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Abstract 5 

Transportation agencies rely on models to predict when pavements will deteriorate to a 6 

condition or ride-index threshold that triggers maintenance actions.  The accuracy and precision 7 

of such forecasts are directly proportional to the frequency of monitoring.  Ride indices derived 8 

from connected vehicle sensor data will enable transformational gains in both the accuracy and 9 

precision of deterioration forecasts because of very high data volume and update rates.  This 10 

analysis develops theoretical precision bounds for a ride index called the road impact factor and 11 

demonstrates, via a case study, its relationship with vehicle suspension parameter variances. 12 

CE Database subject headings:  Deterioration; Forecasting; Intelligent transportation systems; 13 

Pavement management; Preservation; Probe instruments; Surface roughness; Vibration 14 

Author Keywords:  Connected vehicles; International Roughness Index; Ride quality; Road 15 

Impact Factor 16 

1 Introduction 17 

Practitioners have long recognized that rough roads increase vehicle operating costs 18 

(Zaniewski and Butler 1985) and lead to more expensive road repairs (AASHTO 2009).  Studies 19 

have also linked rough roads to motion sickness (Griffin 1990) and higher crash rates (Swedish 20 
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National Road and Transport Research Institute 2004).  The ability to accurately predict 21 

optimum maintenance cycles has the greatest potential impact on reducing annual maintenance 22 

and rehabilitation costs (Madanat, Prozzi and Han 2002).  More frequent condition assessments 23 

increase the accuracy and precision of predicting when ride-quality indices will reach 24 

maintenance thresholds (Haider, Baladi and Chatti 2011).  Rural regions that maintain roads 25 

suffering rapid deterioration caused by high levels of industrial and agricultural activities will 26 

yield the greatest potential benefits from frequent condition assessments (Tolliver and Dybing 27 

2012).  Unfortunately, transportation agencies can seldom afford to assess ride-quality more 28 

often than once a year.  Even so, those assessments are limited to portions of the National 29 

Highway System for which the Federal Highway Administration (FHWA) requires annual 30 

reporting of the International Roughness Index (IRI) (HPMS 2012).  Consequently, agencies 31 

miss important vulnerabilities such as frost-heaves that appear and disappear between monitoring 32 

cycles.   33 

To provide continuous, network-wide, lower-cost ride-quality measures, the author developed 34 

and validated a new approach called the Road Impact Factor (RIF).  The average RIF collected 35 

from inertial sensors onboard vehicles is directly proportional to the IRI (Bridgelall 2014).  36 

Statistically, the RIF variance diminishes exponentially as the volume of sensor readings 37 

increase.  Using data from inertial sensors in smartphones and connected vehicles to produce the 38 

RIF will provide highly precise and continuous ride-quality assessments. 39 

This study characterizes the bounds in forecast precision for common regression models in 40 

terms of RIF variability.  The latter is a function of motion parameter distributions such as 41 

vehicle suspension rates, ground speed, and traversal volume.  This is the first study to relate 42 

statistics of the RIF to the precision of deterioration forecasts.  Related studies use the output of 43 
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inertial sensors to estimate the IRI by calibrating the acceleration responses of individual 44 

vehicles to known values (Nagayama, et al. 2013), or by estimating parameters of an IRI model 45 

using neural networks and other methods (Dawkins, et al. 2011). 46 

This paper is organized as follows:  Section 2 briefly reviews the RIF model defined in 47 

previous research.  Section 3 relates the RIF to normalized vertical acceleration energy.  48 

Section 4 links statistics of vehicle suspension parameters to the normalized vertical acceleration 49 

energy and the RIF.  Section 5 derives a model that relates the minimum traversal volume to a 50 

level of forecast precision using a common regression model of pavement deterioration.  51 

Section 6 presents a case study of the forecast precision bound for a typical distribution of 52 

vehicle suspension parameters.  Section 7 summarizes and concludes the study. 53 

2 Ride-Index Model 54 

As derived in previous work by the author, the RIF, denoted RL[p], is the g-force per meter 55 

(g/m) experienced when traveling a road segment of length L, during time-period p where: 56 
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The instantaneous traversal speed is (t) and the on-board sensor output for vertical acceleration 57 

is gz(t). 58 

3 Statistics of Vehicle Response Energy 59 

Road roughness excites the vibration modes of a moving vehicle.  The damped mass-spring 60 

model for each wheel-suspension assembly or “quarter-car” includes a series combination of 61 

sprung and unsprung masses that represent a portion of the body and wheel components 62 

respectively.  A pair of second-order differential equations characterizes each model.  Their 63 
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solution identifies the dominant resonant frequencies and damping ratios of each mode as 64 

functions of the vehicle body mass, wheel mass, spring stiffness, and damping coefficients.  65 

These physical parameters must be known to determine the characteristics of each quarter-car 66 

mode (Angeles 2011). 67 

The vertical response z(t) to a common broad-band input, namely an impulse, excites all 68 

modes equally.  The impulse responses of the n under-damped mass-spring systems are: 69 
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The subscripts m = 1 and m = 2 enumerate the sprung (s) and unsprung (u) mass-spring 70 

subsystem parameters respectively.  U(t) is the Heaviside step function.  The sprung and 71 

unsprung mass resonance frequencies are [s,n] and [u,n] respectively, and their corresponding 72 

damping ratios are [s,n] and [u,n].  The Fourier Transform of the impulse response is a second-73 

order low-pass filter (LPF), Z(), of the form: 74 
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At the sensor’s location, the vertical acceleration G is a product of the sensor frequency 75 

response S(f) and the vector sum of responses from each quarter-car.  A linear combination of the 76 

mass-spring models for each wheel-assembly produces an equivalent but more analytically 77 

convenient model of the acceleration vector, G as illustrated in Figure 1.  Hence, the magnitude 78 

spectrum of the composite vertical acceleration response is: 79 
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The frequencies in hertz are f[m,n] = [m,n]/2.  W is the number of wheel-spring assemblies and 80 

[m,n] are the coefficients of the linear combination.  The LPF filter gains are: 81 
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Solving for the sprung and unsprung mass filter coefficients [s,n] and [u,n] respectively such that 82 

the energy of G equals the energy of G yields: 83 
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and 84 
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where the ratios: 85 
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depends on the vehicle design and sensor installation.  Figure 2 plots the Discrete Fourier 86 

Transform (DFT) of the vertical acceleration signal samples {gz} obtained from a passenger car 87 

used in related studies.  A least squares fit of the quarter-car model in Equation (4) with W = 1 88 

provided a ratio of ρ = 2.4.  The sprung and unsprung mass resonant modes for each quarter-car 89 

are observable near 1.5 and 11 hertz respectively.  In related work pending publication by the 90 

author, a ratio of ρ = 4.0 was observable less than 5% of the time from hundreds of traversals of 91 

the same road segment, using several types of passenger vehicles. 92 
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The suspension parameters from vehicles traversing a road segment will result in a statistical 93 

distribution of impulse responses with vertical acceleration energy: 94 
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where g[m,n] are the vertical accelerations from the individual mass-spring impulse responses.  95 

The vertical acceleration vector at the sensor’s position is: 96 
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Therefore, the corresponding acceleration energy Egz is: 97 
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From the theory of error propagation (Ku 1966), the acceleration energy variance is: 98 
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where 2
],[ nms , 2

],[ nms and 2
],[ nms are the variances of the mode resonant frequencies, damping 99 

ratios, and their covariance factors respectively.  The latter is zero because the resonant 100 

frequencies and damping ratios are statistically independent.  Substituting the partial derivatives 101 

indicated yield: 102 
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where 103 
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and 104 
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This energy variance is an important factor of the RIF variance derived in the next section. 105 

4 RIF Variance 106 

From Equation (1), the th traversal of a road segment traveled at an average speed 107 

produces a RIF of: 108 
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where T = |gz
-1()|.  That is, the limit of integration is when the vertical acceleration of the 109 

impulse response vector becomes negligibly small.  The standard deviation of the RIF, L
RIFs is, 110 

therefore: 111 

  2

22

E

gz

LL

gz

gz

LL
L
RIF s

E

RR
vE

E

R
v

R
s 















 




























































  (17) 

where  v is the variance of the mean speed among traversals.   The covariance of the mean 112 

speed and the vertical acceleration signal energy, denoted 2
Es , is zero because of their statistical 113 

independence.  Evaluating the partial derivates indicated in Equation (17) yields: 114 
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where gzE  and   are respectively the mean vertical acceleration signal energy and the mean of 115 

the average speed among traversals.  This expression establishes a variance boundary for the 116 

independent parameter of any related regression model used to predict a future deterioration 117 

threshold. 118 

5 Deterioration Forecasting Models 119 

The most common models of pavement deterioration are empirical regression of the IRI because 120 

they provide the greatest practical value and abstract the complexity of the underlying 121 

phenomena (Lu and Tolliver 2012).  Research demonstrates that IRI over time follows the 122 

exponential form (S. W. Haider, et al. 2010): 123 

 tt L exp)( 0  (19) 

where 0 and (t) are respectively the initial and expected ride-indices at time t, and L is a 124 

calibration parameter that best fits the historical ride-index measured for segment L.  Therefore, 125 

the expected time to reach a given index threshold is: 126 
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The estimate uncertainty for a future time, sT, to reach the ride-index threshold is: 127 
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where s is a window of uncertainty about the future ride-index threshold.  Using RIF as the 128 

ride-index, the ratio s/ is bounded by the ratio of the RIF standard deviation to the mean RIF 129 

of quarter-car impulse responses where: 130 
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The time margin-of-error T is: 131 
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where N is the traversal volume, and q1-/2 is the standard normal quantile for a (1-)% 132 

confidence interval (Papoulis 1991).  Therefore, the minimum traversal volume needed to 133 

achieve a minimum desired precision (maximum T) of the estimated time when the pavement 134 

will deteriorate to a future ride-index  is: 135 
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Given a deterioration rate parameter L, the precision T is bounded by the sum of the standard 136 

deviation-to-mean value ratios of the traversal velocity and vertical acceleration signal energy 137 

respectively.  The latter is bounded by the variance of the impulse response energy relative to the 138 

mean response energy for all the vehicles that traverse the monitored road segment. 139 

6 Case Study 140 

6.1 Vehicle Suspension Statistics 141 

It is standard practice for vehicle manufacturers to attenuate the vertical motion between 4 142 

and 8 hertz because vibration levels within that frequency range are the most harmful to humans 143 
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(Griffin 1990).  To achieve this, manufacturers distribute the sprung and unsprung masses so that 144 

they account for 90% and 10% respectively of the gross vehicle weight (Gillespie 2004).  The 145 

average curb weight of vehicles increased steadily since 1985 and peaked in 2007 (Bastani, 146 

Heywood and Hope 2012), but trends indicate that they will return to 1990 levels by 2015.   The 147 

average gross mass, mG, for vehicles manufactured in 2007 was 2226 kilograms and the 148 

standard deviation, smG, was 483.7 kilograms (Woodyard 2007).  These yield the mean and 149 

standard deviations of the quarter-car sprung and unsprung masses, ms and mu respectively. 150 

Suspension system engineers also design the sprung mass resonant frequency between 0.9 and 151 

1.5 hertz for all vehicle types (General Motors 1987).  If this is approximately the six-sigma 152 

range for normally distributed sprung mass resonant frequencies, ωs, of vehicles that travel any 153 

road segment, then the mean frequency and standard deviation are 1.2 and 0.1 hertz respectively.  154 

Similarly, vehicle suspension shock absorbers produce sprung mass damping ratios, ζs, in the 155 

range of 0.3 to 0.4 (Gillespie 2004).  Hence the mean and standard deviation for a normal 156 

distribution is 0.35 and 0.017 respectively.   157 

A tire at its rated load will experience a deflection of approximately 25 mm (Gillespie 2004), 158 

therefore, for four-wheeled vehicles, an estimate of the average unsprung mass spring stiffness, 159 

ku, in units of N·m-1 is: 160 
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where g is the g-force constant of 9.8 ms-2.  The mean unsprung mass resonant frequency, u, is 161 

therefore: 162 
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where mu is the average unsprung mass.  From the gross mass statistics above, the associated 163 

average resonant frequency is approximately 10 hertz.  Its standard deviation is: 164 
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For this scenario, both ku and mu depend on the gross vehicle mass statistics, therefore, the 165 

covariance factor is unity and the expression becomes: 166 
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The average damping ratio for the unsprung mass is defined as: 167 
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The unsprung mass damping coefficient cu is typically  = 15% of the sprung mass damping 168 

coefficient cs (Türkay and Akçay 2008).  Therefore, 169 
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where ms, s, and s are the means of the sprung masses, their resonant frequencies, and their 170 

damping ratios respectively.  Hence, the standard deviation of the unsprung mass damping ratio 171 

is: 172 

cvmu

u

u
ms

s

u
u

u

u
s

s

u
s

s

u
u s

m
s

m
ssss 
































































 2

2

2

2

2

2

2

2

2

2













  (31) 

where the covariance term cv is:   173 
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For this scenario, the variables ms, mu, and u are proportionally linked per the guidelines for 174 

typical vehicle suspension designs; therefore, their respective covariance factors smsmu, smsu, and 175 

smuu are unity.  Evaluating the partial derivatives indicated, and simplifying yields: 176 








 










uu

uus

u

s

u

s
scv

m

mm

m

m










22

2
22  (33) 

With these typical values of vehicle parameters, all of values for the mean and variance of the 177 

quarter-car suspension parameters specified in Equations (11) and (13) are now known to 178 

compute a value for the energy variance to mean ratio of Equation (18).   Table 1 summarizes the 179 

ratios of standard deviations to mean values for the sprung and unsprung mass parameters of this 180 

case study.  With these values, Equation (24) will produce the number of sensor readings needed 181 

for a specified level of forecast precision and confidence when given the average traversal speed, 182 

its standard deviation, and the historical rate of pavement deterioration.  The next section 183 

provides an example based on a typical scenario. 184 

6.2 Deterioration Forecasting Example 185 

As shown in Figure 2, estimating a single quarter-car response from the aggregate provides a 186 

reasonable simplification to accommodate the quarter-car statistics from the case study.  Figure 3 187 

plots Equation (24), normalized to the number of data collection days required for a desired 188 

maximum forecast precision within a 95% confidence interval.  This result is based on an 189 

average travel speed of 24.6 m/s (about 55 mph) within a 5% standard deviation.  The number of 190 

data collection days depend on the typical Annual Average Daily Traffic (AADT) volume 191 

medians of 10,965 and 39,093 passenger cars per lane for rural and urban Interstate functional 192 

classifications respectively (Hausman and Clarke 2012), and a scenario where only 20% of the 193 

vehicles are equipped with sensors.  The result is also based on typical rural and urban interstate 194 
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highway deterioration rates (Anastasopoulos, Mannering and Haddock 2009), which correspond 195 

to L values of 0.056 and 0.055 respectively.  The plot for this scenario indicates that one week 196 

of data collection will forecast RIF thresholds with a worst-case precision of two weeks for the 197 

typical urban and rural Interstate.  To maintain homoscedasticity, the maximum data collection 198 

period selected should be less than the maximum time-period that the deterioration level is 199 

relatively unchanged. 200 

7 Summary and Conclusions 201 

The ability to collect and process data from a large number of inertial sensors in a connected 202 

vehicle environment will provide transformational gains in the precision and accuracy of 203 

forecasting pavement deterioration forecasts.  Fundamentally, the accuracy and precision of a 204 

regression model’s ability to predict pavement deterioration is directly proportional to the rate of 205 

its recalibration with new ride-quality data.  Statistical properties of the road impact factor (RIF), 206 

a new ride-index introduced in previous work, inherently improves its forecast precision as data 207 

volume increases, making it an ideal model for a connected vehicle environment.  This analysis 208 

provides theoretical insights that relate the statistics of vehicle motion parameters to bounds of 209 

its forecast precision.  The supporting case study used suspension parameter variances published 210 

for vehicles manufactured in 2007.  A scenario with 20% of the passenger cars traveling a typical 211 

U.S. interstate highway at a common speed limit and producing RIF data was analyzed.  Results 212 

for this scenario indicate that the model will predict a future ride-index within a worst case 213 

precision of two weeks from statistics of RIF data collected for about one week. 214 

Future work will characterize pavement distress symptom location accuracy in terms of the 215 

variability of vehicle suspension response durations, errors in geospatial position estimates, and 216 

asynchronous accelerometer and GPS sample rates. 217 
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Notation 222 

The following symbols are used in this paper: 223 

A[m, n]  = low-pass filter amplitude for mass-spring model n; 224 

cs  = average damping coefficient of the sprung mass response motion; 225 

cu  = average damping coefficient of the unsprung mass response motion; 226 

f  = frequency in hertz; 227 

f[s,n]  = sprung mass resonance mode frequency (hertz) of quarter-car n; 228 

f [u,n]  = unsprung mass resonance mode frequency (hertz) of quarter-car n; 229 

gz(t)  = aggregate g-force output from the inertial sensor as a function of time t; 230 

g [u,n](t)  = g-force sensed as a function of time t from individual mass-spring models; 231 

ku  = unsprung mass spring stiffness; 232 

L  = length of road segment; 233 

ms  = the average sprung mass of vehicles; 234 

mu  = the average unsprung mass of vehicles; 235 

mG  = average gross mass for vehicles; 236 

Nv  = the traversal volume; 237 

RL[p]  = RIF for segment of length L evaluated in time-period p; 238 

LR  
 

= RIF for segment of length L when traversed at an average speed ; 239 

sks  = standard deviation of the sprung mass spring stiffness; 240 
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sku  = standard deviation of the unsprung mass spring stiffness; 241 

2
kms   = covariance of the unsprung mass and its spring stiffness; 242 

sms  = standard deviation of the sprung mass; 243 

smu  = standard deviation of the unsprung mass; 244 

smsmu  = covariance between the sprung mass and the unsprung mass; 245 

smsu  = covariance between the sprung mass and unsprung mass resonance; 246 

smuu   = covariance between the unsprung mass and the unsprung mass resonance; 247 

L
RIFs   = standard deviation of the RIF for segment of length L; 248 

sT  = uncertainty of estimating the future time to reach a ride-index threshold ; 249 

ss  = standard deviation of the sprung mass resonant frequency; 250 

su  = standard deviation of the unsprung mass resonant frequency; 251 

s  = the uncertainty band about a future ride-index threshold ; 252 

ss  = standard deviation of the sprung mass damping ratio; 253 

su  = standard deviation of the unsprung mass damping ratio; 254 

2
Es   = covariance of the average speed and vertical acceleration signal energy; 255 

2
],[ nms   = variances of the mode resonant frequencies; 256 

2
],[ nms   = covariances of the mode resonant frequencies and damping ratios; 257 

2
],[ nms   = variances of the mode damping ratios; 258 

S(f)  = inertial sensor frequency response function; 259 

T  = limit of integration when the vertical acceleration is negligibly small; 260 

q1-/2  = the standard normal quantile for a (1-)% confidence interval; 261 
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vEgz  = the variance of acceleration energy; 262 

 v   = the variance of the mean speed among κ traversals; 263 

W  = the number of vehicle wheel-spring assemblies; 264 

U(t)  = the Heaviside step function; 265 

z[m,n] (t) = vertical motion of each mass-spring model; 266 

Z[m,n] () = Fourier transform of the vertical motion of each mass-spring model; 267 

 [u,n]   = proportion of each LPF in the linear combination aggregate model; 268 

L  = a calibration parameter that best fits the segment L ride-index time series; 269 

cv  = expression of the covariance factors among parameters; 270 

T  = the time margin-of-error relative to the ride-index standard deviation; 271 

 [u,n]   = ratio of unsprung to sprung mass quarter-car model n coefficient; 272 

   = average or constant speed for the th traversal; 273 

   = mean of the average or constant speed among traversals; 274 

(t)  = instantaneous traversal speed as a function of time; 275 

s  = average sprung mass angular resonance frequency; 276 

u  = average unsprung mass angular resonance frequency; 277 

[s,n]  = sprung mass resonance mode angular frequency of quarter-car n; 278 

[u,n]  = unsprung mass resonance mode angular frequency of quarter-car n; 279 

0  = the initial ride-index at time t = 0; 280 

  = a ride-index threshold that triggers maintenance action; 281 

(t)  = the expected ride-index at time t; 282 

s  = average damping ratio of the sprung sprung mass frequency response; 283 
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u  = average damping ratio of the unsprung sprung mass frequency response; 284 

[s,n]  = damping ratios of the sprung mass frequency response; 285 

[u,n]  = damping ratios of the unsprung mass frequency response. 286 

 287 
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Figures 360 

 

Figure 1. Equivalent response models of vehicle dynamics 

 361 

 

Figure 2.  DFT of sensor output versus estimate of the quarter-car response 
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Figure 3.  Data collection time needed for a desired maximum forecasting precision 

 363 

Table 1: Ratio of standard deviation to the mean value for typical vehicles 364 

Parameter Sprung Mass Unsprung Mass 

Resonant Frequency () 8.3% 15.4% 

Damping Ratio () 4.8% 35.7% 
Spring Stiffness (k) 27.4% 21.7% 
Damping Coefficient (c) 18.1% 18.1% 
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