RFLP-ITS characterization was performed with the restriction enzyme HhaI (New 

England Biolabs, Beverly, MA) in 20 µL reactions. PCR-amplified products (10 µL) were 

digested with 0.5 units of HhaI in the presence of 1X BSA (New England Biolabs, Beverly, 

MA), 1X NE Buffer No. 2 (New England Biolabs, Beverly, MA), and 0.365X TE buffer (10 mM 

Tris-HCl pH 7.6 and 0.1 mM EDTA). Digestions were performed for 12 hours at 37 °C. 

Restriction patterns of the ITS amplification products were obtained in 5% acrylamide gels 
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stained with ethidium bromide (Appendix D) and digitalized. RFLP profiles were analyzed to 

identify polymorphisms specific to Fusarium novum. 

Data analysis 

Sugarbeet disease severity was evaluated by rating the foliar symptoms according to 

Burlakoti (2007) in percentage. Data were fitted to the monomolecular model using the 

linearized equation: 

ln [ 1/(1-y)] = ln [1/(1-y0)] + rM t  (Campbell and Madden, 1990) 

where 1 = Maximum disease severity, y = Observed disease severity, y0 = Epidemic at 

disease onset, rM = Rate of change for the monomolecular model, and t = Time in weeks 

after inoculation. Data were evaluated using SAS macro program version 9.3 (Statistical 

Analysis System, Cary, NC). 

Greenhouse Trial 

In this trial, seeds were sown in 12.5 x 25 cm plastic liner box pots (Belden Plastics, 

St. Paul, MN), filled with Sunshine® Mix 1 (Sun Gro Horticulture, Bellevue, WA). 

Fertilization was performed with 20 g of Osmocote 15-9-12 (Scotts-Sierra Horticultural 

Products Co., Marysville, OH) per pot. Plants were kept in a constant temperature room at 

24°C (16 h light) and 16°C (8 h darkness). 

Greenhouse host range testing of crops and mix of weeds was conducted using the 

root inoculation procedure with injury, because it caused the most severe and consistent 

disease of sugarbeet in preliminary trials. For this trial, Fusarium novum isolate 670-10 was 

used as inoculum. A parallel experiment was conducted, using distilled water as inoculum. 

The water only treatment was conducted as a negative control, in order to evaluate any 

yellowing due to plant stress during the inoculation process. 
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Inoculum was prepared by washing 10-day-old fungal colonies with 1mL of sterile 

distilled water containing 0.06% Tween 20 and 0.02% Ampicillin (Sigma-Aldrich Co., St. 

Louis, MO). Plates were gently scraped with a sterile glass rod and the resulting spore 

suspension was filtered through a 150 mesh 6.0 cm diameter stainless steel sieve to 

remove the hyphal fragments. Spore concentration was counted with haemocytometer and 

adjusted to 4x104 conidia mL-1. 

Plants were inoculated when the second true leaf was unfolded at the second node. 

Root inoculation was performed as previously mentioned by removing plants from the pots, 

washing the roots with distilled water, soaking in the inoculum for eight minutes, and 

replanting in the original pot. 

The experiment was conducted twice in randomized complete block design (RCBD). 

Twelve treatments (eleven crops plus a mix of weeds) of eight plants each/replicate were 

organized in five replicates. Susceptibility was evaluated by monitoring all plants for foliar 

symptoms weekly for four weeks. Lower stems were separated from whole plant and 

thoroughly washed with tap water to remove soil. Main lower stem samples were disinfected 

by immersion in 10% sodium hypochlorite (Clorox®, Pleasanton, CA) plus 0.06% Tween 20 

(Agdia, San Marcos, CA) for 8 min and rinsed with deionized water twice. Isolates from all 

plants were done on PDA-medium to confirm infection by Fusarium novum and detect root 

infections without foliar symptom expression. 

Data analysis 

Sugarbeet disease severity was evaluated by rating the foliar symptoms according to 

Burlakoti (2007) in percentage. Levene’s test for homogeneity of variances was conducted 

to determine if data from the two trials could be combined for analysis. Data were fitted to 

the monomolecular model using the linearized equation: 
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ln [ 1/(1-y)] = ln [1/(1-y0)] + rM t  (Campbell and Madden, 1990) 

where 1 = Maximum disease severity, y = Observed disease severity, y0 = Epidemic at 

disease onset, rM = Rate of change for the monomolecular model, and t = Time in weeks 

after inoculation. Data were evaluated using SAS macro program version 9.3 (Statistical 

Analysis System, Cary, NC). 
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RESULTS 

Determining Optimum Conditions for Growth of F. novum 

Growth Temperature Evaluation 

The analysis of variance (Table 4) showed highly significant differences on fungal 

growth (cm2) among the main effect of isolates and temperatures. After nine days of 

incubation, the F. oxysporum isolate showed significantly faster growth and higher growth 

rate compared with F. novum isolates, but growth rate among the three F. novum isolates 

was not different (Table 5). 

Table 4. Mean squares for fungal growth as influenced by temperature. 

Sources of variation d.f. Fungal growth F value Pr > F 

Temp 6 3115 134.69 <.0001* 

Isolate 3 130 5.63 0.002* 

Isolate Temp 18 33 1.45 0.1483 

Rep 2 293 12.7 <.0001* 

Residual 54 23   
* Significant at P<0.05 

 

Table 5. Fungal mean growth rate after nine days of incubation for four Fusarium isolates. 

Isolate Species 
Mean growth rate 

(cm2 day-1) 
Letter group 

670-10 F. novum 1.35 B 

670-48 F. novum 1.36 B 

757-1 F. novum 1.41 B 

742-23 F. oxysporum 1.92 A 
* Significant at P<0.05 
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Fungal growth rates of each isolate per temperature were used to determine the 

trend lines that best fitted the data. The predicted growth equation and r2 value were 

established for each isolate (Figure 5).Correlation values fluctuated between 0.48 and 0.51 

for F. novum isolates and 0.63 for F. oxysporum. The quadratic-order polynomial 

regressions allowed establishing the minimum and optimum temperature required by each 

isolate to grow. The minimum temperature established were 7.8 to 7.9°C for F. novum 

isolates and 7.3°C for F. oxysporum. Optimum growth temperature required were 24±0.1°C 

and 22.5°C for F. novum isolates and F. oxysporum respectively. 

y(670-10) = - 2.94 + 0.45 T - 0.0093 T2 

r² = 0.48

Tmin = 7.9                 Topt = 24

y(670-48) = - 2.95 + 0.45 T - 0.0093 T2

r² = 0.49

Tmin = 7.8                 Topt = 24.1

y(757-1) = - 3.09 + 0.47 T - 0.0099 T2   

r² = 0.51

Tmin = 7.8                   Topt = 23.9

y(742-23) = - 4.23 + 0.69 T -0.015 T2    

r² = 0.63

Tmin = 7.3 Topt = 22.5
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Figure 5. Estimated values for growth rate on a temperature gradient, predicted regression 
curves of quadratic-order polynomial regression equations, r2 values, and minimum and 
optimum temperatures of Fusarium isolates. 
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Inoculation Methods 

Inoculation method 1: pre-plant infested soil  

Levene’s test for homogeneity of variances was performed before comparing the 

data from the trials of the pre-plant infested soil method. Variances among trials did not 

show significant differences (Table 6), so data from both trials was combined for analysis. 

Significant differences were observed in disease severity, expressed as percentage of dead 

plants, among isolates, trials, and for the interaction trial x isolate (Table 7). Percentage of 

dead plants least square means of the interaction trial x isolate ranged from 86.7 to 8.5 in 

trial 1 and from 82.5 to 4.4 in trial 2 (Figure 6). In addition, mean disease for the isolates 

showed that F. novum isolates were different from F. oxysporum at P< 0.05 (Figure 7). 

Table 6. Levene's test of homogeneity of variances for percentage of dead sugarbeet plants 
due to inoculation with the pre-plant infested soil method. 

Source DF Mean Square F value Pr > F 

Trial 1 318284 0.21 0.6436NS 

Error 448 1484877   
NS Non Significant at P<0.05 

 

Table 7. Sources of variation, degrees of freedom, and mean squares for percentage of 
dead sugarbeet plants due to inoculation with the pre-plant infested soil method. 

Source DF Mean Square F value Pr > F 

Trial 1 2923 7.33 0.0071* 

Rep (Trial) 8 686 1.72 0.0913 

Isolate 4 130669 327.47 <.0001* 

Trial x Isolate 4 4761 11.93 <.0001* 
* Significant at P<0.05 
Coefficient of variation = 51.91 
R-Square = 0.76 



 

Figure 6. Percentage of dead sugarbeet plants 
pre-plant infested soil method. 
different at P<0.05. 

 

Figure 7. Mean percentage of dead plants due to 
soil method. Means followed by the same letter are not significantly different at 
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Inoculation method 2: post-emergence inoculation 

Levene’s test for homogeneity of variances was performed before comparing the 

data from the trials of the post-emergence inoculation method. Variances among trials had 

significant differences (Table 8). However, observed differences were due to magnitude 

which means the mean AUDPC was higher in one trial compared with the other, mainly due 

to experimental error such as variations in greenhouse temperature or water supplied 

(Table 9). Thus, the data from both trials was combined for further analysis (Table 10). 

Analysis of variances showed significant differences in disease severity, expressed by area 

under disease progress curve, for the interaction trial x isolate, which is due to the observed 

differences in magnitude between trials. AUDPC least square means of the interaction trial x 

isolate ranged from 379.5 to 43.2 in trial 1 and from 207.8 to 81.5 in trial 2. In addition, 

mean disease AUDPC for the isolates showed that F. novum isolates were different from F. 

oxysporum at P< 0.05 (Figure 8). 

Table 8. Levene's test of homogeneity of variances for AUDPC of sugarbeet plants 
inoculated with the post-emergence inoculation method. 

Source DF Mean Square F value Pr > F 

Trial 1 7.69x109 * 18.07 <.0001* 

Error 48 4.25x108   

* Significant at P<0.05 

 

Table 9. Mean AUDPC per trial for post-emergence inoculation method. 

Trial N 
AUDPC 

Mean Std Dev 

1 25 203.59 183 

2 25 127.93 87 



 

Table 10. Sources of variation, degrees of freedom, 
sugarbeet plants inoculated by 

Source DF

Trial 1

Rep (Trial) 8

Isolate 4

Trial x Isolate 4
* Significant at P<0.05 
Coefficient of variation = 41.13 
R-Square = 0.85 

 

Figure 8. Mean AUDPC for Fusarium
followed by the same letter are not significantly different at 
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of variation, degrees of freedom, and mean squares for AUDPC 
plants inoculated by post-emergence inoculation method. 

DF Mean Square F value 
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8 5507 1.18 

4 175025 37.64 
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Fusarium isolates after post-emergence inoculation
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differences (Table 11). However, observed differences were due to magnitude which means 

the mean AUDPC was higher in one trial compare with the other, mainly due to 

experimental error such as variations in greenhouse temperature or water supplied (Table 

12). Thus, the data from both trials was combined for further analysis (Table 13). Analysis 

of variances showed significant differences in disease severity, expressed by area under 

disease progress curve, for the interaction trial x isolate, which is due to the observed 

differences in magnitude between trials. AUDPC least square means of the interaction trial x 

isolate ranged from 459.8 to 137.3 in trial 1 and from 307 to 112.1 in trial 2. In addition, 

mean disease AUDPC for the isolates showed that F. novum isolates were different from F. 

oxysporum at P< 0.05 (Figure 9). 

Table 11. Levene's test of homogeneity of variances for AUDPC of injured sugarbeet plants 
inoculated with the root-dip method. 

Source DF Mean Square F value Pr > F 

Trial 1 7.84x109 * 10.54 0.0021* 

Error 48 7.44x108   

* Significant at P<0.05 

 

Table 12. Mean AUDPC per trial of injured sugarbeet plants inoculated with the root-dip 
method. 

Trial N 
AUDPC 

Mean Std Dev 

1 25 295.53 204 

2 25 185.16 124 

 



 

Table 13. Sources of variation, degrees of freedom, and mean squares for AUDPC of 
injured sugarbeet plants inoculated by 

Source 

Trial 

Rep (Trial) 

Isolate 

Trial x Isolate 

* Significant at P<0.05 
Coefficient of variation = 27.16 
R-Square = 0.91 
 

Figure 9. Mean AUDPC for Fusarium
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Sources of variation, degrees of freedom, and mean squares for AUDPC of 
sugarbeet plants inoculated by root-dip method. 

DF Mean Square F value 

1 152288 35.75 
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Host Range Study 

Field Trial 

Yellowing symptoms were observed in sugarbeet plants two weeks after emergence, 

which increased over time killing the plants in the field (Figure 10). Epidemic on sugarbeet 

fitted the monomolecular model with an r2 = 0.97, MSE = 0.00506, and rM = 0.113 (Figure 

11). Disease symptoms were not observed in any other crop or weed (Figure 12). A total of 

53 Fusarium isolates were recovered from the crops and weeds. These isolates were 

identified by morphology as F. novum, F. oxysporum, and other Fusarium species not 

pathogenic to sugarbeet (Figure 13). 

 

Figure 10. (a) Sugarbeet plot infected with yellowing decline disease, (b) sugarbeet plant 
with yellowing and scorching of the leaves, (C) dead sugarbeet plant due to yellowing 
decline disease. 

 



 

Figure 11. Yellowing decline disease severity on sugarbeet plants in the field over time.

 

Figure 12. Crops and weeds tested for susceptibility to 
Sugar Company’s Fusarium screening nursery 
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Yellowing decline disease severity on sugarbeet plants in the field over time.

 

Crops and weeds tested for susceptibility to F. novum in the American Crystal 
screening nursery in Moorhead, MN. 
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Figure 13. Fusarium spp. isolates recovered from crops and weeds in the field in 2012. 

 

Molecular identification of the 53 Fusarium spp. isolates recovered from the field trial 

was confirmed through amplification of the ITS region with the primers ITS-1 and ITS-4 and 

RFLP analysis with the restriction enzyme HhaI. RFLP products visualized on 5% acrylamide 

gels, showed the characteristic ITS profile of F. novum for only one isolate recovered from 

canola and for all isolates from sugarbeet (Figure 14 and Table 14) 
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Figure 14. Restriction patterns of amplified DNA from the ITS region of F. novum isolates 
restricted with HhaI and visualized in 5% acrylamide gels. 

 

Table 14. Host reaction to field infection by F. novum and recovery of F. novum from plant 
samples. 

Crop Scientific name Host Reaction 

# F. novum 

isolates 

recovered 

Dry bean Phaseolus vulgaris L. A* 0 

Potato Solanum tuberosum L. A 0 

Wheat Triticum aestivum L. A 0 

Corn Zea mays L. A 0 

Soybean Glycine max L. A 0 

Canola Brassica napus L. A 1 

Sunflower Helianthus annuus L. A 0 

Flax Linum usitatissimum  L. A 0 

Oat Avena sativa L. A 0 

Sugarbeet Beta vulgaris L. S** 42 

Red root pigweed Amaranthus retroflexus L. A 0 

Lambsquarters Chenopodium album L. A 0 

Wild oat Avena fatua L. A 0 

Green foxtail Setaria viridis L. A 0 

* Asymptomatic    **Symptomatic 
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Greenhouse Trial 

Yellowing symptoms were observed in sugarbeet plants one week after inoculation, 

which increased over time killing the plants in the greenhouse (Figure 15). Levene’s test for 

homogeneity of variances was performed before comparing the data from greenhouse trials. 

Variances among trials did not show significant differences (Table 15), so data from both 

trials was combined for analysis. Epidemic on sugarbeet fitted the monomolecular model 

with an r2 = 0.89, MSE = 0.44572, and rM = 1.015 (Figure 16). Disease symptoms were not 

observed in any other crop or weed. A total of 254 F. novum isolates, identified by 

morphology, were recovered from eleven plant species in both greenhouse trials. From 

those isolates, a total of 174 were recovered from nine asymptomatic crops and one 

asymptomatic weed (Table 16). All sugarbeet plants inoculated with F. novum in the trial 

were infected by F. novum, followed by canola (63%), sunflower (49%), dry bean (30%), 

flax (24%), potato (21%), soybean (20%), wheat (6%), oat (3%), corn and green foxtail 

(1%). 

 

Figure 15. (a) Fusarium yellowing decline symptoms in sugarbeet plants inoculated with F. 
novum (isolate 670-10). (b) Comparison between sugarbeet inoculated with F. novum and 
negative control inoculated with distilled water. 
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Table 15. Levene's test of homogeneity of variances for percentage of dead sugarbeet 
plants due to inoculation with the pre-plant infested soil method. 

Source DF Mean Square F value Pr > F 

Trial 1 3516670 1.88 0.1743NS 

Error 78 1870898   

NS Non Significant at P≤0.05 

 

 

Figure 16. Yellowing decline disease severity on sugarbeet plants inoculated with F. novum 
isolate 670-10. 
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Table 16. Host reaction to F. novum and recovery of F. novum from plants in greenhouse 
inoculation trials. 

Crop Scientific name 
Host 

Reaction 

# F. novum 

isolates 

recovered 

% F. novum 

isolates 

recovered 

Dry bean Phaseolus vulgaris L. A* 24 30 

Potato Solanum tuberosum L. A 17 21 

Wheat Triticum aestivum L. A 5 6 

Barley Hordeum vulgare L. A 0 0 

Corn Zea mays L. A 1 1 

Soybean Glycine max L. A 16 20 

Canola Brassica napus L. A 50 63 

Sunflower Helianthus annuus L. A 39 49 

Flax Linum usitatissimum  L. A 19 24 

Oat Avena sativa L. A 2 3 

Sugarbeet Beta vulgaris L. S** 80 100 

Red root pigweed Amaranthus retroflexus L. A 0 0 

Lambsquarters Chenopodium album L. A 0 0 

Wild oat Avena fatua L. A 0 0 

Green foxtail Setaria viridis L. A 1 1 

* Asymptomatic    **Symptomatic 
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DISCUSSION 

In 2005 a novel and distinct Fusarium species, referred as F. novum, was reported in 

Minnesota causing early season yellowing, seedling death and severe decline of sugarbeet 

plants (Rivera et al., 2008). The disease, Fusarium yellowing decline, caused by this new 

pathogen has subsequently been found in the sugar production of west central Minnesota. 

In 2013 this disease was surprisingly found for the first time in multiple fields in the 

Crookston factory district of north central MN. The mechanism of spread is unknown. In this 

study, we determined optimum infection conditions of sugarbeet root by F. novum, as well 

as its host range from crops commonly grown in rotation with sugarbeet and weeds 

commonly found in sugarbeet fields. The results show that (a) F. novum grows slower than 

F. oxysporum and its temperatures required to grow are minimum 7.8°C and optimum 24 

±0.1°C, (b) F. novum does not need wounds to penetrate, infect the host, and cause 

disease, and (c) canola appears to be an asymptomatic host for F. novum. 

The first finding that F. novum grows much slower than F. oxysporum and requires 

7.8°C and 24 ±0.1°C as temperatures minimal and optimal to grow respectively, is 

supported by the observations in growth chambers where the mean growth for F. novum 

was null at 5°C. Growth of F. oxysporum at 10°C was ten times higher than F. novum. The 

equation predicted that F. novum isolates (670-10, 670-48, and 757-1) have a maximum 

growth rate at 24 ±0.1°C, in contrast with the equation prediction for F. oxysporum, which 

at 22.5°C may reach its maximum growth rate. 

Although the results in this experiment indicate that F. oxysporum grows at lower 

temperature and faster than F. novum, symptom expression of both diseases in the field 

differs in time. Fusarium novum symptoms are observed earlier in the field during the 

growing season than F. oxysporum. This suggests that F. novum may be more aggressive 

than F. oxysporum. Evidence of differences in aggressiveness between F. novum and F. 



48 

 

oxysporum were reported by Burlakoti (2007). This author evaluated the pathogenicity, 

virulence, and aggressiveness of both Fusarium species and found that F. novum was highly 

aggressive, inducing first disease symptoms 18 days after inoculation (DAI), and high 

disease severity expressed as AUDPC in 38 day-old sugarbeet plants. Sugarbeet in the Red 

River Valley is planted usually at the third or four week of May, when soil temperature is 

around 10 to 15°C and overwintering structures for both species have initiated the 

germination process on crop residues. In this scenario, sugarbeet seedlings are susceptible 

and do not have enough energy to defend itself against the pathogen. Thus, sugarbeet 

seedlings may be more susceptible to infection by F. novum because of its aggressiveness, 

which may explain why Fusarium yellowing decline is observed earlier in the season. 

The second finding that F. novum does not need wounds to penetrate, infect the 

host, and cause disease is supported by the two first inoculation methods, infested soil and 

post-emergence inoculation, both without root injury. Four weeks after planting sugarbeet 

seeds in soil infested with F. novum, the percentage of dead plants for ranged from 29.6% 

to 84.6%, significantly higher than the percentage of dead plants for F. oxysporum which 

was 6.4%. The post-emergence inoculation method also showed that disease severity 

caused for F. novum was higher (AUDPC from183.6 to 293.7) compared with F. oxysporum 

(AUDPC = 62.4). The plant symptoms observed with these two non-injury methods are the 

same symptoms observed with the root dip inoculation of injured seedlings. However, the 

root dip inoculation method of injured seedlings showed the highest disease severity levels 

of the three methods (AUDPC = 124.7 to 377.3), and although disease severity on 

sugarbeet plants were higher with F. novum isolates (AUDPC = 340.9 to 377.3) than with F. 

oxysporum (AUDPC = 124.7), no differences could be observed between the three F. novum 

isolates. 
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Other studies have similarly shown that an injury is not needed for Fusarium 

infection of roots. Smith and Walker (1930) showed that F. conglutinans Wollenw enters the 

cabbage roots through the intercellular spaces of the root cap. van Peer and Schippers 

(1992) showed that natural infection of the carnation roots by F. oxysporum f. sp. dianthi 

may occur either by direct penetration of the epidermis or through wounds. The results 

obtained in this study not only suggest that F. novum does not need an injury to penetrate 

the sugarbeet roots and cause disease, but also show that injury presence in the host may 

increase the disease severity caused by F. novum. This finding is consistent with the results 

obtained by Estrada (2007) who reported that the primary dry rot pathogen F. sambucinum 

was able to produce disease in the non-injured-inoculated potatoes, but disease severity 

was higher in the injured-inoculated potatoes regardless of the injury size. 

Thus, the results in this study suggest that injury facilitates the pathogen entry and 

infection of the host, which is especially an advantage when plant material is being tested 

for resistance. One limitation of this study is that the infested soil inoculation method was 

evaluated only at one concentration (7x104 conidia g-1) and the seedlings died fast and the 

role of physiological development of the plants could not be evaluated. However, at 7x104 

conidia mL-1 the percentage of dead plants by F. novum was almost four times greater than 

by F. oxysporum, which suggests one more time that F. novum is more aggressive than F. 

oxysporum. Another possibility is that the fungal concentration used in the greenhouse is 

much higher than the real fungal concentration in the field in 2012, which also may explain 

why disease severity in the RRV is still low despite that F. novum is a new pathogen in the 

area. 

The third finding that canola appears to be an asymptomatic host for F. novum is 

supported by the host range study in field and greenhouse. In both experiments, sugarbeet 

had high disease incidence, 57.5% in field and 98.4% in greenhouse, and F. novum was 
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consistently isolated from sugarbeet plants with symptoms of interveinal chlorosis, 

yellowing, stunting and scorching of the leaves, as well as vascular discoloration of the root. 

Among those symptoms, vascular discoloration of the petiole elements and early death of 

plants were observed, which are reported as distinct to Fusarium yellowing decline disease. 

In those trials, none of the other crops or weeds presented yellowing/scorching of the 

leaves, vascular discoloration/necrosis of the roots, stunting or any other symptom related 

with Fusarium yellowing decline. However, in the field only canola was found as an 

asymptomatic host to F. novum, as confirmed by both morphology and RFLP patterns of the 

ITS region. In addition, F. novum was isolated in greenhouse trials from one asymptomatic 

weed and nine asymptomatic crops besides sugarbeet, including canola, sunflower, and dry 

bean from which a high percentage of F. novum was isolated. 

As in the present study, previous studies have found that some Fusarium species 

may infect other crops different than its primary host, without symptom expression. 

Kolander et al. (2012) reported that F. virguliforme O’Donnell & T. Aoki, causal agent of the 

Sudden Death Syndrome in soybean, was able to infect fifteen plant species other than 

soybean, and five species (corn, wheat, ryegrass, pigweed, and lambsquarters) did not 

show any disease symptoms after inoculate them at planting with a layer of infested 

sorghum seeds. In this study, however, host range plants were tested in a naturally infected 

field and artificially in the greenhouse using both high inoculum concentration and root 

injury. As a result, F. novum was isolated only from one canola plant in the field, but in 

greenhouse was isolated from 50 canola plants and also from other eight crop species and 

one weed. The discrepancy on the number of species that were infected by F. novum 

between field and greenhouse evaluations may be due to the inoculation method used in the 

greenhouse which involved root injury to guarantee pathogen penetration on the different 

crop plants. Thus, due to the magnitude of the injury it is suggested that some cultural 

practices (including mechanical weed control, irrigation systems, tillage operations, and 
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others) may help that F. novum expand its host range due to possible injuries performed 

during those practices, as showed by Estrada (2007) with F. graminearum. 

So far, canola appears to be consistently a potential host to F. novum. This may 

have serious implications on sugarbeet production system and Fusarium yellowing decline 

management strategies, because canola may increase the amount of inoculum present in a 

field. In North Dakota, canola may be in rotation with sugarbeet, especially in the northeast 

region near to the Canadian border (Raymer, 2002; Nepal, 2013) where there is also 

substantial sugarbeet hectarage grown. Although the most effective disease management 

strategy for soil-borne pathogens such as F. novum is tolerant or resistant cultivars, in 2010 

and 2012 this pathogen was isolated respectively from 67% (80/120) and 89% (82/92) of 

the cultivars in the American Crystal Fusarium resistance screening trial near Moorhead, MN 

(unpublished data). These observations suggest that at least most of the sugarbeet 

varieties with resistance to F. oxysporum may be susceptible to F. novum. Further studies 

are necessary to compare resistance of sugarbeet varieties to F. oxysporum and F. novum. 

Aggressiveness of F. novum is demonstrated by both findings that it does not need 

an open injury to penetrate the sugarbeet plants, and is able to reproduce at high 

temperatures, indicates that this species is successfully adapting to the new cropping 

conditions of the region. For this reason, new crop system strategies such as early planting 

and development of resistance varieties must be implemented, in order to avoid the 

increase of the pathogen population in the soil and disease incidence in the field, as well as 

the quick spread in the region and to other crops such as canola. 

Since F. novum has been reported as a new species closely related to F. acutatum, 

which is not known to be a pathogen of sugarbeet or found in the United States, it is 

suggested that F. novum may have emerged as a result of gene transfer between two or 

more Fusarium species in the RRV region. Mobile pathogenicity gene transfer has been 
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documented in others Fusarium species (Ma et al., 2010) and could account for the 

development of F. novum. This gene transfer could further involve asexual recombination or 

parasexualism between species that could be or not be pathogenic to sugarbeet. As result of 

this, the new genetic arrangements in the novel Fusarium species may be involving complex 

interactions that are yet unknown, which also may lead to F. novum be more aggressive 

during the infection process to sugarbeet. In this scenario, it is also suggested that high 

temperatures during the cropping season, such as the registered during the last years in the 

RRV, may also be acting as a selection factor for F. novum which explain also why this 

pathogen is spreading in the region. 
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CONCLUSION 

This study shows that F. novum growth is favored by high temperatures and 

sugarbeet infection may occur without injury presence. Also, since canola appears to be the 

only symptomless host for this pathogen, this crop must be considered in crop rotation 

strategies to avoid inoculum increase and severity of Fusarium yellowing decline disease. 
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APPENDIX A. GROWTH MEDIA 

Water Agar (WA) 

Agar (Agar Moorhead and Company, Moorhead, MN) 15 g L-1 

Deionized water   1 L 

Autoclave at 121 °C for 20 minutes. When medium reaches room temperature, add 

0.2 g of ampicillin in laminar flow cabinet. 

Potato Dextrose Agar (PDA) 

Extract of 200 g slice potatoes   0.5 L 

Dextrose 10 g L-1 

Agar (Agar Moorhead and Company, Moorhead, MN) 15 g L-1 

Deionized water   1 L 

Autoclave at 121 °C for 20 minutes. When medium reaches room temperature, add 

0.2 g of ampicillin in laminar flow cabinet. 

Carnation Leaf Agar (CLA) 

Wash carnation leaves (cv. Improved White Sim) under running water for 15 min. 

Cut into pieces (5x7 mm), sterilizing the surface with 70% ethanol for 5 min, rinse three 

times with sterile distilled water, and dry. Add five or six carnation leaves pieces onto a 2% 

water agar-medium. 

Potato Dextrose Broth (PDB) 

Potato Dextrose Extract (Himedia Laboratories Ltd., Mumbal, India) 24 g L-1 

Deionized water   1 L 



62 

 

Autoclave at 121 °C for 20 minutes. In laminar flow cabinet and when medium 

reaches room temperature, add 0.2 g of ampicillin. Dispense 75 mL of medium in 125 mL 

Erlenmeyer flasks autoclaved and capped with foil. 
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APPENDIX B. FUNGAL GENOMIC DNA EXTRACTION 

1. Recover the mycelia (approximately 0.5 g) from half strength PDB-medium and put in 

the lysing-matrix-A tube 

2. Add 1 mL of 2% CTAB buffer 

3. Mix in Fast Prep Machine at 6.5 speed for 4.5 sec 

4. Put in ice for 3 min and centrifuge for 10 min at 14.000 rpm 

5. Transfer 700 µL of supernatant to 2 mL micro-centrifuge tubes 

6. Add 2 µL of β-mercaptoethanol 

7. Incubate for 30 min at 60°C 

8. Add 500 µL of phenol:chloroform:isoamyl alcohol mixture (25:24:1) vol/vol, and mix 

for 10 min on flat vortex 

9. Centrifuge for 10 min at 14.000 rpm and transfer 600 µl of supernatant to 2 mL 

micro-centrifuge tubes 

10. Add 500 µl of chloroform:isoamyl alcohol mixture (24:1) vol/vol, and mix for 10 min 

on flat vortex 

11. Centrifuge for 10 min at 14.000 rpm and transfer 500 µL of supernatant to 1.5 micro-

centrifuge tubes 

12. Add 500 µL of isopropanol and incubate for 30 min at -20°C 

13. Centrifuge for 10 min at 14.000 rpm 

14. Wash the pellet with 500 µL of 70% ethanol 

15. Dry the pellet in hood for 15 min 

16. Resuspend the DNA pellet in 50 µL of sterile distilled water 

17. Add 2 µL of RNAse and incubate for 30 min at 37 °C 
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APPENDIX C. ACRYLAMIDE GEL (5%) 

Acrylamide/Bis (29:1) Sln 30% (Bio-Rad Laboratories, 

Hercules, CA) 
20 mL 

Deionized water 75 mL 

TBE 5X 24 mL 

Ammonium persulfate 10% (w/v) 840 µL 

TEMED  160 µL 

The polymerization process takes approximately 1h, run samples for 2:30 h at 200 

volts in 1X Tris borate-EDTA (TBE) buffer. 


