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ABSTRACT 
 

In recent years (2009-2011) many producers have had issues meeting the market 

requirements of 140 g kg-1 of protein concentration in hard red spring wheat (HRSW) (Triticum 

aestivum L. emend. Thell) especially with newer cultivars that are genetically prone to producing 

lower grain protein concentration. To address this issue, part of this study was to determine 

whether if plant based predictors could be used to predict grain protein content prior to anthesis. 

Experiments were conducted in 2011-2012 at Crookston, Minnesota (MN) and Prosper, North 

Dakota (ND). Another part of this study was to determine if protein concentration in HRSW can 

be enhanced with different sources and rates of N, while maintaining high yields and maximizing 

net returns. Experiments were conducted across three different locations in MN and ND in 2011-

2012. Fertilizer treatments consisted of 3 sources of N, 4 growth stages, and 2 rates of N 

compared across three cultivars. 
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PREFACE 
 

This thesis was written as a series of two manuscripts that will be submitted for 

publication in appropriate scientific journals. The ‘Introduction’ provides a general review of the 

importance of this study and how both chapters are related to the main issue: how proper 

management of nitrogen, effective timing of applications and accurate predictions for the need of 

additional nitrogen during the growing season can assist producers in meeting production goals 

and maximizing profit. Following the Introduction, the thesis will be divided into two 

manuscripts which will contain Introduction, Material and Methods, Results, Discussion, and 

References Cited sections that are specific to the chapter. The references for the ‘General 

Introduction’ can be found in the ‘General References Cited’ section. The abbreviations for hard 

red spring wheat (HRSW), nitrogen (N), and Zadok’s growth stage (ZGS) will be used in both 

articles. 
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INTRODUCTION 
 

Profitability of HRSW is based on two major components: grain quality (grain protein 

concentration) and grain yield. Achieving both high grain yield and high grain protein 

concentration is challenging due a negative relationship between protein concentration and grain 

yield in HRSW cultivars (Brown et al., 2005); seasonal yield differences due to weather 

conditions (Terman, 1979); and the availability and utilization of N.  

Plant growth and metabolism is driven by the photosynthetic process, which produces 

assimilates, including N compounds and carbohydrates (Lawlor et al., 1989). The photosynthetic 

rate per unit of leaf depends on the development and maintenance of a number of components 

including: energy-transducing components (thylakoid membranes), enzymes of the 

photosynthetic carbon reduction cycle (ribulose-bisphosphate carboxylase oxygenase or rubisco), 

and enzymes for nitrogen assimilation (Farquhar et al., 1980). In order to achieve a high rate of 

photosynthesis, adequate amounts of photosynthetic components must be produced (Lawlor et 

al., 1989). Nitrogen promotes the formation of large, healthy leaves that have high amounts of 

chlorophyll and rubisco.  

Nitrogen is taken up by the plant roots in the form of NO3- and NH4
+. Both forms are 

readily absorbed by the plant, but the amount depends on their quantity in the soil. Uptake of N 

is also dependent on the stage of growth and the growth rate of the plant (Brown et al., 2005). 

Once N is inside the plant it is translocated to the leaves and reduced to glutamate in the 

chloroplast. During grain filling this N is relocated and deposited in the inflorescences (Fageria 

et al., 2006). This process is known as the source-to-sink cycle, meaning that vegetative tissue 

that once was a depository for excess N becomes a source of N for other parts of the plant that 

have a greater demand for it. As the plant matures, larger amounts of photosynthates are required 
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to fulfill grain development needs. Thus maintenance of active photosynthesis by leaves, 

especially the flag leaf, throughout the grain filling period is a major requirement for optimal 

production of carbohydrates and amino acids that contribute to high yields and high protein 

concentration (Simpson et al., 1983).  

The rate and duration of starch and protein deposition in the endosperm of wheat grain 

kernels are independent events controlled by separate mechanisms (Jenner et al., 1991). The 

production of grain yield and grain protein concentration occurs simultaneously; however, grain 

yield potential will reach it maximum prior to maximum protein concentration potential (Goos, 

et al., 1982). The inverse relationship between grain yield and protein concentration can be 

explained by differences in N uptake and the plants ability to utilize energy and nutrient reserves 

from the vegetative stage in kernel development (Brown et al., 2005). Most N that is taken up 

during early stages of crop development is used in tiller formation, leaf and spike growth which 

all impact grain yield potential (Jenner et al., 1991). Nitrogen that is taken up around heading 

will usually positively influence protein concentration of the kernel but can only marginally 

influence yield because the number and size of kernels are largely fixed at this time (Brown et 

al., 2005).  

Differences in the plant’s total protein concentration during vegetative stages can be 

minimal between high and low protein wheat cultivars (Seth et al., 1960). However, during 

heading (ZGS 59) (Zadoks et al., 1974), protein concentration increased more rapidly in the 

spikes of high protein cultivars than those of low protein cultivars. Seth et al., (1960) observed 

that the average mean of protein was 50 g kg-1 in the roots of high protein cultivars was 

significantly lower than that of lower protein cultivars which had an average mean of 58 g kg-1. 

The protein concentration differences between cultivars can be explained by uptake, utilization, 
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and redistribution of N by the plant. Redistribution of N accounts for 80% of the N found in 

grain and only 20% is directly absorbed from the soil during grain filling (Dalling et al., 1976).  

When moisture concentration is low throughout the growing season and excess N is 

available to the wheat due to reduced growth, grain yields may be low and protein concentration 

could be high (Neidig and Snyder, 1924). The higher protein concentration with drought 

conditions may be due to shriveled wheat kernels (less starch to protein ratio). When weather 

conditions are favorable for plant growth and yield, little plant available N is left in the soil 

profile during the grain filling and ripening of the grain. Plant carbohydrate production is 

enhanced, while total N uptake may be limited by supply, resulting in higher yields with lower 

protein concentration. When a plant is drought stressed or when temperatures are extremely high, 

the time between anthesis and harvest can be reduced by as much as seven days (Altenbach et 

al., 2003). The reduction in the length of grain filling can negatively impact grain yield due to 

inhibition of enzymes involved in the starch biosynthesis, thus reducing starch deposition. 

Therefore, the best way to determine genetic potential for yield and protein among cultivars is to 

compare them when grown under optimum conditions where differences are not related to 

deficiencies (Terman, 1979).  
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ARTICLE 1: PREDICTING IN-SEASON NITROGEN NEEDS FOR ENHANCING 

PROTEIN CONCENTRATION OF HARD RED SPRING WHEAT 

Abstract 

The standard market grain protein concentration for HRSW of 140 g kg-1 is not always 

achieved. This study was conducted to determine if final grain protein concentration could be 

determined prior to anthesis using a variety of measurements (normalized difference vegetative 

index values, chlorophyll concentration, leaf color values, and N concentration of leaf and stem 

samples). Field experiments were conducted at Crookston, MN, and Prosper, ND in 2011-2012, 

consisting of a factorial combination of N rates and cultivars. N concentration of leaf and stem 

samples, and chlorophyll concentration collected at Zadoks growth stage (ZGS) 37 increased 

linearly as the amount of N fertilizer applied increased. The plant-based predictors could be used 

to predict final grain protein concentration. These linear relationships between plant based 

predictors and final grain protein may be utilized to determine supplement N needs at the 

beginning of grain fill to improve final grain protein concentration. 

Introduction 

Nitrogen is an essential nutrient for plants; however, plant N uptake depends on several 

factors including its availability in the soil (Fageria et al., 2006), growth stage, and the growth 

rate of the plant (Brown et al., 2005). Nitrogen is a major component of the plant photosynthetic 

apparatus (Evans, 1983), which produces the compounds that are required for plant growth and 

development using light energy (Lawlor et al., 1989). Most N that is taken up during early stages 

of crop development helps promote increased vegetative biomass which contributes to potential 

yield; while N taken up after anthesis is essentially used to product grain protein concentration 

(Jenner et al., 1991). Differences among genotypes, variability in seasonal weather conditions, 

and the availability and utilization of N will all impact plant performance (Terman, 1979). 
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Current recommendations for determining the N fertilizer needs in many crops, including 

HRSW, are based on location, historical productivity, previous crop credit, and the results of soil 

nitrate-N test to a depth of 60 cm (Franzen, 2010). One of the weak points of applying all N prior 

to seeding is the variation in soil availability and loss that is possible during the first 30-60 days 

of each growing season when supplemental N application might still have practical benefit 

(Franzen, 2010).   

Plants that are healthy and productive tend to have higher chlorophyll concentration than 

those that are N stressed. However, when vital nutrients such as N, Fe, S, and Mg are limiting, 

yellowing, or chlorosis can occur (Wright et al., 2002). Chlorosis can also be caused by diseases 

and other crop stresses. Inadequate levels of N also can reduce small grain tillering, induce 

stunting, cause poor kernel fill, and result in low grain protein (Cavanaugh et al., 2009). 

Currently, nitrogen use efficiency (NUE) of cereal crops worldwide is only 33% (Raun and 

Johnson, 1999). The amount of N that is not utilized in a particular year by the plant might be 

lost due to leaching, erosion, denitrification or volatilization, immobilized by microbes in residue 

breakdown intermediates, transformed into semi-permanent organic matter or even fixed in clay 

lattices and thus, the practice of using soil tests for making fertilizer recommendations prior to 

seeding is not always capable of meeting in-season N needs (Woolfolk et al., 2002). To improve 

NUE, current practices such as adjusting application rates based on more precise estimates of 

crop needs, use of products preventing N loss, applying N at the time of greatest uptake, 

incorporating N into the soil, and proper placement during planting are being promoted 

(Robertson, 2004).  
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Tissue N Concentration Samples 

Extensive studies have been conducted to understand the relationship between N in plant 

tissues at various growth stages and plant response to supplemental N. Plant tissue sample 

collection and analysis has been considered a relatively reliable indicator for determining the 

nutrient status of a plant, but only when samples are properly selected, collected, handled, 

prepared, and shipped (Thom et al., 2000). Tissue samples can detect unseen deficiencies and 

confirm visual deficiency symptoms (Flynn et al., 1999). Tissue samples collected from young 

plants may allow producers to make corrective fertilizer applications during the growing season. 

Papastylianou et al. (1984) found a correlation between nitrate concentration in wheat stems at 

tillering and grain yield. Total N in the flag leaf about heading/flowering, was closely related to 

grain protein at harvest compared to tissue samples collected earlier in the growing season 

(Brown et al., 2005). Even though tissue sampling and analysis can be reliable predictors for 

both grain yield and protein concentration if taken properly, they are site-specific, expensive, 

labor intensive, and destructive to the plant (Wright et al., 2001). More expeditious, cheaper and 

more practical methods of predicting in-season N requirement would be beneficial.   

Leaf Color Chart 

Several instruments are currently available to assist producers in determining N status in 

a plant. A simple, quick, and non-destructive method for estimating N status of a plant is the leaf 

color chart (LCC) (International Rice Research Institute, Metro Manila, Philippines). The LCC 

gives a rapid evaluation of leaf N status by visually estimating the color composition of the leaf 

by comparing it to different intensities of green. To determine an appropriate N rate, 10-20 

random LCC readings are needed from a sample area to provide an average. The LCC can be 

used on any cereal crop.  
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In wheat, Maiti and Das (2006) found a linear response between LCC values and 

increasing N rates. There was also a significant and positive correlation (r=0.56 to 0.59) between 

grain yield and LCC values across all growth stages. They concluded that LCC values can be 

used in indicating the need for top-dressing N and help increase NUE. A positive relationship 

using the LCC has also been observed in rice (Oryza sativa) (Yang et al., 2003).  

Chlorophyll Meter 

Leaf color charts are popular because they are a quick, non-destructive and an 

inexpensive alternative to tissue sampling (Maiti and Das, 2006; Yang et al., 2003). Another 

option available is the use of a chlorophyll meter that gives an indirect assessment of leaf N 

status by measuring the chlorophyll concentration of a leaf (Blackmer and Schepers, 1995). 

Comparisons of the two strategies have shown that LCC and chlorophyll meter readings have a 

close relationship across multiple growth stages in both wheat (Maiti and Das, 2006) and rice 

(Yang et al., 2003). These studies suggest that either diagnostic tool can be used in predicting N 

needs depending on the availability of the instrument and the preference of the user.  

The chlorophyll meter uses a calibrated light-emitting diode to measure transmission of 

red light to infrared light through the leaf (Francis and Piekielek, 1999). The ratio between these 

two wavelengths is used to calibrate the chlorophyll concentration index or the actual 

chlorophyll concentration of the leaf. Thus plants that have a high chlorophyll concentration 

reading will absorb more red light and are typically greener (healthier). To determine the 

appropriate N rate a minimum of 30 random chlorophyll readings should be collected and 

averaged. The chlorophyll meter is useful because it has the ability to help detect N stress before 

it is visible to the human eye (Schepers et al., 2006) and is considered more reliable than visual 

assessment when using a LCC (Debaeke et al., 2006). 
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Several reports have found a strong correlation between leaf N and chlorophyll 

concentration (Vos and Bom, 1993; Blackmer and Schepers, 1995; Olfs et al., 2005). Research 

has also found a positive correlation between chlorophyll meter readings taken from wheat at the 

ZGS 30 and grain yield (Follett et al., 1992). Fox et al. (1994) found that SPAD-502 (Soil and 

Plant Analysis Development) chlorophyll meter (Konica Minolta Sensing, Inc., Osaka, Japan) 

readings taken on wheat leaves more accurately predicted wheat responses to N fertilizers than 

total N concentrations of plant tissue. Spaner et al., (2005) found a positive correlation between 

SPAD measurements at ZGS 75-79 and grain yield in wheat (r2 > 0.65). A high correlation 

between SPAD readings at ZGS 71 and grain protein concentration has also been reported (Bail 

et al., 2005; Spaner et al., 2005).  

Remote Sensors 

Chlorophyll meters are relatively easy and fast to use in small fields for detecting the N 

status of a plant; but they are somewhat limited in practical use because they can only measure a 

small area of the crop canopy within each field and do not detect the variability within a field 

unless many readings are used (Ma et al., 1996). This issue has led to the development of canopy 

reflectance measurements and remote sensing techniques that theoretically can provide rapid 

estimates of crop N status with high spatial resolution by surveying a larger area depending on 

the sensor’s field of view (Ma et al., 1996). 

Recent advancements in precision agriculture technology have led to the development of 

ground-based active remote sensors (Dr. Jim Schepers, USDA-ARS, Lincoln, NE; Dr. Bill Raun, 

Oklahoma State University, Stillwater, OK). Active remote sensors have their own light source, 

which allows them to determine the normalized difference vegetative index (NDVI) throughout 

the growing season. These sensors work by directing visible light (VIS) (400-700 nm) as well as 
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near in-frared (NIR) (700-1300 nm) light at the plant canopy and then measure the amount of 

VIS and NIR light that is reflected back to the sensor. NDVI is calculated using the following 

equation: NDVI = (NIR – VIS) / (NIR + VIS) 

 The NDVI is related to leaf area index (LAI) and green biomass, meaning that it is highly 

dependent on photosynthesis efficiency (Penuelas et al., 1994). Plants that are healthier or have a 

larger LAI will absorb more VIS, (which is required for producing chlorophyll) and in return will 

reflect more NIR light than plants that are stressed by N deficiency (Shaver et al., 2011). 

Accordingly, there is a direct relationship between N concentration and high NDVI values. 

Research has found NDVI values taken at certain times to be highly correlated with grain yield 

of winter wheat (Raun et al., 2002), HRSW (Osborne, 2007), and corn (Zea mays L.) (Chang et 

al., 2003). These sensors can be integrated with a global positioning system (GPS) that reads the 

crop canopy reflectance, calculates N fertilizer rates based on reflectance, and variably applies N 

where needed (Shaver et al., 2010). Currently there are only two sensors on the market to assist 

producers in determining the N status of their crop in real-time: the GreenSeeker (GreenSeeker, 

NTech Inductries, Inc., Ukiah, CA) and the Crop Circle (Holland Scientific, Lincoln, NE, USA). 

The GreenSeeker calculates a RED/NIR ratio by using VIS red light (660 nm) and NIR 

(770 nm) light at the plant canopy. Raun et al. (2002) found that the GreenSeeker can help 

improve NEU of winter wheat by more than 15% when a top-dressing of N fertilizer was applied 

based on sensor readings collected in-season. Freeman et al. (2003) found that NDVI values 

tended to predict grain yield, but found no correlation with total grain N. He stated that their 

NDVI values were not reliable metrics for predicting the protein concentration in wheat because 

NDVI is not capable of determining how efficient the plant is at translocating N to the kernel or 

how much N is lost through various pathways. Recent field studies conducted in South Dakota 
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have shown the GreenSeeker to be promising in predicting grain protein concentration in HRSW 

(Qualm et al., 2010). However, under extreme environmental stress (drought), this technology 

was not reliable due to stunted growth and resulting low yields.  

The Crop Circle sensor uses the same principles as that of the GreenSeeker sensor. 

However, each sensor uses different wavelengths within the VIS (590 nm) and NIR (880 nm) 

spectrum (Shaver et al., 2010). The Crop Circle is also capable of emitting and detecting four 

different bands of light (blue, green, red, and NIR) depending on which filter is in the unit at the 

time. Given these differences between sensors, the Crop Circle is capable of calculating the 

Green Normalized Difference Vegetative Index (GNDVI) which is calculated by replacing the 

reflectance of red VIS light with green VIS instead (Shanahan et al., 2001). Using GNDVI to 

predict grain yield is more reliable then NDVI because it is sensitive to changes in chlorophyll 

concentration (which is absorbed by green VIS) and not by increases of vegetative biomass. 

When comparing NDVI and GNDVI values, Dellinger et al. (2008) found that GNDVI was a 

better indicator for estimating in-season N requirements in corn.  

 While numerous studies have been conducted to determine the efficiency of each 

individual diagnostic tool, only recently were they compared to each other for determining yield. 

Shaver et al. (2011) looked at the performance of two active sensors (GreenSeeker and Crop 

Circle) for determining the N status and grain yield in corn. This study also looked at how soil 

NO3
- concentration, leaf N concentration, chlorophyll readings, and plant height affect these 

relationships. Their results found that NDVI readings from both sensors had high correlations 

between applied N rate and grain yield at the V12 and V14 growth stage. Results also indicated 

that there was no significant improvement of the r values using single or multiple regression with 

soil and plant variables when compared to NDVI alone. The authors concluded that both the 
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GreenSeeker and the Crop Circle performed well in determining N variability in corn, but at later 

growth stages (greater than V14) the potential of the VIS sensor was limited.  

Procedures to Normalize Variation 

Even though most of the diagnostic tools previously discussed are capable of predicting 

the N status of a plant, transferring this information into useful N fertilizer recommendations can 

be difficult for a number of reasons including the N-supplying ability of the soil, water supply, 

growth stage, sampling procedures (Olfs et al., 2005) cultivar (Debaeke et al., 2006) and 

seasonal effects (Hussain et al., 2000). Frost damage, herbicide injury, and deficiencies in 

nutrients other than N can, for example, negatively impact leaf chlorophyll concentration 

(Blackmer and Schepers, 1995). To standardize differences between sites, cultivars, and growth 

stages, Johnson and Raun (2003) suggested that measurements be normalized. To normalize 

data, a well fertilized reference area (N-rich strip), which covers as many soil types and growing 

conditions as possible within a field is compared to areas where N may be deficient in the same 

field. This estimates the potential crop’s response to additional N. 

By normalizing the data, response models can often be developed and applied across 

multiple fields and cultivars (Holland and Schepers, 2010), although Solari et al. (2010) warned 

that more generalized prediction models need to be validated locally. Furthermore in order to be 

considered economical to a producer, the technology needs to be based upon grain protein 

premiums and discounts, and the cost of N fertilizer at the time of application (Qualm et al., 

2010).  

In recent years (2009-2011) discounts up to  $51.40 Mg-1 per percent of grain protein 

below 140 g kg-1 has led to interest in and additional research on late season N applications in 

order to increase protein concentration. This situation has also led to the questions if accurate 
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predictions for the need of supplemental N prior to anthesis for enhancing protein concentration 

can be made using a variety of measurements. If final grain protein concentrations can be 

accurately predicted prior to anthesis, then producers have a tool to determine whether a late 

season application of N would be justifiable.  

Objective 
 

The first objective of this research was to determine if plant based measurements can 

reliably predict grain protein at harvest, thereby providing insight into whether additional N 

fertilization for improving grain protein is needed or feasible. The second objective was to 

determine if predictive relationships would be consistent across cultivars with different protein 

characteristics.   

Material and Methods 
 

General Information 

Field experiments were conducted at the University of Minnesota Northwest Research 

and Outreach Center, Crookston, MN, (Latitude = 47.48o N, Longitude = -96.36o W); and the 

NDSU research fields near Prosper, ND, (Latitude = 47.00o N, Longitude = -97.11o W) in 2011 

and 2012. Table 1.1 lists the soil series, soil taxonomy and slope at each location. Soil samples 

were collected in the spring to determine the levels of N, phosphorus (P), potassium (K), pH and 

organic matter at each location (Table 1.2). Five random core samples from the trial were 

collected and combined prior to analysis. 

The experimental design was a randomized complete block (RCBD) with a split-plot 

restriction and four replicates. Main plot treatments were rates of N at 0, 67, 134, and 202 kg N 

ha-1. Nitrogen treatments of dry urea were broadcasted by hand and incorporated with a field 

cultivator prior to planting. Sub-plot treatments were four HRSW cultivars. 
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Table 1.1. Soil series, taxonomy and slope at Crookston, MN and Prosper, ND in 2011-2012.  
Location Soil Series† Soil Taxonomy‡ Slope 

   % 
Crookston Wheatville–

Gunclub 
Coarse-silty, mixed, smectitic, superactive frigid Aeric Calciaquolls 
Fine-silty, mixed, superactive, frigid Aeric Calciaquolls 0-2 

Prosper Kindred–
Bearden 

Fine-silty, mixed, superactive, frigid Typic Endoaquolls 
Fine-silty, mixed, superactive, frigid Aeric Calciaquolls 0-2 

† Soil data obtained from (USDA-NRCS, 2011). 
‡ Soil taxonomy listed on individual lines based on hyphenated soil series name. 

 

Table 1.2. Previous crop, available N, P, K, pH and organic matter levels by sampling depth at 
Crookston and Prosper, 2011-2012.  
Location PC† Depth N P K pH OM† 
 cm kg ha-1 mg kg-1 mg kg-1  % 

2011 
Crookston soybean‡  0-61 28.0   3 145  8.1 NA 

P  Prosper Soybean 0-15   7.8      55       250 7.6 3.9 
  15-61 16.8       9       170 8.0 2.8 

2012 
Crookston Wheat 0-61 34.0     4 137 8.3 NA 
Prosper Soybean 0-15       112.0         41 315 7.8 3.3 
  15-61       238.6         21 230 7.8 2.5 
†PC = Previous crop; OM = Organic matter. 
‡ soybean = Glycine max. 

 

The four cultivars of HRSW used in the experiment were ‘Faller,’ ‘Glenn,’ ‘Samson’ and 

‘Vantage’ (Table 1.3). Faller and Samson were chosen because they are known to be high 

yielding with lower grain protein concentration (Ransom et al., 2012). Glenn and Vantage have 

opposite characteristics of Faller and Sa mson.  

Table 1.3. Characteristics of four HRSW cultivars used in predicting N needs experiment. 
     Average Yield Within 

Region† 
  

Cultivar Origin‡ 
Year 

Released Height 
Days to 
Head 

Eastern 
ND 

Western 
ND Protein§ 

Volumetric 
Weight 

   cm  -----Mg ha-1 ----- g kg-1 kg –L 
Faller ND 2007 89 65 5.5 3.7 138 72.3 
Glenn ND 2005 94 61 4.8 3.4 149 76.4 
Samson WestBred 2007 79 63 5.1 3.8 138 73.5 
Vantage WestBred 2007 81 67 4.9 3.6 158 75.3 
† Based on a three year average (2010-2012). 
‡ Refers to agent or developer: ND = North Dakota State University. 

§ Protein at 12% moisture. 
Source: Ransom et al., 2012. 
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Planting and Plot Maintenance 

Trials at Crookston in 2011 and 2012 were sown at a rate of 3 million viable seeds ha-1 

using a ten row Almaco (Almaco, Nevada, IA) double disk drill with 15 cm row spacing. Before 

trials were planted, a uniform seed bed was prepared with a field cultivator. Due to an extremely 

wet spring, trials in 2011 were seeded on May 17. With a mild winter in 2012, seeding was 

completed on April 11.  

Trials at Prosper in both 2011 and 2012 were sown using a seven row Great Plains 

3P605NT drill (Great Plains Mfg Inc., Salina, KS) with 18 cm row spacing. Before trials were 

planted, a uniform seedbed was prepared using a field cultivator. Due to an extremely wet spring, 

trials in 2011 were planted on May 19. With a mild winter and favorable spring in 2012, planting 

was completed on April 19. Trials were sown at a rate of 4 million viable seeds ha-1. Prior to 

planting seeds were treated with tebuconazole at the rate of 3 ml kg-1 seed. The seed was treated 

using a batch seed treatment machine (Hege II,Wintersteiger AG, Ried, Austria). 

Experimental units in Crookston consisted of two adjacent solid seeded plots that 

measured 1.5 m wide and 10.6 m long.  Experimental units and plots were spaced about 0.5 m 

apart while the alley between blocks was 3m. Prosper plots were 1.5 m wide and 5.2 m long. 

Borders between plots were 0.3 m and alleys between reps were cut mid-season at a width of 0.8 

m. The harvested area was 1.5 m by 3.7 m. During the growing season, plots were trimmed from 

each end using a rotovator (Crookston and Prosper, 2011) or mowed (Prosper, 2012) to the 

lengths previously defined to create an alley. Border plots in 2011 and 2012 were planted with 

winter wheat at Crookston and HRSW at Prosper on the two outermost columns of plots to 

ensure similar competition as interior plots.  
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A stand count was taken in 2012 at the ZGS 12 at Crookston and Prosper. Measurement 

were obtained by counting the number of plants in a randomly selected 30-cm length of rows two 

and six at Prosper and rows two and nine at Crookston, then the number the number of plants 

from both rows were averaged, and adjusted to represent plants 100 cm-2.  Prior to harvest, 

lodging notes and plant heights were taken. Lodging was based on a scale of 0-10 for the entire 

plot length with zero having no signs of lodging to ten being completely flat. Plant heights were 

collected by taking the average height of the erect plants from the soil surface to the top of the 

awns.  

Predictive Measurements 

All plots were measured for plant greenness at all locations in 2011 and 2012 using an 

infra-red chlorophyll sensor (GreenSeeker) which records the ratio of red to infrared light 

emitted by the instrument and then reflected back to the sensor instrument. This ratio is the 

difference of NDVI values, which generally is a proxy for measuring plant health. Readings were 

taken twice (ZGS 16 and 37) during the growing season. Readings were obtained by walking 

through the plots at a consistent speed (approximately 1.34 m sec-1) holding the sensor 

approximately 46 cm above the canopy. 

The CCM-200 chlorophyll meter (Opti-Sciences, Inc., Hudson, NH) is an instrument that 

measures how much light is absorbed by chlorophyll molecules. Measurements were taken on 

twenty-five random leaves that were fully expanded and free of any disease or damage and 

selected from the inner rows of each plot and averaged to provide an average for the whole plot. 

Chlorophyll readings were obtained by placing the instrument sensor halfway between the leaf 

tip and collar and halfway from the leaf margin to the mid-rib. Measurements were collected at 

the ZGS 16 in 2012 and 37 in both 2011 and 2012.  
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The LCC was used to provide a rapid evaluation of leaf N status by visually estimating 

the color of the leaf and by comparing it to four color schemes of green. Readings were taken at 

the same time of every day (8-10 a.m.), because the color chart’s comparative readings can be 

influenced by ambient light intensity (International Rice Research Institute, 2011). Readings 

were taken at the ZGS 16 and 37 in 2012. Ten disease free leaves were randomly selected from 

the inner rows of each plot. The middle part of the leaf was then placed on the chart and 

compared with the color panels on the LCC. These values were then averaged and a single value 

was used for the plot analysis. 

The N concentration of leaf tissue was also used to estimate the N status of the crop. 

Twenty-five random leaf samples from the inner rows of each plot were gathered. Leaf samples 

were fully expanded and free of disease or damage. Samples were collected at the ZGS 16 and 

37. Leaves were dried at 57o C for several days, ground, and stored in plastic vials. Samples were 

ground using a Cyclone Sample mill (UDY Corporation, Fort Collins, CO) with 0.5 mm screen 

and a Wiley Laboratory mill model 2 (Arthur H. Thomas Co., Philadelphia, PA) with 0.8 mm 

screen. Nitrogen concentration was determined using the Dumas combustion method (Buckee, 

1994).  

The N concentration of the base of the main wheat stem was also used to estimate the N 

status of the crop. To accomplish this, 25 random wheat stem samples from the inner rows of 

each plot were gathered. Stem samples were prepared by cutting tissue just about the crown and 

the collar of the first living leaf (5.1cm in length). All excess biomass that was attached to the 

stem was removed. Samples were collected at the ZGS 37. The wheat stem tissue test was 

processed using the same method as the leaf tissue analysis.  Due to logistical and meteorological 
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complications, NDVI values, chlorophyll concentration, and N concentration of leaf samples 

were not collected at Prosper in 2011 at the ZGS 16.  

Weed Control 

Broadleaf and grassy weeds at Crookston were controlled with a tank mix application of 

bromoxynil octanoate, and bromoxynil heptanoate and MCPA at 350 g, 350 g, and 350 g ai ha-1, 

respectively, and pinoxaden at 39 g ai ha-1 applied at ZGS 14. In Prosper, weeds were controlled 

with an application of fenoxaprop, pyrasulfotole, and bromoxynil, at 89 g, 40 g, and 198 g ai ha-

1, respectively, applied at the ZGS 12. A fungicide application of propiconazole and 

trifloxystrobin at 55 g, 55 g ai ha-1, respectively, was also applied at ZGS 12.  

Harvest Methods 

Plots in Prosper were harvested in both 2011 and 2012 with a Wintersteiger Classic plot 

combine (Wintersteiger Ag, Ried, Austria). All rows of each plot were harvested and plot lengths 

were recorded. Following harvest, grain was dried (if necessary) and cleaned using a Clipper 

Office Tester and Cleaner (Seedburo Equipment Co., Chicago, IL). After cleaning, grain yield 

and protein concentration were determined. Moisture was measured using a GAC 2100 moisture 

tester (DICKEY-John Corp., Minneapolis, MN). Yield was calculated by weighing the plot 

sample with a scientific scale (RS-232, Scientech Inc., Gaitherseberg, MD), and adjusting to a 

moisture concentration of 13.5%. Grain protein was measured using a 0.5 kg sub-sample of seed 

from each plot on a Diode Array 7200 NIR Analyzer (Perten Instruments, Springfield, IL).  

At Crookston (2011-2012) a 1 x 1 m area from the center of one plot per experimental 

unit was harvested by hand.  The mature crop was cut off just above the ground and bundles 

where threshed with a stationary laboratory thresher (Wintersteiger Inc., Salt Lake City, UT). 

After harvest, grain yield and grain protein were determined. Moisture and grain protein were 
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measured by NIT using the Tecator Infratec 1229 Grain Analyzer (Foss North American Inc., 

Eden Prairie, MN) following AACC method 39-10. Yield was calculated by adjusting the plot 

weight to a moisture concentration of 13.5% and converting the weight to kg ha-1.  

Statistical Analysis 

Data were analyzed using the PROC Mixed procedure of SAS 9.2 (SAS Institute, Cary, 

NC). Location, year, and replicates were considered random effects while N rates and cultivars 

were considered fixed. Any fixed effect by random effect interaction was also considered 

random. Main effects and interactions were tested using the appropriate error terms. Means were 

separated using a Fisher’s protected least significant differences test at the 5% level of 

significance.  

Plant predictors were normalized (indexed) prior to statistical analysis. To normalize the 

data, each individual cultivar was first separated by replication at each location.  Once each 

individual cultivar was separated it was then divided by the highest recorded value of N rate 

within that rep (202 kg ha-1 N). Orthogonal contrast and linear regression were used to determine 

the relationship between fertilizer rates, plant based predictors, and the grain protein 

concentration of the harvested grain. A multiple regression equation was also fit using all plant 

predictors as independent variables and protein dependent using stepwise regression. Correlation 

coefficients between grain protein and observed variables were calculated using the PROC Corr 

in SAS.  

Results and Discussion 

Weather Information 

 The 2011 and 2012 growing seasons were substantially different from each other. In 

2011, much of North Dakota and western Minnesota was extremely wet (NDAWN, 2013) and 
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thus a large area could not be planted. Due to cold and wet conditions in April when HRSW is 

typically planted in this region, our trials were planted in May. At Crookston the mean air 

temperature for the growing season (17 May – 15 August 2011) was 18 oC, and at Prosper the 

mean air temperature was 19 oC for the growing season (19 May – 19 August 2011) (Table 1.4). 

Monthly mean air temperatures at both locations were below normal in May, but above normal 

for July. Rainfall during the 2011 growing season was 252 mm in Crookston and 451 mm in 

Prosper (Table 1.5). Excess amount of rainfall at Prosper caused waterlogged conditions multiple 

times throughout the season (Table 1.5). 

 During the 2012 growing season, much of the area was drier than normal (NDAWN, 

2013) thus planting occurred in mid-April. The mean air temperature for the growing season at 

Crookston (11 April – 27 July) was 16 oC and the total rainfall was 226 mm (Table 1.4, 1.5). At 

Prosper (19 April – 31 July) the mean air temperature was 16 oC and total rainfall was 291 mm. 

The monthly mean air temperatures at both locations were above normal for all months during 

the growing season. The monthly average precipitation was normal each month during the 

growing season at both Crookston and Prosper. 

 

 

 

 

 

 

 

 

Table 1.4. Average mean air temperature for the months of planting to harvest in Crookston and 
Prosper, in 2011 and 2012, along with normal (1981-2010) †.  
 Crookston‡ Prosper 
 2011 2012 Normal 2011 2012 Normal 
Month ---------------------------------------------------- oC ------------------------------------------------- 
April   5   8   6   5   8   6 
May 12 14 13 12 15 13 
June 18 19 18 19 20 19 
July 22 23 21 23 24 21 
August 20 19 20 21 20 20 
 † Information collected from NDAWN, 2013. 
 ‡Weather information collected from the Eldred, MN weather station which is 21 km away. 
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Combine Statistical Analysis 

Barlett’s test for homogeneity error of variance was not significant, thus allowing for the 

combining of environments in the ANOVA. Nevertheless, data from the trial in Prosper 2011 

were not included in the analysis across environments because excessive rainfall caused the trials 

to be flooded on three separate occasions resulting in low grain yield and high grain protein 

concentrations due to poor grain fill.  

Cultivar 

There were significant differences between cultivars for N concentration of leaf samples 

collected at ZGS 37. In the combined analysis, Faller followed by Vantage had significantly 

lower N concentration in leaf samples then either Samson or Glenn (Table 1.6). Differences in 

total N concentration levels among cultivars can be explained by how fast uptake, utilization, and 

redistribution of N in the plant can occur within a cultivar (Seth et al., 1960).   

Cultivar x Environment 

Significant environment x cultivar (E x C) interactions for grain protein, yield, and NDVI 

(GreenSeeker) measurements were found. These interactions resulted from differences in 

magnitude (rankings of cultivars did not change) across all environments except for NDVI 

Table 1.5. Average mean rainfall for the months of planting to harvest in Crookston and Prosper, 
in 2011 and 2012, along with normal (1981-2010) †. 
 Crookston‡ Prosper 
 2011 2012 Normal 2011 2012 Normal 
Month ---------------------------------------------------mm-------------------------------------------------- 
April 64 27 31       45 30 37 
May 66 31 74       80 46 78 
June 68 74 97     132 67      100 
July 79 94 76     150 16 88 
August 41 47 84       89 23 67 
Total      319      273      361     496      183      369 
† Information collected from NDAWN, 2013. 
‡Weather information collected from the Eldred, MN weather station which is 21 km away. 
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values. Therefore, cultivar main effects will be discussed for all agronomic traits except for the 

NDVI values, where the interaction will be discussed.  

Vantage had significantly higher grain protein concentration than all other cultivars in all 

environments. Across environments the average grain protein was 154, 149, 141, and 139 g kg-1 

for highest to lowest: Vantage, Glenn, Samson, and Faller, respectively (Table 1.6). These results 

in relative rank are in line with other published data (Ransom et al., 2012). Faller and Samson 

yielded more than Glenn and Vantage in individual environments (data not shown) and across 

environments.  

Data indicated that the ranking of cultivars were not consistent across different 

environments for NDVI values; therefore no trends could be easily observed. For example at 

Prosper in 2012 Faller had the lowest NVDI value, but at Crookston in 2012 Faller had the 

highest NDVI value. Similar observations were seen with Vantage having a high NDVI value at 

Prosper (2012), but had the lowest NDVI value at Crookston both years. Inconsistent interactions 

maybe explained by differences in the rate of canopy closure across different cultivars and the 

same cultivar at different environments, which were visually observed. 

Table 1.6. Means for normalized NDVI, normalized leaf N concentration, normalized chlorophyll 
concentration, normalized stem N concentration, grain protein concentration, grain yield, and 
total protein harvested, for four cultivars of HRSW across three environments. 

 Zadoks Growth Stage 37  

Cultivar NDVI† 
N 

Concentration 
of Leaf† 

Chlorophyll 
Concentration† 

N 
Concentration 

of Stem† 

Grain 
Protein Yield Total Protein 

Harvested 

     g kg-1 ----------kg ha-1------- 
Faller 0.97 0.96 0.77 0.96 138.9 4335 609 
Glenn 0.98 0.98 0.78 0.94 149.1 3920 589 
Samson 0.96 0.98 0.79 0.97 140.5 4303 610 
Vantage 0.92 0.94 0.77 0.95 154.1 3792 586 
 

       

Means 0.96 0.96 0.78 0.96 145.6 4087 598 
CV% 10.05 4.05 10.33 11.20 4.4 15 15 
LSD 

(0.05) 
NS‡ 0.01 NS NS 8.3 347 NS 

† Normalized Values. 
‡ Not Significant. 
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Nitrogen Treatment 

The ANOVA indicated that N rate by environment interactions for several variables were 

significant. These interactions were due to differences in magnitude for NDVI values, N 

concentration in the flag leaf and stalk samples, chlorophyll concentration, grain protein, grain 

yield, and total protein harvested. Therefore, N rates main effects will be discussed for all 

measurements since the interaction was due to differences in magnitude. There was a significant 

linear response to N rates for all variables measured based on orthogonal contrasts. All cultivars 

responded similarly to N treatments. It was then determined that it was appropriate to normalize 

(index) the data. Regression equations were then developed for each plant predictor after 

normalizing with the N rich treatment as previously described (Figure 1.1, 1.2, 1.3, 1.4, and 1.5). 

The measured values of N concentration, chlorophyll concentration, and NDVI values can be 

entered into the regression equations (in place of x) to determine at what value the grain protein 

level would be below or above the market requirements of 140 g kg-1.  

  

 

   

Figure 1.1. Linear regression of grain protein concentration (response variable) 
on normalized N concentration of stem sample (predictor) collected at ZGS 37 
for all cultivars across three environments.  
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Figure 1.2. Linear regression of grain protein concentration (response 
variable) on normalized NDVI values (predictor) collected at ZGS 37 for all 
cultivars across three environments.  

 

 

 

 

 

Figure 1.3. Linear regression of grain protein concentration (response variable) 
on normalized chlorophyll concentration (predictor) collected at ZGS 37 for all 
cultivars across three environments. 
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Figure 1.4. Linear regression of grain protein concentration (response variable) 
on normalized N concentration of leaf sample (predictor) collected at ZGS 37 
for all cultivars across three environments. 

Figure 1.5. Linear regression of grain protein concentration (response variable) 
on normalized leaf color measurements (predictor) collected at ZGS 37 for all 
cultivars across three environments. 
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Peak stem N concentration, chlorophyll concentration, and flag leaf N concentration values 

measured at the ZGS 37 were found at 67 kg ha-1 of N with all cultivars (Table 1.7). A positive 

relationship between these plant predictors and grain yield and protein concentration were found 

at p<0.01 (Table 1.11). Papastylianou et al., (1984), also found a significant relation between 

nitrate concentration in wheat stems at tillering and grain yield. Positive correlations between 

chlorophyll meter measurements and grain yield in winter wheat have also been observed at both 

the ZGS 30 (Follett et al., 1992) and ZGS 75 (Spaner et al., 2005). Brown et al. (2005) found that 

total N in the flag leaf around heading/flowering time, to be more closely associated with grain 

protein at harvest than similar measurements made earlier in the growing season. Strong 

correlations between chlorophyll concentration and grain protein concentration at the ZGS 71 

have also been reported in wheat (Bail et al., 2005; Spaner et al., 2005).  

 

Nitrogen rates also significantly influenced NDVI vales at the p<0.10. The correlation 

between NDVI values collected at the ZGS 37 and grain protein was r =0.48 (p<0.10) (Table 

1.11). Qualm et al. (2010) stated that NDVI showed promise in predicting grain protein of 

Table 1.7. Means for normalized NDVI, normalized N concentration of leaf, normalized 
chlorophyll concentration, normalized N concentration of stem, grain protein concentration, 
grain yield, and total protein harvested, for four N rates across three environments. 

 Zadoks Growth Stage 37  
N treatment 
(kg ha-1) NDVI† 

N 
Concentration 

of Leaf† 

Chlorophyll 
Concentration† 

N 
Concentration 

of Stem† 

Grain 
Protein Yield 

Total 
Protein 

Harvested 
     g kg-1 --------kg ha-1------ 

0 0.87 0.89 0.86 0.46 132.4 3425 462 
67 0.98 0.98 0.98 0.78 144.4 4117 592 
134 0.97 1.00 0.99 0.88 153.6 4196 644 
202 1.00 1.00 1.00 1.00 152.2 4610 695 
        

Means 0.96 0.96 0.96 0.78 145.6 4087 598 
CV% 10.05 4.05 8.39 14.15 4.4 15 9 
LSD 

(0.05) 
NS‡ 0.07 0.08 0.24 NS NS NS 

†Normalized Values. 
‡ Not Significant. 
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HRSW under normal growing conditions with correlation coefficients between NDVI and grain 

protein between 0.54-0.68. These higher correlation coefficients may have been a result of the 

fact that NDVI measurements were made just prior to anthesis (ZGS 50-60) in that study. Others 

have reported poor correlations between NDVI and grain protein (Freeman et al., 2003; Wright 

et al., 2002). Freeman et al (2003) stated that the reason NVDI values are poor indicators of grain 

protein concentration are because NDVI values are not capable of determining how efficient the 

plant is at translocating N to the kernel.  

In our study, the correlation between NDVI at ZGS 37 and grain yield was quite high (r 

=0.80, (p<0.01)) (Table 1.11). Good correlations between NDVI and grain yield have been 

documented by others in winter wheat (Raun et al., 2002) spring wheat (Osborne, 2007) and corn 

(Chang et al., 2003). NDVI values are better at predicting yield response than protein 

concentration because NVDI values indirectly measure vegetative biomass, which often relates 

to yield potential. 

Nitrogen rate significantly influenced grain protein at the p<0.10. Averaged over 

cultivars, protein concentration was 132, 144, 154, and 152 g kg-1 for 0, 67, 134, and 202 kg ha-1 

of N rates, respectively (Table 1.7). The average protein for individual environments was 161, 

139, and 138 g kg-1 for Prosper 2012, Crookston 2011, and Crookston 2012, respectively (data 

not shown). The large difference in protein concentrations between Prosper and Crookston may 

be related to soil N concentration differences prior to planting. At Prosper, the residual N was 

nearly 200 kg ha-1 higher than at Crookston in both years (Table 1.2). Total protein harvested had 

a similar trend to grain protein concentration, since this value is derived partially from grain 

protein concentration. 
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The average grain yield was not significant at Prosper in 2012 but yield was significant at 

Crookston both years (Table 1.8). Average grain yield was similar across all three environments.  

Reasons for significant responses to N rates were detected at Crookston both years maybe due to 

the level of residual N in the soil prior to planting. Residual soil nitrate levels at Prosper in 2012 

were nearly 200 kg ha-1 higher than at Crookston both years. This may explain why no 

significant differences in yield response to N rate were detected at Prosper in 2012. 

 

Correlation between the different plant predictors were significant p<0.01 (Table 1.9). 

Combining multiple plant measurements to one regression equation improved predicting protein 

concentration (Figure 1.6). Stepwise regression between normalized N concentration of leaf 

samples and chlorophyll concentration collected at the ZGS 37 provided the best prediction for 

grain protein (r = 0.99, (p<0.50)). The multiple regression equation is: protein concentration (g 

kg-1) = [-143 + (N concentration of leaf sample X 857) – (chlorophyll concentration X 563)]. 

Others have also found a strong correlation between leaf N and chlorophyll concentration (Vos 

and Bom, 1993; Blackmer and Schepers, 1995; Olfs et al., 2005).  

Table 1.8. Means for grain yield for four N rates collected at ZGS 37 for Prosper 2012, 
Crookston 2011, Crookston 2012, and Combined environments. 

N treatment (kg ha-1) 
Prosper 2012 Crookston 2011 Crookston 2012 Combined 

-----------------------------kg ha-1----------------------------- 
0 4024 3062 3207 3425 
67 4082 4028 4242 4117 
134 4088 4673 3827 4196 
202 4057 5105 4669 4610 

 

Means 4062 4217 3986 4087 
CV% 8 15 16 15 
LSD (0.05) NS 439 940 NS 
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2012 Combined  

 In 2012, NDVI values, N concentration of leaf samples, chlorophyll concentration, NDVI 

values, and LCC values at ZGS 16 were collected. Leaf color chart values were also collected at 

ZGS 37. The combined data indicated that N rates and cultivar selection had no significant effect 

on these plant measurements. However, there were significant interactions between these factors 

and the environment. 

 

 

 

 

 The interaction between N rate and environment can be explained by differences in 

magnitude for leaf N concentration, NDVI values, and chlorophyll concentration collected at 

Table 1.9. Correlation between diagnostic measurements collected at the ZGS 37 for all 
cultivars across environments.  
 N Concentration 

of Leaf 
 N Concentration 

of Stem 
Chlorophyll 

Concentration NDVI 

 --------------------------------r value---------------------------- 
N Concentration of Leaf  0.92*** 0.92*** 0.91*** 
N Concentration of Stem 0.92***  0.93*** 0.84*** 
Chlorophyll Concentration 0.92*** 0.93***  0.84*** 
NDVI 0.91*** 0.84*** 0.84***  
 *** Significant at (P≤0.01). 

Figure 1.6. Linear regression of grain protein concentration (response variable) 
on normalized N concentration of leaf samples and chlorophyll concentration 
measurements (predictors) collected at ZGS 37 for all cultivars across three 
environments. 
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ZGS 16 (Table 1.12). Although data indicate that no significant differences at p<0.05 were 

detected across environments, the different values in N rate means for each measurement can be 

explained by response to individual environments (data not shown). Values at Prosper were 

higher than values at Crookston. This may be explained by soil N concentration prior to planting. 

At Prosper, the residue N was nearly 200 kg ha-1 higher than at Crookston both years (Table 1.2). 

Future experiments are needed to determine if measurements collected at the ZGS 16 can detect 

significant differences in final grain protein concentration.  

 The environment by cultivar interaction for LCC measurements collected at ZGS 37 

indicated that the ranking of cultivars were not consistent across different environments; 

therefore no trends could be observed (data not shown). For example at Prosper, Vantage had the 

highest LCC value while at Crookston it had one of the lowest LCC readings. The interactions 

may be a consequence of the LCC lacking enough shades to detect subtle differences. 

Furthermore, additional replications maybe helpful in detecting significant differences. 

Measurements taken at the ZGS 16 did not have as strong a correlation with grain yield 

and protein concentration as plant measurements collected at ZGS 37. Others found similar 

results for NDVI values (Raun et al., 2002; Osborne, 2007; Chang et al., 2003); N concentration 

of tissue samples (Papastylianou et al., 1984; Brown et al., 2005); and chlorophyll concentration 

(Follett et al., 1992; Fox et al., 1994; Spaner et al., 2005; Bail et al., 2005) measurements 

collected later in the growing season (after ZGS 30). The chlorophyll concentration and N 

concentration of leaf samples were the only plant predictors to have a positive relationship with 

protein concentration, while N concentration of leaf samples was the only plant measurement 

correlated to grain yield (Table 1.10). A linear response between LCC values (ZSG 16 and 37) 

and N rates was detected. This finding has been documented in wheat before (Maiti and Das, 
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2006). A correlation between LCC values collected at the ZGS 37 and protein concentration was 

found at p<0.01.  

 

 

Table 1.10. Correlation between measurements, grain yield and grain protein concentrations of 
all cultivars across single locations (Crookston and Prosper) and Combined in 2012. 

Variable 

Yield Protein 
Prosper Crookston Combined Prosper Crookston Combined 

-------------------------------------r value------------------------------------- 
NDVI†  -0.218 0.354 0.302 -0.018 0.028 -0.197 
Chlorophyll 
Concentration† 

0.041 -0.053 0.566** -0.062 0.543** 0.460* 

N concentration of leaf† 0.145 0.679*** -0.212 0.040 0.602** 0.498** 
Leaf color chart† -0.044 -0.132 -0.219 0.143 0.227 0.410 
Leaf color chart‡  0.049 0.537** 0.135 0.397 0.483* 0.691*** 
† measurements collected at the Zadoks GS 16. 
‡ measurements collected at the Zadoks GS 37. 
*,** , *** Significant at (P≤0.10) , (P≤0.05),  and (P≤0.01) respectively. 
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Table 1.11. Correlation coefficients (r) plant measurements, grain yield and grain protein concentration of all cultivars across single 
locations (Crookston 2011, 2012 and Prosper, 2012) and Combined. 

Variable 

Yield Protein 
Prosper 

2012 
Crookston 

2011 
Crookston 

2012 Combined Prosper 
2012 

Crookston 
2011 

Crookston 
2012 Combined 

---------------------------------------------------r value-------------------------------------------------- 
NDVI -0.56** 0.85*** 0.81*** 0.80*** 0.51** 0.73***        NS ‡ 0.48* 
Chlorophyll Concentration NS 0.90*** 0.62** 0.85*** NS 0.60** 0.71*** 0.68*** 
N Concentration of Leaf NS 0.91*** 0.81*** 0.82*** NS 0.76*** 0.69*** 0.65*** 
N Concentration of Stem NS 0.94*** 0.76*** 0.86*** NS 0.76*** 0.87*** 0.75*** 
*,** , *** Significant at (P≤0.10) , (P≤0.05),  and (P≤0.01) respectively. 
‡ Not Significant. 

Table 1.12. Means for NDVI, N concentration of leaf, chlorophyll concentration for four N rates collected at ZGS 16 for Prosper 2012, 
Crookston 2012, and Combined environments in 2012. 

 Prosper† Crookston† Combined† 
N 
treatment 
(kg ha-1) 

NDVI 
N 

Concentration 
of Leaf 

Chlorophyll 
Concentration NDVI 

N 
Concentration 

of Leaf 

Chlorophyll 
Concentration NDVI 

N 
Concentration 

of Leaf 

Chlorophyll 
Concentration 

0 1.03 0.99 1.03 0.98 0.93 0.91 1.00 0.96 0.97 
67 1.00 1.00 1.06 1.10 0.95 0.93 1.06 0.98 0.99 
134 1.01 1.01 0.98 1.08 0.96 1.10 1.05 0.98 1.04 
202 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
       

Means 1.01 1.00 1.01 1.04 0.96 0.99 1.02 0.98 1.00 
CV% 3.04 2.30 13.30 12.70 6.40 15.30 9.70 5.00 13.60 
LSD 
(0.05) 

NS‡ NS NS NS NS NS NS NS NS 

†Normalized Values. 
‡ Not Significant. 
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Conclusion 
 

All plant predictors evaluated at the ZGS 37 were able to can predict final protein 

concentration, which is similar to previously published studies. The best predictors for final grain 

protein concentration were chlorophyll concentration, leaf N concentration, and stem N 

concentration. Normalized NDVI measurements lower than 0.9 suggest supplement N is required 

to reach sufficient protein levels.  

Although chlorophyll concentration and N tissue concentration are better indicators of 

predicting grain protein concentration then NDVI because these measurements are direct 

measurements, they are somewhat limited in practical use because they can only measure a small 

area of the crop canopy within each field and do not detect the variability within a field like 

noncontact sensors, which can survey a large geographic area depending on the sensor’s field of 

view.  

The best combination of plant measurements for predicting grain protein concentration 

was leaf N concentration combined with chlorophyll concentration collected at the ZGS 37.  

The same linear response to N fertilizer was detected among individual cultivars with 

different protein characteristics. This allowed for the same predictive equation for determining 

grain protein and grain yield to be used across multiple cultivars thereby greatly increasing their 

applicability. 

 Measurements that were collected at the ZGS 16 are inadequate at predicting supplement 

N needs for reaching desired protein concentration and grain yield compared to measurements 

collected at the ZGS 37. This observation is similar to previous studies. Measurements collected 

at the ZGS 37 still give producers time to apply a late-season application of N if measured values 

indicate protein concentration will be low. Plant based predictors hold promise to determine the 
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need for supplement N to improve grain protein concentration, although validation of the 

regression models is still needed. 
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ARTICLE 2: NITROGEN SOURCE AND APPLICATION TIMING AFFECTS 

PROTEIN CONCENTRATION IN HARD RED SPRING WHEAT 

Abstract 

Standard market grain protein concentration for HRSW is 140 g kg-1. This study was 

conducted to determine the best method for increasing grain protein with an in-season 

application of nitrogen (N), while maintaining yield and maximizing net return. Field 

experiments were conducted at Crookston, MN, Hettinger, ND, in 2011- 2012, and Prosper, ND 

in 2012 and consisted of a factorial combination of cultivars receiving N fertilizer treatments. 

Supplemental N caused leaf burn and increased grain protein concentration. The best 

management practice remains to apply all recommend N fertilizer prior to seeding. Spring wheat 

growers are advised to only consider additional N at early grain fills to increase grain protein 

concentration when grain yield is likely to exceeded yield considerations when preplant N 

recommendations were determined.  

Introduction 

Grain protein concentration is often an important factor when marketing HRSW. High 

protein concentration is associated with increased gluten strength and loaf volumes, which are 

both important factors in characterizing the milling and baking quality of wheat (Woolfolk et al., 

2002). In the Upper Midwest of the USA, the standard market grain protein concentration for 

hard red winter wheat (HRWW) and HRSW is 120 g kg-1 and 140 g kg-1, respectively (Bly and 

Woodard, 2003). When producers do not meet these market standards they may receive 

discounted prices, while a premium might be paid for grain protein concentration above 140 g 

kg-1. The extent of these discounts and premiums vary greatly from year to year and within the 

year (Frayne Olson, personal communication). For example, in the fall of 2009, discounts ranged 
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from $7.30 Mg-1 at the beginning of September to a $51.40 Mg-1 discount by late September 

(Olson, 2009). Although these deductions can vary year-to-year, timing at greatest price 

fluctuation usually occurs during spring wheat harvest.  

Currently the nitrogen use efficiency (NUE) of cereal crops worldwide is 33%, as a 

majority of the available N is lost due to leaching, erosion, denitrification or volatilization (Raun 

and Johnson, 1999). Maximizing NUE has become increasingly important in crop management 

systems for both economic and environmental reasons (Mahler et al., 1994). A split-application 

of N between planting and flowering can be one way to increase NUE (Strong, 1982). Split 

applications may allow for higher yield and grain protein responses compared to a single 

application in certain situations. 

Applying all of the N fertilizers preplant or at seeding has been a common practice for 

wheat producers in North Dakota and Minnesota (Rehm and Franzen, 2005). A fall application 

of anhydrous ammonia (82-0-0) or dry urea (46-0-0) can also be effective; however, applications 

should not begin before October 1 or until soil temperatures measured at the 10.2 cm depth fall 

below 10 oC between 8 and 10 a.m. in North Dakota (Franzen, 2010). This is due to rapid 

conversion of urea and ammonia to nitrate by soil microbes at warmer temperatures. When 

applying urea (fall or spring) or urea ammonia nitrate (UAN) (spring) the rate of ammonia 

volatilization is less when it is banded rather than broadcasted on the surface. The risk of 

ammonia volatilization greatly increases if no measureable amount of precipitate occurs within 

several days after a surface application particularly if the pH of the soil is greater than seven.   

Dry fertilizers can be applied as a top-dress (broadcasted) or a side-dress. Liquid N 

fertilizers can be applied to the foliage or side-dressed with streamer bars. It should be noted that 

liquid forms of fertilizer N can be phytotoxic when they contact leaf tissue because of the high 
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salt concentration (Garcia and Hanway, 1976; Rader et al., 1943). Studies have shown that a urea 

solution causes less tissue burn than UAN; however, a urea solution is more susceptible to 

volatilization (Gooding and Davis, 1992; Bremner, 1995). To help reduce loss through 

volatilization, others have looked at adding urease inhibitors such as dihyric phenols and 

quinones to the urea solutions (Bremner and Douglas, 1971, 1973). Krogmeier et al. (1989) 

found that by adding a urease inhibitor to urea fertilizer when applied to soybeans (Glycine max) 

actually increased foliar burn due to increased accumulations of toxic urea instead of NH3. The 

degree of leaf burn depends on the timing of application and the cultivar (Gooding 1988). There 

are several tactics to help reduce the risk of tissue burn. One option is to use streamer bars 

(Anon, 1987). This reduces the contact between the solution and the foliage. However, a late-

season application with streamer bars may be less effective than a foliar application because 

uptake by the roots has diminished and a rain event is needed to move the N to the roots (Seth 

and Mosluh, 1981). Another recommendation is to apply the fertilizer in the cool of the day and 

when the humidity is high (Garcia and Hanway, 1976).  

Yield responses to in-season applications of N depend on timing (Gooding and Davies, 

1992). A foliar application of urea at anthesis (ZGS 60) can significantly increase yield (Gholami 

et al., 2011; Ottman et al., 2000; Varga and Svecnjak, 2006). However, other studies have shown 

that yield responses start to decline when a foliar application of N is applied after the flag leaf 

has emerged (ZGS 37) (Finley et al., 1957; Strong, 1982).  Inconsistent yields responses were 

recorded in Oklahoma over years and locations after late-season foliar N applications (Woolfolk 

et al., 2002).  

 When comparing grain yield responses to a late season foliar N applications, a positive 

grain protein concentration response is more consistently and frequently reported (Gooding and 
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Davis, 1992). Foliar N applied immediately following anthesis (ZGS 69) gave the best response 

in increasing protein concentration (Finney et al., 1957; Bly and Woodard, 2003). Strong (1982) 

also found that liquid N resulted in substantially higher grain protein concentration compared 

with dry granular N when applied at late growth stages. Endres and Schatz (1993) at Carrington, 

ND, found that using a foliar application of liquid N solution of UAN (28-0-0) at a rate of 34 kg 

N ha-1 resulted in the highest concentration of grain protein when applied immediately after 

anthesis (ZGS 69). This application resulted in a 0.5-1.0% increase in protein concentration. 

Although cultivar selection, planting dates, soil type, and growing conditions can affect protein 

concentration (Brown, 2000), a late-season N application at anthesis (ZGS 69) can increase 

protein concentration (Rawluk et al., 2000). Overall, the best management practice to achieve the 

desired grain yield and protein concentration levels is to target and manage N early in the season. 

A late season N application might be considered to optimize grain protein concentration, if 

anticipated grain yields are likely to exceed yield expectations when preplant N 

recommendations were determined (Wuest and Cassman, 1992).  

Large price discounts have been received by producers when they have not met market 

standards in recent years (2009-2011). Wheat producers are seeking methods to improve protein 

concentration while maintaining high grain yields. This study considered different N rates, 

different forms of N, and different N application timings to determine which treatments provides 

the best response in increasing protein concentration. An economic evaluation of treatments was 

performed to determine the most economic N fertilization methods.  
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Objective 

The objective of this research was to determine the best method to increase grain protein 

concentration with an in-season application of N, while maintaining grain yield and maximizing 

net return. 

Materials and Methods 

General Information 

Field experiments were conducted at the University of Minnesota Northwest Research 

and Outreach Center, Crookston, MN, (Latitude = 47. 48o N, Longitude = -96.36o W); the NDSU 

research fields near Prosper, ND, (Latitude = 47.00o N , Longitude = -97.11o W) and the 

Hettinger Research Extension Center in Hettinger, ND, (Latitude = 46. 03o N, Longitude = -

102.38o W) in 2011 and 2012. Table 2.1 lists the soil series, soil taxonomy and slope at each 

location. 

Table 2.1. Soil series, taxonomy and slope at Crookston, MN, Prosper and Hettinger, ND in 
2011 and 2012.  
Location Soil Series† Soil Taxonomy‡ Slope 
          % 
Crookston Wheatville

–Gunclub 
Coarse-silty, mixed, smectitic, superactive frigid Aeric 
Calciaquolls 
Fine-silty, mixed, superactive, frigid Aeric Calciaquolls 

0-2 

Prosper Kindred–
Bearden 

Fine-silty, mixed, superactive, frigid Typic Endoaquolls 
Fine-silty, mixed, superactive, frigid Aeric Calciaquolls 

0-2 

Hettinger Belfield–
Savage–
Daglum 

Fine, smectitic, frigid Glossic Natrustolls 
Fine, smectitic, frigid Vertic Argiustolls 
Fine, smectitic, frigid Vertic Natrustolls 

0-2 

† Soil data obtained from (USDA-NRCS, 2012). 
‡ Soil taxonomy listed on individual lines based on hyphenated soil series name. 

 

Soil samples were collected in the spring to determine the levels of N, phosphorus (P), 

potassium (K), pH and organic matter at each location (Table 2.2). Five random core samples 

from the trial were collected and combined prior to analysis. 
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Treatments consisted of a factorial combination of cultivars and N fertilizer treatments 

arranged in a randomized complete-block design with four replicates. The treatment structure 

employed at all sites is reported in Table 2.3. The recommended rate of N was based on a 

historical yield expectation of 4035 kg ha-1. The urea solution was prepared by mixing dry urea 

with lukewarm water to provide a solution that was 50% urea by weight, resulting in a solution 

with a composition of 23-0-0. For the treatment requiring a urease inhibitor, (N-(n-butyl) 

thiophosporic triamide) (NBPT) (Agrotain, Koch Agronomic Services, LCC, Wichita, KS) was 

added to the urea solution at the label recommended rate of 4.2 ml kg-1. 

In treatments receiving foliar fertilizer, solutions were applied at a rate of 187 l ha-1 using 

XR TeeJet 8002 VS nozzles (TeeJet Technologies, Wheaton, IL). Applications were applied 

using a hand-held backpack sprayer with a pressure of 207 kPa and a constant speed of 4.8  

km h-1. The boom was kept 46 cm above the crop canopy. Average temperature, relative 

humidity, bare soil temperatures, average wind speed, wind direction, and weather conditions at 

the time of application were recorded for each location (Table A.4, A.5, and A.6). One week 

Table 2.2. Previous crop, available N, P, K, pH and organic matter levels by sampling depth at 
Crookston, Prosper, and Hettinger in 2011 and 2012. 
Location PC† Depth N P K pH OM† 
 Cm kg ha-1 mg kg-1  % 

2011 
Crookston soybean 0-61 28.0 3 145 8.1 NA 

P  Prosper soybean 0-15   7.8      55       250 7.6 3.9 
  15-61 16.8        9       170 8.0 2.8 

Hettinger field pea‡ 0-15 63.8      32       650 6.4 3.6 
  15-61 57.1        4       305 8.0 2.1 

2012 
Crookston soybean 0-61 34.0 4  137 8.3 NA 
Prosper soybean 0-15       112.0        41 315 7.8 3.3 
  15-61       238.6        21 230 7.8 2.5 
Hettinger wheat 0-15 49.3     26 375 6.1 2.8 
  15-61 33.6          3 100 7.9 1.9 
†PC = Previous crop; OM = Organic matter 
‡  Field pea = Pisum sativum 
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after the treatments were applied, the percent of injury (leaf burn) to the plant foliage was 

estimated visually. This observation was based on symptoms across the entire plot using a scale 

of 0 % (no injury) to 100 % (complete crop destruction).  

 

Three HRSW cultivars were planted at an optimal planting date based on 

recommendations from the NDSU Extension and the UMN Extension Services. The three 

selected cultivars were ‘Faller,’ ‘Glenn,’ and ‘RB07.’  Faller was chosen because it is known to 

be high yielding with a lower protein concentration. Glenn has generally a higher protein 

concentration compared with Faller while RB07 has intermediate protein concentration and 

medium yield (Ransom et al., 2012). The agronomic characteristics of these cultivars are 

described in Table 2.4.  

Table 2.4. Characteristics of three HRSW cultivars chosen for late season N foliar applications. 
     Average Yield Within 

Region† 
  

Cultivar Origin‡ 
Year 

Released Height 
Days to 
Head 

Eastern 
ND 

Western 
ND Protein§ 

Volumetric 
Weight 

   cm  -----Mg ha-1 ----- g kg-1 kg –L 
Faller ND 2007 89 65 5.5 3.7 138 72.3 
Glenn ND 2005 94 61 4.8 3.4 149 76.4 
RB07 MN 2007 81 62 5.0 3.8 142 74.1 
† Based on a three year average (2010-2012). 
‡ Refers to agent or developer: ND = North Dakota State University, MN = University of Minnesota. 
§ Protein at 12% moisture. 
Source: Ransom et al., 2012. 

Table 2.3. Treatment structure employed that included N source, N rate, and time of 
application, Crookston, MN, Prosper and Hettinger, ND, (2011-2012).  
Nitrogen Treatment (kg ha-1) 
1) 123 urea applied pre-plant 
2) Base rate (90 kg ha-1 urea applied pre-plant) † 
3) Base rate + 34 UAN‡ applied ZGS 69 (post anthesis) 
4) Base rate + 34 urea-water solution applied ZGS 69 
5) Base rate + 34 UAN applied ZGS 45 (boot stage) 
6) Base rate + 34 urea applied ZGS 45 
7) Base rate + 34 UAN applied ZGS 92 (physiological maturity) 
8) Base rate + 34 urea-water solution+ NBPT§ applied ZGS 69 
† 90 kg ha-1 urea PP 
‡ UAN = urea ammonium nitrate (28-0-0) 
§NBPT = N-n-butyl thiophosphoric triamide urease inhibitor  
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Planting and Plot Maintenance 

Trials at Crookston in 2011 and 2012 were sown at a rate of 3 million viable seeds ha-1 

using an Almaco double disk plot drill with 15-cm row spacing and ten rows. Before trials were 

planted, a uniform seedbed was prepared with a field cultivator. Due to an extremely wet spring, 

seeding was delayed in 2011until May 17. In 2012 with a mild winter and favorable spring, 

planting was completed on April 11.  

Trials at Prosper in both 2011 and 2012 were sown using a seven row Great Plains 

3P605NT drill (Great Plains Mfg Inc., Salina, KS) with 18 cm row spacing. Before trials were 

planted, a uniform seedbed was prepared using a field cultivator. Due to an extremely wet spring, 

seeding was delayed until May 19. With a mild winter and a favorable spring, trials were planted 

on April 19, 2012. Trials were sown at a rate of 4 million viable seeds ha-1. Prior to planting, 

seeds were treated with tebuconazole at the rate of 3 ml kg-1 seed, using a batch seed treatment 

machine Hege II (Wintersteiger AG, Ried, Austria). 

Trials at Hettinger in both 2011 and 2012 were planted using a custom-made seven row 

no-till double-disc opener seeder (Fabro Enterprises Ltd, Swift Current, Sask. Canada) and a 

seven row custom made self-propelled cone seeder (Fabro Enterprises Ltd, Swift Current, Sask. 

Canada), with 18 cm row spacing. In 2011 trials were planted on May 9. In the fall of 2011, 112 

kg ha-1 of 46-0-0 was broadcasted and incorporated into the soil where plots for 2012 were 

planted. Fifty-six kg ha-1 of 11-52-0 fertilizer was placed with the seed during planting both 

years. Trials for 2012 were planted on April 4th. Seed treatment and sowing rate were the same as 

trials in Prosper.  

Experimental plots at Crookston were 2 m wide and 7 m long. Borders between plots 

were 0.5 m and alleys between reps were cut mid-season at a width of 2.4 m. Harvest area was 
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1.5 m wide by 4.6 m long. Prosper plots were 1.5 m wide and 5.2 m long. Gaps between plots 

were 0.3 m and alleys between replications were cut mid-season at a width of 1.5 m. The 

harvested area was 1.5 m by 3.7 m. Hettinger plots were 1.5 m wide by 8.5 m long. Borders 

between plots were 0.4 m and alleys between reps were cut mid-season at a width of 2.4 m. The 

harvest area was 1.5 m wide by 5.2 m long. Plots were trimmed from each end using a rotovator 

(Crookston and Prosper (2011)) or mowed (Hettinger and Prosper (2012)) to the lengths 

previously mentioned to produce an alley. Border plots of wheat were planted around the outside 

to ensure similar competition as interior plots.  

Stand counts were taken in 2012 at the ZGS 12 at Crookston and Prosper by counting the 

number of plants in a randomly selected 30-cm area of rows two and six at Prosper and rows two 

and nine at Crookston, then the number the number of plants from both rows were averaged, and 

converted to plants m-2. Prior to harvest, lodging notes and plant heights were taken. Lodging 

was based on a scale of 0-10 for the entire plot length with zero having no signs of lodging to ten 

being completely flat. Plant heights were collected by taking the average height of the erect 

plants from the soil surface to the top of the awns.  

Weed Control 

Broadleaf and grassy weeds at Crookston were controlled with a tank mix application at 

the ZGS 14 of bromoxynil and MCPA at 350 g, and 700 g ai ha-1, respectively, and pinoxaden at 

39 g ai ha-1. In Prosper weeds were controlled with an application of fenoxaprop, pyrasulfotole, 

bromoxynil at 89 g, 40 g, and 198 g ai ha-1, respectively, at the ZGS 12. A fungicide application 

of propiconazole and trifloxystrobin at 55g and 55g ai ha-1, respectively, was also applied at the 

ZGS12. In Hettinger weeds were controlled with an application of fenoxaprop , pyrasulfotole, 
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bromoxynil at 89 g, 40 g,  and 198 g ai ha-1 , respectively, at the ZGS12. Clopyralid, and 

fluroxypyur, at 138 g and 138 g ai ha-1, respectively, were applied at the ZGS 15. 

Harvest Methods 

At Prosper trials were harvested using a Wintersteiger Classic plot combine 

(Wintersteiger Ag, Ried, Austria). Following harvest, seed was dried (if necessary) and cleaned 

using a Clipper Office Tester and Cleaner (Seedburo Equipment Co., Chicago, IL). Data 

collected included: yield, test weight, protein and 1000 kernel weight. Moisture and test weight 

were recorded using a GAC 2100 moisture tester (DICKEY-John Corp., Minneapolis, MN). 

Yield was calculated by weighing the plot sample with a scientific scale (RS-232, Scientech Inc., 

Gaitherseberg, MD), adjusting to a moisture concentration of 13.5% and adjusting for the 

individual length of each plot. Grain protein concentration was measured using a 0.5 kg sub-

sample of seed from each plot on a Diode Array 7200 NIR Analyzer (Perten Instruments, 

Springfield, IL). Total protein was also calculated by multiplying the grain yield by the protein 

concentration of the plot and dividing by hundred. Thousand-kernel weight of the samples was 

determined by counting five hundred seeds with a with a seed counter (Model 850-3, 

International Marketing and Design Corp., San Antonio, TX), weighing them with the RS-232 

Scientech Scale, adjusting them to a moisture concentration of 13.5%, and multiplying by two.  

In 2011 and 2012, HRSW at Crookston was harvested using a Zurn 150 (Zurn Harvesting 

GmbH & Co., Schontal-Westernhausen, Germany) plot combine. After harvest, grain yield, test 

weight (volumetric weight), and grain protein were determined. Test weight was measured using 

the official GIPSA method with the Seedburo filling hopper and pint cup (Seedburo Equipment 

Co., Des Plaines, IL). Moisture and grain protein concentration were measured by NIT using the 

Tecator Infratec 1229 Grain Analyzer (Foss North American INC., Eden Prairie, MN) following 
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AACC method 39-10 (USDA-ARS, 2010). Grain yield was calculated by adjusting the plot 

weight to a moisture concentration of 13.5% and converting the weight to kg ha-1. Procedures for 

determining thousand kernels were similar to the method used for trials at Prosper.   

At Hettinger, HRSW was harvested using a Kincaid 8XP plot combine (Kincaid 

Equipment Manufacturing, Haven, KS). Moisture, test weight, and grain yield were determined 

with a Grain Gauge weighing system (Wintersteiger Ag, Ried, Austria) installed on the plot 

combine. Grain yield samples were adjusting to a moisture concentration of 13.5% and 

individual length of each plot. Grain protein concentration was measured using a 0.5 kg sub-

sample of seed from each plot on a Diode Array 7200 NIR Analyzer (Perten Instruments, 

Springfield, IL). Procedures for determining thousand kernels were similar to the method used 

for trials at Prosper.   

Statistical Analysis 

Data were analyzed using the PROC Mixed procedure of SAS 9.2 (SAS Institute, Cary, 

NC). Year, location, and replicates were considered random effects while N treatment and 

cultivars were considered fixed. Any fixed effects by random effects were also considered 

random effects. Main effects and interactions were tested using the appropriate error terms. A 

square root transformation was applied to percent leaf burn data prior to analysis to obtain a 

normal distribution of the data. Means were separated using Fisher’s protected least significant 

differences at the 5% level of significance.  

Results and Discussion 

Weather Information 

The 2011 and 2012 growing seasons were substantially different from each other. In 

2011, much of North Dakota and western Minnesota was extremely wet (NDAWN, 2013) and 
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thus a large area could not be planted. Due to cold and wet conditions in April when HRSW is 

typically planted in this geographical location, planting of the trials was delayed until May. At 

Crookston the mean air temperature for the growing season (17 May – 15 August 2011) was 18 

oC, at Hettinger (9 May – 11 August 2011) it was 17 oC and at Prosper it was 19 oC (19 May – 19 

August 2011) (Table 2.5). Monthly mean air temperatures were below normal averages in May 

for all locations, but above normal for July at all three locations (Table 2.6). Rainfall during the 

2011 growing season was 252 mm, 290 mm, and 451 mm for Crookston, Hettinger, and Prosper, 

respectively. 

 During the 2012 growing season, much of the area was drier than normal (NDAWN, 

2013). The mean air temperature for the growing season at Crookston (11 April – 27 July) was 

16 oC and the total rainfall was 226 mm (Table 2.5, 2.6). At Hettinger (4 April – 27 July) the 

mean air temperature was 16 oC and total rainfall was 291 mm, and at Prosper (April 19 – 31 

July) 17 oC and total rainfall was 160 mm. The monthly mean air temperature at all three 

locations was above normal for all months during the growing season. The monthly average 

precipitation was below normal every single month during the growing season at both Crookston 

and Prosper. At Hettinger, the months of April and July were well above the normal amount of 

precipitation.  

Combined Analysis 

Barlett’s test for homogeneity error of variance was not significant, thus allowing for the 

combining of environments in the ANOVA. Results from the trials in Prosper 2011 were not 

included in the analysis across environments because excess rainfall caused the trials to be 

flooded on three separate occasions resulting in uncharacteristic grain yield and grain protein 

concentrations.  
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Table 2.5. Average mean air temperature for the months of planting to harvest in Crookston, 
Hettinger, and Prosper in 2011-2012 along with normal (1981-2010) †. 
 Crookston‡ Hettinger Prosper 
 2011 2012 Normal 2011 2012 Normal 2011 2012 Normal 
Month --------------------------------------------------oC--------------------------------------------------- 
April 5 8 6 4 8 6 5 8 6 
May 12 14 13 10 12 12 12 15 13 
June 18 19 18 16 19 17 19 20 19 
July 22 23 21 22 24 21 23 24 21 
August 20 19 20 21 20 21 21 20 20 
† Source: NDAWN, 2013. 
‡Weather information collected from the Eldred, MN weather station which is 21 kilometers away. 

 

Table 2.6. Average mean rainfall for the months of planting to harvest in in Crookston, 
Hettinger, and Prosper in 2011-2012 along with normal (1981-2010) †. 
 Crookston‡ Hettinger Prosper 
 2011 2012 Normal 2011 2012 Normal 2011 2012 Normal 
Month --------------------------------------------------mm--------------------------------------------------- 
April 64.0 27.4 30.5 58.2 74.9 38.1 45.0 30.0 36.8 
May 66.3 31.2 73.9 112.5 55.9 62.5 80.0 46.2 77.5 
June 68.1 73.9 96.5 81.5 59.6 81.3 131.6 67.3 100.3 
July 79.0 93.7 76.2 42.8 100.1 58.2 150.1 16.3 87.9 
August 41.4 47.0 83.6 53.4 56.6 19.3 88.9 22.9 66.5 
Total 318.8 273.2 360.7 348.4 347.1 259.4 495.6 182.7 369.0 
† Source: NDAWN, 2013. 
‡Weather information collected from the Eldred, MN weather station which is 21 kilometers away.  

 

Cultivars 

Across all environments, cultivars were significantly different for test weight, 1000 

kernel weight, grain protein, and height. There were significant environment x cultivar (E x C) 

interactions for all agronomic traits measured except heading date. Except for yield and total 

protein harvested the E x C interactions were due to differences in magnitude.  

Glenn had significantly higher test weight than Faller and RB07. Glenn is known for 

having exceptionally high test weight, while RB07 and Faller typically have average test weight 

(Ransom et al., 2012). The combined average test weight for all three cultivars was 759 kg m-3 

(Table 2.7). In 2011, the average test weight for Glenn, Faller, and RB07 was 730, 690, and 680 

kg m-3, respectively, at Hettinger, and at Crookston the cultivars were 820, 780, and 770 kg m-3 
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(data not shown). The 90 kg m-3 difference in average test weight between the same cultivars 

grown at Hettinger and Crookston can be explained by the differences in precipitation received 

during the grain filling process thus substantially impacting grain quality characteristics. 

Moisture stress during grain filling can shorten the duration of starch accumulation, thus 

resulting in lower test weight (Altenbach et al., 2003).  

Across environments, Glenn had the highest protein concentration followed by RB07 and 

then Faller. The grain protein concentration was 164, 158, and 155 g kg-1 for Glenn, RB07, and 

Faller, respectively (Table 2.7). These results are as expected with higher protein concentration 

cultivars having higher protein concentration than lower protein concentration cultivars (Ransom 

et al., 2012). Weather conditions for 2011 caused major differences in grain protein 

concentration between cultivars at Crookston where the average values were 158, 150, and 147 g 

kg-1 for Glenn, RB07, and Faller, respectively; while in Hettinger values were 173, 172, and 167 

g kg-1(data not shown). Grain protein concentration averages were above 140 g kg-1 at Crookston 

and Hettinger because the average temperature for July (grain filling period) was above the 

normal (Table 2.5). Lower precipitation received at Hettinger during the grain filling period may 

have caused higher protein concentration levels there compared to Crookston because of 

alternations to the biosynthesis reactions of both starch and protein and the shortened 

accumulation of starch during kernel development (Altenbach et al., 2003).  

Data for 1000 kernel weight showed that trends between the combined and individual 

environments were similar (data not shown). The general trend from lightest to heaviest kernel 

weight was Faller, Glenn, and RB07, respectively. Again, weather conditions in 2011 caused 

dramatic differences in 1000 kernel weight between Hettinger and Crookston where the average 

1000 kernel weight across cultivars was 26 and 59 g, respectively (data not shown). Differences 
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between these two environments can be explained by the environmental conditions that altered 

the biosynthesis reactions of both starch and protein accumulations, thus impacting grain quality 

characteristics (Altenbach et al., 2003). In Crookston, cultivars had a longer grain filling period 

than Hettinger, thus resulting in heavier kernel weight. 

 Faller yielded the highest within and across environments except for Hettinger in 2012 

(data not shown). In 2012 at Hettinger, RB07 was significantly higher yielding then Glenn and 

Faller. Faller is later maturing than RB07, and does not usually perform as well as some of the 

earlier maturing cultivars in western North Dakota. This has been observed in several cultivar 

trails across North Dakota (Ransom et al., 2012) and is possibly due to the impact that heat and 

drought effects can have on grain yield later in the growing season, particularly on later maturing 

cultivars. This is especially important because temperatures in July were high, which could have 

had an impact on the grain filling process. When a plant is stressed due to lack of water or N, or 

when temperatures are extremely high, the time between anthesis and harvest can be reduced by 

as much as seven days (Altenbach et al., 2003). The reduction in the length of grain filling can 

negatively impact yield due to inhibition of enzymes involved in the starch biosynthesis, thus 

reducing starch deposition. Later maturing cultivars can be at an even greater disadvantage than 

earlier-heading cultivars when these unfavorable conditions occur during grain filling (Tewolde 

et al., 2006).  

 Total protein is derived from grain yield and grain protein. The dominance of grain yield 

in this research resulted in ranking of total protein that was similar to the ranking of grain yield. 

The differences in agronomic traits for 1000 kernel weight, test weight, grain yield, total protein, 

and percent protein were consistent with the results from current and previous cultivar trials in 

North Dakota (Ransom et al., 2012). 
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Grain Protein Concentration 

Significant differences between N treatments and grain protein concentration were found. 

The four N treatments that had significantly higher protein concentration than all other 

treatments were a split N treatments of 90 kg ha-1 of dry urea applied prior to planting + 34 kg 

ha-1 of a urea aq-solution applied at ZGS 45, 90 kg ha-1 of dry urea applied prior to planting + 34 

kg ha-1 of a UAN applied at ZGS 45, 90 kg ha-1 of dry urea applied prior to planting + 34 kg ha-1 

urea aq-solution + NBPT applied at ZGS 69, and 90 kg ha-1 of dry urea applied prior to planting 

+ 34 kg ha-1 UAN applied at ZGS 69 (Table 2.8). The average protein concentration for these 

treatments was 160.2, 160.5, 159.8, and 162.1g kg-1, respectively. Even though these treatments 

were similar, the additional application of 34 kg ha-1 UAN applied at ZGS 69 had in the highest 

grain protein concentration of all treatments. Similar observation has been documented before 

(Finney et al., 1957; Endres and Schatz, 1993; Bly and Woodard, 2003). This N treatment had a 

0.5% increase in protein concentration over the 90 kg ha-1 of dry urea applied prior to planting 

alone, which also had the lowest protein concentration of all treatments. To satisfy the N 

requirements of a wheat crop, Strong (1982) suggested that N be split into separate applications, 

Table 2.7. Means for test weight, heading date, 1000 kernel weight, grain yield, total protein 
harvested, height, and grain protein concentration for three cultivars of HRSW across all five 
locations.  

Cultivar Test 
Weight 

Heading Date 
(Julian Days)† 

1000 
Kernel 
Weight 

Yield 
Total 

Protein 
Harvest 

Height Grain Protein 

 kg m-3  g --------kg ha-1-------- cm g kg-1 
Faller 748.0   187 31.5  3629 594.3 74.4    155.3 
Glenn 780.8  175 29.6    3281 569.9 80.6  164.3 
RB07 749.5    175 28.3      3481 577.3 73.8    158.1 
        

Mean 759.4 179   29.8 3464 580.5 76.3 145.9 
CV % 3.7 38 3.8 9 8.4 4.3 2.4 
LSD (0.05) 14.3 NS 1.2 NS NS 5.7 2.3 
†A heading date of Julian Day 179 equates to June 27 in a leap year and June 28 in a non-leap year.  
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one at planting and another around flowering, stating this strategy allows for higher yield and 

grain protein responses compared to a single application.  

The environment x N treatment interaction for grain protein concentration was 

significant. The average protein concentration for all eight treatments across all environments 

was 159.2 g kg-1 (Table 2.8). Data indicated that UAN applied at ZGS 69 had the highest protein 

concentration in three of the five environments. This treatment did not have the highest protein 

concentration at Crookston and Hettinger in 2012. Nevertheless, it was still one of the best for 

having high protein concentration. 

The average protein concentration in 2011 was 150.4 g kg-1 at Crookston, and 170.6 g kg-

1 at Hettinger (Table 2.8). The major differences in protein concentration across locations in 2011 

can be explained by environmental conditions that impacted grain quality. The late-season 

application of UAN applied post anthesis had the highest protein concentration across both 

locations; however the large span in protein concentration between locations maybe explained by 

high temperatures and rainfall events that occurred throughout the growing season, especially 

during grain filling, that might impact N uptake from the soil and redistribution of N within the 

plant (Altenbach et al., 2003; Jenner et al., 1991). 

The average protein concentration for 2012 was 152.4, 164.8, and 158.8 g kg-1 at 

Crookston, Hettinger, and Prosper, respectively. Data indicated that different sources and timings 

of application of N resulted in different protein concentration across all three locations. In 

Crookston a split N treatment of 90 kg ha-1 of dry urea applied prior to planting + 34kg ha-1 of 

UAN applied at ZGS 45 had the highest grain protein concentration, while at Hettinger 90 kg ha-

1 of dry urea applied prior to planting + 34 kg ha-1 of a dry urea applied at ZGS 45 was the best 

treatment. And at Prosper, a split application of 90 kg ha-1 of dry urea applied prior to planting + 
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34 kg ha-1 UAN applied at ZGS 69 resulted in the highest grain protein concentration. Findings 

to this study are contrasting to previous research that has indicated that N applied foliar at ZGS 

60 gave the best response in increasing protein concentration (Finney et al., 1957; Bly and 

Woodard, 2003; Endres and Schatz, 1993). Research has also found that liquid N resulted in 

substantially higher grain protein concentration compared with dry granular N when applied at 

late growth stages (Strong, 1982). Different responses in protein concentration to N treatments 

across environments suggests that additional research needs to be conducted to help determine 

which N treatment will increase protein concentration the most across multiple environments. 

Overall, combined data confirmed that a late-season foliar application of N (regardless of source) 

either at the ZGS 45 or ZGS 69 can reliably raise protein concentration (Table 2.8). 

 

Leaf Burn 

There was significant environment x N treatment x cultivar interaction for percent leaf 

burn. The application UAN applied at ZGS 69 resulted in the highest percent of leaf burn across 

Table 2.8. Grain protein concentration influenced by N treatment across individual and 
combined environments.  

Nitrogen Treatment (kg ha-1) 

Crookston Hettinger Prosper Combined 
2011 2012 2011 2012 2012 2011-2012 

---------------------------------g kg-1--------------------------------------- 
1) 123 urea PP† 149.9     153.4  167.4         164.4     156.0     158.2     
2) Base rate‡ 148.0         151.6  169.1    159.9       156.4     157.0       
3) Base rate + 34 UAN§ ZGS 69 153.7  153.4  175.5  167.0     161.1  162.1   
4) Base rate + 34 urea-aq¶ ZGS 69 151.8    151.5  171.8    165.4     160.6  160.2   
5) Base rate + 33.6 UAN ZGS 45 149.1       155.0  170.1    165.5     155.8     159.1     
6) Base rate + 34 urea ZGS 45 151.0    154.2 170.3    170.6  156.6     160.5   
7) Base rate + 34 UAN ZGS 92 150.1    148.3    168.8     161.0       155.8    156.8       
8) Base rate + 34 urea-aq+ NBPT# 
ZGS 69 

150.8    152.0  171.5    164.9     160.0  159.8   

       

Mean 150.4 152.4 170.6 164.8     158.8 159.2 
CV % 1.3 3.3 1.9 2.3 1.7 2.4 
LSD (0.05)     1.6 4.1 2.7 3.1 2.2 2.3 
† PP = pre-plant 
‡ 89.6 kg ha-1 urea PP 
§ UAN = urea ammonium nitrate (28-0-0) 
¶  aq = water solution 
#  NBPT  = N-n-butyl thiophosphoric triamide, a urease inhibitor  
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all three cultivars (Table 2.9). The percent leaf burn was 35.8 %, 25.7%, and 23.2% for Faller, 

Glenn, and RB07, respectively. Faller also had the highest percent leaf burn with N treatments of 

UAN applied at the ZGS 45 and urea aq-solution + NBPT applied at ZGS 69. It was noted that 

Glenn had the highest percent leaf burn with UAN applied at the ZGS 45, and RB07 had a 

highest percent leaf burn with the urea aq-solution + NBPT solution applied at ZGS 69. 

Burning of the leaf tips caused by foliar N applications has been mentioned often in 

wheat, rice, and corn research (Gooding, 1988; Thom et al., 1981; Chesnin and Shafer, 1953). 

However, in some cases no foliar discoloration has been seen (Hanley et al., 1966; Sylvester-

Bradley et al., 1990). The difference in damage is likely due to the form of N in the liquid 

fertilizer (Garcia and Hanway, 1976; Rader et al., 1943). Some forms of N fertilizer, such as urea 

has a lower salt concentration compared to UAN. Thus, desiccation of leaf cells with urea 

through osmosis is reduced (Gary, 1977). Studies have also shown that adding a urease inhibitor 

can actually increase leaf burn due to increase toxic urea levels instead of NH3 (Powlson et al., 

1989). The severity of burning among cultivars may also depend on the timing of application and 

cultivar interaction (Gooding 1988). One recommendation to help reduce the severity of burning 

is to apply the solution in the cool of the day and when the humidity is high (Garcia and Hanway, 

1976). However, due to distances between locations and time management it was difficult to 

apply some treatments at the ideal timing, especially when some cultivars, such as Faller, mature 

later then Glenn and RB07. Also, weather conditions during application timing may have had an 

impact on the severity of leaf burn. These circumstances explain why the degree of burning to 

Faller, applied with UAN at post anthesis, was significantly higher than all other treatments and 

cultivar interactions. 
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Economic Return on Nitrogen Treatment 

An economic analysis was conducted to determine which N treatments would provide the 

best economic return for producers. This comparison was based on local current prices: $1.30  

kg-1 of N as urea, $1.61 kg-1 of N as UAN, $0.14 kg-1 of NBPT inhibitor added to every kg of N, 

and application cost of $14.20 ha-1 (Frayne Olson, personal communications). All other expenses 

were assumed equal. The average yield and protein concentration of the eight N treatments were 

used for determining return over the total cost of N ha-1. Three different comparisons were made. 

One based on the historical market (2007-2011) of $0.25 kg-1 for grain, another based on the 

2009-2010 average market prices of $0.18 kg-1 for grain and a premium of $0.042 kg-1 for 

protein over 140 g kg-1, and one based on 2012-2013 average market prices of $0.31 kg-1 for 

grain and a premium of $0.003 kg-1 for protein over 140 g kg-1 (Haugen et al., 2013). Values 

from 2009-2010 were chosen as an example of more extreme prices and discounts. Thus many 

producers received a large discount if they did not meet market requirements for protein and 

Table 2.9. Effects of cultivar and N treatment on leaf burn in HRSW cultivars across five 
environments. 

Nitrogen Treatment (kg ha-1) 
Faller Glenn RB07 

-----------------------% leaf burn---------------------- 
1) 123 urea PP† 0.0 (0.7)‡     0.0 (0.7)     0.0 (0.7)     
2) Base rate§ 0.0 (0.7)       0.0 (0.7)     0.0 (0.7)     
3) Base rate + 34 UAN¶  ZGS 69 35.8 (6.0)  25.7 (5.1)  23.2 (4.9)  
4) Base rate + 34 urea-aq#  ZGS 69 8.7 (3.0)     4.8 (2.3)    6.4 (2.6)   
5) Base rate + 34 UAN ZGS 45 10.9 (3.4)    10.8 (3.4) 6.4 (2.6)    
6) Base rate + 34 urea ZGS 45 0.0 (0.7)       0.0 (0.7)     0.0(0.7)      
7) Base rate + 34 UAN ZGS 92 0.0 (0.7)       0.0 (0.7)     0.0 (0.7)      
8) Base rate + 34 urea-aq + NBPT††  ZGS 69  12.9 (3.7)     5.7 (2.5)   11.1 (3.4)  
LSD (0.05) = 1.8 to compare different N treatments within the same cultivar  
LSD (0.05) = 0.5 to compare different cultivars within the same N treatment 
LSD (0.05) = 1.9 to compare different cultivars among different N treatments 
† PP = pre-plant. 
‡ numbers in ( ) are the transformed value of the % leaf burn which are used to calculate the LSD values. 
§ 90 kg ha-1 urea PP. 
¶ UAN = urea ammonium nitrate (28-0-0). 
# aq = water solution. 
†† NBPT = N-n-butyl thiophosphoric triamide, a urease inhibitor.  
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those that did exceed the benchmark received a large premium. A comparison with minimal 

differences in premium and discount prices was also included (2012-2013 values). 

Data showed that the economic return for the five year average ranged from $670-$745 

ha-1 with an average return across treatments of $694 ha-1 (table 2.10). In 2009-2010 the 

economic return was ranged from $640-$720 ha-1 and had an average return of $693 ha-1 across 

treatments. In 2012-2013 the economic return across treatments ranged from $880-$950 ha-1 

with an average return of $900 ha-1. Comparisons found that 90 kg ha-1 urea applied prior to 

planting provided the best economic return after subtracting N expenses for both the five-year 

average and 2012-2013 market average. However, 2009-2010 market averages indicated that 90 

kg ha-1 of UAN applied at ZGS 92 had sustainably lower economic return compared to the other 

seven treatments.  

When comparing these N treatments across different market prices, the data suggests that 

applying lower rates of N prior to planting provided the best economic return (Table 2.10). This 

maybe occurred because protein levels were well above 140 g kg-1 for each treatment, thus 

applying an additional application of N (regardless of form and timing) was not necessary. 

Therefore, one application of N applied at planting was sufficient in meeting grain yield and 

protein concentration needs. 

Of course, before making a final decision on how much nitrogen to apply there are 

several factors to consider. First knowing how much N is in the soil profile prior to planting is 

beneficial in determining how much N to apply at planting (Franzen, 2010). Also assessing late-

season N needs for reaching maximum grain yield and protein concentration can be achieved by 

taking in-season measurements that can predict the need for supplement N. Environmental stress 

throughout the growing season can also impact grain yield and protein concentration responses 
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(Altenbach et al., 2003). In order for a supplement N treatment for protein concentration to be 

economical depends greatly on the year due to discount and premium variability within a year 

and between years (Frayne Olson, personal communications). 

Conclusion 

Nitrogen had a significant effect on grain protein. Across environments a split application 

of 90 kg ha-1 of dry urea applied prior to planting + 34 kg ha-1 UAN applied at ZGS 69 resulted 

in the highest grain protein concentration. Applying an additional 34 kg ha-1 of UAN at ZGS 69 

to the original 90 kg ha-1 of dry urea applied prior to planting resulted in a 0.5% increase in 

protein concentration.  

Similar agronomic responses to N treatments were detected among cultivars expect for 

leaf burn. Faller was the most susceptible cultivar to leaf burn. Overall the data indicated that a 

foliar application of UAN at ZGS 69 had the highest percent of leaf burn across all cultivars. 

Thus, the timing of the application and the crop growth stage are critical in preventing severe 

leaf burn. 

When comparing these N treatments across different market prices, the data suggests that 

applying all N at planting seems to have the highest economic return when grain protein 

concentration is above 140 g kg-1. Of course there are several factors to consider when 

determining fertility management throughout the season in order to reach maximum grain yield 

and protein concentration levels. The best management practice to achieve desired grain yield 

and protein concentration levels is to target and manage N early in the season to optimize 

economic yield return. A late season N application might be considered to optimize grain protein 

concentration, if anticipated grain yields are likely to exceed yield considered when preplant N 

recommendations were determined (Wuest and Cassman, 1992). 
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Table 2.10. Economic return per ha for HRSW based on prices from the five year average (2007-2011), 2009-2010 
average, and 2012-2013 average across all environments. 

Nitrogen Treatment (kg ha-1) 

   Return over total N cost ha-1† 

Yield Protein Nitrogen 
cost ha-1 

Five year 
average 

(2007-2011)  

2009-2010 
average 

2012-2013 
average 

kg ha-1 g kg-1 -------------------------------------$--------------------------------- 
1) 123 urea PP‡ 3411 158.2 160.30 690.92 681.49 892.76 
2) Basal rate§ 3454 157.0 116.58 745.41 713.74 948.39 
3) Basal rate + 34 UAN¶  ZGS 69 3440 162.1 170.83 673.42 709.46 879.77 
4) Basal rate + 34 urea-aq#  ZGS 69 3495 160.2 160.30 697.85 711.97 906.10 
5) Basal rate + 34 UAN ZGS 45 3464 159.1 170.83 679.40 679.83 884.93 
6) Basal rate + 34 urea ZGS 45 3497 160.5 160.30 698.39 716.66 907.02 
7) Basal rate + 34 UAN ZGS 92 3468 156.8 170.83 680.34 641.24 883.65 
8) Basal rate + 34 urea-aq+NBPT†† ZGS 69 3482 159.8 165.12 689.60 690.79 896.58 
LSD (0.05) = 35.75 for five year average (2007-2011) 
LSD (0.05) = 36.84 for 2009-2010 average 
LSD (0.05) = 42.86 for 2012-2013 average 
†Market prices: five year average = $0.25 kg-1 for yield; 2009-2010 average = $0.18 kg-1 for yield and premium of $0.042 kg-1 for protein; 2012-2013 average = 

$0.31 kg-1 for yield and premium of $0.003 kg-1 for protein.   
‡ PP = pre-plant. 
§90 kg ha-1 urea PP. 
¶ UAN = urea ammonium nitrate (28-0-0). 
# aq = water solution. 
†† NBPT = N-n-butyl thiophosphoric triamide, a urease inhibitor. 
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CONCLUSION 
 

Plant measurements collected at the ZGS 37 provide the best time in predicting grain 

yield and protein concentration. The best measured values for predicting protein concentration 

are chlorophyll concentration, N concentration of leaf tissue, and N concentration of stem 

samples. By combining multiple measurements, the strength for predicting N needs in HRSW in 

order to reach maximum protein concentration levels is greatly increased. The data-set from this 

experiment is small and additional verification is needed, but plant measurements seem to be 

promising in determining supplement N needs for reaching desired protein concentration and 

grain yield. Therefore, incorporating plant measurements throughout the growing season to help 

manage N needs of the plant would be would be beneficial to producers to know if applying a 

late season application of N would be justifiable. 

Across environments a split application of 90 kg ha-1 of dry urea applied prior to planting 

+ 34 kg ha-1 UAN applied at ZGS 69 resulted in the highest grain protein concentration. 

Applying an additional 34 kg ha-1 of UAN at ZGS 69 to the original 90 kg ha-1 of dry urea 

applied prior to planting resulted in a 0.5% increase in protein concentration. This treatment also 

caused the greatest leaf burn across all cultivars. The severity to leaf burn caused by foliar 

applications depends on the individual cultivar, timing of application, and the crop growth stage. 

Thus proper management when applying foliar applications is critical in preventing severe leaf 

burn. When comparing these N treatments across different market prices, the data suggests that 

applying all N at planting seems to have the highest economic return when grain protein 

concentration is above 140 g kg-1. Overall, the best management practice to achieve desired grain 

yield and protein concentration levels is to target and manage N early in the season to optimize 

economic return. A late season N application might be considered to optimize grain protein 
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concentration, if anticipated grain yields are likely to exceed yield considered when preplant N 

recommendations were determined (Wuest and Cassman, 1992).
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Table A.1. Mean squares for the analysis of variance for agronomical traits evaluated across three environments 
(Crookston, MN, (2011-2012)) and (Prosper, ND (2012)). All plant measurements were normalized.  

Source of 
variation df 

Mean Squares 
GS† TS† CM† SS† GP† Y† TPH† 

Flag Leaf 
Environment (E) 2 0.101 0.092 0.060 1.052 11327.00 887810 156222 
Rep [E] 9 0.094 0.003 0.018 0.056 133.44 597661 15826 
Treatment (A) 3 0.158* 0.138** 0.203** 2.576*** 4271.17* 11373604 449968* 
    Linear 1 0.71*** 0.028*** 0.100*** 0.332*** 432.77** 3379860** 96531*** 
    Quadratic 1 0.018 0.008* 0.030* 0.022 83.66 99183 5377 
    Cubic 1 0.013 0.000 0.005 0.008 6.03 228884 1024 
A x E 6 0.042*** 0.022*** 0.007 0.236*** 1024.79*** 3548356*** 116427*** 
Cultivar (B) 3 0.033 0.013*** 0.007 0.007 2449.87** 3550532** 8202 
B x E 6 0.019*** 0.000 0.007 0.014 268.17*** 477995** 3890 
A x B 9 0.005 0.002 0.002 0.011 25.20 305574 8044 
A x B x E 18 0.005 0.002 0.006 0.014 46.49 168555 4549 
Error (b)  132 0.009 0.002 0.006 0.011 40.22 381474 8535 
† GS = greenseeker; TS = tissue sample; CM = chlorophyll meter; SS = stalk sample; GP = grain protein; Y = yield; TPH = total protein harvested. 
*,** , *** Significant at (P≤0.10) ,(P≤0.05),  and (P<0.01), respectively. 

Table A.2. Correlation between NDVI values collected at ZGS 37, grain yield and grain protein concentration in 
individual cultivars. 

Cultivars 

Yield Protein 
Prosper 

2012 
Crookston 

2011 
Crookston 

2012 Combined Prosper 
2012 

Crookston 
2011 

Crookston 
2012 Combined 

-----------------------------------------------------------R Value-------------------------------------------------------------- 
Faller 0.50 0.85 0.64 0.72 0.60 0.82 0.56 0.66 
Glenn -0.93* 0.84 0.92* 0.90* 0.30 0.88 0.90* 0.94* 
Samson 0.45 0.93* 0.99*** 0.99*** 0.91* 0.85 0.72 0.84 
Vantage 0.31 0.98** 0.98** 0.99*** -0.40 0.97** 0.86 0.95** 
*,** , *** Significant at (P≤0.10) , (P≤0.05),  and (P≤0.01) respectively. 
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Table A.3. Mean squares for the analysis of variance for agronomical traits evaluated across two environments 
(Crookston, MN, and Prosper, ND) in 2012. All plant measurements were normalized.  
Source of 
variation Df 

Zadoks GS 16 Zadoks GS 37 
Greenseeker Tissue Sample Chlorophyll Meter Leaf Color Chart Leaf Color Chart 

Environment (E) 1 0.0268 0.0490 0.0282 0.0020 0.0003 
Rep [E] 6 0.0316 0.0096 0.0379 0.0159 0.0082 
Treatment (A) 3 0.0258 0.0090 0.0238 0.0026 0.0104 
    Linear 1 0.0000 0.0112 0.0044 0.0326* 0.0138* 
    Quadratic 1 0.0206 0.0000 0.0046 0.0000 0.0018 
    Cubic 1 0.0000 0.0004 0.0028 0.0216 0.0015 
A x E 3 0.0316*** 0.0056*** 0.1115** 0.0008 0.0040 
Cultivar (B) 3 0.0163 0.0002 0.0149 0.0119 0.0095 
B x E 3 0.0120 0.0015 0.0255 0.0165 0.0160** 
A x B 9 0.0087 0.0005 0.0270 0.0063 0.0018 
A x B x E 9 0.0046 0.0006 0.0221 0.0117** 0.0038* 
Error (b)  90 0.0099 0.0024 0.0185 0.0053 0.0022 
*,** , *** Significant at (P≤0.10) ,(P≤0.05),  and (P<0.01), respectively. 

Table A.4. Growth stage, date, time, average temperature, relative humidity, bare soil temperature, average wind speed, direction 
of wind, and weather conditions at the time of application of N treatments at Crookston, MN in 2011 and 2012†. 

Stage‡ Date Time Avg Air                                            
Temp. 

Avg Relative  
    Humidity 

Avg Bare Soil 
Temp. 

Avg Wind 
Speed 

Avg Wind 
Direction 

Weather 
Conditions 

 Co % Co m/s  
2011 

ZGS 45 June 30 0830    26    89 20       7.5 southeast sunny 
ZGS 69 July 9 0900    23    90 21       3.8 southwest sunny 

    ZGS 92   August 3                 1400    26    58  25     2.2     southwest partly cloudy  
2012 

ZGS 45  June 6  1750        30    35     26       5.2 south partly cloudy 
ZGS 69 June 12  1830        21    46     20       5.7 south clear 

   ZGS 92     July 18 0  1430            30    41     25     3.7 southeast clear 
† Data collected form NDAWN.  
‡ Stage = ZGS 45 is Boot stage; ZGS 69 is Post Anthesis; ZGS 92 is Physiological Maturity. 
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Table A.5. Growth stage, date, time, average temperature, relative humidity, bare soil temperature, average wind speed, direction 
of wind, and weather conditions at the time of application of N treatments at Prosper, ND in 2011 and 2012†. 

Stage‡ Date Time   Avg Air                                                   
Temp. 

Avg Relative    
Humidity 

Avg Bare 
Soil Temp 

Avg Wind 
Speed 

Avg Wind 
Direction 

Weather 
Conditions 

 Co % Co m/s  
2011 

ZGS 45 July 5  0900  23 70         22      5.1 northwest clear 
ZGS 69 July 12   1500  23 48 28      4.7 north partly cloudy 

    ZGS 69 (Faller)  July 13      1500  24 53     28 5.7 southeast Clear     
ZGS 92  August 5      0900  24 82     22 2.7     southeast clear 

2012 
ZGS 45 June 15  2000   25 47     28      1.6 southeast clear 
ZGS 69 June 25  2100   22 52     28      2.8 southeast clear 

    ZGS 69 (Faller) June 26  2100   24 58     28      3.8 southeast partly cloudy 
ZGS 92 J   July 23 `    0900 23 79     25          3.8 north clear 
† Data collected form NDAWN, 2011.  
‡ Stage = ZGS 45 is Boot stage; ZGS 69 is Post Anthesis; ZGS 92 is Physiological Maturity. 

Table A.6. Growth stage, date, time, average temperature, relative humidity, bare soil temperature, average wind speed, direction 
of wind, and weather conditions at the time of application of N treatments at Hettinger, ND in 2011 and 2012†. 

Stage‡ Date Time Avg Air                                                
Temp. 

Avg 
Relative   

    Humidity 

Avg Bare 
Soil Temp. 

Avg Wind 
Speed 

Avg Wind 
Direction 

Weather 
Conditions 

 Co % Co m/s  
2011 

ZGS 45 July 1 1000     20   82  21        2.8 northwest partly cloudy 
ZGS 69 July 12 1600     23   62  30        5.0 north cloudy 

    ZGS 92   August 5     1030     25   64      24             1.9     southeast clear 
2012 

ZGS 45 June 11 2000       15   43      23        4.6 northwest clear 
ZGS 69 June 18 1800       25   33      30        2.7 north partly cloudy 

    ZGS 69 (Faller) June 21      2000       22   46      27   2.3 north clear 
ZGS 92 J   July 20     1000           28   56      26   4.0 northeast Partly cloudy 
† Data collected form NDAWN, 2011.  
‡ Stage = ZGS 45 is Boot stage; ZGS 69 is Post Anthesis; ZGS 92 is Physiological Maturity. 



 

  

75 

Table A.7. Mean squares for the analysis of variance for agronomical traits evaluated across five environments 
((Crookston, MN (2011, 2012) Hettinger, ND (2011, 2012) and Prosper, ND (2012)).   

Source of 
variance df 

Mean squares† 

LF HT GP HD TW 1000 
KWT Y TPH 

Environment (E) 4 65.53 8037.8 6804.8 10544 125181 699.0 79184497 2272598 
Rep [E] 15 0.72 93.1 70.3 4842 1225 5.2   880874 17555 
Treatment (A)  7 174.12*** 15.4 198.5*** 4657 498 2.4 49544 4234 
E x A 28 24.05*** 12.4 39.3*** 4708 744 2.0 141891* 2972* 
Cultivar (B) 2 5.74 2232.6** 3378.3*** 7446 54829*** 429.9*** 4875045* 24939 
E x B 8 4.23*** 493.2*** 83.4*** 4676 3196*** 23.2*** 1170760*** 27959*** 
A x B 14 2.27** 8.7 22.2* 4708 773 1.6 169245* 2968 
E x A x B 56 1.05*** 12.8 13.3 4699 829 1.5 93478 1844 
Error 345 0.47 10.6 12.5 4681 774 1.3 105185 2403 
† LF=leaf burn; HT=height; GP=grain protein; KWT=kernel weight; Y=yield; TPH=total protein harvested. 
*,** , *** Significant at (P≤0.10) , (P≤0.05),  and (P≤0.01) respectively. 
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Table A.8. Means for test weight, heading, 1000 kernel weight, grain yield, and total protein harvested, for nitrogen treatments 
across all five locations. 

N Treatment (kg ha-1) Test Weight Julian Day 
of Heading† 

1000 Kernel 
Weight Yield Total Protein 

Harvest Height 

kg m-3  g --------------kg ha-1----------- cm 

1) 123 urea PP‡ 760.6 176.6 29.9 3411 570.5 76.3 
2) Base rate§ 761.2 176.0 29.9 3454 571.3 76.4 
3) Base rate + 34 UAN¶ ZGS 69 756.8 176.0 29.7 3440 585.9 75.9 
4) Base rate + 34 urea-aq# ZGS 69 760.2 176.0 29.9 3495 588.9 76.1 
5) Base rate + 34 UAN ZGS 45 753.5 201.0 29.5 3464 579.1 75.5 
6) Base rate + 34 urea ZGS 45 760.4 175.9 30.1 3497 591.6 77.0 
7) Base rate + 34 UAN ZGS 92 762.3 176.1 29.8 3468 572.2 76.9 
8) Base rate + 34 urea-aq+ NBPT†† ZGS 69 760.5 176.0 29.5 3481 584.6 76.1 

       

Mean 759.4 157.2  29.8 3464   580.5    76.3 
CV % 3.7 38 3.8 9 8.4 5.7 
LSD (0.05) NS NS NS NS NS NS 

†A heading date of Julian Day 179 equates to June 27 in a leap year and June 28 in a non-leap year.  
‡PP = pre-plant. 
§90 kg ha-1 urea PP. 
¶ UAN = urea ammonium nitrate (28-0-0). 
# aq = water solution. 
†† NBPT inhibitor = N-n-butyl thiophosphoric triamide urease inhibitor (Agrotain). 


