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ABSTRACT 

 

It is well known that the formation and propagation of microcracks within concrete is 

anisotropic in nature, and has a degrading effect on its mechanical performance.  In this thesis an 

anisotropic damage mechanics model is formulated for concrete which can predict the behavior 

of the material subjected to monotonic loading, fatigue loading, and freeze-thaw cycles.  The 

constitutive model is formulated using the general framework of the internal variable theory of 

thermodynamics.  Kinetic relations are used to describe the directionality of damage 

accumulation and the associated softening of mechanical properties.  The rate independent model 

is then extended to cover fatigue loading cycles and freeze-thaw cycles.  Two simple softening 

functions are used to predict the mechanical properties of concrete as the number of cyclic loads 

as well as freeze-thaw cycles increases.  The model is compared with experimental data for 

fatigue and freeze-thaw performance of plain concrete. 

  



iv 
 

ACKNOWLEDGMENTS 
 
 
 

I would like to thank my advisor, Dr. Frank Yazdani, for his wisdom, guidance, and for 

asking me to continue my education two years ago.  Also, I want to express my appreciation to 

the other members of my graduate committee: Dr. Mijia Yang, Dr. Magdy Abdelrahman, and Dr. 

Jerry Gao for their constructive comments on this work.  I would like to thank Mr. Ashkan 

Saboori for his help in compiling and formatting much of the experimental data used in this 

thesis.  This work was partially supported by a DOT-MPC grant to the Department of Civil 

Engineering.  The author is grateful for their support.  



v 
 

DEDICATION 
 
 
 

I would like to dedicate this thesis to my parents, Steve and Renee Reberg, without whom 

I would not have tried to further my education as much as I have.  Their love and support has 

been a constant in my life and has allowed me to pursue goals I would not have pursued 

otherwise.    



vi 
 

TABLE OF CONTENTS 

 
 
ABSTRACT ................................................................................................................................... iii 

ACKNOWLEDGMENTS ............................................................................................................. iv 

DEDICATION ................................................................................................................................ v 

LIST OF TABLES ......................................................................................................................... ix 

LIST OF FIGURES ........................................................................................................................ x 

CHAPTER 1. INTRODUCTION ................................................................................................... 1 

CHAPTER 2. MECHANICAL BEHAVIOR OF CONCRETE ..................................................... 5 

2.1.  Introduction .................................................................................................................. 5 

2.2.  Plastic Flow vs. Microcracking ................................................................................... 6 

2.3.  Uniaxial Compression ................................................................................................. 7 

2.4.  Uniaxial Tension ........................................................................................................ 10 

2.5.  Biaxial Compression .................................................................................................. 12 

2.6.  Biaxial Tension .......................................................................................................... 14 

2.7.  Triaxial Compression ................................................................................................. 15 

2.8.  Fatigue Loading ......................................................................................................... 18 

2.9.  Freeze-Thaw Process ................................................................................................. 22 

CHAPTER 3. REVIEW OF RELEVANT LITERATURE .......................................................... 31 

3.1.  Continuum Damage Mechanics ................................................................................. 31 

3.2.  Yazdani Damage Mechanics Model (1993) .............................................................. 32 

3.3.  Wen Damage Mechanics Model (2011) .................................................................... 38 

3.3.1. Fatigue Modeling (Wen, 2011) ................................................................................... 41 



vii 
 

3.3.2. Numerical Simulation of Wen Model ......................................................................... 47 

CHAPTER 4. THERMODYNAMICS AND DAMAGE MECHANICS .................................... 54 

4.1. Introduction to Thermodynamics ....................................................................................... 54 

4.1.1. Cauchy’s First Law of Motion .................................................................................... 55 

4.2. Thermodynamic Formulation ............................................................................................ 56 

4.2.1. First Law of Thermodynamics .................................................................................... 56 

4.2.2. The Second Law of Thermodynamics ........................................................................ 59 

4.2.3. Thermodynamic Potentials ......................................................................................... 60 

4.2.4. Consequences of the Second Law of Thermodynamics ............................................. 64 

CHAPTER 5. FATIGUE MODELING OF CONCRETE USING THE BOUNDING    
SURFACE APPROACH ........................................................................................... 67 

 
5.1. Introduction ........................................................................................................................ 67 

5.1.1. Bounding Surface Approach ....................................................................................... 67 

5.2. Formulation of the Model with the Bounding Surface Approach ..................................... 69 

5.2.1. Softening Function ...................................................................................................... 72 

5.3. Numerical Example ........................................................................................................... 76 

5.3.1. Sensitivity Analysis .................................................................................................... 79 

5.4. The Bounding Surface Approach Extended ...................................................................... 82 

5.5. Conclusion ......................................................................................................................... 86 

CHAPTER 6. MODELING OF CONCRETE FOR FREEZE-THAW PROCESSES           
USING THE BOUNDING SURFACE APPROACH ............................................... 88 

 
6.1. Introduction ........................................................................................................................ 88 

6.2. Formulation of Model with the Bounding Surface Approach ........................................... 89 

6.2.1. Softening Function ...................................................................................................... 90 



viii 
 

6.3. Numerical Example ........................................................................................................... 95 

6.3.1. Sensitivity Analysis .................................................................................................... 99 

6.4. Conclusion ....................................................................................................................... 101 

REFERENCES ........................................................................................................................... 103 

APPENDIX ................................................................................................................................. 106 

 

  



ix 
 

LIST OF TABLES 

 

Table Page

 
2.1.   Approximate number of loading cycles for a given structure or loading         

condition (Lee and Barr, 2002) .................................................................................. 20 
 
2.2.  Effect of freeze-thaw on tensile performance of concrete (Shang et al., 2006) ........ 23 
 
2.3.   Ultimate strength and strain of plain concrete subjected to biaxial compression       

for varying number of freeze-thaw cycles (Shang et al., 2006) ................................. 24 
 
2.4.  Ultimate strength and strain of plain concrete subjected to triaxial compression       

for varying number of freeze-thaw cycles (Shang et al., 2008) ................................. 24 
 
2.5.   Percentage drop of ultimate strength of plain concrete subjected to triaxial 

compression loading with varying freeze-thaw cycles (Shang et al., 2008) ............. 26 
 
2.6. Uniaxial compressibe strength of air-entrained concrete for various number of 

freeze-thaw cycles (Shang et al., 2009) ..................................................................... 27 

 
  



x 
 

LIST OF FIGURES 

 

Figure Page
 
2.1.   Stress vs. axial strain for a concrete specimen loaded in uniaxial compression     

(Bahn and Hsu, 1998) .................................................................................................. 8 
 
2.2.  Typical stress vs. volumetric strain plot of concrete subjected to uniaxial 

compression ............................................................................................................... 10 
 
2.3.   Stress-strain curve for direct tension testing of concrete specimen with varying 

loading rates (Shkolnik, 2005) ................................................................................... 11 
 
2.4.   Biaxial strength envelope of concrete (Lee et al., 2004) ........................................... 13 
 
2.5.   Stress-strain curves for concrete subjected to various biaxial load ratios,                 

݇ ൌ  14 ................................................................ (Litewka and Debinski, 2003) 3ߪ/2ߪ
 
2.6.   Stress-strain curve for concrete in biaxial tension (Lee et al., 2004) ........................ 15 
 
2.7.   Stress vs. strain plot for triaxial compression tests on concrete for low to              

mid-level confining pressures (Papanikolaou and Kappos, 2007) ............................ 16 
 
2.8.   Stress vs. strain plot for triaxial compression tests on concrete for larger       

confining pressure (Litewka and Debinski, 2003) ..................................................... 17 
 
2.9.   Hydrostatic pressure vs. volumetric strain (Yurtdas et al., 2004) ............................. 18 
 
2.10.   S-N curve, Smax = σmax/ft, 0.1fc lateral pressure, 0.2fc lateral pressure, and 0.3fc    

lateral pressure corresponds to square, triangle, and circle (Song et al., 2005) ......... 19 
 
2.11.   Strain vs. number of cycles, R = lateral load ratio = σlat/fc, Smax = σmax/ft                    

(Song et al., 2005) ...................................................................................................... 20 
 
2.12.   Compilation of fatigue life data for uniaxial compressive loading of plain      

concrete (Lee and Barr, 2002) ................................................................................... 21 
 
2.13.   Compilation of fatigue life data for flexural loading of plain concrete (Lee             

and Barr, 2002) .......................................................................................................... 22 
 
2.14.   (a) Normalized compressive strength, σ3/fc, vs. freeze-thaw cycles, (b)       

normalized compressive strength vs. lateral load ratio, σ2/σ3 (Shang et al., 2006) ... 25 
 



xi 
 

2.15.   Strain in the primary loading direction vs. number of freeze-thaw cycles (Shang       
et al., 2008) ................................................................................................................ 27 

 
2.16.   Strain vs. principle stress ratio for various number of freeze-thaw cycles           

(Shang et al., 2002) .................................................................................................... 28 
 
2.17.   Strength vs. number of freeze-thaw cycles for uniaxial tension and           

compressive loading of air-entrained concrete (Shang et al., 2009) .......................... 28 
 
3.1.   Apparent “snap back” behavior present in Yazdani and Schreyer model            

(1988) ......................................................................................................................... 33 
 
3.2.   Behavior of transition function, A, with respect to 35 ................................................ ࣀ 
 
3.3.  Biaxial strength surface ............................................................................................. 36 
 
3.4.   Stress vs. strain behavior for concrete in uniaxial compression (experimental       

data:  Litewka and Debinski, 2003) ........................................................................... 37 
 
3.5.   Stress vs. strain for concrete in uniaxial tension (experimental data:  Litewka         

and Debinski, 2003) ................................................................................................... 37 
 
3.6.   Stress vs. strain for concrete in equal-biaxial compression (experimental data:       

Lee et al., 2004) ......................................................................................................... 38 
 
3.7.   Crack modes illustrated by response tensors I (left) and II (right) ............................ 41 
 
3.8.   Boundary surface representation, N = fatigue life (cycles) ....................................... 43 
 
3.9.   Number of cycles to failure for a given load ratio (Uniaxial loading) ...................... 48 
 
3.10.   Number of cycles to failure for a given load ratio (Equal-biaxial loading) ............... 49 
 
3.11.   Number of cycles to failure for a given load ratio (Biaxial loading) ......................... 49 
 
3.12.   Limit surface or varying number of load cycles ........................................................ 50 
 
3.13.   Maximum strain per load cycle vs. number of loading cycles, uniaxial             

loading ....................................................................................................................... 51 
 
3.14.   Maximum strain per load cycle vs. number of loading cycles, equal biaxial      

loading ....................................................................................................................... 52 
 
3.15.   Maximum strain per load cycle vs. number of loading cycles, biaxial loading ........ 53 
 
5.1.   Material element with loading directions 1 and 2 (Wen et al. 2012) ........................ 68 



xii 
 

 
5.2.   Schematic representation of bounding surfaces in biaxial stress space (Wen et         

al. 2012) ..................................................................................................................... 69 
 
5.3.   Residual strength vs. number of cyclic loads for stress ratio 1:0 (uniaxial 

compression) .............................................................................................................. 73 
 
5.4.   Residual strength vs. number of cyclic loads for stress ratio 1:1 .............................. 75 
 
5.5.   Residual strength vs. number of cyclic loads for stress ratio 1:0.5 ........................... 75 
 
5.6.   Residual strength surfaces for varying number of cyclic loads in for biaxial 

compressive fatigue loading ...................................................................................... 77 
 
5.7.   Stress vs. strain for uniaxial compression for multiple number of cyclic loads 

(Experimental data by Litewka and Dubinski, 2003) ................................................ 78 
 
5.8.   Stress vs. strain for equal-biaxial compression for multiple number of cyclic       

loads (Experimental data by Litewka and Dubinski, 2003) ...................................... 78 
 
5.9.   Limit surface comparison for various values of α and β2 parameters       

(Experimental data by Nelson et al., 1988) ............................................................... 79 
 
5.10.   S-N curve for stress ratio 1:0, varying parameter A .................................................. 80 
 
5.11.   S-N curve for stress ratio 1:1, varying parameter A and B ........................................ 81 
 
5.12.   Limit surface for low and high-strength concrete (Schreyer, 1983; Green and 

Swanson, 1973; Traina, 1983) ................................................................................... 83 
 
5.13.   Limit surface for high-strength concrete for biaxial compression, monotonic    

loading (Experimental data:  Kupfer et al., 1969) ..................................................... 85 
 
5.14.   Limit surface for high-strength concrete for biaxial compression, fatigue         

loading (Experimental data:  Nelson et al., 1988) ..................................................... 86 
 
6.1.   Strength vs. number of freeze-thaw cycles for uniaxial tension and           

compressive loading of air-entrained concrete (Shang et al., 2009) .......................... 91 
 
6.2.   Strength vs. number of freeze-thaw cycles for biaxial compression (top) and   

strength vs. stress ratio (bottom) (Shang et al., 2006) ............................................... 91 
 
6.3.   Residual strength vs. number of freeze-thaw cycles for stress ratio 1:0 (uniaxial   

compression)...............................................................................................................93  
 



xiii 
 

6.4.   Residual strength vs. number of freeze-thaw cycles for stress ratio 1:1 (equal-  
biaxial compression) ..................................................................................................94  

 
6.5.   Residual strength vs. number of freeze-thaw cycles for stress ratio 1:0.5          

(biaxial compression) .................................................................................................94  
 
6.6.   Residual strength vs. number of freeze-thaw cycles for various load paths in 

compression ...............................................................................................................95  
 
6.7.   Residual strength surfaces for various number of freeze-thaw cycles in biaxial 

compression ............................................................................................................... 97 
 
6.8.   Stress vs. strain for uniaxial (top) and equal-biaxial (bottom) compression,        

model output (line) and experimental data (marker and line) (Shang et al.,          
2006) .......................................................................................................................... 98 

 
6.9.   Limit surface comparison for various values of α and β2 parameters       

(Experimental data by Nelson et al., 1988) ............................................................... 99 
 
6.10.   S-N curves for uniaxial (top), equal-biaxial (middle), and 1:0.5 biaxial    

compression (bottom) with various values of B ...................................................... 100 
 
6.11.   S-N curves for equal-biaxial (top) and 1:0.5 biaxial compression (bottom) with 

various values of C .................................................................................................. 101 

 



1 
 

CHAPTER 1. INTRODUCTION 

 
 

 
Concrete is the most widely used material in the construction industry today.  Its 

applications as a structural material, ease of production, and ecological benefits are several 

reasons it continues to be used in such vast quantities.  It is used in buildings, bridges, roads, 

dams, tunnels, power plants and many other structures that are vital to our infrastructure.  

Despite our continuous use of concrete, our knowledge of its behavior is not yet as thorough as 

perhaps it should be.  Researchers continue to search for effective ways to understand the 

complex behavior of concrete.  With the use of the computers, constitutive models have been 

established that have given engineers an economic alternative to expensive experimental analysis 

of complex structures.  Although there are existing models that describe the nonlinear behavior 

of concrete, none have gained common acceptance among researchers and engineers as they 

have some weaknesses and are continually being refined.  Furthermore, structures are continually 

loaded and unloaded in what is termed “fatigue loading” which further complicates the behavior 

of concrete.  The need for a simple and effective constitutive model that can be used to predict 

the behavior of concrete is apparent (Mehta and Monteiro, 1993). 

Concrete has some unique mechanical behaviors that differ from other structural 

materials such as metals.  It is much stronger in compression than it is in tension.  Both the 

strength and the stiffness of concrete are affected by the loading condition to which it is 

subjected.  Strength and stiffness properties may be enhanced if confining pressure is applied to 

the concrete.  Concrete typically undergoes brittle failure, but the ductility of the material can 

also be enhanced in the presence of confining pressure. 
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Another unique characteristic of concrete is concrete’s resistance to water with respect to 

corrosion.  Although concrete is chemically resistant to water, it is highly susceptible to the 

infiltration of water into its voids and cracks.  As water infiltrates concrete it can have the 

following effects:  Corrosion of reinforcing steel, freeze-thaw damage, and chemical attack from 

various chemicals that are transported into the concrete by water.  Of these effects, this paper 

will deal primarily with the effect the freeze-thaw process has on concrete.  Water occupies 9% 

more volume when frozen than when it is in its liquid state.  This moisture expansion causes 

internal stress on concrete and can cause damage to occur.  As more damage occurs in the form 

of microcracks, the infiltration of moisture into the concrete can increase, which can further 

exacerbate the damage caused by the freeze-thaw process (Yang, 2004). 

Concrete is considered a composite material because it is composed of an aggregate 

material that is dispersed within a cement paste matrix.  Because of this unique makeup, concrete 

behaves different than an isotropic material such as metals.  The nonlinear behavior of concrete 

is the result of two modes of irreversible changes that occur within the concrete matrix, 

microcracking and plastic flow.  The propagation and formation of microcracks within concrete 

cause material bonds to be destroyed which results in increased material compliance.  Because 

the propagation and formation of microcracks is highly dependent on the direction of loading, so 

is the reduction in the material stiffness.  Continuum damage mechanics is used to describe the 

growth of microcracks within the concrete matrix.  Unlike plasticity theory, which prior to 

continuum damage mechanics was the primary means of modeling the nonlinear behavior of 

concrete, damage mechanics illustrates the continual weakening of the “damaged” material.  This 

weakening is shown in the form of reduced stiffness. 
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The second mode of irreversible change that occurs within concrete, termed “plastic 

flow”, is the dislocation of concrete that occurs along slip planes under internal shear stresses 

during loading.  When the dislocation occurs along the slip plane it is assumed that, for the most 

part, the same amount of material bonds are destroyed and then again created, effectively 

allowing strain to occur, but not damaging the material in the sense that the material stiffness is 

reduced (Yazdani and Schreyer, 1988).  This phenomenon can be modeled well by the theory of 

plasticity and is used in many existing concrete models today, though it is not considered in this 

paper as only uniaxial and biaxial stress spaces are considered.  With these points in mind, it is 

appropriate to assume that a combined model, utilizing both plasticity theory and continuum 

damage mechanics should be used to describe the nonlinear behavior of concrete subjected to 

confining pressure as plastic flow is more prevalent in this case.  

Although fracture mechanics has been used in modeling the behavior of concrete, it is not 

considered as appropriate as continuum damage mechanics prior to the formation of a major 

crack or fault zone.  Fracture mechanics is based on the ability to know the amount of energy 

that is required for an existing crack to propagate, and is applied to concrete once a major crack 

forms (Yazdani, 1993).  While some energy is dissipated during the propagation of an existing 

crack, the majority of energy is dissipated during the creation of new microcracks which is better 

described using continuum damage mechanics (Thapa, 2010).  Recently there has been an effort 

by some researchers to combine continuum damage mechanics and fracture mechanics in the 

modeling of concrete. 

 In order to have a thorough understanding of the behavior of concrete for various loading 

conditions the mechanical behavior of concrete for uniaxial tension and compression, biaxial 

compression, biaxial tension, triaxial compression, fatigue loading, and freeze-thaw effects are 
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discussed in Chapter 2.  As this thesis is an extension of the Yazdani model (1993) and the Wen 

model (2011), they will be discussed in detail in Chapter 3 along with a review of some basic 

principles of thermodynamics and damage mechanics.  The Yazdani model (1993) produced 

good correlation with experimental results for monotonic loading of concrete which is shown in 

Chapter 3.  Chapter 4 deals with the thermodynamics of materials, which is the basis of the 

aforementioned models.  In Chapters 5 and 6 a new model will be presented to model the fatigue 

and freeze-thaw behavior of concrete.  A softening function will be used to manipulate the 

strength and compliance of concrete accordingly.  This model will be compared with the 

experimental data presented in Chapter 2.  Conclusions and future work will be discussed in 

Chapter 6, followed by a list of references. 

 Before continuing on it should be made clear that in the absence of the consideration of 

plastic flow, the model discussed in this paper deals with uniaxial and biaxial load cases.  Biaxial 

stresses are common in engineering application and can range from a bridge deck to a nuclear 

containment structure.  The model presented in this paper captures the essential characteristics of 

concrete in uniaxial and biaxial stress space. 
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CHAPTER 2. MECHANICAL BEHAVIOR OF CONCRETE 

 

2.1. Introduction 

 Part of the difficulty of formulating a constitutive model for concrete is that it needs to 

capture the mechanical and phenomenological behavior of concrete under various loading 

conditions.  A thorough understanding of the mechanical behavior of concrete is vital to the 

formulation of a comprehensive and robust model based on the theory of damage mechanics.  To 

help in the formulation of a phenomenological model, the effects of microcracking need to be 

understood, as this is what damage mechanics ultimately involves.  The direction of 

microcracking and eventually larger cracking is highly dependent on the direction of loading.  

Further, the extent of the cracking that occurs is greatly affected by the loading conditions the 

concrete is subjected to.  This microcracking and plastic flow that occurs during the external 

loading is thought to be the cause of the nonlinear behavior of concrete.  Though this paper does 

not go into detail discussing the plastic flow mechanisms it is considered to be negligible for 

loading with relatively low confining pressure. 

 Prior to the discussion of how concrete behaves under various loading conditions, it is 

important to know how microcracks progress within concrete.  It is known that prior to any 

external loading, microcracks exist within the transition zone of concrete, also known as the 

aggregate mortar interface (Mehta and Monteiro, 1993; Dhir and Sangha, 1974).  This 

preexisting damage is known to be caused by several things, namely shrinkage, thermal 

expansion, segregation, and volume changes.  The onset of damage in concrete is initiated in the 

form of microcracking that can occur throughout the cement matrix.  The first forms of 
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microcracking are preexisting and will typically occur where concrete is the weakest, along the 

interface of the aggregate and the cement matrix.  At a certain local stress level, the internal 

stress reaches a point at which the microcrack can propagate into the cement matrix.  The cracks 

that occur or propagate into the cement matrix are stopped by the aggregate, which has the 

highest strength of the individual components that make up concrete.  As loading increases, or 

the number of cycles increases in the case of fatigue loading, the microcracks continue to 

propagate and crack coupling occurs until a failure occurs on a macro scale. 

 In this chapter the mechanical behavior of concrete during uniaxial compression, uniaxial 

tension, biaxial compression, biaxial tension, triaxial compression, fatigue loading, and freeze-

thaw effects will be discussed in detail.  As stated before, it is vital to understand the differences 

in the mechanical behavior of concrete subjected to differing loading conditions in order to 

formulate a meaningful damage mechanics model for concrete.  The water cement ratio, 

admixtures, type of aggregate, and cement type also have a large effect on the behavior and 

performance of concrete, but are not discussed in this study.  The affects of these variables are 

considered to be captured in the experimental parameters used in this paper. 

 

2.2. Plastic Flow vs. Microcracking 
 

Prior to any investigation of the mechanical behavior of concrete subjected to various load 

paths, the two major sources of nonlinear stress-strain behavior need to be discussed.  Plastic 

flow in aggregates and void closures is considered the primary form of inelastic deformation 

under loading conditions with relatively large confining pressures.  An important feature of this 

type of deformation is that it does not affect the overall stiffness of the material.  This is well 

demonstrated by the stress-strain curves of concrete loaded with hydrostatic pressure.  The slope 
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of the loading-unloading curve is relatively unchanged while large amounts of permanent 

deformation caused by plastic flow are observed.  While this form of deformation demonstrates 

an increased ductility in concrete, it is neglected in this paper as the model presented is based on 

continuum damage mechanics theory and not plasticity theory.   

The second source of nonlinear deformation behavior is known as microcracking and is 

best quantified by damage mechanics theory.  While this is thought to be the more prevalent of 

the two forms of inelastic deformation in brittle materials, it is known to be nearly nonexistent 

during hydrostatic loading.  Microcracking is termed “damage” in this paper and has a dramatic 

effect on the compliance of concrete.  As microcracking accumulates in a particular direction 

(parallel to the direction of primary loading for concrete in compression; perpendicular to the 

direction of loading for concrete in tension) the stiffness in that direction decreases giving rise to 

increased strain, though this strain is thought to be recoverable upon unloading assuming 

complete crack closure (Yazdani and Karnawat, 1996). 

While plastic flow is not considered in this paper; permanent deformations are quantified 

using kinematic relations.  The permanent deformation is considered to be the result of imperfect 

crack closure and misfit surfaces.  This aspect of the model will be discussed further in Chapters 

3 and 4. 

 

2.3. Uniaxial Compression 
 

 A stress-strain curve for a typical concrete specimen subjected to uniaxial monotonic 

compression is shown in Figure 2.1.  One can divide the stress-strain curve into four major zones 

in the progression of microcracking in concrete.  They occur at less than 30% of the maximum 

compressive strength (f’c), between 30% and 50% of ௖݂
ᇱ, between 50% and 75% of ௖݂

ᇱ, and 
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greater than 75% of ௖݂
ᇱ (Mehta and Monteiro, 1993).  These stress levels are approximate but 

provide realistic boundaries for the various stages in the development of the microcracking 

phenomenon. 

 

Fig. 2.1.  Stress vs. axial strain for a concrete specimen loaded in uniaxial compression (Bahn 
and Hsu, 1998) 

 

 In the first stage of crack development, at stress levels less than 30% of the maximum 

compressive load, the preexisting microcracks are largely unaffected by loading.  This can be 

seen in the stress-strain curve as it shows a nearly linear relationship between stress and axial 

strain at this load level.  It can also be taken that the stress level within the concrete is not yet 

high enough for the preexisting cracks to propagate or for new cracks to form along the 

aggregate mortar interface.  It is not until localized stress reaches 30% of ௖݂
ᇱ that localized 

cracking begins occurring in the transition zone. 

 During the second stage of crack development, at stress levels between 30% and 50% of 

௖݂
ᇱ, stress levels at cracks tips in the transition zone reach critical levels and begin to propagate.  

Also, new cracks begin to develop as the strength of the bond between aggregate and mortar 

matrix is reached.  At this stage cracks within the mortar matrix are still insignificant as this 
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region is stronger than the interface region.  As more cracks form, stress redistribution occurs 

and the nonlinear stress-strain behavior of concrete begins. 

 The third stage of crack development occurs when stress levels are between 50% and 

75% of ௖݂
ᇱ.  At this stage cracks begin to propagate and form in the mortar matrix.  Cracks 

continue to develop on the aggregate-mortar interface and can become unstable.  Stress 

redistribution continues to occur and as a result, the compliance of the concrete continues to 

increase. 

 The fourth stage occurs at stresses greater than 75% of ௖݂
ᇱ.  At this stage, the internal 

energy within the concrete is greater than the crack-release energy of the mortar.  Cracks 

continue to propagate in the mortar and combine to form larger cracks.  As crack formation 

becomes unstable there are decreases areas within the concrete for stress to be redistributed to.  

At this level of loading the cracks between the mortar and the transition zone can combine 

allowing for complete fracture of the concrete. 

 One will notice another unique behavior of concrete illustrated in Figure 2.  When 

stresses reach a critical point, near 75% of ௖݂
ᇱ, crack propagation begins to reach an unstable rate.  

Until this point the volumetric strain has nearly a linear relationship with the applied stress.  

Once cracking reaches an unstable rate of propagation the lateral strain begins to increase rapidly 

which causes the volumetric strain curve to reverse as seen in Figure 2.2.  This signifies that at 

this critical stress level the volumetric strain is at its maximum compressed state, after which the 

volume of the concrete begins to expand. 

 Another interesting note, well documented by Price (1951), is that under sustained stress 

conditions the maximum load concrete can endure may be less than the short term compressive 
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strength ௖݂
ᇱ.  He found that at 90% of the short term compressive strength, the concrete specimen 

failed after one hour and at 75% it failed after 30 years. 

 

Fig. 2.2.  Typical stress vs. volumetric strain plot of concrete subjected to uniaxial compression 
 

 For uniaxial compression of concrete, microcracking occurs approximately parallel to the 

direction of loading.  Because of the shape of the aggregate within the concrete matrix, cracking 

occurs at a slight angle.  Shear stresses occurring along the interface of cracks causes shear 

sliding and crack separation. 

 
2.4. Uniaxial Tension 

It is well known that concrete is much weaker in tension than it is in compression.  The 

main reason for this is that the tensile strength of the aggregate-mortar interface is less than that 

of the mortar itself.  This is because under a tensile load cracks are arrested much less frequently 

than when subjected to a compressive load.  Where cracking occurs nearly parallel to the loading 

during for uniaxial compression, it occurs transverse to the loading direction for uniaxial tension.  

This means that the propagation or formation of new cracks dramatically reduces the available 

load-carrying area, which than causes stress increases near existing crack tips.  As a result, 
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failure of concrete occurs by bridging relatively few cracks, as opposed to many cracks as in 

uniaxial compression. 

 One can see in Figure 2.3 that the stress-strain behavior, and corresponding Poisson’s 

ratio and elastic modulus, of concrete in uniaxial tension are similar to concrete in uniaxial 

compression.  For stresses less than approximately 60% of the maximum tensile strength of 

concrete, ௧݂, the formation and propagation of cracks beyond the preexisting cracks is minimal 

and the stress-strain curve is nearly linear.  As stresses reach 75% of ௧݂ crack propagation 

becomes unstable.  This unstable crack propagation can be seen in the increased compliance of 

the concrete at this load level.  Once the maximum tensile strength of the concrete is reached the 

stress-strain curve often becomes erratic as brittle failure ensues (Mehta and Monteiro, 1993).  

Figure 3 shows the stress-strain curve for direct-tension testing of a concrete specimen 

performed by Shkolnik (2007).  Various loading rates were used. 

 

Fig. 2.3.  Stress-strain curve for direct tension testing of concrete specimen with varying loading 
rates (Shkolnik, 2005) 
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 In general, the maximum compressive strength of concrete is about 10 to 20 times that of 

its maximum tensile strength.  Both the compressive and tensile strength of concrete can be 

affected by the preloading effect.  The preloading effect takes place when concrete is subjected 

to at least one loading and unloading sequence in any direction.  Given the concrete is loaded in 

compression or tension in a given direction, the strength of the concrete in the orthogonal 

direction is now reduced for the opposite type of loading (Thapa, 2010).  For example, if a 

specimen is loaded vertically with a compressive load and then unloaded cracking will occur in 

the vertical direction.  Now if the same specimen is loaded horizontally with a tensile load, the 

preexisting cracks in the vertical direction will reduce the tensile strength in the horizontal 

direction.  In effect, the formation of damage within concrete is highly dependent on the 

direction of loading and is considered anisotropic.  This is a unique and important characteristic 

that should be captured by an effective damage mechanics model for concrete. 

 

2.5. Biaxial Compression 

A biaxial stress state is essentially when concrete is being loaded in two orthogonal 

directions without the presence of confining pressure.  This type of loading is very common in 

actual structural application.  It is well documented that concrete’s compressive strength can be 

enhanced during biaxial compression.  This strength enhancement is dependent upon the biaxial 

stress ratio 
ఙభ
ఙమ

.  One can see from Figure 2.4 that concrete reaches its maximum strength, about 

20% to 30% increase, when the biaxial load ratio 
ఙభ
ఙమ
ൌ 0.5.  For equal biaxial loading the 

compressive strength still increased, but not as significantly as the strength for 
ఙభ
ఙమ
ൌ 0.5.  
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Another interesting note is that the overall shape of the curve in Figure 2.4 is not affected by the 

uniaxial compressive strength of the concrete. 

 

Fig. 2.4.  Biaxial strength envelope of concrete (Lee et al., 2004) 

 
If one thinks about the mode of cracking in concrete subjected to uniaxial compression, 

the strength enhancement provided by biaxial loading is logical.  Compressive loading in one 

direction creates cracks the direction parallel to loading.  These cracks propagate in an attempt to 

split open further as lateral strain increases.  With the addition of a confining load in an 

orthogonal direction, at least some crack opening is prevented requiring larger loads for complete 

fracture to occur.  This becomes even more evident during triaxial loading. 

In addition to strength enhancement, concrete becomes more ductile in this stress state.  

Similar to the strength enhancement during biaxial loading, the maximum strain occurs at 

ఙమ
ఙయ
ൌ 0.5 while equal biaxial loading experiences some enhanced ductility it is not as great.  The 

change in the stress-strain behavior can be seen in Figure 2.5 for varying load ratios. 
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Fig. 2.5.  Stress-strain curves for concrete subjected to various biaxial load ratios, ݇ ൌ ఙమ
ఙయ

 

(Litewka and Debinski, 2003) 
 

2.6. Biaxial Tension 

Concrete in biaxial tension is known to possess some interesting properties.  Looking at 

the biaxial strength envelope shown in Figure 2.4, the strength of concrete is clearly affected by 

multi-axis tension loading.  For equal biaxial loading the strength appears to be close to that of 

the uniaxial rupture strength of concrete, perhaps slightly less.  Some strength enhancement is 

shown for proportional biaxial tension loading, with the largest increase in strength occurring at 



15 
 

load proportions 
ఙభ
ఙమ
ൌ 0.25.  At this point the strength of concrete can increase by as much as 5 

to 10%. 

 

Fig. 2.6.  Stress-strain curve for concrete in biaxial tension (Lee et al., 2004) 

 
The strain behavior of concrete subjected to biaxial tension is shown in Figure 2.6.  The 

figure shows nearly linear stress-strain behavior of concrete prior to rupture.  This type of 

behavior is logical as little inelastic deformation will occur prior to failure of the material.  Since 

microcrack propagation is not inhibited as in compression loading, they will quickly propagate 

into larger cracks that quickly lead to complete rupture of the specimen. 

 

2.7. Triaxial Compression 

A material that has loading applied in three orthogonal directions is considered to be 

triaxially loaded.  In a laboratory environment a specimen is usually loaded with a certain 

confining pressure while being loaded with an additional axial load in one or two directions.  

Concrete subjected to triaxial compression loading can behave differently depending on the level 
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of confining pressure that is being applied.  Papanikolaou and Kappos (2007) performed triaxial 

compression tests on concrete at low to mid-level confining pressures, shown in Figure 2.7.  

Figure 2.8 shows a triaxial test with higher confining pressure.  One can see that concrete 

behaves differently depending on the level of confining pressure used.  For lower levels of 

confining pressure strain-softening is easily seen for the portion of the curve on the right side of 

the maximum load.  Strain-softening is known as a decrease in the load carrying capacity of a 

material that coincides with an increase in strain.  Strain-hardening is also prevalent in these 

curves.  This is the portion of the stress-strain curve that consists of and increased rate of strain 

while the load carrying capacity continues to increase.  This happens prior to the peak load being 

reached.  At high levels of confining pressure concrete can fail by the crushing of the mortar 

rather than cleavage.   

 
 

Fig. 2.7.  Stress vs. strain plot for triaxial compression tests on concrete for low to mid-
level confining pressures (Papanikolaou and Kappos, 2007) 
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Fig. 2.8.  Stress vs. strain plot for triaxial compression tests on concrete for larger confining 
pressure (Litewka and Debinski, 2003) 

 
An important note should be made about concrete under pure hydrostatic pressure.  

Under this type of loading cracking in the concrete is considered to be minimal.  With this 

consideration in mind the concrete is relatively undamaged, having the stiffness of the material 

seemingly unaffected.  This phenomenon is supported by research conducted by Yurtadas et al. 

(2004) which shows the unloading curve to be nearly parallel to the initial loading curve (Figure 

2.9).  The unrecovered strain is coming predominately from the inelastic shear sliding along 

preferred slip planes.  Shear-enhanced compaction occurs in the presence of non-hydrostatic 

loading.  Because shear stresses are a more effective means of voids closure than pure 

hydrostatic pressure, concrete will experience larger volumetric strains if one component of 

stress is greater than the others. 
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Fig. 2.9.  Hydrostatic pressure vs. volumetric strain (Yurtdas et al., 2004) 

 
 

2.8. Fatigue Loading 

 When there are repeated loading and unloading cycles on a structure, fatigue damage may 

be a controlling factor in the structures performance.  Fatigue loading is prevalent in many 

concrete structures, though design engineers usually design a structure with sufficient strength so 

that the extent of fatigue damage is negligible.  In practice this is a conservative approach and, 

although safe, can lead to uneconomical design of structures.   

 It is known that at certain load levels fatigue loading can have a detrimental effect on 

concrete’s structural integrity.  Song et al. (2005) performed an extensive test program to obtain 

several S-N curves for various fatigue loading conditions.  Concrete specimens were subject to 

tension-compression cyclic loading in addition to varying levels of lateral loads.  An S-N curve 
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is a plot of the strength of a material vs. the number of cyclic loads for that given load case.  

Their results can be seen in Figure 2.10.   

 

Fig. 2.10.  S-N curve, Smax = σmax/ft, 0.1fc lateral pressure, 0.2fc lateral pressure, and 0.3fc lateral 
pressure corresponds to square, triangle, and circle (Song et al., 2005) 

 
 The onset of damage within the concrete occurs at higher rates for larger load 

magnitudes.  This can be seen in the strain vs. number of load cycles plot (Figure 2.11).  In the 

figure one can see that the strain curve has three stages corresponding with the number of load 

cycles.  The first stage occurs over approximately the first 10% of the concrete’s life.  In this 

stage the strain increases rapidly, as preexisting cracks in the transition zone propagate until they 

reach a stable phase.  In the second stage, during the next 80% of the concrete’s life, the crack 

development is slowed but continues at a stable rate.  It is thought that the stronger mortar arrests 

the rapid propagation of the interface cracks.  In the final stage cracks propagate unstably 

throughout the mortar and lead to failure.  The final stage occurs during the final 10% of life 

(Song et al., 2005).   
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Fig. 2.11.  Strain vs. number of cycles, R = lateral load ratio = σlat/fc, Smax = σmax/ft (Song et al., 
2005) 

 
 In addition to the data presented by Song et al. (2005), Lee and Barr (2002) also compiled 

meaningful fatigue data for plain concrete from a variety of researchers.  Table 1 shows the 

approximate amount of fatigue loading that occurs for a given structure including airport 

pavements, bridges, highway and mass transit structures, and sea structures. 

 
Table 2.1.  Approximate number of loading cycles for a given structure or loading condition 
  

 

Source:  Lee M. K. & Barr B. I. G. (2002). An overview of the fatigue behaviour of plain and 
fibre reinforced concrete. Cement and Concrete Composites, 26, 299-305. 
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 Figure 2.12 shows a compilation of experimental data for plain concrete subjected to 

uniaxial compressive fatigue loading presented by several researchers including Paskova and 

Meyer (1997),Grzybowski and Meyer (1993), Cachim (1999), and Do et al. (1993).  The 

dimensionless term, ܵ ൌ ሺ
ఙೌ೛೛
௙೎
ᇲ ሻ, is thought to give the best possible description of fatigue 

behavior for various types of plain concrete because it eliminates the influence of important 

factors like water-cement ratio, type of aggregate, curing conditions, etc (Lee and Barr, 2004).  It 

is important to notice that the relationship between the stress ratio, S, has a logarithmic 

relationship with the number of cyclic loads.  It is logical then that at some load level the fatigue 

life of the material approaches infinity.  In a practical sense infinity can be taken as a point at 

which the fatigue life far exceeds that of a realistic number of cyclic loads that may be 

experienced throughout the lifespan of a structure.   

 

Fig. 2.12.  Compilation of fatigue life data for uniaxial compressive loading of plain concrete 
(Lee and Barr, 2002) 
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Figure 2.13 shows a similar compilation of experimental data for flexural loading.  It is 

important to provide data for various types of loading as concrete has different mechanical 

behavior in tension as opposed to compression.  One should notice that the experimental data has 

a fairly large deviation.  This may be caused by a variety of factors including testing 

methodology, specimen fabrication, or data errors.  The goal of any fatigue life modeling of 

concrete should be to capture the essential features of the fatigue life behavior of concrete and 

not to duplicate the data. 

 

Fig. 2.13.  Compilation of fatigue life data for flexural loading of plain concrete (Lee and Barr, 
2002) 

 
 

2.9. Freeze-Thaw Process 

 In recent years an increased focus is being given to the effect freeze-thaw cycles have on 

the stiffness and strength properties of concrete.  Damage caused by frost expansion is a primary 
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concern when designing concrete structures in cold weather regions.  In essence, the freeze-thaw 

process can be thought of as a complex form of fatigue loading.  The onset of damage within 

concrete can be accelerated when a freeze-thaw cycle occurs while a structure is subject to 

significant external loading (Miao et al., 2002).  Shang et al. investigated the stiffness and 

strength performance of concrete after 25, 50, and 75 freeze-thaw cycles subjected to biaxial 

compression and axisymmetric triaxial compression. 

 
Table 2.2.  Effect of freeze-thaw on tensile performance of concrete  
 

 
 

Source:  Shang H. S. & Song Y. P.  (2006). Experimental study of strength and deformation of 
plain concrete under biaxial compression after freezing and thawing cycles. Cement and 
Concrete Research, 36, 1857-1864.  
 

 
From the experimental data presented by Shang et al. (2006) for biaxial compression, it 

shows that the decrease in strength of the material decreases nearly linearly with increasing 

freeze-thaw cycles.  This may hint at a nearly constant rate of microcrack propagation within the 

concrete matrix. 
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Table 2.3. Ultimate strength and strain of plain concrete subjected to biaxial compression for 
varying number of freeze-thaw cycles (Shang et al., 2006) 

 

 

Source:  Shang H. S. & Song Y. P.  (2006). Experimental study of strength and deformation of 
plain concrete under biaxial compression after freezing and thawing cycles. Cement and 
Concrete Research, 36, 1857-1864.  
 
 
Table 2.4.  Ultimate strength and strain of plain concrete subjected to triaxial compression for 
varying number of freeze-thaw cycles (Shang et al., 2008) 
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Source:  Shang H. S., Song Y. P., & Qin L. K. (2008). Experimental study on strength and 
deformation of plain concrete under triaxial compression after freeze-thaw cycles. Building and 
Environment, 43, 1197-1204. 

 

Fig. 2.14.  (a) Normalized compressive strength, σ3/fc, vs. freeze-thaw cycles, (b) normalized 
compressive strength vs. lateral load ratio, σ2/σ3 (Shang et al., 2006) 

 
 For the experimental data shown by Shang et al. (2008) σ3 is the primary loading 

direction, σ2 adjusted throughout testing, and σ1 is constant throughout the testing procedure.  

One notices that prior to the application any frost expansion damage the specimens behave as 

expected under variable biaxial loading.  The maximum value for σ3 occurs when σ2/ σ3 is 0.5, 

corresponding to what was discussed previously about biaxial compression.  With the onset of 

damage caused by the ensuing freeze-thaw cycles one can see a noticeable drop in the 

compressive strength in the primary loading direction.  The greatest decrease in strength occurs 

when the lowest secondary load, σ2, is applied.  Shang et al. (2008) emphasize that confining 

loads reduce the damage caused by freeze-thaw stating that after 50 freeze-thaw cycles the 

uniaxial compressive strength is reduced to 70.5% of its original strength, while for the same 

number of cycles and with load ratio 0.1:0.5:1.0 the strength in the primary direction is reduced 

to 93.3% of the original strength.  The reduced strength loss for higher confining loads can be 

explained at the microscopic level.  Water infiltrates voids along the aggregate-mortar interface 

or within the cement matrix itself and as freezing sets in the volume of the entrapped moisture 
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will expand.  The increase in volume can do two things.  If there is additional unfilled space 

available within the concrete voids the expanding moisture can spread without causing much 

damage or if no additional space is present the expanding moisture can apply internal stresses 

onto the tips of the encompassing voids.  This can cause the voids or cracks to propagate, 

explaining the decreased load carrying capacity of concrete with increased freeze-thaw cycles.  

The reduced loss of strength with higher confining loads is the result of crack closer caused by 

the confining loads once the water thaws and its volume is once again reduced.  Crack closure 

returns the overall volume of voids within the concrete to nearly what it originally was, allowing 

minimal addition water into the concrete. 

 
Table 2.5.  Percentage drop of ultimate strength of plain concrete subjected to triaxial 
compression loading with varying freeze-thaw cycles (Shang et al., 2008) 
 

 

Source:  Shang H. S., Song Y. P., & Qin L. K. (2008). Experimental study on strength and 
deformation of plain concrete under triaxial compression after freeze-thaw cycles. Building and 
Environment, 43, 1197-1204. 
 
 
 Similar conclusions can be taken from the deformation characteristics of the concrete, 

shown in Figures 2.15 and 2.16.  The onset of damage caused by the freeze-thaw cycles causes 

an increase in strain under all loading conditions.  The overall compressive strain at failure is 

larger for specimens subjected to freeze-thaw damage.  With increased freeze-thaw damage, the 

plastic-hardening phase of the stress-strain curve occurs at much lower stress levels, which can 

be seen in Figure 2.16.  The strains in the lateral directions also show an increase in magnitude 
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with more freeze-thaw cycles.  This illustrates the fact that, with no prior external loading and 

preexisting damage being of an isotropic nature, the freeze-process induces damage in all 

directions.  This may not be the case if concrete is loaded, causing anisotropic damage, followed 

by freeze-thaw damage.  Under this condition, the freeze-thaw damage may occur primarily in 

the direction damage is already occurring, as the moisture expansion will cause existing cracks to 

propagate. 

 

Fig. 2.15.  Strain in the primary loading direction vs. number of freeze-thaw cycles (Shang et al., 
2008) 

 
Figure 2.17 includes uniaxial compressive strength data for freeze-thaw damage 

presented by Shang et al. (2009).  The uniaxial compressive strength of air-entrained concrete 

was measured after 0, 50, 100, 150, 200, 300, 350, and 400 freeze-thaw cycles.  After 400 cycles 

the compressive strength was found to decrease by 53%.  The tabulated results are also shown. 

 
Table 2.6.  Uniaxial compressibe strength of air-entrained concrete for various number of freeze-
thaw cycles 
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Source:  Shang H. S., Song Y. P., & Qin L. K. (2008). Behavior of Air-Entrained Concrete After 
Freeze-Thaw Cycles. Acta Mechanica Solida Sinica, 22(3), 261-266. 

 

Fig. 2.16.  Strain vs. principle stress ratio for various number of freeze-thaw cycles (Shang et al., 
2002) 

 

 

Fig. 2.17.  Strength vs. number of freeze-thaw cycles for uniaxial tension and compressive 
loading of air-entrained concrete (Shang et al., 2009) 

 
Research performed by Detwiler et al. (1989) explains that there are two forms of freeze-

thaw damage.  The first is termed hydraulic pressure and is much more prevalent during rapid 

freezing processes.  It is well known that water that has been absorbed into the capillary pores of 
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the cement matrix expands once frozen.  If the required volume that is needed for the expansion 

is not available, the excess frozen water is transported away by internal pressure.  The magnitude 

of pressure created, as well as the resulting damage, is related to the permeability of the cement 

matrix, the rate of freezing, the degree of saturation, and the location of the nearest unfilled void 

within the cement matrix.  Local cracking will occur if the resultant pressure exceeds the tensile 

strength of the concrete.  Progressive damage occurs within the concrete because as cracking 

occurs, more volume is available for water to infiltrate and freeze, causing the existing cracks to 

propagate (Detwiler et al., 1989). 

The second form of freeze-thaw damage is termed ice accretion and is more prevalent 

during long freeze periods and when the rate of freezing is relatively slow.  Water in gel pores 

requires a much lower temperature to freeze, -78o C according to Cordon (1966).  This is due to 

the surface tension forces present in these regions of extremely small radii.  For most realistic 

applications water in the gel pore zones will remain in a liquid state while it remains in the gel 

pore.  As temperature drops below 0o C the water in the gel pores becomes supercooled and has a 

higher free energy than the ice in the capillaries which allows the water to move from the gel 

pores into the capillaries where it is more likely to freeze (Detwiler et al., 1989).  The overall 

effect of this process is a reduced volume of the concrete in the form of gel water and an increase 

in the volume of the capillaries due to expansion of frozen water.  Upon thawing, some of the 

water may return to the gel pores, but the original state of the material will not be obtained as this 

process is not reversible. 

Detwiler et al. (1989) also discuss several ASTM methods for assessing the durability of 

concrete subjected to freeze-thaw effects.  ASTM C 666 “Resistance of Concrete to Rapid 

Freezing and Thawing” is the most common for assessing the durability of concrete.  It consists 
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of 2 to 5 hour freeze-thaw cycles in which damage is assessed periodically throughout testing by 

visual observation and testing of the dynamic modulus of elasticity.  ASTM C 671 “Critical 

dilation of Concrete Specimens Subjected to Freezing,” is another test in which cylindrical 

specimens are cooled and warmed at a controlled rate while the length change of the specimen is 

tabulated for each cycle.  A similar test can be performed on a variety of mix designs to see how 

various aggregate types perform on various environmental conditions.   

The critical saturation test is the measurement of the volume of evaporable water in pores 

as a ratio of the total void space at which freeze-thaw cycles will damage the concrete.  The 

amount of time it takes a given type of concrete to reach critical saturation of determined by a 

series of absorption tests.  The frost resistance is considered to be difference between the existing 

degree of saturation and the critical degree of saturation at a given time. 

Detwiler et al. (1989) concluded that the usefulness of these tests are questionable if one 

is trying to determine the performance of a given concrete mix for actual service applications.  

The tests give engineers the ability to qualitatively compare various concrete types for their 

durability with respect to freeze-thaw effects.  The tests do not, however, give engineers the 

ability to predict the service life of that concrete quantitatively. 

From the experimental data presented by Shang et al. (2008) and the discussion presented 

by Detwiler et al. (1989) it is clear that a meaningful constitutive model needs to be developed to 

help predict the behavior and performance of concrete under these unique conditions.  The 

design life of the concrete needs to be taken into consideration so a more efficient, yet safe, 

design can be obtained. 
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CHAPTER 3. REVIEW OF RELEVANT LITERATURE 

 

3.1. Continuum Damage Mechanics 

 When discussing the use of continuum damage mechanics for concrete modeling it first 

becomes necessary to define the term “damage” as it applies to concrete.  There are three types 

of damage that can be distinguished within concrete, each having optimum theories used to 

model its corresponding type of damage (Krajcinovic, 1989):   

1. Atomic voids and defects in the crystal structure.  This form of damage can be modeled 

using material science models at the atomic scale. 

2. Microcracks and microvoids, these can be modeled using continuum damage mechanics.  

The crack, or damage, density can be quantified using damage theory. 

3. Cracks on a macro scale.  This form of damage can be modeled using fracture mechanics, 

which can predict the propagation of a discrete crack within concrete.   

 As stated earlier, because damage in the form of microcracks and microvoids governs the 

majority of concretes nonlinear behavior, continuum damage mechanics is considered an 

appropriate foundation for the formulation of a working concrete model.  Continuum damage 

mechanics uses a number of internal variables to define the local distribution of microcracks or 

microvoids in terms of an averaged density.  Because damage occurring within concrete is highly 

anisotropic, a simple scalar variable representing damage accumulation will not suffice.  The use 

of a fourth order tensor to represent damage is necessary to illustrate the true directionally 

dependent behavior of damage accumulation within brittle materials.  The Yazdani and Schreyer 
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model (1988) uses a fourth order compliance tensor to illustrate the accumulation of damage 

within concrete and is explained in Section 3.2. 

 Damage mechanics is supported by various thermodynamic theories based on the theory 

of irreversible processes.  The primary irreversible process within concrete, which is termed 

damage, is microcracking.  In Chapter 4 these thermodynamic theories are presented in detail 

and a dissipation inequality is introduced which is supported by the Clausius-Duhem inequality.  

These inequalities place certain restrictions upon the set of internal variables that are used to 

define the state of the material.     

 Previously, damage accumulation resulting from monotonic loading was discussed.  

Fatigue loading can simply be thought of as additional accumulation of damage at a given load 

level for repeated cycles.  In order to capture the softening phenomenon that occurs with the 

onset of fatigue damage a novel solution will be used that was presented by Wen (2011) for use 

in modeling both carbon fiber reinforced composites and steel fiber reinforced concrete.  In his 

model a simple softening function is used to reduce the solid’s ultimate strength as the number of 

fatigue cycles increases.  The function follows classical S-N curve behavior and correlates well 

with experimental data.   

 

3.2. Yazdani Damage Mechanics Model (1993) 

 Several simple, yet powerful changes were made to the previously discussed Yazdani and 

Schreyer model (1988) in Yazdani’s newer model (1993).  The main deficiency of the previous 

model was that it exhibited a “snap back” in the deformation of concrete in the softening regime 

of the stress-strain curve.  The closed form solution for uniaxial compressive strain of concrete is 

given below for the previous model (Yazdani and Schreyer, 1988) and a figure follows. 
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ଵߝ ൌ െ൬
1
଴ܧ
൅ ܿ݇൰࣌૚

ି (3.1)

where c is a constant and k is a scalar value related to the damage density 

 

Fig. 3.1.  Apparent “snap back” behavior present in Yazdani and Schreyer model (1988) 

 
 This behavior is not intended and is remedied in Yazdani’s revision (1993) using new 

forms of the response tensors and the damage function.  Using similar notations as in Yazdani 

and Schreyer (1988) the following is given for the response tensor corresponding to tension 

loading regime: 

ࡵࡾ ൌ
࣌ା ⊗ ࣌ା

࣌ା: ࣌ା
൅ ࡵଵሻሺߣሺܪߛ െ ࢏ ⊗ ሻ (3.2)࢏

where ܪሺߣଵሻ is a heavyside function with ߣଵ being the maximum eigenvalue of the positive cone 

of stress.  A rate form of inelastic strain is also defined in this model (inelastic strain for tension 

loading was assumed to be negligible in the previous model). 

ሶࢿ ௜ ൌ ሶ݇ࡹ ൌ ሶ݇ ሺࡹூ ൅ࡵࡵࡹሻ (3.3)
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where the decomposed forms of a response tensor M, I and II, are for tension loading and 

compression loading, respectively.   

ࡵࡹ ൌ ଵ࣌ା (3.4)ߚ

 ଵ is a material parameter used to account for the inelastic strains resulting from imperfect crackߚ

closure and misfit surfaces.  For damage occurring under compression loading the following 

response tensor is utilized: 

ூூࡾ
ௗ ൌ

෥࣌ ⊗ ෥࣌
෥࣌: ෥࣌

					 ݁ݎ݄݁ݓ ෥࣌ ൌ ࣌ି െ  ࢏ߣ
(3.5)

ࡵࡵࡾ
ࢎ ൌ ࡵߤ൯ሺߣ൫െ̅ܪߙ െ ࢏ ⊗ ሻ (3.6)࢏

 are considered to be the maximum eigenvalue and minimum eigenvalue of the negative ߣ̅ and ߣ

cone of stress, respectively.  The response tensor representing inelastic strains for compression 

loading is the same as in the previous model and is given as the following: 

ࡵࡵࡹ ൌ ିࡿ ൅ ା (3.7)ࡿଶߚ

 The addition of a transition function to the damage function in this model allows for the 

varying strength properties of concrete to be utilized within the model.  Previously a “cross effect 

coefficient” c was used in the response tensor to differentiate between the relative strength of 

concrete in tension and compression.  This was the main cause of the “snap back” behavior that 

is present in the Yazdani Schreyer model.  In this model a transition function which reflects the 

appropriate strength parameter of concrete corresponding to appropriate load case is used.   

,ሺ࣌ݐ ݇ሻ ൌ ሺ࣌ሻ݁ܣ
ln ሺ1 ൅ ଴݇ሻܧ
1 ൅ ଴݇ܧ

 (3.8)

This logarithmic form is the same as that used in the Yazdani and Schreyer (1988) model with 

the exception of the transition function, ܣሺ࣌ሻ.  ܣሺ࣌ሻ is the maximum value of the function 



35 
 

,ሺ࣌ݐ ݇ሻ and changes depending on the load path.  The range of the transition function, ܣሺ࣌ሻ, can 

be determined from the biaxial damage surface.  As in the Yazdani and Schreyer model: 

߰ሺ࣌, ݇ሻ ൌ
1
2
:ࡾ:࣌ ࣌ ൅ࡹ:࣌ െ

1
2
ଶሺ݇ሻݐ ൌ 0 (3.9)

Inserting the appropriate forms of the response tensors the following is obtained: 

߰ሺ࣌, ݇ሻ ൌ ଵ

ଶ
ሺ1 ൅ :ଵሻ࣌ାߚ ࣌ା ൅

ଵ

ଶ
࣌ି:

෥࣌⊗෥࣌

෥࣌:෥࣌
: ࣌ି ൅ ଵ

ଶ
ቀܪߛሺߣଵሻ ൅ ൯ቁߣ൫െ̅ܪߙ ࣌: ࣌ െ

ଵ

ଶ
ቀܪߛሺߣଵሻ ൅ ൯ቁߣ൫െ̅ܪߙ ଶሺ࣌ሻݎݐ ൅ ሺିࡿ ൅ :ାሻࡿଶߚ ࣌ െ

ଵ

ଶ
ଶሺ݇ሻݐ ൌ 0  

(3.10)

At the limit state if ݐሺ࣌, ݇ሻ is solved for in uniaxial tension, ܣଶሺ࣌ሻ ൌ ሺ1 ൅ ଵሻߚ ௧݂
ଶ ൌ ,ሺ࣌ݐ ௧; ifܨ ݇ሻ 

is solved for in uniaxial compression, ܣଶሺ࣌ሻ ൌ ሺ଻
ଷ
ሻ ௖݂

ଶ ൌ  ௖.  Now that the range of the transitionܨ

function has been determined, the form of the function is given as 

ଶሺ࣌ሻܣ ൌ
ሺ1 ൅ ଶߞ ൅ ௧ଶܨሻߞߙ2

1 ൅ ଶߞ ቀ
௧ܨ
௖ܨ
ቁ
ଶ
൅ ߞߙ2 ቀ

௧ܨ
௖ܨ
ቁ
ଶ ݁ݎ݄݁ݓ ߞ ൌ ฯ

ି࣌ݎݐ

ା࣌ݎݐ
ฯ (3.11)

 

Fig. 3.2.  Behavior of transition function, A, with respect to ࣀ 

 
The behavior of the transition function, ܣሺ࣌ሻ, is such that when ߞ ൌ 0 (tension loading), 

ሺ࣌ሻܣ ൌ ߞ ௧; whenܨ → ∞ (compression loading), ܣሺ࣌ሻ ൌ  ௖.  Figure 3.2 shows the behavior ofܨ
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the transition function.  It shows a smooth transition from the strength characteristics present 

under tension loading and compression loading.   

 Using the equation for the damage surface and for strain, the following model outputs are 

compared with experimental results. 

Parameters 
α = 0.985 
γ = 0.2 
β1 = 1.2 
β2 = 1.2 

ν = 0.2 (Poisson's 
Ratio) 

E0 = 40,000 Mpa 
f'c = 32 Mpa 
ft = 3.2 Mpa 
εcu = 0.003 
εtu = 0.0003 

 

 

Fig. 3.3.  Biaxial strength surface 
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Fig. 3.4.  Stress vs. strain behavior for concrete in uniaxial compression (experimental data:  
Litewka and Debinski, 2003) 

 

 

Fig. 3.5.  Stress vs. strain for concrete in uniaxial tension (experimental data:  Litewka and 
Debinski, 2003) 
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Fig. 3.6.  Stress vs. strain for concrete in equal-biaxial compression (experimental data:  Lee et 
al., 2004) 

 
This model shows good correlation with the experimental behavior of concrete for 

monotonic loading.  However, theIn Chapter 5 it will be extended to include fatigue and freeze-

thaw behavior of concrete. 

 

3.3. Wen Damage Mechanics Model (2011) 

 As stated previously, Wen’s model (2011) is similar to the Yazdani and Schreyer model 

(1988), but he incorporates a softening function that is able to account for fatigue damage and its 

effects on the mechanical properties of the material being modeled.  In this section Wen’s model 

for the fatigue behavior of woven fiber composites will be discussed.  Though his model is not 

formulated specifically for structural concrete, it will be shown in later chapters that his use of a 

softening function can be similarly used in damage modeling of concrete.  It will be seen that 

Wen’s model (2011) differs from the Yazdani and Schreyer model (1988) in several ways 
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including the form of the response tensors describing total strain (elastic, damage, and inelastic 

strains), the damage function used to describe the onset of damage or the limit surface, and the 

incorporation of the softening function for fatigue loading applications. 

 The form of Gibbs Free Energy is the same as that in the previous model and is shown as 

the following: 

,ሺ࣌ܩ ݇ሻ ൌ
1
2
࣌: :ሺ݇ሻ࡯ ࣌ ൅ ࣌: ௜ሺ݇ሻࢿ െ ௜ሺ݇ሻ (3.12)ܣ

Wen (2011) uses a form of compliance tensor used by Ortiz as the following: 

ሺ݇ሻ࡯ ൌ ૙࡯ ൅ ሺ݇ሻࢉ࡯ ሺܱݖ݅ݐݎ, 1985ሻ (3.13)

In this equation ࡯૙ is the initial compliance and ࡯௖ሺ݇ሻ results from the occurrence of damage in 

the material.  Differentiating GFE with respect to stress we can obtain the total strain of the 

system. 

ࢿ ൌ :૙࡯ ࣌ ൅ :௖ሺ݇ሻ࡯ ࣌ ൅ ሺ݇ሻ (3.14)࢏ࢿ

In Equation 3.21 above, the first term is the elastic strain, the second term is recoverable strain 

caused by elastic damage (microcracking), and the third term is the inelastic strain which is 

similar to the Yazdani and Schreyer model (1988).  A form of the additional flexibility ࡯௖ሺ݇ሻ is 

used.  He introduces the added flexibility at two parts, one for each microcrack mode caused by 

either compression or tension.  Compression microcracking occurs parallel to the loading 

direction, while tension microcracking occurs perpendicular to the loading direction. 

௖࡯ ൌ ࡵ࡯
ࢉ ൅ ࡵࡵ࡯

ࢉ  (3.15)

Wen (2011) also introduces response tensors, which predict the direction of damage, that form 

the rate independent damage: 

ሶ࡯ ࡵ
ࢉ ൌ ሶ݇ࡾூ ሶ࡯ ࡵࡵ

ࢉ ൌ ሶ݇ࡵࡵࡾ  (3.16)

For irreversible damage, ሶ݇ ൒ 0.   
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Further, a rate form of inelastic strain is proposed by Yazdani and Karnawat (1996): 

ሶࢿ ௜ ൌ ሶ݇(3.17) ࡹ

Where M is another response tensor used to describe the inelastic strain.  Also, the following 

equation is proposed to represent the scalar function ܣ௜ and is termed the softening law. 

ሺ݇ሻଶݐ ൌ 2
௜ܣ߲

߲݇
 (3.18)

Using the equations above and the GFE equation, Wen (2011) gives the following 

damage function. 

߮ሺ࣌, ݇ሻ ൌ
1
2
࣌ା: :ࡵࡾ ࣌ା ൅

1
2
࣌ି: :ࡵࡵࡾ ࣌ି ൅ ࡹ:࣌ െ

1
2
ሺ݇ሻଶݐ ൒ 0 (3.19)

࣌ା and ࣌ି are the positive (tension) and negative (compression) parts of the stress tensor.  This 

equation basically states that if this equation is true, damage is occurring, and if not, the material 

is in its elastic range.  The damage function above is considered a damage surface by which an 

elastic domain is contained.  Two conditions must be met for damage to occur.  First, the point of 

stress must fall on this surface and second, the stress increment must point outside the damage 

surface, away from the elastic domain. 

߮ሺ࣌, ݇ሻ ൌ 0
߲߮
߲࣌

: ሶ࣌ ൐ 0 (3.20)

Wen only considers uniaxial and biaxial tension loading in his research.  For this, ࡾூூ is 

left out of the function.  To obtain the form of the response tensor, Wen uses classical kinetic 

theory.  He proposes the following form: 

ூࡾ ൌ
࣌ା⨂࣌ା

࣌ା: ࣌ା
െ ࡵሺߙ െ ሻ (3.21)࢏⨂࢏

 is a material parameter.  The ߙ  .and i are fourth and second order identity tensors, respectively ࡵ

second term of the response tensor is used to illustrate the change that occurs in the Poisson’s 
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Ratio once damage accumulates.  The response tensor above is able to predict the crack behavior 

shown on the left side of the figure below.  The crack formation under compression loading can 

be illustrated by ࡵࡵࡾ which has been left out of this formulation.   

  

Fig. 3.7.  Crack modes illustrated by response tensors I (left) and II (right) 

 
The response tensor M for the rate of inelastic strain is given below. 

ࡹ ൌ (3.22) ࣌ߚ

 .is also a material parameter that can be determined experimentally ߚ

 

3.3.1. Fatigue Modeling (Wen, 2011) 

The fatigue life model proposed by Wen (2011) specifies failure criteria for woven fabric 

composites.  His model is capable of accurately predicting the fatigue life for multi-axial loading 

along the principle fiber directions.  It is important to note that it has not yet been checked with 

off-axis loading or shear.  This study is primarily limited to uniaxial and biaxial tensile loading 

of the composite. 

As stated earlier, one of the advantages of these types of composites is that their strength 

properties are able to be tailored to their specific application.  For this reason, it is important that 

Wen’s model is capable of incorporating these differing strengths in different directions into the 
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fatigue model.  Wen uses a simple direction function to accomplish this and will be explained in 

the upcoming formulation. 

Bounding surface theories in damage mechanics claim that a loading point in stress space 

is enclosed by a bounding surface that represents the surface at which damage will occur, or in 

this case, fatigue failure will occur.  For this particular model, the bounding surface will evolve 

in correspondence with the state variables representing loading and material conditions as well as 

the model’s material properties. 

With this idea in mind, Wen (2011) represents his model in the 2-Dimensional loading 

(biaxial loading) environment.  The envelope produced by his model creates a limit surface, or 

ultimate surface, which represents a series of biaxial load combinations at which failure will 

occur under static loading.  A representation of his boundary surface can be seen below in the 

figure.  Note that for n = 1 (first cycle) the failure envelope is the same as it would be for 

monotonic loading, while at n = N (fatigue life) the failure envelope is reduced. 

From the earlier formulation of the dissipation inequality, and with the introduction of a 

softening function to illustrate the reduction in strength with fatigue loading, this bounding 

surface can be formed.  The following sections develop a bounding surface and show its 

simplicity in 2-dimensional application.  Comparisons with experimental data performed by 

Smith and Pascoe (1989) are made. 

The formulation of the fatigue life model is done under the assumption of any 

deformation in the material being small and thermal effects having a negligible effect on the 

system.  These are reasonable assumptions for low frequency loading.  In addition, the bounding 

surface is found for tension loading only.  From the earlier formulation, Wen (2011) starts with 

Gibbs Free Energy (GFE) to obtain a dissipation inequality. 
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Fig. 3.8.  Boundary surface representation, N = fatigue life (cycles) 

 

ܩ ൌ
1
2
࣌: :࡯ ࣌ ൅ ࣌: ࢏ࢿ െ ௜ሺ݇ሻ (3.23)ܣ

In this equation, C is the compliance tensor, ࢏ࢿ is the inelastic strain tensor, ࣌ is the stress tensor, 

 ௜ሺ݇ሻ is a scalar damage function, and k is the fatigue damage accumulated in the system.  Theܣ

“:” symbol is a tensor contraction operator. 

As stated previously, the dissipation inequality can be given in terms of differentiating 

GFE in terms of k. 

ܩ߲
߲݇

ሶ݇ ൒ 0 (3.24)

The dissipation inequality becomes: 

1
2
࣌:
࡯߲
߲݇

: ࣌ ൅ ࣌:
࢏ࢿ߲

߲݇
െ
௜ܣ߲

߲݇
൒ 0 (3.25)
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If we introduce the compliance tensor as an initial undamaged fourth order tensor and an 

additional flexibility tensor that is influenced by the damage we can develop the dissipation 

inequality further. 

ሺ݇ሻ࡯ ൌ ૙࡯ ൅ ሺ݇ሻ (3.26)ࢉ࡯

If tension loading is assumed we can show ࢉ࡯ in terms of the response tensor R.  It is given as 

the following equation. 

௖ሶܥ ൌ ሶ݇ ܴ (3.27)

Also, from earlier the inelastic strain tensor is expressed in terms of a response tensor M. 

ଙሶࢿ ൌ ሶ݇(3.28) ࡹ

These response tensors are meant to introduce damage into the system in the proper directions.  

Applying the equations with the response tensors the dissipation function becomes the following: 

1
2
:ࡾ:࣌ ࣌ ൅ ࡹ:࣌ െ

௜ܣ߲

߲݇
൒ 0 (3.29)

As stated earlier, the two response functions take the following form. 

ࡾ ൌ
࣌ା⨂࣌ା

࣌ା: ࣌ା
െ ࡵሺߙ െ ሻ࢏⨂࢏ ࡹ ൌ (3.30) ࣌ߚ

The failure of the composite can be shown by introducing a damage function (t) to obtain a 

potential function (߰). 

߰ሺ࣌, ݇ሻ ൌ
1
2
:ࡾ:࣌ ࣌ ൅ ࡹ:࣌ െ

1
2
,ଶሺ࣌ݐ ݇ሻ ൌ 0 (3.31)

The damage function can be represented in terms of a strength function and a shape function 

which describe the failure of the material. 

,ሺ࣌ݐ ݇ሻ ൌ ሺ݇ሻ (3.32)ݍሺ࣌ሻܮ

q is a shape function that is equal to 1 at the failure surface.  L is a strength function that takes 

the following form. 
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ሺ࣌ሻܮ ൌ
࣌: ࡿ
ሺ࣌ሻݎܶ

 (3.33)

S is a strength tensor, and the stress tensor and the trace of the stress tensor are again meant to 

use the proper strength properties for a given load path. 

ࡿ ൌ ൥
௧ଵܨ
௧ଶܨ
௧ଷܨ

൩ (3.34)

The F coefficients in the strength tensor are scalar parameters that are related to the strengths of 

the materials in directions 1, 2, and 3.  These can be solved for and determined by performing a 

simple monotonic uniaxial tensile load test in the corresponding directions.   

With these response tensors and damage function established, the potential function 

߰ሺ࣌, ݇ሻ can be further developed. 

߰ሺ࣌, ݇ሻ ൌ
1
2
࣌: ࣌⨂࣌: ࣌

࣌: ࣌
൅
1
2
ߙ ∗ ࣌: :ࡵ ࣌ െ

1
2
ߙ ∗ ࣌: :࢏⨂࢏ ࣌ ൅ :࣌ߚ ࣌

െ
1
2
ቆ
࣌: ࡿ
ሺ࣌ሻݎܶ

ሺ݇ሻቇݍ
ଶ

ൌ 0 

(3.35)

߰ሺ࣌, ݇ሻ ൌ ࣌: ࣌ ൅ ߙ ∗ ࣌: ࣌ െ ߙ ∗ ሺ࣌ሻଶݎܶ ൅ :࣌ߚ2 ࣌ െ ቆ
࣌: ࡿ
ሺ࣌ሻݎܶ

ሺ݇ሻቇݍ
ଶ

ൌ 0 (3.36)

߰ሺ࣌, ݇ሻ ൌ ࣌: ࣌ሺ1 ൅ ߙ ൅ ሻߚ2 െ ߙ ∗ ሺ࣌ሻଶݎܶ െ
1
2
ቆ
࣌: ܵ
ሺ࣌ሻݎܶ

ሺ݇ሻቇݍ
ଶ

ൌ 0 (3.37)

To solve for the strength coefficients we can introduce uniaxial loading in direction 1.  The 

potential function is reduced to the following equation. 

߰ሺ࣌, ݇ሻ ൌ ቈ
ଵߪ
0
0
቉ : ቈ

ଵߪ
0
0
቉ ሺ1 ൅ ߙ ൅ ሻߚ2 െ ߙ ∗ ቆܶݎ ቈ

ଵߪ
0
0
቉ቇ

ଶ

െ

ۉ

ۈ
ቈۇ

ఙభ
଴
଴
቉:൥
ி೟భ
ி೟మ
ி೟య

൩

்௥ቈ
ఙభ
଴
଴
቉
ሺ݇ሻݍ

ی

ۋ
ۊ

ଶ

ൌ 0  (3.38)

This becomes 



46 
 

ሺ1 ൅ ଵߪሻߚ2
ଶ െ ௧ଵܨ

ଶ ଶሺ݇ሻݍ ൌ 0 (3.39)

For monotonic loading and at the limit state, q(k) = 1 and ߪଵ ൌ ௧݂ଵ ൌ  The  .݄ݐ݃݊݁ݎݐݏ	݈݁݅ݏ݊݁ݐ

strength coefficient becomes 

௧ଵܨ ൌ ௧݂ଵሺ1 ൅ ሻ଴.ହ (3.40)ߚ2

This can be done for uniaxial tests in directions 2 and 3 as well. 

௧ଶܨ ൌ ௧݂ଶሺ1 ൅ ሻ଴.ହߚ2 ௧ଷܨ ൌ ௧݂ଷሺ1 ൅ ሻ଴.ହ (3.41)ߚ2

These strength coefficients are then reintroduced into the potential function and are what gives 

the model strength anisotropy. 

To incorporate fatigue into Wen’s model, he introduces a softening function, F(n), that is 

assumed to be the form of a power function. 

ሺ݊ሻܨ ൌ ݊஺ (3.42)

A is a material parameter that can be solved for by solving for a uniaxial fatigue test.  “n” is the 

number of load cycles.  The potential function becomes the following equation. 

߰ሺ࣌, ݇ሻ ൌ ࣌: ࣌ሺ1 ൅ ߙ ൅ ሻߚ2 െ ߙ ∗ ሺ࣌ሻଶݎܶ െ
1
2
ቆ
࣌: ࡿ
ሺ࣌ሻݎܶ

݊஺ݍሺ݇ሻቇ
ଶ

ൌ 0 (3.43)

The softening function is introduced into the final term.  Solving for the softening function the 

following is obtained. 

݊஺ ൌ
ଵߪ
௧݂ଵ

 (3.44)

ܣ ൌ
ln ൬

ଵߪ
௧݂ଵ
൰

lnሺ݊ሻ
 (3.45)

So for a given fatigue loading test, A can be determined by using the applied stress and the 

number of cycles the cause failure. 



47 
 

The material parameter ߙ can be determined by performing a monotonic equal-biaxial 

tension test in directions 1 and 2.  

ߙ ൌ 1 െ
1
8
൬

଴ߪ
௧݂ଵ ൅ ௧݂ଶ

൰
ିଶ

 (3.46)

 .଴ is the applied stress in directions 1 and 2ߪ

 

3.3.2. Numerical Simulation of Wen Model 

Experimental data obtained by Smith and Pascoe (1989) is used to both obtain the 

required material parameters, and validate the effectiveness of the model.  Using the equations 

provided in the previous section the material parameters A, ߙ, and	ߚ can be obtained.   

A is found by performing a uniaxial fatigue test.  ߙ is determined from a monotonic equal 

biaxial test. ߚ is determined by measuring the inelastic strain of the material after unloading.  

The following table shows the values for the model parameters. 

Known Values 

ftx = 238 Mpa 
fty = 257 Mpa 
α = 0.3841 
Β = 0.1 

A = -0.0955 
 

The numerical results in the paper are limited to the fatigue life and strain of the woven 

fabric composite.  The following S-N curves are obtained solving for “n” (number of loading 

cycles) in the potential function.  ߛ is the ratio between loading in direction 1 and direction 2.  

For example, for equal biaxial loading ߛ is equal to 1.  The following equation is obtained and 

yields the ensuing S-N curves. 
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Figures 3.9, 3.10, and 3.11 are from solving for the number of cycles (n) in the potential 

function.  The equation used in Figure 3.12 is obtained by solving for the applied stress from the 

potential function.  The stress tensor and the final equations are seen below. 

࣌ ൌ ቈ
ߪ
ߪߛ
0
቉ ߛ	݁ݎ݄݁ݓ								 ൌ ݄݁ݐ ݈ܽ݅ݔܾܽ݅ ݏݏ݁ݎݐݏ (3.47) ݋݅ݐܽݎ

݊ ൌ exp ቈ൬
1
ܣ2
൰ ln ቆ

ଶሺ1ߪ ൅ ሻଶሺ1ߛ ൅ ଶߛ ൅ ߚ2 ൅ ଶߛߚ2 െ ሻߛߙ2
ሺ1 ൅ ሻሺߚ2 ௧݂ଵ ൅ ߛ ௧݂ଶሻଶ

ቇ቉ (3.48)

ߪ ൌ ቈ
ሺ1 ൅ ሻሺߚ2 ௧݂ଵ ൅ ߛ ௧݂ଶሻଶ݊ଶ஺

ሺ1 ൅ ଶߛ ൅ ߚ2 ൅ ଶߛߚ2 െ ሻሺ1ߛߙ2 ൅ ሻଶߛ
቉
଴.ହ

 

 

(3.49)

 

 

Fig. 3.9.  Number of cycles to failure for a given load ratio (Uniaxial loading) 
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Fig. 3.10.  Number of cycles to failure for a given load ratio (Equal-biaxial loading) 

 

Fig. 3.11.  Number of cycles to failure for a given load ratio (Biaxial loading) 
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surface can be seen in the figure below.  The ability of the model to incorporate strength 

anisotropy can easily be seen in figure below. 

The strain occurring in the composite can also be determined by solving for the effective 

compliance of the system by using the damage parameter, k.  The damage parameter is defined 

by the following equation. 

߲݇
߲݊

ൌ
െି݊ܣ஺ିଵ

଴ሺ1ܧ ൅ ሻߚ
݇ ൌ

݊ି஺

଴ሺ1ܧ ൅ ሻߚ
 (3.50)

From this one can obtain the effective compliance tensor from the equation derived earlier. 

࡯ ൌ ૙࡯ ൅ (3.51) ࡾ݇

With this equation, the total strain can be found.   

 
 

Fig. 3.12.  Limit surface or varying number of load cycles 
 

ࢿ ൌ :࡯ ࣌ ൅ ࢏ࢿ ൌ :࡯ ࣌ ൅ (3.52) ࣌ߚ݇

ࢿ ൌ :૙࡯ ࣌ ൅ ݇ ൤
࣌⨂࣌
࣌: ࣌

െ ࡵሺߙ െ ሻ൨࢏⨂࢏ : ࣌ ൅ :ߚ݇ ࣌ (3.53)
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૙࡯	݁ݎ݄݁ݓ ൌ
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ଵܧ

െ
ଶଵݒ
ଶܧ

0
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ଶܧ
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ଶܧ

0

0 0
1
ےଵଶܩ

ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (3.54)

Using this equation a strain vector can be obtained for the corresponding loading 

directions.  In this case, biaxial loading along the fiber directions is considered.  Numerical 

results have been obtained for several load cases including:  Uniaxial loading, equal biaxial 

loading, and biaxial loading with stress ratio equal to 0.5.  In all load cases, the primary applied 

load is equal to half the tensile strength in the corresponding direction.  

In the figures below the strain is seen to increase with the number of loading cycles.  As 

damage accumulates in the material, components of the compliance tensor increases 

correspondingly, which results and increasing strains magnitudes.  Attention should be placed on 

when failure occurs in the material shown by the red line in the figures. 

 

Fig. 3.13.  Maximum strain per load cycle vs. number of loading cycles, uniaxial loading 
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In the figures above, the red lines are located at the number of loading cycles at which 

failure occurred for the given stress level.  An interesting note is that for uniaxial loading the 

failure strain is about 1.5% while for equal biaxial loading the failure strain is about 0.9%.  The 

failure strain for biaxial loading with load ratio equal to 0.5 is about 1.15%.  These failure strains 

are quite close to those obtained by Smith and Pascoe in their experimental works.  Something to 

note in the equal biaxial figure is that the model captures the anisotropic stiffness properties of 

the composite.  The more flexible direction has slightly more strain.  Similar trends are seen in 

the experimental data (Smith and Pascoe, 1989). 

 

 

Fig 3.14.  Maximum strain per load cycle vs. number of loading cycles, equal biaxial loading 
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Fig. 3.15.  Maximum strain per load cycle vs. number of loading cycles, biaxial loading 
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CHAPTER 4. THERMODYNAMICS AND DAMAGE 

MECHANICS 

 

4.1. Introduction to Thermodynamics 

In its most general form, thermodynamics is simply a branch of science that establishes 

relationships between types of energy and properties of systems in equilibrium, including 

mechanical, chemical, or electrical systems.  Thermodynamic systems can be classified into two 

basic types of systems or processes, reversible and irreversible.  An example of a reversible 

process relating to solid mechanics is the deformation of a perfectly elastic material.  In a 

reversible system a single kinematic variable can define the state of a solid by relating the 

stresses and strains.  In reality, solid materials undergo irreversible changes within their 

microstructure.  For this condition, a single kinematic variable relating stresses and elastic strains 

cannot fully define the state of a solid in a local sense.  A set of internal variables needs to be 

defined so that these irreversible processes, changes to the solids microstructure, can be fully 

accounted for and the state of the solid can be described. 

The set of internal variables, or state variables, are related using two fundamental laws of 

thermodynamics:  The first law of thermodynamics (conservation of energy) and the second law 

of thermodynamics (entropy law).  This method for defining the state of a system was first used 

by Onsager (1931) and was expanded into continuum solid mechanics by many more researchers 

and scientists (Biot, 1954; Coleman and Gurtin, 1967; Kestin and Rice, 1970; Lubliner, 1972, 

1980; Nemat-Nasser, 1976). 
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In this chapter the basic concepts of thermodynamics will first be defined, including 

Cauchy’s first law of motion and the first and second laws of thermodynamics. Thermodynamic 

potentials will be defined using the Legendre Transformation and their relationship will be given.  

Relating these thermodynamic concepts a dissipation inequality will be established which can be 

used to describe the irreversible changes that are taking place within concrete’s microstructure 

during loading.  From this the state of damage within concrete can be established within a fourth 

order compliance tensor as established by Yazdani and Schreyer (1988) 

 

4.1.1. Cauchy’s First Law of Motion	

The total force acting on a body is known to be a body force ௕݂ and a surface (traction) 

force ௦݂. 

࢚ࢌ ൌ ࢈ࢌ ൅ (4.1) ࢙ࢌ

The body force can be found by integrating a vector field b(r, t) over its volume. 

࢈ࢌ ൌ න ߩ࢈
௏

ܸ݀ (4.2)

V is the volume of the body, ߩ is the density of the material, r is the position vector, and t is 

time.   

In the same manner, the surface force is obtained by integrating a vector field t(r, n) 

acting on the surface of the body. 

࢙ࢌ ൌ න ࢚ሺݎ, ሻ݀ܵ࢔
ௌ

 (4.3)

 n is the unit normal vector in the above equation.  From Cauchy’s fundamental theorem we can 

say that at the surface of the body: 
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࢚ ൌ ࣌ ∙ (4.4) ࢔

where ߪ is the Cauchy stress tensor.  We can also say that the total force is a function to the 

body’s acceleration. 

࢚ࢌ ൌ න ܸ݀ߩࢇ
௏

ൌ න ߩ࢈
௏

ܸ݀ ൅ න ࣌ ∙ ܵ݀࢔
ௌ

 (4.5)

Applying the divergence theorem the surface integral is made into a volume integral: 

࢚ࢌ ൌ න ܸ݀ߩࢇ
௏

ൌ න ߩ࢈
௏

ܸ݀ ൅ න ࣌ ∙ ܸ݀׏
௏

 (4.6)

In the equation above ׏ is the divergence operator.  Using the equation above we can state 

Cauchy’s first law of motion as the following: 

ߩࢇ ൌ ߩ࢈ ൅ ࣌ ∙ (4.7) ׏

 

4.2. Thermodynamic Formulation 

4.2.1. First Law of Thermodynamics	

The first law of thermodynamics deals with the conservation of energy in a given 

process.  The total energy within a system is constant, although it may be present in different 

forms.  Transfer or conversion of energy from one form to another is possible and dissipation of 

energy can occur, but the destruction of energy cannot happen.  With respect to solid mechanics, 

total energy can be represented by mechanical energy and heat energy.  It is shown in 

mathematical form in the following equation. 

ሶܧ ൌ ௜ܲ௡௣௨௧ ൅ ܳ௜௡௣௨௧ (4.8)
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In the equation above ௜ܲ௡௣௨௧ is the power input from mechanical work and ܳ௜௡௣௨௧ is the heat 

change rate of the system.  ௜ܲ௡௣௨௧ is produced by the body force and surface force. 

௜ܲ௡௣௨௧ ൌ න ߩ࢈ ∙ ࢜
௏

ܸ݀ ൅ න ࢜ ∙ ࣌ ∙ ܵ݀࢔
ௌ

 (4.9)

where v is a vector of the displacement rate.  Again, with Gauss’ divergence theorem the above 

equation becomes 

௜ܲ௡௣௨௧ ൌ න ߩ࢈ ∙ ࢜
௏

ܸ݀ ൅ නሺ࢜ ∙ ࣌ሻ ∙ ܸ݀׏
௏

 (4.10)

Working with the right side of the equation above: 

ሺ࢜ ∙ ࣌ሻ ∙ ൌ׏ v ∙ ሺો ∙ ሻ׏ ൅ Tr൫ሺ׏ܞሻ ∙ ો൯ (4.11)

Tr൫ሺV ∙ ሻ׏ ∙ σ൯ is known as the trace of the vector within the parentheses and is the sum of the 

vectors individual components.  Using the equation for Cauchy’s law of motion we can get the 

following: 

௜ܲ௡௣௨௧ ൌ න ࢇߩ ∙ ࢜
௏

ܸ݀ ൅ න Tr൫ሺ׏ܞሻ ∙ ો൯ܸ݀
௏

 (4.12)

௜ܲ௡௣௨௧ ൌ න ߩ ሶ࢜ ∙ ࢜
௏

ܸ݀ ൅ න Tr൫ሺ׏ܞሻ ∙ ો൯ܸ݀
௏

 (4.13)

ܳ௜௡௣௨௧ can be assumed to be the sum of the heat rate from an internal source r and the heat flux q 

through the surface of the system.  It is represented in the equation below: 

ܳ௜௡௣௨௧ ൌ න ܸ݀ݎ
௏

െ න ࢗ ∙ ࢔
௏

(4.14) ݏ݀

Applying Gauss’ Divergence Theorem the equation becomes 
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ܳ௜௡௣௨௧ ൌ න ܸ࢘݀
௏

െ න ࢗ ∙ ׏
௏

ܸ݀ (4.15)

With the equations above we can get a new expression for the rate of change of the energy in the 

system. 

ሶܧ ൌ න ߩ ሶ࢜ ∙ ࢜
௏

ܸ݀ ൅ න Tr൫ሺ׏ܞሻ ∙ ો൯ܸ݀
௏

൅ න ܸ݀ݎ
௏

െ න ࢗ ∙ ׏
௏

ܸ݀ (4.16)

The total energy of a system can also be represented as the total kinetic energy and internal 

energy. 

ܧ ൌ න
1
2
ሺ࢜ߩ ∙ ࢜ሻܸ݀ ൅ න ܸ݀ݑߩ

௏௏
 (4.17)

Or in its rate form: 

ሶܧ ൌ
݀
ݐ݀
න ൤

1
2
ሺ࢜ߩ ∙ ࢜ሻ ൅ ൨ݑߩ ܸ݀

௏
ൌ න ߩ ሶ࢜ ∙ ࢜

௏

ܸ݀ ൅ න ρuሶ ܸ݀
௏

 (4.18)

Using the equations for the rate of change of power and heat input with the equation above we 

can obtain the rate of change of the internal energy: 

ሶݑߩ ൌ Tr൫ሺ׏ܞሻ ∙ ો൯ ൅ ρr െ ܙ ∙ (4.19) ׏

The matrix v׏ can be decomposed into its symmetric and anti-symmetric parts, D (rate of 

deformation tensor) and W (rate of rotation tensor), respectively.  The decomposition is as 

follows: 

ܦ ൌ
1
2
ሺ࢜׏ ൅ ሺ࢜׏ሻ்ሻ  

ܹ ൌ
1
2
ሺ࢜׏ െ ሺ࢜׏ሻ்ሻ 

(4.20)
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For very small deformations which are applicable to this study, the rate of deformation tensor D 

can be assumed to be equal to the rate of strain tensor.  Also ݎݐሺܹ ∙ ࣌ሻ ൌ 0, therefore the 

equation for the rate of change of the internal energy becomes the following: 

ߩ ሶ࢛ ൌ ࣌: ሶࢿ ൅ ݎߩ െ ࢗ ∙ (4.21) ׏

“:” is the tensor contraction operator in the above equation.  It can be seen that the rate of change 

of the internal energy per unit volume is affected by three parts.  The mechanical work input into 

the system is represented by ࣌: ሶࢿ , the heat input by an internal heat source is ݎߩ, and the heat 

input provided by the heat flow through the boundary of the system is represented by ࢗ ∙  .׏

	

4.2.2. The Second Law of Thermodynamics	

The first law of thermodynamics states that the kinetic and internal energy can be 

transformed from one form to the other and that no energy is lost to friction or other dissipative 

mechanisms.  This is not the case in reality because friction and other dissipative processes are 

mostly irreversible.  The second law of thermodynamics accounts for this through the Clausius-

Duhem inequality. 

The second law of thermodynamics states that the rate of increase of entropy in a system 

must be equal to or greater than the rate at which entropy is added by heat flux through the 

boundary surface and by a external heat source.  The rate entropy that is added is considered to 

be the rate of heating divided by the absolute temperature.  The Clausius-Duhem Inequality is 

݀
ݐ݀
න ܸ݀ݏߩ
௏

൒ න
ݎߩ
ߠ
ܸ݀

௏

െ න
ࢗ
ߠ
∙ ࢔

ௌ

݀ܵ (4.22)
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In the equation above s is the entropy and ߠ is the absolute temperature.  If the equation above is 

equal then a reversible process is implied.  Since the volume is arbitrary, and applying the 

divergence theorem: 

න ሶܸ݀ݏߩ
௏

൒ න
ݎߩ
ߠ
ܸ݀

௏

െ න ቀ
ࢗ
ߠ
ቁસ

ௌ

ܸ݀ (4.23)

or 

ሶݏߩ ൒
ݎߩ
ߠ
െ ቀ

ࢗ
ߠ
ቁ ∙ સ (4.24)

A variable ߟሶ  representing the internal entropy production rate per unit mass is defined.  This can 

be thought of as additional entropy that is not occurring from the internal heat source or heat flux 

through the system boundary. 

ሶߟߩ ൌ ሶݏߩ െ
ݎߩ
ߠ
൅ ቀ

ࢗ
ߠ
ቁ ∙ ൒׏ 0 (4.25)

As stated previously, the inequality implies that if ߟߩሶ ൌ 0 then the process is reversible.  With 

some additional formulation the equation above becomes 

ሶߟߩ ൌ ሶݏߩ െ
ݎߩ
ߠ
൅
ሺ׏ ∙ ሻࢗ
ߠ

െ
ሺ׏θሻ ∙ ܙ
θଶ

൒ 0 (4.26)

Furthermore, using the equation for the rate of change of the internal energy we can write the 

following expression: 

ሶߟ ൌ ሶݏ െ
ሶݑ
ߠ
൅
࣌: ሶࢿ
ߠߩ

െ
ࢗ ∙ ሺ׏ߠሻ

ଶߠߩ
൒ 0 (4.27)

	
4.2.3. Thermodynamic Potentials	

The Legendre Transformation is used to obtain varying thermodynamic potentials 

including Hemholtz Free Energy (A), enthalpy (h), and Gibbs Free Energy (G).  The relationship 

between the thermodynamic potentials is  
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ݑ െ ܣ ൅ ݃ െ ݄ ൌ 0 (4.28)

where u is the internal energy, A is the Helmholtz free energy, g is the free enthalpy, and h is the 

enthalpy (Lin, 1992).  Each thermodynamic potential is defined as follows: 

ܣ ൌ ,ݏሺݑ ሻ࢏࢜ െ (4.29a) ݏߠ

݄ ൌ ,ݏሺݑ ሻ࢏࢛ െ (4.29b) ࢏࢜࢏࣎

݃ ൌ ݄ሺݏ, ሻ࢏࣎ െ (4.29c) ݏߠ

ܩ ൌ ݁݁ݎܨ	ݏܾܾ݅ܩ ݕ݃ݎ݁݊ܧ ൌ െ݃ (4.29d)

In the equations above ݒ௜ represents a set of state variables describing the state of the material.  

For isothermal processes with small deformations Gibbs Free Energy, Hemholtz Free Energy, 

and the internal energy can be related in the following way (Yazdani and Schreyer, 1988): 

,ࢿሺܣ ,ߠ ࢜௜ሻ ൌ ܷሺࢿ, ,ݏ ሻ࢏࢜ െ (4.30) ݏߠ

,ሺ࣌ܩ ,ߠ ࢜௜ሻ ൌ ࣌: ࢿ െ ,ሺܾܣ ,ߠ ሻ (4.31)࢏࢜

Using the equations for the thermodynamic potentials and making the assumption that ߬௜ equals 

the Cauchy stress tensor, and that for small deformations ݒ௜ equals the strain tensor (Yazdani and 

Schreyer, 1988; Wen, 2011) we can obtain the following: 

ݑ ൌ ࣌: ࢿ ൅ ݏߠ െ (4.32) ܩ

ሶݑ ൌ ሶ࣌ : ࢿ ൅ ࣌: ሶࢿ ൅ ݏሶߠ ൅ ሶݏߠ െ ሶܩ  (4.33)

Inserting the equation above into the Clausius-Duhem inequality the following equation is 

obtained 

ሶܩ െ ሶ࣌ : ࢿ െ ݏሶߠ െ
ࢗ ∙ ׏ߠ
ߠ

൒ 0 (4.34)

Gibbs free energy can be shown as a function of the stress, absolute temperature, and damage.  

Differentiating we obtain 
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ሶܩ ሺ࣌, ,ߠ ݇ሻ ൌ
ܩ߲
߲࣌

: ሶ࣌ ൅
ܩ߲
ߠ߲

ሶߠ ൅
ܩ߲
߲݇

ሶ݇  (4.35)

Putting this into the equation for the Clausius-Duhem inequality 

൬
ܩ߲
߲࣌

െ ൰ࢿ : ሶ࣌ ൅ ൬
ܩ߲
ߠ߲

െ ൰ݏ ሶߠ ൅
ܩ߲
߲݇

ሶ݇ െ
ࢗ ∙ ׏ߠ
ߠ

൒ 0 (4.36)

Since this inequality must be greater than or equal to zero for arbitrary ߪሶ  and ߠሶ  we can ascertain 

the following: 

ܩ߲
߲࣌

െ ࢿ ൌ 0 (4.37)

ܩ߲
ߠ߲

െ ݏ ൌ 0  (4.38)

ܩ߲
߲݇

ሶ݇ െ
ࢗ ∙ ׏ߠ
ߠ

൒ 0 (4.39)

The last equation is formally known as the dissipation inequality and illustrates dissipative 

mechanisms.  If there is no change in damage, the first term is zero and the second term must be 

negative.  This follows a basic principle of thermodynamics, that is, heat travels from high to low 

temperatures (Thapa, 2010).  The following equations can also be ascertained.  

ܩ߲
߲࣌

ൌ (4.40) ࢿ

ܩ߲
ߠ߲

ൌ (4.41) ݏ

This shows that differentiating Gibbs Free Energy with respect to stress or temperature 

represents a potential for strain or entropy, respectively.  Further, we can claim that 

differentiating G twice with respect to stress yields a material compliance tensor C (refer to the 

first differentiation equaling the strain).  Also from the above set of equations we can define a 

thermal expansion tensor ߚ and the specific heat under a constant voluve as ߞ (Wen, 2010). 
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߲ଶܩ
߲࣌ଶ

ൌ ሺ݇ሻ (4.42)࡯

߲ଶܩ
ߠ߲߲࣌

ൌ ሺ݇ሻ (4.43)ࢼ

ߠ
߲ଶܩ
ଶߠ߲

ൌ ሺ݇ሻ (4.44)ߞ

In Yazdani and Schreyer’s study (1988), the effect of temperature on the continuum is 

neglected with low frequency loading however for this formulation the effect of the temperature 

on the concrete’s performance is a key issue.  With some further formulation of the set of 

equations presented above a form of Gibbs Free Energy can be obtained that includes the effect 

of stress, temperature, and damage on the material’s performance. 

,ሺ࣌ܩ ݇, ሻߠ ൌ
1
2
࣌: :ሺ݇ሻܥ ࣌ ൅ ࣌: ሺ݇ሻ࢏ࢿ ൅ ࣌: ߠሺ݇ሻሺߚ െ ଴ሻߠ െ ௜ሺ݇ሻ (4.45)ܣ

In the equation above ߠ଴ is the reference temperature and ܣ௜ሺ݇ሻ is Hemholtz Free Energy.  In 

this work the temperature that occurs during the freeze-thaw cycles are assumed to be in the 

range of 20 െ 45°	F and will have a negligible effect on the concrete.  Therefore it is not 

necessary to include the thermal effects in the equation for Gibbs Free Energy.  The vast 

majority of the damage that will be caused by these environmental effects will be from the 

freeze-thaw moisture expansion and not the effect the lower temperatures will have on the actual 

concrete specimen.  With this assumption in mind Gibbs Free Energy can be reduced to  

,ሺ࣌ܩ ݇ሻ ൌ
1
2
࣌: :ሺ݇ሻ࡯ ࣌ ൅ ࣌: ሺ݇ሻ࢏ࢿ െ ௜ሺ݇ሻ (4.46)ܣ

 This is the same form of Gibbs Free Energy used in the Yazdani and Schreyer model 

(1988), Yazdani model (1993), and Wen model (2011).   
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4.2.4. Consequences of the Second Law of Thermodynamics	

 The internal dissipation inequality can be represented by Gibbs Free Energy as the 

following if the effect of heat flow is neglected: 

߰ሺ࣌, ݇ሻ ሶ݇ ൒ 0 (4.47)

where 

߰ሺ࣌, ݇ሻ ൌ
,ሺ࣌ܩ߲ ݇ሻ

߲݇
 (4.48)

It is logical to assume that damage is an irreversible process, or that concrete cannot heal itself, 

which is expressed in the following equations: 

ሶ݇ ൒ 0 (4.49)

With the assumption that damage is irreversible and using the equation for the dissipation 

inequality above two restrictions can be given 

1ሻ		݂݅	߰ ൏ 0 → ሶ݇ ൌ 0 (4.50)

2ሻ		݂݅	߰ ൒ 0 → ሶ݇ ൒ 0 (4.51)

 With the idea that Gibbs Free Energy describes the energy captured in a material from 

loading and resultant strains one can say that in the absence of viscous behavior that ߰ ൑ 0.  We 

can than say that if ߰ ൌ 0 that the material has reached a point on that particular loading path 

that elastic behavior stops and damage begins to occur.  So it can be said that ߰ ൏ 0 is 

considered an elastic region and ߰ ൌ 0 is a damage surface enclosing that region.  Therefore the 

following criteria can be stated: 

1ሻ		߰ ൌ 0,			
߲߰
߲࣌

: ࣌ ൐ 0ሶ → ሶ݇ ൐ 0 (4.52)

2ሻ		ܱ݁ݏ݅ݓݎ݄݁ݐ → ሶ݇ ൌ 0 (4.53)
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 The softening regime of concrete cannot be modeled using a stress based formulation.  

Consider at a given stress level, two different strains are possible, one in the hardening regime 

and one in the softening regime after the maximum load is reached.  For this reason a strain-

space formulation is used to model the entire range of stress-strain behavior, both hardening and 

softening.  Using the notation from the Yazdani and Schreyer model (1988) the total strain is 

given as 

ࢿ ൌ ૙ࢿ ൅ ࡰࢿ ൅ ࢘ࢿ ൌ ࣌: ሺ݇ሻܥ ൅ (4.54) ࢘ࢿ

where C(k) is a fourth order compliance tensor.  Since ࢿ૙ is considered to be the elastic part of 

strain which coincides with the undamaged compliance tensor and ࡰࢿ is considered additional 

strain resulting from damage accumulation in the material and coincides with the additional 

compliance in the material resulting from damage the following can be given: 

ሺ݇ሻ࡯ ൌ ૙࡯ ൅ ሺ݇ሻ (4.55)ࢉ࡯

ሶࢿ ሺ݇ሻࡰ ൌ ሶ࡯ ௖ሺ݇ሻ: ࣌ (4.56)

ሶ࡯  :ሺ݇ሻ is defined by a fourth order response tensor as the followingࢉ

ሶ࡯ ௖ሺ݇ሻ ൌ ሶ݇ࡾሺ࣌ሻ (4.57)

With this being said the mathematical form of the damage surface can be given as  

߰ሺ࣌, ݇ሻ ൌ
1
2
࣌:
ሺ݇ሻࢉ࡯߲
߲݇

: ࣌ ൅
ሺ݇ሻ࢘ࢿ߲
߲݇

: ࣌ െ
௜ሺ݇ሻܣ߲
߲݇

൒ 0 (4.58)

 The formulation of ࡯ሶ ௖ሺ݇ሻ , ࢿሶ ௥ሺ݇ሻ, and the kinetic relations are established in the next 

section.  Setting ߰ሺ࣌, ݇ሻ ൌ 0 a surface is defined (termed the damage surface) using a damage 

function, t.  Such a surface is capable of describing the onset of damage accumulation and is 

given as the following equation: 

߰ሺ࣌, ݇ሻ ൌ
1
2
࣌:
ሺ݇ሻࢉ࡯߲
߲݇

: ࣌ ൅
ሺ݇ሻ࢘ࢿ߲
߲݇

: ࣌ െ
1
2
,ଶሺ࣌ݐ ݇ሻ ൌ 0 (4.59)
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 Using the thermodynamic principles discussed in this chapter as the foundation, a 

damage mechanics model based on Yazdani’s model (1993) and Wen’s model (2011) is 

presented in Chapters 5 and 6. 
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CHAPTER 5. FATIGUE MODELING OF CONCRETE 

USING THE BOUNDING SURFACE APPROACH  

 

5.1. Introduction  

The fatigue life of a material is a popular method of describing the performance of a 

material over its service life.  For designers, it is beneficial to establish some failure criteria 

pertaining to fatigue processes.  This information is commonly conveyed in the form of S-N 

curves which relate the residual strength of a material to the number of cyclic loads being 

applied.  It is natural then that the model presented in this paper should be capable of producing 

such S-N curves which can accurately portray the failure of concrete for a given number of 

cyclic loads. 

Though there is an abundance of experimental data available describing the fatigue 

behaviour of plain concrete the vast majority is for uniaxial load cases only.  There have been 

some researchers, including Nelson et al. (1988) and Subramaniam and Shah (2003) that have 

investigated the fatigue performance of concrete for multiaxial loading, but further experimental 

research on multiaxial fatigue behaviour of concrete would be beneficial to this field. 

 

5.1.1. Bounding Surface Approach	

In this chapter a simple method for modeling monotonic and fatigue loading processes 

utilizing a bounding surface approach is proposed.  In this approach the limit surface (LS) is 

considered to be a unique case when the number of cyclic loads is equal to one, known as 

monotonic loading.   
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Fig. 5.1.  Material element with loading directions 1 and 2 (Wen et al. 2012) 

 
The bounding surface approach is explained in the following paragraphs in short detail.  

Consider the material element shown in Figure 5.1 and its corresponding limit surface (LS) in 

biaxial stress space shown in Figure 5.2.  As stated previously, the LS corresponds to monotonic 

loading. This surface represents the ultimate strength of the material under monotonic loading 

under a variety of biaxial load combinations.  As the number of cyclic loads increase, the 

strength of the material will decrease, which is represented by a reduction, or inward collapse, of 

the LS.  In this paper the collapsing of the LS creates new residual strength surfaces (RS) 

depending on the level of stress and the number of load cycles.  One can see that as the number 

of cyclic loads increases, shown for the number of cyclic loads n2 > n1, the RS continues to 

collapse further, representing further strength reduction of the material.  At some point failure is 

reached.  This is shown in Figure 5.2 as the failure surface (FS) which corresponds to the case 

when n = N.  N is known as the fatigue life of the material as is a common way to demonstrate 

the fatigue behavior of materials.   
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Fig. 5.2.  Schematic representation of bounding surfaces in biaxial stress space (Wen et al. 2012) 

 
The aim in this chapter is to utilize an effective constitutive model to obtain a reasonable 

limit surface based on the principles of mechanics and thermodynamics.  Finally, the model 

should be capable of obtaining a final failure surface when the fatigue life of the material is met.   

The model presented in the following sections is regarded as an extension to the work of 

Yazdani (1993) and Wen (2011). The bounding surface approach and damage mechanics theory 

are combined to provide a unified method of modeling concrete in the presence of fatigue 

loading. 

In the following sections the bounding surface approach will be applied to the monotonic 

model discussed in the previous chapter.  Several numerical examples will be presented and a 

sensitivity analysis will be conducted on the model through which the effect of various model 

parameters on the model output can be seen.  

 

5.2. Formulation of the Model with the Bounding Surface Approach  

Following the general formulation presented in Yazdani (1993) several assumptions are 

made in the development of the model.  Loading is assumed to be at a low frequency so that 

thermal effects can be ignored.  Furthermore, it is assumed that neighboring equilibrium states 
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exist for all irreversible processes concerned herein.  With these assumptions in mind, and for a 

stress space formulation, Gibbs Free Energy takes the following form: 

,ߪሺܩ ݇ሻ ൌ
1
2
࣌: :ሺ݇ሻ࡯ ࣌ ൅ ࣌: ሺ݇ሻ࢏ࢿ െ ௜ሺ݇ሻ (5.1)ܣ

 

where C is the compliance tensor, σ is the stress tensor, εi is the irrecoverable strain, k is a scalar 

quantity for damage, and Ai is a scalar function associated with the surface energy of 

microcracks.  The symbol “:” represents a tensor contraction operator.  C is made up of two 

parts: 

ሺ݇ሻ࡯ ൌ ૙࡯ ൅ ሺ݇ሻ (5.2)ࢉ࡯

where C0 and Cc are the undamaged compliance tensor of the material and the added flexibility 

associated with the accumulation of damage, k, respectively.  The rate form of the added 

flexibility tensor and irrecoverable strain are defined by a fourth order and second order 

compliance tensor, R and M, respectively. 

ሶ࡯ ሺ݇ሻ ൌ ሶ݇(5.3) ࡾ

ሶࢿ ሺ݇ሻ࢏ ൌ ሶ݇(5.4) ࡹ

Following the standard argument provided in Yazdani (1993) and Wen and Yazdani 

(2012) the following form of the damage surface is obtained: 

߰ ൌ
1
2
:ࡾ:࣌ ࣌ ൅ࡹ:࣌ െ

1
2
ଶሺ݇ሻݐ ൌ 0 (5.5)

where t is a strength function and is defined as                        

,ଶሺ࣌ݐ ݇ሻ ൌ 2 ቈ
௜ܣ߲

߲݇
൅ ݃ଶሺ࣌, ݇ሻ቉ (5.6)

g2 is some scalar function.  Wen (2011) notes that as long as t can be obtained experimentally, 

the determination of the individual components, Ai and g, are not necessary.  
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 Further definition of the response tensors is necessary in order to obtain an explicit 

equation for the damage surface.  Identifying damage modes I and II; we propose the following 

damage response tensors as: 

ܴூ ൌ
࣌ା ⊗ ࣌ା

࣌ା: ࣌ା
൅ ࡵଵሻሺߣሺܪߛ െ ⊗࢏ ሻ (5.7)࢏

In eq. (7) σ+ is the positive cone of the stress tensor, “⊗” is the tensor operator, γ is a material 

parameter, H(λ1) is defined as the heavyside function of the maximum eigenvalue of σ+, I and i 

are the fourth and second order identity tensors, respectively.  The form of the tensile part of M 

is proposed as 

ࡵࡹ ൌ ଵ࣌ା (5.8)ߚ

where β1 is a non-negative material parameter.  This form of MI means that for this model, 

irrecoverable strain under tension loading occurs only in the direction of loading.  For the 

compression mode of cracking the response tensor RII is given as the following: 

ூூࡾ
ௗ ൌ

෥࣌ ⊗ ෥࣌
෥࣌: ෥࣌

൅ ࡵߤଷሻሺߣሺെܪߙ െ ࢏ ⊗ ሻ (5.9)࢏

෥࣌ ൌ ࣌ െ (5.10) ࢏૛ࣅ

In Eq. (5.9) and (5.10), λ2 is the maximum eigenvalue of σ-, and λ3 denotes the minimum 

eigenvalue of σ.  MII is then supposed as  

ࡵࡵࡹ ൌ ିࡿ ൅ ା (5.11)ࡿଶߚ

where S- and S+ are the negative and positive cones of the deviatoric part of σ-, respectively, and 

β2 is a material parameter that is greater than one.  With the response tensors defined and using 

Eq. (5.5) the damage surface becomes the following in biaxial stress space: 



72 
 

߰ሺ࣌, ݇ሻ ൌ ଵ

ଶ
ሺ1 ൅ :ଵሻ࣌ାߚ ࣌ା ൅

ଵ

ଶ
࣌ି:

෥࣌⊗෥࣌

෥࣌:෥࣌
: ࣌ି ൅ ଵ

ଶ
ቀܪߛሺߣଵሻ ൅ ൯ቁߣ൫െ̅ܪߙ ࣌: ࣌ െ

ଵ

ଶ
ቀܪߛሺߣଵሻ ൅ ൯ቁߣ൫െ̅ܪߙ ଶሺ࣌ሻݎݐ ൅ ሺିࡿ ൅ :ାሻࡿଶߚ ࣌ െ

ଵ

ଶ
ଶݐ ሺ݇ሻ ൌ 0  

(5.12)

 

5.2.1. Softening Function	

In this section two softening functions are proposed which gives the materials residual 

strength for a given number of load cycles.  It will be seen from the experimental data presented 

in this section that the softening function is most effective when given in the form of a power 

function.  It will be seen that the function proposed by Wen (2011) describes the softening 

behavior of a material as only a function of the number of cyclic loads.  It is seen that this is not 

the case for concrete as for fatigue loading the residual strength is reduced at a greater rate for 

biaxial compression load cases than for uniaxial compression load cases.  It is logical than that 

the softening function should be a function of both the number of load cycles as well as the load 

path.  This is the approach taken by this study.  In the figures below, both softening functions 

will be compared and it is seen that the softening function that takes both the number of load 

cycles as well as the load path into consideration is better suited to predict the fatigue behavior of 

concrete for multiaxial loading. 

Utilizing a similar argument as Wen (2011), a softening function f(n) can be defined that 

effectively reduces the strength of concrete as the number of loading cycles increases.  As the 

softening function affects the strength properties of the material, it is therefore logical to 

incorporate it into the strength function, t.  For uniaxial compression and at the limit state the 

following is obtained from Eq. (5.12): 
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,ଶሺ࣌ݐ ݇ሻ ൌ
7
3 ௖݂

ଶ݂ଶሺ݊ሻ (5.13)

which can be shown to result in our expression for the softening function as 

݂ሺ݊ሻ ൌ
ߪ

௖݂
 (5.14)

Eq. (5.14) shows that the softening function can be considered as the ratio of the residual 

strength after n cyclic loads and the ultimate compressive strength under monotonic loading.  As 

previously stated, many researchers have concluded that the strength of concrete has a 

logarithmic relationship with the number of loading cycles (Figure 5.3). 

 

Fig. 5.3.  Residual strength vs. number of cyclic loads for stress ratio 1:0 (uniaxial compression) 

 
Guided by the experimental results, two softening functions (one solely as a function of 

the number of load cycles and the other a function of both the number of load cycles and the load 

path) are shown below in the form of a power function: 

݂ሺ݊ሻ ൌ ݊஺ (5.15)

݂ሺ࣌, ݊ሻ ൌ ݊
൥൬௧௥

మሺ࣌ሻ
࣌:࣌ ൰

ಳ

஺൩
 

(5.16)
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where A and B are material parameters that can be obtained by solving for it from the damage 

surface, Eq. (5.12), under uniaxial compression and equal biaxial compression, respectively. 

ܣ ൌ
1

ln ሺ݊ሻ
ln ൬

ߪ

௖݂
൰ (5.17) 

ܤ ൌ
1

ln	ሺ2ሻ
ln ቐሾlnሺ݊ሻ ሿିଵܣ ln ቎൬

3
7
൰

ଵ
ଶ
൬
ߪ

௖݂
൰ ൬
10
3
െ ൰ߙ2

ଵ
ଶ
቏ቑ (5.18)

where ߪ (without bold type) is the residual strength at the given number of load cycles.  It is 

argued in this present research work that the softening function presented by Wen (2011) seen in 

Eq. (5.15) is inadequate in predicting the fatigue behavior of concrete in biaxial stress space 

because it doesn’t shoe the effect the load path has on strength degradation of concrete.  It is 

because of this that the softening function given in Eq. (5.16) is used in this paper to incorporate 

the effect the stress path has on strength softening. 

Figure 5.3 demonstrates the effect of the softening function on the model for uniaxial 

compression.  The ultimate compression strength of concrete is decreased to its residual strength 

for a given number of cyclic loads.  It is important to note that for uniaxial compression both 

softening functions equate to the same residual strength.  The correlation between the model and 

the experimental data obtained from Nelson et al. (1988) is good.   

The varying effect the two softening functions have on the model is demonstrated in the 

S-N curves for multiaxial loading.  It has been seen that in biaxial stress space concrete 

experiences larger strength degradation from fatigue loading than in uniaxial compression.  With 

this in mind, the weakness of the softening function based solely as a function of cyclic loading 

is apparent.  In Figures 5.4 and 5.5 the varying effect of the two forms of the softening function 

can be seen for biaxial loading.  The function that is dependent on the load path is capable of 

capturing the increased strength degradation that occurs in biaxial compression. 
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Fig. 5.4.  Residual strength vs. number of cyclic loads for stress ratio 1:1 

 

 
 

Fig. 5.5.  Residual strength vs. number of cyclic loads for stress ratio 1:0.5 
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The effect of the softening function can be seen easier from the strength surface.  This 

will be presented in the following section along with other numerical examples, including a 

sensitivity analysis which shows the effect of various model parameters have on the model 

output. 

 

5.3. Numerical Example 

In the previous section the capabilities of the model to predict the fatigue life of concrete 

were presented for two specific load cases.  As seen in Chapter 3, the model is capable of 

producing a strength surface in 2-dimensional stress space for monotonic loading, and as 

discussed in Section 5.1.1, the bounding surface approach allows this model to produce residual 

strength surfaces corresponding to a given number of cyclic loads.  This will be presented in 

detail in this section and compared with experimental data presented by Nelson et al. (1988) 

where uniaxial and biaxial compression fatigue loading was done on high strength concrete for 

various biaxial load ratios.  The uniaxial compressive strength of the concrete used in their 

experimental program was 62.7 MPa (9100 psi).  The Young’s Modulus and Poisson’s Ratio are 

47.3 GPa (6860 ksi) and 0.31, respectively. 

In biaxial compression the function describing the strength surface is similar to Eq. (5.12) 

given as the following: 

߰ሺ࣌, ݇ሻ ൌ
1
2
࣌ି:

෥࣌ ⊗ ෥࣌
෥࣌: ෥࣌

: ࣌ି ൅
1
2
ቀܪߙ൫െ̅ߣ൯ቁ࣌: ࣌ െ

1
2
ቀܪߙ൫െ̅ߣ൯ቁ ଶሺ࣌ሻݎݐ

൅ ሺିࡿ ൅ :ାሻࡿଶߚ ࣌ െ
1
2
൬
7
3
൰ ௖݂

ଶ݊
൥൬௧௥

మሺ࣌ሻ
࣌:࣌ ൰

ಳ

஺൩
ൌ 0 

(5.19) 

where fc is the uniaxial compressive strength of concrete.  Four material parameters are used in 

biaxial compression:  α, β2, A, and B. As discussed previously, the parameters can be obtained 
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experimentally.  α can be solved for from the strength surface for monotonic loading and for this 

example is the following: 

ߙ ൌ
5
3
െ
1
2
൦
ቀ73ቁ

଴.ହ

௖݂

ߪ
൪ ൌ 1.096 (5.20) 

β2 is a material parameter related to permanent deformations and is taken to be 1.2 for this 

example.  The fatigue parameters A and B can be obtained from Equations (5.17) and (5.18), 

respectively.  For this example A is equal to -0.049 and B is equal to 0.207. 

 

Fig. 5.6.  Residual strength surfaces for varying number of cyclic loads in for biaxial 
compressive fatigue loading 

 
Fatigue also has a dramatic effect on the deformation behavior of concrete.  Figures 5.7 

and 5.8 show the stress-strain behavior for uniaxial compression and equal-biaxial compression, 
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respectively, in the presence of fatigue loading.  In this example the permanent deformations are 

ignored for simplicity, but one can see the increased compliance occurring with an increasing 

number of cyclic loads.   

 

Fig. 5.7.  Stress vs. strain for uniaxial compression for multiple number of cyclic loads 
(Experimental data by Litewka and Dubinski, 2003) 

 

 

Fig. 5.8.  Stress vs. strain for equal-biaxial compression for multiple number of cyclic loads 
(Experimental data by Litewka and Dubinski, 2003) 
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5.3.1. Sensitivity Analysis  	

The effects the model parameters α and β2 have on the strength surface are shown in 

Figure 5.9 and are compared with experimental results. 

 

 

Fig. 5.9.  Limit surface comparison for various values of α and β2 parameters (Experimental data 
by Nelson et al., 1988) 
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The effects the model parameters A and B have on the S-N curves for various load ratios 

are shown in the following figures.  Note that B has no effect for uniaxial loading. 

 

Fig. 5.10.  S-N curve for stress ratio 1:0, varying parameter A  
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Fig. 5.11.  S-N curve for stress ratio 1:1, varying parameter A and B 
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5.4. The Bounding Surface Approach Extended  

Part of what makes the bounding surface approach so appealing is the versatility it has 

when it comes to its application.  The bounding surface approach has the inherent ability to be 

applied to any limit surface.  So far in this paper it has been applied to a limit surface that has 

been established using continuum damage mechanics theory.  To demonstrate the versatility of 

the bounding surface approach, it will be applied to a completely different limit surface.  With 

simplicity in mind, Schreyer’s model (1983) based on the third-invariant plasticity theory for 

frictional materials will be used.  A brief description of the model will be given. 

This model’s purpose is an attempt to capture the essential behavioral properties of 

concrete and other frictional materials using the theory of plasticity, while not resorting to a large 

number of model parameters.  Because concrete is a frictional material the third invariant is used 

to capture its dependence on shear stress.  The limit surface for brittle and quasi-brittle materials 

including concrete, are also dependent on the first invariant of stress, also known as pressure.  In 

Schreyer’s model (1983) the following invariants are used together to for a limit surface: 

ܲ ൌ െ
1
3
ሺ࣌ሻ (5.21)ݎݐ

ܮ ൌ െሾdetሺ࣌ െ ࢙࣌ሻ ൅ det ሺ࢙࣌ሻሿ
ଵ
ଷ 

(5.22)

where P and L are the mean pressure (first invariant) and third invariant, respectively.  ߪ௦ is 

defined as the shift stress and is the strength of concrete for purely shear loading.  The shift stress 

can be obtained experimentally.  If the principle stresses are considered and if ࢙࣌ ൌ  the first ,ܫ௦ߪ

and third stress invariants become the following: 

ܲ ൌ െ
1
3
ሺߪଵ ൅ ଶߪ ൅  ଷሻ (5.23)ߪ
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ܮ ൌ െሾሺߪଵ െ ଶߪ௦ሻሺߪ െ ଷߪ௦ሻሺߪ െ ௦ሻߪ ൅ ௦ଷሿߪ
ଵ
ଷ 

(5.24) 

It is then convenient to define the limit surface as a line related to the first invariant, third 

invariant, and the shift stress. 

ܮ ൌ ௅ܲߛ െ  ௦ (5.25)ߪ

  .௅ is the limit slope and is a function of the uniaxial strength of the material and shift stressߛ

From the experimental data shown one can see that the equation for the limit surface in L-P 

space represents the behavior of concrete quite well.  This can be seen in Figure 5.12. 

 

Fig. 5.12.  Limit surface for low and high-strength concrete (Schreyer, 1983; Green and 
Swanson, 1973; Traina, 1983) 

 
In addition, the ability of this model to represent concrete behavior for biaxial 

compression is shown in principle stress space.  The principle stresses can be solved for in 

biaxial compression by some algebraic manipulation. 
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(5.27) 

where ߛ is ratio of stress in the principle directions 1 and 2.  For this numerical example the 

values used for the shift stress, ߪ௦, and limit slope, ߛ௅, are 15.27 MPa and 0.74, respectively.  

The model’s comparison with monotonic biaxial compression loading can be seen in Figure 5.13 

below.  One can see that because there are only two model parameters the biaxial behavior of 

concrete for the model and experimental data is not well matched.  This is apparent for biaxial 

load ratios between 0 (uniaxial loading) and 1 (equal-biaxial loading). 

 Applying the bounding surface approach to this model, the same softening function is 

used as in the previous section (see Equation 5.16).  The same softening equation is used because 

the equation itself is not dependant on the model being use, but rather it is dependent on the type 

of behavior being modeled (in this case fatigue loading behavior).  Similar to the previous 

section, the softening function is applied to the variable associated with the strength of the 

material; the shift stress in this case.  The limit surface then becomes the following: 

ܮ ൌ ௅ܲߛ െ ௦ߪ ∗ ݂ሺ݊, ࣌ሻ (5.28) 
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Fig. 5.13.  Limit surface for high-strength concrete for biaxial compression, monotonic loading 
(Experimental data:  Kupfer et al., 1969) 

 
 To look at the ability of the Schreyer model (1983), in combination with the bounding 

surface approach, to model the fatigue behavior of concrete it will be compared to experimental 

data presented by Nelson et al. (1988).  Because this is a new set of experimental data new model 

parameters are needed.  For this numerical example the following parameters are used: 

௦ߪ ൌ ௅ߛ									,ܽܲܯ	13.18 ൌ ܣ										,0.63 ൌ െ0.049,										ܤ ൌ 2.356 

A common theme is that the model does not match the experimental data well across the entire 

biaxial compression stress regime.  On the other hand, one can see the capabilities of the 

softening function to capture the fatigue life of the concrete for various load paths.  An obvious 

outcome is that the better the model matches the experimental data for monotonic loading, the 

better it will match fatigue data using the bounding surface approach. 
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Fig. 5.14.  Limit surface for high-strength concrete for biaxial compression, fatigue loading 
(Experimental data:  Nelson et al., 1988) 
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load paths.  A new softening function was therefore presented which incorporates the effect the 

load paths on strength and stiffness degradation for biaxial loading.  The model prediction is 

compared to the experimental results of Nelson et al. (1988) and Litewka and Dubinski (2003) 

with good correlation.  A sensitivity analysis is performed on the model to show the effect the 

various model parameters have on the model output. 

In addition to the extension of the Yazdani model, the versatility of the bounding surface 

approach is highlighted by the extension of another concrete model created primarily for 

monotonic loading.  By using the same softening function, which works well for fatigue 

compressive loading, any limit surface can be extended to predict the fatigue behavior of a 

material.  
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CHAPTER 6. MODELING OF CONCRETE FOR FREEZE-

THAW PROCESSES USING THE BOUNDING SURFACE 

APPROACH 

 

6.1. Introduction  

Freeze-thaw processes are prominent in many concrete structures, and in particular, 

hydraulic structures in cold weather regions.  Because freeze-thaw processes have such a 

damaging effect on concrete it is important that some amount of accountability for this damage 

be taken by engineers.  Similar to the measure and prediction of the fatigue life of a material, it is 

logical for engineers to desire the residual strength of concrete for a given amount of freeze-thaw 

processes the concrete has withstood.   

In this chapter the bounding surface approach is applied to a continuum damage 

mechanics model in a similar fashion to the previous chapter.  It is shown in this chapter that 

using the bounding surface approach the model is capable of producing residual strength curves 

for a given number of freeze-thaw processes and a given load path (similar to S-N curves for 

fatigue processes).  In addition, a limit or strength surface for the undamaged material along with 

residual strength surfaces for the corresponding number of freeze-thaw processes can 

systematically be developed.  Finally, stress-strain behavior for a given load path and freeze-

thaw processes are obtained. 

In its current state this model is in some danger of oversimplification when concerned 

with freeze-thaw damage in concrete.  The extent of damage occurring within the material is a 

function of many things including the characteristics of the material itself, freeze duration, and 
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the degree of saturation.  In its current state the model parameters are capable of accounting for 

the material characteristics, while the duration of the freeze is assumed to be relatively short (a 

few hours) and the concrete is assumed to be completely saturated.  It is known that for concrete, 

longer duration of freeze will result in increased damage in the material, while a lesser degree of 

saturation will result in decreased damage in the material. 

The aforementioned simplifications to the model can be addressed in the future if and 

only if there is sufficient experimental data to support said effects.  Currently there is a lack of 

experimental data pertaining to the effect the duration of freeze has on the mechanical 

characteristics of concrete as well as the effect the degree of saturation has on concrete.  Though 

the state of the model presented in this chapter is a good starting point, these are important 

factors in the performance of concrete in a freeze-thaw environment and need to be addressed in 

the future. 

As stated earlier, in this chapter the bounding surface approach is used to incorporate the 

effect freeze-thaw processes have on the performance of concrete.  The reader should reference 

Section 5.1.1 for an introduction to the bounding surface approach. 

 

6.2. Formulation of Model with the Bounding Surface Approach  

Several assumptions are made in the development of the model for freeze-thaw 

processes.  As in previous chapters a continuum approach is used and it is assumed that a 

neighboring equilibrium state exists for all irreversible processes concerned in this paper.  

Furthermore, the freeze-thaw processes are assumed to occur over a short period of only several 

hours and the concrete specimen is assumed to be completely saturated upon freezing.  Another 

significant assumption that is made in this approach is that in the temperature ranges considered, 
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the temperature and the gradient of the temperatures do not contribute to the development of 

damage in concrete.  In other words, the range of temperatures considered for short duration 

freeze-thaw cycles are not significantly high or low to induce damage.  Therefore, the damage 

inflicted on the material is due to the freeze-thaw cycles and not due to the temperature. 

Using the general formulation and in the previous chapter the following form of the 

damage surface is given:     

߰ሺ࣌, ݇ሻ ൌ ଵ

ଶ
ሺ1 ൅ :ଵሻ࣌ାߚ ࣌ା ൅

ଵ

ଶ
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ଵ

ଶ
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ଶ
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(6.1)

It should be emphasized that although the general form of the damage surface is similar to the 

previous chapter, the damage and the resulting softening function will be different for the freeze-

thaw processes being modeled.  In particular, the specifics of the parameters and the forms of the 

function used will depend on the experimental observations for freeze-thaw cycles.  The 

softening function, which is part of the damage function, needs to be of a form which accurately 

represents the strength softening which occurs with freeze-thaw processes. 

 

6.2.1. Softening Function	

It can be seen in Chapter 2 that concrete subjected to freeze-thaw processes experiences a 

reduction in strength.  Experimental data presented by Shang et al. (2006, 2009) shows that 

concrete strength and the number of freeze-thaw cycles being experienced, have a nearly linear 

relationship for a given load path.  Similar to the softening behavior of concrete for fatigue 

processes, concrete’s strength degradation is dependent on the load path in.  It is apparent from 

Figure 6.2 that the strength of concrete decreases at a higher rate for uniaxial compression than  
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Fig. 6.1.  Strength vs. number of freeze-thaw cycles for uniaxial tension and compressive loading 
of air-entrained concrete (Shang et al., 2009) 

 

 

Fig. 6.2.  Strength vs. number of freeze-thaw cycles for biaxial compression (top) and strength 
vs. stress ratio (bottom) (Shang et al., 2006) 

 
for biaxial compression.  For this reason, a softening function is proposed in this section that 

provides a linear softening relationship that is also a function of the load path.     
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Utilizing a similar argument as in Wen (2011) a softening function f(n) can be defined 

that effectively reduces the strength of concrete as the number of freeze-thaw cycles increases.  

As the softening function affects the strength properties of the material, it is logical to 

incorporate it into the strength function, t.  For uniaxial compression and at the limit state the 

following is obtained from Eq. (6.1): 

,ଶሺ࣌ݐ ݇ሻ ൌ
7
3 ௖݂

ଶ݂ଶሺ݊ሻ (6.2)

which can be shown to result in our expression for the softening function as 

݂ሺ݊ሻ ൌ
ߪ

௖݂
 (6.3)

where ߪ (without bold type) is the residual strength of the concrete for a given number of freeze-

thaw cycles.  Eq. (6.3) shows that the softening function can be considered as the ratio of the 

residual strength after n freeze-thaw cycles and the ultimate compressive strength under 

monotonic loading.  As previously stated, from experimental data it is concluded that the 

strength of concrete has a linear relationship with the number of freeze-thaw cycles (Figure 6.1 

and 6.2). 

Guided by the experimental results, a softening function is proposed below in the form of 

a linear function of the number of freeze-thaw cycles and the load path: 

݂ሺ࣌, ݊ሻ ൌ 1 െ ܤ ൤
࣌: ࣌
ଶሺ࣌ሻݎݐ

൨
஼

݊ (6.4)

where B and C are material parameters that can be obtained by solving for them from the damage 

surface, Eq. (6.1), under uniaxial compression and equal-biaxial compression, respectively.  

Solving for parameters B and C the following is obtained: 

ܤ ൌ ൬1 െ
ߪ

௖݂
൰ ݊ିଵ (6.5)
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where ߪ (without bold type) is the residual strength at the given number of freeze-thaw cycles. 

Figures 6.3, 6.4, 6.5, and 6.6 demonstrate the effect of the softening function on the 

model for various load paths in compression.  The ultimate compression strength of concrete is 

decreased to its residual strength for a given number of freeze-thaw cycles.  The correlation 

between the model and the experimental data obtained from Shang et al. (2006, 2008) is good.   

 

 
 

Fig. 6.3.  Residual strength vs. number of freeze-thaw cycles for stress ratio 1:0 (uniaxial 
compression) 
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Fig. 6.4.  Residual strength vs. number of freeze-thaw cycles for stress ratio 1:1 (equal-
biaxial compression) 

 
 

 
 

Fig. 6.5.  Residual strength vs. number of freeze-thaw cycles for stress ratio 1:0.5 (biaxial 
compression) 
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Fig. 6.6.  Residual strength vs. number of freeze-thaw cycles for various load paths in 
compression 

 
 

6.3. Numerical Example 
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34.2 MPa (5000 psi) and 26.8 GPa  (3886 ksi), respectively.  The Poisson’s ratio used is assumed 

to be 0.3. 

The residual strength surface for in biaxial compressive stress space is shown in Figure 

6.6 for 0, 25, 50, and 75 freeze-thaw cycles.  A residual strength surface can be obtained from 

Equation 6.1 and is given below. 
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(6.7)

where fc is the uniaxial compressive strength of concrete.  Four material parameters are used in 

biaxial compression:  α, β2, B, and C. The parameters can be obtained experimentally.  α can be 

solved for from the strength surface for monotonic equal-biaxial compressive loading and for 

this example is the following: 

ߙ ൌ
5
3
െ
1
2
൦
ቀ73ቁ

଴.ହ

௖݂

ߪ
൪ ൌ 0.843 (6.8)

β2 is a material parameter related to permanent deformations and is taken to be 1.2 for this 

example.  The fatigue parameters B and C can be obtained from Equations (6.5) and (6.6), 

respectively.  For this example B is equal to 0.0059 and C is equal to 1.025. 

 Figure 6.7 shows the effectiveness of the model in creating residual strength surfaces for 

various number of freeze-thaw cycles in biaxial compression space.  The softening function, 

which is a function of both the number of freeze-thaw cycles and the load path, does a good job 

of recreating realistic strength loss in concrete for different load paths.  This is apparent when the 

experimental data of Shang et al. (2006) is compared with the model results. 
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 The deformation of concrete is also affected by damage caused by freeze-thaw processes.  

In the following numerical examples the stress-strain curves for various load paths are shown for 

concrete prior to freeze-thaw damage and after 25, 50, and 75 freeze-thaw cycles.  This is shown 

in Figure 6.8.  One can see that the increased plasticity seen in the experimental data is not 

adequately captured by the model.  While the model shows increased compliance with increasing 

freeze-thaw cycles, the experimental data shows larger ultimate strains as the number of freeze-

thaw cycles increases. 

 

Fig. 6.7.  Residual strength surfaces for various number of freeze-thaw cycles in biaxial 
compression 
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Fig. 6.8.  Stress vs. strain for uniaxial (top) and equal-biaxial (bottom) compression, model 
output (line) and experimental data (marker and line) (Shang et al., 2006) 

0

0.2

0.4

0.6

0.8

1

1.2

‐3.0‐2.5‐2.0‐1.5‐1.0‐0.50.00.51.01.52.02.5

σ
/ 
f'
c

Strain / ε_u

n = 0

n = 25

n = 50

n = 75

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

‐3.0 ‐2.0 ‐1.0 0.0 1.0 2.0 3.0 4.0 5.0

σ
/ 
f'
c

Strain / ε_u

n = 0

n = 25

n = 50

n = 75



99 
 

6.3.1. Sensitivity Analysis  	

As shown in Chapter 5, the effect of various parameters on the model is shown in the 

following section.  

 

 

Fig. 6.9.  Limit surface comparison for various values of α and β2 parameters (Experimental data 
by Nelson et al., 1988) 
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Fig. 6.10.  S-N curves for uniaxial (top), equal-biaxial (middle), and 1:0.5 biaxial compression 
(bottom) with various values of B 
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Fig. 6.11.  S-N curves for equal-biaxial (top) and 1:0.5 biaxial compression (bottom) with 
various values of C 
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approach once again.  The softening function can take a form which will best represent the 

behavior which is being investigated (in this case, freeze-thaw processes).  The original limit 

surface which corresponds with the undamaged material collapses in on itself as the number of 

freeze-thaw cycles increases.  A numerical example is shown which demonstrates the new 

capabilities of the model and is compared with experimental results found by Shang et al. (2006 

and 2009) and Nelson et al. (1988).  The residual strength surfaces and S-N curves show good 

correlation with the experimental data.  One weakness of the model is its inability to reproduce 

the increased ultimate strain of concrete that occurs with increasing freeze-thaw cycles.  This 

issue may be addressed in future work. 

The present study is considered a first step in developing a comprehensive model for 

freeze-thaw damage in concrete. Several key factors have not been considered in the present 

study. These include, the duration of freeze, the rate of freezing, and the degree of saturation. 

Although, it can be argued that the degree of saturation at the time of freezing could be reflected 

or modeled appropriately in the limit surface, nonetheless, the duration of freezing and the rate of 

freezing are important design considerations and need to be studies further and incorporated in 

this model in future studies. 
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APPENDIX 
 
 

 
Matlab code for biaxial strength surface using the Yazdani model (1993) shown in Figure 3.3. 

 

% Yazdani Schreyer Model 
clear 
% Model parameters 
ft=3.5*10^6; 
a=0.86; 
w=0.0067; 
B=1; 
u=3.0; 
  
% Load ratios, L=[zheta,gamma,mu] 
L=[0;0;0]; 
n=1; 
% Tension-compression loading 
for z=1:-0.05:-1 
    for g=1:-0.1:-1 
        for m=1:-0.1:-1 
           L=[z;g;m]; 
           % 1st term, sp=positive stress 
           sp=L; 
           if z<0 
               sp(1,1)=0; 
           end 
           if g<0 
               sp(2,1)=0; 
           end 
           if m<0 
               sp(3,1)=0; 
           end 
            
           % sn=negative stress 
           sn=L; 
           if z>0 
               sn(1,1)=0; 
           end 
           if g>0 
               sn(2,1)=0; 
           end 
           if m>0 
               sn(3,1)=0; 
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           end 
            
           % 2nd term, t 
           t=sn; 
           if z>g & z>m 
               t=t-z*[1;1;1]; 
           end 
           if g>z & g>m 
               t=t-g*[1;1;1]; 
           end 
           if m>z & m>g 
               t=t-m*[1;1;1]; 
           end 
       
           % deviatoric stress 
           dsn=1/3*[2*sn(1,1)-sn(2,1)-sn(3,1);-
sn(1,1)+2*sn(2,1)-sn(3,1);-sn(1,1)-sn(2,1)+2*sn(3,1)]; 
           if dsn(1,1)>0 
               dsn(1,1)=B*dsn(1,1); 
           end 
           if dsn(2,1)>0 
               dsn(2,1)=B*dsn(2,1); 
           end 
           if dsn(3,1)>0 
               dsn(3,1)=B*dsn(3,1); 
           end 
            
           % unit pressure, P 
           P=(L(1,1)+L(2,1)+L(3,1))/3; 
           if min(t)>=0 
               P=0; 
           end 
            
           L1=L; 
           if min(t)>=0 
               L1=0; 
           end 
                
           
x=(ft^2/((sp'*sp)+w*(sn'*t)*(t'*sn)/(t'*t)+2*w*dsn'*L+w*a*u*L1'*
L1-w*a*9*P^2))^.5; 
           stress3(1,n)=x*L(1,1); 
           stress3(2,n)=x*L(2,1); 
           stress3(3,n)=x*L(3,1); 
           n=n+1; 
        end 
    end 
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end 
x3=stress3(1,:)/ft; 
y3=stress3(2,:)/ft; 
z3=stress3(3,:)/ft; 

 

 

 

 

 

 


