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ABSTRACT

Compound droplets raise great interests due to their applications in pharmaceutical,

cosmetic, and food industry. In spite of the growing demand of theoretical investigation

of dynamics of compound droplets from those applications, very limited effort has

been contributed in the analytical and/or numerical study of them. In this work,

a 3D spectral boundary element method is employed to investigate the dynamics of

compound droplets for both concentric and eccentric configurations. A comprehensive

investigation has been carried out on the influences of the relative droplet size,

relative surface tensions on the two interfaces, relative viscosities of the fluids, and the

initial location of the inner droplet, on the deformation, migration, and stability of

compound droplets. Two mechanisms of droplet breakup have been observed: (a) the

contact of the outer and inner interface and (b) the instability of the inner droplet.
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CHAPTER 1. INTRODUCTION

Compound droplets were firstly described by Seifriz [37], who discovered them

when he was investigating the double reversal phenomenon of distilled petroleum

emulsions. Compound droplets are also called as double emulsions, encapsulated

droplets, or globules. They are complex droplets consisted of two droplets: the outer

droplet is dispersed in an immiscible continuous phase, while a smaller inner droplet

is dispersed in the outer droplet.

1.1. Applications of compound droplets

Compound droplets have raised significant interests because they have a high

potential for applications in pharmaceutical, cosmetic, and food industry. In phar-

maceutical applications, compound droplets are used to protect, deliver and control

the release of the therapeutic molecules engulfed by the inner droplet. Qi et al. used

water-in-oil-in-water (W/O/W) double emulsions as a delivery system to improve the

oral bioavailability of pidotimod [32]. Wang et al. used W/O/W double emulsions to

protect and control the release of liposomes in drug delivery [46]. In cosmetic industry,

compound droplets are used to contain active ingredients such as Vitamin C and

prolong the release of these ingredients, thus the cosmetic effect can be maximized

[1,2]. For application in the food industry, compound droplets are used to encapsulate,

protect, and control the release of sensitive and active food components such as

vitamin, aroma, and flavor; they are also used to reduce the fat contents in food

by substituting the fat with the aquatic phase in the compound droplets [11, 24, 36].

Compound droplets also have the potential to treat waste water. For example, they

are employed to remove organic toxicant [7] and heavy metal [6,45] from waste water.

Researchers also employed compound droplets as a simplified model of blood cells, to

investigate the leukocyte recovery [17,18], the leukocyte adhesion [19,20,27], and the

cell epitaxy [41].
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1.2. Fabrication of compound droplets

A common process for fabricating compound droplets is a two-step emulsifi-

cation method [13, 26, 31]. In the first step, water is poured into oil that contains

lipophilic emulsifier. This mixture is stirred with high-shear to form fine primary

water-in-oil (W/O) droplets that will be the inner droplets. In the second step,

the primary droplets are poured into water that dissolves hydrophilic emulsifier. This

mixture of the water and the primary droplets is stirred with low-shear to form stable

W/O/W compound droplets. Low-shear is employed to prevent the breakup of the

primary W/O droplets.

A one-step emulsification process, or phase inversion technique, is also used

to generate compound droplets. A large amount of hydrophobic emulsifier together

with a small amount of hydrophilic emulsifier is used to form W/O droplets, and then,

the W/O droplets are heated to cause part of the emulsions inverted into W/O/W

compound droplets [28]. The one-step method is not widely used due to its low

effeciency.

Though the above two methods are convenient and conventional to produce

compound droplets, they do not have good control over the size and the structure of

compound droplets, which is required in many applications. Recently, microfluidics

technology is developed to prepare compound droplets that are equally sized. The size

and structure of compound droplets can be determined by the flow rate of different

phases and the geometry of the microfluidics. Umbanhowar et al. investigated the

generation of single droplets in a co-flow device [43]. They found the single droplet

size is denpendent on the tube’s inner diameter, the inner flow rate, the interfacial

tension, and the viscosity and velocity of the contiuous phase. They observed that

the diameter of the single droplet was usually more than two times of the tube’s

inner diameter. By using Umbanhowar theory, Chu et al. developed a capillary
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device that consists of two sequential co-flow emulsion generators [9]. They were

also able to control the size of the inner and outer droplet by varying the flow

rate and tubes’ size. By changing these two parameters, they could also control

the number of inner droplets. In Chu’s study, they could contain the coefficient

of variation (CV) of the inner droplet under 2.3% and a better CV of the outer

droplet, which was under 1.6%. Utada et al. developed a microcapillary device to

generate monodisperse double emulsions [44]. This device was the combination of

both co-flow and flow focusing technologies. They were able to control the CV under

1% by varying the flow rate and tubes’ size. Some researchers reviewed the new

technologies that are able to take good control over the size and structure of compound

droplets. Nisisako reviewed the microstructured devices for preparing monodispersed

multiple emulsions, which are membrane emulsification, microchannel emulsification,

two-dimensional microfluidic device, and three-dimensional coaxial microcapillary

device [25]. Shah et al. reviewed the new developments for the controlled fabrication

of highly monodispersed emulsions using microfluidics [38].

1.3. On the stability of compound droplets

Emulsion stability refers to the ability of an emulsion to resist change in its

properties over time.” [23] Researchers have realized the importance of the stability

of compound droplets for applications [5, 15]. Due to the instability of compound

droplets [14], they cannot be used in practice [8]. Substantive studies have been

done to search for the proper combination of emulsifiers to increase the stability of

the compound droplet [4, 5, 15]. However, most studies on the stability of compound

droplets were experiments, and very limited effort has been contributed in analytical

and/or numerical study of the compound droplets.
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1.4. Literature review

The first theoretical analysis of compound droplets was done by Torza and

Mazon in 1970 [42]. They made the assumption that a three-phase system reached

the final equilibrium state when it had a minimum surface free energy. A surface

free energy was the summation of the product of the interfacial tension and the

interfacial area. Therefore, they believed the three interfacial tensions (σi,j, i 6= j 6=

k =1, 2, 3) were the main factors that determined the equilibrium state. They used

three spreading coefficients (Si = σjk − σij − σik) to predict the three equilibrium

configurations: (1) complete engulfing, when S1 < 0, S2 < 0, and S3 > 0; (2) partial

engulfing, when S1 < 0, S2 < 0, and S3 < 0; (3) nonengulfing, when S1 < 0, S2 > 0,

and S3 < 0. They also conducted a series of experiments to examine different systems

that consisted of various combinations of three phases. Their results generally proved

the theoretical prediction. However, they did not consider the effect of the dynamics

of fluids in their theoretical studies.

Sadhal and Johnson gave out a dynamic theoretical analysis of the translation

of liquid drops or gas bubbles that were partially coated with a thin film of surfactant

using the lubrication-theory approximation [34]. In their study, they investigated a

creeping flow past drops or bubbles and the internal vortex that was generated by

the motion of the drops or bubbles. However, they limited their investigation on the

spherical droplets, due to their assumption that the surface tension dominates over

the viscous forces. They also only considered the situation that the outer droplet was

a stagnant surfactant cap.

Rushton and Davies analytically investigated the motion of the compound droplets

in a slow flow [33]. They were interested in the drag coefficient and terminal settling

velocity of the compound droplets, because these parameters were the main factors
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that determined the performance of the membrane separation apparatus. They con-

sidered the encapsulated droplet and surrounding membrane to be always spherical.

Stone and Leal were the first researchers that theoretically investigated the

breakup of the double emulsions [40]. They employed both analytical and numerical

methods in their study. They used a small deformation theory to study the behavior

of the double emulsions that were less deformable and a boundary integral method to

study the behavior of the double emulsions that had finite deformation. In their study,

they investigated a wide range of parameters that could influence the deformation and

breakup of double emulsions. These parameters included the flow type (3D uniaxial

extensional flow and 3D biaxial extension flow), the inner droplet size, the viscosity

ratios, and the interfacial tension ratio. They observed that the uniaxial flow deforms

the outer droplet into a prolate shape and the inner droplet into a oblate shape.

They found that the increase of the inner droplet size decreases the critical capillary

number, and so does the increase of the inner viscosity ratio. They also concluded

two mechanisms of double emulsions breakup. One was that double emulsions are

stretched by the outer flow until they break up; the other was that the two interfaces

contact each other, which causes the double emulsions to break up, even though

they are only modestly deformed. However, Stone and Leal only focused on the

investigation of concentric double emulsions, and did not investigate eccentric double

emulsions. Also, as they have mentioned, they did not fully investigate the viscosity

ratios and surface tension ratio.

Smith et al. applied a level set method to investigate the breakup of compound

droplets in a shear flow [39]. They shut down the shear flow when the length of

the outer droplet was 6 times of the initial radius and allowed the surface tension

recover the compound droplets. During the recover process, they discovered that the

compound droplets might relax to their initial shape or break up. It is found that
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when compound droplets break up, their final configuration is dependent on the flow

strength and the surface tension of both inner and outer droplets.

The first theoretical study on the eccentric double emulsion droplets was done

by Sadhal and Oguz in 1985 [35]. In their study the compound droplets initially

eccentric were placed in a uniform flow with velocity U. Relative motion between

inner and outer droplets were taken into consideration. However, the droplets were

nearly non-deformable.

There were some other analytical studies concerning the oscillations and stability

of compound droplets [12, 21, 22].

1.5. Objectives of this study

The objectives of this paper are to investigate the effect of the size ratio,

surface tension ratio, and viscosity raitos on the behavior and stability of concentric

compound droplets that are freely suspended in a 2D extensional flow. We also study

the behavior of eccentric compound droplets when their inner droplet is placed in

different locations inside the outer droplet. We derive the boundary integral equations

and employ a 3D spectral boundary element method to simulate the above problems.

The numerical method and the corresponding mathematical formulations are

presented in Chapter 2. Our numerical schemes are validated in Chapter 3. We

investigate the relationships between the deformation as well as the stability of

concentric compound droplets and the size ratios, surface tension ratio, and viscosity

ratios in Chapter 4. We study the influence of the placement of the inner droplet on

the behavior of the eccentric compound droplets in Chapter 5. Finally, we summarize

our findings in Chapter 6.

This is the first time that the 3D spectral boundary element method is applied

to investigate the dynamics of a compound droplet. Especially, this method is used
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to simulate the behavior of an eccentric compound droplet, which has not been fully

investigated and is difficult to perform experimentally.
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CHAPTER 2. MATHEMATICAL FORMULATION AND

NUMERICAL METHOD

In this study, we investigate the behavior of the compound droplets freely sus-

pended in a 2D extensional Stokes flow via a 3D spectral boundary element method.

The behavior of the compound droplets is governed by the Stokes equation and the

continuity. In this chapter, we define the problem, nondimensionalize the parameters,

derive the Boundary Integral Equations (BIEs), and introduce the numerical schemes.

During the introduction of the numerical schemes, we address the discretization of

the interfaces and solution procedure.

2.1. Definition of the problem

Consider a compound droplet suspended in a third infinite fluid as shown in

Fig. 1. For undeformed droplets, the radius of the outer (Fluid 2) and inner (Fluid

1) droplets are ao and ai, respectively, where the subscript, o and i, designate outer

and inner droplets, respectively. The three fluids are Newtonian fluid and assumed

to be incompressible, thus the volumes of both outer and inner droplets are always

constant. Fluid 2 is immiscible with Fluid 1 and Fluid 3. Fluid 1 has a viscosity of

µi and a density of ρi, Fluid 2 has a viscosity of µo and a density of ρo, and Fluid 3

has a viscosity of µ and a density of ρ. The inner interface formed by Fluid 1 and

Fluid 2 has a surface tension of γi, and the outer interface formed by Fluid 2 and

Fluid 3 has a surface tension of γo. The compound droplets are freely suspended in

a 2D extensional flow. The flow is expressed by u∞ = G(x,−y, 0), where G is the

shear rate. In this work, we study both concentric and eccentric compound droplets.

When a compound droplet is concentric, the centers of mass of the outer and inner

droplets are coincident and placed at the stagnant point of the flow. The stagnant

point is the center point of an axisymmetric flow, where the velocity is zero. When a
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Figure 1: A demonstration of a compound droplet. Fluid 1 is the inner phase, Fluid
2 is the outer phase, and Fluid 3 is the surrounding fluid that disperses the outer
droplet. µ is the viscosity, γ is the surface tension, ρ is the density, and a is the
radius of an undeformed droplet. The subscripts, o and i, represent the properties for
outer and inner droplets, respectively.

compound droplet is eccentric, the centers of mass the outer and inner droplets are

separated. The initial location of the center of mass of the outer droplet is always

put at the stagnant point. The distance between the centers of mass of the outer and

inner droplets is ∆.

In this study, we have made several assumptions: (1) the Reynolds number is

low; (2) the three fluids are incompressible; (3) the three fluids have the same densities

(ρo = ρi = ρ), so the compound droplets are neutrally buoyant in the fluid flow; (4)

the viscosities of the three fluids and surface tensions of the two interfaces are always

constant; (5) no surfactant exists.
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2.2. Nondimensionalization

In this study, the behavior of a concentric compound droplet is determined by

ten parameters that are ao, ai, γo, γi, µ, µo, µi, ρ, ρo, ρi, and G. Besides these ten

parameters, the behavior of a eccentric compound droplet is also determined by the

position of the inner droplet. In order to simplify the investigation, we nondimen-

sionalize the parameters. Nondimensionalization has three major advantages. First,

it can reduce the number of parameters. Second, using a nondimensional equation,

computations can be simplified, for example the inertia term can be neglected in

microfluidics due to small Reynolds number. Third, nondimensonalization makes the

parameters generalized and applicable for a generic system [49]. In this study, we use

the radius of the undeformed outer droplet ao as the length scale, aoG as the velocity

scale, and 1/G as the time scale. The dimensionless parameters are listed below,

k = ai/ao, (1)

λo = µo/µ, (2)

λi = µi/µ, (3)

Γ = γi/γo, (4)

βo = ρo/ρ, (5)

βi = ρi/ρ, (6)

δ = ∆/ao, (7)

Cao =
µGao

γo

, (8)

Cai =
λoµGai

γi

, (9)

Re =
ρGao

µ
, (10)

where k is the size ratio; λo and λi are the outer and inner viscosity ratios; Γ is
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the surface tension ratios; βo and βi are the outer and inner density ratios; δ is the

eccentricity; Cao and Cai are the outer and inner capillary numbers, respectively,

the capillary number measures the relative importance of viscous forces and surface

tension, thus determines the deformability of a droplet in a given fluid and flow

condition; and Re is Reynolds number that is the ratio of inertia forces to viscous

forces.

We are interested in the influence of above parameters on the deformation of

the compound droplet. The deformation is defined by

D =
L − S

L + S
, (11)

where L is the longest axis of the droplet and S is the shortest axis.

2.3. Boundary Integral Equation

In this study, all the fluids are governed by Navier-Stokes equation

ρ(
∂u

∂t
+ u · ∇u) = −∇p + µ∇2u, (12)

where u is the velocity, and p is the dynamics pressure. Due to the small size of

compound droplets involved in many industrial processes, the Reynolds number is

sufficiently small, and consequently the inertia forces are negligible. Therefore, the

inertia terms in the Navier-Stokes equations are neglected, and the flow is governed

by Stokes equation

∇ · σ ≡ −∇p + µ∇2u = 0, (13)

where σ represents the stress tensor. The Stokes equation is supplemented by the
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continuity for incompressible flow

∇ · u = 0. (14)

In this study, the boundary conditions for the velocity u and surface stress f on

the inner interface are

u1 = u2, (15)

∆f12 ≡ f1 − f2 = γo(∇ · n)n, (16)

while the boundary conditions on the outer interface are given by

u2 = u3, (17)

∆f32 ≡ f3 − f2 = γi(∇ · n)n. (18)

Here the subscripts 1, 2, and 3 designate the velocity and the surface stress

evaluated in fluids 1, 2, and 3. The surface stress is defined by

f = σ · n, (19)

where n is the unit normal. We choose n to point into Fluid 1 on the inner interface

and into Fluid 3 on the outer interface. Eqs. 15 and 17 constrain the velocity on the

interfaces to be continuous, and Eqs. 16 and 18 indicate that the stress jump on the

interface is due to the surface tension.

The inner Boundary Integral Equation (Eq. 20) relates the velocity u at each

point x0 along the boundary SB by the surface integral of the stress and velocity over

all the points x on the same boundary. It expresses the flow field inside a boundary
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SB shown in Fig. 2a. The normal vector n points into the domain surrounded by the

boundary SB.

u(x0) = −
1

4πµ

∫
SB

(S · f− µT · u · n)dS. (20)

In Eq. 20, Sij is the fundamental solution for the velocity of the Stokes equa-

tions, and Tijk is the associated stress. They are defined by

Sij =
δij

r
+

x̂ix̂j

r3
, Tijk = −6

x̂ix̂j x̂k

r5
, (21)

where x̂ = x − x0 and r = |x̂|. The detailed derivation is done by Pozrikidis in his

book [30].

The outer Boundary Integral Equation (Eq. 22) expresses the flow field outside

a boundary SB shown in Fig. 2b. The normal vector n points into the surrounding

flow, and u∞ represents the undisturbed velocity far from the boundary SB [47].

u(x0) − 2u∞(x0) = −
1

4πµ

∫
SB

(S · f− µT · u · n)dS. (22)

In our study, Fluid 2 is treated as the inner phase bounded by the outer interface

and the inner interface. Therefore, the outer Boundary Integral Equation is applied

to Fluid 1 and Fluid 3, and the inner Boundary Integral Equation is applied to Fluid

2

u(x0) − 2u∞(x0) = −
1

4πλiµ

∫
Si

(S · f1 − λiµT · u · n)dS, (23)

u(x0) = −
1

4πλoµ

∫
Si+So

(S · f2 − λoµT · u · n)dS, (24)

u(x0) − 2u∞(x0) = −
1

4πµ

∫
Si

(S · f3 − µT · u · n)dS, (25)
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(a) (b)

Figure 2: Illustrations for the geometry of the BIEs (Eqs. 20 and 22).

Since only the stress difference on the interface is known, Eq. 24 is subtracted

from Eq. 23 and Eq. 25, respectively, to obtain the Boundary Integral Equations for

the outer and inner interface

Ωu− Ωou
∞ = −

1

4πµ

∫
So

[S · ∆f23 − (1 − λo)µT · u · n]dS

−
1

4πµ

∫
Si

[S · ∆f12 − (λi − λo)µT · u · n]dS (26)

where Ω and Ωo are the coefficients for different interfaces, Ω = 1 + λo and Ωo = 2

for the outer interface So, and Ω = λi + λo, and Ωo = 2λi for the inner interface

Si. Boundary Integral Equations could be used to determine the velocity at any

geometric point on the interfaces of the compound droplets.

2.4. Numerical schemes

A three-dimensional spectral boundary element method for interfacial dynamics

in Stokes flow is employed to find the numerical solution of the aforementioned

14



integral equation. The main attraction of our algorithm is that it combines the

high accuracy of spectral methods without creating denser systems and possesses

the versatility of boundary element methods, i.e. the ability to handle the most

complicated geometries, as described in Ref. [48].

2.4.1. Discretization

We use cube projection to discretize the initial spherical shape and create

spectral elements. As shown in Fig. 3, the droplet interface is discretized into six

spectral elements (NE = 6), while each element is projected to one of the cube

surfaces. We discretize each element in two dimentions. The geometry variables are

defined using the geometry collocation points (NG), while the physical variables are

defined using basis points (NB). Those basis points are parameterized points which

are the zeros of NBth order orthogonal polynomials. The collocation points are used

to avoid singularity. J.J.L. Higdon and G.P. Muldowney gave a detailed inroduction

of the surface element discretization in their paper [16]. In each element, we have NB

spectral points in one curvilinear direction, thus we have N2
B points on each element,

NEN2
B points on each interface, and totally 2NEN2

B points for a compound droplet.

In addition, an interfacial smoothing scheme and a mesh redistribution strategy have

been employed based on work by Wang and Dimitrakopoulas [48].

To determine the NB number, we conducted a convergence test as shown in

Fig. 4. We carried out the convergence test for a a compound droplet of Cao = 0.06,

k = 0.1, Γ = 1, and λo = λi = 1. The compound droplet is freely suspended in a

uniaxial extensional flow. We computed the deformation of a compound droplet using

NB = 5, 7, 9, 11, and 13. The relative error in deformation is calculated based on the

results of NB = 15. In Fig. 4, the y axis is the relative error in deformation, and the

x axis represents the total spectral points number that is calculated by N = 2NEN2
B.

When NB = 11, which is N = 1452, the relative error in deformation is in the order
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(a) (b)

Figure 3: (a) Discretization of a cubic surface; (b) Discretization of a droplet interface
via cubic projection.

of 10−5. This error is already negligible, thus, we choose NB = 11 in our study.

2.4.2. Solution procedure

A linear system of algebraic equations u = Af+Bu is obtained by substituting

the discretized points into the boundary integral equation. The system matrices A

and B are defined as integrals of the kernels S and T and the basis functions over the

set of the surface elements. These equations are solved via Gauss elimination method

by using the routines from the LAPACK system library. The velocity at each point

on the interface is obtained, and displacement of each point is determined by solving

the kinematic condition at the droplet interface

dx

dt
= (u · n)u, (27)

where x is the position vector of a point at the droplet interface, u is the velocity

vector of the same point, and n is the unit normal vector. This equation is solved
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Figure 4: Convergence test with a compound droplet of Cao = 0.06, k = 0.1, Γ = 1,
and λo = λi = 1. The compound droplet is freely suspended in a uniaxial extensional
flow. The NB number is NB = 5, 7, 9, 11, and 13. The number of the spectral points
is calculated by N = 2NEN2

B.

using a 4th order Runge-Kutta method.
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CHAPTER 3. VALIDATION

We validate our numerical schemes by comparing simulation results with the

results from Stone and Leal’s work [40]. For good precision, Engauge Digitizer is used

to digitize figures. We also program in MATLAB using small deformation theory for

the purpose of comparison.

The 3D Spectral Boundary Element Method is a fully three dimensional nu-

merical method. By using this method, the interface of the droplet is discretized

with spectral elements, which results in high accuracy and exponential convergence.

The Small Deformation Theory uses a domain perturbations method to generate

analytic solution for the dynamics of a compound droplet. To make this method

valid, the compound droplet has to be assumed as nearly spherical, which is realized

by low capillary number (Cao ≪ 1 and Cai ≪ 1). The Boundary Integral Method

employed by Stone and Leal is a axisymmetric method because of their flow selection.

They discretize the interface of droplet with equal-space points or an arclength

parametrization method [3].

In Fig. 5a, we present the steady state deformation of compound droplets

at different capillary numbers in a 3D extensional flow. The undisturbed flow is

u∞ = G(−x/2,−y/2, 2z). The deformation are calculated for ten values of the outer

capillary numbers Cao = 0.01, 0.02, ... , 0.10. The other parameters are fixed:

λo = λi = 1, Γ = 1, and k = 0.5. The inner capillary number is 0.5Cao in this

case. As shown in Fig. 5a, the square symbols represent the steady state deformation

simulated by our 3D spectral boundary element method, and the round symbols

represent the deformation generated by Stone and Leal’s boundary integral method.

The solid lines denote the predictions calculated by small deformation theory that is

also derived by Stone and Leal. In Table 1, we present the steady state deformation

generated by different methods in a 3D uniaxial flow. The superscripts BEM, BIM,
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Table 1: Comparison of steady state deformation generated by Small Deformation
Theory (SD), Boundary Element Method (BEM), and Boundary Integral Method
(BIM) in a 3D uniaxial flow.
Cao 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
DSD

o 0.019 0.037 0.056 0.074 0.092 0.110 0.127 0.145 0.162 0.179
DBEM

o 0.019 0.039 0.060 0.082 0.106 0.131 0.158 0.188 0.223 0.266
DBIM

o 0.020 0.040 0.060 0.080 0.106 0.129 0.157 0.190 0.222 0.266
DSD

i
0.0067 0.0133 0.0201 0.0268 0.0336 0.0404 0.0472 0.0541 0.0610 0.0679

DBEM
i 0.0066 0.0130 0.0193 0.0253 0.0310 0.0362 0.0409 0.0449 0.0480 0.0498

DBIM
i

0.0065 0.0130 0.0195 0.0250 0.0306 0.0360 0.0396 0.0450 0.0476 0.0490

and SD denote the 3D boundary element method, Stone and Leal’s boundary integral

method, and small deformation theory, respectively. By comparing the BEM results

and BIM results, we obtain an average percent error (APE) of 1.34% in Do and 1.16%

in Di, which presents excellent agreement. The APE is calculated by equation 28,

where n = 10 in this case.

APE =

n∑
k=1

(|DBEM,k − DBIM,k|/DBIM,k)

n
× 100% (28)

In Fig. 5b, we compare the steady state deformation results of compound

droplets in a 3D biaxial extensional flow with those by Stone and Leal. In this

case, the undisturbed flow is u∞ = G(x/2, y/2, 2z). The constant parameters are

λo = λi = 1, Γ = 0.1, and k = 0.5. The inner capillary number is 5Cao. We calculate

the steady state deformation for five out capillary numbers Cao = 0.005, 0.010, 0.015,

0.020, and 0.025. Good agreement has also been found. In Table 2, we tabulate the

steady state deformation in a 3D biaxial flow. Between the results from BEM and

BIM, the APE in Do and Di is 3.76% and 3.87%, respectively. The APE is also

calculated by Eq. 28, while n = 5 in this case.
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Figure 5: Comparison of our results with Stone and Leal’s in a 3D uniaxial flow
and 3D biaxial flow. The square symbols represent the results generated by spectral
boundary element method. The round symbols represent Stone and Leal’s numerical
results. The solid lines are the predictions using small deformation theory. (a) 3D
uniaxial flow; (b) 3D biaxial flow.
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Table 2: Comparison of steady state deformation generated by Small Deformation
Theory (SD), Boundary Element Method (BEM), and Boundary Integral Method
(BIM) in a 3D biaxial flow.
Cao 0.005 0.010 0.015 0.020 0.025
DSD

o 0.0095 0.0189 0.0282 0.0375 0.0468
DBEM

o 0.0095 0.0189 0.0283 0.0377 0.0476
DBIM

o 0.009 0.020 0.030 0.038 0.047
DSD

i 0.0336 0.0679 0.1030 0.1390 0.1757
DBEM

i
0.0344 0.0720 0.1142 0.1641 0.2356

DBIM
i

0.035 0.070 0.110 0.158 0.220

21



CHAPTER 4. CONCENTRIC COMPOUND DROPLETS

IN A 2D EXTENSIONAL FLOW

In this chapter, we investigated concentric compound droplets that the centroid

of the inner droplet coincides with that of the outer droplet. The concentric compound

droplets are suspended in a 2D extensional flow, where the undisturbed flow is

expressed by u∞ = G(x,−y, 0). The droplet centroids are placed at the stagnant

point of the flow. Under the influence of the 2D extensional flow, the outer droplet

deforms into a prolate spherical shape with its longest axis along x axis and its shortest

axis along y axis. The steady flow generated inside the outer droplet behaves in the

opposite direction to the 2D extensional flow. Therefore, the inner droplet deforms

into a prolate spherical shape with its longest axis along y axis and its shortest axis

along x axis.

4.1. Influence of the inner droplet size

In this section, we first investigate the influence of the inner droplet size on

the deformation and stability of concentric compound droplets. The inner droplet

size is represented by a nondimensional parameter size ratio k that is the ratio of ai

to ao, where ai and ao are the radius of the undeformed inner and outer droplets,

respectively. In Fig. 6, we plot the transient deformation of a concentric compound

droplet for five size ratios k = 0.40, 0.65, 0.70, 0.71, and 0.72. The other parameters

are constant: Cao = 0.01, Γ = 0.7, and λo = λi = 0.2. As we increase the inner

droplet size, the deformation of the outer droplet significantly increases. When

k increases from 0.40 to 0.70, the deformation of the outer droplet approximately

increases by 180%. Therefore, the existence of the inner droplet has substantial

influence on the deformation and stability of the compound droplets, and its influence

highly depends on the inner droplet size.
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This phenomenon is in agreement with the observation of Davis and Brenner

[10], and Stone and Leal [40]. Davis and Brenner studied behavior of an emulsion that

contained a solid globe, when the emulsion underwent deformation in a shear flow.

They discovered that as they increased the size of the solid globe, the emulsion’s

deformation increased. Stone and Leal investigated compound droplets deforming

induced by a 3D uniaxial extensional flow. They also found out that increasing the

inner droplets size could significantly increased the deformation of the outer droplet.

From Fig. 6, we also observe that the compound droplet first deforms rapidly,

and most part of the deformation happens in a short time. Then, the deformation

gradually slows down and stops, which indicates the compound droplet achieves the

steady state. The compound droplet that contains a larger inner droplet needs more

time to achieve the steady state. However, when a compound droplet contains a even

larger inner droplet, it can no longer reach the steady state and finally breaks up. We

define the critical size ratio (kc) as the maximum size ratio that a compound droplet

can reach the steady state. Thus, in the case presented in Fig. 6, the critical size

ratio is 0.70. The critical size ratio is useful to decide the maximum volume of the

materials that the outer droplet can contain under certain fluids’ properties and flow

conditions.

Since the capillary number represents the competition between the viscous forces

and the surface tension, a droplet with larger capillary number is more deformable.

Therefore, we can anticipate that the critical size ratio will decrease as outer capillary

number increases. We increase the outer capillary to Cao = 0.1 and conduct a

series of simulation for five size ratios k = 0.1, 0.3, 0.41, 0.42, and 0.5. The other

parameters are constant, which are Γ = 0.7 and λo = λi = 0.2. In Fig. 7, we plot the

deformation of both droplets as a function of time for different size ratios. Compared

with Cao = 0.01, compound droplets require more time to achieve a steady state, and
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Table 3: Critical size ratio at different outer capillary numbers for Γ = 0.7 and
λo = λi = 0.2.
Cao 0.01 0.03 0.05 0.07 0.10
kc 0.70 0.59 0.52 0.47 0.41

the critical size ratio reduces to 0.41 when the outer capillary number is Cao = 0.10.

By changing the outer capillary number, we can obtain a series of critical size ratios.

As shown in Fig. 8, we plot the critical size ratio (kc) as a function of outer capillary

number (Cao). The critical size ratio is inversely proportional to the outer capillary

number. Stable compound droplets exist below or on the curve. In Table 3, we list

kc at different Cao for Γ = 0.7 and λo = λi = 0.2.

To better understand the way in which compound droplets deform as time

progresses, we draw the 3D shapes of the outer and inner droplets at different time

steps for the case of Cao = 0.10, k = 0.4, Γ = 0.7, and λo = λi = 0.2 (Fig. 9). As

time progresses, the outer droplet deforms into a prolate spherical shape elongated

along x axis, while the inner droplet deforms into a prolate spherical shape elongated

along y axis.

To figure out the mechanism of breakup of a compound droplet, we introduce

the minimum distance (dmin) between the outer interface and the inner interface.

This parameter is used to determine whether the breakup is due to the contact of

the two interfaces or the continuous extension of a compound droplet [40]. If dmin

reduces to zero when a compound droplet breaks up, then the breakup is due to the

contact of the two interface. In Fig. 10, we plot the curves of dmin as a function of

time: Fig. 10a is for the case Cao = 0.01, Γ = 0.7, λo = λi = 0.2, and k = 0.40,

0.65, 0.70, 0.71, and 0.72, while Fig. 10b is for the case Cao = 0.10, Γ = 0.7,

λo = λi = 0.2, and k = 0.10, 0.30, 0.41, 0.42, and 0.50. Mainly influenced by the

deformation, dmin decreases dramatically as the deformation increases and becomes
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Figure 6: Deformation of the compound droplets as a function of time for different
size ratios. The droplets are freely suspended in a 2D extensional flow. Cao = 0.01,
Γ = 0.7, and λo = λi = 0.2. The tested size ratios are k = 0.40, 0.65, 0.70, 0.71, and
0.72. The critical size ratio is kc = 0.70. (a) Inner droplet deformation Di vs t. (b)
Outer droplet deformation Do vs t.
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Figure 7: Deformation of the compound droplets as a function of time for different
size ratios. The droplets are freely suspended in a 2D extensional flow. Cao = 0.10,
Γ = 0.7, and λo = λi = 0.2. The tested size ratios are k = 0.10, 0.30, 0.41, 0.42, and
0.50. The critical size ratio is kc = 0.41. (a) Inner droplet deformation Di vs t. (b)
Outer droplet deformation Do vs t.
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Figure 9: 3D shapes of compound droplets at different time steps for the case of
Cao = 0.10, k = 0.40, Γ = 0.7, and λo = λi = 0.2. t = 0, 0.1, 0.5, 1, and 2. 3D
shapes for the outer droplet are from a to e. 3D shapes for the inner droplet are from
f to j.
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a constant when the deformation stops. When compound droplets are unstable, dmin

drops to 0, which indicates the breakup of the compound droplet is incurred by the

contact of the two interfaces. After the contact of the two interfaces, the inner droplet

may continue deform and break through the outer droplet, or it will coalesce with the

outer droplet [29, 40], which both lead to the release of the inner material. At this

moment, the compound droplet loses its function.

In Fig. 11, we present the time evolution of a compound droplet profiles for an

unstable case (Cao = 0.10, Γ = 0.7, λo = λi = 0.2, and k = 0.42). As time progresses,

the outer droplet and inner droplet elongate along x and y axis, respectively. The

inner droplet elongates towards the waist of the outer droplet, which causes dmin to

decrease. The waists of both droplets shrink because of the conservation of volume.

Between t = 4.5 and 4.9, the compound droplets are very close to steady state

since the profiles are nearly overlapped. However, due to the strong hydrodynamic

interaction between the two interfaces, the inner droplet starts deforming again, and

the outer droplet subsides at the point closest to the end of the inner droplet. This

leads to a rapid increase of the deformation and decrease of dmin. Finally, the two

interfaces contact each other, and the compound droplets break up. The appearance

of a quasi steady state does not occur for cases with parameters far from the critical

values. For example, for the compound droplet with parameters of Cao = 0.10,

Γ = 0.7, k = 0.50, and λo = λi, no quasi steady state exists, and the compound

droplet breaks up instantly.

Finally, we address the influence of a small inner droplet on the behavior of the

outer droplet. we compute for a compound droplet with k = 0.1, 0.2, 0.3, and 0.4.

Five outer capillary numbers Cao = 0.01, 0.03, 0.05, 0.07, 0.10 are considered. The

other parameters are fixed: Γ = 0.7, and λo = λi = 0.2. Meanwhile, We simulate the

behavior of a single droplet for the same outer capillary numbers, while the viscosity

28



0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1 1.2

dmin

t

k increases

k = 0.40
0.65
0.70
0.71
0.72

(a) Cao = 0.01

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5

dmin

t

k increases

k = 0.10
0.30
0.41
0.42
0.50

(b) Cao = 0.10

Figure 10: The minimum distance between the outer and the inner interface as a
function of the time for different size ratios. (a) Cao = 0.01, Γ = 0.7, λo = λi = 0.2,
and k = 0.40, 0.65, 0.70, 0.71, and 0.72. (b) Cao = 0.10, Γ = 0.7, λo = λi = 0.2, and
k = 0.10, 0.30, 0.41, 0.42, and 0.50.
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Figure 11: Time evolution of compound droplets profiles for Cao = 0.10, Γ = 0.7,
λo = λi = 0.2, and k = 0.42. t = 0, 0.05, 0.2, 4.5, 4.9, and 5.15. (a) xy plane; (b) xz
plane; (c) zy plane.
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Table 4: Steady state deformation of outer droplets and single droplets and ARD for
different size ratios.
Cao 0.01 0.03 0.05 0.07 0.10 ARD

Single 0.02064 0.06219 0.10462 0.14867 0.22023
k = 0.1 0.02068 0.06232 0.10484 0.14899 0.22071 0.21%
k = 0.2 0.02098 0.06323 0.10641 0.15132 0.22451 1.75%
k = 0.3 0.02183 0.06584 0.11096 0.15813 0.23606 6.25%
k = 0.4 0.02371 0.07168 0.12141 0.17460 0.26942 17.19%

ratio of the droplet to the suspending fluid is 0.2. We compare the steady state

deformation of the outer droplet with that of the single droplet in Fig. 12. The solid

line with dots represents the deformation of the single droplet. The symbols represent

the deformation of the outer droplet for different size ratios k. When k = 0.1, the

steady state deformation of the outer droplets and that of the single droplets are

similar with the average relative difference (ARD) to be approximately 0.21%, which

is calculated by

ARD =

5∑
k=1

(|Do,k − Ds,k|/Ds,k)

5
× 100%, (29)

where Do represents the steady state deformation of the outer droplet, and Ds

represents the steady state deformation of the single droplet. In Table 4, we tabulate

the steady state deformation of the outer droplet and the single droplet, as well as the

ARD for different size ratios. We can observe a remarkable increase of the ARD as

the size ratio increases, which demonstrates that the effect of the inner droplet on the

deformation of the outer droplet is dependent on the size ratio. When k is smaller

than 0.2, the effect of the inner droplet on the outer droplet can be considered as

insignificant. From Fig. 12, we can also observe the deformation difference between

an outer droplet and a single droplet increases as the outer capillary number increases.

Hence, the effect of the inner droplet on the deformation of the outer droplet is also

dependent on the outer capillary number. In Fig. 13, we compare the transient
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Figure 12: Comparison of the deformation of outer droplets with that of single
droplets. Compound droplets have the parameters of k = 0.1, 0.2, 0.3, 0.4, Γ = 0.7,
λo = λi = 0.2, and Cao = 0.01, 0.03, 0.05, 0.07, and 0.10. Single droplets have the
parameters of λ = 0.2, and Ca = 0.01, 0.03, 0.05, 0.07, and 0.10. The solid line with
dots represents the deformation of the single droplet, and the solid dots are the single
droplets deformation at each capillary. The symbols respent the outer deformation
for different size ratios.

deformation of the outer droplets that contain a small inner droplet of k = 0.1 with

that of the single droplet for Cao = 0.01 and 0.10. The curves represent the transient

deformation of the outer droplet, and the symbols represent the transient deformation

of the single droplet. The transient behavior of the outer droplet is also close to the

single droplet, which indicates that when the inner droplet is sufficiently small, its

influence on the transient behavior of the outer droplet is also negligible.

4.2. Influence of the surface tension ratio

In this section, we address the influence of the material properties on the

behavior of compound droplets by changing the surface tension ratio (Γ). The surface

tension ratio is defined as the ratio of the inner surface tension to the outer surface
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Figure 13: Comparison of the transient deformation of outer droplets with that of
single droplets. The lines represent the transient deformation of outer droplets for
k = 0.1, Γ = 0.7, and λo = λi = 0.2, while Cao = 0.01 and 0.10. The symbols
represent the transient deformation of single droplets for λ = 0.2, while Ca = 0.01
and 0.10.

tension. The surface tensions can be calculated by transforming Eqs. 8 and 9 into

γo =
µGao

Cao

, (30)

γi =
λoµGai

Cai

. (31)

Divide Eq. 31 by Eq 30, the surface tension ratio can be related with another

four nondimensionalized parameters, which are size ratios, outer viscosity ratios, outer

capillary number, and inner capillary number, in Eq. 32.

Γ =
Caoλok

Cai

. (32)

Since the outer capillary number, outer viscosity ratio, and size ratio are con-

stant in Eq. 32, only the inner capillary is varying with the surface tension ratio, and
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it is in inverse proportion to the surface tension ratio. As the inner capillary number

determines the deformability of the inner droplet, the inner droplet is less deformable

given a higher surface tension ratio.

We conduct a series of simulation for the compound droplets with five different

surface tension ratios Γ = 0.40, 0.08, 0.05, 0.04, and 0.03. The other parameters

are constant (Cao = 0.01, k = 0.4, and λo = λi = 0.2). In Fig. 14, we plot the

deformation of both inner and outer droplets as a function of time. As Γ decreases,

the deformation of both the inner and outer droplets increases. The influence of Γ

is more significant for the deformation of the inner droplet. For example, the steady

state deformation of the inner droplet is 0.0280 when Γ = 0.4 and 0.3556 when

Γ = 0.05, the latter is 12.7 times of the former; while, at the same time, the steady

state deformation only increases by 10% for the outer droplet. As Γ decreases, a

compound droplet needs more and more time to achieve steady state. When Γ = 0.04,

the compound droplet cannot reach steady state and eventually breaks up. We define

the critical surface tension ratio (Γc) as the minimum surface tension ratio that a

compound droplet can reach steady state. Thus, in the case presented in Fig. 14, the

critical surface tension ratio is Γc = 0.05. The critical surface tension ratio is useful

for determining the material properties of a stable compound droplet.

We also carry out a series of simulation to find the critical surface tension

ratios for outer capillary numbers of Ca = 0.03, 0.05, 0.07, and 0.10, while the other

parameters are constant k = 0.4, and λo = λi = 0.2. In Fig. 15, we plot the critical

surface tension ratio as a function of the outer capillary number. As the outer capillary

number increases, the critical surface tension ratio also increases. Stable compound

droplets exist above and on the curve. In Table 5, we list the critical surface tension

ratio at different outer capillary numbers for k = 0.4 and λo = λi = 0.2.

To examine the breakup mechanism, we plot dmin as a function of the time
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Figure 14: The deformation of compound droplets as a function of time for different
surface tension ratios. The compound droplets are suspended in a 2D extensional
flow. Cao = 0.01, k = 0.40, and λo = λi = 0.2. The tested surface tension ratios are
Γ = 0.40, 0.08, 0.05, 0.04, and 0.03. The critical surface tension ratio is Γc = 0.05.
(a) Inner droplet deformation Di vs t. (b) Outer droplet deformation Do vs t.
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Figure 15: Critical surface tension as a function of the outer capillary number for
k = 0.40 and λo = λi = 0.2. Stable compound droplets exist above the curve.

Table 5: Critical surface tension ratio at different outer capillary numbers for k = 0.40
and λo = λi = 0.2.
Cao 0.01 0.03 0.05 0.07 0.10
Γc 0.05 0.15 0.25 0.37 0.59
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for Cao = 0.01 and Cao = 0.10 (Fig. 16). As the surface tension ratio decreases,

the minimum distance between the two interfaces also decreases at the time that

a compound droplet achieves steady state. This is because as Γ decreases, the

inner capillary increases and the inner droplet becomes more deformable. When

compound droplets break up, the minimum distance between the two interfaces

suddenly decreases. In Fig. 17, we present the time evolution of the compound

droplets profiles for Cao = 0.01, Γ = 0.03, λo = λi = 0.2, and k = 0.4. As the time

progresses, the outer droplet only deforms slightly due to the small outer capillary

number, while the inner droplet elongates dramatically and eventually breaks up.

Therefore, the breakup mechanism in this situation is the continuous extension of the

inner droplet. It is not surprising that when the outer droplet is nearly undeformable,

the inner droplet can continuously deform until break up before it contacts the outer

droplet.

4.3. Influence of the viscosity ratios

4.3.1. Influence on the deformation of compound droplets

Firstly, we investigate the influence of outer viscosity ratio λo (the viscosity ratio

of Fluid 2 to Fluid 3) on the behavior of the compound droplets. We examine the

behavior of compound droplets for nine outer viscosity ratios λo = 2×10−4, 2×10−3,

2 × 10−2, 0.2, 1, 5, 10, 50, and 100. The other parameters are constant: Cao = 0.05,

k = 0.5, Γ = 0.7, and λi = 1. In Fig. 18, we plot the steady state deformation

as a function of the outer viscosity ratio. The open circle and filled circle symbols

represent the deformation of the outer droplet and inner droplet, respectively. The

behavior of the deformation is not monotonous and has three stages. When the outer

viscosity is sufficiently small, e.g. from 2 × 10−4 to 2 × 10−2, the deformation of the

outer droplet is nearly constant; the deformation of the inner droplet is close to 0

because the viscous force on the inner droplet is negligible compared to the surface
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Figure 16: The minimum distance between the outer and inner interface as a function
of the time for different surface tension ratios. (a) Cao = 0.01, k = 0.4, λo = λi = 0.2,
and Γ = 0.40, 0.08, 0.05, 0.04, and 0.03. (b) Cao = 0.10, k = 0.4, λo = λi = 0.2, and
Γ = 4.00, 0.80, 0.59, 0.58, and 0.57.
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Figure 17: Time evolution of compound droplets profiles for Cao = 0.01, Γ = 0.03,
λo = λi = 0.2, and k = 0.40. t = 0, 0.05, 0.1, 0.2, 0.3, and 0.4. (a) xy plane; (b) xz
plane; (c) zy plane.
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Figure 18: Steady state deformation of compound droplets as a function of outer
viscosity ratio for Cao = 0.05, k = 0.50, Γ = 0.7, and λi = 1. The outer viscosity
ratios examined are λo = 2 × 10−4, 2 × 10−3, 2 × 10−2, 0.2, 1, 5, 10, 50, and 100.
The empty circle symbols are outer deformation. The solid circle symbols are inner
deformation.

tension (Cai = λoµGai

γi

= O(0), when λo = O(0)). As λo increases in the range of

2 × 10−2 to 5, the deformation of both inner and outer droplet increases, and the

deformation of the inner droplet grows faster and dramatically. The deformation

of the inner droplet is more sensitive to the outer viscosity ratio because the inner

capillary number is directly proportional to the outer viscosity ratio. When the outer

viscosity ratio is greater than 10, droplet deformation is independent on λo.

Secondly, we investigate the influence of the inner viscosity ratio λi (the viscosity

ratio of Fluid 1 to Fluid 3) on the behavior of compound droplets. We study a series

of cases with constant parameters of Cao = 0.05, k = 0.5, Γ = 0.7, and λo = 1, while

the inner viscosity ratio is varied λi = 2 × 10−4, 2 × 10−3, 2 × 10−2, 0.1, 0.2, 0.4, 1,

and 1.5. In Fig. 19, we plot the steady state deformation of the compound droplets

versus the inner viscosity ratio. We can observe that when the inner viscosity ratio
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Figure 19: Steady state deformation of compound droplets as a function of inner
viscosity ratio. The inner viscosity ratios examined are λi = 2 × 10−4, 2 × 10−3,
2×102, 0.1, 0.2, 0.4, 1, and 1.5, while the other parameters are constant, Cao = 0.05,
k = 0.5, Γ = 0.7, and λo = 1. The empty circle symbols are outer deformation. The
solid circle symbols are inner deformation.

is sufficiently small, e.g. 2 × 10−4 to 2 × 10−2, the steady state deformation for both

droplets keeps nearly constant. This phenomena indicates that when Fluid 2 is more

viscous than Fluid 1, the steady state deformation does not change much with the

change of the inner viscosity ratio. As the inner viscosity increases in the range of 0.2

to 1.5, the deformation of the compound droplets decreases rapidly. When the inner

viscosity is 1.5, the deformation of the inner droplet drops to 0.0036.

Since the breakup of the compound droplets is closely related to the deformation,

the viscosity ratios can influence the breakup. In next section, we address this

influence.

4.3.2. Influence on the breakup of compound droplets

In order to understand how viscosity ratios influence the breakup of compound

droplets, we investigate their effect on the critical size ratio. We first investigate the
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inner viscosity ratio. We complete a series of simulation to obtain the critical size

ratio, while Cao = 0.1, Γ = 0.7, λo = 0.2, and λi = 1. In Fig. 20, we plot dmin

as a function of time. we observe that the compound droplet break up at k = 0.64

because of the contact of the two interfaces. In this case, the critical size ratio is

0.63. As shown in Table 3, the critical size ratio is 0.41 when the parameters for the

compound droplets are Cao = 0.1, Γ = 0.7, λo = 0.2, and λi = 0.2. The increase of

the inner viscosity ratio has greatly increasesd the critical size ratio, which indicates

that increasing the inner viscosity ratio will increase the stability of the compound

droplet. In Fig. 21, we present the time evolution of the compound droplets profiles

on xy plane for Cao = 0.1, k = 0.42, and λo = 0.2, while λi is 0.2 and 1, so we

can have an insight of how the inner viscosity ratio influences the behavior of the

compound droplets. Fig. 21a shows that when λi = 0.2, the compound droplet is

unstable. The breakup takes place due to the contact of the two interfaces. Both

inner and outer droplets have large deformation. The inner droplet deforms into an

olive shape with nearly pointed ends. This behavior is similar to a single droplet that

has a low viscosity. The strong hydrodynamic interaction between the two interfaces

not only brings two interfaces together, but also causes the outer droplet to subside

at the point closest to the end of the inner droplet. As shown in Fig. 21b, when

λi = 1, the compound droplet is stable. The inner droplet deforms slightly, and the

deformation of outer droplet is also smaller than the outer deformation for λi = 0.2.

The increase of the inner viscosity ratio decreases the deformation of the compound

droplet, and thus it stabilizes the compound droplet.

As we increase the inner viscosity ratio, the outer viscosity shows different effects

on the stability of compound droplet. We first examine compound droplets with an

small inner viscosity ratio of λi = 0.2 for three outer viscosity ratios λo = 0.02, 0.2,

and 1. The other parameters for the compound droplets are constant Cao = 0.05,
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Figure 20: Minimum distance between two interfaces as a function of the size ratio.
Cao = 0.1, Γ = 0.7, λo = 0.2, and λi = 1. When k = 0.64, the compound droplets
break up because of the contact of the two interfaces. The critical size ratio is 0.63.

Γ = 0.7, and k = 0.53. As shown in Fig. 22, when λo = 0.02, the compound

droplet is unstable and breaks up instantly; when λo increases to 0.2, the compound

droplet exists for a longer time although it eventually breaks up; as λo increases to

1, the compound droplet is able to achieve steady state. In Fig. 23, we plot the

time evolution of the compound droplets profiles for Cao = 0.05, k = 0.53, Γ = 0.7,

while λo = 0.2 and 1. Fig. 23a shows that when λo = 0.2, the inner droplet has very

large deformation and deforms into a olive shape, and the outer droplet subsides at

its waist. In this case, the compound droplet breaks up because the two interfaces

contact each other. As shown in Fig. 23b, when outer viscosity increases to 1, the

compound droplet reaches the steady state. The inner droplet deforms more slowly

compared to λo = 0.2. When t = 0.1, the inner droplet is nearly undeformed for

λo = 1, while the inner droplet has already significantly deformed for λo = 0.2.

However, when λi = 1, increasing the outer viscosity ratio will destabilize

compound droplets. We seek for the critical size ratio of compound droplets that have
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Figure 21: Time evolution of the compound droplets profiles for Cao = 0.10, k = 0.42,
Γ = 0.7, and λi = 0.2. (a) λi = 0.2, and t = 0, 0.05, 0.2, 4.5, 4.9, and 5.15; (b) λi = 1,
and t = 0, 0.05, 0.2, 4.5, 4.9, and 5.15.
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Figure 22: The influence of the outer viscosity ratio on the deformation of the
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Figure 23: Time evolution of the compound droplets profiles for Cao = 0.05, k = 0.53,
Γ = 0.7, and λi = 0.2. (a) λo = 0.2, and t =0, 0.1, 0.5, 1, and 1.92. (b) λo = 1, and
t =0, 0.1, 0.5, 1, and 2.

46



0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60 70 80

dmin

t

k increases

k = 0.40
0.50
0.55
0.56
0.60

Figure 24: Minimum distance between two interfaces as a function of the size ratio.
Cao = 0.1, Γ = 0.7, λo = 10, and λi = 1. When k = 0.56, the compound droplets
break up because of the contact of the two interfaces. The critical size ratio is 0.55.

parameters of Cao = 0.1, Γ = 0.7, λi = 1, and λo = 10. As shown in Fig. 24, the

compound droplets break up at k = 0.56 due to the contact of the two interfaces, and

the critical size ratio is 0.55. When Cao = 0.1, Γ = 0.74, λo = 0.2, and λo = 0.2, the

critical size ratio is 0.63 as depicted in Fig. 20. The increase of the outer viscosity ratio

decreases the critical size ratio, thus it decreases the stability of compound droplets.

This may be due to the fact that as the outer viscosity increases, the deformation of

the compound droplet also increases, and the two interfaces become easier to contact

each other. section

4.4. Conclusion of concentric compound droplets

For concentric compound droplets, we investigate the influence of three ma-

jor parameters on the deformation and stability of the compound droplet. These

parameters are size ratio, surface tension ratio, and viscosity ratios.
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The presence of the inner droplet substantially influences the deformation and

stability of the compound droplet depending on the size of the inner droplet. As

we increase the size of the inner droplet, the deformation of both outer and inner

droplets increases. This behavior reduces the stability of the compound droplet. With

a larger inner droplet and higher deformation, the two interfaces of the compound

droplets become easier to contact each other. We investigate the critical size ratio

under different outer capillary numbers. The critical size ratio decreases as the outer

droplet capillary number increases. However, when the inner droplet is sufficiently

small such as k = 0.1, its influence on the outer droplet is negligible, and the outer

droplet behaves similarly to a single droplet.

The surface tension ratio mainly influences the deformation of the inner droplet.

Its influence on the deformation of the outer droplet is limited. As we decreases the

surface tension ratio, the deformation of the inner droplet increases dramatically. On

one hand, when the outer capillary number is small and the outer droplet is less

deformable such as Cao = 0.01, the inner droplet continues deforming until breaks

up without contact the outer interface. On the other hand, when the outer capillary

number is larger, the inner deforms until contacts the outer interface and causes the

whole compound droplet to break up. We investigate the critical surface tension ratio

under different outer capillary numbers. The critical surface tension ratio increases

as the outer capillary number increases.

When the inner viscosity ratio (λi) is small, it has very little influence on the

steady state deformation of both outer and inner droplets. For moderate values of

λi, the deformation of both droplets decreases rapidly. We investigate the influence

of the inner viscosity on the critical size ratio for a compound droplet with constant

parameters of Cao = 0.10, Γ = 0.7, and λo = 0.2. As the inner viscosity ratio

increases from 0.2 to 1, the critical size ratio increases from 0.42 to 0.63. This indicates
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that the increase of the inner viscosity ratio stabilizes the compound droplet. When

the outer viscosity ratio is small, it also has insignificant influence on the steady

state deformation of both outer and inner droplets. Contrary to the effect of the

inner viscosity ratio, as the outer viscosity ratio increases, the deformation of both

droplets increases dramatically. The deformation of the inner droplet reacts sharply

against the change of the outer viscosity ratio because the inner capillary number

is directly proportional to the outer viscosity ratio. When the outer viscosity ratio

is greater than 10, the steady deformation of both inner and outer droplets stops

growing with the increase of the outer viscosity ratio. The value of the outer viscosity

has different influence on the stability of the compound droplet within different range

of the inner viscosity ratio. When λi ≪ 1, the increase of λo increases the stability

of the compound droplet; when λi = O(1), the increase of λo decreases the stability

of the compound droplets.

49



CHAPTER 5. ECCENTRIC COMPOUND DROPLETS IN

A 2D EXTENSIONAL FLOW

Eccentric compound droplets are more complex than concentric compound droplets

because their centers of mass are not coincident. The tests for eccentric compound

droplets could be countless if we consider every possible initial position of both outer

and inner droplet centroid. To simplify the problem, we start computations with the

initial outer droplet centroid at the stagnant point of the flow and the initial inner

droplet centroid on x, y, or z axis. In this chapter, we investigate the effect of the

initial placement of the inner droplet on the behavior of compound droplets.

5.1. Internal droplet on x axis

We investigate eccentric compound droplets with constant parameters of Cao =

0.10, k = 0.38, Γ = 0.5, and λo = λi = 0.2. Concentric compound droplets with the

same parameters can reach steady state. The centroid of the inner droplet is initially

placed on positive x axis, thus its center of mass has the coordinate of (δ, 0, 0), where

δ is the eccentricity that can be calculated using Eq. 7 as mentioned in Section 2.2.

We examine four eccentricities 0.1, 0.2, 0.4, and 0.6.

In Fig. 25, we plot the deformation of both droplets as a function of time.

For the inner droplets, the deformation curves are overlapped before t = 3. During

this period, the inner deformation first increases rapidly and then levels off. After

t = 3, the deformation continues to increase again, and the inner droplet finally breaks

up. The compound droplets with larger eccentricity breaks up earlier. However, the

eccentricity has insignificant influence on the deformation of the outer droplet. All the

deformation curves of the outer droplet overlap each other, although the compound

droplet has different eccentricities. These curves are also overlapped with the curve

of δ = 0 which is the deformation curve of a concentric compound droplet. In this
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case, only the inner droplet breaks up, thus the internal material is not released and

the compound droplet is still functional.

In Fig. 26, we investigate the x-component of the centroidal velocity (uc
x) as

a function of time. The centroidal velocity is the velocity of the center of mass.

The velocity of the inner droplet is negative, thus the inner droplet is moving in the

negative x direction, which indicates the stream along x axis flows to the stagnant

point. The absolute value of uc
x,i first increases slightly and then decreases rapidly. It

drops to nearly 0 and levels off after t = 1.5 and continues increasing after t = 2.5.

The outer droplet also gains a negative velocity since t = 0. The absolute value of the

velocity first increases and then decreases, which responds to the motion of the inner

droplet. It continues increasing after t = 1.5 which is earlier than the inner droplet.

We explain the reason that compound droplets continue accelerating after the inner

droplet reaches the stagnant point as follows. The 2D extensional flow generates a

net force on the outer interface. When the outer droplet is at the stagnant point,

this net force is balanced due to the symmetry. As shown in Fig. 27, as the inner

droplet moves from the eccentric point to the stagnant point, it slightly accelerates

the outer droplet and moves the outer droplet away from the stagnant point, which

causes the net force on the outer droplet to lose the balance and start accelerating the

outer droplet in the negative x direction. At the same time, the flow inside the outer

droplet loses its symmetry and continues to move the inner droplet in the negative x

direction. To be mentioned, when we place the inner droplet on x axis, the y and z

components of the velocity are always zero, which indicates that the flow field inside

the outer droplet is symmetric along y and z axes.

In Fig. 28, we investigate uc
x as a function of xc, where xc is x-component of

the position of the droplet centroid. As the inner droplet approaches the stagnant

point, the centroidal velocity of the inner droplet decreases rapidly. When the inner
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Figure 25: The influence of eccentricity on the deformation of the compound droplet.
Cao = 0.10, k = 0.38, Γ = 0.5, λo = λi = 0.2, and δ = 0, 0.1, 0.2, 0.4, and 0.6. The
inner droplet is on the x axis.
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Figure 26: The influence of eccentricity on the x-component of the centroidal velocity
for Cao = 0.10, k = 0.38, Γ = 0.5, λo = λi = 0.2, and δ = 0.1, 0.2, 0.4, and 0.6.
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droplet reaches the stagnant point, the velocity nearly drops to zero. This implies

that the flow field near the stagnant point is very weak. Fig. 28b shows that the

velocity curves vary slightly in the range of xc
o ∈ [0, 0.03] and completely overlap after

xc
o = 0.03. The slight variation of the velocity is caused by the eccentricity. The outer

droplet is only dominated by the extensional flow after it leaves the stagnant point.

Fig. 29 presents the time evolution of the compound droplets profiles for δ = 0.1,

0.2, 0.4, and 0.6. The compound droplets deform and migrate at the same time. The

outer droplet elongates along the x axis due to the 2D extensional flow. The inner

droplet still elongates along the y axis regardless of the eccentricity, and this behavior

is the same as the concentric case. The inner droplet quickly moves towards the

stagnant point and stalls at the stagnant point. At the same time, the outer droplet

still continues moving in the negative x direction slightly, and its centroidal velocity

becomes higher and higher, until the compound droplet breaks up.
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Figure 28: The x-component of the centroidal velocity as a function of the x-
component of the position of the droplet centroid for Cao = 0.10, k = 0.38, Γ = 0.5,
λo = λi = 0.2, and δ = 0.1, 0.2, 0.4, and 0.6.
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Figure 29: Time evolution of compound droplets profiles on xy plane for Cao = 0.10,
k = 0.38, Γ = 0.5, λo = λi = 0.2, and δ = 0.1, 0.2, 0.4, and 0.6. The inner droplet is
on x axis. (a) δ = 0.1, and t = 0, 0.1, 0.3, 1, 2, 3, and 5.08; (b) δ = 0.2, and t = 0,
0.1, 0.3, 1, 2, and 4.98; (c) δ = 0.4, and t = 0, 0.1, 0.3, 1, 2, 4, and 4.82; (d) δ = 0.6,
and t = 0, 0.1, 0.3, 1, 2, 3.5, and 4.
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In Fig. 30, we investigate the transient deformation of eccentric compound

droplets with constant parameters of Cao = 0.10, k = 0.39, Γ = 0.5, and λo =

λi = 0.2. Concentric compound droplets that have the same parameters are unstable

and will break up due to the contact of the two interfaces. The inner droplet is on

the x axis and has the eccentricity of δ = 0.1, 0.2, 0.4, and 0.6. Regardless of the

eccentricity, all the deformation curves of the inner droplet are nearly coincident with

each other and overlapped with the curve of δ = 0 that is the deformation curve a

concentric compound droplet. All the deformation curves of the outer droplet show

the same behavior.

In Fig. 31, we plot the time evolution of the eccentric compound droplets

profiles for δ = 0.1, 0.2, 0.4, and 0.6. Both outer and inner droplets deform as

they migrate in the negative x direction. The inner droplet migrates faster when the

compound droplet has a larger eccentricity. At t = 1, all the inner droplets arrive

at the stagnant point and stop moving. However, they deform rapidly at the same

time. All the compound droplets eventually break up due to the contact of the two

interfaces. It is interesting to notice that all the inner droplets reach the stagnant

point and break up at nearly the same time regardless the eccentricity.

We also investigate eccentric compound droplets that have a small inner droplet.

The compound droplets have constant parameters of Cao = 0.10, k = 0.1, Γ = 0.5,

and λo = λi = 0.2. As mentioned in Section 4.1, the influence of an inner droplet

is negligible when the inner droplet is sufficiently small. In this case, we want to

investigate whether the eccentric compound droplet can reach steady state if the inner

droplet is small. In Fig. 32, we present the plots of the deformation as a function of

time for both inner and outer droplets. We observe that the deformation of both outer

and inner droplets can reach a constant stage for the eccentric compound droplet that

has different eccentricities, which indicates the eccentric compound droplet is able to
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Figure 30: The influence of eccentricity on the deformation of the compound droplets
for Cao = 0.10, k = 0.39, Γ = 0.5, λo = λi = 0.2, and δ = 0, 0.1, 0.2, 0.4, and 0.6.
The inner droplet is on the x axis.
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Figure 31: Time evolution of the eccentric compound droplets profiles on xy plane
for Cao = 0.10, k = 0.39, Γ = 0.5, λo = λi = 0.2, and δ = 0.1, 0.2, 0.4, and 0.6. The
inner droplet is on x axis. (a) δ = 0.1, and t = 0, 0.1, 0.3, 1, and 1.38; (b) δ = 0.2,
and t = 0, 0.1, 0.3, 1, and 1.38; (c) δ = 0.4, and t = 0, 0.1, 0.3, 1, and 1.39; (d)
δ = 0.6, and t = 0, 0.1, 0.3, 1, and 1.39.
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achieve the steady state when the inner droplet is small. For the inner droplet,

the eccentricity slightly changes the transient deformation of the inner droplet when

δ = 0.8, but it does not influence the steady state deformation of the inner droplet.

The eccentricity does not change the behavior of the outer deformation at all. All

the steady state deformation of the eccentric compound droplet is the same with a

concentric compound droplet that has the same flow properties and inner droplet size.

Fig. 33 shows the time evolution of the eccentric droplet profiles on xy plane

for Cao = 0.10, k = 0.1, Γ = 0.5, λo = λi = 0.2, and δ = 0.1, 0.2, 0.4, and 0.8. The

inner droplet is farther from stagnant point when the eccentricity is larger. As time

progresses, the inner droplet moves in the negative x direction. From t = 0 to 0.1,

the inner droplet moves farther when the eccentricity is higher, which indicates that

the inner droplet has a higher centroidal velocity. The outer droplet has relatively

large deformation and elongates along x axis, while the inner droplet does not show

much deformation. This is due to the fact that since the inner droplet is small, the

inner capillary number is also small.

5.2. Internal droplet on y axis

In this case, we employ the same parameters of the eccentric compound droplet

in Section 5.1, which are Cao = 0.10, k = 0.38, Γ = 0.5, and λo = λi = 0.2, except

that the centroid of the inner droplet is initially placed on the positive y axis, thus

its center of mass has a coordinate of (0, δ, 0).

Fig. 34 presents the y-component of the centroidal velocity (uc
y) as a function

of time. At the onset of the 2D extensional flow, all the inner droplets gains an initial

centroidal velocity towards the positive y direction. When the eccentricity is larger,

this initial centroidal velocity is higher, which implies that the flow near the outer

interface is stronger than that around the stagnant point. The centroidal velocity
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Figure 32: The influence of eccentricity on the deformation of the compound droplet.
Cao = 0.10, k = 0.1, Γ = 0.5, λo = λi = 0.2, and δ = 0.1, 0.2, 0.4, and 0.8. The inner
droplet is on the x axis.
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Figure 33: Time evolution of compound droplets profiles on xy plane for Cao = 0.10,
k = 0.1, Γ = 0.5, λo = λi = 0.2, and δ = 0.1, 0.2, 0.4, and 0.8. The inner droplet is
on the x axis. (a) δ = 0.1, and t = 0, 0.1, and 1.31; (b) δ = 0.2, and t = 0, 0.1, and
1.25; (c) δ = 0.4, and t = 0, 0.1, 0.2, 0.35, and 1.19; (d) δ = 0.8, and t = 0, 0.1, 0.2,
0.35, and 1.14.
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increases as the time progresses until the compound droplet breaks up. Since the

centroidal velocity is in the positive direction, the inner droplet is moving towards

the outer interface. The two interfaces contact each other quickly, which results in

the breakup of the compound droplet. The motion of the inner droplet causes the

outer droplet move in the positive y direction too, though the centroidal velocity of

the outer droplet is negligible. When the inner droplet is on the y axis, The x and z

components of the centroidal velocity are always zero, which indicates that the flow

inside the outer droplet is symmetric along x and z axes.

In Fig. 35a, we present the time evolution of compound droplets profiles on xy

plane for δ = 0.1, 0.2, and 0.4. The compound droplet deforms and migrates at the

same time. The inner droplet migrates quickly towards the outer interface, meanwhile,

it elongates along y axis, which results in a quick breakup of the compound droplet.

The compound droplet that has higher eccentricity breaks up earlier. This is not only

because the initial distance between two interfaces is smaller, but also because the

initial centroidal velocity of the inner droplet is higher.

In Fig. 36, we plot the transient deformation of the compound droplet. The

compound droplet that has smaller eccentricity deforms longer and larger, which is

due to the fact that it is farther from the outer interface. The deformation rate of

both inner and outer droplets suddenly increases because of the strong interaction

between the two interfaces.

5.3. Internal droplet on z axis

We also investigate the motion of compound droplets when the inner droplet

starts to move with an initial location of (0, 0, δ). We still use the same fluid

properties, except that the centroid of the inner droplet is initially placed on the

z axis.
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Figure 34: The influence of eccentricity on the y-component of the centroidal velocity
for Cao = 0.10, k = 0.38, Γ = 0.5, λo = λi = 0.2, and δ = 0.1, 0.2, and 0.4. The
inner droplet is on the y axis.
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Figure 35: Time evolution of compound droplets profiles on xy plane for Cao = 0.10,
k = 0.38, Γ = 0.5, λo = λi = 0.2, and δ = 0.1, 0.2, and 0.4. The inner droplet is on
the y axis. (a) δ = 0.1, and t = 0, 0.1, 0.2, and 0.25; (b) δ = 0.2, and t = 0, 0.1, and
0.16; (c) δ = 0.4, and t = 0, and 0.06.
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Figure 36: The influence of eccentricity on the deformation of the compound droplet
for Cao = 0.10, k = 0.38, Γ = 0.5, λo = λi = 0.2, and δ = 0, 0.1, 0.2, and 0.4. The
inner droplet is on the y axis.
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In Fig. 37, we present plots of the deformation as a function of time. When

the eccentricity is larger, the deformation of the inner droplet when the inner droplet

breaks up is larger, and the inner droplet breaks up earlier. The deformaiton of

compound droplet with δ = 0.6 is smaller than that of δ = 0.4 because the former

breaks up very fast due to the contact of the two interfaces. However, the eccentricity

has insignificant influence on the deformation of the outer droplet. Fig. 38 shows the

time evolution of the compound droplet profiles for δ = 0.1, 0.2, 0.4, and 0.6. The flow

inside the outer droplet elongates the inner droplet along y axis and bends the end of

the inner droplet towards the outer interface. As the eccentricity increases, the inner

droplet becomes more deformed due to the fact that the flow near the outer interface

is stronger compared to the flow around the stagnant point. The inner droplet does

no migrate at all due to the symmetry. When the inner droplet is initially placed on

the z axis, the x and y components of the centroidal velocity are always zero.

5.4. Conclusion of eccentric compound droplets

In this chapter, we study the behavior of eccentric compound droplets freely

suspended in a 2D extensional flow. We investigate the eccentric compound droplets

that have their inner droplet on x, y, or z axis.

The eccentricity substantially increases the deformation of the inner droplet

and causes the inner droplet break up. However, its influence on the deformation of

the outer droplet is insignificant. Regardless of the eccentricity and position of the

inner droplet, the behavior of the outer droplet’s deformation is close to that of the

concentric compound droplet.

We know that when the inner droplet is place on either x, y, or z axis, the flow

inside the outer droplet is symmetric along the other two axes. The flow field is strong

near the outer interface and weak around the stagnant point. The 2D extensional flow

elongates the outer droplet along x axis, and the recirculating flow inside elongates the
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Figure 37: The influence of eccentricity on the deformation of the compound droplets.
Cao = 0.10, k = 0.38, Γ = 0.5, λo = λi = 0.2, and δ = 0.1, 0.2, 0.4,and 0.6. The
inner droplet is placed on the z axis.
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Figure 38: Time evolution of compound droplets profiles on zy plane for Cao = 0.10,
k = 0.38, Γ = 0.5, λo = λi = 0.2, and δ = 0.1, 0.2, 0.4,and 0.6. The inner droplet is
on the z axis. (a) δ = 0.1, and t = 0, 0.05, 0.1, 0.2, and 0.9; (b) δ = 0.2, and t = 0,
0.05, 0.1, 0.2, and 0.75; (c) δ = 0.4, and t = 0, 0.05, 0.2, 0.5, and 0.58; (d) δ = 0.6,
and t = 0, 0.05, and 0.16.
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inner droplet along the y axis. This behavior is the same as a concentric compound

droplet. When the inner droplet is placed on the z axis, the internal flow bends the

ends of the inner droplet towards the outer interface.

When the inner droplet is initially placed on the x axis, it moves towards the

stagnant point. There are three possible final states of the inner droplet. It may pass

the stagnant point and break up by itself. It may contact the outer interface due

to large deformation and break up together with the outer droplet. When its size is

small, it can stop at the stagnant point and reach the steady state. When the inner

droplet is initially placed on the y axis, it moves towards the outer interface, which

will cause the contact of the two interfaces and the breakup of the compound droplet.

When the inner droplet is initially on the z axis, it does not migrate, but its bended

end may contact the outer interface and cause the compound droplet to break up.
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CHAPTER 6. CONCLUSION

In this work, we employ a three-dimensional spectral boundary element method

to investigate the behavior and stability of compound droplets in a two-dimensional

extensional flow. Firstly, we validate our numerical scheme in Chapter 3 and com-

pare our numerical results with Stone and Leal’s work [40]. All results show good

agreement which indicates that our numerical scheme can be applied to simulate the

behavior of compound droplets.

Secondly, in Chapter 4, we investigate the behavior and stability of concentric

compound droplets and the three major parameters that affect them. These three pa-

rameters are size ratio, surface tension ratio, and viscosity ratios. A two-dimensional

extensional flow deforms the outer droplet into a prolate spheroidal shape that its

longest axis is along x axis, while the recirculating flow inside the outer droplet

deforms the inner droplet into a prolate spheroidal shape that its longest axis is along y

axis. The inner droplet size has substantial influence on the deformation and stability

of compound droplets. As it increases, the deformation of both inner and outer

droplets increases. When it exceeds a critical value, the compound droplet breaks up.

The critical size ratio decreases as the outer capillary number increases. However, if

the inner droplet size is very small, like k = 0.1, its influence on the outer droplet is

negligible. The surface tension ratio mainly influences the deformation of the inner

droplet. As it increases, the deformation of the inner droplets increases dramatically.

We also found critical values for the surface tension ratio, below which the compound

droplet breaks up. The critical surface tension ratio increases as the outer capillary

number increases. The increase of the inner viscosity ratio significantly decreases the

deformation of the compound droplet, while the increase of the outer viscosity ratio

substantially increases the deformation of the compound droplet. When the inner

viscosity ratio increases, it can stabilize the compound droplet. The increase of the
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outer viscosity has different influence on the stability of the compound droplet within

different range of the inner viscosity ratio. When λi ≪ 1, it increases the stability of

the compound droplet; when λi = O(1), it decreases the stability of the compound

droplet. The breakup of the compound droplet could be due to the contact of the

two interfaces. When both surface tension ratio and outer capillary number are small

such as Cao = 0.01 and Γ = 0.3, the inner droplet breaks up without contact the

outer interface, while, at the same time, the outer droplet does not deform very much.

Finally, in Chapter 5, we study the behavior of eccentric compound droplets.

The eccentricity has substantial influence on the inner droplet and little influence on

the outer droplet deformation. When the inner droplet is initially placed on either x,

y, or z axis, the flow inside the outer droplet is symmetric along the other two axes.

The 2D extensional flow elongates the outer droplet along x axis, and the recirculating

flow inside elongates the inner droplet along the y axis. This behavior is similar to

concentric compound droplets. When the inner droplet is initially placed on the z

axis, the internal flow bends the ends of the inner droplet towards the outer interface

at the same time. When the inner droplet is initially placed on the x axis, it moves

towards the stagnant point. When the inner droplet is initially placed on the y axis,

it moves towards the outer interfaces. When it is initially on the z axis, it does not

move. The outer droplet always moves in the same direction as the inner droplet.

The breakup of eccentric compound droplets could be due to the contact of the two

interfaces or the breakup of the inner droplet.
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