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ABSTRACT 

 

Testing methods of software systems have been receiving more and more focus in recent 

years. Exploratory Testing (ET) is one such testing method. The advantages of ET are generally 

outweighed by its disadvantages, mainly the time necessary to perform it. Multiple test 

automation methods and frameworks offer time saving benefits, in generally what is already a 

limited amount of time in the development process. In this study we propose Model-based 

Exploratory Testing (MBET), an approach that incorporates the advantages of ET and the time 

saving automation of Model-based Testing (MBT). To assess our approach, we conducted a 

controlled experiment focusing on the number, severity, and type of defects that were detected 

by MBT and MBET. Our results show that the defects detected by these two testing methods are 

complementary, and can generate a test suite that provides advantages of both ET and automated 

testing methods. 
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CHAPTER 1. INDRODUCTION 

 

Exploratory testing a continuous process of learning, test design, and test execution 

against a software system. It is becoming a more desirable testing method as more and more 

projects begin using agile development processes [1,2,3]. However, exploratory testing is often 

overlooked as a useful testing method by many project managers since it tends to be more 

demanding of resource use. Further, exploratory testing is believed to have limited test coverage 

compared with other methods of testing. Automating exploratory testing can address this 

problem because automated testing reduces the amount of time spent creating and executing test 

cases by testers, which saves time and money [4,5,6,7]. Automation can also help improve the 

coverage of testing with certain automation frameworks. 

There are many automation approaches to automate software testing, such as Data-driven 

testing, Keyword-driven testing, and Model-based testing [8,9]. Model-based Testing (MBT) 

provides a framework for automating test generation and verification based on a behavioral 

model of the system under test (SUT) [10,11,12,13]. Using defined standards provided by the 

Unified Modeling Language (UML), models can be generated from system requirements and an 

abstract knowledge of how the SUT is supposed function [14,15,16]. Such models can normally 

be created by the design team prior to the development of the SUT. Test cases can then be 

derived from paths that traverse this model. Also by using this model to generate test cases, a 

more complete coverage of the SUT can be achieved [17]. 

Numerous models can be used for MBT, such as finite state machines, statecharts, and 

UML [10]. Using a standardized language like UML, research has shown that models that are 
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more defined representations of the SUT can be generated, resulting in better test coverage and 

test cases [11,17]. UML state machines and sequence diagrams are behavioral models of 

software systems [15,18]. UML state machines represent software systems by the states the 

system can exist in and the transitions between these states. However, guarded state machine 

transitions do pose problems with model based test cases. The transitions from one state to 

another state (or itself) can contain a guard, which is used to determine whether the transition has 

been traversed successfully and that the system is now in the target state [15]. Since a guarded 

transition is dependent on run-time values, MBT can generate infeasible test cases. Such test 

cases could be useful in some cases, however, if such guards could be factored into test case 

generation more comprehensive testing could be achieved. 

In this research, we propose Model-based Exploratory Testing (MBET) to address the 

automation and infeasible test issues that have been stated. The implementation of MBT to 

automate portions of exploratory testing could prove extremely useful in saving time, money, 

labor, and other resources during the testing process. Automating the generation of test cases at 

run-time using a state machine model, results in a process that can be described as the 

automation of exploratory testing. The resulting test cases would be more realistic 

representations of an actual user interacting with the system at run-time. These cases could be 

compared with those generated from standard MBT methods, which as stated previously could 

be rather limited or infeasible representations of interactions with the system under test. It would 

be reasonable to suggest that test cases generated by a MBET process would be more significant 

in terms of representing realistic use of the SUT than those generated from MBT methods. This 

project is not recommending that the entire process of exploratory testing can be automated, but 
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if a majority of the process can be, then exploratory testing methods might become more 

desirable for testing software systems. 

To evaluate MBET, a controlled experiment was conducted on a software system that 

was currently being developed. This evaluation was done by comparing the number and type of 

defects found using test cases generated by using a MBET process and those found using a basic 

MBT process. The results from this experiment show that overall MBET detected more defects 

than MBT. MBET detected certain types of defects better than MBT, while MBT detected other 

types better than MBET. 

The remaining portion of this thesis is structured as follows. Section 2 reviews existing 

research on automated testing, model-based testing, and exploratory testing. Section 3 presents 

the MBET process and the tool used to apply it. Section 4 provides an outline for the study 

including how the experiment was prepared and executed along with threats to validity and the 

collected data and results of the experiment. Section 5 discusses the results from Section 4. 

Finally, in Section 6 the conclusions and outline of possible future work are presented. 
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CHAPTER 2. BACKGROUND & RELATED WORK 

 

This section of the thesis will supply background information about automated software 

testing, model-based software testing, exploratory testing and other related work. 

2.1. Automated Software Testing 

Automated software testing has become extremely useful for software testing. Automated 

software testing methods can help reduce the time, labor, and cost of software testing [4,5,6,7]. 

Commonly, testers are responsible for creating these test cases manually, which is time 

consuming and labor demanding. By acquiring or developing a testing tool that can automate the 

generation process, time spent generating these test cases can be vastly reduced. Also, the 

execution of the test cases can be expensive or extremely difficult when handled manually by a 

tester. By automating the execution process, test cases can be executed in large numbers and 

without tireless effort by a tester. 

Automated software testing has allowed testers to increase their productivity and improve 

the systems they test. Software testing and quality assurance generally account for a majority of a 

project’s total costs [19]. This along with the all too common shorter schedules for testing during 

software development often lends itself to automating software testing. However, sometimes due 

to costs of purchasing an automated testing tool or developing one, automated software testing 

can fall short of its expectations [4]. Generally, with structured planning and analysis such issues 

can be avoided. Automated software testing has become a main staple of software testing 
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processes in almost all projects today [8]. There are many different approaches to automating 

software testing, each providing their own advantages to the testing process. 

Data-driven testing relies on data driven scripts and is usually the quickest and easiest to 

implement [8,9]. However, it generally leads to long-term failure since the staff required to 

maintain the tool and test cases becomes difficult. Keyword-driven testing offers the ability to 

insulate the tests from automation tool shortcomings and modifications to the system under test 

(SUT) [8]. Such testing allows simple keywords to be used as input for test cases, allowing them 

to be easily written and understood. Keyword-driven testing is extremely difficult to implement 

and can cost an enormous amount of time and effort to do so. 

2.2. Model-based Software Testing 

Model-based testing (MBT) focuses on using models of the SUT to guide the testing 

process [8,9,10,20]. MBT has gained more popularity due to standards specified by UML and the 

need to test the more complex systems being developed today [13]. These models can take many 

forms, but they represent the behavior of a software system [10]. These models can be used to 

generate test cases, or validate the results of a test case [12,14]. These models offer a major 

advantage of displaying a simple representation of the system that can be easier to understand 

than lengthy documentation. MBT can help address problems with expenses, lack of 

methodology and discipline [21]. 

To develop these models, a tester needs a high level of understanding of the system and 

its environment [10]. Once they have acquired this knowledge, they will then need to decide on 

the type of model that will best represent the system and build the model [14]. However, time 

can be saved if such a model is created by the design team prior to development of the SUT. 

Then, using the model, test cases can be generated, executed, and the results collected using 



6 

 

automation methods [12,20]. The test results can be evaluated by comparing what the model 

specifies and what the software actually does. Evaluating the results of MBT can rely on 

verifying whether the proper state has been reached for example. 

MBT offers an excellent guide for software testing. Many different languages can be used 

for MBT depending on the type of system that is being tested [10]. However, UML models are 

becoming more and more popular as the preferred language. For this project, UML finite state 

machines are selected as the type of model to represent the SUT [15,18]. 

UML has standardized multiple types of models to represent software systems over the 

years. One of these is the finite state machine model, or simply as we refer to it state machine 

[15,18,19]. A state machine model is a representation of the behavior of a system. Each state in 

the model represents a specific state the system can exist in at a time. Transitions in the model 

represent the movement of the system from one state to another state provided some action. 

Generally, these transitions include some type of trigger(s) and guard, and sometimes they 

include a behavioral expression. 

The trigger(s) usually specify some type of event(s) that induces the transition from the 

state to another state (or back to itself) [15,19]. These events fire for the transition and if a guard 

exists, the guard is checked for completion of the transition. This guard is generally written in 

terms of a triggering event’s parameters. A behavioral expression can also be included, which 

briefly describes what happens when a transition is traversed. 

Also, included in a state machine is an initial and final state. The initial state is the 

entrance into the state machine, while the final state is the completion of the state machine. Each 

state may contain other states and transitions, and is called a composite state, with the internal 
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states called substates. A simple example of this case is when a composite state can be broken 

down even further into multiple substates which are all directly related to the parent state. 

2.3. Exploratory Testing 

Most testers have performed exploratory testing without even knowing it [1,2,3]. 

Exploratory testing can be summarized to a simple sentence provided by James Bach [3], 

“Exploratory testing is simultaneous learning, test design and test execution.” 

The process of exploratory testing involves a cycle of test design and execution in which a tester 

is constantly learning and adapting their design and execution from the collected results. 

Therefore, many testers that execute a test case, report a bug, and then re-execute the test case 

and variations of that test case to verify the bug has been fixed are performing a form of 

exploratory testing. 

However, many organizations and companies do not look favorably on exploratory 

testing due to some of its drawbacks. For example, it is considered to be more time and resource 

demanding than scripted testing [1,2,3]. This extension of time and resource allocation can be 

problematic in projects since many organizations do not tend to assign the appropriate amount of 

time and resources for test execution in the first place. Moreover, exploratory testing tends to 

produce less test documentation prior to test execution. Such documentation is generally used by 

many organizations for visibility and transparency before test execution [1,2]. Documentation 

and test case generation can also be used as metrics to monitor the performance and progress of 

testing teams. Since many organizations tend to prefer these metrics, the lack of initial 

documentation and test cases from using exploratory testing tends to make it undesirable. 
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Automating exploratory testing is a controversial topic, because most research and 

discussion agree that effective exploratory testing cannot be fully automated [1,3]. However, 

some do believe exploratory testing can benefit from being automated, at least partially [1]. By 

using a structured approach or method, exploratory testing could reap the benefits of automated 

software testing. Such success could improve the view of exploratory testing in the software 

development process and testing community. 
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CHAPTER 3. MODEL-BASED EXPLORATORY TESTING 

APPROACH 

 

To support a Model-based Exploratory Testing (MBET) approach, we build an automated 

testing tool, the Crushinator. This section provides an overview of the project’s previous history 

and how the framework was implemented for MBET. This section also provides a simple 

example to explain this process in greater detail. An explanation of the transformation of UML 

for MBET is also included in this section. 

3.1. The Crushinator 

The original Crushinator (Crushinator version 1, Cv1) [22], was designed to be a testing 

tool for multiple event-driven client-server games. It was intended to be a multi-threaded 

application that could run automated tests on such games. However, Cv1 did not end up meeting 

the specified requirements. 

The new Crushinator project (Crushinator version 2, Cv2), is a major refactoring of the 

original Crushinator. The Cv2 provides a game-independent, model-based, automated testing 

tool framework for any event-driven client-server game. The Cv2 was designed to implement 

multi-threading, automated software testing, MBT, load testing, and MBET.  

The first portion of the project was to refactor and implement a model-based game-

independent testing tool framework. Once this was achieved, the Cv2 framework was then 

implemented to include a simplified load testing graphical user interface (GUI) and MBET GUI 

along with the supporting backend framework. This framework was then used to develop a 
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testing tool for the Virtual Cell game under development by the WoWiWe Instruction Co [23]. 

The testing of the Virtual Cell game is used to generate the data and results for this thesis. 

The Cv2 was designed as a layer architectural system, as seen in Figure 3.1. This allows a 

layer to be replaced at anytime and not affect the system as a whole. The modules inside the hash 

boarder are dependent upon the system under test (SUT), and the “Test Engine” and “Simulated 

Client” modules are implemented to be used directly on the SUT. 

 

Figure 3.1. Crushinator version 2 architectural diagram. 

The “User Interface” module manages the interactions of a tester and passes those 

requests down to the “Test Engine” module. The “Test Engine” module is responsible for 

managing and executing tests against the SUT. The “Test Engine” module handles the creation 

of clients and passing of test cases from the “User Interface” to the “Simulated Client” module 

that interacts directly with the SUT. The “Simulated Client” module is primarily responsible for 
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interacting with the SUT. This module takes the test case from the “User Interface” module and 

sends the instantiated events to the SUT. 

Along with these layered modules are three assisting modules used for handling a 

majority of the work associated with MBT and serializing test information. The “UML” module 

is responsible for generating a representation of a state machine model from an XML Metadata 

Interchange (XMI) [24] file (such as a model of the Virtual Cell server). It is used by the “User 

Interface” module to allow a tester to select models to generate MBT test cases. It is also used by 

the “Test Engine” module at run-time for MBET test case generation. 

The “Script” module is used to represent events, known as “Script Events,” for the SUT 

in an abstract format to allow the “User Interface” to remain abstracted from the SUT. These 

“Script Event” objects are used to pass the type of event along with its parameters from an XML 

test case file format through the “Test Engine” to the game dependent “Simulated Client” 

module. There the information is handed off to the “Event Factory” object in the “Script” module 

that turns the information into a SUT dependent event to send to the SUT. The “Logger” module 

is used throughout the layered modules to serialize test results, configurations, warnings, etc. that 

occur during testing.  

The Cv2 communicates directly with a game server, using a specified connection type, to 

send game based events to the server and retrieve the responses from that server if necessary. 

The responses can then be used to collect results, update values, or parsed for data to send back 

to the server. The Cv2 project allows for multiple connections types, such as RMI and socket 

connections for example, to be used inside the framework.  

The Cv2 also generates and utilizes XML files as test cases that contain game events and 

their parameters, which can be sent to a game server. These XML files can be generated from 
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multiple sources, such as manually selecting game events and saving the test case using the Cv2 

GUI, generating test cases from model based state machines, using an implemented game client 

to generate test cases from actual game play, or from using MBET. 

3.2. MBET Process 

We now describe the MBET process as it is applied to the SUT in this study. MBET can 

be applied to any event-driven system that can be represented using a UML state machine. The 

Crushinator testing tool framework described in Section 3.1 is an example of applying MBET to 

test multiple systems. 

 The following steps are then taken to apply the MBET process: 

1) Create a state machine model that is a representation of the SUT. 

2) Export the state machine model into XMI which can then be used by the Crushinator 

3) Use the Crushinator to connect to the SUT 

4) Execute an initial test script (optional) 

5) Execute the trigger(s) or event(s) for an available outgoing transition from the current 

state of the SUT 

6) Check the run-time dependent transition guards to verify traversal of a transition 

7) Calculate available outgoing transitions from the current state 

8) Continue the automated steps 5-7  until a pre-determined termination point, selected by a 

tester, is reached (e.g. completion of the game, time limit, execute a loop of transition(s)) 

9) Output the series of transitions, along with their trigger(s) and guard values into a test 

case that can be used for future testing 
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The first step in the process of MBET is to create a state machine model that represents 

the SUT. An example model shown in Figure 3.2 is a small state machine model that is a subset 

of the state machine of the Virtual Cell game server used in the experiment described in the 

study section of this paper (Section 4). State machines models of the Virtual Cell server can be 

found in their entirety in Appendix A. This subset model has been slightly modified to include an 

initial and final state to conform to a standard state machine model. 

 

Figure 3.2. Virtual Cell state machine subset. 

The transitions of the model contain information necessary to represent the SUT. In this 

example the transition label “A: Enter Vacuole : [Location = Vacuole]” is a simplified version of 

that found in the models used in this study, in Appendix A, supplied for explanation of this 

example. The transition name “A,” used to uniquely identify each transition, is supplied along 

with  the transition’s trigger “Enter Vacuole”, while the guard for this transition “Location = 

Vacuole” is structured to represent that change of a player’s location that must occur for the 

transition to be successfully traversed (the player’s location must be inside the vacuole).  
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To simplify the models used in this study, data is abstracted from the model and placed 

into configuration files, which is explained in Section 3.4. Abstracting this data, such as 

transition trigger(s) and guards, allows the model to retain its readability while fully representing 

the SUT. Also, when changes to the SUT are made during an agile development process, simple 

changes to triggers and guards can be made to the configuration file rather than the need to 

modify and re-serialize the model to XMI. 

Once a model of the SUT has been generated, the model then needs to be serialized into 

XMI, a format of XML used to represent models. In this work, the UML modeling tool StarUML 

[25] is used to generate the state machine model, which can then be serialized to XMI. Many 

different modeling tools were examined; however StarUML was selected since it was open 

source software and had the feature to export models to XMI. 

The Crushinator is there after used to connect and interact with the SUT. The tool should 

not only be able to communicate with the SUT, but should also be able to instantiate objects for 

communication reflectively if needed. The Crushinator automates this process. This framework 

provided the basic features for connecting to the SUT, instantiating objects reflectively, and 

managing the XMI files generated by StarUML. 

Once connected to the SUT, using the Crushinator, the series of events specified in the 

initial test case (if one is supplied) are applied to the SUT. Once this is complete, available 

outgoing transitions are calculated from the current state of the SUT specified by the state 

machine model. From those transitions, one transition is selected and the trigger(s) for that 

transition are applied to the SUT. Selection of a transition from the available transitions can be 

done in multiple ways. For instance, assigning the transitions with a heuristic value can make 
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one transition more desirable for selection over other transitions. The Crushinator sorts the 

transitions by these values, with transitions with smaller values being more desirable (e.g. a 

transition with a weight of zero is selected over a transition with a weight of five). This process 

is explained later in Section 3.4.3. Using a random selection from the available transitions can 

also be applied to this process. 

After the trigger(s) of the selected transition have been applied to the SUT the most 

important part of MBET is performed; checking the run-time dependent guard of the transition. 

While MBT follows the steps explained above, this critical step is what differentiates MBET 

from standard MBT methods. The ability to check whether a transition’s guard has been 

successfully fulfilled during test execution allows the current test to verify the traversal of a 

transition and movement of the SUT from one state to another. Since these tests rely on run-time 

dependent values to verify the current state of the SUT, they are more interactive than standard 

MBT methods.  

MBT generates test cases prior to test execution. Therefore it can generate possible 

infeasible test cases. For instance, if a guarded transition that depends on run-time dependent 

values exists in the state machine model, MBT will not be able to determine whether the guard is 

fulfilled and therefore whether that transition was successfully traversed. These infeasible test 

cases can be used to verify that the model behavior conforms to the SUT. But if we do not 

consider these guards, we might not detect defects that reside in the SUT. 

Using the guard to determine whether the current state of the SUT has changed, the 

available outgoing transitions are then again calculated for the new current state. Steps 5 through 

7 are then repeated until a test termination point is reached. If however, the transition guard 



16 

 

prevents the transition from being successfully traversed, the remaining transitions for the 

current state are used for the transition selection step. This means that all outgoing transitions for 

a specific state are attempted until a transition is successfully traversed. The following pseudo 

code explains the process in more detail. 

availableTransitions = currentState.getOutgoingTransitions(); 

sortedTransitions = sortTransitionsByWeight(availableTransitions); //descending order 

foreach (Transition t in sortedTransitions) 

 applyTransitionTriggers(t.getTriggers()); 

 if (checkTransitionGuard(t.getGuard())) 

  currentState = t.getTargetState(); 

  testPath.add(t); 

  return; 

 else 

  continue; 

 

If all of the outgoing transitions have been tried for the current state and none are 

successfully traversed, the test can then terminate or the current state can then be recalculated 

using the state machine model. The current state is recalculated by selecting the initial state from 

the model, and then selecting the states targeted by transitions whose goal-based guards, guards 

based on game goals and tasks for a player, have successfully passed. Using the selected states, 

the transition guards are again checked for those dependent on a location-based guard, a guard 

based on the current game room a player is located in, to select the state the successfully guarded 

transition targets. These guard types have been specified for the testing of the Virtual Cell game 

server directly and are part of the implementation added for testing Virtual Cell. 
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When a termination point has been reached, the test terminates and the path traversed 

through the state machine model is output to an XML file. This path contains all the data from 

the triggers of the transitions that have been attempted during the test. This file can then be used 

to re-execute the test using the Crushinator which generated it. 

3.3. MBET Example 

To explain the process of MBET in greater detail, this section will provide a simple 

example. This example will use the state machine subset from the actual Virtual Cell game 

supplied above in Figure 3.2. The Crushinator testing tool is used to execute the MBET for a 

player against the Virtual Cell game server. 

The Crushinator is used to connect to the Virtual Cell game server, and a player is setup 

to be at the initial state of the state machine subset. Once a player has been successfully 

connected to the game server and logged in, and then the player is at the initial state of the state 

machine, the Crushinator will select a transition from the available outgoing transitions. In this 

example the only available transition is “A: Enter Vacuole”, which means the player then sends 

the trigger(s) (event(s) from this point on) for that transition. After the event(s) have been sent 

for the transition, the guard for the transition is then checked, in this case “Location = Vacuole”. 

If the guard fails for the transition, it is possible that the test is over since no other transitions are 

available to try (dependent on the test termination settings). This test may mean that a defect 

exists with the SUT since the player cannot traverse any available transitions. 

If the guard does pass successfully, that means the player is now in the transition’s target 

state, “Entered Vacuole”. With the player in a new state, a transition is then selected from the 

available outgoing transitions of the new state (transitions “B: Leave Vacuole” and “C: Add 
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substrate”). Again, the event(s) for the transition are sent to the server and if applicable, the 

guard for the transition is checked. If the “C: Add substrate” transition is attempted, the state 

should now be the “Added substrate” state since there is no guard for the transition. If the “B: 

Leave Vacuole” transition is attempted and the guard succeeds, the test is terminated since the 

final state has been reached. Otherwise, if the guard failed, the “C: Add substrate” transition can 

then be attempted. 

A MBT method would not check these guards during execution and instead would simply 

send the events for a path through the model. So even though a MBT path would traverse the 

transitions “A: Enter Vacuole,” “B: Leave Vacuole” without checking guard conditions, the 

transition guard for “B: Leave Vacuole” could prevent the actual state of a player from reaching 

the final state, an infeasible path. When we run this test generated from MBT, the test wouldn’t 

exercise the system correctly. MBET would attempt transition “B: Leave Vacuole,” check the 

guard for the transition and then adjust the player’s actual current state if it changed. This allows 

a player’s current state to be updated at run-time, verifying that a player has actually changed 

states when a transition is traversed. 

This process of selecting and attempting transitions and verifying the guards of the 

attempted transition, if applicable, continues until a termination point is reached. In this case, it 

can be when the final state of the state machine is reached, or if no transitions can be 

successfully traversed out of the current state. A key point that should be made is the possibility 

of traversing loops in the state machine. For instance, the “D: Add substrate” transition could 

generate an infinite traversal loop and the need for a termination point such as a time limit, loop 

iteration count, or others will be necessary. The Crushinator can then serialize the series of 

events that were sent to the server, allowing the test to be re-executed at any time. 
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3.4. Transforming UML for MBET 

To simplify the UML state machines models into a format that fully represents the SUT 

while remaining human readable, we transformed the UML model. This kept the model as 

simple as possible while retaining a complete representation of the SUT. The Object Constraint 

Language (OCL) [26] was designed to allow UML to represent complex systems, but OCL does 

not address our issue of simplifying the state machine models and still retain a full representation 

of the SUT. Our implementation of UML for MBET consists of three components. The first one 

is the use of state machine keywords to help keep the state machine model as simple as possible 

by abstracting certain data and information from the triggers and guards of the model’s 

transitions. The second one is removing the lengthy values and data contained in the triggers and 

guards of the model and replacing them with shorter unique labels that can be used to extract the 

data from an external configuration file. The last one is for the weighting of transitions from the 

state machine model. The following subsections provide the details of these three components. 

3.4.1. State Machine Keywords 

Generating a state machine model of the SUT posed some serious issues. Due to the 

openness of the SUT design, the structure of the state machine model became too complex. The 

ability of the SUT to change from one state to another state through numerous similar transitions 

rendered the model nearly ineffective as a representation. Since these transitions contained the 

same series of trigger(s) with slightly different parameters and the same guard, these transitions 

were reduced to a single transition. However, in order to symbolize the different parameter 

values for the transition’s trigger(s), a system of keywords was introduced to retain the full 

representation of the SUT. 
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These keywords, referenced to as State Machine Keywords (SMK) for the remainder of 

this thesis, allow multiple transitions that are exactly the same besides a single trigger parameter 

to be simplified. By replacing this parameter with a SMK, the model can be reduced 

dramatically. For instance, instead of a model requiring 6 separate transitions that are almost 

exactly the same besides a single trigger parameter, the use of SMK replaces all of these 

transitions with a single transition. These SMK’s are then stored in a single configuration file, 

which allows the testing tool to select one of these values at random to use as the trigger’s 

parameter. This functionality retains the fully representation of the SUT while keeping the state 

machine model as simple as possible. This configuration file also allows the tester to modify 

these SMK values in between tests, giving the tester greater influence in MBET as well. 

3.4.2 Transition Triggers & Guards 

As the state machine model of the SUT was created, it became evident that placing all the 

information for the transition triggers and guards into the diagram would not be beneficial. The 

idea of simplifying the representation of a system by using a diagram is nullified when the 

diagram becomes congested with data and text. To prevent this issue, this information was 

removed from the diagram. Rather than placing the complex and lengthy trigger data and guards 

directly into the state machine diagram, short unique labels were inserted. These labels allowed 

the diagram to remain simple, but also contain references to all the necessary information. These 

labels can then be used to retrieve the proper data from the matching configuration file.  

Besides keeping the diagrams as simple as possible, the configuration files serve another 

purpose. Whenever a change was made to the triggers or guards of the SUT, instead of having to 

modify the entire model, just the configuration files would need changes. The process of using 
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the GUI supplied by StarUML to modify a transition’s triggers was lengthy and cumbersome, 

while editing a simple XML configuration file was drastically easier. 

3.4.3. Transition Weights 

When a state has multiple outgoing transitions, one needs to be selected using some type 

of criteria. In this case, a weighting system, based on values stored in a configuration file, was 

applied to provide options to select one transition over the other available outgoing transitions. 

This weighting system allows a tester to influence the selection of one transition out of the 

available transitions during MBET. The tester is able to modify the weight of the transitions in 

between tests to adjust how the transitions are selected. These weights can be adjusted when a 

transition has been successfully traversed by the testing tool at run-time as well. This would 

allow the test to select a transition based on its weight the first time, then when that same state is 

reached a second time, select a different transition since the first transition’s weight was adjusted 

after it was traversed. These weighted values can then be serialized back to the configuration file, 

allowing the tester a quick reference to the transitions that were traversed the most during the 

test. Using this serialized data, a tester can adjust these weights for the next test iteration, 

learning from the previous test execution to influence the next series of tests.
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CHAPTER 4. EMPIRICAL STUDY 

 

To investigate the effectiveness of the MBET approach we described in Section 3, we 

conducted a controlled experiment considering the following research question: 

RQ: “Can a MBET approach improve the effectiveness of testing compared to MBT in 

terms of the number of defects that are detected?” 

In addition to this research question, we further examine whether the two testing techniques 

detect different types of defects. 

The following subsections describe the objects of analysis, independent variables, 

dependent variables and measures, experiment design, threats to validity, and data analysis. We 

discuss further implications of the data and results in Section 5. 

4.1. Objects of Analysis 

In this experiment, we used the Virtual Cell server as our object of analysis. The Virtual 

Cell game is an event-driven client-server educational game developed by WoWiWe Instruction 

Co. Two versions of the Virtual Cell game exist, an old version (version 1) [27] and a new 

version (version 2) [28]. The old version of Virtual Cell was developed in the late 1990’s and 

early 2000’s and was written in Java. It provided a three dimensional environment for students to 

explore and learn about cellular biology. It was made up of three separate modules that contained 

a combined 306 classes, consisting of 35,435 lines of code.  
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A new version is currently under development to update and add new features to the 

game. The new server is being developed in Java, while the new client is being developed in C#. 

The new server is made up of four separate modules that contain a total of 516 classes, consisting 

of 72,142 lines of code. The development team is made up of 11 members in 4 different teams: 

server, client, graphics, and testing. The server development team consists of 3 developers, the 

client team is made up of 4 developers, the graphics team consists of 2 artists, and the testing 

team consists of 2 testers. Although the Crushinator version 2 (Cv2) was instrumented for both 

versions, the main focus is on the new version currently being developed to aid in testing the 

project. The primary focus on Virtual Cell for this experiment is testing on the game server. In 

this experiment, we use the new version of the Virtual Cell game server. 

The Virtual Cell game is a graphics heavy 3D virtual environment to teach users about 

cellular biology. Virtual Cell currently contains three separate modules, or levels, that can be 

accessed independently. These modules teach users the fundamentals of certain aspects of 

cellular biology. They include: an Organelle Identification (ID) module for teaching the 

functions and processes of specific organelles inside of a cell, an Electron Transport Chain 

(ETC) module for teaching the process of the ETC, and a Photosynthesis module for teaching the 

process of photosynthesis. These three modules can be modeled and tested independently, 

allowing separate test iterations to be executed on each. 

Since the Virtual Cell application is currently under development, a specific revision of 

the system had to be selected to execute our experiment on. This meant that a revision of the 

system was selected where a majority of the project had been configured, but a large amount of 

defects had not then been addressed. Moreover, because the development of a framework and 

API alongside the game was also being pursued, the proper revision selection of those portions 
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had to coincide with the Virtual Cell revision. The framework and Application Programming 

Interface (API) were provided to build a framework for future event-driven client-server game 

development and to help simplify the project by allowing access to the available game events to 

the entire project team. The selected revision of each of these separate modules used in our 

experiment can be found in Appendix B. 

4.2. Variables & Measures 

Independent Variable – For the purpose of investigating our research question, we control 

a single independent variable: the method of software testing applied to a system under test 

(SUT). We will use two different methods of software testing for the experiment: Model-based 

Testing (MBT; this serves as experimental control) and Model-based Exploratory Testing 

(MBET). These two software testing methods will be applied to the exact same version of the 

SUT, containing the same functional defects and bugs. 

Dependent Variable & Measures – The dependent variable for this experiment is the 

number of defects that are detected by the software testing method. The number of defects found 

by each testing method can be further broken down by the severity of the defect, the type of 

defects (explained further in Section 4.5), and in which modules the defects occurred. 

4.3. Experiment Setup & Procedures 

To investigate our research question, we need a system that contains a variety of defects 

and that can be modeled using a finite state machine. The Virtual Cell application facilitates 

these needs, in particular, the application contains real defects. Because the Virtual Cell server is 
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an event-driven application, its behavior was easily modeled using a finite state machine. We 

used UML as a modeling language.  

Prior to executing any tests, a few steps had to be taken to prepare for the experiment. 

First, the selected version of the SUT was installed and started on a Linux based system which 

provided access to the server from any machine with an internet connection to connect the game 

server. During the installation of the SUT, a configuration file for the server had to be modified 

to allow connections to stay open up to 15 minutes without any traffic. This was done to control 

the issues that can be caused by the limited network speed and connections and to control any 

problems a system might have managing a large number of threads for a test. The focus of this 

experiment is to find defects, not to worry about response latency, although that data is available 

for every test as well. The system specifications of the machine used to run the SUT can be 

found in Appendix B. 

 A few guidelines were developed to help keep all test iterations as similar as possible. 

1) All test iterations were executed against the same exact revision of the Virtual Cell 

server. 

2) For each test iteration against the Virtual Cell server, the server’s IP address and port 

was entered into the Crushinator’s setting controls to allow connection to the server. 

3) Whenever a test case is executed a new player(s) is created on the server using a 

randomized name. This name is up to 30 characters long, and is made up of upper and 

lower case letters, numbers, and special characters. This prevented 2 players from having 

the same name during a test, which would cause unpredicted issues. 
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4) The SUT was re-installed after each test execution to prevent issues from the previous 

execution from influencing the results of the next execution. 

5) Log files were kept separate for each test execution as well to prevent any confusion 

between tests. These files were created by the Crushinator and the Virtual Cell server, 

which were then stored and backed up. 

6) A test iteration was executed for each of the three modules separately. 

 

The following additional guidelines apply only to MBET test iterations: 

7) One hundred players were used for all iterations of MBET, which means 100 separate 

test cases are generated for each iteration. 

8) The duration of each iteration of MBET was set at 5 to 60 minutes (times for each test 

can be found in Appendix B), after which the test terminated. 

9) The transition weights are initially assigned to zero by a tester, and are adjusted at run-

time for each successful transition traversal. 

With the SUT up and running, the Crushinator testing tool was used to generate test cases 

for MBT prior to execution. The Crushinator was executed on two different systems due to time 

availability of the SUT for our experiment (the specifications of both systems can be found in 

Appendix B). The Crushinator was used to generate the XML test cases for the three different 

models. Since the SUT can be broken down into three specific modules, or levels, of game play, 

three different state machine models were generated, one for each module with its own set of 

configuration files (these files included state machine transition triggers and guards and SMK’s). 

To reduce the complexity of a single state machine that would represent the game server 

in its entirety, which would produce a very large and extremely complex state machine, we 
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performed our experiment by testing each of the three modules (levels) separately from the 

others, The testing of these three modules was executed separately since each module was 

designed to be independent of the other, allowing them to be accessible in any order. More 

specifically, they do not require a player to play them sequentially, which allows testing of each 

module to remain independent from the others. Using these three separate models and 

configuration files, the Crushinator was used to generate a test suite of XML test cases for each 

module, shown in Table 4.1. Each XML test case represented a path through the state machine 

model. It is important to note that since a player can quit the game at any time that player can 

reach a final state from any other state in the model. This means that a large number of XML test 

cases are generated for each module. 

Module Name ID ETC Photosynthesis 

Number of test cases 267 201 451 

Table 4.1. MBT generated test cases per module. 

Now using the test suite of generated test cases for each module, the Crushinator’s 

command line interface (CLI) was utilized to perform a series of tests on the SUT. The 

Crushinator’s CLI allows a tester to define an entire directory of test cases to execute all at once, 

allowing the tester to execute multiple test cases using any number of players they wish. Since 

each player’s state on the server is independent of each other, these test cases can be executed in 

parallel. These tests were repeated a number of times, with slight adjustments being made to 

configuration files between iterations. If adjustments were made to the triggers and/or guard 

configuration files, then it became necessary to regenerate the test suite as well. A full list of 

applied adjustments between test iterations can be seen in Appendix B. For instance, since the 

server’s ability to handle a certain event was not functioning properly, to ignore that defect and 
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search for others, the event had to be removed from certain transitions. Once all the transitions 

that contained this trigger were modified, any test cases that traversed one of those transitions 

became outdated. So, the test cases then needed to be regenerated for that module, which could 

then be executed during the next series of MBT. 

After any configurations were made and the test suite was regenerated, if needed, the next 

series of tests was executed on the re-installed server. After each test was completed, all the log 

files from both the Crushinator and the Virtual Cell server were collected. The Crushinator files 

were then parsed by a custom parsing program developed to uniquely format such files and all of 

the collected data was then stored and backed up for the test iteration. 

To execute MBET, no test cases had to be generated prior to execution since they are 

generated at run-time (MBET allows a tester to generate test cases purely from the MBET 

process, or supply a test script as the starting point for a MBET test). Each series of MBET was 

executed for each module of the Virtual Cell server following the steps mentioned in Section 3.2. 

A state machine model was selected, one model for each game module, and loaded into the 

Crushinator. For each test, the 100 players were logged into the server and each player began 

their own MBET process. Once the time limit was reached, the test automatically terminated for 

all players that were still performing MBET and all the log files were then collected along with 

the MBET generated test cases. The Crushinator’s log files were parsed by the custom tool and 

all collected data was stored and backed up for the test iteration. 

If any changes had to be made to the configuration files (as mentioned in the MBT 

explanation), they were made and the next set of tests was ready to execute. Since the test cases 

are generated at run-time, simply updating any configuration files or even the state machine 
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models does not require the need to make any changes to the previously generated test cases 

manually, like other forms of automated testing. 

Once testing was completed for each module using both testing methods, the data was 

thereafter imported into the spreadsheets. This data is then reviewed to determine what whether 

the defects were detected, if any. Any found defects are recorded and any necessary changes to 

the configuration files are calculated. Entry into the spreadsheets allowed for filtering of the log 

data for certain information making the review of the data quick and easy. The data collected 

from these tests is presented in Section 4.5 in further detail. 

4.4. Threats to Validity 

We will now briefly describe the threats to validity to this study. We discuss some of the 

threats to the construct, internal, and external validity of our study. 

4.4.1. Construct Validity 

Two threats to construct validity that may arise in our experiment are the severity level 

assigned to each defect and the type assigned to each defect. When a defect was detected during 

the experiment, a severity level was assigned to that defect (low, medium, high). We use these 

severity levels as a measurement of how effective MBET is compared to MBT. To make sure 

these levels were assigned appropriately, the server development team was consulted on defects 

that were not easily determined. 

The type of defect was also used to measure how effective MBET is compared to MBT. 

The assignment of a type to each defect was studied carefully, and assigned to how the defect 
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affected or related to the SUT. The four defect types were created only after the experiment was 

completed and all defects had be detected and described in detail. 

4.4.2. Internal Validity 

An important portion of MBET that affected our results is the termination point of the 

MBET process. A player reaching the final state of a state machine model is a great termination 

point for a test since there are no transitions to other states for a final state. Other methods were 

implemented to terminate a MBET test in case a final state could not be reached. A simple time 

limit for the MBET test was implemented for our experiment, but others could also be applied. 

Transition traversal failures (when a transition cannot be traversed successfully) and performing 

loops through a state machine model (when the same transition or series of transitions are 

constantly being traversed) were also implemented for the termination of MBET. 

We attempted to simplify the state machine model by using SMK (as mentioned in 

Section 3.4.1) to replace multiple similar transitions. At run-time these SMK values were 

replaced at random from values supplied in a configuration file. These values can be controlled 

by the tester executing MBET in between tests, but the random selection of these values can 

affect the test results. Dependence on a random number generator to select a value for a SMK 

could be replaced by a more desirable method, like using a heuristic value to select the SMK 

replacement. 

Transitions were weighted using a simple heuristic value to persuade MBET to select one 

transition over other transitions. These values can be adjusted in between tests by a tester to 

affect how MBET selects transitions from one test to the next. These values can also be adjusted 

at run-time, dependent on whether the transition is traversed successfully. For our experiment, all 
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of the transition weights were given an initial value of zero for all test iterations, transitions with 

lower value weights were selected over others, and the values were incremented by one for each 

successful traversal. If multiple test iterations were executed and the results used to adjust the 

initial weights, MBET could then be influenced to achieve complete transition or state coverage 

of the state machine model and thereby the SUT. 

4.4.3. External Validity 

The results from this experiment will not apply to all other systems and testing situations. 

The Virtual Cell server is a specific type of system, which best fits the process of MBET. The 

event driven server allows for a behavior model, such as a finite state machine, to easily 

represent the system. Not every system will be well represented with a behavior model. Such 

systems would benefit from testing methods other than MBT and MBET. 

Our experiment only included a single system that was being tested. Including multiple 

systems could help us generalize this experiment to other applications, and is planned for future 

work. Also, the results generated from the type of system we tested, event-driven, is difficult to 

generalize to other types of applications. 

4.5. Data & Analysis 

This section contains an overview of the data that was collected from the experiment. 

This data is represented in Tables 4.2 through 4.7 and in Figures 4.1 through 4.5. We present the 

data as it applies to our research question, followed by the data that applies to our further interest 

in detecting different defect types. 
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Once all the test iterations were completed and the data compiled, the number of defects 

detected by each testing method was calculated, shown in Figure 4.2. The two methods were able 

to detect some similar defects, but each also found some unique defects that were not detected by 

the other method. 

 MBT MBET 

Number detected 12 21 

Table 4.2. Defects detected by testing method. 

These defects can be broken down by which game modules they were detected in, with 

each module in a different development status. For instance, the Organelle Identification (ID) 

module was feature complete, and had been strenuously tested during it development. The 

Electron Transport Chain (ETC) module was nearing development completion, but still required 

some features to finish development. The Photosynthesis module had just recently started 

development, with the structure of several features just finished, or currently in process. The 

three separate modules allow us to examine how effect each testing method is at different stages 

in the development process. The breakdown of the detected defects by module can be seen in 

Table 4.3. 

 ID ETC Photosynthesis 

Method MBT MBET MBT MBET MBT MBET 

Number detected 3 8 8 6 1 7 

Table 4.3. Defects detected by method for each module. 

To show our results visually, we present them in a bar graph, as shown in Figure 4.1. 

Overall MBET was more effective in detecting defects than MBT (21 vs. 12). MBT was slightly 
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more effective in detecting defects in the ETC module (8 vs. 6), but significantly less effective in 

detecting defects in the other two modules (3 vs. 8 in ID, and 1 vs. 7 in Photosynthesis). 

 

Figure 4.1. Detected defects for each testing method by module. 

The defects were discussed with the development team and were then assigned a severity 

level. Each detected defect was assigned a severity level dependent on how it affected the 

function of the system, shown in Table 4.4. 

Severity Low Medium High 

MBT 2 5 5 

MBET 4 6 11 

Table 4.4. Defect severity. 

For instance, defects that caused the connection to the server to be unexpectedly 

interrupted or closed were designated as a “high” severity because failure of creating and 

maintaining a connection to the SUT prevented further use or testing of the SUT. Defects that 
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related to missing game functionality or response message success were designated as a 

“medium” severity since they affected the functionality of the SUT, but did not prevent further 

use or testing of the SUT. Those that related to a missing instance of multiple objects in a game 

room were designated as a “low” severity because they did not affect the functionality of the 

SUT, but still caused unexpected results. Most of the defects fit into one of these levels, but those 

that did not were assigned a severity level after discussion of their importance with the 

development team. The severity of these defects detected by each testing method can be seen in 

Figure 4.2. 

As shown in Figure 4.2, both of the methods detected about the same number of medium 

severity defects (MBT-5, MBET-6), and nearly the same number of low severity defects (MBT-

2, MBET-4). However, the number of high severity defects detected was considerably different 

between the two methods, with MBET detecting two times as many (11 vs. 5). 

 

Figure 4.2. Detected defect severity for each testing method. 

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

22 

MBT MBET 

N
u

m
b

e
r 

o
f 

d
e

fe
ct

s 

Testing Method 

Defect severity by method 

High 

Medium 

Low 



35 

 

Using these severity levels, we can then breakdown the defect severity levels detected by 

the testing methods for each module, shown in Table 4.5. 

Module 
Testing 

Method 

Severity Level 

Low Medium High 

ID 
MBT 1 0 2 

MBET 2 2 4 

ETC 
MBT 1 4 3 

MBET 2 1 3 

Photosynthesis 
MBT 0 1 0 

MBET 0 3 4 

Table 4.5. Defect severity level detected for each module. 

The number of low level defects detected in the Photosynthesis module is zero because 

the module is missing a large portion of functionality. Although the ID module was completed 

and underwent testing during its development phase, a large number of high level defects were 

still detected. The ETC module contained the largest number of defects, with a similar number of 

medium and high level defects being detected. The defects can then be categorized by which 

testing method detected them in each module, as shown in Figure 4.3. 

As seen in Figure 4.3, MBET detected the same number or more high level defects in all 

three modules (4 vs. 2 in ID, 3vs. 3 in ETC, and 4 vs. 0 in Photosynthesis). It also detected the 

same number or more low level defects in all three modules (2 vs. 1 in ID, 2 vs. 1 in ETC, and 0 

vs. 0 in Photosynthesis). MBT was quite more effective in detecting medium level defects in the 

ETC module (4 vs. 1), but MBET was slightly more effective in the other two modules (2 vs. 0 

in ID and 3 vs. 1 in Photosynthesis). 
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Figure 4.3. Defect severity levels detected for each testing method by module. 
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stored in the database and managed by the server. FM type defects result from functionality that 

is missing, incomplete, or malformed with the game, such as missing goals or tasks. 

The number of each defect detected dependent on its type is shown in Table 4.6. The 

number of A/C type defects is the majority of those detected, with a large number of API type 

defects also being detected. The DB and FM type defects only make up about a third of all the 

defects detected.  

Type A/C API DB FM 

MBT 2 6 2 2 

MBET 12 2 4 3 

Table 4.6. Defects detected by type. 

The testing method used can then be applied to the type of defects found. As shown in 

Figure 4.4, each method found unique defects dependent on their type. 

 

Figure 4.4. Defects detected for each type by testing methods. 
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In all of the cases, both testing methods detected at least one defect that was the same 

(designated as the “Both” category in Figure 4.4). It is important to note that defects detected by 

both methods are included in each method’s total, so they are counted twice in overall totals. 

MBET was significantly more effective in detecting A/C type defects than MBT (12 vs. 2), while 

MBT was significantly more effective in detecting API type defects than MBET (6 vs. 2). Both 

methods were similar, or not noticeably more effective than the other, in effectiveness in 

detecting DB and FM type defects. 

The type of defects that were detected can then be broken down by the module in which 

they were detected in, shown in Table 4.7. 

Module 
Testing 

Method 

Defect Type 

A/C API DB FM 

ID 
MBT 0 2 1 0 

MBET 6 0 2 0 

ETC 
MBT 1 4 1 2 

MBET 3 0 2 1 

Photosynthesis 
MBT 1 0 0 0 

MBET 3 2 0 2 

Table 4.7. Defects detected for each module by type. 

The ETC module contains the most of each type of defect, except for A/C type defects. 

The ID module and Photosynthesis modules did not detect defects in all defect type categories; 

no FM type defects were detected in the ID module and no DB type defects were detected in the 

Photosynthesis module. 

The number of defects detected for each module by type can then be separated by the 

testing method that detected these defects, shown in Figure 4.5. MBET was more effective in 

detecting A/C type defects for all three modules (6 vs. 0 in ID, 3 vs. 1 in ETC, and 3 vs. 1 in 
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Photosynthesis). MBT was more effective in detecting API type defects in two of the three 

modules (2 vs. 0 in ID and 4 vs. 0 in ETC), while MBET was more effective in the third module 

(2 vs. 0 in Photosynthesis). MBET was slightly more effective in detecting DB type defects in 

two of the three modules (2 vs. 1 in ID and 2 vs. 1 in ETC), while neither detected any in the 

Photosynthesis module. The effectiveness of both testing methods in detecting FM type defects 

is similar, or not significant. 

 

Figure 4.5. Type of defects detected by testing method for each module. 
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the ID module, a suite of 267 unique test cases was created. Of these test cases, 120 of them are 

infeasible test cases. Due to the complexity of the ID module, the state machine model contains 

multiple loops that must be completed, in any order, before the path to the final state is 

accessible. A simple guard prevents the accessibility of this path until all the aforementioned 

loops have been traversed. Because no test cases include the traversal of all of the loops, none 

should proceed past this guard, although some of the test cases contain such a path. These test 

cases incorporate an infeasible path that can only be prevented by verifying a run-time dependent 

guard. 

More information and figures can be found in Appendix C, which go into greater detail of 

the data collected from the experiment. The data found in this section will be discussed in the 

next section, Section 5. 
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CHAPTER 5. DISCUSSION 

 

We now discuss the results and practical implications of our results from the previous 

section, Section 4.5. The results from our experiment show that overall the MBET method found 

more defects than the MBT method. When broken down by game module, two of the three 

modules follow the same trend. In the third module, ETC, MBT found more defects than MBET, 

but upon further investigation the cause of this is from MBT detecting API type defects that 

MBET did not. The API type defects detected in this experiment all could have been detected 

from simple unit testing on the game’s event classes. These defects all related to instantiation of 

the game events and accessing the data of that event. It is important to point out that no unit 

testing was done on the server or API classes prior to our experiment. With this in mind, these 

defects could have been addressed before system testing and would not have been detected 

during our experiment. It is also important to point out that a majority of defects that were 

detected overall in our experiment by MBT were API type defects. 

The severity of the defects that were detected by MBET was generally higher than those 

detected by MBT. In each module, MBET found more or the same amount of “high” level 

severity defects than MBT. Besides the ETC module, the same can be said about the “medium” 

level severity defects. These “medium” level severity defects can be traced back to the same API 

type defects mentioned above, which if addressed prior to our experiment would greatly 

influence the results of our experiment. When determining the severity of the defects, the server 

development team was consulted to assign levels to defects that were initially unknown. 
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It can also be stated from the results that MBET was more effective at detecting A/C type 

defects than MBT. These defects that deal with player authentication and the connection to the 

game server contain the most “high” level severity defects than any of the other types of defects. 

This is mainly because the defects associated with the connection to the server and authenticating 

a player’s login and ability to send messages are the most important. These defects affect the 

ability of a client to connect and communicate with the server properly, which can cause 

significant problems with the client-server functionality. Without detecting these defects, they 

will cause unexpected results that may cause catastrophic failure of the system. 

Another point to keep in mind is the effectiveness of each testing method on the three 

modules in different stages of development. While MBET was significantly more effective in 

detecting defects in the ID module, which had finished development, and the Photosynthesis 

module, which was just starting development, MBT was slightly more effective in detecting 

defects in the ETC module, which was nearing developmental completion. MBET was able to 

detect defects in multiple stages in the developmental lifecycle of a game module for the Virtual 

Cell project, while MBT was only able to detect a significant number of defects in the ETC 

module (near completion) and a few in the ID module (completed). 

It is also important to note that test cases produced by each method rely on different types 

of accessible data. MBT, for instance, executes a test case in its entirety, and the end result of the 

test case (external data) is then used to determine whether a defect has been detected. MBET 

using dynamic information about the system while the test case is being generated and performed 

(internal data), and would detect a defect when the system fails to comply with the model. MBT 

test cases may contain infeasible paths through the state machine model, since they do not 

incorporate guards and may detect defects in such a path. MBET would prevent an infeasible 
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path from being executed, and may not detect the defects that MBT would. However, if the 

model conforms to the system that is being tested, an infeasible path should not be possible in the 

SUT, and would possibly generate false defects. 

Although defects found with test cases from a MBET process may not always cause 

problems important to system integrity or a catastrophic failure when compared to test cases 

produced from MBT methods, the MBET test cases can be more useful. The set of MBET test 

cases could be designated as test cases that are more likely to find the defects that a user would 

discover while using the system. Moreover, when defects are found using any type of test case 

(manually generated, recorded from an instrumented client, MBT generated, or MBET 

generated), that test case can be used as an initial input for a new MBET test which generates a 

new test case and helps expand the test as a tester looks for related defects. The new MBET test 

case can also help verify that the initial defect has actually been fixed as well. 

To summarize, MBET was more effective in detecting some types of defects than MBT. 

MBT detected more defects in one of the three game modules, ETC, while MBET detected more 

defects in two of the three game modules. By generating a test suite using both methods to 

complement each other, different types of defects can be detected, resulting in more complete 

test coverage of the SUT. 
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CHAPTER 6. CONCLUSION 

 

In this thesis we have proposed a software testing method, MBET, and conducted an 

empirical study to investigate whether it is an effective method for detecting defects in a 

software system. The results of our experiment showed that MBET was indeed more effective 

overall than MBT in detecting defects. However, upon further investigation into the types of 

defects that were detected by each testing method, we found that each method has its own 

strengths. We concluded that if a test suite could be generated by using both MBT and MBET, 

more complete test coverage, compared to using a single testing method, can then be achieved 

for the SUT. 

The combination of using scripted testing methods, such as MBT, and exploratory testing 

methods, like our proposed MBET, complement each other and detect defects that the other 

testing method might miss. James Bach sums up this idea in a single statement [3], 

 “I find that most situations benefit from a mix of scripted and exploratory approaches.” 

Our experiment was executed against a single revision of the Virtual Cell server. We plan 

on expanding our study to include multiple revisions of the Virtual Cell server and collect more 

data for analysis. Including more revisions of the Virtual Cell server could improve our 

understanding of the effectiveness of MBET compared to MBT. 

After all the data was collected from our experiment, it still had to be evaluated manually 

by a tester to determine what was found from the experiment. This process of evaluating the data 

can be difficult and expensive in terms of time and labor. If it is possible, then automating the 
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evaluation of such results could help improve the MBET process even further by reducing the 

need for time and labor resources. 

To address the external threats to validity in our study, we plan to expand the experiment 

to include other applications and other types of applications besides event-driven systems. By 

expanding our study to include these applications, we can address the threat to validity of 

generalizing our study’s results to other systems. 

Two further projects that can be investigated and applied to our next experiment are the 

selection of termination points for MBET and adjustments to the transition weighting system. 

Using the results from our experiment, other possible termination points can be selected for the 

next experiment, which will affect that experiment’s results. Our results can also be used to 

possibly calculate a better weighting system or heuristic function for the selection of transitions 

by MBET. 
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APPENDIX A. VIRTUAL CELL STATE MACHINE MODELS 
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APPENDIX B. TEST CONFIGURATION 

 

B.1. Server Module Revisions 

For this experiment we selected a specific revision of the Virtual Cell server. Since the 

server was made up of four separate architectural modules each with its own subversion 

repository, a specific revision of all modules had to be selected in order for them all to match up. 

The revision numbers used for the experiment is shown is Table B.1. 

Architectural Module Revision used 

JavaMOO API  82 

JavaMOO Server  6135 

VCell API  24 

VCell Server  680 

Table B.1. Virtual Cell server module revisions. 

B.2. System Specifications 

A single system was used to setup and execute the Virtual Cell server that was tested in 

our experiment. The following are the system specifications: 

 CPU:  Intel Xeon CPU E5530 with 8 cores @ 2.4 GHz 

 RAM: 12 GB 

 Network: Intel Corp 8257EB Gigabit Network Connection (x2) 

Two separate systems were used to execute the Crushinator that tested the Virtual Cell 

server in our experiment. The following are the system specifications of those two machines: 
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 System 1 

 CPU:  Intel Core i7 CPU 920 with 8 cores @ 2.67 GHz 

 RAM:  6 GB 

 Network:  Intel Corp Gigabit Network Connection (x2) 

 System 2 

 CPU:  Intel Core 2 Duo CPU T7300 with 2 cores @ 2 GHz 

 RAM:  4 GB 

 Network:  Intel Wireless WiFi Link 4965AGN Card 

B.3. MBET Termination Points 

MBET was developed with a built in default termination point when it reached a final 

state in a state machine model. Since the state machine model can be extremely complex and 

possibly contain transition loops, another termination point was necessary. For our experiment 

we selected a maximum time limit (in minutes) for the test iteration to execute. This maximum 

duration value, once reached, would terminate any tests that were still executing. These values 

can be found in Table B.2. 
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Iteration 1 

Module test Termination point (mins) 

ID test A 5 

ID test B 30 

ETC test A 5 

ETC test B 30 

Photosynthesis test A 5 

Photosynthesis test B 30 

 

Iteration 2 

Module test Termination point (mins) 

ID 60 

ETC test A 60 

ETC test B 60 

 

Iteration 3 

Module test Termination point (mins) 

ID 60 

ETC 30 

Photosynthesis 30 

Table B.2. MBET maximum duration value per iteration. 

B.4. Test Configuration Files 

In between test executions of MBT and MBET, the configuration files used by the 

Crushinator were modified slightly. Generally this was done to address issues that applied to the 

version of the Virtual Cell server that was being tested. For instance, between certain versions of 

the Virtual Cell server, the names or spelling of certain objects was modified. The changes made 

in between test iterations can be found in Table B.3, describing the changes made to the specific 

configuration file for the test iteration. These configuration files are used by both MBT and 

MBET, and separate configuration files are required for each game module (for example the ID 

module has different configuration files than those used for the ETC module). The table below 
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also corresponds to the separate files, and lists the configuration changes for each module 

separately. 

ID Module 

Iteration Configuration file Description 

1 SMTransitions Removed FireItemEvent’s from transitions 

2 SMGuards Goal guard changed to fix spelling issue 

3 SMKeywords Changed all lowercase ribosome names to both uppercase 

and lowercase names 

3 SMKeywords Removed ribosome entrances (store entrances) 

3 SMGuards Changed name of goal to have uppercase value rather than 

lowercase 

4 SMGuards Changed goal guard text that had improper value 

 

ETC Module 

Iteration Configuration file Description 

2 SMTransitions Removed FireItemEvent’s from transitions 

2 SMGuards Changed multiple goal guards to match spelling/content 

3 SMGuards Changed location guard from “ETC_Vacuole” to just 

“Vacuole” 

4 SMKeywords Removed listing of 5 molecules of each substrate that would 

be in vacuole, since substrates don’t respawn 

 

Photosynthesis Module 

Iteration Configuration file Description 

2 SMGuards Removed goal gurads for portions of module that are not 

implemented 

3 SMGuards Changed location guard from “Photo_Vacuole” to just 

“Vacuole” 

4 SMTransitions Fixed spelling error with reference to SMK 

4 SMKeywords Removed listing of 5 molecules of each substrate that would 

be in vacuole, since substrates don’t respawn 

Table B.3. Configuration files changes.



56 

 

APPENDIX C. EXTRA FIGURES 

 

This appendix contains extra tables and figures representing the collected data from the 

experiment that were not shown or described in the results section (Section 4.5).  

The following figure, Figure C.1, shows the percentage of defects that each testing 

method detected for each game module out of the total detected in that module. The total number 

of defects takes into account defects found by both testing methods, only counting such defects 

once in the total. 

 

Figure C.1. Percentage of defects detected for a module by each testing method. 

Figure C.1 shows that MBET detected a majority of all the defects detected in the ID 

module, and all of the defects that were detected in the Photosynthesis module. MBT detected 

just over half of the total detected in the ETC module, while MBET detected less than half of the 
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total detected in the ETC module. It should be kept in mind that a majority of the defects 

detected in the ETC module by MBT were API type defects, which would generally be detected 

by simple unit testing of those classes. 

Another interesting set of data to investigate is how effective each method was at 

detecting each type of defect in each game module. Figures C.2 through C.4 show this data for 

each module. Figure C.2 shows the percentage of each type of defect that was detected by each 

testing method in the ID module. For instance, MBET detected all of the A/C and DB type 

defects that were detected in the ID module. MBT detected all of the API type defects and half of 

the DB type defects that were detected in the ID module. No FM type defects were detected by 

either method. 

 

Figure C.2. Percent of defects detected in the ID module. 
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Figure C.3 shows the percentage of each type of defect that was detected by each testing 

method in the ETC module. In this module, MBT detected all of the API type defects, a majority 

of the FM type defects, and a small percentage of the A/C type defects. MBT did not detect any 

of the DB type defects in the ETC module. MBET detected all of the DB defects, a majority of 

the A/C type defects, and a small percentage of the FM type defects. MBET did not detect any of 

the API type defects in the ETC module. This graph shows a great example of how the two 

testing methods complement each other. 

 

Figure C.3. Percent of defects detected in the ETC module. 
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module. MBT was not very effective at all, finding only a small percentage of the A/C type 

defects. No DB type defects were detected by either method in the Photosynthesis module. 

 

Figure C.4. Percent of defects detected in the Photosynthesis module. 
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