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ABSTRACT 

 

 While a number of statistics are collected during an NCAA Division I men’s college 

basketball game, it is potentially of interest to universities, coaches, players, and fans which of 

these variables are most significant in determining wins and losses.  To this end, statistics were 

collected from two seasons of games and analyzed using logistic and least squares regression 

methods.  The differences between the two competing teams in four common statistics were 

found to be significant to determining victory: assists, free throw attempts, defensive rebounds, 

and turnovers.  The logistic and least squares models were then used with data from the 2011-

2012 season to verify the accuracy of the models.  To determine the accuracy of the models in 

predicting future game outcomes, four prior game median statistics were collected for teams 

competing in a sample of games from 2011-2012, with the differences taken and used in the 

models. 
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CHAPTER 1. INTRODUCTION 

 With 347 teams playing across 49 states (all but Alaska) in the 2012-2013 season, NCAA 

Division I men’s college basketball is one of the most popular and widespread sports in the 

country.  During the 2011-2012 basketball season, a total of 27,691,051 people attended 5,335 

total Division I men’s basketball games (NCAA, 2012).  To add to its popularity, the NCAA 

tournament in March and April of every season attracts incredible national attention.  The 2011 

NCAA tournament drew the highest television rankings for an opening week of the tournament 

in 20 years, in addition to the 2.4 million unique visitors to the NCAA’s website, where 

tournament games can be streamed live to computers or smartphones (NCAA, 2011).  

 With such a large amount of popularity and attention being paid to the sport, a number of 

statistics are kept at every single game for use by universities, coaches, players, and casual fans.  

However, with such an abundance of information, questions naturally arise – which of these 

statistics is the most important?  What does my team need to do well to improve its chances of 

winning a contest?  What are my team’s chances of winning an upcoming game? 

 The primary objective of this work will be to determine key factors that explain victory 

or defeat in a Division I men’s college basketball game.  This work can benefit coaches, teams, 

and even casual fans, as they can then focus on these principal areas of the game as they tend to 

lead to victories.   

 A secondary objective of this work will be to identify if a model can be developed using 

the significant factors that are identified to predict the outcomes of future games using previous 

game data from the teams involved in the contest.  A model such as this could be of use to 

coaches and teams who are approaching an upcoming game.  If a team is approaching a future 

game knowing that they are weak in a key area when compared to their future opponent, they can 
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make necessary changes to game plans to either improve that weakness or focus on other skills to 

offset that weakness.  

 The primary focus of this work was placed on differences in statistics between the two 

teams involved in a basketball game.  The reason behind this is that, to win a basketball game, a 

team does not necessarily need to do well, simply better than their opponent. 
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CHAPTER 2. REVIEW OF LITERATURE 

 With college basketball having such national popularity, and a number of statistics kept 

regularly, it naturally attracts a great deal of statistical attention and analysis.  In reviewing 

previous works regarding the topic of significant factors in college basketball, three were found 

that related to this work.   

 In 1994, David Harville and Michael H. Smith conducted an analysis to determine 

whether or not home-court advantage was a significant factor in college basketball, and if so, 

determine the advantage in points it gave a team over playing at a neutral site.  Game data was 

restricted to regular season games, and consisted of 1,678 games played during the 1991-1992 

Division I college basketball season.   

 It was found that home-court advantage varied from team to team, but estimated the 

advantage given to teams playing at home as compared to a neutral site game to be           

points.  They also discovered that while home-court advantage varied among teams, there was no 

positive or negative relationship between having a strong home-court advantage and overall 

performance level of a team – good teams could have lower home-court advantages when 

compared to all teams, and poor teams could have strong home-court advantages. 

 Neil Schwertman, Kathryn Schenk, and Brett Holbrook conducted research published in 

1996 regarding the development of probability models for NCAA regional basketball 

tournaments.  This work attempted to estimate the probability of any given team winning their 

regional tournament, thus advancing to the ‘Final Four’.  To do this, probability models were 

developed using NCAA regional tournament games from 1985-1994, a total of 600 games.  

However, the independent variable under consideration in these probability models was a team’s 
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seed in the NCAA tournament, information that would not be known during a randomly played 

regular season contest. 

 In 2004, Dean Oliver performed analysis related to what he referred to as the “four 

factors”.  These factors were elements of the game that he felt teams needed to successfully 

execute to increase their probabilities of winning a basketball game.  This analysis was based on 

data from both NBA and NCAA basketball games.  The factors were identified in his work to be 

shooting percentage, offensive rebounds, turnovers, and high numbers of free throw attempts 

combined with high free throw percentage.  Also mentioned was the fact that none of these 

statistics will tell how well a player creates a good shot, which Oliver felt is a critical factor in 

any basketball game. 

 On rebounding in particular, Oliver noted that rebounding does not appear to be as 

valuable as shooting, getting to the free throw line, and good ball control in the NBA.  However, 

he mentioned that in high school and college basketball, rebounding may play a larger role in 

influencing a team’s probability of victory. 
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CHAPTER 3. METHODS 

3.1. Data Collection  

 Regression methods were used to determine significant factors affecting the outcomes of 

NCAA Division I men’s basketball games.  Two models were developed; one using a logistic 

regression approach with responses recorded as a ‘1’ for a win and ‘0’ for a loss, and the second 

utilizing least squares regression with point spread as a response. 

 The data needed for the identification of significant factors was collected from a random 

sample of box scores provided by the NCAA (NCAA 2013).  This random sample consisted of 

150 games chosen from both the 2009-2010 and 2010-2011 seasons.  For each season, 30 teams 

were selected at random, and from those teams, five games of data were selected.  For the 2009-

2010 season, games 7, 13, 15, 23, and 26 were selected.  For the 2010-2011 season, games 5, 11, 

15, 19, and 21 were selected.  Any game that was played against a non-Division I opponent was 

discarded from consideration, along with any neutral site games, bringing the total number of 

games observed to 280. 

 For each game, it was observed whether or not the team that was selected randomly 

(hereafter referred to as the ‘team of interest’) was playing at home or on the road, with home 

being recorded as ‘1’ and road recorded as a ‘0’.  Also recorded was the point spread with 

respect to the team of interest, with positive values indicating they had won the game and 

negative indicating that they had lost.  For example, if the team of interest had lost to their 

opponent by 10 points, point spread would be recorded as ‘-10’.  To go along with the point 

spread variable, an indicator variable was kept separately signifying whether or not the team of 

interest won, classified as a ‘1’, or lost, classified as a ‘0’. 
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 To go along with win/loss, home/away, and point spread data, the following variables in 

Table 3.1 were collected for both the team of interest and their opponent.  Following the 

collection of the variables for each of the games, the differences of all variables were taken.  For 

example, if the team of interest committed five turnovers and their opponent committed seven, 

the difference would be recorded as ‘-2’.  Only the differences would be under consideration by 

the models developed, since the primary interest is in comparing two teams. 

Table 3.1. Variables Under Consideration 

Number of Free Throws Attempted Number of Players Fouled Out 

Number of Offensive Rebounds Number of Fouls Committed by Starters 

Number of Defensive Rebounds Number of Turnovers Committed 

Number of Assists Number of Steals 

Number of Blocks Number of Fouls 

Home/Away Indicator Variable Number of Field Goals Attempted 

 

3.2. Identification of Significant Factors and Development of Initial Models 

3.2.1. Development of Point Spread Model 

 To determine the significant factors that help predict win and loss, the method of least 

squares regression was utilized.  The response variable for this model was point spread with 

respect to the team of interest, where positive values indicate a win for the team of interest and 

negative values indicate a loss.  To select the significant independent variables, all differences 

were placed under consideration.  The decision was reached to not include an intercept in the 

model, due to the nature of the data.  Since only differences were under consideration, if the team 

of interest and their opponent were a perfect duplicate of each other in every regard, all 
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differences would equal zero, and one would expect a tie game (a point spread of zero); this 

necessitates an intercept of zero as well. 

 The generalized least squares model to fit for this case will be       , where   is a 

vector of point spreads with respect to the team of interest,   will be a matrix consisting of 

independent significant factors to determine point spread,   is the vector of coefficients 

corresponding to the independent factors, and   consisting of random error.   

To determine the least squares model to be used, stepwise selection was utilized with an 

  value of .10 for both entry and exit.  The differences of the variables listed in Table 3.1 for the 

team of interest and their opponent were considered for entry in the model.  This method begins 

with none of the independent variables being considered.  It then begins adding variables to the 

model one at a time if they are significant at the .10 level with the most significant variable being 

added first.  Each time a variable is entered into the model, the selection method then rechecks to 

see if all variables are still significant at the .10 level.  If at least one variable is no longer 

significant, the variable least significant is then removed from the model.  This process continues 

until all variables are significant at the .10 level, and no further variables can be added or 

removed. (SAS Institute Inc., 2010) 

3.2.2. Development of Logistic Regression Model 

 Logistic regression fits well with the nature of this data, as games can be easily coded 0 

for a loss and 1 for a win.  To go along with the point spread model utilizing least squares 

regression, a logistic regression model was also fit to the data, using win/loss as the response 

variable.  The logistic regression model will take on the form  (  )  
   

  

     
  

 where             

  
                    (Abraham & Ledolter, 2006). 
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Again, similarly to the development of the point spread model, no intercept will be used 

in the development of the logistic regression model.  If a team were to play a perfect copy of 

themselves in a game, all differences would equal zero, meaning     , and  (  )      , as it 

should. 

  To determine the significant variables in developing a logistic regression model, stepwise 

selection was used, with       to enter and exit consideration.  Significance of individual 

variables was determined using a Wald test, where: 

  
 ̂ 

    ( ̂ )
 

Small p-values for this test indicate that    is significantly different from zero, and therefore    

should be left in the model. 

3.3. Verification of Significant Factors 

 Following the development of both the least squares regression point spread model and 

the logistic regression model, new data was collected to verify that the models were performing 

well in predicting wins given new data not associated with the development of the models.  Both 

models were verified with a random sample of data from the 2011-2012 season, which was not 

used in development of either the point spread or logistic model.   

 Additional data was collected from the NCAA website in the following way.  Similar to 

the previous data collection, 30 teams were selected at random, and 5 games for each team 

randomly selected.  Games numbered 2, 8, 12, 13, and 17 were selected for each team.  All 

games played at neutral sites or against non-Division I opponents were discarded, for a total of 

132 games.  The point spread with respect to the team of interest was recorded, along with a 
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binary indicator for win/loss.  Each of the previously identified significant variables was then 

recorded for both the team of interest and their opponent, and the difference taken and recorded.   

 To verify that the identified significant variables were indeed important in determining 

wins and losses for the point spread model, the variables for each game were placed in the least 

squares model.  The estimated response    was then observed.  If     , indicating the point 

spread was predicted to be positive, the game was coded as a win for the team of interest.  If 

    , indicating the point spread was predicted to be negative with respect to the team of 

interest, it was coded as a loss.  The predicted win or loss of the game was then compared to the 

actual win or loss of the game, and the results tabulated. 

 To verify the variables were important in determining wins and losses using the logistic 

regression model, a similar process was followed.  For each of the games collected, the identified 

significant variables were placed in the logistic regression equation, and the predicted probability 

of victory  (  ) determined.  If  (  )      , the game was coded as a victory for the team of 

interest, since they were predicted to have the better probability of victory than their opponent.  

Likewise, if  (  )      , the game was coded as a defeat for the team of interest.  The 

predicted win or loss of each game was then compared to the actual result, and the accuracy 

noted. 

3.4. Accuracy of Initial Models in Predicting Future Games 

 A secondary goal of this work was to determine if either of the models developed could 

be used in predicting future games based on previous games for both the team of interest and 

their opponent.  To determine this accuracy, data was collected from the NCAA for the 2011-

2012 season, with a completely random sample of 100 Division I games being selected.  For 

each game selected in the sample, data was collected on the identified significant variables for 
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four previous games for each the team of interest and their opponent.  The median of the four 

previous games’ significant factors was then calculated for each team.  Four game medians were 

used as opposed to four game averages as the averages were more sensitive to a skewed value, 

i.e., a team performing exceptionally well or poorly for one of the four previous games. 

 After the medians for each statistic had been found for the team of interest and their 

opponent, the differences of these medians was calculated, and the differences placed into both 

the point spread and logistic regression models to find the predicted value for point spread,   , 

and probability of victory,  (  ).  The predicted point spread and probability of victory were 

then determined, with a win predicted if      for the point spread model and a win predicted if 

 (  )       for the logistic regression model.  The predicted values for victory were then 

compared with the actual record of win/loss for each game, and the results compared for each 

model. 

3.5. Development of Predictive Model Using Prior Games and Accuracy 

 In an attempt to improve the accuracy of using the identified significant factors in 

predicting future game outcomes, a new predictive model was developed.  Two models were 

developed similarly to previous steps, a least squares regression model with point spread as the 

response variable and a logistic regression model with win(1)/loss(0) as the response variable.  

The independent variables used to develop both of these models consisted of the four game 

medians of previous games’ statistics, rather than single game values used to develop the initial 

models. 

 After development of the new predictive models, the accuracy of the least squares and 

logistic regression models was checked against a random sample of 75 games from the 2012-

2013 season.  For each of the 75 randomly selected games, statistics for the significant factors 
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were collected for the four previous games of both the team of interest and their opponent.  

Medians of these statistics were then found, and the difference taken and placed into the new 

predictive models developed to find a predicted point spread,   , and predicted probability of 

victory for the team of interest,  (  ).  If      , a predicted win for the point spread model was 

coded.  If   (  )      , a predicted win for the logistic regression model was coded.  These 

were then compared against the actual win/loss values for each of the 75 games, and the 

accuracy of both models noted. 
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CHAPTER 4. RESULTS 

4.1. Identification of Significant Factors and Development of Initial Models 

4.1.1.  Development of Point Spread Model 

 To develop the point spread model, the method of least squares regression was used with 

point spread as the dependent variable, and the full list of independent variables under 

consideration.  Stepwise selection methods were used to identify variables that were significant 

with       to enter or exit the model, and the results are summarized in Table 4.1. 

          Table 4.1. Summary of Stepwise Selection for Point Spread Model 

Step Variable 

Entered 

Variable 

Removed 

Partial 

R-Square 

Model 

R-Square 

F Value P Value 

1 Assists  0.5918 0.5918 404.50 <.0001 

2 Free Throw Attempts  0.1022 0.6940 92.90 <.0001 

3 Defensive Rebounds  0.0504 0.7445 54.64 <.0001 

4 Turnovers  0.1579 0.9024 446.29 <.0001 

5 Field Goal Attempts  0.0109 0.9132 34.52 <.0001 

6 Offensive Rebounds  0.0017 0.9150 5.58 0.0188 

 

 While the stepwise selection method did select six variables as being significant below 

the       level, the variables for the differences in field goal attempts and offensive rebounds 

do not contribute a great deal to the overall model r-square (.0109 and .0017, respectively).  For 

this reason, they were removed from consideration and the model refit using assists, free throw 

attempts, defensive rebounds, and turnovers.  The parameter estimates for this regression model 

are listed in Table 4.2. 
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       Table 4.2. Point Spread Model Parameter Estimates 

Variable Parameter 

Estimate 

Standard 

Error 

F Value P Value 

Free Throw Attempts (   ) 0.06175 0.03256 3.60 0.0589 

Defensive Rebounds (  ) 1.48572 0.06552 514.23 <.0001 

Assists ( ) 0.58736 0.06961 71.21 <.0001 

Turnovers (  ) -1.60131 0.07580 446.29 <.0001 

 

 The final least squares regression model involving point spread as the response variable 

is then given by          (   )         (  )         ( )         (  ).  The 

coefficients indicate that the most influential factor in determining point spread is the difference 

in turnovers.  For each turnover a team commits more than their opponent, the model indicates a 

loss of 1.6 points.  Similarly, the difference in defensive rebounds is very influential, with each 

defensive rebound a team acquires more than their opponent worth an increase of 1.49 points. 

 To verify that the regression model satisfies the assumptions of residuals following a 

normal distribution with a mean of zero and a constant variance across all residuals, the 

following diagnostic plots were assembled.  As the residuals satisfy all assumptions, it is 

assumed the model is valid.  The diagnostic plots for the residuals are shown in Figure 4.1. 
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Figure 4.1. Residual Diagnostic Plots for Point Spread Model 

 

4.1.2. Development of Logistic Regression Model 

 The development of the logistic regression model uses win, coded as a ‘1’, or loss, coded 

as a ‘0’, as the response variable, with all independent variables initially under consideration.  

Stepwise selection was used to isolate only significant variables, with an   level of .10 for entry 

and exit. 

    Table 4.3. Summary of Stepwise Selection for Logistic Regression Model 

Step Effect Entered         DF Score Chi-Square P Value 

1 Assists  1 101.7818 <.0001 

2 Free Throw Attempts  1 78.7975 <.0001 

3 Defensive Rebounds  1 21.1658 <.0001 

4 Turnovers  1 29.2154 <.0001 

 

 The same four variables that were selected as significant in the point spread least squares 

regression model are also significant in the logistic regression model.  To verify a good fit for the 

logistic regression model, a Hosmer-Lemeshow goodness-of-fit test was conducted, revealing a 
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p-value of      .  Therefore, it cannot be rejected that this logistic regression model provides a 

good fit for explaining wins and losses. 

 Table 4.4. Parameter Estimates for Logistic Regression Model 

Parameter DF Estimate Standard 

Error 

Wald 

Chi-Square 

P Value 

Free Throw Attempts (   ) 1 0.1233 0.0358 11.8676 0.0006 

Defensive Rebounds (  ) 1 0.4875 0.0909 28.7681 <.0001 

Assists ( ) 1 0.3629 0.0840 18.6609 <.0001 

Turnovers (  ) 1 -0.4737 0.1002 22.3472 <.0001 

 

 Given the parameter estimates for the logistic regression model, the final model for 

estimated probability of victory is as follows: 

 (           )  
       (   )       (  )       ( )       (  )

         (   )       (  )       ( )       (  )
 

4.2. Verification of Significant Factors 

 To verify that indeed the variables identified in both the point spread and logistic 

regression models are significant, the models were used with data from the 2011-2012 season 

that was not used in the creation of either model.  The differences between the two teams were 

calculated and used in the model to compare predicted victories with actual victories. 

 Table 4.5. Example Data Entry 

Team A  Team B Point Spread Win? FTA DR A TO 

UC Riverside UTSA 5 1 -1 5 7 4 

 

 Table 4.5 represents a data entry from a game played between UC Riverside and UTSA 

on December 28, 2011.  All columns are calculated with respect to UC Riverside (the team of 



16 
 

interest), meaning UC Riverside won by 5 points, had 1 fewer free throw attempt, 5 more 

defensive rebounds, 7 more assists, and committed 4 more turnovers than UTSA. 

 Using the least squares regression model already developed, UC Riverside had a 

predicted point spread of: 

         (  )         ( )         ( )         ( )       

Since the predicted point spread is greater than zero, this game was coded as a (correctly) 

predicted win for UC Riverside, who won the game by a score of 73-68. 

 Using the logistic regression model, UC Riverside had a projected probability of victory 

of: 

 (           )  
       (  )       ( )       ( )       ( )

         (  )       ( )       ( )       ( )
       

Since this projected probability of victory is greater than 0.50, this game was also coded as a 

predicted win for UC Riverside. 

 This process was then repeated for a sample of 132 games, with the number of predicted 

victories and defeats from each model being compared to the actual victories and defeats from 

the sample of games.  The accuracy of each model is noted in Table 4.6. 

Table 4.6. Accuracy of Original Models 

Logistic 
Predicted     

Point Spread 
Predicted   

Win Loss Total   Win Loss Total 

Actual 
Win 60 3 63   

Actual 
Win 59 4 63 

Loss 4 65 69   Loss 3 66 69 

  Total 64 68 132     Total 62 70 132 

 

 As is shown in Table 4.6, both the logistic regression and point spread models are highly 

accurate at predicting the winner of games based on the identified significant factors.  Both 
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models had an accuracy of 
   

   
      , indicating that the variables identified are indeed 

significant to determining wins and losses in a Division I college basketball game. 

4.3. Accuracy of Initial Models in Predicting Future Games 

 Next, to determine if the logistic or point spread models were useful in predicting games 

in advance of being played, a sample of 100 games from the 2011-2012 season was used.  Game 

statistics from four games prior were collected for both the team of interest and their opponent 

for each of the significant variables already identified. 

       Table 4.7. 4 Game Median Example 

4 game Statistics 

     Team FTA DR A TO 

     Air Force 18 22 12 16 

     Air Force 19 25 11 9 Medians 

Air Force 22 20 14 7 Team FTA DR A TO 

Air Force 22 28 21 15 Air Force 20.5 23.5 13 12 

San Diego St. 15 24 14 6 San Diego St. 19 26 15 12 

San Diego St. 20 29 16 16 Difference 1.5 -2.5 -2 0 

San Diego St. 18 28 17 14 

     San Diego St. 32 23 13 10 

      

 Table 4.7 represents data for a randomly selected game between Air Force and San Diego 

St. played on January 21, 2012.  For each of the teams, the significant statistics were collected 

for the previous four games they had played.  Then for each team, the medians were found, and 

the differences taken.  Using the differences of the medians, the predicted point spread was: 

         (   )         (    )         (  )         ( )         

Since the projected point spread was less than zero, the game would be predicted (in this case, 

correctly) as a loss for Air Force.   
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Using the differences of the medians, the projected probability of victory for Air Force 

was given by: 

 (           )  
       (   )       (    )       (  )       ( )

         (   )       (    )       (  )       ( )
       

Again, since  ( )      , the game would be predicted as a loss by Air Force.  In this instance, 

both models correctly predicted the game, as the outcome was a 13 point loss by Air Force. 

 This process was repeated for the 100 games selected randomly from the 2011-2012 

seasons, and the accuracy of predicting future games recorded for both the logistic regression 

model and point spread least squares regression model.  The accuracy of both models is noted in 

Table 4.8. 

Table 4.8. Accuracy in Predicting Future Games by Original Models 

Logistic 
Predicted     

Point Spread 
Predicted   

Win Loss Total   Win Loss Total 

Actual 
Win 33 15 48   

Actual 
Win 29 19 48 

Loss 17 35 52   Loss 17 35 52 

  Total 50 50 100     Total 46 54 100 

 

 As can be seen from Table 4.8, both the logistic and point spread models struggled to 

predict future games based on prior game median data.  The logistic regression model correctly 

predicted 
  

   
     of games, while the point spread model correctly predicted 

  

   
     of 

games.  While this may seem like a moderately acceptable percentage, simply picking the home 

team to win in every game resulted in a 
  

   
     accuracy rate for predicting games from this 

sample. 
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4.4. Development of Predictive Models and Accuracy in Predicting Future Games  

 While the original logistic and point spread models did not do an outstanding job at 

predicting future games, it was not wholly unexpected.  They were not created expressly for that 

purpose.  To further explore the concept, the four previous game medians that were calculated 

from the previous section were used as independent variables in developing new models; a new 

predictive point spread least squares regression model and new predictive logistic regression 

model would be developed using this data. 

 To go along with these four independent variables, a fifth was added – an indicator 

variable for home, coded as a 1, or away, coded as a 0.  The rationale behind this is that, while 

looking at the box score for a game that has already been played, as done in prior steps, which 

team was the home team and which was away is explained fairly well by the four statistics 

chosen as significant.  However, going into a game that has yet to be played, there is no 

possibility that the four game median statistics will predict which will be home and which will be 

away. 

4.4.1.  Development of Predictive Least Squares Model 

 The predictive least squares model would be generated using point spread as the 

dependent response variable, with five independent variables: home/away, and the differences of 

the median statistics calculated for free throw attempts, defensive rebounds, assists, and 

turnovers.  Stepwise selection method was again employed here, with a slightly more generous 

value of       to enter or exit the model. 

 While both of the variables selected by the stepwise selection procedure are significant at 

the       level, it is worth noting this model produced a very low value of r-square,       .  

This indicates that very little variation in point spread is explained by the model. 
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Table 4.9. Parameter Estimates for Predictive Point Spread Model 

Variable Parameter 

Estimate 

Standard 

Error 

F Value P Value 

Home 4.87870 1.75742 7.71 0.0066 

Turnovers -0.91125 0.39675 5.28 0.0238 

 

Therefore, the predictive point spread model is given by: 

        (    )         (  ) 

4.4.2. Development of Predictive Logistic Regression Model 

 The predictive logistic regression model was formulated using win/loss as the response 

variable, with the differences of the medians of the four significant statistics as the independent 

variables, along with home/away.  Stepwise selection method was used to determine significant 

variables, with       to enter or exit the model.  

Table 4.10. Parameter Estimates for Predictive Logistic Regression Model 

Parameter DF Estimate Wald 

Chi-Square 

P Value 

Assists 1 0.1156 3.4059 0.0650 

Turnovers 1 -0.1239 3.8905 0.0486 

 

 From Table 4.10, it can be seen that the selected predictive logistic regression model is 

given by the following equation: 

 (    )  
       ( )       (  )

         ( )       (  )
 

Both variables selected by the stepwise selection procedure are significant below the       

level.  A Hosmer-Lemeshow test for goodness-of-fit was also conducted, yielding a p-value of 

      .  At the standard   value of    , goodness-of-fit cannot be rejected; however, it does 

indicate the model may not be a very good fit. 
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4.4.3. Accuracy of Predictive Models 

 To determine the accuracy of the predictive models, a random sample of 75 games was 

selected from the 2012-2013 season.  The procedure for data collection was similar to that used 

in Section 4.3 of this work.  For each of the 75 games, the accuracy of the predictive models was 

assessed, along with the original point spread and logistic model accuracy over the same sample 

for sake of comparison. 

Table 4.11. Prediction Accuracy across All Models 2012-2013 

Predictive Predicted     Predictive Predicted   

Point Spread Win Loss Total   
Logistic 

Regression 
Win Loss Total 

Actual 
Win 31 13 44   

Actual 
Win 28 16 44 

Loss 18 13 31   Loss 8 23 31 

  Total 49 26 75     Total 36 39 75 

Overall Accuracy 58.67%   Overall Accuracy 68% 

                      

Original Predicted     Original Predicted   

Point Spread Win Loss Total   
Logistic 

Regression 
Win Loss Total 

Actual 
Win 26 18 44   

Actual 
Win 28 16 44 

Loss 10 21 31   Loss 9 22 31 

  Total 36 39 75     Total 37 38 75 

Overall Accuracy 62.67%   Overall Accuracy 66.67% 

 

 Table 4.11 indicates that, over this sample, the predictive models that were developed 

using four game medians, along with home/away information, did not perform significantly 

better than the original models developed using single game information.   
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CHAPTER 5. CONCLUSIONS 

 The primary objective of this work was to identify the key factor or factors that most 

heavily influenced a team’s propensity to win or lose a Division I men’s college basketball game.  

Using least squares regression with point spread as a response variable, it was shown that 

outperforming an opponent in each of four factors influence a team’s likelihood of winning a 

basketball game: free throw attempts, defensive rebounds, assists, and turnovers.  Likewise, 

using logistic regression with win/loss as a response variable, these four variables were 

determined to be significant in affecting a team’s probability of winning a Division I college 

basketball game.  Using data from the 2011-2012 season not used in development of either 

model, it was shown that these four variables are indeed highly influential in affecting victory for 

a given team. 

 A secondary goal of this work was to determine if these four key variables could be used 

to predict a game prior to its occurrence using previous game data for each team involved in the 

contest.  It was determined that while the original models developed, both point spread and 

logistic, were moderately adequate at predicting future game outcomes (64% and 68%, 

respectively), they remained no better than simply predicting the home team to win every contest 

over the same sample (66% accurate).   

 In an attempt to improve the accuracy, new predictive models were developed using prior 

four game medians and a home/away indicator variable as independent variables.  However, both 

the new predictive logistic regression model and predictive point spread model failed to improve 

on the accuracy of the original models. 

 This seems to indicate that while the four variables identified are very significant in 

explaining the outcome of a game, it is difficult to estimate the future values of these variables 
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ahead of a game occurring.  Future research could involve the development of a predictive model 

with the inclusion of additional team information, such as strength of schedule, RPI, etc.  

Inclusion of this data may increase the accuracy of the predictive models. 
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APPENDIX. SAS CODE 

/* Imports original data */ 

proc import datafile='C:\Users\samuel.unruh\Documents\Thesis\Final Thesis 

Files\Final Original Data.csv'  

 out=games; 

run; 

 

/* Generates least squares regression point spread model */ 

Proc Reg Data=Games plots=all; 

 Model ptspread = fta offreb defreb assists turnovers steals blocks 

        fouls starterfouls fouledout fga home 

  /selection=stepwise slentry=.10 slstay=.10 noint; 

  output out=reg r=res cookd=cooks; 

run; 

 

/* Generates logistic regression model */ 

proc logistic data=Games plots=all; 

model win(event='1')= fta offreb defreb assists turnovers steals                 

blocks fouls starterfouls fouledout fga 

/ selection=stepwise ctable rsquare noint lackfit slstay=.10 

slentry=.10;  

  output out=test p=prob; 

run; 

/* Imports previous four game median data */ 

proc import datafile='C:\Users\samuel.unruh\Documents\Thesis\Final Thesis 

Files\Final Predictive Data.csv'  

 out=predictive; 

run; 

 

/* Generates new predictive logistic regression model */ 

proc logistic data=predictive plots=all; 

    model win(event='1')= home ftamed defrebmed assistmed turnovermed  

        /selection=stepwise noint ctable slstay=.15 slentry=.15 lackfit; 

  output out=test p=prob ; 

run; 

 

/* Generates new predictive point spread model */ 

Proc reg Data=predictive plots=all; 

 Model spread = home ftamed defrebmed assistmed turnovermed 

  /selection=stepwise slentry=.15 slstay=.15 details adjrsq noint; 

run; 


