
ON AUTHENTICATION OF LONG MESSAGES IN SHORT TIME FOR RESOURCE

CONSTRAINED SENSOR NETWORKS

A Thesis

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Rucha Subodh Sule

In Partial Fulfillment

for the Degree of

MASTER OF SCIENCE

Major Department:

Electrical and Computer Engineering

April 2013

Fargo, North Dakota

North Dakota State University

Graduate School

Title

ON AUTHENTICATION OF LONG MESSAGES IN SHORT TIME FOR
RESOURCE CONSTRAINED SENSOR NETWORKS

 By

Rucha Subodh Sule

 The Supervisory Committee certifies that this disquisition complies with North Dakota State

University’s regulations and meets the accepted standards for the degree of

 MASTER OF SCIENCE

 SUPERVISORY COMMITTEE:

 Dr. Rajendra Katti

 Chair

Dr. Sudarshan Srinivasan

Dr. Changhui Yan

 Approved:

 April 4, 2013 Dr. Rajendra Katti

 Date Department Chair

iii

ABSTRACT

This thesis is a collection of three different research contributions targeted towards

providing faster message authentication for long messages which have been recently accepted or

submitted for publication. The first research work explores properties of Multiple Input Shift

Register (MISR) as a universal hash function. We implemented a fixed length message

authentication code (MAC) based on MISR in software. Signing or verification time of new

MAC is two order less compared to existing MAC. The second contribution is a variable length

MAC based on MISR for use in smart grid networks. We prove security of the MAC scheme and

analyze its performance pertaining to smart grid application.

The third contribution suggests use of one-time signatures (OTS) from sigma protocols

for multicast authentication in smart grid. The proposed scheme yields three order improvements

in time performance at a very modest increase in signature size compared to currently best

known OTS scheme.

iv

ACKNOWLEDGMENTS

I sincerely thank Professor Rajendra Katti, my advisor, who has provided continuous

guidance throughout my master’s program. I could not have been at this point today without his

honest and generous support. I am also thankful to Dr. Kavasseri for introducing me to smart

grid technology and providing guidance as and when required. I am grateful to my supervisory

committee members, Dr. Srinivasan, and Dr. Yan for their guidance and advice.

I would like to thank my family and friends, who have always been greatly supportive.

Thanks also to the faculty, staff, and students of the Electrical and Computer Engineering

Department of NDSU for providing such an excellent friendly environment to learn and

progress.

v

TABLE OF CONTENTS

ABSTRACT........ .. iii

ACKNOWLEDGMENTS ... iv

LIST OF TABLES .. ix

LIST OF FIGURES ...x

CHAPTER 1. INTRODUCTION ..1

1.1. Background ...2

1.2. History ..4

1.3. Motivations and Contributions ...7

1.4. Thesis Organization ...9

CHAPTER 2. FAST MESSAGE AUTHENTICATION FOR LONG MESSAGES IN

RESOURCE CONSTRAINED ENVIRONMENT USING UNIVERSAL HASH: MHMAC . 11

2.1. Abstract ... 11

2.2. Introduction ... 11

2.2.1. Universal Hashing Approach .. 13

2.2.2. Universal Hashing and Authentication .. 16

2.3. Related Work .. 19

2.4. Our Contributions .. 23

2.4.1. New Hash Family: MISRH(M) ... 23

2.4.2. Type of Hash Family MISRH ... 24

2.4.2.1. Collision Resistant .. 25

vi

2.4.2.2. Strongly Universal .. 25

2.4.2.3. Universal2 ... 25

2.4.2.4. -almost Universal2 ... 26

2.4.2.5. -almost Strongly Universal2 .. 27

2.4.2.6. -balanced .. 28

2.4.3. Message Authentication Code based on MISRH : MHMAC 28

2.4.3.1. Construction π .. 29

2.4.4. Security of MHMAC .. 30

2.5. Performance of MHMAC .. 31

2.5.1. Software Performance .. 31

2.5.2. Hardware Performance ... 32

2.6. Conclusion .. 34

2.7. References ... 34

CHAPTER 3. A VARIABLE LENGTH FAST MESSAGE AUTHENTICATION CODE

FOR SECURE COMMUNICATION IN SMART GRIDS... 41

3.1. Abstract ... 41

3.2. Introduction ... 41

3.3. Communication Structure .. 43

3.4. Proposed Scheme .. 44

3.4.1. Construction π .. 47

3.5. Security of the Proposed Scheme ... 47

vii

3.6. Results... 50

3.6.1. Communication Overhead .. 51

3.6.2. Verification and Decryption Delay ... 52

3.6.3. Memory Usage ... 54

3.6.4. Discussion .. 55

3.7. Conclusion .. 56

3.8. References ... 56

CHAPTER 4. MULTICAST AUTHENTICATION IN THE SMART GRID WITH ONE-

TIME SIGNATURES FROM SIGMA PROTOCOLS ... 58

4.1. Abstract ... 58

4.2. Introduction ... 58

4.3. Sigma-Protocols and One-Time Signatures .. 63

4.3.1. Background .. 63

4.3.2. Our Protocol ... 68

4.4. Best Known One Time Signature Scheme in the Smart Grid 69

4.4.1. Tunable Signing and Verification ... 70

4.5. Comparison ... 71

4.5.1. Computation Time .. 71

4.5.1.1. Signing Algorithm .. 71

4.5.1.2. Verification Algorithm .. 72

4.5.2. Key Generation and Public Key Distribution Cost .. 73

viii

4.5.3. Key Length... 75

4.5.4. Signature Length .. 75

4.5.5. Storage Cost ... 76

4.6. Conclusion .. 77

4.7. References ... 77

CHAPTER 5. CONCLUSIONS .. 81

REFERENCES...........83

APPENDIX. MHMAC SOURCE CODE .. 85

ix

LIST OF TABLES

Table Page

 2.1. Comparison with Existing Universal Hashing Techniques. ... 33

 4.1. Comparison with Cao's Protocol. .. 73

 4.2. Particular Case of and 76

x

LIST OF FIGURES

Figure Page

 1.1. Smart Grid Communication Framework ([1-9] Copyright © 2011, IEEE).6

 2.1. Multiple Input Shift Registers (MISR). .. 24

 2.2. Software Performance of MHMAC. .. 32

 2.3. Hardware Performance of MHMAC. ... 33

 2.4. Comparison of Hardware Performance of MISRH with Existing Techniques, n=128.. ... 34

 3.1. Communication Structure. ... 44

 3.2. Proposed Scheme... 45

 3.3. Structure of M
p
. ... 46

 3.4. HMAC Scheme. .. 50

 3.5. Communication Overhead. .. 52

 3.6. Verification Overhead. .. 53

 3.7. Verification and Decryption Delay. ... 54

file:///C:/Users/Harshad/Dropbox/Thesis/FormattingCorrections/Thesisv2.docx%23_Toc354151761
file:///C:/Users/Harshad/Dropbox/Thesis/FormattingCorrections/Thesisv2.docx%23_Toc354151769
file:///C:/Users/Harshad/Dropbox/Thesis/FormattingCorrections/Thesisv2.docx%23_Toc354151770

1

CHAPTER 1. INTRODUCTION

We live in the era of smart digital technology. Everything we use in day to day life can be

controlled by our smart phone. We track train or bus using our phone, we find parking slot using

our phone, we receive temperature and traffic information at single click using smart phone. In

addition to this machine to machine (M2M) technology has made it possible to monitor home

appliances sitting in the office. We are moving towards using smart meters that work on demand

response mechanism and save energy. All this is made possible by use of sensor networks.

Spatially distributed sensors monitor and record data and pass it along the network. This data

needs to be secured before it is transmitted otherwise it becomes vulnerable to numerous kinds of

attacks. Data security can be divided into mainly two areas, privacy and authenticity. In this

work we will concentrate mainly on achieving authenticity. There are many well established

cryptographic schemes that achieve authenticity. But, these schemes require lot of resources in

terms of computation and storage. However, sensors have very limited resources and hence

cannot use these regular methods. Hence, there have been surge of interest in finding lightweight

authentication schemes for sensor networks. We will analyze existing schemes and propose new

schemes that are more efficient in terms of computation time as well as storage and

implementation.

 In this chapter first a brief general background on lightweight authentication schemes is

given. We also briefly introduce some of most significant existing methods. This chapter does

not intend to provide in depth explanation about sensor authentication schemes as each chapter

of the thesis consists of a stand-alone self-contained paper in which the required background and

definitions are explained. We will also discuss the motivations of our research work and

2

highlight the contributions in a separate section of this chapter. At the end the organization of the

thesis is briefly described.

1.1. Background

Sensor networks cover wide range of applications from Environment/Earth Monitoring,

Industrial Monitoring, Military Monitoring, Agriculture, Tracking Systems, and Smart Home

Monitoring. The sensor nodes have to work in resource constrained environment. They have

very limited computational power, memory, on chip space, bandwidth and power source. They

are not only resource constrained but most of them have heavy data like images. Hence they

need to be treated differently. As sensor networks collect data that could be secret or sensitive,

there is need to ensure integrity of this data. Not only in military applications but also in other

applications malicious users for their own benefit might try to tamper the data sent between

different nodes. Data integrity can be achieved using various authentication methods. Use of

asymmetric key methods like RSA or El Gamal Signature schemes in sensor networks is out of

question as they require lot of computational resources. However, symmetric key methods like

HMAC sound like a feasible option but it also requires considerable amount of hardware and

computation time. Therefore, researchers are moving towards a symmetric key approach of

hashing the input message first into a small size message and then applying a cryptographic

primitive to the hashed data.

The aim of a message authentication code is to prevent an adversary from modifying a

message sent by one party to another, without the parties detecting that a modification has been

made [1-1]. Any symmetric key authentication technique is commonly known as Message

Authentication Code (MAC). Two users who wish to communicate in an authenticated manner

begin by generating and sharing a secret key in advance of their communication. When one

3

party wants to send a message to the other, she computes a MAC tag (or simply a tag) based

on the message and the shared key, and sends the message along with the tag to the other

party. The tag is computed using a tag-generation algorithm that will be denoted by Mac;

rephrasing what we have already said, the sender of a message computes and

transmits to the receiver. Upon receiving , the second party verifies whether is a

valid tag on the message (with respect to the shared key) or not. This is done by running a

verification algorithm that takes as input the shared key as well as a message and a tag

 , and indicates whether the given tag is valid [1-1].

As mentioned earlier hash and encrypt approach is the best known way of providing

authentication for long messages in resource constrained environment. The hash functions used

in this context are called universal hash function. Term universal basically means that these hash

functions distribute their input evenly among their output. In this research we propose a new

universal hashing technique and explore its use in smart grid networks.

We will also propose a new one time signature scheme for multicast authentication is

smart grid networks. This scheme on the contrary makes use of public key signatures in the

innovative way. In this scheme we make use of sigma protocol to construct a public key

signature. This approach does not require as heavy computations as traditional public key

signatures. A public key signature scheme is used in the following way. One party , who acts as

the sender, runs to obtain keys . The public key is then publicized as

belonging to . e.g., can put the public key on its webpage or place it in some public directory.

We assume that any other party is able to obtain a legitimate copy of 's public key. When

wants to transmit a message , it computes the signature and sends .

Upon receipt of , a receiver who knows can verify the authenticity of by checking

4

whether . This establishes both that sent , and also that was not

modified in transit [1-1]. We construct one time signature using sigma protocol and prove that

even though it is a public key method it will prove to be very good choice for multicast

authentication in smart grid.

1.2. History

Universal hash functions and their use in MAC were first suggested by Carter and

Wegman in 1981[1-2]. They for the first time introduced an idea of applying cryptographic

primitive to output of universal hash in order to compute MAC. Universal hash functions are

widely preferred in sensor networks due to their ability to compute MAC in efficient time while

providing unconditional security. Cost of computing tag using universal hash functions is sum of

cost of computing hash and cost of applying cryptographic primitive to output of hash. However,

if hash compresses message well then the second step does not consume much of time [1-3].

Hence quest of finding efficient MAC is reduced to finding efficient universal hashing technique.

Since then there had been surge of interest in finding more and more efficient universal hash

constructions. These constructions are aimed to reduce signing and verification delays, hardware

resources, tag size and power consumption. The simplest construction amongst these

constructions is Cryptographic-CRC proposed in [1-4]. They propose a construction where

Linear Feedback Shift Register (LFSR) with slight modification is used as -balanced universal

hash function. However LFSR takes as many cycles as length of message to hash the message. In

[1-5] use of MISR in MAC is suggested for first time but they did not see that MISR are in fact

universal hash functions and can be used for message authentication in numerous ways. Use of

MISR introduces parallelism in Cryptographic-CRC scheme and hence improves the time

performance. The construction is very simple and requires very low hardware resources.

5

Smart grid sensor networks are gaining popularity in recent years. They have separate

standards (IEEE P2030 SG) for maintaining security. Figure 1.1 describes overall architecture of

smart grid networks. In [1-6] new utility computer network security management and

authentication in smart grid operations is proposed. However, they do not consider

communication between all types of smart grid network nodes. In [1-7], number of digital

security issues that need to be addressed for SG communication are discussed. They point out

vulnerabilities in combining SCADA/EMS systems with existing information networks. Metke

Et al. [1-8] pointed out need of message authentication code in smart grid networks. They

mention that use of existing schemes won’t be a smart choice for authentication in smart gird

networks instead there is need for a scheme that is faster and can adapt according to

requirements. In [1-9] a new framework for message authentication between different nodes of

smart grid network based on Diffie-Hellman key exchange and HMAC-RIPEMD is proposed.

However, RIPEMD is not considered as secure hash function. We suggest replacing HMAC in

their scheme with our variable length MAC and achieve two order better performances in terms

of signing and verification delay.

Smart Gird networks consist of different types of messages. The type of message can be

classified into uni-cast or multicast depending on type of application. In multicast

communication single transmitter sends a message intended for multiple receivers. These

messages many times may contain sensitive control/command messages. This necessitates need

of multicast message authentication in smart grid networks. Multicast authentication in smart

grid networks is achieved through one time signature (OTS). An OTS scheme [1-10, 1-11]

makes use of cryptographically secure one way functions so that single key can be used to sign

6

Figure 1.1. Smart Grid Communication Framework ([1-9] Copyright © 2011, IEEE).

multiple messages. These schemes are fast but have large signature size and hence cannot be

used in smart gird communication. The Bins and Balls (BiBa) [1-12] scheme reduces signature

size at the expense of increased signing delay. HORS (Hash to Obtain Random Subset) [1-13]

overcomes the deficiencies in BiBa. However, HORS requires large key sizes. This limits its use

in field devices (sensors). To address drawbacks of HORS the Tunable Signing and Verification

scheme (TSV) is proposed in [1-14]. The scheme can be adapted based on application, more

computations are performed either at the sender or receiver. Though this scheme is efficient for

communication between sensors and base station, it won’t be a good choice for communication

between two sensor nodes. Hence we suggest entirely new approach of using sigma protocols for

computing OTS. Sigma protocols are widely used for e-banking, e-voting, e-credentials but we

seek their use in smart grid networks. We achieve three orders improvement in terms of signing

7

and verification delays as compared to TSV. Also, pre-computation and storage cost is

significantly reduced.

1.3. Motivations and Contributions

The thesis is a collection of three different papers targeted towards providing fast

authentication for long messages in short time which have been recently accepted or submitted

for publication as three different papers. The first paper proposes that Multiple Input Shift

Register (MISR) is -balanced universal hash function. We perform small modification in the

existing -balanced universal hash function, Cryptographic-CRC [1-4] to construct our universal

hash function MISRH. In [1-4] hash function for any message of binary length is

defined as , where is irreducible polynomial of degree over .

We split the message of binary length to hash into data streams each -bit long,

 , , are all zero message streams. The

binary sequence can be represented using a polynomial . The MISRH is computed

using

 , where is irreducible polynomial of degree over

 .

Cryptographic-CRC requires clock cycles to compute hash on -bit long message. We

will reduce this time by the factor of L. The fastest known universal hash function is UMAC, it

requires 0.52 cycles/byte for achieving security of the order of . Whereas, MISRH requires

mere 0.13 cycles/byte to achieve the same security. In this paper we prove that MISRH is -

almost universal for , and -balanced for . We also propose different

ways of constructing MAC from MISRH and prove that construction ,

where r is counter and (Pseudo Random Function PRF) is -opt secure MAC. To

implement this construction 25648 logic elements are required. Hence, MAC scheme based on

8

MISRH will be a very good choice for message authentication in resource constrained

environment.

In second paper we propose a variable length MAC using MISRH for use in smart grid

networks. The best known message authentication infrastructure was proposed by Fauda et. Al in

[1-9]. They use Diffie-Hellman key exchange to establish a shared secret between home area

network node and building area network node. They use this shared secret to encrypt and sign

the message. They suggest using HMAC-RIPEMD128 for signing the message. However,

RIPEMD128 is not considered as secure hash. We propose replacing HMAC with our new

variable length MAC, . We analyze the security of this new MAC scheme

and prove that it is existentially unforgeable under chosen message attack. We compare

performance of this scheme with HMAC and show that our scheme performs two orders better in

terms of signing and verification delay. Also, this scheme provides a fixed length tag hence

reduces the communication overhead by significant amount too.

In third paper we propose a multicast authentication scheme for use in smart grid

networks using sigma protocols. In smart grid networks, multicast authentication is achieved

using one time signature. Numerous methods have been proposed to reduce the cost of

computation, cost of key generation and distribution, key length, signature length and storage

cost. Some methods are good in terms of computation time but they require lengthy keys or

produce lengthy signatures. Other schemes which provide short signatures require more

computation time. The best known OTS scheme today is TSV. It adapts based on type of

network configuration it is used in. It requires higher computations on either sender or receiver

node. Therefore we propose a new approach of using sigma protocol based one-time signature in

this scenario. We construct an OTS using witness hiding sigma protocol. Its security is same as

9

probability of solving discrete log problem. We provide background on sigma protocol and prove

security of OTS using sigma protocol. We compare our scheme with TSV and show that our

scheme provides three order reductions in signing and verification cost. It also provides two

order reductions in pre-computation and storage cost. However, our scheme increases signature

size by four fold compared to TSV. Even so OTS based on sigma protocol seems to be a very

good option for multicast authentication in smart grids.

In first paper provided in this thesis I worked with my advisor Dr Katti. I worked on

proving that MISR are universal hash functions. I implemented the MAC based on MISRH in

software and evaluated its performance. I also did literature survey on universal hash functions

and compared hardware performance of MISRH with existing universal hash functions. We have

submitted this paper to 16
th
 EUROMICRO Conference on Digital System Design (DSD). In

second paper of this thesis I worked with my advisor Dr Katti to construct a variable length

MAC and prove its security. I worked on evaluating the performance of the scheme and

comparing it with HMAC. The literature survey related to smart grid networks is done by Dr

Kavasseri. The paper appears in 2012 IEEE power and engineering society general meeting. In

third paper I worked mostly on evaluating the performance of the scheme and doing part of

literature survey. We submitted this paper to IEEE Transactions on Smart Grid.

1.4. Thesis Organization

This thesis contains three different research works targeted towards providing fast

authentication for long messages in short time which have been recently accepted or submitted

for publication as three different papers. Chapter 2 of this thesis consists of first paper under title

“Fast Message Authentication for Long Messages in Resource Constrained Environment Using

New Universal Hash: MHMAC”. We have submitted this paper for publication to 16
th

10

EUROMICRO Conference on Digital System Design (DSD). Chapter 3 of this thesis consists of

second paper titled “A Variable Length Fast Message Authentication Code for Secure

Communication in Smart Grids”. The paper has been accepted in 2012 IEEE power and

engineering society general meeting. Chapter 4 of this thesis covers third paper under title

“Multicast Authentication in the Smart Grid with One-Time Signatures from Sigma-Protocols”.

The paper was submitted to IEEE Transactions on Smart Grid. Finally in chapter 5 we draw

general conclusions about our research.

11

CHAPTER 2. FAST MESSAGE AUTHENTICATION FOR LONG

MESSAGES IN RESOURCE CONSTRAINED ENVIRONMENT

USING UNIVERSAL HASH: MHMAC

We have submitted this paper for publication to 16
th
 EUROMICRO Conference on

Digital System Design (DSD). The authors of the paper are Rajendra S Katti, Rucha S. Sule.

2.1. Abstract

In this paper we consider fast authentication of long messages. We prove that Multiple

Input Shift Register (MISR) are -balanced hash function and hence can be used in a Message

Authentication Code (MAC). The message to hash is split into data streams each -bit

long, , , being all zero message

streams. These s are given as input to MISR, which performs kind of division by polynomial

of degree over to give -bit hash. A cryptographic primitive is applied to the output of

MISR to get MAC. We implemented this scheme in software to evaluate the performance of the

scheme. Results of implementation show that it is possible to authenticate a message of size

4MB in 8mSec. We also insist that as the construction is very simple, it will prove to be

hardware efficient in terms of both implementation and performance. The scheme will find its

use in sensor networks and multimedia networks.

2.2. Introduction

Message Authentication Codes (MACs) are used to authenticate messages in the

symmetric key setting. A tag is sent along with a message to a receiver who verifies that the

message was not tampered using the tag. In many communication networks the communicated

messages are lengthy which in turn necessitates the existence of fast MACs. Moreover, in many

12

networks, such as sensor networks, messages are sent very frequently. This fact stresses the need

for MAC that takes multiple messages at the same time and generates a single tag for all the

messages in efficient time.

In this paper, we consider the problem of authentication of long messages with small tag

in very less number of computations. When we say less computations we are mainly referring to

hardware computations, but our scheme will prove to be a good option in case of software

implementation too. We also make sure that the scheme is easy to understand as well as

implement. We will prove that MISR is in fact a universal hash function and evaluate its

performance by implementing the scheme in software. The MAC based on MISR requires

8mSec to authenticate a message of size 4MB. There are numerous ways in which message

authentication code can be constructed from any universal hash function. We will list these

methods and show, how a simple -opt secure message authentication code MHMAC can be

constructed from our hash MISRH.

We achieve the speed by introducing parallelism where, a long data file can be split into

 shorter blocks of length and a single tag can be computed for the blocks. In this case the

time needed to compute the tag and the verification time are reduced by a factor of . To achieve

the security of the order of (probability of collision), our hash function requires 0.13

cycles/byte (apx. 128*8/60 17 cycles for message of length 128Bytes). For fixed message

length, number of cycles per byte decreases as security requirement increases, which also results

in increase in the hardware. All this is realized by simple modification in Cryptographic-CRC

method [2-4]. Cryptographic-CRC is a well-known universal hashing technique but it requires

6cycles/byte [2-10] to compress the message. We reduce it by factor of while maintaining

same hardware complexity. Most of the existing methods use very complicated ways to construct

13

universal hash functions. However, use of MISR as universal hash function not only improves

the hashing time but also provides a simpler way of constructing universal hash function. In

following subsection we will review the universal hashing approach and how it can be used in a

secure MAC setting.

2.2.1. Universal Hashing Approach

We will first start with definition of hash functions. In [2-3] hash functions are defined as

follows:

Definition 2.2.1.1:

A hash family is a four-tuple where the following conditions are satisfied:

 is a set of possible messages

 is a finite set of possible messages

 , the keyspace, is a finite set of possible keys

For each , there is a hash function . Each

In above definition could be a finite or infinite set; is always a finite set. If is a

finite set, then the corresponding hash function is called a compression function. In this situation

it is assumed that . A pair is said to be valid under key if .

Let denote the set of all functions from to . Suppose that and . Then

it is clear that . Any such hash family is termed an (N,M)-hash family.

When a hash function is used for cryptographic purposes, it’s security is decided based

on following criteria. If hash function is considered to be secure, it should be the case that

following three problems are difficult to solve.

14

 Preimage:

Instance: A hash function and an element .

Find: such that .

 Second Preimage:

Instance: A hash function and an element .

Find: such that and .

 Collision:

Instance: A hash function .

Find: such that and .

A hash function for which Collision cannot be efficiently solved is often said to be collision

resistant.

Concept of universal hash functions is introduced by Carter and Wegman [2-5] in 1979.

They state that any class of function that is universal2 has the property that given any sample, a

randomly chosen member of that class will be expected to distribute the sample evenly. He

defines a parameter
 such that, given a function , and .

 if

 and , otherwise
 . If f, or is replaced in

 by set of

elements, then sum of all elements in respective sets is computed. Thus, if is a collection of

hash functions, and then means
 . The quantity

 counts number of functions in for which and collide. If is class of functions

15

from then is universal2 if for all in ,

. Clearly for any function

to be universal2 number of collisions should be less than one th of the number of functions in

the hash family. They also introduce few examples of such functions in this work. We will prove

in section 2.4.2 that our hash function will have collision with probability

approximately , where is the length of a tag.

Since [2-5] defined universal2 hash functions, different authors proposed modified

versions of universal2 hash functions as follows:

Definition 2.2.1.2: [2-3]

Suppose that is an (N,M) hash family. This hash family is strongly

universal provided that the following condition is satisfied for every such that ,

and for every :

To prove any class of hash function to be strongly universal it is sufficient to show that

there exists a unique function that maps , where to .

Definition 2.2.1.3: [2-7]

A -almost universal2 hash function, , must satisfy that

 .

16

Definition 2.2.1.4: [2-7]

A -almost strongly universal2 hash function, , must satisfy that

 and : | .

 and , |

If is length of key , such that , , then

Definition 2.2.1.5: [2-4], [2-8]

A ϵ-balanced universal hash function, , must satisfy that

 and : .

In section 2.4.2 we will analyze our hash function MISRH according to these definitions

and show that it is in fact a collision resistant, universal2, -almost universal and -balanced

hash function.

2.2.2. Universal Hashing and Authentication

Over the past three decades MACs based on Universal Hash Family [2-5] are preferred in

sensor networks because of their ability to provide fast computation with unconditional security.

In [2-6] Carter and Wegman further introduced an authentication scheme based on universal2

hash functions. Any authentication scheme based purely on universal hash functions cannot be

used for authentication of multiple messages. In order to enable hash function based schemes to

authenticate multiple messages, [2-6] suggest to XOR, the output of hash function with random

sequence as in one time pad system. In this case, probability of forgery is same as that of

selection of random pad for MAC. We follow similar approach to prove security of our MAC.

17

As pointed out by [2-9], the speed of universal hash based MAC depends mainly on the

speed of the hashing step and the speed of encryption step. But if the hash function compresses

message well then the encryption should not take long, simply because it is a short string that is

being encrypted. Hence quest of finding fast MAC based on the universal hash function reduces

to finding fast universal hash itself. Hence, many authors proposed different designs for fast

universal hashing. Here, we will provide an overview of the methods from which our hash is

adapted. All other methods are described in detail in section 2.3.

Krawczyk [2-4] first suggested the use of Linear Feedback Shift Registers (LFSR) in

constructing MAC. This method is well known as “Cryptographic CRC”, which has very fast

hardware implementation and reasonably fast software implementations; it needs 6cycles/byte,

as shown by Shoup in [2-10]. In [2-4] hash function for any message of binary length

 is defined as , where is irreducible polynomial of degree over

 . This paper also presents a Toeplitz-Matrix based hashing using LFSR which is also

considered to be very hardware efficient. In [2-11], [2-12], [2-13], [2-14] hash schemes were

proposed that performs a division by a random irreducible polynomial. Rogaway bucket hashing

in [2-15] was the first universal hash family targeted for fast software implementation. It hashes

in about 1.5-2.5 cycles/byte [2-15]. Paper [2-16] presented a bucket hashing algorithm with

smaller key size. Halevi and Krawczyk in [2-17] present fast method for implementing Modular

Multiplication based universal hash which utilizes properties of MMX architecture achieving

speed of about 1.5-3 cycles/byte. Further [2-9] gives even faster method utilizing SIMD

architecture properties; it was the first paper that described complete construction of MAC while

analyzing the efficiency of software implementation. They introduce parallelism by dividing the

message into -bit words and then compute the hash function NH. They achieve speed of 0.52

18

cycle/byte [2-9] for achieving security of . They were the first to apply pseudorandom

function to the output of hash function to compute MAC. In [2-18] Palash Sarkar gives new

multilinear hash based on reapplication of LFSR function. However this method requires shift

and multiply operations for -bit message. It requires approximately 128*128/2048 = 8

cycles/byte to hash 2kB message when q=2 and n=128. The collision probability is ,

where is length of the key.

As mentioned earlier we will achieve better hardware performance. To compute a hash

for 2kB message with n=128, we will require mere 128 cycles resulting in performance of

0.0625 cycles/byte. To achieve this we will perform a small modification in the basic

“Cryptographic CRC” construction to introduce parallelism to form our universal family of hash

functions MISRH and apply cryptographic primitive at the output of hash to generate MHMAC.

The message to hash is split into data streams each -bit long,

 , , are all zero message streams for . The binary

sequence can be represented using a polynomial . The MISRH is computed using

formula,

 , where is irreducible polynomial of degree over

 . And finally MAC can be computed using

 or

 . As pointed out by UMAC, the security can further be improved by

appending random nonce to message before giving it as input to pseudorandom function. There

are many other ways of constructing MAC from universal hash. We will discuss these ways in

detail in section 2.4.3. Main goal of our method is to perform fast authentication of large

messages while keeping the construction simple. We also succeed in maintaining the scheme

provably secure.

19

Rest of the paper is organized as follows: In section 2.3 number of existing universal hash

functions are described. Here, we will also list other universal hash based MACs as well as few

other MACs. In section 2.4 we will describe our new hash function MISRH and analyze in which

category it fits into. We will also describe simple MAC construction MHMAC based on MISRH

and prove its security. Section 2.5 will analyze software and hardware performance of MHMAC

and compare it with existing schemes. Finally Section 2.6 will conclude this paper.

2.3. Related Work

Concept of universal2 Hash was introduced by Carter and Wegman in [2-5]. In [2-6] they

further introduced an authentication scheme based on universal2 hash functions. Any

authentication scheme based purely on universal hash functions cannot be used for authentication

of multiple messages. In order to enable hash function based schemes to authenticate multiple

messages, [2-6] suggest to XOR, the output of hash function with random sequence as in one

time pad system. However with their scheme secret key grows out of proportion if large number

of messages has to be authenticated [2-19]. To avoid this, Brassard suggests another way of

generating the pseudorandom sequence to be XORed. Since then most of the work concentrated

on finding efficient ways of generating pseudorandom sequences for such applications. In 1994

Stinson [2-7] gave few more classes of universal hash functions, he called them ϵ-almost

universal2 and ϵ-almost strongly universal2. He further proposed MAC based on these hash

functions.

On the other hand Krawczyk [2-4] suggests an innovative way of using LFSR for hashing

and then XORing the output with pseudorandom pad. He also present a Toeplitz-Matrix based

hashing using LFSR techniques which takes bits to represent hash functions compared to

 bits in original multiplicative hash(Here is length of output of hash function and is

20

length of message). In his following paper [2-8] he presents more generalized approach for

constructing such Toeplitz Matrix. In [2-11], [2-12] hash schemes were proposed that performed

a division by a random irreducible polynomial. In [2-10] Shoup evaluates different methods of

implementing provably secure MAC using universal hash, and set of pseudorandom functions as

well as permutations. He presents various algorithms for efficient implementation of these

methods. These families had shorter outputs and were therefore possibly more practical.

Universal hash based MAC methods replaced traditional ones whenever there was need

of fast processing in either software or hardware. Halevi and Krawczyk in [2-17] present fast

method for implementing Modular Multiplication based Universal Hash utilizing properties of

MMX architecture. Further [2-9] gives even faster method utilizing SIMD architecture

properties, it was the first paper that described complete construction of MAC while analyzing

the efficiency of software implementation. They suggest decomposing hash into small segments,

then apply NH to each segment separately, and further apply HMAC to concatenation of these

hashed values and nonce to compute tag. In [2-20] Black gave a formal proof for the security of

a MAC construction in which a pseudorandom function is applied to the output of a universal

hash function. Here, NH [2-9] is computed by further fragmenting the message segment and

applying corresponding part of key to it. Each function is named by a string K of -bits, where

 is block size and is wordsize . Probability of Collision is , which can

be improved by using Toeplitz construction. In 2000, [2-21] gave a scheme with better collision

probability than MMH or NH. In [2-22], Kaps et. al. introduce WH, a power optimized version

of NH, which is efficient for hardware implementation in ultra-low power devices. They

maintain the probability of collision to be . In [2-18] Palash Sarkar gives a new universal

21

hash family. It requires shift and multiply operations to compress -bit message with collision

probability of , where is length of key and is base of field
 .

NMAC and HMAC constructions which are based on “collision-resistant hash functions”

[2-23] were introduced by Bellare et al. in 1996 [2-24]. Both NMAC and HMAC constructions

can be used for variable-length messages. Recently, there has been a surge of interest in

aggregate MACs [2-25], [2-26]. The goal in this line of research is to reduce the number of tags

routed in a network in which many nodes send messages to a single destination node and

communication is an expensive resource. The proposed solution is to combine the tags of

multiple messages together, such that the resulting tag is verifiable by the destination party. Katz

and Lindell were the first to propose a formal proof for the security of aggregate MACs [2-25].

In these methods, a short tag may be produced but the tag generation and verification times are

proportional to the number of messages. [2-43]

We combine the hardware efficiency of LFSR schemes with the novel approach of

universal hash based MACs to present a new MAC scheme that computes MAC tag for long

messages in very short time. For this purpose an MISR should behave like a secure hash

function. MISRs are widely used as compactors where similar phenomenon like collision occurs

and is widely known as aliasing. Many researchers have worked on finding the aliasing

probability for MISRs.

In the late-90s, [2-27] suggested a novel approach of using coding theory to find out the

aliasing probability of an MISR. They utilized properties of maximum distance separable (MDS)

codes to compute the aliasing probability. After that [2-28], [2-29], [2-32], [2-33] extended this

work to provide a closed form expression for the aliasing probability of an MISR either by using

22

coding theory or wireless channel models. In [2-34] Morii and Iwasaki provided an extension for

work in [2-28]. They claim that, Reed Solomon (RS) codes used in [2-28] are nothing but

shortened RS codes resulting in MDS codes. A comparison of aliasing probability of multiple

MISRs and a single MISR is done in [2-35]. Khan and Bushnell [2-31] provide results regarding

asymptotic aliasing probability. They observed using different simulation results that the aliasing

probability rapidly converges to a very low value.

Back in 1990 the approach of using a Markov model to find the aliasing probability was

presented in [2-38]. They provide proper statistical theory that explains dependence of aliasing

probability on main MISR features such as its length and feedback network. In the same period

researchers at IBM made use of Markov chains to claim that the aliasing probability depends on

the correlation of data at different inputs [2-30]. In 2005 Hadijicostis [2-39] made use of a

Markov chain to calculate the exact aliasing probability for any test sequence. A similar analysis

for LFSRs is performed in [2-40], whereas [2-41] examines aliasing in case of q-ary symmetric

error model.

In 1993 Pilarski, Kameda and Ivanov [2-36] used MISR for sequential faults and

presented an equation for aliasing probability related to it. Future work may require

demonstrating an approach to select the secret polynomial in our method. However we

have not considered this problem in this paper. Work in [2-37] may prove useful in that regard.

Hardware efficiency of MISRs is analyzed in [2-42] by Savir. He analyzed the effect of reducing

the MISR size on the aliasing probability. These studies might be useful while considering

hardware implementation of our scheme. But this is out of the scope of this paper. However,

MISRs will definitely prove to be hardware efficient compared to regular cryptographic hash

functions.

23

2.4. Our Contributions

2.4.1. New Hash Family: MISRH(M)

MISRH is first step for achieving fast and secure MAC. Here we describe in short the

design of hash function and which category it fits into. This hash can be used in multiple ways to

obtain a secure MAC.

As mentioned earlier this hash is obtained by introducing parallelism in Cryptographic-

CRC described in [2-4]. The bit long message to hash is split into data streams each -bit

long, , , is all zero message

stream for . The binary sequence is converted to a polynomial whose

coefficients are equal to the binary sequence . For example is (each bit

from the rightmost is multiplied by successive powers of and the sum of all these powers of

is the polynomial). Hence each of data streams can be represented using polynomials each of

degree . Let be any irreducible polynomial of degree over . Now,

 can be computed as,

The coefficients of form a -bit binary sequence , which is the output of our hash

function. The irreducible polynomial represents a hash function . The is

 family of hash functions where, . The operation

 can be easily implemented by the -stage MISR with as input at

24

1

C

2

C

i

C

n

Cn n-1 n-i+1 1

M
n

M
n-1

M
n-i+1

M
1

Figure 2.1. Multiple Input Shift Registers (MISR).

 th flip-flop as shown in Figure 2.1. The contents of flip-flops after -bits of s have entered

MISR are equal to [2-2].

The novelty of the method is that only cycles of CPU operations are required to

compress -bit message unlike cryptographic CRC where, cycles are required.

Hence our method performs times faster than cryptographic CRC. Each function can

be represented with -bits. The polynomial can be easily changed by changing values of .

Basic hardware implementation of n-bit will require gates. Which clearly indicates

it will be a very good choice for hardware resource constrained applications.

2.4.2. Type of Hash Family MISRH

As mentioned in section 2.2.1 there are different types of Universal Hash Families, we

need to identify in which type our hash family fits into. In this section we will analyze properties

of MISR and prove it to be Collision Resistant, -almost universal2, and -balanced. MISR can

be proved universal2 provided number of elements in input is multiple of number of elements at

output.

25

2.4.2.1. Collision Resistant

As mentioned in section 2.3, MISR are traditionally used in hardware testing, where

similar phenomenon as collision occurs. This phenomenon is known as aliasing and it is well

known fact that probability of aliasing is approximately .

2.4.2.2. Strongly Universal

In order to prove that a family of hash function MISRH is strongly universal, there is

need to show that there exists a unique irreducible polynomial of degree , that divides two

polynomials

 and

 of degree for

all to give and respectively . Given , , , and

we need to find , such that and

 . Here, and are quotients obtained in respective divisions. Also, note that

because all operations are in , minus () sign can be replaced by plus () sign. It is clear

from the equations that there need not be only one polynomial of degree that satisfies this

condition. For example, if degree of and is , which when divided by two

irreducible polynomials of degree , give remainders and resp. , then either one of

the irreducible polynomials will give same quotients and remainders for given and .

Hence for sure MISRH is not strongly universal. However, it can be made strongly universal by

restricting value of to be less than .

2.4.2.3. Universal2

In order to prove that a family of hash function MISRH is universal2, we need to show

that the value of
 . Here,

 represents number of functions in for

which and collide [2-43]. In our case is number of all irreducible polynomials of degree

26

 over , and is number of all polynomials of degree over . Therefore

according to [2-4], , and hence, .

Theorem 2.4.2.1: [2-43]

For any class of hash functions from to there exists distinct elements and such

that

 . Equality holds if is multiple of .

In our case is number of elements in input. Any message to the hash function

MISRH could be at most -bits long. Hence, , , and .

Therefore,

 . Therefore we

can write,

. Hence,

. This implies that a minimum value

 can achieve will be

 . Therefore we can say that MISRH will act as

universal2 hash functions when is multiple of .

2.4.2.4. -almost Universal2

To prove that MISRH is -almost universal2, we need to show that
 . In

our case, . Hence, MISRH is -almost universal2, with

when is multiple of . However, if that is not the case then MISRH can still be proved -

almost universal2 in following manner. From definition of , we can write

 . Note that

 implies that

 . Here,

 can have at most

factors of degree . Therefore there are at most

 polynomials, ,

27

that divide the polynomial

 . Note that this follows from the fact that

degree of

 is and degree of is .
 is

number of polynomials that make
 . Thus,

 . As stated earlier,

 . Therefore, and MISRH is -almost universal2.

2.4.2.5. -almost Strongly Universal2

To show that MISRH is -almost strongly universal2, we need to prove that

 and : | .

 and , |

In our case and iff iff

divides . Here,

 as mentioned earlier. Let

 . Cleary is non-zero polynomial of degree at most , and is a

polynomial of degree that divides . Because of unique factorization property, has

 irreducible factors of degree . Hence we can say, there are

functions in that map to . However there are irreducible polynomials of

degree , or elements in . Therefore,

 . Hence,

| because . This clearly implies that our

function is not -almost strongly universal2.

28

2.4.2.6. -balanced

From the analysis performed in above paragraph, it is clear that

 . Therefore, clearly MISRH is -balanced with . Hence achieving better

security as compared to Cryptographic CRC in which case .

2.4.3. Message Authentication Code based on MISRH : MHMAC

As proved in above subsection, MISRH can be used as either collision resistant hash

function or universal2, -almost universal2 and -balanced hash function. Given this, immediate

question is how message authentication code can be constructed from MISRH. This can be done

by applying cryptographic primitive to the output of hash function. In [2-10], different ways of

constructing MAC from universal hash are discussed. Simplest way of constructing MAC will be

computing MAC as , where r is counter and (Pseudo Random Function

PRF). In the same work, they prove that DES can be used as PRF. It won’t be difficult to prove

the same for AES. However, in that case MAC can be . Here, is

 -AXU family of hash functions mapping -bit input to -bit output. In order to have stateless

MAC it is possible to compute MAC as , where

 , and . In all these cases, we can prove that our scheme is -opt-secure as of [2-

4]. Otherwise, we can opt for applying pseudorandom function (PRF) at the output of hash, and

go for or as in [2-9]. In either case MHMAC will prove to be

fastest of all, because of use of MISR. In this paper we will explore the

option and prove that this MAC is -opt secure. Also, [2-44] uses to construct a

MAC, and proves it to be existentially unforgeable under chosen message attack. In this paper

29

we will consider only fixed length MAC but it is easy to construct a variable length MAC using

MISRH and prove it secure as done in [2-45]. The MAC construction π is as follows:

2.4.3.1. Construction π

 Gen: On input (the security parameter), choose uniformly at random and a

secret irreducible polynomial over of degree . Note that this step is done

only once and hence the key is .

 Mac: On input , irreducible polynomial over of degree n, a value

of counter , and a message M of length where L ≤ n, split M into

L parts each of length s, such that M = (. Set to zero. Input

all ’s into MISR with characteristic polynomial . Contents of the flip flops after s

cycles is called

 , . Output

the .

 Vrfy: On input , counter , irreducible polynomial over of degree

n, a message , and a tag , split M into L parts each of length

s,(, where L ≤ n. Set to zero. Input all s into MISR with

characteristic polynomial . Output 1 if and only if .

Remark:

Above MAC construction is for fixed length messages with d=L*s bits. The above

definition can also be changed to a variable length MAC but we do not consider this extension in

this paper. Please refer to [2-45] for details on variable length MAC using MISR.

30

2.4.4. Security of MHMAC

Above construction can be proved -opt secure similar to that of cryptographic CRC. To

prove that we consider an experiment in which adversary has

knowledge of construction but he is oblivious to secret values , and . He is given access

to an oracle which on input of message of his choice outputs corresponding tag . Given,

 if adversary can successfully output a valid tag

 for any message of his choice . Then adversary becomes successful

in the experiment . iff, i) ii)

 .

Definition 2.4.4.1:

A message authentication code is said to be -opt secure, if for

all probabilistic polynomial-time adversaries , .

Definition 2.4.4.2: [2-4]

A necessary and sufficient condition for a family of hash functions to be -opt secure

is

Definition 2.4.4.3: [2-4]

If is -linear then H is -opt secure if and only if is -balanced.

31

Theorem 2.4.4.1: [2-4]

A family of functions is -linear if for all , we have

 .

Proof:

Because, our scheme is -linear, we need to prove that it is -balanced. But, as proved

in section 2.4.2.6 our scheme is -balanced. Hence we can say our scheme -opt secure.

By Definition 2.4.4.2, our scheme MISRH is -opt secure for . For fixed

value of n, security will degrade as s increases. Hence for L= n = 128 we can authenticate 2KB

message in 128 cycles providing a security of the level 2
-121

.

2.5. Performance of MHMAC

2.5.1. Software Performance

We implemented our scheme MHMAC on a win32 with Intel core 2 duo 2.1GHz

machine using C++ and evaluated it’s time performance. We used 128bit MISR with

32

characteristic polynomial . As discussed earlier our scheme proves to be a

very good choice for long messages. Figure 2.1 shows time performance of our scheme. We used

crypto++ to implement 128 bit AES used as pseudorandom function. The scheme requires 8msec

to compute a tag for message of size 4MB while achieving security of the order of 2
-110

. This

clearly says that our scheme will be very good choice for fast authentication of long messages in

short time while achieving high level of security.

2.5.2. Hardware Performance

Hardware implementation of MISR will require 1 cycle per bits of message to hash -

bit message. For 100ns clock, 128 bit Rijndael AES takes about 320ns to encrypt a message [2-

46]. Hence to compute MHMAC of -bit message we will require (s*100+320)ns. Figure 2.2

shows hardware performance of MHMAC for L=n=128. As shown in Figure 2.2 MHMAC will

require 3.2ms to sign a message of 4MB. Thus as mentioned earlier our scheme will prove to be

a very good choice for fast authentication of long messages. The configuration mentioned above

will require (13*128) logic elements to implement MISRH and (20k+128+156+3700) logic

elements [2-46] to implement AES. Hence total 25648 logic elements. As discussed in section

Figure 2.2. Software Performance of MHMAC.

33

2.2.2, our method requires mere 0.13 cycles for computation of hash function. When compared

with existing methods, Figure 2.3 illustrates it very clearly that our method MISRH is faster than

all existing methods. Table 2.1 shows this comparison in terms of cycles/bytes for n=128. Table

2.1 clearly illustrates that our hashing technique is faster than existing popular universal hashing

techniques.

Table 2.1. Comparison with Existing Universal Hashing Techniques.

Method Cycles/Byte

MISRH 0.0625

Cryptographic CRC 6

Roagway Bucket Hashing 1.5-2.5

MMH 1.5-3

NH (UMAC) 0.52

Palash Sarkar (Multilinear Hash) for q=2 8

Figure 2.3. Hardware Performance of MHMAC.

34

2.6. Conclusion

Results from section 2.5 show that, the construction MISRH is not only faster but is

simple and can be implemented in hardware with few logic elements. MISRH being universal2,

 -almost universal, and -balanced hash function, it can be used in message authentication

codes. The simplest construction of message authentication code can be proven -opt secure.

Therefore hash function MISRH and MAC based on MISRH will be a very good choice for fast

authentication of long messages in resource constrained environment.

2.7. References

[2-1] Rao, Thammavarapu RN, and Eiji Fujiwara. "Error control coding for computer

systems." Prentice-Hall Inc. (1989).

[2-2] Abramovici, Miron, Melvin A. Breuer, and Arthur D. Friedman. Digital systems testing

and testable design. Vol. 2. New York: Computer science press, 1990.

Figure 2.4. Comparison of Hardware Performance of MISRH with Existing Techniques, n=128.

35

[2-3] Stinson, Douglas Robert. Cryptography: theory and practice. CRC press, 2006.

[2-4] Krawczyk, Hugo. "LFSR-based hashing and authentication." In Advances in

Cryptology—CRYPTO’94, pp. 129-139. Springer Berlin Heidelberg, 1994.

[2-5] Carter, J. Lawrence, and Mark N. Wegman. "Universal classes of hash

functions." Journal of computer and system sciences 18, no. 2 (1979): 143-154.

[2-6] Wegman, Mark N., and J. Lawrence Carter. "New hash functions and their use in

authentication and set equality." Journal of computer and system sciences22, no. 3 (1981):

265-279.

[2-7] Stinson, Douglas R. "Universal hashing and authentication codes." Designs, Codes and

Cryptography 4, no. 3 (1994): 369-380.

[2-8] Krawczyk, Hugo. "New hash functions for message authentication." In Advances in

Cryptology—EUROCRYPT’95, pp. 301-310. Springer Berlin Heidelberg, 1995.

[2-9] Black, John, Shai Halevi, Hugo Krawczyk, Ted Krovetz, and Phillip Rogaway. "UMAC:

Fast and secure message authentication." In Advances in Cryptology—CRYPTO’99, pp. 216-

233. Springer Berlin Heidelberg, 1999.

[2-10] Shoup, Victor. "On fast and provably secure message authentication based on universal

hashing." In Advances in Cryptology—CRYPTO’96, pp. 313-328. Springer Berlin

Heidelberg, 1996.

[2-11] Bernstein, Daniel J. "The Poly1305-AES message-authentication code." In Fast Software

Encryption, pp. 32-49. Springer Berlin Heidelberg, 2005.

[2-12] Taylor, Richard. "An Integrity Check Value Algorithm for Stream Ciphers."

InProceedings of the 13th Annual International Cryptology Conference on Advances in

Cryptology, pp. 40-48. Springer-Verlag, 1993.

36

[2-13] Johansson, Thomas. "A shift register construction of unconditionally secure

authentication codes." Designs, Codes and Cryptography 4, no. 1 (1994): 69-81.

[2-14] Kabatianskii, Gregory A., Ben Smeets, and Thomas Johansson. "On the cardinality of

systematic authentication codes via error-correcting codes."Information Theory, IEEE

Transactions on 42, no. 2 (1996): 566-578.

[2-15] Rogaway, Phillip. "Bucket hashing and its application to fast message authentication."

In Advances in Cryptology—CRYPT0’95, pp. 29-42. Springer Berlin Heidelberg, 1995.

[2-16] Johansson, Thomas. "Bucket hashing with a small key size." In Advances in

Cryptology—EUROCRYPT’97, pp. 149-162. Springer Berlin Heidelberg, 1997.

[2-17] Halevi, Shai, and Hugo Krawczyk. "MMH: Software message authentication in the

Gbit/second rates." In Fast Software Encryption, pp. 172-189. Springer Berlin Heidelberg,

1997.

[2-18] Sarkar, Palash. "A new multi-linear universal hash family." Designs, Codes and

Cryptography (2012): 1-17.

[2-19] Brassard, Gilles. "On computationally secure authentication tags requiring short secret

shared keys." Advances in Cryptology CRYPTO'82 Proceedings, Springer-Verlag (1983):

79-86.

[2-20] Black Jr, John R. "Message authentication codes." PhD diss., UNIVERSITY OF

CALIFORNIA, 2000.

[2-21] Nguyen, Long Hoang, and Andrew William Roscoe. "Short-output universal hash

functions and their use in fast and secure message authentication." InThe proceeding of the

19th international workshop on fast software encryption FSE. 2012.

37

[2-22] Kaps, J-P., Kaan Yuksel, and Berk Sunar. "Energy scalable universal

hashing."Computers, IEEE Transactions on 54, no. 12 (2005): 1484-1495.

[2-23] Katz, Jonathan, and Yehuda Lindell. Introduction to modern cryptography. Chapman &

Hall, 2008.

[2-24] Bellare, Mihir, Ran Canetti, and Hugo Krawczyk. "Keying hash functions for message

authentication." In Advances in Cryptology—CRYPTO’96, pp. 1-15. Springer Berlin

Heidelberg, 1996.

[2-25] Katz, Jonathan, and Andrew Y. Lindell. "Aggregate message authentication codes."

In Topics in Cryptology–CT-RSA 2008, pp. 155-169. Springer Berlin Heidelberg, 2008.

[2-26] Castelluccia, Claude, Einar Mykletun, and Gene Tsudik. "Efficient aggregation of

encrypted data in wireless sensor networks." In Mobile and Ubiquitous Systems: Networking

and Services, 2005. MobiQuitous 2005. The Second Annual International Conference on, pp.

109-117. IEEE, 2005.

[2-27] Iwasaki, Kazuhiko, and Tadahiko Nishimukai, “Aliasing Probability and Weight

Distributions of Several Codes,” Systems and Computations in Japan, vol 20, Issue 9, 1989.

[2-28] Pradhan, Dhiraj K., Sandeep K. Gupta, and Mark G. Karpovsky. "Aliasing probability for

multiple input signature analyzer." Computers, IEEE Transactions on 39, no. 4 (1990): 586-

591.

[2-29] Iwasaki, K., and F. Arakawa. "An analysis of the aliasing probability of multiple-input

signature registers in the case of a 2
m
-ary symmetric channel." Computer-Aided Design of

Integrated Circuits and Systems, IEEE Transactions on 9, no. 4 (1990): 427-438.

38

[2-30] Daehn, W., T. W. Williams, and K. D. Wagner. "Aliasing errors in linear automata used

as multiple-input signature analyzers." IBM Journal of Research and Development 34, no.

2.3 (1990): 363-380.

[2-31] Khan, Omar I., and Michael L. Bushnell. "Aliasing Analysis of Spectral Statistical

Response Compaction Techniques." In Proceedings of the 19th International Conference on

VLSI Design held jointly with 5th International Conference on Embedded Systems Design,

pp. 801-806. IEEE Computer Society, 2006.

[2-32] Pradhan, Dhiraj K., and Sandeep K. Gupta. "A new framework for designing and

analyzing BIST techniques and zero aliasing compression." Computers, IEEE Transactions

on 40, no. 6 (1991): 743-763.

[2-33] Karpovsky, M. G., S. K. Gupta, and D. K. Pradhan. "Aliasing and Diagnosis Probability

in MISR and STUMPS Using a General Error Model." In Test Conference, 1991,

Proceedings., International, p. 828. IEEE, 1991.

[2-34] Morii, Masakatu, and Kazuhiko Iwasaki. "A note on aliasing probability for multiple

input signature analyzer." Computers, IEEE Transactions on 42, no. 9 (1993): 1152.

[2-35] Iwasaki, Kazuhiko, F. E. N. G. Shou-Ping, Toru FUJIWARA, and Tadao KASAMI.

"Comparison of Aliasing Probability for Multiple MISRs and M-Stage MISRs with m

Inputs." IEICE TRANSACTIONS on Information and Systems 75, no. 6 (1992): 835-841.

[2-36] Pilarski, Slawomir, Tiko Kameda, and Andre Ivanov. "Sequential faults and

aliasing." Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions

on 12, no. 7 (1993): 1068-1074.

[2-37] Lempel, Mody, and Sandeep K. Gupta. "Zero-aliasing for modeled faults."Computers,

IEEE Transactions on 44, no. 11 (1995): 1283-1295.

39

[2-38] Damiani, Maurizio, P. I. E. R. O. Olivo, M. I. C. H. E. L. E. Favalli, S. I. L. V. I. A.

Ercolani, and B. Ricco. "Aliasing in signature analysis testing with multiple input shift

registers." Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions

on 9, no. 12 (1990): 1344-1353.

[2-39] Hadjicostis, Christoforos N. "Aliasing probability calculations for arbitrary compaction

under independently selected random test vectors." Computers, IEEE Transactions on 54, no.

12 (2005): 1614-1627.

[2-40] Jianwu, Zhao, Shi Yibing, and Li Yanjun. "Aliasing Probability for Single Input Linear

Feedback Signature Registers." In Electronic Measurement and Instruments, 2007. ICEMI

'07. 8th International Conference on, pp. 995-999. IEEE, 2007.

[2-41] Edirisooriya, Geetani, and John P. Robinson. "Aliasing probability in multiple input

linear signature automata for q-ary symmetric errors." In Computer Design: VLSI in

Computers and Processors, 1991. ICCD'91. Proceedings, 1991 IEEE International

Conference on, pp. 352-355. IEEE, 1991.

[2-42] Savir, Jacob. "Reducing the MISR size." Computers, IEEE Transactions on 45, no. 8

(1996): 930-938.

[2-43] Preneel, Bart. "Analysis and design of cryptographic hash functions." PhD diss.,

Katholieke Universiteit te Leuven, 1993.

[2-44] Vosoughi, Aida, and Rajendra Katti. "Fast Message Authentication Code for Multiple

Messages with Provable Security." In Global Telecommunications Conference

(GLOBECOM 2010), 2010 IEEE, pp. 1-5. IEEE, 2010.

40

[2-45] Sule, Rucha, Raj S. Katti, and Rajesh G. Kavasseri. "A variable length fast Message

Authentication Code for secure communication in smart grids." In Power and Energy Society

General Meeting, 2012 IEEE, pp. 1-6. IEEE, 2012.

[2-46] Manteena, Rajender. “A VHDL implementation of the Advanced Encryption Standard-

Rijndael Algorithm” Master’s Thesis., University of South Florida, 2004.

41

CHAPTER 3. A VARIABLE LENGTH FAST MESSAGE

AUTHENTICATION CODE FOR SECURE COMMUNICATION IN

SMART GRIDS

© 2012 IEEE. Reprinted, with permission, from Rucha S. Sule, Rajendra S Katti, and

Rajesh Kavasseri, A variable length fast message authentication code for secure communication

in smart grids, IEEE power and engineering society general meeting, July 2012.

3.1. Abstract

We propose a variable length Message Authentication Code (MAC) scheme for secure

communication between Automated Metering Interface (AMI) devices and collector nodes in the

smart grid. We prove the security of this scheme and analyze its performance with respect to

three attributes namely: (i) communication overhead, (ii) verification delay and (iii) memory

usage. The proposed scheme reduces the time for verification by at least two orders compared to

existing hash based authentication protocols. The scheme thus provides an efficient solution to

support high frequency exchange of large volume messages.

3.2. Introduction

The smart grid will feature an electric grid that is closely intertwined with the

communication (or information) network. The purpose of the communication network is to allow

two-way interactions between the end-user and electricity service provider. Two-way

communication in distribution grids is achieved through an Automated Meter Interface (AMI)

(or “smart meter”). The AMIs can monitor, record and transmit electrical variables from the

customer while conveying command/control information to the customer. Outbound messages to

42

the MIs typically include information such as real (kW) and receive power (kVar), power-factor,

voltage profiles (sag/swell events) and peak usage. Inbound messages to the AMIs include

control/command requests from utilities to implement automated net-metering, remote service

disconnect/reconnects; real-time electricity pricing to customers for active load management and

demand response. To address security concerns with communication, the National Institute of

Standards and Technology (NIST) recommends “mutual authentication” between AMIs and

service providers [3-1].

Achieving mutual authentication in smart-grids is challenging given the large number

(several hundreds or thousands within a service territory) of AMI devices, large message

volumes and frequency of message exchanges. Traditional public-key infrastructure based

schemes are not well suited for secure communication in the smart-grid because of: (i) increased

communication burden (large key sizes which increase communication bandwidth), (ii) increased

time for decryption/verification (which increase latency) and (iii) the limited computational

abilities of AMIs. Thus there is a need to develop “lightweight” authentication schemes that do

not overburden the system in terms of communication and computational requirements.

Cyber-security and power system communication requirements for the smart grid are

discussed in [3-2], [3-3]. An efficient scheme (in terms of authentication delay and

computational cost) for authentication in multicast (one to many) mode is presented in [3-4]. A

lightweight scheme based on Diffie-Hellman key exchange protocol and a hash based message

authentication code (HMAC) is proposed in [3-5]. In [3-5], HMAC with RIPEMD128 as the

underlying hash function is used to perform authentication. RIPEMD is known to be insecure

and it is better to use SHA1 or SHA2 instead. Another drawback with using HMAC is that its

authentication speed limits message rates between the smart-meters and collector nodes. Using

43

the HAMC also limits the size of messages that can be exchanged without extra buffering or

delays.

We propose a new low-cost high-speed variable length message authentication code

(MAC) that uses a multiple input shift register (MISR) and one computation of AES to generate

a MAC tag. Our method has a higher authentication speed and can hence withstand higher rate of

message exchanges. Our method can also handle larger messages (for example - 40,320 bytes

representing one month’s data, [3-5]) without incurring any extra delay or extra buffering.

The rest of the paper is organized as follows. The structure of communication system is

described in section 3.3. The proposed scheme is presented in section 3.4 and its security is

proved in section 3.5. The performance of the proposed scheme is compared with existing

methods in section 3.6 and conclusions are noted in section 3.7.

3.3. Communication Structure

A rough framework for the communication structure is shown in Figure 3.1. the

arrangement is hierarchical, starting from AMI devices at the customer leading up to the

Enterprise or utility. Here, an AMI device at every customer is denoted by HANGW (Home Area

Network Gate Way). At this level, the preferred communication system is Zigbee/mesh wireless.

Groups of HANGW communicate with BANGW (Building Area Network Gate Way) which serves

as the collector node where WiMAx is preferred communication medium. Groups of NANGWs

(Neighborhood Area Network Gate Way) relay the information further to a higher collector node

which may be an enterprise, utility provider, or a trusted third party. A survey of appropriate

communication technologies for the smart grid can be found in [3-8].

44

Figure 3.1. Communication Structure.

3.4. Proposed Scheme

We will follow the same protocol as in [3-5], however instead of using , we

propose a new variable length MAC which will render the above protocol more efficient in terms

of communication overhead, verification delay, and memory usage. We will start by defining

Message Authentication Codes (MAC).

Definition 3.4.1:

Formally, a message authentication code (MAC) is a tuple of probabilistic polynomial-

time algorithms (Gen, Mac, Vrfy) in which Gen is the key generation algorithm, Mac is the tag

generation algorithm, and Vrfy is the verification algorithm. It is required that for every (a

45

Figure 3.2. Proposed Scheme.

security parameter that usually specifies the length of key), every output by Gen, and every

 , it holds that . If is such that Mac is only

defined for messages of a certain length, then the MAC scheme is said to be fixed-length,

otherwise it is called variable-length MAC [3-6].

The proposed scheme is a variable-length MAC based on fixed-length MAC described in

[3-7]. The scheme is as follows: Given any message of length , check if

 , where . If not then pad it with

bits of zeros and append bits of length at the end. (Note that d has to be multiple of 128*8

= 1024.) Otherwise pad M with zeros and add bits of length at the end. We

will call such a message , where indicates concatenation. Figure 3.3

shows structure of . Now parse into blocks each of size ,

where , indicates length of in bits. These message blocks can then be input into MISR.

The contents of flip-flops after s bits of messages have been input into MISR form a sort of

remainder, , resulting from division of messages by characteristic polynomial of MISR.

46

s*L

Log d

(d)bM||0

2

|M | =
p

-

S*L - Log d
2

Figure 3.3. Structure of M
p
.

The tag of messages can be computed as Fk(R), where Fk is a pseudorandom function. A

pseudorandom function is defined below.

Definition 3.4.2:

Let F: be an efficient (polynomial-time), length-preserving,

keyed function. We say that F is a pseudorandom function if for all probabilistic polynomial-

time distinguishers D, there exists a negligible function such that:

where is chosen uniformly at random and f is chosen uniformly at random from the

set of functions mapping n-bit strings to n-bit strings.

Remark 3.4.1:

 is chosen from one of distinct functions (one for each value of the n-bit key k). f is

chosen from the set of all functions with n-bit input and output, where . D is given

oracle access to some function (either or f, denoted or) and its goal is to determine

if this function is or f. denotes the fact that D is successful when given

47

oracle access to . If no probabilistic polynomial-time distinguisher D, can tell which function

D has oracle access to, then is a pseudorandom function. Note that D can query the oracle

function polynomial number of times. Thus, even if x1 and x2 differ in only a single bit

and look completely uncorrelated. Block ciphers such as AES can be used as

pseudorandom functions [3-6]. We will use AES128 for this purpose. Pseudorandom functions

can be used as fixed length MAC, we will make use of this fact when we will sketch the proof of

security for our MAC.

3.4.1. Construction π

 Gen: On input n (the security parameter), obtained in setup phase (see Figure 3.2), and

a secret irreducible polynomial over of degree n. We will fix . Note

that is selected only once and hence the key is .

 Mac: On input , irreducible polynomial over of degree n, and a message

 of length , check if . If not then pad it with

 bits of zeros and append bits of length at the end. Otherwise pad M with

 zeros and add bits of length at the end to get . Parse into

blocks each of length s, such that = (. Input all ’s into MISR with

characteristic polynomial . Contents of the flip flops after s cycles is called

 , . Output the .

 Vrfy: Output 1 if and only if .

3.5. Security of the Proposed Scheme

 There is generally-accepted definition of security for message authentication codes. In

simple words, no polynomial time adversary should be able to generate a valid tag for a message

48

which was not previously authenticated. Note that the adversary is allowed to request MAC tags

for any messages of its choice. Toward the formal definition, consider the following experiment

for a message authentication code , adversary , and security parameter

n.

Experiment :

1) Run to obtain a random key k.

2) The adversary is given oracle access to . The adversary eventually outputs a

pair . Let Q denote the set of all queries that asked its oracle.

3) The output of the experiment is defined to be 1 if and only if (1) and

(2) .

Definition 3.5.1 : Security Definition:

A message authentication code is said to be existentially

unforgeable under an adaptive chosen message attack, or just secure, if for all probabilistic

polynomial-time adversaries , there exists a negligible function such that

 .

A negligible function is defined as following: A function f is negligible if for every

polynomial p(.) there exists an N such that for all integers it holds that .

The security of the proposed scheme is stated in the following theorem:

Theorem 3.5.1:

 If is a secure fixed length MAC and function MISR(.) is collision resistant then

49

construction П is a variable length MAC, that is existentially unforgeable under adaptive chosen

message attacks.

 Proof:

The security of proposed MAC relies on the assumption that MISR are collision resistant

and is a secure fixed length MAC. Essentially this new MAC construction first compresses

the given message M to fixed length binary string R, and then applies fixed length MAC .

Assume towards contradiction that there exists a probabilistic polynomial time adversary

attacking MAC scheme that forges valid tag on a new message with non-negligible probability.

 is given access to a MAC oracle, that it can query for a tag on any message of its choice. Let

M* denote the message for which produces its forgery, and let Q denote the set of queries

made by to its MAC oracle (i.e., the set of messages for which it obtained a MAC tag). We

can assume without loss of generality that (since cannot succeed otherwise). There are

two possible cases:

1. Case 1: a message such that .

In this case, the MAC tag for M is equal to the MAC tag for M* and so clearly can

successfully forge a valid tag on M*. However, this case contradicts the assumption that

 is collision resistant because could find distinct M and M* for which

 . Hence this case cannot be valid as long as is collision

resistant (It can be proved that is collision resistant but it is out of scope of this

paper).

2. Case 2: for every message it holds that .

Define . The important observation here is that M* is such that

 . In this case then is forging a valid message on the new message

50

 with respect to fixed length message authentication code . This contradicts

assumption that is secure fixed length MAC rendering this case invalid.

Hence by contradiction we can say that cannot be successful in outputting a valid

forgery given access to MAC oracle Q. Therefore .

Hence given MAC scheme is existentially unforgeable under chosen message attacks. [3-2]

3.6. Results

We will compare the results when the HMAC scheme in [3-5] is replaced with proposed

variable length MAC scheme. Hence we basically show the improvement in the performance

when HMAC is replaced with our new scheme. The performance of scheme is compared with

respect to:

1) Communication overhead

2) Message Decryption and Verification Delay

3) Memory Usage

Figure 3.4. HMAC Scheme.

51

Before comparing both schemes we should go into details of the algorithms used for verification

in [3-5] and our new scheme. The HMAC construction is as shown in Figure 3.4.

[3-5] are using RIPEMD128 as the underlying collision resistant hashing function.

However, RIPEMD128 is not considered as a secure collision resistant hash and hence its use is

questionable. HMAC is variable length MAC and it produces a tag of constant length which will

be 128bits in this case. We will be using 128 bit MISR which will run for at least 8 cycles as per

our construction and then we will feed the compressed output to AES128 to give us 128 bit tag.

We will also have constant tag length out of our variable length MAC. The performance is

verified as follows:

3.6.1. Communication Overhead

As mentioned earlier, the most commonly used message that is 32bytes. HMAC produces

constant tag length of 16 bytes for any size of message. The message header is 50 byes. Hence

the total communication overhead at BANGW will be 98 bytes. Our scheme will also produce a

16 byte tag on 32 byte message. Hence both the schemes will perform the same in terms of

communication overhead as shown in Figure 3.5. With increase in message size communication

overhead will also increase but will still be within 30kBytes for message of length 150Bytes.

Hence the proposed scheme is as good as the one in [3-5] in terms of communication overhead.

For comparison, the overhead (highest) with Elliptic Curve Digital Signature Algorithm

(ECDSA) is also shown.

52

Figure 3.5. Communication Overhead.

3.6.2. Verification and Decryption Delay

Both the schemes use AES128 for decryption. Hence we will compare the schemes only

for verification delay. For message of length 32bytes, their scheme will perform 5 operations of

hash core that is RIPEMD128. RIPEMD 128 core requires 592 cycles to compute hash [3-9].

Hence each hash will require (592/160MHz) = 3.7uS. Hence total time required for tag

computation will be at least of 5 hash core operations = 18.5uS. This delay will increase with

increase in message size. In addition to it there will be some delay associated with key

establishment, padding etc. As observed from graphs of [3-5], average delay for every BANGW

per HANGW is approximately 80msec. Out of which 18.5uS will be introduced due to HMAC.

However our scheme will need 8 cycles for computing MISR(M) and cycles for

computing AES128 using Rijndael [3-10]. Hence total time of (408/160MHz) = 2.55uSec. Our

53

scheme shows seven times better performance for 32 bytes of data. It will continue to have

constant verification time of 2.6uSec as long as length of message is less than 128 bytes.

For messages of length between 128-256 bytes, it will require 416 cycles and hence will

require total verification delay of 2.6uSec. As can be seen from Figure 3.6, our scheme can

support wide range of message sizes with verification delay less than 5uSec which is quite small.

Hence we claim that replacing HMAC will not only decrease total verification delay but also

supports wide range of message sizes with drastically small delays. For 32 byte data our scheme

will replace the delay of 18.5uSec + (delay for padding in uSec) with 2.55uSec. However with

higher message sizes our scheme will prove more promising. In conditions where HANGWs are

sending scheduled one month data, it might increase verification delay at BANGW drastically

whereas our scheme will not add much delay and BANGW will almost be unaffected. Figure 3.7

Figure 3.6. Verification Overhead.

54

shows comparison of verification delay vs number of HANGW. Our scheme contributes to a delay

of 0.357 mSec for 140 HANs, whereas HMAC based scheme contributes delay of 2.590 mSec

for 140 HANs. With 40230 bytes of monthly data, it will take approximately 0.6mSec whereas

HMAC will require 0.6sec. Thus the proposed scheme will perform 1000 times faster.

3.6.3. Memory Usage

From Figure 6 in [3-5], to process 1 message of 32 bytes BANGW takes approximately

80msec. Hence to process 125 messages it will take approximately 10sec. Let message

generation interval Δ be 10 sec. Hence, as long as message rate is below 125, BANGW does not

need to buffer messages for execution of algorithms. But as soon as message rate goes above

125, it will require more memory for buffering new messages. For example if message rate is

150, BANGW has to buffer 50 messages for first 10 sec, then 75 messages for next 10 sec and so

Figure 3.7. Verification and Decryption Delay.

55

on. This size will keep on increasing. However, as our scheme is faster than hash function based

approach, we will be able to support higher message rate than that of conventional HMAC based

scheme. Now suppose one of the HANGW is sending 40320 bytes monthly data. In this case

HMAC verification delay will be (4*592)/160M + (((40*8k)/256)*592)/160M = 4.67mSec

5ms. Hence the total delay to process message will become 85mSec, with which BANGW can

support 117 messages/ Δ. However with our scheme it will be 124. Hence replacing HMAC with

our scheme will prove an efficient solution for messages of large size.

3.6.4. Discussion

As emphasized in the above section, our scheme is an alternative for traditional heavy

weight MAC. [3-5] uses RIPEMD128 which is not considered to be secure. Even if we replace it

with any secure collision resistant hash like SHA1 or SHA2, no scheme will perform as fast as

our scheme on messages of very large size. Being a variable length MAC there is no restriction

on message size. Also with our scheme it is possible to combine several messages together to

produce a tag of constant length and fairly constant verification time. This might prove useful

when the message rate is high, instead of sending several messages per Δ, HANGW can wait and

combine several messages together to have single tag and send it across to BANGW. For example

if message rate is 250, then HANGW can combine two messages together and produce one tag for

them, hence total messages coming to BANGW will still be 125, in this manner we can provide

efficient memory usage. Hence we claim that our scheme will prove to be a good option for

lightweight authentication of messages of variable size with fairly constant authentication and

verification time.

56

3.7. Conclusion

This paper presents a new message authentication scheme that is faster than best scheme

proposed recently [3-5] for the smart grid. Our scheme uses a multiple input shift register

(MISR) to compress the message that needs to be authenticated. The compressed output is then

input to a pseudorandom function such as AES128. The output of AES128 is then the tag in the

authentication scheme. Since there are efficient methods to implement both AES and MISRs in

hardware, our scheme results in very low verification times. This translates to several advantages

in the smart-grid. Firstly, the rate at which a smart-meter in a home (also called HAN) can

generate messages without extra buffering goes up resulting in better memory usage in the HAN.

Secondly, there is an increase in the message length that can be authenticated without buffering.

This can enable more information exchange between HAN and the BAN.

3.8. References

[3-1] “Guidelines for Smart Grid Cyber Security: Vol. 2, Privacy and the Smart Grid”, The

Smart Grid Interoperability Panel- Cyber Security Working Group, August 2010.

[3-2] Ericsson, Göran N. "Cyber security and power system communication—essential parts of

a smart grid infrastructure." Power Delivery, IEEE Transactions on 25, no. 3 (2010): 1501-

1507.

[3-3] Hauser, Carl H., David E. Bakken, Ioanna Dionysiou, K. Harald Gjermundrod, Venkata

Irava, Joel Helkey, and Anjan Bose. "Security, trust, and QoS in next-generation control and

communication for large power systems." International Journal of Critical Infrastructures 4,

no. 1 (2008): 3-16.

[3-4] Li, Qinghua, and Guohong Cao. "Multicast authentication in the smart grid with one-time

signature." Smart Grid, IEEE Transactions on 2, no. 4 (2011): 686-696.

57

[3-5] Fouda, Mostafa M., Zubair Md Fadlullah, Nei Kato, Rongxing Lu, and Xuemin Shen. "A

lightweight message authentication scheme for smart grid communications." Smart Grid,

IEEE Transactions on 2, no. 4 (2011): 675-685.

[3-6] Katz, Jonathan, and Yehuda Lindell. Introduction to modern cryptography. Chapman &

Hall, 2008.

[3-7] Vosoughi, Aida, and Rajendra Katti. "Fast Message Authentication Code for Multiple

Messages with Provable Security." In Global Telecommunications Conference (GLOBECOM

2010), 2010 IEEE, pp. 1-5. IEEE, 2010.

[3-8] Akyol, B. A., Harold Kirkham, S. Clements, and M. Hadley. "A survey of wireless

communications for the electric power system." Prepared for the US Department of

Energy (2010).

58

CHAPTER 4. MULTICAST AUTHENTICATION IN THE SMART

GRID WITH ONE-TIME SIGNATURES FROM SIGMA

PROTOCOLS

This paper has been submitted for publication to IEEE Transactions on Smart Grid. The

authors of the paper are Rucha S. Sule, Rajendra S Katti, and Rajesh Kavasseri.

4.1. Abstract

Multicast authentication is challenging in the smart grid given the unique constraints of

communication bandwidth, computation time, and limited computational resources of field

devices. We propose here, for the first time, the use of one-time signatures (OTS) from sigma

protocols for multicast authentication in the smart grid. As a zero knowledge proof, sigma

protocols interactively establish the truth of a statement without revealing its contents; thus

providing a powerful paradigm for authentication. When compared with the currently best

known OTS scheme -Tunable Signing and Verification [4-1], the proposed scheme yields a

dramatic reduction in: signing cost (three orders), pre-computation cost (two orders), and storage

overhead (two orders) at a very modest increase (four fold) in signature size. The scheme thus

efficiently enables several multicast applications in the smart grid environment ranging from the

distribution through sub-transmission and bulk power systems with resource-constrained field

devices.

4.2. Introduction

The smart grid incorporates a communication network closely intertwined with the

electric grid to facilitate two-way communication. The nature of communication (type of

message and message transmission mode) depends upon the specific application and the grid

59

level-distribution, sub-transmission or bulk transmission. For example, at the distribution level,

communication between an end-user and electricity service provider can be achieved through

Automated Meter Interface (AMI) (or “smart meters”). The AMIs can monitor, record and

transmit electrical variables from the customer (outbound) while relaying command/control

information (inbound) to the customer. Outbound messages from AMIs typically include

information such as real (kW) and reactive power (kVar), power-factor, voltage profiles

(sag/swell events) and peak usage. Inbound messages to the AMIs include control/command

requests from utilities to implement automated net-metering, remote-service

disconnects/reconnects; real-time electricity pricing to customers for active load management

and demand response.

Message transmission in the smart grid can be realized in unicast or multicast mode

depending on the application. In unicast mode, a message is exclusive or unique to a specific

user. Unicast is useful for control or command type messages used for direct load control in

demand side management (DSM) programs such as those implemented by Florida Power and

Light Company [4-2]. For example, in residential load control programs, a utility may directly

intervene to control a customer's load through selective appliance switch on/off commands. In

this context, the exclusivity of the contract between the supplier (utility) and customer

necessitates unicast communication. However, certain applications require the transmission of a

message that is shared (or common) to multiple users. Such messages are transmitted as

multicast because unicast may be too expensive (in terms of computational resources) and

therefore inefficient in such cases. For example, a utility may wish to proclaim electricity prices

to its list of subscribed customers, who may then initiate a load scheduling program beneficial to

them; or utilities may encourage charging of Plug-in-Hybrid-Electric Vehicles when generation

60

from renewable resources is plentiful or cheap. In the bulk power system, control centers may

initiate System Integrity Protection Schemes (SIPS) to mitigate or limit the propagation of major

disturbances in the system [4-3].

Given the sensitivity of control/command messages in multicast, authentication is of

crucial importance failing which malicious parties may gain unauthorized access, forge messages

or mount a replay attack with potentially catastrophic consequences. The National Institute of

Standards and Technology (NIST) recommends “mutual authentication” between [4-4] to verify

that a message delivered to an entity indeed originates from its intended sender.

However, achieving mutual authentication in smart-grids is challenging given the large

number (several hundreds or thousands within a service territory) in the case of AMI devices,

large message volumes and frequency of message exchanges. Traditional public-key

infrastructure based digital signature schemes (such as RSA) cannot be adapted for secure

communication in the smart-grid because of: (i) increased communication burden (large key

sizes which increase communication bandwidth), (ii) increased time for decryption/verification

(which increase latency) and (iii) the limited computational capabilities of AMIs and other field

devices.

A promising solution to broadcast (and thus multicast) authentication applications is

possible through one-time signatures (OTS). An OTS scheme [4-5] and [4-6] generates one

digital signature based on a cryptographically secure one-way function without trapdoors for

several messages that are multicast. This enables the use of a single key to sign several messages.

While OTS schemes are generally fast, the drawback is a large signature size which limits their

direct application in the smart-grid. The Bins and Balls (BiBa) scheme [4-7] provides an

improvement by reducing the signature size, however, at the expense of time required to sign a

61

message. A significant reduction over the BiBa scheme is achieved by HORS (Hash to Obtain

Random Subset) [4-8] which reduces the signing overhead and therefore HORS has been used

for adaption in several multicast authentication applications ([4-15], [4-16], and [4-17]). Many

others as [4-18], [4-19], and [4-20] address drawbacks of existing OTS schemes and suggest

improvements to maintain smaller signature sizes while achieving fewer computations.

As pointed out in [4-1], HORS is not well suited for smart grid applications mainly

because the scheme requires large public key sizes that increase storage requirements on

resource constrained field devices. However, contrary to what is noted in [4-1]; the signature size

of HORS (130 bytes) is not actually a serious concern for wide area protection applications. A

Phasor Measurement Unit (PMU) simply records time synchronized phasor (voltage and current)

and frequency measurements in accordance with IEEE C37.118.2 at system buses. To minimize

communication bandwidth, PMU data are first sent to Phasor Data Concentrators (PDC). Data

from the PDC is then routed to the regional control center via a security gateway and utility

(local) control centers if necessary. The regional area control center (and not the PMU) is thus

the primary entity that initiates wide area protection and control measures or SIPS which requires

multicast of control/command data. As such the PMU is not expected to multicast recorded data

to neighboring PMUs.

To address the primary drawbacks of HORS, [4-1] proposes a hybrid method called

Tunable Signing and Verification (TSV). By adding one more level of restriction on signature

generation and verification they improve the security by a factor of , where is the signature

size. Therefore the same security can be achieved with smaller signature sizes. However, this is

attained at the expense of increased computations at sender or receiver. Though they present a

heuristic solution for flexible allocation of computations to the sender or receiver based on

62

availability of resources, the amount of computations required are extensive. However, in many

smart grid applications, receivers of multicast messages like home appliances, or field devices,

for example are highly resource constrained. In these cases, it is highly desirable to minimize the

computations at the sending and receiving end. Hence, the need for better one-time signature

schemes that will require fewer resources at the receiver, with modest signature sizes and low

sender computations is both urgent and important in the smart-grid environment.

Therefore, we suggest an entirely new approach- that of sigma protocols for computing

one-time signatures. While they have been traditionally used in applications like e-cash, e-

voting, and e-credentials, their use in smart grids has not been explored yet. A sigma protocol is

an interactive three move protocol between a prover and verifier to establish the veracity of

a statement without explicitly revealing the contents. This makes it fundamentally appealing

where authentication is required, such as in the smart-grid.

Here, we utilize an OTS through a witness hiding sigma protocol, namely the Okamoto

protocol. Security of this OTS scheme is same as security of solving discrete log problem. We

compare performance of sigma protocol based one-time signatures with TSV analytically and

show that sigma protocol based OTS significantly reduce receiver computations as compared to

both HORS as well as TSV. Moreover, the receiver does not have to store verification keys of

length proportional to message size. We claim that our scheme will perform two orders better in

terms of signing and pre-computation cost as well as key lengths. The signature length is

constant and will be maximum 2kb. This can be reduced to minimum of 32bytes at the cost of

reduced security. But 2kb signature size is acceptable as compared to message sizes of 80kb.

Hence, our scheme will provide an economical solution for multicast authentication in smart

grids.

63

The rest of the paper is structured as follows: Section 4.3 provides an introduction to

sigma protocols based one-time signatures and presents protocol for smart grid applications.

Section 4.4 provides brief overview of the authentication scheme in [4-1]; Section 4.5 presents

comparative results and conclusions are noted in Section 4.6.

4.3. Sigma-Protocols and One-Time Signatures

In cryptographic protocols, zero-knowledge proofs ensure that malicious parties do not

cheat. Zero-knowledge proofs are considered to be an expensive way of enforcing honest

behavior. However, for some languages, zero-knowledge proofs are a very efficient way to prove

honest behavior. For more information on zero knowledge see chapter 4 in [4-9]. In the

following sections we will discuss the background information needed for deriving one time

signature from sigma protocols.

4.3.1. Background

Let be a binary relation with the restriction that if ,

then the length of (called the witness) is at most , where is some polynomial and

 is the length of . Define to be the set of inputs for which there exists a such that

 . Sigma-protocols as defined in [4-10] are three-move protocols between a prover, ,

and verifier, , in which and have a common input . tries to prove to that either

belongs to language or it knows a such that . The protocol template is shown

below.

Protocol 4.3.1.1: Sigma-Protocol Template for a relation :

 Common Input: and get .

 Private Input: has a value such that .

64

 The protocol:

1. sends a message with as randomness used to generate .

2. sends a random -bit string which is called the challenge.

3. sends a reply . decides to accept or reject based on the values it has seen,

namely which is called the conversation of the protocol.

 and are probabilistic polynomial time algorithms with ’s only advantage being that

it knows the witness . If accepts then it is convinced that knows a such that .

Moreover, if is honest it does not learn any more information than . This implies

that the sigma-protocol is honest verifier zero knowledge. Note that the relation is such that it

is hard to compute from , otherwise could compute by itself and it does not need to be

convinced that knows . We now define sigma-protocols formally.

Definition 4.3.1.1:

A protocol is a sigma-protocol for relation if it is a three-round protocol of the form

in Protocol 4.3.1.1 and the following requirements hold:

1. Completeness: If and follow the protocol on input and private input to where

 , then always accepts.

2. Special Soundness: There exists a polynomial-time algorithm that given any and any

pair of accepting transcripts , for , where , outputs such that

 .

3. Special honest verifier zero knowledge: There exists a probabilistic polynomial time

simulator , which on input and outputs a transcript of the form with the

same probability distribution as transcripts between the honest and on common

input .

65

In [4-10] it is shown that a sigma-protocol can be converted to zero-knowledge proofs or

zero-knowledge proofs of knowledge using commitment schemes. In this paper we use sigma-

protocols that are witness indistinguishable and witness hiding to construct efficient one-time

signature schemes [4-11].

Definition 4.3.1.2:

A sigma-protocol is witness indistinguishable if the following two conditions are

satisfied.

1. There are different witnesses that all satisfy the condition for acceptance in step 3 of

Protocol 4.3.1.1.

2. No matter what a cheating verifier does, the protocol conversation gives no

information on which of the witnesses is known by the prover.

Definition 4.3.1.3:

A sigma-protocol is witness hiding if no probabilistic polynomial time algorithm , who

sees the common input and talks to the prover can output a valid witness, , with non-negligible

probability.

A one-time signature scheme can be obtained from a witness-hiding sigma-protocol as

follows. Assume that a relation has an instance generator. An instance generator is a

probabilistic polynomial time algorithm which on input outputs a pair

 . A one-time signature scheme is defined below.

Definition 4.3.1.4:

A one-time signature scheme consists of three probabilistic polynomial time algorithms

 .

 Gen: is an algorithm that is given input (is the security parameter) and

66

generates the key (is signing key and is the signer’s secret and , is the

verification key that is known to all).

 Sign: is the signing algorithm that takes as input the message that needs to be

signed and and outputs the signature .

 Vrfy: is the verification algorithm that takes as input the received message and

 and outputs or to indicate that the verification was successful or not.

 or .

Definition 4.3.1.5:

The one-time signature scheme is said to be secure if an adversary having seen at most

one valid signature on one message cannot efficiently come up with valid signature on another

message. [4-11]

 The signer of a one-time signature uses an instance-generator to select a random .

Next the signer generates a first message of the sigma-protocol (here the signer acts like the

prover and the receiver acts like the verifier in a sigma-protocol). The verification key is

 and the signing key is . Note that is the common input to the sigma-

protocol. The message, to be signed is taken to be the challenge in the sigma-protocol. The

one-time signature is the reply in the sigma-protocol such that is an accepting

conversation of the sigma-protocol. Thus, . The verification algorithm is the condition in

the protocol that checks if a conversation is acceptable or not (performed in step 3 of

Protocol 4.3.1.1).

This one-time signature scheme is secure according to Definition 4.3.1.5. Suppose that

there exists an adversary that can compute a valid signature on a different message, given one

valid signature. Then the adversary has two different signatures and ’ for the same

67

 . This implies that the adversary has two different conversations for the underlying sigma-

protocol and (note). Therefore from the special soundness

property of the protocol the adversary can compute . However this contradicts the witness

hiding property of the sigma-protocol. Thus there exists no adversary that can efficiently

compute a valid signature on different messages, given one valid signature. The above one-time

signature scheme is therefore secure.

We consider an example one-time signature scheme that is based on the Okamoto

protocol that is a sigma-protocol. Let be a group of prime order , with generators and ,

set in such a way that no one can efficiently compute, , such that
 . The Okamoto

protocol is a sigma-protocol based on the relation R = |

 }. The

Okamoto protocol proceeds as follows:

Protocol 4.3.1.2: The Okamoto Protocol.

 Common Input: and get

 .

 Private Input: has a value such that .

 The protocol:

1. sends a message

 , where is chosen uniformly at random

from .

2. sends a random -bit string e in , which is called the challenge.

3. computes , and sends to

 . accepts iff

 .

A one-time signature scheme based on the Okamoto protocol is given below.

68

One-time signature scheme based on the Okamoto protocol:

1. Gen: The signing key and the verification key are: ,

 , = (1 1 2 2, 1 1 2 2).

2. Sign: The signature on a message is computed as

 1 , 2+ 2 .

3. Vrfy: The receiver verifies a message-signature pair (m,) by checking if the following

equality holds:

 .

Note that:

Since the above signature is a one-time signature it can only be used to sign one message

with one key . Every new message must be signed with a new key to maintain security.

We propose to change the key by simply changing while keeping unchanged.

Note that with the above scheme the length of the message must be -bits such that ,

where is the order of the group . Typically is larger than 128 bits but less than 1024 bits.

If a message is much larger than 1024 bits then it can be hashed into -bits using a collision

resistant hash function such as VSH [4-12]. We now give the proposed multicast protocol that

can be used in the smart grid.

4.3.2. Our Protocol

The signing key (or private key of the signer) for signing the th
 message is

 , where is such that , for

 , and

 are chosen at random from for each . The verification key (or public key) is

 The verification key has to be distributed to each receiver

of message . We assume that this can be accomplished using authenticated message

69

transmission. The signer or sender of the multicast message can select pairs of random values

from , in advance, and compute the verification

keys, .
1
 These keys are sent with the message. Note that

 , , and

 are known to all the receivers via a single transmission in the beginning. The signer computes

the signature of the th
 message as

 and sends a multicast message to all receivers. Upon receipt of a message

 , the receiver performs verification by checking if the following equality is satisfied:

 . In order to verify the message-signature pair, , the

receiver should know the values , , , and . All receivers receive , , and in the

beginning. The sender computes verification keys and sends them to all receivers so the

receiver knows .

Assume that is the quadratic residue subgroup of
 , where is a strong prime (is a

strong prime if and is prime). Therefore if can be expressed in -bits then

can be expressed in at most -bits. The verification key for messages consists of ,

 , which require -bits. The number of verification key

bits per message is

, which is , for .

4.4. Best Known One Time Signature Scheme in the Smart Grid

The best known multicast protocol is the one in [4-1]. It is adapted from one time

signature scheme provided in [4-8]. In the following section, we will describe scheme from [4-

1].

1
 Verification keys can also be computed each time a new message is to be transmitted.

70

4.4.1. Tunable Signing and Verification

OTS scheme in [4-1] is a combination of two extreme approaches namely Heavy Signing

Light Verification (HSLV) and Light Signing Heavy Verification (LSHV). The combined

scheme achieves a tradeoff between the two and is called Tunable Signing and Verification

(TSV). The TSV scheme is as follows:

1. Gen: Generate different random -bit strings . For each , generate a one-

way chain of length , i.e., . The t chains form the private

key . The public key is , where .

2. Sign: To sign a message , compute , where is a counter with initial value

 . Call that takes bit string as input and outputs integers . This

function splits into substrings of bits each and interprets each

as an integer . All from should be different and the within the same

group should be sorted in the decreasing order; otherwise, increase by 1 and repeat the

above process. The signature of m is
 .

3. Vrfy: To verify a signature

 over message , compute .

Call . Check if 1) all from are different, 2) the in the same

group are sorted in the decreasing order and

 for each .

Note that if elements of the signature are divided into groups and

 denote the size of group . Then contains elements, contains

elements etc. Let denote the group to which the th element of the signature

belongs. Each element in group is verified with one-way function

invocations where, .

71

Protocol 4.4.1.1:

 Starting from random values , the sender generates one-way

chains of length and stores them as series of keys. The initial public key is

 . Assume is distributed to each receiver securely, e.g.,

via unicast message authenticated by HMAC. The initial private key consists of -element

chain segments that are adjacent to .

 When a signature is generated and revealed, the key values included in the signature and

those that can be generated by applying the one-way function over them are exposed. Thus, the

sender refreshes its private key by replacing any exposed key values with their predecessors in

the same chain. Also, a receiver updates its public key by replacing corresponding old key values

with the new values from the signature. [4-1]

4.5. Comparison

In the following section, we compare our protocol with [4-1] with respect to computation

time for signing and verification. We will also compare length of signing and verification keys,

length of signature, storage cost, and pre-computation cost as shown in Table 4.1. We will

provide details of the comparison in following subsections.

4.5.1. Computation Time

4.5.1.1. Signing Algorithm

The time to compute a signature

in our method is the time taken for two multiplications and two additions modulo . In addition

to it, there might be a need for performing one hash. Hardware complexity for computing

modulo multiplication is operations where , when ordinary multiplication is

72

used. Here is number of bits required to represent . The cost of basic VSH (1024-bit hash)

algorithm is

 operations per message bit [4-12]. The time

taken to compute the signature in [4-1] is time required to compute iterations of hash functions.

Where,

 .This value is of order for . In

typical setting of , for message of length bits our scheme will require

application of hash followed by cycles of CPU operations for performing two

multiplications. Cost of performing one hash is operations per message bit, hence total of

679272 cycles for hash are required. Thus to Sign a message of length our scheme will

require cycles. However, TSV will require minimum of i.e. applications of

cryptographic hash functions. Standard bit cryptographic hash functions such as SHA1 as

suggested in [4-8] requires at least cycles per byte [4-13]. Hence for a -bit message

TSV will require cycles. Hence, our scheme performs

 times better than TSV for message of length using basic algorithm for modular

multiplication.

4.5.1.2. Verification Algorithm

The time to verify a signature in our method is the time to compute one hash plus the

time to compute

 , which consists of exponentiations (for performing

 and one for performing) and two multiplications in group . One exponentiation is

equal to a maximum of multiplications [4-14]. Hence we will require multiplications.

Therefore total verification cost will be and is independent of length of message

 . Note that if the length of is greater than then it can be hashed into a string of length less

than . Verification time in [4-1] requires one computation of hash and between to

73

Table 4.1. Comparison with Cao's Protocol.

Here .

Schem
e

Computation Cost Pre Computation Cost Key Length Signature
Length

Storage
Cost Sign Verify Sign Veri

fy

HSLV applications

of hash function

k+1 one-way
function
invocations

 applications of one-

way function

LSHV applications of

hash function

 one-

way function
invocations

 applications of one-

way function

TSV

applications of
hash function

One-way function
invocations

 applications of

a one-way functions for
signature of
 messages

for
signature
of

messages

Our
Schem
e

1 application of
hash function +
2 modular
multiplications

2.5
exponentiations or
one-way function
invocations

3 exponentiations or
applications of one-way
functions

 Sender:
2N
+2MN

Receiver
: 3(N+1)

 computations of one-way function . If we assume the computational complexity

of one-way function to be the same as that of exponentiation because large modular

exponentiations in itself are one-way functions, then verification cost of our scheme is better

than TSV as only applications of one-way functions are required in our case. Also, in TSV an

attempt to minimize verification cost increases signing cost. Also, to select the optimum value of

the number of one-way functions, , required for verification, offline computation of is

required. We do not need any offline computation.

4.5.2. Key Generation and Public Key Distribution Cost

TSV method requires the pre-computation of one-way chains of length . To

accomplish this requires applications of a one-way function. This pre-computation

allows the computation of the signature for messages. Assuming that the chains

74

are depleted as they are revealed in the signatures, an additional communication cost is caused by

transmission of the public key, which is on average

 -bits per message. However, our

method incurs fixed cost for selection of generators and as explained earlier. Also,

sampling of such that , where

 . In addition to this to

sign M different messages it requires selection of 2M random values,

 and the computation of

, for j = 1, …, M.

This requires 1.5M exponentiations and M multiplications in group . As explained earlier the

size of is N+1 bits and hence that will be the cost of public key distribution per message. For a

typical setting in TSV, where , , , and i.e. when message is of

size 80kb, messages can be authenticated with

chains i.e. applications of a one-way functions. Also key distribution

cost is per message. Hence, it will be 11650.8B for 29127 messages. In our case to

authenticate messages of size , we need to perform

applications of one-way functions or that many exponentiations. Distribution cost of such key is

 bits per message. This will be of message size for the current example and is hence

negligible. Therefore, our scheme performs 24 times better than TSV in terms of key generation.

We suggest computing a new public key every time a new message is to be transmitted. In that

case, extra exponentiations performed online will not add much computational overhead for

sender as compared to TSV. We can say that an addition of one-way functions and increase

of in communication overhead will not make much of a difference for large messages.

75

4.5.3. Key Length

The length of the verification key in TSV is -bits while the length of the verification

key in our method is the length of four group elements, , and which is -bits.

The length of the signing key in TSV is -bits where k < t. The length of the signing key,

 in our method is -bits. For example, when

 and , the verification key length in our scheme is -bits, out of which

 -bits are transmitted in the beginning itself. However, verification key length in TSV will

be -bits, which is transmitted in the beginning. Our scheme achieves improvement in the

verification key length that is transmitted in the beginning and is to be stored at the receiver by a

factor of 26. This is useful in applications like demand response, operation and control, and in-

substation protection where receiver storage is stringent. For the same settings, signing key

length in our scheme is -bits. But sender has to store -bits to authenticate messages

but as we will discuss in sub section on storage cost this can be avoided. Signing key length in

TSV is . Hence we can say our scheme performs better than TSV in terms of key length.

4.5.4. Signature Length

The signature length in TSV is approximately bits. The length of the signature

 , in our method is bits. For typical

settings of : signature length for our scheme will be , while

that for TSV will be -bits. Hence our scheme will add more communication overhead than

TSV. However 2kb is not much of overhead. It may cause problems only in the settings where

bandwidth requirements are stringent. However, using lower value of modulus might solve the

problem in that case.

76

4.5.5. Storage Cost

If the output of the one-way function is -bits then the total number of bits that need to be

stored at the signer is bits. In our method the signer must pre-compute and store

 . If each requires -bits, then the storage requirement

 -bits. Receiver has to store . This will require bits. Hence for our

particular case of : Storage cost at receiver is

around . While for us its mere . We can reduce the storage cost of the sender by using

a pseudorandom number generator to output using as seed. This will still add

cycles to signing cost which is very small compared to 68k cycles for a 2kb message. Table 4.2

gives a particular example for the comparison of our protocol with that of [4-1].

Table 4.2. Particular Case of and .

Scheme
Approximate Computation Cost Pre Computation

Cost

Key Length Signatur
e Length

Storage
Cost Sign Verify Sign Verify

HSLV 3.2G-CPU
operations

9 invocations of one-
way functions

1024 invocations
of one-way
functions

80kb 80kb 0.640kb 80kb

LSHV 85k-CPU

operations

37 invocations of

one-way functions

8k invocations of

one-way functions

655kb 80kb 0.640kb 80Mb

TSV 3.2G-CPU
operations

Minimum 9
invocations of one-
way functions

1M invocations of
one-way functions
for 29k messages
of size 80kb

655kb 80kb 0.640kb 80Mb

Our
Scheme

27M-CPU
operations

3 invocations of one-
way functions

43k invocations of
one-way functions
for 29k messages

of size 80kb

4kb 4kb 2kb Sender:
59Mb

Receiver:
3kb

77

4.6. Conclusion

Multicast authentication while being a key-enabler for several critical control, command

and monitoring data streams, poses unique challenges in smart grids. These challenges stem

from the need to balance security with competing objectives of communication bandwidth,

storage and computation overheads. This paper proposes for the first time, the use of one-time

signatures from sigma protocols for multicast authentication in the smart grid. Sigma protocols

are fundamentally appealing in authentication systems where one entity needs to establish the

veracity of a statement to another entity without explicitly revealing its contents. Here, we

construct an OTS scheme using the Okamoto protocol (a 3 move protocol with the witness

hiding property) for multicast authentication. The proposed method outperforms the currently

best known approach for multicast authentication [4-5] by: reducing the burden on sender and

receiver computations (2-3 orders), pre-computation cost (2 orders), and storage overhead (2

orders) at a very modest increase (four fold) in signature size. With the current methods for

multicast authentication in smart grids, a high level of security is obtained at the expense of

increases in storage, computation and bandwidth. The proposed authentication scheme

overcomes this fundamental limitation and enables the efficient use of resource constrained field

devices thus paving the way for the implementation of sigma protocols in the smart grid

environment.

4.7. References

[4-1] Li, Qinghua, and Guohong Cao. "Multicast authentication in the smart grid with one-time

signature." Smart Grid, IEEE Transactions on 2, no. 4 (2011): 686-696.

78

[4-2] Mohsenian-Rad, A-H., and Alberto Leon-Garcia. "Distributed internet-based load

altering attacks against smart power grids." Smart Grid, IEEE Transactions on 2, no. 4

(2011): 667-674.

[4-3] Madani, Vahid, Damir Novosel, and Roger King. "Technological breakthroughs in

system integrity protection schemes'." In Power System Computation Conference (PSCC).

2008.

[4-4] “Guidelines for Smart Grid Cyber Security: Vol. 2, Privacy and the Smart Grid”, The

Smart Grid Interoperability Panel- Cyber Security Working Group, August 2010.

[4-5] Lamport, Leslie. Constructing digital signatures from a one-way function. Vol. 238.

Technical Report CSL-98, SRI International, 1979.

[4-6] Rabin, Michael O. "Digitalized signatures." Foundations of secure computation78

(1978): 155-166.

[4-7] Perrig, Adrian. "The BiBa one-time signature and broadcast authentication protocol."

In Proceedings of the 8th ACM conference on Computer and Communications Security, pp.

28-37. ACM, 2001.

[4-8] Reyzin, Leonid, and Natan Reyzin. "Better than BiBa: Short one-time signatures with fast

signing and verifying." In Information Security and Privacy, pp. 144-153. Springer Berlin

Heidelberg, 2002.

[4-9] Goldreich, Oded. "Foundations of Cryptography, volume I." Basic Tools, 2003.

[4-10] Hazay, Carmit, and Yehuda Lindell. Efficient secure two-party protocols: Techniques

and constructions. Springer, 2010.

[4-11] Damgard, Ivan, Lecture Notes on Cryptographic Protocol Theory. Department of

Computer Science, AARHUS University, 2011.

79

[4-12] Contini, Scott, Arjen K. Lenstra, and Ron Steinfeld. "VSH, an efficient and provable

collision-resistant hash function." In Advances in Cryptology-EUROCRYPT 2006, pp. 165-

182. Springer Berlin Heidelberg, 2006.

[4-13] Nakajima, Junko, and Mitsuru Matsui. "Performance analysis and parallel

implementation of dedicated hash functions." In Advances in Cryptology—EUROCRYPT

2002, pp. 165-180. Springer Berlin Heidelberg, 2002.

[4-14] Stinson, Douglas Robert. Cryptography: theory and practice. CRC press, 2002.

[4-15] Pieprzyk, Josef, Huaxiong Wang, and Chaoping Xing. "Multiple-time signature schemes

against adaptive chosen message attacks." In Selected Areas in Cryptography, pp. 88-100.

Springer Berlin Heidelberg, 2004.

[4-16] Neumann, William D. "HORSE: an extension of an r-time signature scheme with fast

signing and verification." In Information Technology: Coding and Computing, 2004.

Proceedings. ITCC 2004. International Conference on, vol. 1, pp. 129-134. IEEE, 2004.

[4-17] Wang, Qiyan, Himanshu Khurana, Ying Huang, and Klara Nahrstedt. "Time valid one-

time signature for time-critical multicast data authentication." InINFOCOM 2009, IEEE, pp.

1233-1241. IEEE, 2009.

[4-18] Chang, Shang-Ming, Shiuhpyng Shieh, Warren W. Lin, and Chih-Ming Hsieh. "An

efficient broadcast authentication scheme in wireless sensor networks." InProceedings of the

2006 ACM Symposium on Information, computer and communications security, pp. 311-

320. ACM, 2006.

[4-19] Berbecaru, Diana. "Performance of two one-time signature schemes in space/time

constrained environments." In Wireless Pervasive Computing (ISWPC), 2010 5th IEEE

International Symposium on, pp. 238-243. IEEE, 2010.

80

[4-20] Bicakci, Kemal. "Pushing the limits of one-time signatures." In Proceedings of the 2nd

international conference on Security of information and networks, pp. 249-257. ACM, 2009.

81

CHAPTER 5. CONCLUSIONS

Sensor networks have become part of our day to day life and hence are hot topic for

research these days. Smart-grid is an evolving sensor network technology. They are found useful

in many applications related to power grid. Power grids exchange many sensitive messages e.g.

price/kW, energy need, company offers, control signals etc. These messages are sent over either

wired or wireless network connecting these power sensor nodes and base station. Hence there is

need to protect this information. In this thesis we concentrate on protecting integrity of different

messages in smart grid networks using new Message Authentication Codes (MAC).

The smart gird networks have different requirements than regular data networks and

hence they need to be treated separately. They exchange heavy messages but have limited

resources. Hence, we present a MAC that performs faster authentication of long messages in

very short time consuming few hardware resources. In this thesis we presented three different

papers targeted towards providing fast authentication for long messages in short time which have

been recently accepted or submitted for publication as three different papers.

The first paper proposed that Multiple Input Shift Register (MISR) is -universal hash

function. We proved that it is faster as well as hardware efficient than existing universal hash

functions and hence MISR can be used in fast authentication of long messages in resource

constrained environment. Software implementation results of this scheme indicate that the time

required to sign or verify a message is reduced by two order compared to existing schemes. The

second paper proposes a variable length message authentication code (MAC) based on MISR for

authenticated communication between metering nodes and collection nodes in smart grid

networks. In this paper we proved that the new variable length MAC scheme is theoretically

82

secure. The MAC has two order better time performance compared to existing hash based MAC,

HMAC.

The third paper focuses on multicast authentication in smart grid networks. We propose a

novel approach of using one-time signatures (OTS) from sigma protocols for multicast

authentication in smart grid. When compared with the currently best known OTS scheme

Tunable Signing and Verification, the proposed scheme yields a three order improvement in time

performance at a very modest increase (four fold) in signature size.

Throughout this thesis we used different security definitions of authentication schemes in

order to prove the security of a scheme. While in some real-world applications, any scheme is

considered to be safe if no effective attack is known for it; provable security can definitely help

to guarantee a scheme’s security as long as the underlying hard problem is not solved.

Therefore, in this thesis we provide provably secure message authentication schemes

useful in smart grid and other resource constrained sensor networks. The first two schemes can

be used for faster authentication of heavy messages in resource constrained sensor networks. The

schemes are proved to be faster than existing schemes in terms of signing and verification cost,

hardware requirement, and communication overhead.

83

REFERENCES

This thesis contains three papers (chapters 2 to 4). The references of each paper appear at

the end of the chapter covering that paper. Other references are listed below.

[1-1] Katz, Jonathan, and Yehuda Lindell. Introduction to modern cryptography. Chapman &

Hall, 2008.

[1-2] Carter, J. Lawrence, and Mark N. Wegman. "Universal classes of hash

functions." Journal of computer and system sciences 18, no. 2 (1979): 143-154.

[1-3] Black, John, Shai Halevi, Hugo Krawczyk, Ted Krovetz, and Phillip Rogaway. "UMAC:

Fast and secure message authentication." In Advances in Cryptology—CRYPTO’99, pp. 216-

233. Springer Berlin Heidelberg, 1999.

[1-4] Krawczyk, Hugo. "LFSR-based hashing and authentication." In Advances in

Cryptology—CRYPTO’94, pp. 129-139. Springer Berlin Heidelberg, 1994.

[1-5] Vosoughi, Aida, and Rajendra Katti. "Fast Message Authentication Code for Multiple

Messages with Provable Security." In Global Telecommunications Conference (GLOBECOM

2010), 2010 IEEE, pp. 1-5. IEEE, 2010.

[1-6] Hamlyn, Alexander, Helen Cheung, Todd Mander, Lin Wang, Cungang Yang, and R.

Cheung. "Network security management and authentication of actions for smart grids

operations." In Electrical Power Conference, 2007. EPC 2007. IEEE Canada, pp. 31-36.

IEEE, 2007.

[1-7] Ericsson, Göran N. "Cyber security and power system communication—essential parts of

a smart grid infrastructure." Power Delivery, IEEE Transactions on 25, no. 3 (2010): 1501-

1507.

84

[1-8] Metke, Anthony R., and Randy L. Ekl. "Smart grid security technology." InInnovative

Smart Grid Technologies (ISGT), 2010, pp. 1-7. IEEE, 2010.

[1-9] Fouda, Mostafa M., Zubair Md Fadlullah, Nei Kato, Rongxing Lu, and Xuemin Shen. "A

lightweight message authentication scheme for smart grid communications." Smart Grid,

IEEE Transactions on 2, no. 4 (2011): 675-685.

[1-10] Lamport, Leslie. Constructing digital signatures from a one-way function. Vol. 238.

Technical Report CSL-98, SRI International, 1979.

[1-11] Rabin, Michael O. "Digitalized signatures." Foundations of secure computation78

(1978): 155-166.

[1-12] Perrig, Adrian. "The BiBa one-time signature and broadcast authentication protocol."

In Proceedings of the 8th ACM conference on Computer and Communications Security, pp.

28-37. ACM, 2001.

[1-13] Reyzin, Leonid, and Natan Reyzin. "Better than BiBa: Short one-time signatures with fast

signing and verifying." In Information Security and Privacy, pp. 144-153. Springer Berlin

Heidelberg, 2002.

[1-14] Li, Qinghua, and Guohong Cao. "Multicast authentication in the smart grid with one-time

signature." Smart Grid, IEEE Transactions on 2, no. 4 (2011): 686-696.

85

APPENDIX. MHMAC SOURCE CODE

Main_File.cpp

include <MHMAC.h>
include <conio.h>

int main()

{
 string MessageToSign;

 cout<<"Enter Text :"<<endl;
 cin >> MessageToSign;

 MHMAC MAC;
 MAC.MHMAC_Gen();

 string MESSAGE=MessageToSign;
 string MHMAC_Sign= MAC.MHMAC_Sign(MESSAGE);

 bool b=MAC.MHMAC_Vrfy(MESSAGE,MHMAC_Sign);

 cout<<"Verify :"<<b<<endl;
 _getch();

 return 1;
}

MHMAC.h

ifndef _MHMAC
define _MHMAC

include <MISRH.h>

include <DHKeyXchnge.h>

class MHMAC

{
 byte AESkey[AES::DEFAULT_KEYLENGTH];

 byte AESiv[AES::BLOCKSIZE];
 uint64_t gx_high;

 uint64_t gx_low;
 string Msg;

 string Signature;

 string counter;
public:

 void MHMAC_Gen();

 string MHMAC_Sign(string);
 bool MHMAC_Vrfy(string,string);

};
endif

MHMAC.cpp

include <MHMAC.h>
include <CounterGen.h>

86

void MHMAC::MHMAC_Gen()
{

 cout<<"Generating Keys"<<endl;
 DHKeyXchnge DH_1;

 //SecByteBlock & RefAESKey = AESkey(RIPEMD128::DIGESTSIZE);
 static const int size = RIPEMD128::DIGESTSIZE;

 //byte AESKEY[16];
 //AESkey = AESKEY;

 DH_1.ExchangeKey();
 for (int i=0;i<AES::DEFAULT_KEYLENGTH;i++)

 {
 AESkey[i]=DH_1.key[i];

 }
 for (int i=0;i<AES::BLOCKSIZE;i++)

 {
 AESiv[i]=DH_1.iv[i];

 }
 // Pretty print key

 string encodedkey,encodediv;
 encodedkey.clear();

 StringSource(AESkey, sizeof(AESkey), true,
 new HexEncoder(

 new StringSink(encodedkey)
) // HexEncoder

); // StringSource
 cout << "key: " << encodedkey << endl;

 encodediv.clear();
 StringSource(AESiv, sizeof(AESiv), true,

 new HexEncoder(

 new StringSink(encodediv)
) // HexEncoder

); // StringSource
 cout << "iv: " << encodediv << endl;

}

string MHMAC::MHMAC_Sign(string Msg)

{
 cout<<"Signing..."<<endl;

CounterGen r;
 counter = r.getCounterValue();

 cout<<"Counter :"<<counter<<endl;

 STR2H conv1(Msg);
 string MsgHex = conv1.HString();

 int NoHexChars = conv1.Get_L();
 int NofU64 = ceil(double(NoHexChars/16));

 MessageArray MsgtoMISRH(MsgHex);
 MsgtoMISRH.setMsgLen();

 uint64_t *MsgtoMISRHPtr = MsgtoMISRH.GetArray();
 int MsgtoMISRHLen = MsgtoMISRH.getMsgLen();

 MISRH MyMISR;
 MyMISR.ComputeMISRH(MsgtoMISRHPtr,MsgtoMISRHLen);

 string plainTextS = MyMISR.getRx();
 cout<<"MISRH:"<<plainTextS<<endl;

 string encodedS;
 string encodedSign;

 try

87

 {

 CBC_Mode< AES >::Encryption e;

 e.SetKeyWithIV(AESkey, sizeof(AESkey), AESiv);

 // The StreamTransformationFilter removes
 // padding as required.

 string Sign;
 StringSource s(counter, true,

 new StreamTransformationFilter(e,
 new StringSink(Sign)

) // StreamTransformationFilter
); // StringSource

 // Pretty print
 encodedS.clear();

 StringSource(Sign, true,
 new HexEncoder(

 new StringSink(encodedS)
) // HexEncoder

); // StringSource

 for(int i = 0 ; i<plainTextS.size(); i++)

 plainTextS[i] ^= encodedS[i];

 Signature = plainTextS;
 encodedSign.clear();

 StringSource(Signature, true,
 new HexEncoder(

 new StringSink(encodedSign)

) // HexEncoder
); // StringSource

#if 0

 StreamTransformationFilter filter(e);
 filter.Put((const byte*)plainTextS.data(), plainTextS.size());

 filter.MessageEnd();

 const size_t ret = filter.MaxRetrievable();
 Signature.resize(ret);

 filter.Get((byte*)Signature.data(), Signature.size());
#endif

 }
 catch(const CryptoPP::Exception& e)

 {
 cerr << e.what() << endl;

 exit(1);
 }

 /*********************************\

 *********************************/

 cout << "MHMAC: " << encodedSign << endl;

 return encodedSign;

}

bool MHMAC::MHMAC_Vrfy(string MsgtoVrfy, string MAC)

88

{

 cout<<"Verifying..."<<endl;
 STR2H conv2(MsgtoVrfy);

 string MsgHexV = conv2.HString();
 int NoHexCharsV = conv2.Get_L();

 int NofU64V = ceil(double(NoHexCharsV/16));
 MessageArray MsgtoMISRHV(MsgHexV);

 MsgtoMISRHV.setMsgLen();
 uint64_t *MsgtoMISRHPtrV = MsgtoMISRHV.GetArray();

 int MsgtoMISRHLenV = MsgtoMISRHV.getMsgLen();
 MISRH MyMISR;

 MyMISR.ComputeMISRH(MsgtoMISRHPtrV,MsgtoMISRHLenV);
 string plainTextV = MyMISR.getRx();

 cout<<"MISRH:"<<plainTextV<<endl;
 string encodedV,MACV,encodedVrfy;

 try
 {

 CBC_Mode< AES >::Encryption eV;

 eV.SetKeyWithIV(AESkey, sizeof(AESkey), AESiv);

 // The StreamTransformationFilter removes
 // padding as required.

 string Vrfy;
 StringSource s(counter, true,

 new StreamTransformationFilter(eV,
 new StringSink(Vrfy)

) // StreamTransformationFilter
); // StringSource

 // Pretty print

 encodedV.clear();
 StringSource(Vrfy, true,

 new HexEncoder(
 new StringSink(encodedV)

) // HexEncoder
); // StringSource

 for(int i = 0 ; i<plainTextV.size(); i++)
 plainTextV[i] ^= encodedV[i];

 MACV = plainTextV;

#if 0

 StreamTransformationFilter filter(e);
 filter.Put((const byte*)plainTextV.data(), plainTextV.size());

 filter.MessageEnd();

 const size_t ret = filter.MaxRetrievable();
 MACV.resize(ret);

 filter.Get((byte*)MACV.data(), MACV.size());
#endif

 }
 catch(const CryptoPP::Exception& e)

 {
 cerr << e.what() << endl;

 exit(1);

89

 }

 /*********************************\

 *********************************/

 // Pretty print
 encodedVrfy.clear();

 StringSource(MACV, true,
 new HexEncoder(

 new StringSink(encodedVrfy)
) // HexEncoder

); // StringSource
 cout << "MHMAC: " << encodedVrfy << endl;

 return (encodedVrfy==MAC);
}

MISRH.h

ifndef _MISRH

define _MISRH

include <MessageArray.h>

class MISRH
{

 uint64_t Gxh;
 uint64_t Gxl;

 uint64_t Rxh,Rxl;
 string Rx;

public:
MISRH();

void ComputeMISRH(uint64_t *MsgPtr, int MsgSize);
string getRx();

};
#endif

MISRH.cpp

include <MISRH.h>

string tostring(uint64_t val)
{

 std::ostringstream o;

 o << hex<< val;
 return o.str();

}

MISRH::MISRH()
{

 Gxh = 0x8000000000000000u;
 Gxl = 0x0000000000000043u;

 Rxh=0u;
 Rxl=0u;

}

90

void MISRH::ComputeMISRH(uint64_t *MsgPtr, int msgsize)

{
 uint64_t temph,temp1h,temp2h,templ,temp1l,temp2l;

 for (int i=0;i<msgsize;i+=2)
 {

 // taps: 128 07 02 1; characteristic polynomial: x^128 + x^7 + x^2 + x + 1

 temph = Rxh;
 temp1h=temph >> 1;

 //temp2h=temph & 1u;
 templ = Rxl ;

 if ((temph & 1u) == 1)
 {

 temp1l = (templ >> 1) | (0x8000000000000000u);
 }

 else
 {

 temp1l = (templ >> 1);
 }

 //temp2l=templ & 1u;
 if ((templ & 1u)==1u)

 {
 Rxh = (temp1h) ^ ((0xFFFFFFFFFFFFFFFFu) & (Gxh)) ^ (*MsgPtr) ;

 Rxl = (temp1l) ^ ((0xFFFFFFFFFFFFFFFFu) & (Gxl)) ^ (*(MsgPtr++)) ;
 }

 else
 {

 Rxh = (temp1h) ^ ((0x0u) & (Gxh)) ^ (*MsgPtr) ;
 Rxl = (temp1l) ^ ((0x0u) & (Gxl)) ^ (*(MsgPtr++)) ;

 }

 /*cout<<hex<<Rxh<<endl;

 cout<<hex<<Rxl<<endl;*/

 }
 /*cout<<"Final Rx:"<<endl;

 cout<<hex<<Rxh<<endl;
 cout<<hex<<Rxl<<endl;*/

}

string MISRH::getRx()

{
 string Hashh=tostring(Rxh);

 string Hashl=tostring(Rxl);
 Rx = Hashh.append(Hashl);

 return Rx;
}

CounterGen.h

ifndef _COUNTERGEN

define _COUNTERGEN

include <iostream>
include <string>

include <sstream>

91

using namespace std;

include <stdint.h>

class CounterGen
{

 static uint64_t counter_low;
 static uint64_t counter_high;

public:

 static string getCounterValue();
};

endif

CounterGen.cpp

include <CounterGen.h>

uint64_t CounterGen::counter_high = rand();
uint64_t CounterGen::counter_low = rand();

string CounterGen::getCounterValue()

{
 if (counter_low == UINT64_MAX)

 {
 if (counter_high == UINT64_MAX)

 {
 counter_low = 0;

 counter_high = 0;
 }

 else
 {

 counter_high++;
 }

 }
 else

 {
 counter_low++;

 }
 stringstream ss;

 ss << counter_high << counter_low;
 string str = ss.str();

 return str;
}

MessageArray.h

#ifndef _MessageArray
#define _MessageArray

include <string>

92

include <memory>

include <math.h>
include <Str2H.h>

include <H2Uint64.h>

class MessageArray
{

 string MsgArray;
 uint64_t *MsgPtr;

 int MsgLen;
public:

 MessageArray(){MsgArray = "";}
 MessageArray(string msg){MsgArray = msg;}

 uint64_t * GetArray();
 void setMsgLen(){MsgLen=ceil(double(MsgArray.length()/16));}

 int getMsgLen(){return MsgLen;}
 void DispArray();

 ~ MessageArray();
};

#endif

MessageArray.cpp

#include <MessageArray.h>

uint64_t * MessageArray::GetArray()
{

 H2UINT64 MessageNo;

 int k=0;
 try

 {
 MsgPtr = new uint64_t[MsgLen];

 uint64_t *uint64_ptr = MsgPtr;

 for (int j=0; j<MsgLen; j++)
 {

 *uint64_ptr = MessageNo.convert(MsgArray.substr(k,16));
 k+=16;

 uint64_ptr++;
 }

 return MsgPtr;
 }

 catch (bad_alloc ba)
 {

 cout<<"Bad Alloc"<<endl;
 }

}

void MessageArray::DispArray()

{

 uint64_t *dispPtr = MsgPtr;
 for (int j=0; j<MsgLen; j++)

 {
 cout << *dispPtr <<endl;

 dispPtr++;

93

 }

}

MessageArray::~MessageArray()
{

 MessageArray::MsgArray = "";
}

H2Uint64.h

/*

H2Uin64.h
To conver Hex representation of String to

of it
*/

#ifndef H2UINT64_H

#define H2UINT64_H

include <iostream>
include <string>

using namespace std;

include <stdint.h>

class H2UINT64

{
 string SH;

 uint64_t Uint64_No;
public:

 H2UINT64(){SH="";}
 H2UINT64(string S){SH=S;}

 uint64_t convert(std::string &s);
};

#endif

H2Uint64.cpp

include <H2Uint64.h>

uint64_t H2UINT64::convert(std::string &s)

{
 std::string::iterator i;

 std::string digits = "0123456789abcdefABCDEF";
 uint64_t result = 0;

 size_t pos = 0;
 SH = s;

 i = s.begin();

 while (i != s.end())
 {

 // search for character in hex digits set

94

 pos = digits.find(*i);

 // if found in valid hex digits

 if (pos != std::string::npos)
 {

 // handle upper/lower case hex digit
 if (pos > 0xf)

 {
 pos -= 6;

 }

 // shift a nibble in
 result <<= 4;

 result |= pos;
 }

 ++i;

 }

 return result;

}

Str2H.h

/*

Str2H.h
to convert regular string to hex representation

of it
*/

#ifndef STR2H_H

#define STR2H_H

include <iostream>
include <string>

include <sstream>
include <iomanip>

include <iterator>

using namespace std;

class STR2H
{

 string Sin;
 string Sout;

 int Sout_L;

public:
 STR2H(){Sin=Sout="";}

 STR2H(string S){ Sin=S;}

 void getString();
 string HString();

 int Get_L(){return Sout_L;}
};

95

#endif

Str2H.cpp

include <Str2H.h>
void STR2H::getString()

{
 cout<<"Enter String with no spaces:"<<endl;

 cin>>Sin;

}
string STR2H::HString()

{
 ostringstream result;

 result << setw(2) << std::setfill('0') << std::hex << std::uppercase;
 std::copy(Sin.begin(), Sin.end(), std::ostream_iterator<unsigned int>(result));

 Sout=result.str();
 Sout_L=Sout.length();

 int msgsize = 0;

 if (Sout_L%32 == 0)

 {
 Sout=Sout;

 }
 else

 {
 int m=32-(Sout_L%32);

 Sout=Sout;

 for (int l=0;l<m;l++)
 {

 Sout+="0";
 }

 }
 Sout_L=Sout.length();

 return Sout;
}

DHKeyXchnge.h

ifndef _DHKEYXCHNGE

define _DHKEYXCHNGE

include <CryptIncludes.h>

include <stdexcept>
using std::runtime_error;

#include <sstream>

using std::istringstream;
using std::stringstream;

include <iostream>

using namespace std;

96

class DHKeyXchnge
{

public:

 byte iv[AES::BLOCKSIZE];
 byte key[AES::DEFAULT_KEYLENGTH];

 void ExchangeKey()
 {

 AutoSeededRandomPool rnd;
 unsigned int bits = 128;

 try
 {

 DH dh;
 dh.AccessGroupParameters().GenerateRandomWithKeySize(rnd, bits);

 if(!dh.GetGroupParameters().ValidateGroup(rnd, 3))

 throw runtime_error("Failed to validate prime and generator");

 size_t count = 0;

 const Integer& p = dh.GetGroupParameters().GetModulus();
 count = p.BitCount();

 cout << "P (" << std::dec << count << "): " << std::hex << p << endl;

 const Integer& q = dh.GetGroupParameters().GetSubgroupOrder();
 count = q.BitCount();

 cout << "Q (" << std::dec << count << "): " << std::hex << q << endl;

 const Integer& g = dh.GetGroupParameters().GetGenerator();

 count = g.BitCount();
 cout << "G (" << std::dec << count << "): " << std::dec << g << endl;

 // http://groups.google.com/group/sci.crypt/browse_thread/thread/7dc7eeb04a09f0ce

 Integer v = ModularExponentiation(g, q, p);
 if(v != Integer::One())

 throw runtime_error("Failed to verify order of the subgroup");
 //Generate PubPriv Pair

 //Simple DH key Generation

 SecByteBlock privKeyA(dh.PrivateKeyLength());

 SecByteBlock pubKeyA(dh.PublicKeyLength());
 dh.GenerateKeyPair(rnd, privKeyA, pubKeyA);

 SecByteBlock privKeyB(dh.PrivateKeyLength());

 SecByteBlock pubKeyB(dh.PublicKeyLength());
 dh.GenerateKeyPair(rnd, privKeyB, pubKeyB);

 Integer a, b;

 a.Decode(pubKeyA.BytePtr(), pubKeyA.SizeInBytes());

 cout << "Shared secret (A): " << std::hex << a << endl;

 b.Decode(pubKeyB.BytePtr(), pubKeyB.SizeInBytes());
 cout << "Shared secret (B): " << std::hex << b << endl;

 //Unified DH key generation

97

 DH2 dhA(dh), dhB(dh);

 SecByteBlock sprivA(dhA.StaticPrivateKeyLength()), spubA(dhA.StaticPublicKeyLength());

 SecByteBlock eprivA(dhA.EphemeralPrivateKeyLength()),
epubA(dhA.EphemeralPublicKeyLength());

 SecByteBlock sprivB(dhB.StaticPrivateKeyLength()), spubB(dhB.StaticPublicKeyLength());

 SecByteBlock eprivB(dhB.EphemeralPrivateKeyLength()), epubB(dhB.EphemeralPublicKeyLength());

 dhA.GenerateStaticKeyPair(rnd, sprivA, spubA);
 dhA.GenerateEphemeralKeyPair(rnd, eprivA, epubA);

 dhB.GenerateStaticKeyPair(rnd, sprivB, spubB);

 dhB.GenerateEphemeralKeyPair(rnd, eprivB, epubB);

 //Key Establishment

 if(dhA.AgreedValueLength() != dhB.AgreedValueLength())
 throw runtime_error("Shared secret size mismatch");

 SecByteBlock sharedA(dhA.AgreedValueLength()), sharedB(dhB.AgreedValueLength());

 if(!dhA.Agree(sharedA, sprivA, eprivA, spubB, epubB))

 throw runtime_error("Failed to reach shared secret (A)");

 if(!dhB.Agree(sharedB, sprivB, eprivB, spubA, epubA))
 throw runtime_error("Failed to reach shared secret (B)");

 count = std::min(dhA.AgreedValueLength(), dhB.AgreedValueLength());

 if(!count || 0 != memcmp(sharedA.BytePtr(), sharedB.BytePtr(), count))

 throw runtime_error("Failed to reach shared secret");

 Integer y, z;

 y.Decode(sharedA.BytePtr(), sharedA.SizeInBytes());

 cout << "Shared secret (A): " << std::hex << y << endl;

 z.Decode(sharedB.BytePtr(), sharedB.SizeInBytes());
 cout << "Shared secret (B): " << std::hex << z << endl;

 //Generate AES

 int aesKeyLength = RIPEMD128::DIGESTSIZE; // 16 bytes = 128 bit key

 int defBlockSize = AES::BLOCKSIZE;

 // Calculate a RIPEMD128 hash over the Diffie-Hellman session key
 //SecByteBlock key(RIPEMD128::DIGESTSIZE);

 static const int size = RIPEMD128::DIGESTSIZE;
 RIPEMD128().CalculateDigest(key, sharedA, sharedA.size());

 // Generate a random IV

 rnd.GenerateBlock(iv, AES::BLOCKSIZE);

 }

 catch(const CryptoPP::Exception& e)
 {

 cerr << e.what() << endl;

98

 }

 }

};

endif

CryptIncludes.h

ifndef _CRYPTINC
define _CRYPTINC

// Includes

/***Crptographic Includes***/
include "osrng.h"

using CryptoPP::AutoSeededRandomPool;

#include "integer.h"
using CryptoPP::Integer;

#include "secblock.h"

using CryptoPP::SecByteBlock;

#include <ripemd.h>

using CryptoPP::RIPEMD128;

#include "filters.h"
using CryptoPP::StringSink;

using CryptoPP::StringSource;
using CryptoPP::StreamTransformationFilter;

using CryptoPP::HashFilter;
using CryptoPP::HashVerificationFilter;

#include "dh.h"

using CryptoPP::DH;

#include "secblock.h"
using CryptoPP::SecByteBlock;

#include <dh2.h>

using CryptoPP::DH2;

#include "nbtheory.h"
using CryptoPP::ModularExponentiation;

#include "cryptlib.h"

using CryptoPP::Exception;

#include "aes.h"
using CryptoPP::AES;

using CryptoPP::AESEncryption;

using CryptoPP::AESDecryption;

#include "ccm.h"
using CryptoPP::CFB_Mode;

using CryptoPP::CBC_Mode;

99

include <base64.h>
using CryptoPP::Base64Encoder;

include <hex.h>

using CryptoPP::HexEncoder;

endif

