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ABSTRACT 

This thesis is a collection of three different research contributions targeted towards 

providing faster message authentication for long messages which have been recently accepted or 

submitted for publication. The first research work explores properties of Multiple Input Shift 

Register (MISR) as a universal hash function. We implemented a fixed length message 

authentication code (MAC) based on MISR in software. Signing or verification time of new 

MAC is two order less compared to existing MAC. The second contribution is a variable length 

MAC based on MISR for use in smart grid networks. We prove security of the MAC scheme and 

analyze its performance pertaining to smart grid application.  

The third contribution suggests use of one-time signatures (OTS)  from   sigma  protocols 

for multicast authentication in smart grid. The proposed scheme yields three order improvements 

in time performance  at  a very modest   increase  in  signature   size compared to currently    best 

known OTS scheme. 
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CHAPTER 1. INTRODUCTION 

We live in the era of smart digital technology. Everything we use in day to day life can be 

controlled by our smart phone. We track train or bus using our phone, we find parking slot using 

our phone, we receive temperature and traffic information at single click using smart phone. In 

addition to this machine to machine (M2M) technology has made it possible to monitor home 

appliances sitting in the office. We are moving towards using smart meters that work on demand 

response mechanism and save energy. All this is made possible by use of sensor networks. 

Spatially distributed sensors monitor and record data and pass it along the network. This data 

needs to be secured before it is transmitted otherwise it becomes vulnerable to numerous kinds of 

attacks. Data security can be divided into mainly two areas, privacy and authenticity. In this 

work we will concentrate mainly on achieving authenticity. There are many well established 

cryptographic schemes that achieve authenticity. But, these schemes require lot of resources in 

terms of computation and storage. However, sensors have very limited resources and hence 

cannot use these regular methods. Hence, there have been surge of interest in finding lightweight 

authentication schemes for sensor networks. We will analyze existing schemes and propose new 

schemes that are more efficient in terms of computation time as well as storage and 

implementation. 

 In this chapter first a brief general background on lightweight authentication schemes is 

given. We also briefly introduce some of most significant existing methods. This chapter does 

not intend to provide in depth explanation about sensor authentication schemes as each chapter 

of the thesis consists of a stand-alone self-contained paper in which the required background and 

definitions are explained. We will also discuss the motivations of our research work and 
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highlight the contributions in a separate section of this chapter. At the end the organization of the 

thesis is briefly described. 

1.1. Background 

Sensor networks cover wide range of applications from Environment/Earth Monitoring, 

Industrial Monitoring, Military Monitoring, Agriculture, Tracking Systems, and Smart Home 

Monitoring. The sensor nodes have to work in resource constrained environment. They have 

very limited computational power, memory, on chip space, bandwidth and power source.  They 

are not only resource constrained but most of them have heavy data like images. Hence they 

need to be treated differently. As sensor networks collect data that could be secret or sensitive, 

there is need to ensure integrity of this data. Not only in military applications but also in other 

applications malicious users for their own benefit might try to tamper the data sent between 

different nodes. Data integrity can be achieved using various authentication methods. Use of 

asymmetric key methods like RSA or El Gamal Signature schemes in sensor networks is out of 

question as they require lot of computational resources. However, symmetric key methods like 

HMAC sound like a feasible option but it also requires considerable amount of hardware and 

computation time. Therefore, researchers are moving towards a symmetric key approach of 

hashing the input message first into a small size message and then applying a cryptographic 

primitive to the hashed data.  

The aim of a message authentication code is to prevent an adversary from modifying a 

message sent by one party to another, without the parties detecting that a modification has been 

made [1-1]. Any symmetric key authentication technique is commonly known as Message 

Authentication Code (MAC). Two users who wish to communicate in an authenticated manner 

begin by generating and sharing a secret key   in advance of their communication. When one 
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party wants to send a message   to the other, she computes a MAC tag (or simply a tag)   based 

on the message and the shared key, and sends the message   along with the tag   to the other 

party. The tag is computed using a tag-generation algorithm that will be denoted by Mac; 

rephrasing what we have already said, the sender of a message   computes             and 

transmits        to the receiver. Upon receiving      , the second party verifies whether   is a 

valid tag on the message   (with respect to the shared key) or not. This is done by running a 

verification algorithm      that takes as input the shared key as well as a message   and a tag 

 , and indicates whether the given tag is valid [1-1]. 

As mentioned earlier hash and encrypt approach is the best known way of providing 

authentication for long messages in resource constrained environment. The hash functions used 

in this context are called universal hash function. Term universal basically means that these hash 

functions distribute their input evenly among their output. In this research we propose a new 

universal hashing technique and explore its use in smart grid networks.  

We will also propose a new one time signature scheme for multicast authentication is 

smart grid networks. This scheme on the contrary makes use of public key signatures in the 

innovative way. In this scheme we make use of sigma protocol to construct a public key 

signature. This approach does not require as heavy computations as traditional public key 

signatures. A public key signature scheme is used in the following way. One party  , who acts as 

the sender, runs         to obtain keys          . The public key    is then publicized as 

belonging to  . e.g.,   can put the public key on its webpage or place it in some public directory. 

We assume that any other party is able to obtain a legitimate copy of  's public key. When   

wants to transmit a message  , it computes the signature             and sends      . 

Upon receipt of      , a receiver who knows    can verify the authenticity of   by checking 
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whether                . This establishes both that   sent  , and also that   was not 

modified in transit [1-1]. We construct one time signature using sigma protocol and prove that 

even though it is a public key method it will prove to be very good choice for multicast 

authentication in smart grid. 

1.2. History 

Universal hash functions and their use in MAC were first suggested by Carter and 

Wegman in 1981[1-2]. They for the first time introduced an idea of applying cryptographic 

primitive to output of universal hash in order to compute MAC. Universal hash functions are 

widely preferred in sensor networks due to their ability to compute MAC in efficient time while 

providing unconditional security. Cost of computing tag using universal hash functions is sum of 

cost of computing hash and cost of applying cryptographic primitive to output of hash. However, 

if hash compresses message well then the second step does not consume much of time [1-3]. 

Hence quest of finding efficient MAC is reduced to finding efficient universal hashing technique. 

Since then there had been surge of interest in finding more and more efficient universal hash 

constructions. These constructions are aimed to reduce signing and verification delays, hardware 

resources, tag size and power consumption. The simplest construction amongst these 

constructions is Cryptographic-CRC proposed in [1-4]. They propose a construction where 

Linear Feedback Shift Register (LFSR) with slight modification is used as  -balanced universal 

hash function. However LFSR takes as many cycles as length of message to hash the message. In 

[1-5] use of MISR in MAC is suggested for first time but they did not see that MISR are in fact 

universal hash functions and can be used for message authentication in numerous ways. Use of 

MISR introduces parallelism in Cryptographic-CRC scheme and hence improves the time 

performance. The construction is very simple and requires very low hardware resources.  
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Smart grid sensor networks are gaining popularity in recent years. They have separate 

standards (IEEE P2030 SG) for maintaining security. Figure 1.1 describes overall architecture of 

smart grid networks. In [1-6] new utility computer network security management and 

authentication in smart grid operations is proposed. However, they do not consider 

communication between all types of smart grid network nodes. In [1-7], number of digital 

security issues that need to be addressed for SG communication are discussed. They point out 

vulnerabilities in combining SCADA/EMS systems with existing information networks. Metke 

Et al. [1-8] pointed out need of message authentication code in smart grid networks. They 

mention that use of existing schemes won’t be a smart choice for authentication in smart gird 

networks instead there is need for a scheme that is faster and can adapt according to 

requirements. In [1-9] a new framework for message authentication between different nodes of 

smart grid network based on Diffie-Hellman key exchange and HMAC-RIPEMD is proposed. 

However, RIPEMD is not considered as secure hash function. We suggest replacing HMAC in 

their scheme with our variable length MAC and achieve two order better performances in terms 

of signing and verification delay.  

Smart Gird networks consist of different types of messages. The type of message can be 

classified into uni-cast or multicast depending on type of application. In multicast 

communication single transmitter sends a message intended for multiple receivers. These 

messages many times may contain sensitive control/command messages. This necessitates need 

of multicast message authentication in smart grid networks. Multicast authentication in smart 

grid networks is achieved through one time signature (OTS). An OTS scheme [1-10, 1-11] 

makes use of cryptographically secure one way functions so that single key can be used to sign  
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Figure 1.1. Smart Grid Communication Framework ([1-9] Copyright © 2011, IEEE). 

multiple messages. These schemes are fast but have large signature size and hence cannot be 

used in smart gird communication. The Bins and Balls (BiBa) [1-12] scheme reduces signature 

size at the expense of increased signing delay. HORS (Hash to Obtain Random Subset) [1-13] 

overcomes the deficiencies in BiBa. However, HORS requires large key sizes. This limits its use 

in field devices (sensors). To address drawbacks of HORS the Tunable Signing and Verification 

scheme (TSV) is proposed in [1-14]. The scheme can be adapted based on application, more 

computations are performed either at the sender or receiver. Though this scheme is efficient for 

communication between sensors and base station, it won’t be a good choice for communication 

between two sensor nodes. Hence we suggest entirely new approach of using sigma protocols for 

computing OTS. Sigma protocols are widely used for e-banking, e-voting, e-credentials but we 

seek their use in smart grid networks. We achieve three orders improvement in terms of signing 



7 

 

and verification delays as compared to TSV. Also, pre-computation and storage cost is 

significantly reduced.  

1.3. Motivations and Contributions 

The thesis is a collection of three different papers targeted towards providing fast 

authentication for long messages in short time which have been recently accepted or submitted 

for publication as three different papers. The first paper proposes that Multiple Input Shift 

Register (MISR) is  -balanced universal hash function. We perform small modification in the 

existing  -balanced universal hash function, Cryptographic-CRC [1-4] to construct our universal 

hash function MISRH. In [1-4] hash function       for any message   of binary length   is 

defined as                , where      is irreducible polynomial of degree   over      . 

We split the message   of binary length   to hash into   data streams each  -bit long,      

             ,           ,           are all zero message streams. The 

binary sequence    can be represented using a polynomial      . The MISRH is computed 

using         
    

            , where      is irreducible polynomial of degree   over 

     .  

Cryptographic-CRC requires   clock cycles to compute hash on  -bit long message. We 

will reduce this time by the factor of L. The fastest known universal hash function is UMAC, it 

requires 0.52 cycles/byte for achieving security of the order of     . Whereas, MISRH requires 

mere 0.13 cycles/byte to achieve the same security.  In this paper we prove that MISRH is  -

almost universal for         , and  -balanced for         . We also propose different 

ways of constructing MAC from MISRH and prove that construction                  , 

where r is counter and     (Pseudo Random Function PRF) is  -opt secure MAC. To 

implement this construction 25648 logic elements are required. Hence, MAC scheme based on 
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MISRH will be a very good choice for message authentication in resource constrained 

environment.  

In second paper we propose a variable length MAC using MISRH for use in smart grid 

networks. The best known message authentication infrastructure was proposed by Fauda et. Al in 

[1-9]. They use Diffie-Hellman key exchange to establish a shared secret between home area 

network node and building area network node. They use this shared secret to encrypt and sign 

the message. They suggest using HMAC-RIPEMD128 for signing the message. However, 

RIPEMD128 is not considered as secure hash. We propose replacing HMAC with our new 

variable length MAC,                  . We analyze the security of this new MAC scheme 

and prove that it is existentially unforgeable under chosen message attack. We compare 

performance of this scheme with HMAC and show that our scheme performs two orders better in 

terms of signing and verification delay. Also, this scheme provides a fixed length tag hence 

reduces the communication overhead by significant amount too. 

In third paper we propose a multicast authentication scheme for use in smart grid 

networks using sigma protocols. In smart grid networks, multicast authentication is achieved 

using one time signature. Numerous methods have been proposed to reduce the cost of 

computation, cost of key generation and distribution, key length, signature length and storage 

cost. Some methods are good in terms of computation time but they require lengthy keys or 

produce lengthy signatures. Other schemes which provide short signatures require more 

computation time. The best known OTS scheme today is TSV. It adapts based on type of 

network configuration it is used in. It requires higher computations on either sender or receiver 

node. Therefore we propose a new approach of using sigma protocol based one-time signature in 

this scenario. We construct an OTS using witness hiding sigma protocol. Its security is same as 
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probability of solving discrete log problem. We provide background on sigma protocol and prove 

security of OTS using sigma protocol. We compare our scheme with TSV and show that our 

scheme provides three order reductions in signing and verification cost. It also provides two 

order reductions in pre-computation and storage cost. However, our scheme increases signature 

size by four fold compared to TSV. Even so OTS based on sigma protocol seems to be a very 

good option for multicast authentication in smart grids. 

In first paper provided in this thesis I worked with my advisor Dr Katti. I worked on 

proving that MISR are universal hash functions. I implemented the MAC based on MISRH in 

software and evaluated its performance. I also did literature survey on universal hash functions 

and compared hardware performance of MISRH with existing universal hash functions. We have 

submitted this paper to 16
th
 EUROMICRO Conference on Digital System Design (DSD). In 

second paper of this thesis I worked with my advisor Dr Katti to construct a variable length 

MAC and prove its security. I worked on evaluating the performance of the scheme and 

comparing it with HMAC. The literature survey related to smart grid networks is done by Dr 

Kavasseri. The paper appears in 2012 IEEE power and engineering society general meeting. In 

third paper I worked mostly on evaluating the performance of the scheme and doing part of 

literature survey. We submitted this paper to IEEE Transactions on Smart Grid. 

1.4. Thesis Organization 

This thesis contains three different research works targeted towards providing fast 

authentication for long messages in short time which have been recently accepted or submitted 

for publication as three different papers. Chapter 2 of this thesis consists of first paper under title 

“Fast Message Authentication for Long Messages in Resource Constrained Environment Using 

New Universal Hash: MHMAC”. We have submitted this paper for publication to 16
th
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EUROMICRO Conference on Digital System Design (DSD). Chapter 3 of this thesis consists of 

second paper titled “A Variable Length Fast Message Authentication Code for Secure 

Communication in Smart Grids”. The paper has been accepted in 2012 IEEE power and 

engineering society general meeting. Chapter 4 of this thesis covers third paper under title 

“Multicast Authentication in the Smart Grid with One-Time Signatures from Sigma-Protocols”. 

The paper was submitted to IEEE Transactions on Smart Grid. Finally in chapter 5 we draw 

general conclusions about our research. 
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CHAPTER 2. FAST MESSAGE AUTHENTICATION FOR LONG 

MESSAGES IN RESOURCE CONSTRAINED ENVIRONMENT 

USING UNIVERSAL HASH: MHMAC 

We have submitted this paper for publication to 16
th
 EUROMICRO Conference on 

Digital System Design (DSD). The authors of the paper are Rajendra S Katti, Rucha S. Sule. 

2.1. Abstract 

In this paper we consider fast authentication of long messages. We prove that Multiple 

Input Shift Register (MISR) are  -balanced hash function and hence can be used in a Message 

Authentication Code (MAC). The message   to hash is split into     data streams each  -bit 

long,                   ,       ,           being all zero message 

streams. These   s are given as input to MISR, which performs kind of division by polynomial 

of degree   over       to give  -bit hash. A cryptographic primitive is applied to the output of 

MISR to get MAC. We implemented this scheme in software to evaluate the performance of the 

scheme. Results of implementation show that it is possible to authenticate a message of size 

4MB in 8mSec. We also insist that as the construction is very simple, it will prove to be 

hardware efficient in terms of both implementation and performance.  The scheme will find its 

use in sensor networks and multimedia networks. 

2.2. Introduction 

Message Authentication Codes (MACs) are used to authenticate messages in the 

symmetric key setting. A tag is sent along with a message to a receiver who verifies that the 

message was not tampered using the tag. In many communication networks the communicated 

messages are lengthy which in turn necessitates the existence of fast MACs. Moreover, in many 
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networks, such as sensor networks, messages are sent very frequently. This fact stresses the need 

for MAC that takes multiple messages at the same time and generates a single tag for all the 

messages in efficient time. 

In this paper, we consider the problem of authentication of long messages with small tag 

in very less number of computations. When we say less computations we are mainly referring to 

hardware computations, but our scheme will prove to be a good option in case of software 

implementation too.  We also make sure that the scheme is easy to understand as well as 

implement. We will prove that MISR is in fact a universal hash function and evaluate its 

performance by implementing the scheme in software. The MAC based on MISR requires 

8mSec to authenticate a message of size 4MB. There are numerous ways in which message 

authentication code can be constructed from any universal hash function. We will list these 

methods and show, how a simple  -opt secure message authentication code MHMAC can be 

constructed from our hash MISRH. 

We achieve the speed by introducing parallelism where, a long data file can be split into 

  shorter blocks of length   and a single tag   can be computed for the   blocks. In this case the 

time needed to compute the tag and the verification time are reduced by a factor of  . To achieve 

the security of the order of      (probability of collision), our hash function requires 0.13 

cycles/byte (apx. 128*8/60   17 cycles for message of length 128Bytes). For fixed message 

length, number of cycles per byte decreases as security requirement increases, which also results 

in increase in the hardware. All this is realized by simple modification in Cryptographic-CRC 

method [2-4]. Cryptographic-CRC is a well-known universal hashing technique but it requires 

6cycles/byte [2-10] to compress the message. We reduce it by factor of   while maintaining 

same hardware complexity. Most of the existing methods use very complicated ways to construct 
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universal hash functions. However, use of MISR as universal hash function not only improves 

the hashing time but also provides a simpler way of constructing universal hash function. In 

following subsection we will review the universal hashing approach and how it can be used in a 

secure MAC setting. 

2.2.1. Universal Hashing Approach 

We will first start with definition of hash functions. In [2-3] hash functions are defined as 

follows: 

Definition 2.2.1.1:  

A hash family is a four-tuple            where the following conditions are satisfied: 

   is a set of possible messages 

   is a finite set of possible messages 

  , the keyspace, is a finite set of possible keys 

For each    , there is a hash function       . Each           

In above definition   could be a finite or infinite set;   is always a finite set. If   is a 

finite set, then the corresponding hash function is called a compression function. In this situation 

it is assumed that     . A pair           is said to be valid under key   if        . 

Let      denote the set of all functions from   to  . Suppose that       and      . Then 

it is clear that          . Any such hash family        is termed an (N,M)-hash family. 

When a hash function is used for cryptographic purposes, it’s security is decided based 

on following criteria. If hash function is considered to be secure, it should be the case that 

following three problems are difficult to solve. 



14 

 

 Preimage: 

Instance: A hash function        and an element     . 

Find:     such that       . 

 Second Preimage: 

Instance: A hash function        and an element     . 

Find:      such that      and           . 

 Collision: 

Instance: A hash function       . 

Find:        such that      and           . 

A hash function for which Collision cannot be efficiently solved is often said to be collision 

resistant. 

Concept of universal hash functions is introduced by Carter and Wegman [2-5] in 1979. 

They state that any class of function that is universal2 has the property that given any sample, a 

randomly chosen member of that class will be expected to distribute the sample evenly. He 

defines a parameter       
   such that, given a function  , and       .       

     if 

     and           , otherwise       
    . If f,   or    is replaced in       

   by set of 

elements, then sum of all elements in respective sets is computed. Thus, if   is a collection of 

hash functions,     and     then         means         
         . The quantity 

      
   counts number of functions in   for which   and    collide. If   is class of functions 
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from      then   is universal2 if for all      in  ,       
   

   

   
. Clearly for any function 

to be universal2 number of collisions should be less than one    th of the number of functions in 

the hash family. They also introduce few examples of such functions in this work. We will prove 

in section 2.4.2 that our hash function will have collision with probability 

approximately          , where   is the length of a tag. 

Since [2-5] defined universal2 hash functions, different authors proposed modified 

versions of universal2 hash functions as follows: 

Definition 2.2.1.2: [2-3]  

Suppose that           is an (N,M) hash family. This hash family is strongly 

universal provided that the following condition is satisfied for every        such that     , 

and for every       : 

                  
        

   

  
 

To prove any class of hash function to be strongly universal it is sufficient to show that 

there exists a unique function that maps       , where      to       . 

Definition 2.2.1.3: [2-7] 

A  -almost universal2 hash function,        , must satisfy that  

                      
       . 
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Definition 2.2.1.4: [2-7] 

A  -almost strongly universal2 hash function,        , must satisfy that 

            and    : |                     . 

                and       , |                                

If   is length of key  , such that         ,        ,          then 

Definition 2.2.1.5: [2-4], [ 2-8] 

A ϵ-balanced universal hash function,        , must satisfy that 

             and    :                    . 

In section 2.4.2 we will analyze our hash function MISRH according to these definitions 

and show that it is in fact a collision resistant, universal2,  -almost universal and  -balanced 

hash function.  

2.2.2. Universal Hashing and Authentication 

Over the past three decades MACs based on Universal Hash Family [2-5] are preferred in 

sensor networks because of their ability to provide fast computation with unconditional security. 

In [2-6] Carter and Wegman further introduced an authentication scheme based on universal2 

hash functions. Any authentication scheme based purely on universal hash functions cannot be 

used for authentication of multiple messages. In order to enable hash function based schemes to 

authenticate multiple messages, [2-6] suggest to XOR, the output of hash function with random 

sequence as in one time pad system. In this case, probability of forgery is same as that of 

selection of random pad for MAC. We follow similar approach to prove security of our MAC. 
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As pointed out by [2-9], the speed of universal hash based MAC depends mainly on the 

speed of the hashing step and the speed of encryption step. But if the hash function compresses 

message well then the encryption should not take long, simply because it is a short string that is 

being encrypted. Hence quest of finding fast MAC based on the universal hash function reduces 

to finding fast universal hash itself. Hence, many authors proposed different designs for fast 

universal hashing. Here, we will provide an overview of the methods from which our hash is 

adapted. All other methods are described in detail in section 2.3. 

Krawczyk [2-4] first suggested the use of Linear Feedback Shift Registers (LFSR) in 

constructing MAC. This method is well known as “Cryptographic CRC”, which has very fast 

hardware implementation and reasonably fast software implementations; it needs 6cycles/byte, 

as shown by Shoup in [2-10]. In [2-4] hash function       for any message   of binary length 

  is defined as                , where      is irreducible polynomial of degree   over 

     . This paper also presents a Toeplitz-Matrix based hashing using LFSR which is also 

considered to be very hardware efficient. In [2-11], [2-12], [2-13], [2-14] hash schemes were 

proposed that performs a division by a random irreducible polynomial. Rogaway bucket hashing 

in [2-15] was the first universal hash family targeted for fast software implementation. It hashes 

in about 1.5-2.5 cycles/byte [2-15]. Paper [2-16] presented a bucket hashing algorithm with 

smaller key size. Halevi and Krawczyk in [2-17] present fast method for implementing Modular 

Multiplication based universal hash which utilizes properties of MMX architecture achieving 

speed of about 1.5-3 cycles/byte. Further [2-9] gives even faster method utilizing SIMD 

architecture properties; it was the first paper that described complete construction of MAC while 

analyzing the efficiency of software implementation. They introduce parallelism by dividing the 

message into  -bit words and then compute the hash function NH. They achieve speed of 0.52 
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cycle/byte [2-9] for achieving security of     . They were the first to apply pseudorandom 

function to the output of hash function to compute MAC. In [2-18]  Palash Sarkar gives new 

multilinear hash based on reapplication of LFSR function. However this method requires   shift 

and multiply operations for  -bit message. It requires approximately 128*128/2048 = 8 

cycles/byte to hash 2kB message when q=2 and n=128. The collision probability is       , 

where   is length of the key. 

As mentioned earlier we will achieve better hardware performance. To compute a hash 

for 2kB message with n=128, we will require mere 128 cycles resulting in performance of 

0.0625 cycles/byte. To achieve this we will perform a small modification in the basic 

“Cryptographic CRC” construction to introduce parallelism to form our universal family of hash 

functions MISRH and apply cryptographic primitive at the output of hash to generate MHMAC. 

The message   to hash is split into   data streams each  -bit long,               

    ,           ,           are all zero message streams for    . The binary 

sequence    can be represented using a polynomial      . The MISRH is computed using 

formula,         
    

            , where      is irreducible polynomial of degree   over 

     . And finally MAC can be computed using            
    

              or       

        
    

            . As pointed out by UMAC, the security can further be improved by 

appending random nonce to message before giving it as input to pseudorandom function. There 

are many other ways of constructing MAC from universal hash. We will discuss these ways in 

detail in section 2.4.3. Main goal of our method is to perform fast authentication of large 

messages while keeping the construction simple. We also succeed in maintaining the scheme 

provably secure. 
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Rest of the paper is organized as follows: In section 2.3 number of existing universal hash 

functions are described. Here, we will also list other universal hash based MACs as well as few 

other MACs. In section 2.4 we will describe our new hash function MISRH and analyze in which 

category it fits into. We will also describe simple MAC construction MHMAC based on MISRH 

and prove its security. Section 2.5 will analyze software and hardware performance of MHMAC 

and compare it with existing schemes. Finally Section 2.6 will conclude this paper. 

2.3. Related Work 

Concept of universal2 Hash was introduced by Carter and Wegman in [2-5]. In [2-6] they 

further introduced an authentication scheme based on universal2 hash functions. Any 

authentication scheme based purely on universal hash functions cannot be used for authentication 

of multiple messages. In order to enable hash function based schemes to authenticate multiple 

messages, [2-6] suggest to XOR, the output of hash function with random sequence as in one 

time pad system. However with their scheme secret key grows out of proportion if large number 

of messages has to be authenticated [2-19]. To avoid this, Brassard suggests another way of 

generating the pseudorandom sequence to be XORed. Since then most of the work concentrated 

on finding efficient ways of generating pseudorandom sequences for such applications. In 1994 

Stinson [2-7] gave few more classes of universal hash functions, he called them ϵ-almost 

universal2 and ϵ-almost strongly universal2. He further proposed MAC based on these hash 

functions.  

On the other hand Krawczyk [2-4] suggests an innovative way of using LFSR for hashing 

and then XORing the output with pseudorandom pad. He also present a Toeplitz-Matrix based 

hashing using LFSR techniques which takes    bits to represent hash functions compared to 

    bits in original multiplicative hash(Here   is length of output of hash function and   is 
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length of message). In his following paper [2-8] he presents more generalized approach for 

constructing such Toeplitz Matrix. In [2-11], [2-12] hash schemes were proposed that performed 

a division by a random irreducible polynomial. In [2-10] Shoup evaluates different methods of 

implementing provably secure MAC using universal hash, and set of pseudorandom functions as 

well as permutations. He presents various algorithms for efficient implementation of these 

methods. These families had shorter outputs and were therefore possibly more practical. 

Universal hash based MAC methods replaced traditional ones whenever there was need 

of fast processing in either software or hardware. Halevi and Krawczyk in [2-17] present fast 

method for implementing Modular Multiplication based Universal Hash utilizing properties of 

MMX architecture. Further [2-9] gives even faster method utilizing SIMD architecture 

properties, it was the first paper that described complete construction of MAC while analyzing 

the efficiency of software implementation. They suggest decomposing hash into small segments, 

then apply NH to each segment separately, and further apply HMAC to concatenation of these 

hashed values and nonce to compute tag. In [2-20] Black gave a formal proof for the security of 

a MAC construction in which a pseudorandom function is applied to the output of a universal 

hash function. Here, NH [2-9] is computed by further fragmenting the message segment and 

applying corresponding part of key to it. Each function is named by a string K of   -bits, where 

  is block size       and   is wordsize      . Probability of Collision is    , which can 

be improved by using Toeplitz construction. In 2000, [2-21] gave a scheme with better collision 

probability than MMH or NH. In [2-22], Kaps et. al. introduce WH, a power optimized version 

of NH, which is efficient for hardware implementation in ultra-low power devices. They 

maintain the probability of collision to be    . In [2-18] Palash Sarkar gives a new universal 
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hash family. It requires   shift and multiply operations to compress  -bit message with collision 

probability of       , where   is length of key and   is base of field    
 . 

NMAC and HMAC constructions which are based on “collision-resistant hash functions” 

[2-23] were introduced by Bellare et al. in 1996 [2-24]. Both NMAC and HMAC constructions 

can be used for variable-length messages. Recently, there has been a surge of interest in 

aggregate MACs [2-25], [2-26]. The goal in this line of research is to reduce the number of tags 

routed in a network in which many nodes send messages to a single destination node and 

communication is an expensive resource. The proposed solution is to combine the tags of 

multiple messages together, such that the resulting tag is verifiable by the destination party. Katz 

and Lindell were the first to propose a formal proof for the security of aggregate MACs [2-25]. 

In these methods, a short tag may be produced but the tag generation and verification times are 

proportional to the number of messages. [2-43] 

We combine the hardware efficiency of LFSR schemes with the novel approach of 

universal hash based MACs to present a new MAC scheme that computes MAC tag for long 

messages in very short time. For this purpose an MISR should behave like a secure hash 

function. MISRs are widely used as compactors where similar phenomenon like collision occurs 

and is widely known as aliasing. Many researchers have worked on finding the aliasing 

probability for MISRs.  

In the late-90s, [2-27] suggested a novel approach of using coding theory to find out the 

aliasing probability of an MISR. They utilized properties of maximum distance separable (MDS) 

codes to compute the aliasing probability. After that [2-28], [2-29], [2-32], [2-33] extended this 

work to provide a closed form expression for the aliasing probability of an MISR either by using 
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coding theory or wireless channel models. In [2-34] Morii and Iwasaki provided an extension for 

work in [2-28]. They claim that, Reed Solomon (RS) codes used in [2-28] are nothing but 

shortened RS codes resulting in MDS codes. A comparison of aliasing probability of multiple 

MISRs and a single MISR is done in [2-35]. Khan and Bushnell [2-31] provide results regarding 

asymptotic aliasing probability. They observed using different simulation results that the aliasing 

probability rapidly converges to a very low value. 

Back in 1990 the approach of using a Markov model to find the aliasing probability was 

presented in [2-38]. They provide proper statistical theory that explains dependence of aliasing 

probability on main MISR features such as its length and feedback network. In the same period 

researchers at IBM made use of Markov chains to claim that the aliasing probability depends on 

the correlation of data at different inputs [2-30]. In 2005 Hadijicostis [2-39] made use of a 

Markov chain to calculate the exact aliasing probability for any test sequence. A similar analysis 

for LFSRs is performed in [2-40], whereas [2-41] examines aliasing in case of q-ary symmetric 

error model.  

In 1993 Pilarski, Kameda and Ivanov [2-36] used MISR for sequential faults and 

presented an equation for aliasing probability related to it. Future work may require 

demonstrating an approach to select the secret polynomial      in our method. However we 

have not considered this problem in this paper. Work in [2-37] may prove useful in that regard. 

Hardware efficiency of MISRs is analyzed in [2-42] by Savir. He analyzed the effect of reducing 

the MISR size on the aliasing probability. These studies might be useful while considering 

hardware implementation of our scheme. But this is out of the scope of this paper. However, 

MISRs will definitely prove to be hardware efficient compared to regular cryptographic hash 

functions.  
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2.4. Our Contributions 

2.4.1. New Hash Family: MISRH(M) 

MISRH is first step for achieving fast and secure MAC. Here we describe in short the 

design of hash function and which category it fits into. This hash can be used in multiple ways to 

obtain a secure MAC.  

As mentioned earlier this hash is obtained by introducing parallelism in Cryptographic- 

CRC described in [2-4]. The   bit long message   to hash is split into   data streams each  -bit 

long,                   ,           ,           is all zero message 

stream for    . The binary sequence    is converted to a polynomial       whose 

coefficients are equal to the binary sequence   . For example      is            (each bit 

from the rightmost is multiplied by successive powers of   and the sum of all these powers of   

is the polynomial). Hence each of   data streams can be represented using   polynomials each of 

degree  . Let      be any irreducible polynomial of degree     over      . Now, 

         can be computed as, 

                      
   

 

   

          

The coefficients of      form a  -bit binary sequence  , which is the output of our hash 

function. The irreducible polynomial      represents a hash function       . The       is 

      family of hash functions        where,        . The operation 

        
    

             can be easily implemented by the  -stage MISR with    as input at  
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Figure 2.1. Multiple Input Shift Registers (MISR). 

 th flip-flop as shown in Figure 2.1. The contents of flip-flops after  -bits of   s have entered 

MISR are equal to   [2-2]. 

The novelty of the method is that only   cycles of CPU operations are required to 

compress      -bit message unlike cryptographic CRC where,       cycles are required. 

Hence our method performs   times faster than cryptographic CRC. Each function        can 

be represented with  -bits. The polynomial      can be easily changed by changing values of   . 

Basic hardware implementation of n-bit       will require     gates. Which clearly indicates 

it will be a very good choice for hardware resource constrained applications.  

2.4.2. Type of Hash Family MISRH 

As mentioned in section 2.2.1 there are different types of Universal Hash Families, we 

need to identify in which type our hash family fits into. In this section we will analyze properties 

of MISR and prove it to be Collision Resistant,  -almost universal2, and  -balanced. MISR can 

be proved universal2 provided number of elements in input is multiple of number of elements at 

output. 
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2.4.2.1. Collision Resistant 

As mentioned in section 2.3, MISR are traditionally used in hardware testing, where 

similar phenomenon as collision occurs. This phenomenon is known as aliasing and it is well 

known fact that probability of aliasing is approximately     .  

2.4.2.2. Strongly Universal 

In order to prove that a family of hash function MISRH is strongly universal, there is 

need to show that there exists a unique irreducible polynomial      of degree  , that divides two 

polynomials             
    

    and          
     

    
    of degree         for 

all            to give      and respectively      . Given     ,      ,     , and       

we need to find     , such that                     and                   

    . Here,      and       are quotients obtained in respective divisions. Also, note that 

because all operations are in      , minus ( ) sign can be replaced by plus ( ) sign. It is clear 

from the equations that there need not be only one polynomial of degree   that satisfies this 

condition. For example, if degree of      and       is   , which when divided by two 

irreducible polynomials of degree  , give remainders      and resp.      , then either one of 

the irreducible polynomials will give same quotients and remainders for given      and      . 

Hence for sure MISRH is not strongly universal. However, it can be made strongly universal by 

restricting value of   to be less than    . 

2.4.2.3. Universal2  

In order to prove that a family of hash function MISRH is universal2, we need to show 

that the value of       
          . Here,       

   represents number of functions in   for 

which   and    collide [2-43]. In our case     is number of all irreducible polynomials of degree 
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  over      , and     is number of all polynomials of degree   over      . Therefore 

according to [2-4],            ,        and hence,             .  

Theorem 2.4.2.1: [2-43] 

For any class of hash functions from   to   there exists distinct elements   and    such 

that 

      
   

         

          
   . Equality holds if     is multiple of    . 

In our case     is number of elements in input. Any message to the hash function 

MISRH could be at most   -bits long. Hence,        ,       , and           . 

Therefore, 
         

          
 

      

         
 

        

         
 

      

       
 

 

  
            . Therefore we 

can write, 
         

          
    

 

  
. Hence,       

   
 

  
. This implies that a minimum value 

      
   can achieve will be 

 

  
        . Therefore we can say that MISRH will act as 

universal2 hash functions when     is multiple of    .  

2.4.2.4.  -almost Universal2 

To prove that MISRH is  -almost universal2, we need to show that       
       . In 

our case,                      . Hence, MISRH is  -almost universal2, with          

when     is multiple of    . However, if that is not the case then MISRH can still be proved  -

almost universal2 in following manner. From definition of   , we can write       
   

                 
    . Note that           

   implies that         
 
   

  
                     . Here,           

          
    can have at most           

factors of degree  . Therefore there are at most           
 

 
     polynomials,     , 
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that divide the polynomial           
          

   . Note that this follows from the fact that 

degree of           
          

    is         and degree of      is  .       
   is 

number of polynomials that make           
  . Thus,       

      . As stated earlier, 

            . Therefore,          and MISRH is  -almost universal2. 

2.4.2.5.  -almost Strongly Universal2 

To show that MISRH is  -almost strongly universal2, we need to prove that 

            and    : |                     . 

                and       , |                                

In our case             and             iff                   iff      

divides          . Here,             
    

    as mentioned earlier. Let           

    . Cleary      is non-zero polynomial of degree at most      , and      is a 

polynomial of degree   that divides     . Because of unique factorization property,      has  

                  irreducible factors of degree  . Hence we can say, there are     

functions in   that map      to     . However there are        irreducible polynomials of 

degree  , or        elements in  . Therefore,            
 

 

      
        . Hence, 

|                               because    . This clearly implies that our 

function is not  -almost strongly universal2. 
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2.4.2.6.  -balanced 

From the analysis performed in above paragraph, it is clear that             

      . Therefore, clearly MISRH is  -balanced with         . Hence achieving better 

security as compared to Cryptographic CRC in which case          . 

2.4.3. Message Authentication Code based on MISRH : MHMAC 

As proved in above subsection, MISRH can be used as either collision resistant hash 

function or universal2,  -almost universal2 and  -balanced hash function. Given this, immediate 

question is how message authentication code can be constructed from MISRH. This can be done 

by applying cryptographic primitive to the output of hash function. In [2-10], different ways of 

constructing MAC from universal hash are discussed. Simplest way of constructing MAC will be 

computing MAC as               , where r is counter and     (Pseudo Random Function 

PRF). In the same work, they prove that DES can be used as PRF. It won’t be difficult to prove 

the same for AES. However, in that case MAC can be                     . Here,    is 

 -AXU family of hash functions mapping  -bit input to  -bit output. In order to have stateless 

MAC it is possible to compute MAC as                           , where     

 , and           . In all these cases, we can prove that our scheme is  -opt-secure as of [2-

4]. Otherwise, we can opt for applying pseudorandom function (PRF) at the output of hash, and 

go for           or                 as in [2-9]. In either case MHMAC will prove to be 

fastest of all, because of use of MISR. In this paper we will explore the                

option and prove that this MAC is  -opt secure. Also, [2-44] uses            to construct a 

MAC, and proves it to be existentially unforgeable under chosen message attack. In this paper 
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we will consider only fixed length MAC but it is easy to construct a variable length MAC using 

MISRH and prove it secure as done in [2-45]. The MAC construction π is as follows: 

2.4.3.1. Construction π 

 Gen: On input   (the security parameter), choose            uniformly at random and a 

secret irreducible polynomial      over       of degree  . Note that this step is done 

only once and hence the key is         . 

 Mac: On input         , irreducible polynomial      over       of degree n, a value 

of counter  , and a message M of length                  where L ≤ n, split M into 

L parts each of length s, such that M = (         . Set              to zero. Input 

all   ’s into MISR with characteristic polynomial     . Contents of the flip flops after s 

cycles is called                  
    

                ,           . Output 

the                   . 

 Vrfy: On input         , counter  , irreducible polynomial      over       of degree 

n, a message         , and a tag         , split M into L parts each of length 

s,(         , where L ≤ n. Set              to zero. Input all    s into MISR with 

characteristic polynomial     . Output 1 if and only if                  . 

Remark:   

Above MAC construction is for fixed length messages with d=L*s bits. The above 

definition can also be changed to a variable length MAC but we do not consider this extension in 

this paper. Please refer to [2-45] for details on variable length MAC using MISR. 
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2.4.4. Security of MHMAC 

Above construction can be proved  -opt secure similar to that of cryptographic CRC. To 

prove that we consider an experiment                 in which adversary   has 

knowledge of construction   but he is oblivious to secret values  , and     . He is given  access 

to an oracle which on input of message   of his choice outputs corresponding tag  . Given, 

                        if adversary can successfully output a valid tag    

                    for any message of his choice   . Then adversary becomes successful 

in the experiment                .                   iff, i)               ii) 

    .  

Definition 2.4.4.1:  

A message authentication code                  is said to be  -opt secure, if for 

all probabilistic polynomial-time adversaries  ,                        . 

Definition 2.4.4.2: [2-4]  

A necessary and sufficient condition for a family   of hash functions to be  -opt secure 

is 

                               

Definition 2.4.4.3: [2-4]  

If   is  -linear then H is  -opt secure if and only if   is  -balanced. 
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Theorem 2.4.4.1: [2-4]   

A family of functions   is  -linear if for all  ,   we have 

                  . 

Proof:  

                     
   

 

   

           
   

 

   

           

                   
   

 

   

        
             

                   

 

   

         
             

                    

Because, our scheme is  -linear, we need to prove that it is  -balanced. But, as proved 

in section 2.4.2.6 our scheme is  -balanced. Hence we can say our scheme  -opt secure. 

By Definition 2.4.4.2, our scheme MISRH is  -opt secure for          . For fixed 

value of n, security will degrade as s increases. Hence for L= n = 128 we can authenticate 2KB 

message in 128 cycles providing a security of the level 2
-121

. 

2.5. Performance of MHMAC 

2.5.1. Software Performance 

We implemented our scheme MHMAC on a win32 with Intel core 2 duo 2.1GHz 

machine using C++ and evaluated it’s  time performance. We used 128bit MISR with 



32 

 

characteristic polynomial                . As discussed earlier our scheme proves to be a 

very good choice for long messages. Figure 2.1 shows time performance of our scheme. We used 

crypto++ to implement 128 bit AES used as pseudorandom function. The scheme requires 8msec 

to compute a tag for message of size 4MB while achieving security of the order of 2
-110

. This 

clearly says that our scheme will be very good choice for fast authentication of long messages in 

short time while achieving high level of security. 

2.5.2. Hardware Performance  

Hardware implementation of MISR will require 1 cycle per   bits of message to hash   -

bit message.  For 100ns clock, 128 bit Rijndael   AES takes about 320ns to encrypt a message [2-

46]. Hence to compute MHMAC of   -bit message we will require (s*100+320)ns. Figure 2.2 

shows hardware performance of MHMAC for L=n=128. As shown in Figure 2.2 MHMAC will 

require 3.2ms to sign a message of 4MB. Thus as mentioned earlier our scheme will prove to be 

a very good choice for fast authentication of long messages. The configuration mentioned above  

will require (13*128) logic elements to implement MISRH and (20k+128+156+3700) logic 

elements [2-46] to implement AES. Hence total 25648 logic elements. As discussed in section 

Figure 2.2. Software Performance of MHMAC. 
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2.2.2, our method requires mere 0.13 cycles for computation of hash function. When compared 

with existing methods, Figure 2.3 illustrates it very clearly that our method MISRH is faster than 

all existing methods. Table 2.1 shows this comparison in terms of cycles/bytes for n=128. Table  

2.1 clearly illustrates that our hashing technique is faster than existing popular universal hashing 

techniques. 

Table 2.1. Comparison with Existing Universal Hashing Techniques. 

 

Method Cycles/Byte 

MISRH 0.0625 

Cryptographic CRC 6 

Roagway Bucket Hashing 1.5-2.5 

MMH 1.5-3 

NH (UMAC) 0.52 

Palash Sarkar (Multilinear Hash) for q=2 8 

Figure 2.3. Hardware Performance of MHMAC. 
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2.6. Conclusion 

Results from section 2.5 show that, the construction MISRH is not only faster but is 

simple and can be implemented in hardware with few logic elements. MISRH being universal2, 

 -almost universal, and  -balanced hash function, it can be used in message authentication 

codes. The simplest construction of message authentication code can be proven  -opt secure. 

Therefore hash function MISRH and MAC based on MISRH will be a very good choice for fast 

authentication of long messages in resource constrained environment. 
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CHAPTER 3. A VARIABLE LENGTH FAST MESSAGE 

AUTHENTICATION CODE FOR SECURE COMMUNICATION IN 

SMART GRIDS 

 

© 2012 IEEE. Reprinted, with permission, from Rucha S. Sule, Rajendra S Katti, and 

Rajesh Kavasseri, A variable length fast message authentication code for secure communication 

in smart grids, IEEE power and engineering society general meeting, July 2012.  

3.1. Abstract 

We propose a variable length Message Authentication Code (MAC) scheme for secure 

communication between Automated Metering Interface (AMI) devices and collector nodes in the 

smart grid. We prove the security of this scheme and analyze its performance with respect to 

three attributes namely: (i) communication overhead, (ii) verification delay and (iii) memory 

usage. The proposed scheme reduces the time for verification by at least two orders compared to 

existing hash based authentication protocols. The scheme thus provides an efficient solution to 

support high frequency exchange of large volume messages. 

3.2. Introduction 

The smart grid will feature an electric grid that is closely intertwined with the 

communication (or information) network. The purpose of the communication network is to allow 

two-way interactions between the end-user and electricity service provider. Two-way 

communication in distribution grids is achieved through an Automated Meter Interface (AMI) 

(or “smart meter”). The AMIs can monitor, record and transmit electrical variables from the 

customer while conveying command/control information to the customer. Outbound messages to 
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the MIs typically include information such as real (kW) and receive power (kVar), power-factor, 

voltage profiles (sag/swell events) and peak usage. Inbound messages to the AMIs include 

control/command requests from utilities to implement automated net-metering, remote service 

disconnect/reconnects; real-time electricity pricing to customers for active load management and 

demand response. To address security concerns with communication, the National Institute of 

Standards and Technology (NIST) recommends “mutual authentication” between AMIs and 

service providers [3-1]. 

Achieving mutual authentication in smart-grids is challenging given the large number 

(several hundreds or thousands within a service territory) of AMI devices, large message 

volumes and frequency of message exchanges. Traditional public-key infrastructure based 

schemes are not well suited for secure communication in the smart-grid because of: (i) increased 

communication burden (large key sizes which increase communication bandwidth), (ii) increased 

time for decryption/verification (which increase latency) and (iii) the limited computational 

abilities of AMIs. Thus there is a need to develop “lightweight” authentication schemes that do 

not overburden the system in terms of communication and computational requirements. 

Cyber-security and power system communication requirements for the smart grid are 

discussed in [3-2], [3-3]. An efficient scheme (in terms of authentication delay and 

computational cost) for authentication in multicast (one to many) mode is presented in [3-4]. A 

lightweight scheme based on Diffie-Hellman key exchange protocol and a hash based message 

authentication code (HMAC) is proposed in [3-5]. In [3-5], HMAC with RIPEMD128 as the 

underlying hash function is used to perform authentication. RIPEMD is known to be insecure 

and it is better to use SHA1 or SHA2 instead. Another drawback with using HMAC is that its 

authentication speed limits message rates between the smart-meters and collector nodes. Using 
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the HAMC also limits the size of messages that can be exchanged without extra buffering or 

delays. 

We propose a new low-cost high-speed variable length message authentication code 

(MAC) that uses a multiple input shift register (MISR) and one computation of AES to generate 

a MAC tag. Our method has a higher authentication speed and can hence withstand higher rate of 

message exchanges. Our method can also handle larger messages (for example - 40,320 bytes 

representing one month’s data, [3-5]) without incurring any extra delay or extra buffering. 

The rest of the paper is organized as follows. The structure of communication system is 

described in section 3.3. The proposed scheme is presented in section 3.4 and its security is 

proved in section 3.5. The performance of the proposed scheme is compared with existing 

methods in section 3.6 and conclusions are noted in section 3.7. 

3.3. Communication Structure 

A rough framework for the communication structure is shown in Figure 3.1. the 

arrangement is hierarchical, starting from AMI devices at the customer leading up to the 

Enterprise or utility. Here, an AMI device at every customer is denoted by HANGW (Home Area 

Network Gate Way). At this level, the preferred communication system is Zigbee/mesh wireless. 

Groups of HANGW communicate with BANGW (Building Area Network Gate Way) which serves 

as the collector node where WiMAx is preferred communication medium. Groups of NANGWs 

(Neighborhood Area Network Gate Way) relay the information further to a higher collector node 

which may be an enterprise, utility provider, or a trusted third party. A survey of appropriate 

communication technologies for the smart grid can be found in [3-8]. 
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Figure 3.1. Communication Structure. 

3.4. Proposed Scheme 

We will follow the same protocol as in [3-5], however instead of using       , we 

propose a new variable length MAC which will render the above protocol more efficient in terms 

of communication overhead, verification delay, and memory usage. We will start by defining 

Message Authentication Codes (MAC). 

Definition 3.4.1:  

Formally, a message authentication code (MAC) is a tuple of probabilistic polynomial-

time algorithms (Gen, Mac, Vrfy) in which Gen is the key generation algorithm, Mac is the tag 

generation algorithm, and Vrfy is the verification algorithm. It is required that for every   (a 
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Figure 3.2. Proposed Scheme. 

security parameter that usually specifies the length of key  ), every   output by Gen, and every   

 , it holds that                   . If                   is such that Mac is only 

defined for messages of a certain length, then the MAC scheme is said to be fixed-length, 

otherwise it is called variable-length MAC [3-6].  

The proposed scheme is a variable-length MAC based on fixed-length MAC described in 

[3-7]. The scheme is as follows: Given any message           of length  , check if 

           , where       . If not then pad it with                           

bits of zeros and append       bits of length at the end. (Note that d has to be multiple of 128*8 

= 1024.) Otherwise pad M with         zeros and add       bits of length at the end. We 

will call such a message                     , where    indicates concatenation. Figure 3.3 

shows structure of   . Now parse    into               blocks each of size         , 

where ,       indicates length of    in bits. These message blocks can then be input into MISR. 

The contents of flip-flops after s bits of   messages have been input into MISR form a sort of 

remainder,  , resulting from division of   messages by characteristic polynomial of MISR.  
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The tag of   messages can be computed as Fk(R), where Fk is a pseudorandom function. A 

pseudorandom function is defined below. 

Definition 3.4.2: 

Let F:                      be an efficient (polynomial-time), length-preserving, 

keyed function. We say that F is a pseudorandom function if for all probabilistic polynomial-

time distinguishers D, there exists a negligible function         such that: 

                                              

where          is chosen uniformly at random and f is chosen uniformly at random from the 

set of functions mapping n-bit strings to n-bit strings. 

Remark 3.4.1: 

               is chosen from one of    distinct functions (one for each value of the n-bit key k). f is 

chosen from the set of all    functions with n-bit input and output, where        . D is given 

oracle access to some function (either    or f, denoted        or      ) and its goal is to determine 

if this function is    or f.                 denotes the fact that D is successful when given 
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oracle access to   . If no probabilistic polynomial-time distinguisher D, can tell which function 

D has oracle access to, then    is a pseudorandom function. Note that D can query the oracle 

function polynomial number of times. Thus, even if x1 and x2 differ in only a single bit        

and        look completely uncorrelated. Block ciphers such as AES can be used as 

pseudorandom functions [3-6]. We will use AES128 for this purpose. Pseudorandom functions 

can be used as fixed length MAC, we will make use of this fact when we will sketch the proof of 

security for our MAC. 

3.4.1. Construction π  

 Gen: On input n (the security parameter),    obtained in setup phase (see Figure 3.2), and 

a secret irreducible polynomial      over       of degree n. We will fix    . Note 

that      is selected only once and hence the key is          . 

 Mac: On input   , irreducible polynomial      over       of degree n, and a message 

          of length  , check if          . If not then pad it with             

      bits of zeros and append       bits of length at the end. Otherwise pad M with 

        zeros and add       bits of length at the end to get   . Parse    into   

blocks each of length s, such that     = (         . Input all   ’s into MISR with 

characteristic polynomial     . Contents of the flip flops after s cycles is called 

           ,           . Output the             . 

 Vrfy: Output 1 if and only if               . 

3.5. Security of the Proposed Scheme 

 There is generally-accepted definition of security for message authentication codes. In 

simple words, no polynomial time adversary should be able to generate a valid tag for a message 
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which was not previously authenticated. Note that the adversary is allowed to request MAC tags 

for any messages of its choice. Toward the formal definition, consider the following experiment 

for a message authentication code                   , adversary  , and security parameter 

n. 

Experiment                 :  

1) Run        to obtain a random key k. 

2) The adversary   is given oracle access to        . The adversary eventually outputs a 

pair      . Let Q denote the set of all queries that   asked its oracle. 

3) The output of the experiment is defined to be 1 if and only if (1)               and 

(2)    . 

Definition 3.5.1 : Security Definition: 

A message authentication code                  is said to be existentially 

unforgeable under an adaptive chosen message attack, or just secure, if for all probabilistic 

polynomial-time adversaries  , there exists a negligible function         such that        

                      .  

A negligible function is defined as following: A function f is negligible if for every 

polynomial p(.) there exists an N such that for all integers     it holds that             . 

The security of the proposed scheme is stated in the following theorem: 

Theorem 3.5.1: 

      If       is a secure fixed length MAC and function MISR(.) is collision resistant then 
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construction П is a variable length MAC, that is existentially unforgeable under adaptive chosen 

message attacks. 

    Proof: 

The security of proposed MAC relies on the assumption that MISR are collision resistant 

and       is a secure fixed length MAC. Essentially this new MAC construction first compresses 

the given message M to fixed length binary string R, and then applies fixed length MAC      . 

Assume towards contradiction that there exists a probabilistic polynomial time adversary   

attacking MAC scheme that forges valid tag on a new message with non-negligible probability.  

  is given access to a MAC oracle, that it can query for a tag on any message of its choice. Let 

M* denote the message for which   produces its forgery, and let Q denote the set of queries 

made by   to its MAC oracle (i.e., the set of messages for which it obtained a MAC tag). We 

can assume without loss of generality that     (since   cannot succeed otherwise). There are 

two possible cases: 

1. Case 1:   a message     such that                 . 

In this case, the MAC tag for M is equal to the MAC tag for M* and so clearly   can 

successfully forge a valid tag on M*. However, this case contradicts the assumption that 

        is collision resistant because   could find distinct M and M* for which 

                . Hence this case cannot be valid as long as         is collision 

resistant (It can be proved that         is collision resistant but it is out of scope of this 

paper). 

2. Case 2: for every message     it holds that                 . 

Define                 . The important observation here is that M* is such that 

           . In this case then   is forging a valid message on the new message 
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         with respect to fixed length message authentication code   . This contradicts 

assumption that    is secure fixed length MAC rendering this case invalid. 

Hence by contradiction we can say that   cannot be successful in outputting a valid 

forgery given access to MAC oracle Q. Therefore                              . 

Hence given MAC scheme is existentially unforgeable under chosen message attacks. [3-2]           

3.6. Results 

We will compare the results when the HMAC scheme in [3-5] is replaced with proposed 

variable length MAC scheme. Hence we basically show the improvement in the performance 

when HMAC is replaced with our new scheme. The performance of scheme is compared with 

respect to: 

1) Communication overhead 

2) Message Decryption and Verification Delay 

3) Memory Usage 

 

Figure 3.4. HMAC Scheme. 



51 

 

Before comparing both schemes we should go into details of the algorithms used for verification 

in [3-5] and our new scheme. The HMAC construction is as shown in Figure 3.4. 

[3-5] are using RIPEMD128 as the underlying collision resistant hashing function. 

However, RIPEMD128 is not considered as a secure collision resistant hash and hence its use is 

questionable. HMAC is variable length MAC and it produces a tag of constant length which will 

be 128bits in this case. We will be using 128 bit MISR which will run for at least 8 cycles as per 

our construction and then we will feed the compressed output to AES128 to give us 128 bit tag. 

We will also have constant tag length out of our variable length MAC. The performance is 

verified as follows: 

3.6.1. Communication Overhead  

As mentioned earlier, the most commonly used message that is 32bytes. HMAC produces 

constant tag length of 16 bytes for any size of message. The message header is 50 byes. Hence 

the total communication overhead at BANGW will be 98 bytes. Our scheme will also produce a 

16 byte tag on 32 byte message. Hence both the schemes will perform the same in terms of 

communication overhead as shown in Figure 3.5. With increase in message size communication 

overhead will also increase but will still be within 30kBytes for message of length 150Bytes. 

Hence the proposed scheme is as good as the one in [3-5] in terms of communication overhead. 

For comparison, the overhead (highest) with Elliptic Curve Digital Signature Algorithm 

(ECDSA) is also shown. 
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Figure 3.5. Communication Overhead. 

3.6.2. Verification and Decryption Delay  

Both the schemes use AES128 for decryption. Hence we will compare the schemes only 

for verification delay. For message of length 32bytes, their scheme will perform 5 operations of 

hash core that is RIPEMD128. RIPEMD 128 core requires 592 cycles to compute hash [3-9]. 

Hence each hash will require (592/160MHz) = 3.7uS. Hence total time required for tag 

computation will be at least of 5 hash core operations = 18.5uS. This delay will increase with 

increase in message size. In addition to it there will be some delay associated with key 

establishment, padding etc. As observed from graphs of [3-5], average delay for every BANGW 

per HANGW is approximately 80msec. Out of which 18.5uS will be introduced due to HMAC. 

However our scheme will need 8 cycles for computing MISR(M) and           cycles for  

computing AES128 using Rijndael [3-10]. Hence total time of (408/160MHz) = 2.55uSec. Our 
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scheme shows seven times better performance for 32 bytes of data. It will continue to have 

constant verification time of 2.6uSec as long as length of message is less than 128 bytes.     

For messages of length between 128-256 bytes, it will require 416 cycles and hence will 

require total verification delay of 2.6uSec. As can be seen from Figure 3.6, our scheme can 

support wide range of message sizes with verification delay less than 5uSec which is quite small. 

Hence we claim that replacing HMAC will not only decrease total verification delay but also 

supports wide range of message sizes with drastically small delays. For 32 byte data our scheme 

will replace the delay of 18.5uSec + (delay for padding in uSec) with 2.55uSec. However with 

higher message sizes our scheme will prove more promising. In conditions where HANGWs are 

sending scheduled one month data, it might increase verification delay at BANGW drastically 

whereas our scheme will not add much delay and BANGW will almost be unaffected.  Figure 3.7 

Figure 3.6. Verification Overhead. 
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shows comparison of verification delay vs number of HANGW. Our scheme contributes to a delay 

of 0.357 mSec for 140 HANs, whereas HMAC based scheme contributes delay of 2.590 mSec 

for 140 HANs. With 40230 bytes of monthly data, it will take approximately 0.6mSec whereas 

HMAC will require 0.6sec. Thus the proposed scheme will perform 1000 times faster. 

3.6.3. Memory Usage  

From Figure 6 in [3-5], to process 1 message of 32 bytes BANGW takes approximately 

80msec. Hence to process 125 messages it will take approximately 10sec. Let message 

generation interval Δ be 10 sec. Hence, as long as message rate is below 125, BANGW does not 

need to buffer messages for execution of algorithms. But as soon as message rate goes above 

125, it will require more memory for buffering new messages. For example if message rate is 

150, BANGW has to buffer 50 messages for first 10 sec, then 75 messages for next 10 sec and so 

Figure 3.7. Verification and Decryption Delay. 
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on. This size will keep on increasing. However, as our scheme is faster than hash function based 

approach, we will be able to support higher message rate than that of conventional HMAC based 

scheme. Now suppose one of the HANGW is sending 40320 bytes monthly data. In this case 

HMAC verification delay will be (4*592)/160M + (((40*8k)/256)*592)/160M = 4.67mSec   

5ms. Hence the total delay to process message will become 85mSec, with which BANGW can 

support 117 messages/ Δ. However with our scheme it will be 124. Hence replacing HMAC with 

our scheme will prove an efficient solution for messages of large size.  

3.6.4. Discussion 

As emphasized in the above section, our scheme is an alternative for traditional heavy 

weight MAC. [3-5] uses RIPEMD128 which is not considered to be secure. Even if we replace it 

with any secure collision resistant hash like SHA1 or SHA2, no scheme will perform as fast as 

our scheme on messages of very large size. Being a variable length MAC there is no restriction 

on message size. Also with our scheme it is possible to combine several messages together to 

produce a tag of constant length and fairly constant verification time. This might prove useful 

when the message rate is high, instead of sending several messages per Δ, HANGW can wait and 

combine several messages together to have single tag and send it across to BANGW. For example 

if message rate is 250, then HANGW can combine two messages together and produce one tag for 

them, hence total messages coming to BANGW will still be 125, in this manner we can provide 

efficient memory usage. Hence we claim that our scheme will prove to be a good option for 

lightweight authentication of messages of variable size with fairly constant authentication and 

verification time.  
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3.7. Conclusion 

This paper presents a new message authentication scheme that is faster than best scheme 

proposed recently [3-5] for the smart grid. Our scheme uses a multiple input shift register 

(MISR) to compress the message that needs to be authenticated. The compressed output is then 

input to a pseudorandom function such as AES128. The output of AES128 is then the tag in the 

authentication scheme. Since there are efficient methods to implement both AES and MISRs in 

hardware, our scheme results in very low verification times. This translates to several advantages 

in the smart-grid. Firstly, the rate at which a smart-meter in a home (also called HAN) can 

generate messages without extra buffering goes up resulting in better memory usage in the HAN. 

Secondly, there is an increase in the message length that can be authenticated without buffering.  

This can enable more information exchange between HAN and the BAN. 
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CHAPTER 4. MULTICAST AUTHENTICATION IN THE SMART 

GRID WITH ONE-TIME SIGNATURES FROM SIGMA 

PROTOCOLS 

This paper has been submitted for publication to IEEE Transactions on Smart Grid. The 

authors of the paper are Rucha S. Sule, Rajendra S Katti, and Rajesh Kavasseri. 

4.1. Abstract 

Multicast authentication is challenging in the smart grid given the unique constraints of 

communication bandwidth, computation time, and limited computational resources of field 

devices. We propose here, for the first time, the use of one-time signatures (OTS) from sigma 

protocols for multicast authentication in the smart grid. As a zero knowledge proof, sigma 

protocols interactively establish the truth of a statement without revealing its contents; thus 

providing a powerful paradigm for authentication. When compared with the currently best 

known OTS scheme -Tunable Signing and Verification [4-1], the proposed scheme yields a 

dramatic reduction in: signing cost (three orders), pre-computation cost (two orders), and storage 

overhead (two orders) at a very modest increase (four fold) in signature size. The scheme thus 

efficiently enables several multicast applications in the smart grid environment ranging from the 

distribution through sub-transmission and bulk power systems with resource-constrained field 

devices. 

4.2. Introduction 

The smart grid incorporates a communication network closely intertwined with the 

electric grid to facilitate two-way communication. The nature of communication (type of 

message and message transmission mode) depends upon the specific application and the grid 
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level-distribution, sub-transmission or bulk transmission. For example, at the distribution level, 

communication between an end-user and electricity service provider can be achieved through 

Automated Meter Interface (AMI) (or “smart meters”). The AMIs can monitor, record and 

transmit electrical variables from the customer (outbound) while relaying command/control 

information (inbound) to the customer. Outbound messages from AMIs typically include 

information such as real (kW) and reactive power (kVar), power-factor, voltage profiles 

(sag/swell events) and peak usage. Inbound messages to the AMIs include control/command 

requests from utilities to implement automated net-metering, remote-service 

disconnects/reconnects; real-time electricity pricing to customers for active load management 

and demand response. 

Message transmission in the smart grid can be realized in unicast or multicast mode 

depending on the application. In unicast mode, a message is exclusive or unique to a specific 

user. Unicast is useful for control or command type messages used for direct load control in 

demand side management (DSM) programs such as those implemented by Florida Power and 

Light Company [4-2]. For example, in residential load control programs, a utility may directly 

intervene to control a customer's load through selective appliance switch on/off commands. In 

this context, the exclusivity of the contract between the supplier (utility) and customer 

necessitates unicast communication. However, certain applications require the transmission of a 

message that is shared (or common) to multiple users. Such messages are transmitted as 

multicast because unicast may be too expensive (in terms of computational resources) and 

therefore inefficient in such cases. For example, a utility may wish to proclaim electricity prices 

to its list of subscribed customers, who may then initiate a load scheduling program beneficial to 

them; or utilities may encourage charging of Plug-in-Hybrid-Electric Vehicles when generation 
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from renewable resources is plentiful or cheap. In the bulk power system, control centers may 

initiate System Integrity Protection Schemes (SIPS) to mitigate or limit the propagation of major 

disturbances in the system [4-3]. 

Given the sensitivity of control/command messages in multicast, authentication is of 

crucial importance failing which malicious parties may gain unauthorized access, forge messages 

or mount a replay attack with potentially catastrophic consequences. The National Institute of 

Standards and Technology (NIST) recommends “mutual authentication” between [4-4] to verify 

that a message delivered to an entity indeed originates from its intended sender.  

However, achieving mutual authentication in smart-grids is challenging given the large 

number (several hundreds or thousands within a service territory) in the case of AMI devices, 

large message volumes and frequency of message exchanges. Traditional public-key 

infrastructure based digital signature schemes (such as RSA) cannot be adapted for secure 

communication in the smart-grid because of: (i) increased communication burden (large key 

sizes which increase communication bandwidth), (ii) increased time for decryption/verification 

(which increase latency) and (iii) the limited computational capabilities of AMIs and other field 

devices. 

A promising solution to broadcast (and thus multicast) authentication applications is 

possible through one-time signatures (OTS). An OTS scheme [4-5] and [4-6] generates one 

digital signature based on a cryptographically secure one-way function without trapdoors for 

several messages that are multicast. This enables the use of a single key to sign several messages. 

While OTS schemes are generally fast, the drawback is a large signature size which limits their 

direct application in the smart-grid. The Bins and Balls (BiBa) scheme [4-7] provides an 

improvement by reducing the signature size, however, at the expense of time required to sign a 
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message. A significant reduction over the BiBa scheme is achieved by HORS (Hash to Obtain 

Random Subset) [4-8] which reduces the signing overhead and therefore HORS has been used 

for adaption in several multicast authentication applications ([4-15], [4-16], and [4-17]). Many 

others as [4-18], [4-19], and [4-20] address drawbacks of existing OTS schemes and suggest 

improvements to maintain smaller signature sizes while achieving fewer computations.  

As pointed out in [4-1], HORS is not well suited for smart grid applications mainly 

because the scheme requires large public key sizes that increase storage requirements on 

resource constrained field devices. However, contrary to what is noted in [4-1]; the signature size 

of HORS (130 bytes) is not actually a serious concern for wide area protection applications. A 

Phasor Measurement Unit (PMU) simply records time synchronized phasor (voltage and current) 

and frequency measurements in accordance with IEEE C37.118.2 at system buses. To minimize 

communication bandwidth, PMU data are first sent to Phasor Data Concentrators (PDC). Data 

from the PDC is then routed to the regional control center via a security gateway and utility 

(local) control centers if necessary. The regional area control center (and not the PMU) is thus 

the primary entity that initiates wide area protection and control measures or SIPS which requires 

multicast of control/command data. As such the PMU is not expected to multicast recorded data 

to neighboring PMUs. 

To address the primary drawbacks of HORS, [4-1] proposes a hybrid method called 

Tunable Signing and Verification (TSV). By adding one more level of restriction on signature 

generation and verification they improve the security by a factor of   , where   is the signature 

size. Therefore the same security can be achieved with smaller signature sizes. However, this is 

attained at the expense of increased computations at sender or receiver. Though they present a 

heuristic solution for flexible allocation of computations to the sender or receiver based on 
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availability of resources, the amount of computations required are extensive. However, in many 

smart grid applications, receivers of multicast messages like home appliances, or field devices, 

for example are highly resource constrained. In these cases, it is highly desirable to minimize the 

computations at the sending and receiving end. Hence, the need for better one-time signature 

schemes that will require fewer resources at the receiver, with modest signature sizes and low 

sender computations is both urgent and important in the smart-grid environment.  

Therefore, we suggest an entirely new approach- that of sigma protocols for computing 

one-time signatures. While they have been traditionally used in applications like e-cash, e-

voting, and e-credentials, their use in smart grids has not been explored yet. A sigma protocol is 

an interactive three move protocol between a prover   and verifier   to establish the veracity of 

a statement without explicitly revealing the contents. This makes it fundamentally appealing 

where authentication is required, such as in the smart-grid. 

Here, we utilize an OTS through a witness hiding sigma protocol, namely the Okamoto 

protocol. Security of this OTS scheme is same as security of solving discrete log problem. We 

compare performance of sigma protocol based one-time signatures with TSV analytically and 

show that sigma protocol based OTS significantly reduce receiver computations as compared to 

both HORS as well as TSV. Moreover, the receiver does not have to store verification keys of 

length proportional to message size. We claim that our scheme will perform two orders better in 

terms of signing and pre-computation cost as well as key lengths. The signature length is 

constant and will be maximum 2kb. This can be reduced to minimum of 32bytes at the cost of 

reduced security. But 2kb signature size is acceptable as compared to message sizes of 80kb.  

Hence, our scheme will provide an economical solution for multicast authentication in smart 

grids. 
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The rest of the paper is structured as follows: Section 4.3 provides an introduction to 

sigma protocols based one-time signatures and presents protocol for smart grid applications.  

Section 4.4 provides brief overview of the authentication scheme in [4-1]; Section 4.5 presents 

comparative results and conclusions are noted in Section 4.6. 

4.3. Sigma-Protocols and One-Time Signatures 

In cryptographic protocols, zero-knowledge proofs ensure that malicious parties do not 

cheat. Zero-knowledge proofs are considered to be an expensive way of enforcing honest 

behavior. However, for some languages, zero-knowledge proofs are a very efficient way to prove 

honest behavior. For more information on zero knowledge see chapter 4 in [4-9]. In the 

following sections we will discuss the background information needed for deriving one time 

signature from sigma protocols. 

4.3.1. Background 

Let                     be a binary relation with the restriction that if          , 

then the length of   (called the witness) is at most       , where      is some polynomial and 

    is the length of  . Define    to be the set of inputs   for which there exists a   such that 

         . Sigma-protocols as defined in [4-10] are three-move protocols between a prover,  , 

and verifier,  ,  in which   and   have a common input  .   tries to prove to   that either   

belongs to language    or it knows a   such that          . The protocol template is shown 

below. 

Protocol 4.3.1.1: Sigma-Protocol Template for a relation  : 

 Common Input:   and   get  . 

 Private Input:   has a value   such that          . 
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 The protocol: 

1.   sends   a message   with   as randomness used to generate  . 

2.   sends   a random  -bit string   which is called the challenge. 

3.   sends a reply  .   decides to accept or reject based on the values it has seen, 

namely           which is called the conversation of the protocol. 

   and   are probabilistic polynomial time algorithms with  ’s only advantage being that 

it knows the witness  . If   accepts then it is convinced that   knows a   such that          . 

Moreover, if   is honest it does not learn any more information than          . This implies 

that the sigma-protocol is honest verifier zero knowledge. Note that the relation   is such that it 

is hard to compute   from  , otherwise   could compute   by itself and it does not need to be 

convinced that   knows  . We now define sigma-protocols formally. 

Definition 4.3.1.1:  

A protocol   is a sigma-protocol for relation   if it is a three-round protocol of the form 

in Protocol 4.3.1.1 and the following requirements hold: 

1. Completeness: If   and   follow the protocol on input   and private input   to   where 

         , then   always accepts. 

2. Special Soundness: There exists a polynomial-time algorithm   that given any   and any 

pair of accepting transcripts        ,           for  , where       , outputs   such that 

         . 

3. Special honest verifier zero knowledge: There exists a probabilistic polynomial time 

simulator  , which on input   and   outputs a transcript of the form         with the 

same probability distribution as transcripts between the honest   and   on common 

input  .  
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In [4-10] it is shown that a sigma-protocol can be converted to zero-knowledge proofs or 

zero-knowledge proofs of knowledge using commitment schemes. In this paper we use sigma-

protocols that are witness indistinguishable and witness hiding to construct efficient one-time 

signature schemes [4-11].  

Definition 4.3.1.2:  

A sigma-protocol is witness indistinguishable if the following two conditions are 

satisfied.  

1. There are   different witnesses that all satisfy the condition for acceptance in step 3 of 

Protocol 4.3.1.1. 

2. No matter what a cheating verifier    does, the protocol conversation gives no 

information on which of the   witnesses is known by the prover.  

Definition 4.3.1.3:  

A sigma-protocol is witness hiding if no probabilistic polynomial time algorithm  , who 

sees the common input and talks to the prover can output a valid witness,  , with non-negligible 

probability.  

A one-time signature scheme can be obtained from a witness-hiding sigma-protocol as 

follows. Assume that a relation   has an instance generator. An instance generator is a 

probabilistic polynomial time algorithm   which on input              outputs a pair        

  . A one-time signature scheme is defined below. 

Definition 4.3.1.4:  

A one-time signature scheme consists of three probabilistic polynomial time algorithms 

               .  

 Gen:     is an algorithm that is given input    (  is the security parameter) and 
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generates the key         (   is signing key and is the signer’s secret and   , is the 

verification key that is known to all).  

 Sign:      is the signing algorithm that takes as input the message   that needs to be 

signed and    and outputs the signature               . 

 Vrfy:      is the verification algorithm that takes as input the received message   and 

   and outputs   or   to indicate that the verification was successful or not. 

               or  . 

Definition 4.3.1.5:  

The one-time signature scheme is said to be secure if an adversary having seen at most 

one valid signature on one message cannot efficiently come up with valid signature on another 

message. [4-11] 

   The signer of a one-time signature uses an instance-generator to select a random      . 

Next the signer generates a first message   of the sigma-protocol (here the signer acts like the 

prover and the receiver acts like the verifier in a sigma-protocol). The verification key is 

           and the signing key is           . Note that   is the common input to the sigma-

protocol. The message,   to be signed is taken to be the challenge   in the sigma-protocol. The 

one-time signature is the reply   in the sigma-protocol such that           is an accepting 

conversation of the sigma-protocol. Thus,      . The verification algorithm is the condition in 

the protocol that checks if a conversation           is acceptable or not (performed in step 3 of 

Protocol 4.3.1.1).  

This one-time signature scheme is secure according to Definition 4.3.1.5. Suppose that 

there exists an adversary that can compute a valid signature on a different message, given one 

valid signature. Then the adversary has two different signatures   and  ’ for the same     
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      . This implies that the adversary has two different conversations for the underlying sigma-

protocol           and             (note       ). Therefore from the special soundness 

property of the protocol the adversary can compute  . However this contradicts the witness 

hiding property of the sigma-protocol. Thus there exists no adversary that can efficiently 

compute a valid signature on different messages, given one valid signature. The above one-time 

signature scheme is therefore secure. 

We consider an example one-time signature scheme that is based on the Okamoto 

protocol that is a sigma-protocol. Let    be a group of prime order  , with generators    and   , 

set in such a way that no one can efficiently compute,  , such that      
 . The Okamoto 

protocol is a sigma-protocol based on the relation R =              |     
    

  }. The 

Okamoto protocol proceeds as follows: 

Protocol 4.3.1.2: The Okamoto Protocol. 

 Common Input:   and   get      
    

  .  

 Private Input:   has a value         such that                . 

 The protocol: 

1.   sends   a message      
    

  , where              is chosen uniformly at random 

from   . 

2.   sends   a random  -bit string e in   , which is called the challenge. 

3.   computes                ,                 and sends             to 

 .   accepts iff   
    

      .   

A one-time signature scheme based on the Okamoto protocol is given below. 
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One-time signature scheme based on the Okamoto protocol: 

1. Gen: The signing key and the verification key are:                     ,    

 , = ( 1 1 2 2,  1 1 2 2). 

2. Sign: The signature on a message   is computed as                

 1      ,   2+ 2      .  

3. Vrfy: The receiver verifies a message-signature pair (m,  ) by checking if the following 

equality holds:    
    

      . 

Note that:    
    

     
         

           
    

      
    

           

Since the above signature is a one-time signature it can only be used to sign one message 

with one key        . Every new message must be signed with a new key to maintain security. 

We propose to change the key by simply changing         while keeping         unchanged. 

Note that with the above scheme the length of the message must be  -bits such that     , 

where   is the order of the group   . Typically   is larger than 128 bits but less than 1024 bits. 

If a message   is much larger than 1024 bits then it can be hashed into  -bits using a collision 

resistant hash function such as VSH [4-12]. We now give the proposed multicast protocol that 

can be used in the smart grid. 

4.3.2. Our Protocol 

The signing key (or private key of the signer) for signing the  th
 message    is    

                   , where         is such that                , for     
    

  , and 

        are chosen at random from    for each   . The verification key (or public key) is 

       
    

     
     

             The verification key has to be distributed to each receiver 

of message   . We assume that this can be accomplished using authenticated message 
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transmission. The signer or sender of the multicast message can select   pairs of random values 

from    ,                                    in advance, and compute the   verification 

keys,              .
1
 These keys are sent with the message. Note that     

    
  ,   , and 

   are known to all the receivers via a single transmission in the beginning. The signer computes 

the signature of the  th
 message    as                                   

           and sends a multicast message          to all receivers. Upon receipt of a message 

        , the receiver performs verification by checking if the following equality is satisfied: 

  
     

       
  . In order to verify the message-signature pair,                   , the 

receiver should know the values   ,   ,  , and   . All receivers receive   ,   , and   in the 

beginning. The sender computes   verification keys and sends them to all receivers so the 

receiver knows   .  

Assume that    is the quadratic residue subgroup of   
 , where   is a strong prime (  is a 

strong prime if          and   is prime). Therefore if   can be expressed in  -bits then   

can be expressed in at most      -bits. The verification key for   messages consists of    , 

  ,                    which require           -bits. The number of verification key 

bits per message is  
          

 
, which is     , for    .  

4.4. Best Known One Time Signature Scheme in the Smart Grid 

The best known multicast protocol is the one in [4-1]. It is adapted from one time 

signature scheme provided in [4-8]. In the following section, we will describe scheme from [4-

1]. 

                                                             
1
 Verification keys can also be computed each time a new message is to be transmitted. 
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4.4.1. Tunable Signing and Verification 

OTS scheme in [4-1] is a combination of two extreme approaches namely Heavy Signing 

Light Verification (HSLV) and Light Signing Heavy Verification (LSHV). The combined 

scheme achieves a tradeoff between the two and is called Tunable Signing and Verification 

(TSV). The TSV scheme is as follows: 

1. Gen: Generate   different random  -bit strings             . For each   , generate a one-

way chain of length    , i.e.,                   . The t chains form the private 

key   . The public key is                , where            .  

2. Sign: To sign a message  , compute         , where   is a counter with initial value 

 . Call           that takes bit string   as input and outputs integers           . This 

function splits   into   substrings            of       bits each and interprets each    

as an integer   . All    from           should be different and the    within the same 

group should be sorted in the decreasing order; otherwise, increase   by 1 and repeat the 

above process. The signature of m is                   
           . 

3.  Vrfy: To verify a signature        
    

      
    over message  , compute          . 

Call          . Check if 1) all    from           are different, 2) the    in the same 

group are sorted in the decreasing order and  
        

       for each  .  

Note that if   elements of the signature are divided into   groups            and 

             denote the size of group   . Then    contains    elements,    contains    

elements etc. Let     denote the group to which the  th           element of the signature 

belongs. Each element in group    is verified with             one-way function 

invocations where,                .  
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Protocol 4.4.1.1: 

 Starting from   random values                       , the sender generates   one-way 

chains of length           and stores them as series of keys. The initial public key is 

                                  . Assume     is distributed to each receiver securely, e.g., 

via unicast message authenticated by HMAC. The initial private key     consists of    -element 

chain segments that are adjacent to    .  

 When a signature is generated and revealed, the key values included in the signature and 

those that can be generated by applying the one-way function over them are exposed. Thus, the 

sender refreshes its private key by replacing any exposed key values with their predecessors in 

the same chain. Also, a receiver updates its public key by replacing corresponding old key values 

with the new values from the signature. [4-1] 

4.5. Comparison 

In the following section, we compare our protocol with [4-1] with respect to computation 

time for signing and verification. We will also compare length of signing and verification keys, 

length of signature, storage cost, and pre-computation cost as shown in Table 4.1. We will 

provide details of the comparison in following subsections. 

4.5.1. Computation Time 

4.5.1.1. Signing Algorithm 

The time to compute a signature                                        

in our method is the time taken for two multiplications and two additions modulo  . In addition 

to it, there might be a need for performing one hash. Hardware complexity for computing 

modulo multiplication is              operations where    , when ordinary multiplication is 
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used. Here   is number of bits required to represent  . The cost of basic VSH (1024-bit hash) 

algorithm is   
         

 
                   operations per message bit [4-12]. The time 

taken to compute the signature in [4-1] is time required to compute   iterations of hash functions. 

Where,                             
 
   .This value is of order    for    . In 

typical setting of       , for message of length      bits our scheme will require   

application of hash followed by         cycles of CPU operations for performing two 

multiplications. Cost of performing one hash is     operations per message bit, hence total of 

679272 cycles for hash are required. Thus to Sign a message of length     our scheme will 

require        cycles. However, TSV will require minimum of    i.e.       applications of 

cryptographic hash functions. Standard     bit cryptographic hash functions such as SHA1 as 

suggested in [4-8] requires at least     cycles per byte [4-13]. Hence for a     -bit message 

TSV will require                              cycles. Hence, our scheme performs 

    times better than TSV for message of length     using basic algorithm for modular 

multiplication.  

4.5.1.2. Verification Algorithm 

The time to verify a signature in our method is the time to compute one hash plus the 

time to compute   
    

      , which consists of     exponentiations (    for performing 

  
    

   and one for performing   ) and  two multiplications in group   .  One exponentiation is 

equal to a maximum of    multiplications [4-14]. Hence we will require      multiplications. 

Therefore total verification cost will be             and is independent of length of message 

 .  Note that if the length of   is greater than   then it can be hashed into a string of length less 

than  . Verification   time in   [4-1]   requires   one   computation  of  hash   and   between      to  
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Table 4.1. Comparison with Cao's Protocol. 

Here                      . 

Schem
e 

Computation Cost Pre Computation Cost Key Length Signature 
Length 

Storage 
Cost Sign Verify Sign Veri

fy 

HSLV     applications 

of hash function 

k+1 one-way 
function 
invocations 

  applications of one-

way function 
                   

LSHV   applications of 

hash function 

      

 
   one-

way function 
invocations 

   applications of one-

way function 
                   

    

TSV 
     

 

   
 

applications of 
hash function 

   

      
 

   
 

One-way function 
invocations 

       applications of 

a one-way functions for 
signature of     
         messages 

          
            

 
     

    
    

for 
signature 
of 

    
     
    
messages 

Our 
Schem
e 

1 application of 
hash function + 
2 modular 
multiplications 

2.5 
exponentiations or 
one-way function 
invocations 

3 exponentiations or 
applications of one-way 
functions 

      
    

   Sender: 
2N 
+2MN 
 

Receiver
: 3(N+1) 

         computations of one-way function     . If we assume the computational complexity 

of one-way function to be the same as that of exponentiation because large modular 

exponentiations in itself are one-way functions, then verification cost of our scheme is better 

than TSV as only     applications of one-way functions are required in our case. Also, in TSV an 

attempt to minimize verification cost increases signing cost. Also, to select the optimum value of 

the number of one-way functions,  , required for verification, offline computation of       is 

required. We do not need any offline computation. 

4.5.2. Key Generation and Public Key Distribution Cost  

TSV method requires the pre-computation of   one-way chains of length      . To 

accomplish this requires        applications of a one-way function. This pre-computation 

allows the computation of the signature for              messages. Assuming that the chains 
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are depleted as they are revealed in the signatures, an additional communication cost is caused by 

transmission of the public key, which is on average 
      

  
 -bits per message. However, our 

method incurs fixed cost for selection of generators    and    as explained earlier. Also, 

sampling of         such that              , where     
    

  . In addition to this to 

sign M different messages it requires selection of 2M random values, 

                                   and the computation of       
     

   
, for j = 1, …, M. 

This requires 1.5M exponentiations and M multiplications in group   . As explained earlier the 

size of    is N+1 bits and hence that will be the cost of public key distribution per message. For a 

typical setting in TSV, where       ,       ,    , and      i.e. when message is of 

size 80kb,                           messages can be authenticated with      

chains i.e.                   applications of a one-way functions. Also key distribution 

cost is      per message. Hence, it will be 11650.8B for 29127 messages. In our case to 

authenticate       messages of size     , we need to perform                         

applications of one-way functions or that many exponentiations. Distribution cost of such key is 

     bits per message. This will be       of message size for the current example and is hence 

negligible. Therefore, our scheme performs 24 times better than TSV in terms of key generation. 

We suggest computing a new public key every time a new message is to be transmitted. In that 

case,     extra exponentiations performed online will not add much computational overhead for 

sender as compared to TSV. We can say that an addition of     one-way functions and increase 

of     in communication overhead will not make much of a difference for large messages.  
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4.5.3. Key Length  

The length of the verification key in TSV is   -bits while the length of the verification 

key in our method is the length of four group elements,        , and     which is       -bits. 

The length of the signing key in TSV is    -bits where k < t. The length of the signing key, 

                        in our method is   -bits. For example, when               

      and        , the verification key length in our scheme is     -bits, out of which 

    -bits are transmitted in the beginning itself. However, verification key length in TSV will 

be      -bits, which is transmitted in the beginning. Our scheme achieves improvement in the 

verification key length that is transmitted in the beginning and is to be stored at the receiver by a 

factor of 26. This is useful in applications like demand response, operation and control, and in-

substation protection where receiver storage is stringent. For the same settings, signing key 

length in our scheme is     -bits. But sender has to store    -bits to authenticate   messages 

but as we will discuss in sub section on storage cost this can be avoided. Signing key length in 

TSV is      . Hence we can say our scheme performs better than TSV in terms of key length. 

4.5.4. Signature Length  

The signature length in TSV is approximately    bits. The length of the signature 

                                     , in our method is    bits.  For typical 

settings of                    : signature length for our scheme will be    , while 

that for TSV will be    -bits. Hence our scheme will add more communication overhead than 

TSV. However 2kb is not much of  overhead. It may cause problems only in the settings where 

bandwidth requirements are stringent. However, using lower value of modulus   might solve the 

problem in that case. 
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4.5.5. Storage Cost  

If the output of the one-way function is  -bits then the total number of bits that need to be 

stored at the signer is         bits. In our method the signer must pre-compute and store 

                           . If each         requires   -bits, then the storage requirement 

        -bits. Receiver has to store        . This will require        bits. Hence for our 

particular case of                              : Storage cost at receiver is 

around     . While for us its mere    . We can reduce the storage cost of the sender by using 

a pseudorandom number generator to output           using   as seed. This will still add   

cycles to signing cost which is very small compared to 68k cycles for a 2kb message. Table 4.2 

gives a particular example for the comparison of our protocol with that of [4-1]. 

Table 4.2. Particular Case of                         and       . 

 

 

Scheme 
Approximate Computation Cost Pre Computation 

Cost 

Key Length Signatur
e Length 

Storage 
Cost Sign Verify Sign Verify 

HSLV 3.2G-CPU 
operations 

9 invocations of one-
way functions 

1024 invocations 
of one-way 
functions 

80kb 80kb 0.640kb 80kb 

LSHV 85k-CPU 

operations 

37 invocations of 

one-way functions 

8k  invocations of 

one-way functions 

655kb 80kb 0.640kb 80Mb 

TSV  3.2G-CPU 
operations 

Minimum 9 
invocations of one-
way functions 

1M invocations of 
one-way functions 
for 29k messages 
of size 80kb 

655kb 80kb 0.640kb 80Mb 

Our 
Scheme 

27M-CPU 
operations 

3 invocations of one-
way functions 

43k invocations of 
one-way functions 
for 29k messages 

of size 80kb 

4kb 4kb 2kb Sender: 
59Mb 
 

Receiver: 
3kb 
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4.6. Conclusion 

Multicast authentication while being a key-enabler for several critical control, command 

and monitoring data streams, poses unique challenges in smart grids.  These challenges stem 

from the need to balance security with competing objectives of communication bandwidth, 

storage and computation overheads. This paper proposes for the first time, the use of one-time 

signatures from sigma protocols for multicast authentication in the smart grid.  Sigma protocols 

are fundamentally appealing in authentication systems where one entity needs to establish the 

veracity of a statement to another entity without explicitly revealing its contents.  Here, we 

construct an OTS scheme using the Okamoto protocol (a 3 move protocol with the witness 

hiding property) for multicast authentication. The proposed method outperforms the currently 

best known approach for multicast authentication [4-5] by: reducing the burden on sender and 

receiver computations (2-3 orders), pre-computation cost (2 orders), and storage overhead (2 

orders) at a very modest increase (four fold) in signature size. With the current methods for 

multicast authentication in smart grids, a high level of security is obtained at the expense of 

increases in storage, computation and bandwidth. The proposed authentication scheme 

overcomes this fundamental limitation and enables the efficient use of resource constrained field 

devices thus paving the way for the implementation of sigma protocols in the smart grid 

environment. 
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CHAPTER 5. CONCLUSIONS 

Sensor networks have become part of our day to day life and hence are hot topic for 

research these days. Smart-grid is an evolving sensor network technology. They are found useful 

in many applications related to power grid. Power grids exchange many sensitive messages e.g. 

price/kW, energy need, company offers, control signals etc. These messages are sent over either 

wired or wireless network connecting these power sensor nodes and base station. Hence there is 

need to protect this information. In this thesis we concentrate on protecting integrity of different 

messages in smart grid networks using new Message Authentication Codes (MAC).  

The smart gird networks have different requirements than regular data networks and 

hence they need to be treated separately. They exchange heavy messages but have limited 

resources. Hence, we present a MAC that performs faster authentication of long messages in 

very short time consuming few hardware resources. In this thesis we presented three different 

papers targeted towards providing fast authentication for long messages in short time which have 

been recently accepted or submitted for publication as three different papers.  

The first paper proposed that Multiple Input Shift Register (MISR) is  -universal hash 

function. We proved that it is faster as well as hardware efficient than existing universal hash 

functions and hence MISR can be used in fast authentication of long messages in resource 

constrained environment. Software implementation results of this scheme indicate that the time 

required to sign or verify a message is reduced by two order compared to existing schemes. The 

second paper proposes a variable length message authentication code (MAC) based on MISR for 

authenticated communication between metering nodes and collection nodes in smart grid 

networks. In this paper we proved that the new variable length MAC scheme is theoretically 
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secure. The MAC has two order better time performance compared to existing hash based MAC, 

HMAC. 

The third paper focuses on multicast authentication in smart grid networks. We propose a 

novel approach of using one-time signatures (OTS) from sigma protocols for multicast 

authentication in smart grid. When compared with the currently best known OTS scheme 

Tunable Signing and Verification, the proposed scheme yields a three order improvement in time 

performance at a very modest increase (four fold) in signature size. 

Throughout this thesis we used different security definitions of authentication schemes in 

order to prove the security of a scheme. While in some real-world applications, any scheme is 

considered to be safe if no effective attack is known for it; provable security can definitely help 

to guarantee a scheme’s security as long as the underlying hard problem is not solved.  

Therefore, in this thesis we provide provably secure message authentication schemes 

useful in smart grid and other resource constrained sensor networks. The first two schemes can 

be used for faster authentication of heavy messages in resource constrained sensor networks. The 

schemes are proved to be faster than existing schemes in terms of signing and verification cost, 

hardware requirement, and communication overhead.
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APPENDIX. MHMAC SOURCE CODE 

Main_File.cpp 

# include <MHMAC.h> 
# include <conio.h> 

 
int main() 

{ 
 string MessageToSign; 

 cout<<"Enter Text :"<<endl; 
 cin >> MessageToSign; 

 MHMAC MAC; 
 MAC.MHMAC_Gen(); 

 string MESSAGE=MessageToSign; 
 string MHMAC_Sign= MAC.MHMAC_Sign(MESSAGE); 

 bool b=MAC.MHMAC_Vrfy(MESSAGE,MHMAC_Sign); 

 cout<<"Verify :"<<b<<endl; 
 _getch(); 

 return 1; 
} 

 

MHMAC.h 

# ifndef _MHMAC 
# define _MHMAC 

 
# include <MISRH.h> 

# include <DHKeyXchnge.h>  
 

 
class MHMAC 

{ 
 byte AESkey[AES::DEFAULT_KEYLENGTH]; 

 byte AESiv[AES::BLOCKSIZE];  
 uint64_t gx_high; 

 uint64_t gx_low; 
 string Msg; 

 string Signature; 

 string counter; 
public: 

 
 void MHMAC_Gen(); 

 string MHMAC_Sign(string); 
 bool MHMAC_Vrfy(string,string);  

}; 
# endif 

 

MHMAC.cpp 

# include <MHMAC.h> 
# include <CounterGen.h> 
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void MHMAC::MHMAC_Gen() 
{ 

 cout<<"Generating Keys"<<endl; 
 DHKeyXchnge DH_1; 

 //SecByteBlock & RefAESKey = AESkey(RIPEMD128::DIGESTSIZE); 
 static const int size = RIPEMD128::DIGESTSIZE; 

 //byte AESKEY[16];  
 //AESkey = AESKEY; 

 DH_1.ExchangeKey(); 
 for (int i=0;i<AES::DEFAULT_KEYLENGTH;i++) 

 { 
  AESkey[i]=DH_1.key[i]; 

 } 
 for (int i=0;i<AES::BLOCKSIZE;i++) 

 { 
  AESiv[i]=DH_1.iv[i]; 

 } 
 // Pretty print key 

 string encodedkey,encodediv; 
 encodedkey.clear(); 

 StringSource(AESkey, sizeof(AESkey), true, 
  new HexEncoder( 

   new StringSink(encodedkey) 
  ) // HexEncoder 

 ); // StringSource 
 cout << "key: " << encodedkey << endl; 

 encodediv.clear(); 
 StringSource(AESiv, sizeof(AESiv), true, 

  new HexEncoder( 

   new StringSink(encodediv) 
  ) // HexEncoder 

 ); // StringSource 
 cout << "iv: " << encodediv << endl; 

  
} 

 
string MHMAC::MHMAC_Sign(string Msg) 

{ 
  cout<<"Signing..."<<endl; 

CounterGen r; 
  counter = r.getCounterValue(); 

  cout<<"Counter :"<<counter<<endl; 
   

  STR2H conv1(Msg); 
  string MsgHex = conv1.HString(); 

  int NoHexChars = conv1.Get_L(); 
  int NofU64 = ceil(double(NoHexChars/16)); 

  MessageArray MsgtoMISRH(MsgHex); 
  MsgtoMISRH.setMsgLen(); 

  uint64_t *MsgtoMISRHPtr = MsgtoMISRH.GetArray(); 
  int MsgtoMISRHLen = MsgtoMISRH.getMsgLen(); 

  MISRH MyMISR; 
  MyMISR.ComputeMISRH(MsgtoMISRHPtr,MsgtoMISRHLen); 

  string plainTextS = MyMISR.getRx(); 
  cout<<"MISRH:"<<plainTextS<<endl;   

  string encodedS; 
  string encodedSign; 

  try 
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  {  

   
  CBC_Mode< AES >::Encryption e; 

  e.SetKeyWithIV(AESkey, sizeof(AESkey), AESiv); 
 

  // The StreamTransformationFilter removes 
  //  padding as required. 

  string Sign; 
  StringSource s(counter, true,  

   new StreamTransformationFilter(e, 
    new StringSink(Sign) 

   ) // StreamTransformationFilter 
  ); // StringSource 

  // Pretty print 
  encodedS.clear(); 

  StringSource(Sign, true, 
  new HexEncoder( 

   new StringSink(encodedS) 
   ) // HexEncoder 

  ); // StringSource 
 

 
  for(int i = 0 ; i<plainTextS.size(); i++)    

   plainTextS[i] ^= encodedS[i];  
 

  Signature = plainTextS;   
  encodedSign.clear(); 

  StringSource(Signature, true, 
  new HexEncoder( 

   new StringSink(encodedSign) 

   ) // HexEncoder 
  ); // StringSource 

 
#if 0 

  StreamTransformationFilter filter(e); 
  filter.Put((const byte*)plainTextS.data(), plainTextS.size()); 

  filter.MessageEnd(); 
 

  const size_t ret = filter.MaxRetrievable(); 
  Signature.resize(ret); 

  filter.Get((byte*)Signature.data(), Signature.size()); 
#endif 

 } 
 catch(const CryptoPP::Exception& e) 

 { 
  cerr << e.what() << endl; 

  exit(1); 
 } 

 
 /*********************************\ 

 \*********************************/ 
 

  
 cout << "MHMAC: " << encodedSign << endl; 

 
 return encodedSign; 

} 
 

bool MHMAC::MHMAC_Vrfy(string MsgtoVrfy, string MAC) 
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{ 

  cout<<"Verifying..."<<endl; 
  STR2H conv2(MsgtoVrfy); 

  string MsgHexV = conv2.HString(); 
  int NoHexCharsV = conv2.Get_L(); 

  int NofU64V = ceil(double(NoHexCharsV/16)); 
  MessageArray MsgtoMISRHV(MsgHexV); 

  MsgtoMISRHV.setMsgLen(); 
  uint64_t *MsgtoMISRHPtrV = MsgtoMISRHV.GetArray(); 

  int MsgtoMISRHLenV = MsgtoMISRHV.getMsgLen(); 
  MISRH MyMISR; 

  MyMISR.ComputeMISRH(MsgtoMISRHPtrV,MsgtoMISRHLenV); 
  string plainTextV = MyMISR.getRx(); 

  cout<<"MISRH:"<<plainTextV<<endl; 
  string encodedV,MACV,encodedVrfy; 

  try 
  {   

 
  CBC_Mode< AES >::Encryption eV; 

  eV.SetKeyWithIV(AESkey, sizeof(AESkey), AESiv); 
 

  // The StreamTransformationFilter removes 
  //  padding as required. 

  string Vrfy; 
  StringSource s(counter, true,  

   new StreamTransformationFilter(eV, 
    new StringSink(Vrfy) 

   ) // StreamTransformationFilter 
  ); // StringSource 

  // Pretty print 

  encodedV.clear(); 
  StringSource(Vrfy, true, 

  new HexEncoder( 
   new StringSink(encodedV) 

   ) // HexEncoder 
  ); // StringSource 

 
 

  for(int i = 0 ; i<plainTextV.size(); i++)    
   plainTextV[i] ^= encodedV[i];  

 
  MACV = plainTextV;   

 
   

 
#if 0 

  StreamTransformationFilter filter(e); 
  filter.Put((const byte*)plainTextV.data(), plainTextV.size()); 

  filter.MessageEnd(); 
 

  const size_t ret = filter.MaxRetrievable(); 
  MACV.resize(ret); 

  filter.Get((byte*)MACV.data(), MACV.size()); 
#endif 

 } 
 catch(const CryptoPP::Exception& e) 

 { 
  cerr << e.what() << endl; 

  exit(1); 
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 } 

 
 /*********************************\ 

 \*********************************/ 
 

 // Pretty print 
 encodedVrfy.clear(); 

 StringSource(MACV, true, 
  new HexEncoder( 

   new StringSink(encodedVrfy) 
  ) // HexEncoder 

 ); // StringSource 
 cout << "MHMAC: " << encodedVrfy << endl; 

 return (encodedVrfy==MAC); 
} 

 
 

 
 

MISRH.h 

# ifndef _MISRH 

# define _MISRH 

# include <MessageArray.h> 
 

class MISRH 
{ 

 uint64_t Gxh; 
 uint64_t Gxl; 

 uint64_t Rxh,Rxl; 
 string Rx; 

public: 
MISRH(); 

void ComputeMISRH(uint64_t *MsgPtr, int MsgSize); 
string getRx(); 

}; 
#endif 

 

MISRH.cpp 

# include <MISRH.h> 

string tostring(uint64_t val) 
{ 

   std::ostringstream o; 

 o << hex<< val; 
 return o.str(); 

} 
 

MISRH::MISRH() 
{ 

 Gxh = 0x8000000000000000u; 
 Gxl = 0x0000000000000043u; 

 Rxh=0u; 
 Rxl=0u; 

} 
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void MISRH::ComputeMISRH(uint64_t *MsgPtr, int msgsize) 

{ 
 uint64_t temph,temp1h,temp2h,templ,temp1l,temp2l; 

 for (int i=0;i<msgsize;i+=2) 
 { 

  // taps: 128 07 02 1; characteristic polynomial: x^128 + x^7 + x^2 + x + 1  
   

  temph = Rxh; 
  temp1h=temph >> 1; 

  //temp2h=temph & 1u; 
  templ = Rxl ; 

  if ((temph & 1u) == 1) 
  { 

   temp1l = (templ >> 1) | (0x8000000000000000u); 
  } 

  else 
  { 

   temp1l = (templ >> 1); 
  } 

  //temp2l=templ & 1u; 
  if ((templ & 1u)==1u) 

  { 
   Rxh = (temp1h) ^ ((0xFFFFFFFFFFFFFFFFu) & (Gxh)) ^ (*MsgPtr) ; 

   Rxl = (temp1l) ^ ((0xFFFFFFFFFFFFFFFFu) & (Gxl)) ^ (*(MsgPtr++)) ; 
  } 

  else 
  { 

   Rxh = (temp1h) ^ ((0x0u) & (Gxh)) ^ (*MsgPtr) ; 
   Rxl = (temp1l) ^ ((0x0u) & (Gxl)) ^ (*(MsgPtr++)) ; 

  } 

 
  /*cout<<hex<<Rxh<<endl; 

  cout<<hex<<Rxl<<endl;*/ 
       

 } 
 /*cout<<"Final Rx:"<<endl; 

 cout<<hex<<Rxh<<endl; 
 cout<<hex<<Rxl<<endl;*/ 

  
} 

 
string MISRH::getRx() 

{ 
 string Hashh=tostring(Rxh); 

 string Hashl=tostring(Rxl); 
 Rx = Hashh.append(Hashl); 

 return Rx; 
} 

 

CounterGen.h 

# ifndef _COUNTERGEN 

# define _COUNTERGEN 
 

# include <iostream> 
# include <string> 

# include <sstream> 
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using namespace std; 

# include <stdint.h> 
 

class CounterGen 
{ 

 static uint64_t counter_low; 
 static uint64_t counter_high; 

 
public: 

 static string getCounterValue(); 
}; 

 
 

# endif 

 

CounterGen.cpp 

# include <CounterGen.h> 
 

uint64_t CounterGen::counter_high = rand(); 
uint64_t CounterGen::counter_low = rand(); 

   
string CounterGen::getCounterValue() 

{ 
 if (counter_low == UINT64_MAX) 

 { 
  if (counter_high == UINT64_MAX) 

  { 
   counter_low = 0; 

   counter_high = 0; 
  } 

  else 
  { 

   counter_high++; 
  } 

 } 
 else 

 { 
  counter_low++; 

 } 
 stringstream ss; 

 ss << counter_high << counter_low; 
 string str = ss.str(); 

 return str;  
} 

 

 

 

MessageArray.h 

#ifndef _MessageArray 
#define _MessageArray 

 
# include <string> 
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# include <memory> 

# include <math.h> 
# include <Str2H.h> 

# include <H2Uint64.h> 
 

class MessageArray 
{ 

 string MsgArray; 
 uint64_t *MsgPtr; 

 int MsgLen; 
public: 

 MessageArray(){MsgArray = "";} 
 MessageArray(string msg){MsgArray = msg;} 

 uint64_t * GetArray(); 
 void setMsgLen(){MsgLen=ceil(double(MsgArray.length()/16));} 

 int getMsgLen(){return MsgLen;} 
 void DispArray(); 

 ~ MessageArray(); 
}; 

 
#endif 

MessageArray.cpp 

#include <MessageArray.h> 
 

uint64_t * MessageArray::GetArray() 
{ 

 H2UINT64 MessageNo; 
  

 int k=0; 
 try 

 { 
  MsgPtr = new uint64_t[MsgLen]; 

  uint64_t *uint64_ptr = MsgPtr; 
   

  for (int j=0; j<MsgLen; j++) 
  { 

   *uint64_ptr = MessageNo.convert(MsgArray.substr(k,16)); 
   k+=16; 

   uint64_ptr++; 
  } 

  return MsgPtr; 
 } 

 catch (bad_alloc ba) 
 { 

  cout<<"Bad Alloc"<<endl; 
 } 

 
} 

 
void MessageArray::DispArray() 

{ 

 uint64_t *dispPtr = MsgPtr; 
 for (int j=0; j<MsgLen; j++) 

 { 
 cout << *dispPtr <<endl; 

 dispPtr++; 
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 } 

} 
 

MessageArray::~MessageArray() 
{ 

 MessageArray::MsgArray = ""; 
} 

 
 

H2Uint64.h 

/* 

H2Uin64.h 
To conver Hex representation of String to 

of it 
*/ 

 
#ifndef H2UINT64_H 

#define H2UINT64_H 
 

# include <iostream> 
# include <string> 

using namespace std; 

# include <stdint.h> 
 

 
class H2UINT64 

{ 
 string SH; 

 uint64_t Uint64_No; 
public: 

 H2UINT64(){SH="";} 
 H2UINT64(string S){SH=S;} 

 uint64_t convert(std::string &s); 
}; 

 
#endif 

 

H2Uint64.cpp 

# include <H2Uint64.h> 

 
 

uint64_t H2UINT64::convert(std::string &s) 

{ 
    std::string::iterator i; 

    std::string digits = "0123456789abcdefABCDEF"; 
    uint64_t result = 0; 

    size_t pos = 0; 
 SH = s; 

    i = s.begin(); 
 

    while (i != s.end()) 
    { 

        // search for character in hex digits set 
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        pos = digits.find(*i); 

 
        // if found in valid hex digits 

        if (pos != std::string::npos) 
        { 

            // handle upper/lower case hex digit 
            if (pos > 0xf) 

            { 
                pos -= 6; 

            } 
 

            // shift a nibble in 
            result <<= 4; 

            result |= pos; 
        } 

 
        ++i; 

    } 
 

    return result; 
  

} 
 

Str2H.h 

/* 

Str2H.h 
to convert regular string to hex representation 

of it 
*/ 

 
#ifndef STR2H_H 

#define STR2H_H 
 

# include <iostream> 
# include <string> 

# include <sstream> 
# include <iomanip> 

# include <iterator> 
 

using namespace std; 
 

class STR2H  
{ 

 string Sin; 
 string Sout; 

 int Sout_L; 
 

public: 
 STR2H(){Sin=Sout="";} 

 STR2H(string S){ Sin=S;} 

 void getString(); 
 string HString(); 

 int Get_L(){return Sout_L;} 
}; 
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#endif 
 

Str2H.cpp 

# include <Str2H.h> 
void STR2H::getString() 

{ 
 cout<<"Enter String with no spaces:"<<endl; 

 cin>>Sin; 
 

} 
string STR2H::HString() 

{ 
 ostringstream result; 

 result << setw(2) << std::setfill('0') << std::hex << std::uppercase; 
    std::copy(Sin.begin(), Sin.end(), std::ostream_iterator<unsigned int>(result)); 

 Sout=result.str(); 
 Sout_L=Sout.length(); 

   
 int msgsize = 0; 

 if (Sout_L%32 == 0) 

 { 
  Sout=Sout; 

 } 
 else 

 { 
  int m=32-(Sout_L%32); 

  Sout=Sout; 
   

  for (int l=0;l<m;l++) 
  { 

   Sout+="0"; 
  } 

 }  
 Sout_L=Sout.length(); 

 return Sout; 
} 

 

DHKeyXchnge.h 

 
# ifndef _DHKEYXCHNGE 

# define _DHKEYXCHNGE 

 
# include <CryptIncludes.h> 

# include <stdexcept> 
using std::runtime_error; 

 
#include <sstream> 

using std::istringstream; 
using std::stringstream; 

 
# include <iostream> 

using namespace std; 
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class DHKeyXchnge 
{ 

  
public: 

  byte iv[AES::BLOCKSIZE]; 
  byte key[AES::DEFAULT_KEYLENGTH]; 

  void ExchangeKey() 
 { 

  AutoSeededRandomPool rnd; 
 unsigned int bits = 128; 

 try 
 { 

  DH dh; 
  dh.AccessGroupParameters().GenerateRandomWithKeySize(rnd, bits); 

 
  if(!dh.GetGroupParameters().ValidateGroup(rnd, 3)) 

   throw runtime_error("Failed to validate prime and generator"); 
 

  size_t count = 0; 
 

  const Integer& p = dh.GetGroupParameters().GetModulus(); 
  count = p.BitCount(); 

  cout << "P (" << std::dec << count << "): " << std::hex << p << endl; 
   

  const Integer& q = dh.GetGroupParameters().GetSubgroupOrder(); 
  count = q.BitCount(); 

  cout << "Q (" << std::dec << count << "): " << std::hex << q << endl; 
 

  const Integer& g = dh.GetGroupParameters().GetGenerator(); 

  count = g.BitCount(); 
  cout << "G (" << std::dec << count << "): " << std::dec << g << endl; 

 
  // http://groups.google.com/group/sci.crypt/browse_thread/thread/7dc7eeb04a09f0ce 

  Integer v = ModularExponentiation(g, q, p); 
  if(v != Integer::One()) 

   throw runtime_error("Failed to verify order of the subgroup"); 
  //Generate PubPriv Pair 

 
  //Simple DH key Generation 

     
  SecByteBlock privKeyA(dh.PrivateKeyLength()); 

  SecByteBlock pubKeyA(dh.PublicKeyLength()); 
  dh.GenerateKeyPair(rnd, privKeyA, pubKeyA); 

 
  SecByteBlock privKeyB(dh.PrivateKeyLength()); 

  SecByteBlock pubKeyB(dh.PublicKeyLength()); 
  dh.GenerateKeyPair(rnd, privKeyB, pubKeyB); 

 
  Integer a, b; 

 
  a.Decode(pubKeyA.BytePtr(), pubKeyA.SizeInBytes()); 

  cout << "Shared secret (A): " << std::hex << a << endl; 
 

  b.Decode(pubKeyB.BytePtr(), pubKeyB.SizeInBytes()); 
  cout << "Shared secret (B): " << std::hex << b << endl; 

 
  //Unified DH key generation 
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  DH2 dhA(dh), dhB(dh);                   

 
  SecByteBlock sprivA(dhA.StaticPrivateKeyLength()), spubA(dhA.StaticPublicKeyLength()); 

  SecByteBlock eprivA(dhA.EphemeralPrivateKeyLength()), 
epubA(dhA.EphemeralPublicKeyLength()); 

 
  SecByteBlock sprivB(dhB.StaticPrivateKeyLength()), spubB(dhB.StaticPublicKeyLength()); 

  SecByteBlock eprivB(dhB.EphemeralPrivateKeyLength()), epubB(dhB.EphemeralPublicKeyLength()); 
 

  dhA.GenerateStaticKeyPair(rnd, sprivA, spubA); 
  dhA.GenerateEphemeralKeyPair(rnd, eprivA, epubA); 

 
  dhB.GenerateStaticKeyPair(rnd, sprivB, spubB);   

  dhB.GenerateEphemeralKeyPair(rnd, eprivB, epubB); 
 

  //Key Establishment 
 

  if(dhA.AgreedValueLength() != dhB.AgreedValueLength()) 
  throw runtime_error("Shared secret size mismatch"); 

 
  SecByteBlock sharedA(dhA.AgreedValueLength()), sharedB(dhB.AgreedValueLength()); 

 
  if(!dhA.Agree(sharedA, sprivA, eprivA, spubB, epubB)) 

  throw runtime_error("Failed to reach shared secret (A)"); 
 

  if(!dhB.Agree(sharedB, sprivB, eprivB, spubA, epubA)) 
  throw runtime_error("Failed to reach shared secret (B)"); 

 
  count = std::min(dhA.AgreedValueLength(), dhB.AgreedValueLength()); 

  if(!count || 0 != memcmp(sharedA.BytePtr(), sharedB.BytePtr(), count)) 

  throw runtime_error("Failed to reach shared secret"); 
 

   
  Integer y, z; 

 
  y.Decode(sharedA.BytePtr(), sharedA.SizeInBytes()); 

   cout << "Shared secret (A): " << std::hex << y << endl; 
 

  z.Decode(sharedB.BytePtr(), sharedB.SizeInBytes()); 
   cout << "Shared secret (B): " << std::hex << z << endl; 

 
  //Generate AES 

 
  int aesKeyLength = RIPEMD128::DIGESTSIZE; // 16 bytes = 128 bit key 

  int defBlockSize = AES::BLOCKSIZE; 
 

 // Calculate a RIPEMD128 hash over the Diffie-Hellman session key 
  //SecByteBlock key(RIPEMD128::DIGESTSIZE);  

  static const int size = RIPEMD128::DIGESTSIZE; 
  RIPEMD128().CalculateDigest(key, sharedA, sharedA.size());  

   
 // Generate a random IV 

   
  rnd.GenerateBlock(iv, AES::BLOCKSIZE); 

   
  } 

  catch(const CryptoPP::Exception& e) 
 { 

  cerr << e.what() << endl; 
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 } 

   
 } 

  
}; 

# endif 
 

CryptIncludes.h 

# ifndef _CRYPTINC 
# define _CRYPTINC 

 
// Includes 

/***Crptographic Includes***/ 
# include "osrng.h" 

using CryptoPP::AutoSeededRandomPool; 
 

#include "integer.h" 
using CryptoPP::Integer; 

 
#include "secblock.h" 

using CryptoPP::SecByteBlock; 

 
#include <ripemd.h> 

using CryptoPP::RIPEMD128; 
 

#include "filters.h" 
using CryptoPP::StringSink; 

using CryptoPP::StringSource; 
using CryptoPP::StreamTransformationFilter; 

using CryptoPP::HashFilter; 
using CryptoPP::HashVerificationFilter; 

 
#include "dh.h" 

using CryptoPP::DH; 
 

#include "secblock.h" 
using CryptoPP::SecByteBlock; 

 
#include <dh2.h> 

using CryptoPP::DH2; 
 

#include "nbtheory.h" 
using CryptoPP::ModularExponentiation; 

 
#include "cryptlib.h" 

using CryptoPP::Exception; 
 

#include "aes.h" 
using CryptoPP::AES; 

using CryptoPP::AESEncryption; 

using CryptoPP::AESDecryption; 
 

#include "ccm.h" 
using CryptoPP::CFB_Mode;  

using CryptoPP::CBC_Mode; 
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# include <base64.h> 
using CryptoPP::Base64Encoder; 

 
# include <hex.h> 

using CryptoPP::HexEncoder; 
 

# endif 
 

 

 

 

 

 


