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ABSTRACT 

Fusarium graminearum is the major causal agent of Fusarium head blight (FHB) in 

cereal crops. The fungus produces several types of trichothecenes [Deoxynivalenol (DON) and 

its acetylated derivatives, 3-acetyldeoxynivalenol (3ADON) and 15-acetyldeoxynivalenol 

(15ADON), and nivalenol (NIV)]. Characterization of 123 isolates collected during 1980 to 2000 

(old collection), and 43 isolates collected in 2008 (new collection) from North Dakota revealed 

that 15ADON producing isolates were predominant (98%) in the old collection while the 

3ADON producing isolates accounted for 43% in the new collection. Further, evaluation showed 

that the 3ADON isolates caused a higher disease severity and accumulated more DON in spring 

wheat than the 15ADON isolates. The 3ADON also exhibited higher DON in rice culture, and 

produced more spores on agar media. Population genetic analyses revealed a significant genetic 

differentiation between the two populations. To elucidate the transcriptomic differences between 

the two populations in vitro and in planta, RNA-sequencing was used. The in vitro gene 

expression comparison identified 479 up- and 801 down- regulated genes in the 3ADON 

population compared to 15ADON population. The in planta pair-wise comparisons between the 

two populations revealed 185, 89, and 62 unique genes to 3ADON at 48, 96 and 144 hours after 

inoculation (HAI), respectively. In a different study, population genetic analysis was conducted 

on 160 isolates collected in 2008 and 2009 from a FHB disease nursery located in China. All 

isolates analyzed were F. asiaticum except one (F. avenaceum). Of the 159 isolates, 79% were 

NIV producing, 18% were 15ADON and 3% were 3ADON. The two populations grouped based 

on year of collection exhibited low genetic differentiation (Fst = 0.032). To identify new sources 

of FHB resistance, 71 wheat accessions of diverse origins were re-evaluated for FHB severity 

and haplotyped using seventeen DNA markers associated with known resistance quantitative 



iv 

trait loci (QTL). Twenty two accessions had a haplotype different from all known sources used, 

suggesting that they may carry novel loci for FHB resistance. In conclusion, the information 

obtained in this study could have an impact on development of effective disease management 

measures and on improvement of FHB resistance in wheat. 
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CHAPTER 1. LITERATURE REVIEW 

1.1. The Host: Spring Wheat 

1.1.1. Evolution and economic importance 

Wheat (Triticum aestivum L.) is one of the most important stable food crops grown 

across the world. In 2011, over 218.28 million hectors were planted with wheat, which yielded a 

total of 652.24 million metric tons of wheat grains globally (FAS/USDA, 2012). The single 

wheat crop contributes approximately 30% of the world’s edible dry matter and 60% of the daily 

calorie intake in developing countries (FAOSTAT, 2008), along with the important supplement 

of proteins, vitamins and minerals. The wheat genus Triticum includes all species of diploid (2n 

= 14; Einkorn wheat, T. monococcum), tetraploid (2n = 28; durum or pasta wheat, T. 

dicoccoides) and hexaploid (2n = 42; bread wheat, T. aestivum) (Feuillet et al., 2008). The 

modern cultivated hexaploid wheat (AABBDD genome) was originated after an accidental 

crossing of domesticated tetraploid wheat Triticum dicoccoides (AABB genome) with the wild 

diploid species named goat grass (Aegilops tauschii) with DD genome, and followed by 

successive chromosome doubling (Salamini et al., 2002). The tetraploid (AABB) genome was 

evolved from a cross between T. urartu (AA genome) and an unknown species from Sitopsis 

selection (BB genome), that eventually became a species named as emmer wheat (T. turgidum) 

(Dvorak et al. 1998; Luo et al., 2007). The genome of hexaploid wheat contains a total of 17-

gigabase-pair (Gb) with approximately 94,000 to 96,000 genes (Brenchley et al., 2012). The 

high-resolution synteny map indicates that the genome is highly dynamic, and has lost significant 

gene family members during the polyploidization and domestication process (Brenchley et al., 

2012). The Fertile Crescent region of southwest Asia (Jordan, Israel, Iran, Iraq, Turkey, Syria 

etc.) is considered as the center of origin of modern hexaploid wheat (Brown et al., 2009). 
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Wheat is one of the widely adopted major cereal crops in the United States, which has an 

estimated production of total 60.1 million metric tons in 2011 (FAO, 2011). It includes several 

different classes, including hard red spring, hard red winter, soft red winter, and white wheat as 

well as durum wheat. These classes of wheat together occupy >23.9 million ha of growing areas 

in the USA, of which North Dakota (ND) alone accounts for 14.6% of the total area and 

produced a total of 10.26 million metric tons in 2009 (NASS, 2010). The major spring wheat 

cultivars grown in ND during 2009-2010 (with their area coverage percentage) were Glenn 

(25%), Faller (15%), Kelby (6.4%), RB07 (4.9%), Briggs (4.9%), Freyr (4.8%), Howard (4.7 %), 

Steele ND (3.6%), Alsen (3.0), Choteau (2.8), and Bernnan (1.9%) (NASS, 2010). 

1.2. The Pathogen: Fusarium graminearum  

1.2.1. Taxonomy and classification  

The taxonomy of Fusarium is always a controversial issue. The genus Fusarium was first 

named by the German scientist JHF Link during 1809, based on morphological characteristics of 

macroconidia. The sexual state of the genus was described as Gibberella by Faries in 1821. 

Schwabe described the asexual stage as F. graminearum. Wollenweber and Reinking (1935) are 

the pioneers of taxonomy and systematics of Fusarium, and published the book Die Fusarien, 

which organized 1000 already described and named Fusarium species into 16 sections, 65 

species, 55 sub-specific varieties, and 22 forms based on the mycological characters (presence or 

absence of microconidia and chlamydospores, and their shapes). During the 1940s and 1950s, 

Snyder and Hansen reduced the number of species and grouped them into nine species (F. 

oxysporum, F. solani, F. moniliformae, F. roseum, F. lateritium, F. tricinctum, F. nivale, F. 

rifidiuscula and F. episphearia). Leslie et al. (2001, 2003) introduced a distinct nomenclature 

and species concept on Fusarium, which includes morphological, biological and phylogenetic 
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species, respectively, based on morphology, cross fertility, and analysis of DNA sequences. 

Recently, an international nomenclature agreement has been made to discontinue the use of 

multiple names for the same fungus and therefore Fusarium has been proposed as the only name 

for this group of fungi for future publications (Hawksworth, 2011). 

The filamentous fungus Fusarium graminearum Schwabe (telomorph: Gibberella zeae 

(Schwein) Petch belongs to Superkingdom- Eukaryota; Kingdom-Fungi; Phylum-Ascomycota; 

Subphylum-Pezizomycotina; Class-Sordariomycetidae; Subclass- Hypocreomycetidae; Order-

Hypocreales; Family-Nectriaceae and Genus- Gibberella. Further in-depth analysis using DNA 

sequences of various genes for mating-types (MAT1-1-3, MAT1-1-2, MAT1-1-1, MAT1-2-1), 

Histone H3 reductase, Phosphate permase, Tri101, Ammonia ligase, Translation elongation 

factor 1 and -tubulin, identified nine distinct and cryptic members within F. graminearum 

(commonly named as F. graminearum sensu lato) (O’Donnell et al., 2004). They were 

differentiated into nine distinct (lineage) species: (1) F. austroamericanum, (2) F. meridionale, 

(3) F. boothii, (4) F. mesoamericanum, (5) F. acaciae-mearnsii, (6) F. asiaticum, (7) F. 

graminearum, (8) F. cortaderiae, and (9) F. brasilicum, which were most commonly associated 

with Fusarium head blight. Starkey et al. (2007) described 16 phylogenetically divergent FHB 

isolates from a global collection of 2100 isolates based on phylogenetic analyses of multilocus 

DNA sequences (13 genes; 16.3 kb/strain), and identified two novel species (F. vorosii and F. 

gerlachii)  into the Fg complex. Yli-Mattila et al. (2009) further added a novel Asian clade (F. 

ussurianum) into the species complex. More recently two new distinct species (F. nepalense and 

F. louisianense) have been identified, defining a total of 16 phylogenetically distinct species 

within the species complex (Sarver et al., 2011). 
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1.2.2. Biology 

F. graminearum is the name for the anamorphic or conidial stage of a homothallic 

haploid fungus with the sexual stage name Gibberella zeae. It produces three types of asexual 

spores named macroconidia, microconidia, and chlamydospores (Leslie and Summerell, 2006). 

The asexual stage is commonly found in nature, and can be easily isolated from the infected 

plant host tissues. Macroconidia are produced on sporodochium, hyaline in color, septated (3-7 

septa), with size ranging from 25-503-4 µm, generally sickle shaped, and often possess a well-

developed pedicellate foot cell. Microconidia are absent in F. graminearum. Chlamydospores, if 

present, are globose, thick-walled with a slightly roughen outer surface, and present singly or on 

a chain. Colors varied from hyaline to pale-brown and sizes varied from 10-12µm in diameters 

(Leslie and Summerell, 2006).  

The telomorphic phase G. zeae produces dark blue colored perithecia, which are 

generally ovoid, 140-250 µm in diameter, and composed with a rough tuberculate outer wall and 

thin walled inner cells. The sexual ascospores are produced in a sac like structure called an ascus. 

The ascus is 60-85×8-11 µm in size, clavate with a short stipe, and produces eight or 

occasionally 4-6 distichous or obliquely monostichous ascospores. Ascospores are 19-24×3-4 

µm in size, hyaline to light-brown in color and with slightly rounded ends (Leslie and 

Summerell, 2006).  

1.2.3. Genetics 

F. graminearum contains four chromosomes, which can be visualized using cytological 

methods described by Taga et al. (2003). Gale et al. (2005) constructed a genetic map from the 

cross between PH-1 (NRRL 31084) and 00-676 (NRRL 34097), a closely related strain from 

Minnesota, USA. Genomic studies of F. graminearum were initiated in 1990s with the release of 
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databases for expressed sequence tags (ESTs). In 2002, Kruger et al. (2002) described an EST 

database having 4,838 sequences obtained from cDNA library that was created after of 

inoculation of F. graminearum on the resistant wheat variety Sumai 3. The whole genome 

shotgun (WGS) sequencing of F. graminearum strain NRRL 31084 (PH-1) was carried out at the 

Broad Institute, the Center for Genome Research 

(www.broad.mit.edu/annotation/fungi/Fusarium/). The whole genome sequence, generated by 

paired-end sequencing of plasmids, fosmids, and bacterial artificial chromosome (BAC) clones 

contains a total assembly of 36.1 Mb (Cuomo et al. 2007). Nearly all (99.8%) of the assembled 

sequences were anchored to the four chromosomes using 237 genetic markers (Gale et al., 2005). 

An initial set of 11,640 predicted genes were identified (Cuomo et al. 2007). The genome has a 

large number of genes predicted for transcription factors, transmembrane transporters and 

hydrolytic enzymes, and contains very few duplicated sequences (Cuomo et al., 2007). 

Reassembly of the F. graminearum genome (36.45 Mb) identified approximately 433 contigs, 

13,321 genes and 37,516 exons (Broad Institute).  

The alternative forms (idiomorphs) of the mating type (MAT) locus are located on a 

single chromosomal gene cluster on the genome in this homothallic fungus (Yun et al., 2000). 

The organization of the MAT region is quite different from that reported for other homothallic 

fungi such as Neurospora species. The MAT-2 idiomorph sequence has a single open reading 

frame (MAT-2-1), while the MAT-1 idiomorph is more complicated and encodes for at least three 

transcripts (MAT-1-1, MAT-1-2, MAT-1-3) with a similar orientation as found in Podospora and 

Neurospora (O`Donnell et al., 2004). Deleting of one of the idiomorphs from F. graminearum 

can eliminate self-fertility, but retain the ability to outcross (Lee et al., 2003). All of these mating 

genes are subjected to a strong purifying selection in F. graminearum (O’Donnell et al., 2004). 



6 

Some out-crossings of the fungus have been made possible in laboratory using nitrate-non-

utilizing mutants (Bowden and Leslie, 1999) or insertional mutagenesis of the mating type 

(MAT) locus (Lee et al., 2003). However, the outcrossing under natural conditions is very rare 

(O'Donnell et al. 2004).  

Vegetative compatibility (VC) is a process in which two fungal isolates undergo a mutual 

hyphal anastomosis and result in a viable heterokaryon (Leslie and Summerell, 2006). In F. 

graminearum, VC and heterokaryon formation are governed by at least five or more vegetative 

incompatibility (vic) loci in a homogenic manner (Bowden and Leslie, 1999). Two fungal 

isolates can form a heterokaryon only when alleles at each of the corresponding vic loci are 

identical. Vegetatively compatible F. graminearum isolates can be identified using auxotrophic 

nitrate non-utilizing (nit) mutants (Bowden and Leslie, 1992) or assessing their inability to 

develop heterokaryons through a barrage formation (McCallum et al., 2004).  

1.2.4. Population genetic study  

Population genetics of the F. graminearum species complex has been studied in the major 

wheat growing regions across the world, including Asia (Gale et al. 2002, Zhang et al., 2007; Qu 

et al., 2008; Suga et al., 2008; Karugia et al., 2009; Lee et al., 2009, Puri et al., 2012), part of 

Europe (Gagkaeva and Yli-Mattila, 2004), Australia (Akinsanmi et al., 2006), the U.S. and 

Canada (Zeller et al., 2004; Gale et al., 2007, 2011; Ward et al., 2008; Puri and Zhong, 2010). 

Various molecular markers such as random amplified polymorphic DNA (RAPD) (Walker et al., 

2001), restriction fragment length polymorphism (RFLP) (Gale et al., 2007), amplified fragment 

length polymorphism (AFLP) (Zeller et al., 2004), simple sequence repeat (SSR) (Mishra et al., 

2004), sequence related amplified polymorphism (SRAP) (Fernando et al., 2007), variable 
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number tandem repeats (VNTR) (Suga et al., 2004), vegetative compatibility group (VCG) 

(Gilbert et al., 2001) were widely used for population genetic studies of the fungus. 

Several Fusarium species such as F. asiaticum, F. avenaceaum, F. culmorum, F. 

graminearum, F. nivale, F. poae, F. sporotrichioides can cause Fusarium head blight (FHB) on 

wheat and barley (Osborne and Stein, 2007). Among them, F. graminearum is the predominant 

etiological agent for FHB in North America, though a recent study identified 41 F. asiaticum 

isolates from FHB samples in southern Louisiana (Gale et al., 2011). The population subdivision 

in F. graminearum often correlates with geographical differences and trichothecene types (Yang 

et al. 2008, Ward et al. 2008, Gale et al., 2002, 2007). Gale et al. (2003) first showed the 

population sub-division correlated with trichothecene chemotype in F. graminearum. Population 

subdivision based on chemotypes has also been reported in Canada (Ward et al. 2008) and other 

parts of the world.  

Within the F. graminearum species complex, the isolates primarily producing DON and 

15ADON (named 15ADON population) were predominant in North America (Miller et al., 1991; 

Abramson et al. 2001), however, more recent studies have indicated an increase of more 

aggressive isolates that produce DON and 3ADON (named 3ADON population) in North 

America (Guo et al. 2008; Ward et al., 2008, Puri and Zhong, 2010). Previously, Zeller et al. 

(2003, 2004) analyzed populations of F. graminearum from seven states of central and eastern 

U.S. and identified very low genetic differentiation among them. Based on their results, the local 

populations represented a subset of a larger panmictic population existing in the Northern Great 

Plains. However, the more recent studies revealed genetically divergent populations from the 

Northern Great Plains including the U.S. and Canada (Gale et al., 2007; Ward et al., 2008). 

Starkey et al. (2007) identified six F. graminearum isolates with the NIV or 3ADON chemotype 
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in Louisiana. Gale et al. (2007) also found highly divergent populations of F. graminearum in 

North Dakota and Minnesota and showed a significant genetic differentiation between the 

3ADON and 15ADON chemotype populations. A significant increase of 3ADON isolates has 

been observed in the F. graminearum population in Canada in recent years (Ward et al. 2008; 

Guo et al. 2008). The newly emerging 3ADON population appeared to be more aggressive than 

the predominant 15ADON population (Ward et al. 2008, Puri and Zhong, 2010). 

1.2.5. Trichothecenes produced by F. graminearum 

Trichothecenes are toxic secondary metabolites produced by many species belonging to 

the Fusarium genus (Kimura et al. 2007). They include a family of over 200 toxins with a 

common core structure of tricyclic 12, 13-epoxytrichothec-9-ene (Grove, 2007). Deoxynivalenol 

(DON) and nivalenol (NIV) are primary trichothecenes found in Fusarium infected wheat and 

barley (McCormick, 2003). They are potential phytotoxins to many plant species, and can cause 

wilting, chlorosis, and necrosis (Cutler, 1988). They are toxic to human and animals mainly due 

to their ability to bind with the 60S ribosomal subunit of eukaryotes and successive inhibition of 

protein synthesis (Rocha et al., 2005). In wheat, the DON acts as a virulence factor that enables 

the fungus to spread beyond the infected spikelets into the rachis (Proctor and McCormick, 1995; 

Bai et al., 2002; Jansen et al., 2005, Maier et al., 2006).  

Trichothecenes are produced via trichodiene on the farsesyl payrophosphate pathway 

(Michora et al., 2003). Structurally, they are classified as macrocyclic or nonmacrocyclic based 

on presence of a macrocyclic ester or an ester-ether bridge between C-4 and C-15 (Bennett and 

Klich, 2003). The nonmacrocyclic trichothecenes produced by F. graminearum can broadly 

categorize into two groups based on either presence or absence of oxygen atoms at carbon atoms 

7 (C-7) and 8 (C-8) as type A or type B trichothecenes, respectively (Alexander et al., 2009; 
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Desjardins, 2006). Type A trichothecene has no hydroxyl group at C-7 but has a hydroxyl group 

at C-8 (e.g. neosolaniol) and ester group at C-8 (e.g. T-2 toxin) or no oxygen substitution at C-8  

(e.g. trichodermin, 4,15-diacetoxyscirpenol, and harzianum A); whereas Type B trichothecenes 

has a hydroxyl group at C-7 and a keto (carbonyl) function at C-8 (e.g. DON, NIV, and its 

derivatives)  (Desjardins et al. 1993; Ueno, 1980; McCormick et al., 2011). The DON and NIV 

have structural difference based on presence or absence of oxygen atom at C-4. DON and its 

acetylated forms (3A- or 15A- DON) lacks an oxygen atom in carbon C-4 but NIV and its C-4 

acetyl derivatives have an oxygen atom at carbon C-4 (Alexander et al., 2009; Kimura et al., 

2007). 

Along with the structural differences, trichothecene biosynthesis in Fusarium involves a 

complex pathway of oxygenation, isomerization and esterification steps (Alexander et al., 2009). 

These biosynthetic enzymes are encoded by 15 different TRI genes located at three loci at 

different chromosomes (Gale et al. 2005; Alexander et al. 2009). These loci are 12 gene TRI core 

cluster (Tri3, Tri4, Tri5, Tri6, Tri7,Tri8, Tri9, Tri10, Tri11, Tri12, Tri13, and Tri14) (Brown et 

al., 2004), the two gene (Tri1-Tri16) locus (Brown et al., 2003; Meek et al., 2003, Peplow et al., 

2003) and a single gene Tri101 locus (Kimura et al., 1998). The genetic basis for production of 

DON versus NIV trichothecene is explained by the function of two genes namely Tri13 

(cytochrome P450 monooxygenase) and Tri7 (acetyltransferase) (Lee et al., 2002). Both genes 

are required and functional in the NIV producers, while the DON producers have non-functional 

copies of these genes due to multiple deletion or insertions events (Lee et al., 2002; Brown et al., 

2002). In the long pathway of F. graminearum NIV producers, 4ANIV is produced by the 

function of FgTri1, which is later converted to NIV with the function of FgTri8 (McCormick et 

al. 2004). The exact genetic basis for 3ADON or 15ADON production and their biological 
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significance is still unclear. Alexander et al. (2011) indicated that the differential activity of Tri8 

(trichothecene C-3 esterase) regulates the production of 3ADON or 15ADON, and is required to 

convert the diacetylated 3- and 15- ADON intermediate into 3ADON or 15ADON. However, 

Kimura et al. (2003) previously showed that Tri8 and Tri3 are not necessary for 3ADON 

biosynthesis based on the comparative sequence and structure analysis of the Tri5 gene cluster of 

15ADON (strain H-11) and 4ANIV (strain 88-1) with 3ADON (strain F15). They emphasized 

the involvement of three pathway specific genes (FgTri4, FgTri5 and FgTri11) in 3ADON 

biosynthesis.  

 Allelic polymorphisms at the trichothecene biosynthetic gene cluster are being used to 

identify chemotype differences using PCR (Ward et al., 2002, O’Donnell et al., 2000). Genetic 

markers at Tri3, Tri12 and Tri13 genes have been developed, which correlate with 3ADON, 

15ADON or NIV chemotypes producers of F. graminearum (Starkey et al., 2007; Ward et al., 

2008; Wang et al., 2008). Various chemical analysis methods such as gas chromatography (GC), 

spectrometry (MS) or GC-MS methods have been developed for the trichothecene quantification, 

and used for routine DON analysis in many FHB resistant breeding experiments (Mirocha et al., 

2003). Other methods such as enzyme-linked immunosorbent assay (ELISA), thin layer 

chromatography (TLC) are also in use, although they are time consuming and not as reliable as 

GC-MS (Mirocha et al., 2003).  

Several functional genomic studies have been conducted to understand host infection 

process of F. graminearum (Guenther and Trail, 2005; Miller et al., 2004), and a number of 

genes have been shown to be involved in pathogenicity, virulence, and DON accumulation 

(Kazan et al. 2012). The targeted deletion of various Tri genes has confirmed their role in 

virulence and DON accumulation on grains (Proctor et al., 1995). Deletion mutants of the core 
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DON biosynthetic gene Tri5 lost DON accumulation on spikes and were unable to spread 

beyond inoculated points (Bai et al., 2002). Among genes within the Tri cluster, Tri6 and Tri10 

are the global gene regulators. Tri6 is a pathway-specific transcriptional regulator and required 

for trichothecene biosynthesis (Seong et al., 2009; Peplow et al., 2003). Further study indicated 

that it is involved in regulation of six Tri genes (Tri1, Tri3, Tri6, Tri7, Tri12 and Tri14) within 

cluster and additional 192 potential F. graminearum genes (Nasmith et al. 2011).  Tri10 has also 

been involved in trichothecene biosynthesis and regulates expression of several other Tri genes 

(Tri3, Tri7, Tri8, Tri9, Tri11 and Tri12) in F. sporotrichioides (Peplow et al., 2003). Deletion 

mutants of both Tri6 and Tri8 had showed a reduced pathogenicity on wheat (Seong et al. 2009). 

Deletion mutant of another regulatory gene Tri14 has also reduced pathogenicity and 

trichothecene accumulation on wheat heads (Dyer et al., 2005), although there was no difference 

from the wild type on toxin accumulation in vitro (Brown et al., 2002). 

1.2.6. Transcriptome analysis by RNA-seq 

RNA sequencing is a relatively new sequence based approach in transcriptomics for in-

depth and robust assessments of transcript abundances and transcript structure and functional 

characterization of genes (Wang et al., 2009). This technology has several advantages over DNA 

hybridization based technologies such as microarray and tiling arrays (Marguerat and Bahler, 

2010; Wang et al., 2009). The major advantages are that it requires a small amount of RNA, can 

detect transcripts beyond the existing genomic sequence, and has a very deep coverage with a 

high reproducibility from both technical and biological replications (Wang et al., 2009; 

Nagalajshmi et al., 2008). The steps for RNA sequencing procedure are easy and very 

straightforward. they include RNA isolation, purification of Poly-A containing transcripts, 

fragmentation of transcripts, conversion to cDNA, ligation of indexing adapters, and  sequencing 
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of prepared libraries (Young et al., 2012; Marguerat and Bähler, 2010). Many high throughput 

sequencing technologies such as Roche 454 from Life Lcience (Barbazuk et al., 2007), SOLiD 

system from Applied Biosystem (Cloonan et al., 2008), Illumina HiSeq2000 (Glenn, 2011) from 

Illumina; Ion Torrent by Life Technologies (Rothberg et al., 2011) are increasingly being used 

for RNA sequencing, although other direct cDNA sequencing techniques such as serial analysis 

of gene expression (SAGE) (Velculescu et al. 1995), and massively parallel signature sequencing 

(MPSS) (Brenner et al., 2000) were in use. 

The use of RNA-seq for comparative transcriptome study during host-pathogen 

interaction is emerging rapidly and used in identification of novel genes related to pathogenicity 

or virulence in plant pathogenic fungi. The infection related global gene regulation profiling of 

many fungal-host interactions such as Pseuodperonospora cubensis -cucumber (Savory et al., 

2012), Phytopthora phaseoli - lima bean (Kungeti et al., 2012), Magnaporthe oryzae-rice 

(Bagnaresi et al., 2012), or defense transcriptome study in response to Fusarium oxysporum-

infection in Arabidopsis has been widely studied using the RNA-Seq techniques.  

In F. graminearum, the  transcriptome profiling and their relationships with DON 

accumulation, virulence or aggressiveness during wheat and barley infection have been studied 

using DNA microarrays (Boddu et al. 2006, 2007; Gardiner et al. 2009, 2010; Lysoe et al. 2011) 

and several candidate genes for pathogenicity and DON were identified. The microarray analysis 

of deletion mutants for the two transcription factor genes Tri6 and Tri10 required for DON 

biosynthesis and pathogenicity showed their global regulation of over 200 genes during host 

infection (Seong et al., 2009) or during in vitro growth (Nasmith et al., 2011). Several secreted 

proteins identified during host infection by F. graminearum were proposed as the effector 

proteins for host infection or fungal growth on culture media (Paper et al., 2009). Using 
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microarrays, Lysoe et al. (2011) found that 43% of the F. graminearum expressed genes during 

wheat and barley infections had a signal peptide motif, and they might act as the effectors during 

host infection. Thus, the global gene profiling using microarrays or RNA-Seq technology will be 

a very powerful tool to provide new insights into mechanisms of host-pathogen interactions, 

pathogenicity and DON accumulation. 

1.3. The Disease: Fusarium Head Blight (FHB)  

Fusarium head blight (FHB) is a devastating and economically important disease of 

wheat (Triticum aestivum L) and barley (Hordeum vulgare L) in North America (McMullen et 

al. 1997; Jones and Mirocha, 1999; Gilbert and Tekauz, 2000; Windels, 2000) and worldwide 

(Parry et al., 1995; Goswami and Kirstler, 2004). The disease causes a significant reduction in 

yield and quality of harvested grains due to contamination with several mycotoxins including 

Deoxynivalenol (DON) and derivatives, oestrogenic mycotoxin, aurofusarin, and zearalenone 

(Scott, 1990; Bai and Shaner, 1996; McMullen et al., 1997; Trail, 2009). The disease has been 

listed as one of the major yield-limiting factors in wheat production throughout the world by 

CIMMYT (Dublin, 1997). The infected grains show low seed germination and may cause 

seedling blight with poor crop stand (Bai and Shaner, 1994).  Further, the FHB infected scabby 

kernels have reduced grain test weight, lower market price or even without food and feed values. 

Consumption of mycotoxin-contaminated grains and their product may cause feed refusal, poor 

weight gain, diarrhoea, alimentary haemorrhaging and contact dermatitis on livestock. In 

humans, it may cause an acute or chronic health problems including alimentary toxic aleukia and 

akakabi toxicosis; nausea, vomiting, and anorexia; and neurological disorders and 

immunosuppression (Nelson et al., 1993, Desjardins, 2006, Bennett and Klich, 2003). The U.S. 
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food and drug administration (FDA) limits the level of DON to 1 g/g on finished product for 

human consumption (Aakre et al., 2005). 

1.3.1. Symptoms, disease cycle and epidemiology 

Initial Fusarium infection appears as small water-soaked brownish spots on the rachis or 

on the bases of glumes, which later become bleached, giving a characteristic symptoms of 

partially white and partially green heads (Wiese, 1987; McMullen et al., 2008). Bleaching can 

extend in all directions from the point of infection and might lead to a complete dead head in 

susceptible cultivars (Wiese, 1987). Under prolonged wet conditions, a typical light pink to 

salmon-orange color fungal mass can be seen on infected tissues, and glumes can be covered 

with a white mycelial growth (McMullen et al., 2008; Trail, 2009). Infected grains at harvest 

might be shriveled, light weighted with a pinkish discoloration. Perithecia or sporodochia may be 

seen on exterior surface of wheat heads, peduncle or other tissues at the end of season in the high 

humid regions (Bushnell et al. 2003). Seeding blight might be obvious, if blighted seeds were 

planted (Stack, 2003). The generalized disease cycle of this monocyclic disease starts once the 

airborne ascospores land on flowering spikelets as a primary source of inoculum, which 

successively germinate and enters into the plant through natural opening or via the degenerating 

anther tissue (Trail, 2009, Bushnell et al., 2003). Initially, the pathogen grows inter-cellularly 

and asymptomatically via xylem and pith (Bushnell et al., 2003, Jansen et al., 2005). The 

detailed microscopic study of infection process has now showed no indication of necrotrophy at 

the initial stage of the infection. Once the fungus starts to grow intracellularly, the subsequent 

necrosis and cell death are prominent (Brown et al., 2010). Thus, F. graminearum has been 

classified as a hemibiotrophic pathogen (Kazan et al., 2012). This pathogen completes its life 

cycle in culture or in association with hosts (Trail, 2009). Perithecia are the sexual stage for 
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overwintering (Guenther and Trail, 2005). However, the fungus can also overwinter as mycelia 

on infested crop residues and seeds or on the wild plant hosts. Although ascospores are primary 

sources of inoculum, both ascospores and conidia have an important role in FHB epidemics 

(Markell and Francl, 2003). The rain-splashed conidia from infected tissue acts as a secondary 

source of inoculum to the newly flowering tiller heads. Crop rotation with corn in the preceding 

season and use of minimum tillage practices can also increase the risk of FHB on wheat and 

barley (Wilcoxson et al., 1988). 

Fusarium head blight disease epidemics are favored by several factors. High humidity for 

a prolonged time (48-72h) coinciding with warm temperature (24-28

C) at anthesis is optimum 

for successful disease establishment and spread (Osborne and Stein 2007). The 25

C temperature 

favors optimal mycelial growth, while 32

C is optimum for sporulation (Osborne and Stein, 

2007). However, infection might occur under the cooler temperature if high humidity persists for 

longer period of time (>72 h) (McMullen et al., 2008). Along with the high humidity and warm 

conditions, the level of host resistance, pathogen aggressiveness, abundance of inoculum, and 

agricultural practices also play a crucial role for disease epidemics (McMullen et. al. 1997, 2008, 

2012).  

1.3.2. FHB management 

Integration of multiple management practices such as cultural practices, resistant 

cultivars, fungicide spray, proper tillage, and biological control, is recommended for reducing the 

yield loss due to FHB, rather than sole dependence on a single management tool (McMullen et 

al., 2008, 2012). 

Cultural practices are targeted to reduce or avoid the exposure of wheat spikes to spore 

loads during anthesis to early milk fill stage. Many cultural practices such as crop rotation 
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(avoiding inoculum produced on cereal host residue); tillage practices such as deep burying or 

burning of infested residue; mechanical chopping of crop residue to enhance quick 

decomposition; proper fertilization; stagger planting date or use of cultivars that differed in 

maturity dates to reduce entire crop loss are effective measures to minimize the FHB incidence 

and severity (Parry et al., 1995, Pereyra and Dil-Macky, 2008, Pererya et al., 2004, McMullen et 

al., 1997, Pirgozliev et al., 2003). Additionally, FHB infected grains can be reduced using seed 

cleaning equipment after harvest. Increasing fan speeds and airflows can lower the number of 

Fusarium damaged kernels and DON level in grains (Salgado et al., 2011).  

Biological control measures may be an important strategy of integrated FHB 

management, especially on organic farms where fungicides can not used (McMullen et al., 

2012). Several fungal, bacterial and yeast species are reported to be potential biological control 

agents for F. graminearum (Yuen and Schoneweis, 2007, Gilbert et al, 2004, Jochum et al., 

2006, Khan et al., 2004, 2008). Several bacterial species such as Lysobactor (induce localized 

resistance); Bacillus (produces antifungal metabolites), Pseudomonas and yeasts (Cryptococcus) 

are reported as potential biological control agents against F. graminearum (Yuen and 

Schoneweis, 2007). A significant reduction on disease and level of mycotoxin contamination has 

been obtained consistently from the greenhouse experiments, and occasionally from field 

experiments using biological control agents; however, successful commercialization of bio-

control agents is still lacking and needs future research.   

Fungicides, in integration with other management tools and a disease forecasting system, 

are and effective way of disease management (McMullen et al., 1997). Paul et al (2008) 

highlighted a few effective fungicides currently used for FHB management using multivariate 

analysis of over 100 uniform fungicide trials, and concluded that the combination of 
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tebuconazole and protihocnazole (Prosaro) is the most effective fungicide. This combination can 

suppress disease by 52% over the control. The same study further highlighted other effective 

fungicides with active ingredients of metconazole (50% reduction) (Caramba), protioconazole 

(Proline) (48% reduction), tebuconazole (40% reduction) (Folicur, Orius, Monsoon, Embrance, 

Emboss, TebuStar), and propiconazole (32% reduction) (PropiMax, Tilt) for FHB management. 

Also, some fungicides such as metconazole (45 % reduction) and prothioconazole (43% 

reduction) singly or in combination with other fungicides were found effective to reduce the 

level of DON on grains (Paul et al, 2008). In recent years, registrations of effective fungicides 

for disease management or to lower level of DON content have been increasing (Bradley, 2009). 

However, the higher costs associated with fungicide, lack of consistent disease control under 

field conditions, inappropriate fungicide application techniques, and lack of proper disease 

forecasting system are always the major pitfalls for effective fungicide application (McMullen et 

al, 1997). An integrated disease management approach using host resistance (discussed below), 

cultural practices and fungicide application are the most efficient and effective ways for FHB 

disease management (McMullen et al., 1997; Bai and Scanner, 2004, Wegulo et al., 2011). 

1.3.3. Host resistance to FHB 

Mesterhazy (1995) summarized various resistance mechanisms in wheat against 

Fusarium head blight, and categorized them as an active (physiological) or passive 

(morphological) resistance. The active resistance mechanisms include resistance to initial 

infection, resistance to pathogen spreading, resistance to kernel infection, resistance to toxins on 

grains, and tolerance (Schroeder and Christensen 1963, Miller and Young, 1985; Snijders and 

Perkowski, 1990). The passive resistance mechanism is disease escape or low disease due to 

plant height, flower opening time, heading date, ear compactness, and the presence/absence of 
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awns etc. (Mesterhazy 1995; Buerstmayr et al. 2009).  For example, dwarf plants had higher 

chances of natural infection due to favorable microclimate and higher inoculum load from the 

ground compared to taller plants, or high spike density may create a favorable micro climate for 

the pathogen, or awned spikes can trap more spores and increase risk more than the awn-less 

spikes. In addition, presence of waxy glumes may exclude moisture from spikes and can act as a 

barrier to the fungal infection.   

Although various types of active resistance mechanisms had been described on this 

pathosystem (Rudd et al., 2001), three types of resistance mechanisms known as Type I 

(resistance to initial infection), Type II resistance (resistance to spread), and resistance to DON 

accumulation (also known type III resistance) were well studied and documented (Schroder and 

Christensen 1963; Mesterhazy 1995; Somer et al., 2003). Among them, the type II resistance is 

the most studied, stable and widely used in many wheat-breeding program across the world (Bai 

and Shaner, 2004). In order to access these types of resistance, distinct inoculation methods are 

in use. The Type I resistance is measured by counting the number of diseased spikelets after 

whole spike spray inoculation, while Type II resistance is evaluated based on disease spread 

from the point of single floret inoculation at the middle of a spike during flowering (Bai and 

Shaner 2004; Buerstmayr et al. 2009). Measure of type III resistance needs a chemical analysis 

of harvested grain samples (Mirocha et al. 2003).  

1.3.4. Sources of resistance to FHB 

Fusarium head blight resistance sources in wheat can broadly be classified from four 

origins namely Europe, East Asia, South America, and North America (Bai and Shaner, 2004; 

Buerstmayr et al. 2009). None of these sources were identified as immune to the disease, but a 

very good level of resistance has been identified from Asian and European gene pools (Bai and 
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Shaner, 2004; Buerstmayr et al. 2009). The Chinese wheat cultivar Sumai 3 (Funo/Taiwan 

Xiaomai) or its derivatives and pedigrees are the most commonly used source of resistance (type 

II) and considered as the foundation source of FHB resistance in many U.S. wheat-breeding 

programs (Rudd et al., 2001). The resistance other than Sumai 3’s has been identified from other 

sources such as ‘Chokwang’ from Korea (Shaner and Buechley, 2001), ‘Fundulea 201R’ from 

Romania (Shen et al. 2003a), and ‘Ernie and Freedom’ from the USA (Rudd et al. 2001). Other 

key spring wheat genotypes with a good type II resistance include Wangshuibai and several Ning 

selections from China, Nobeokabozu Komugi, Saikai 165 from Japan, Frontana and 

Encruzilhada from Brazil, and some CIMMYT genotypes (Wang and Miller, 1987; Snijders 

1990; Ban, 2000; Anderson et al., 2001; Steiner et al., 2004; and Zhou et al, 2004). In addition, a 

few winter wheat cultivars (Renan, Arina, and Praag-8) were identified as a good source of 

resistance to FHB from the European gene pool (Snijders, 1990; Ruckenbauer et al., 2001; 

Gervais et al., 2003). Many alien species of wheat have FHB resistance (Cai et al. 2005). Wan et 

al. (1997) identified many grass species belonging to the genera Hystrix, Psathyrostachys and 

Roegneria, with a better type II resistance than Sumai 3. However, breeding for FHB resistance 

from these alien sources or grasses is very difficult because of their exotic origin, oligo or 

polygenic inheritance for resistance, and resistance genes closely linked with poor agronomic 

traits (Bai and Shaner, 2004). Further, the FHB screening program needs a significant amount of 

time and resources, as these traits are more severely subjected to genotype by environment 

interactions (Buerstmayr et al., 2002; Zwart et al., 2008,). 

1.3.5. Inheritance, QTL mapping, and breeding of resistance to FHB 

FHB resistance is quantitatively inherited and controlled by oligo or polygenic 

quantitative trait loci (QTL) (Mesterhazy, 1995; Buerstmayr et al. 2009).  A few major QTLs and 
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several minor QTLs have been identified for FHB resistance across wide genetic backgrounds. 

The details of 52 QTLs mapped, their sources and the phenotypic variation governed by them are 

recently reviewed by Buerstmayr et al. (2009).  

Molecular markers have been used in QTL mapping studies for decades. The restriction 

fragment length polymorphisms (RFLPs) (Grodzicker et al. 1974) were the first DNA based 

molecular markers used in linkage mapping. However, several drawbacks associated with RFLP 

markers such as low frequency of polymorphism, requiring relatively larger amount of DNA and 

the need for autoradiography, a long time-consuming procedure, have made them less popular. In 

recent years, several polymerase chain reaction (PCR) based markers such as random amplified 

polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP) or various known 

sequences based markers such as simple sequence repeats (SSR) or microsatellite markers, 

sequence tagged sites (STS), sequence characterized amplified regions (SCAR), and single 

nucleotide polymorphisms (SNP) are becoming more popular and used in many mapping studies. 

Among them, the SSR markers are the common choice as they can detect variation from one to 

six bases, are highly polymorphic, mostly codominant and dispersed throughout the wheat 

genome (Röder et al. 1998). Somers et al. (2004) first developed a high-density microsatellite 

consensus map of bread wheat with 1,235 microsatellite loci covering 2569 cM.  In recent years, 

the Diversity Arrays Technology (DarT) markers have also been in use for genetic mapping and 

fingerprinting studies in wheat (Akbari et al., 2006). 

The molecular markers associated with known QTLs to FHB resistance have been 

mapped on almost all wheat chromosomes except 7D (Bai and Sanner, 2004, Buerstmayr et al. 

2009). However, some QTLs were not detected in different genetic backgrounds. The 

inconsistent mapping result might be due to several reasons such as polygenic inheritance of 
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FHB resistance, difference in types of resistance evaluated, effect of genetic background, 

inoculation methods used or strong genotypeenvironmental interactions (Kolb et al. 2001). 

Among the various QTLs mapped to date, those in Sumai 3 have been consistently shown 

to be consistent under wide environmental and genetic backgrounds (Anderson et al., 2001, Bai 

et al., 1999, Buerstmayr et al., 2002, 2003; Zhou et al., 2004, Yang et al., 2003).  Sumai 3 has 

major QTLs on chromosome 3BS, 5AS, 6BS and minor QTLs on 6AS and 2AS (Waldron et al. 

1999; Anderson et al. 2001; Buerstmayr et al. 2002; Zhou et al. 2002; Shen et al. 2003b; Yang et 

al. 2003). The resistance QTL known as Fhb1 (Qfhs.ndsu-3BS) accounted up to 60% of the 

phenotypic variation for the type II resistance (Anderson et al., 2001, Buerstmayr et al., 2002) 

and it is also responsible for DON detoxification (Lemmens et al., 2005). Another major QTL 

from Sumai 3 has been mapped on the chromosome 6BS and named Fhb2 (Cuthbert et al. 2006). 

Similarly, major QTLs governing a good resistance have been mapped on chromosome 3BS in 

Wangshuibai (Zhou et al. 2004), chromosomes 2DL and 4BS in Wuhan-1 (Somers et al. 2003), 

chromosome 5DL in Chokwang (Yang et al. 2005), chromosome 3AL in Frontana (Steiner et al. 

2004), and chromosome 5A in PI 277012 (Chu et al. 2011). The European winter wheat Arina 

has major QTLs on chromosome 4AL, 5BL and 6DL (Paillard et al. 2004; Draeger et al. 2007; 

Semagn et al. 2007). Similarly, another cultivar Renan had QTLs on chromosomes 2BS and 5AL 

(Gervais et al. 2003). Several QTLs for Type I resistance have been mapped. The QTLs mapped 

on 3A and 5A of cultivar Frontana (Frontana×Remus) double haploid population explained 16% 

and 9% of the phenotypic variance for type I resistance, respectively (Steiner et al. 2004), while 

a QTL on 2BS in cultivar Goldfield explained 29% of the variation in FHB incidence (Gilsinger 

et al. 2005). Steed et al. (2005) also reported a QTL for Type I resistance on 4A using a double 

haploid population after spray inoculation with F. culmorum. The QTL on 5AS (Qfhs.ifa-5A) is 
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also the most frequently observed QTL from both Chinese and European resistant sources, which 

contribute towards type I resistance (Buerstmayr et al. 2003a, Lin et al. 2006) and also related to 

DON detoxification. 

As the FHB resistance in wheat is controlled by polygenes and often associated with poor 

agronomic traits, it makes breeding a real difficult task and requires a long evaluation process 

(Mesterhazy, 1995, Rudd et al., 2001). In addition, various types of resistance (Type I, Type II, 

DON tolerance and so on) exist and it still not clear whether they are controlled by the same 

QTL or not (Bai and Shaner, 2004, Buerstmayr et al. 2009). In the past decades, the conventional 

breeding approach has succeeded in breeding and pyramiding of genes against FHB from various 

sources (Bai et al. 2003; Mergoum et al., 2007). Most of the breeding programs across the world, 

including the United States, Asia, Europe, and CIMMYT, have heavily relied on Sumai 3 or its 

derivatives as Type II resistance for wheat improvement (Rudd et al. 2001; Buerstmayr et al. 

2002; Mesterházy, 2003). However, the continuous use of a single source of resistance might 

create a selection pressure on the pathogen, leading to breakdowns of existing resistance genes 

(Gervais et al. 2003). Thus, it is essential to identify new sources of resistance and integrate them 

into adapted cultivars with better agronomic traits. With the development of molecular markers 

linked to the QTL for FHB resistance, the breeding programs can greatly facilitate and hasten 

their transfer into wide generic backgrounds via marker-assisted selection (MAS). Several 

molecular markers tightly linked with FHB resistance have been identified and are being used to 

eliminate susceptible materials during the early breeding process. Thus, the use of conventional 

breeding in combination with MAS could be an effective way to obtain durable resistance to 

FHB in wheat (Bai and Shaner, 2004, Anderson et al., 2007). 
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CHAPTER 2.  THE 3ADON POPULATION OF FUSARIUM GRAMINEARUM FOUND 

IN NORTH DAKOTA IS MORE AGGRESSIVE AND PRODUCES A HIGHER LEVEL 

OF DON THAN THE PREVALENT 15ADON POPULATION IN SPRING WHEAT 

2.1. Abstract 

Fusarium head blight (FHB) is primarily caused by Fusarium graminearum in North 

America. Isolates of F. graminearum can be identified as one of three chemotypes, i.e., 3-acetyl-

Deoxynivalenol (3ADON), 15-acetyl-Deoxynivalenol (15ADON) and nivalenol (NIV). In this 

study, we characterized F. graminearum isolates collected from 1980 to 2000 (old collection) 

and in 2008 (new collection) from North Dakota and found a 15-fold increase of 3ADON 

isolates in the new collection. Evaluation of randomly selected 3ADON isolates and 15ADON 

isolates on three spring wheat genotypes (Grandin, Steele-ND and ND 2710) by single-floret 

inoculation indicated that the 3ADON population caused a higher disease severity and produced 

more DON at a significant level than the 15ADON population on Grandin (susceptible to FHB) 

and ND 2710 (with FHB resistance from Sumai 3). However, no significant differences in 

disease severity and DON production were observed between the two populations on Steele-ND 

(with moderate resistance from Triticum dicoccoides). The 3ADON isolates also exhibited a 

higher DON production in rice culture and produced more spores on agar media than the 

15ADON isolates, suggesting a fitness advantage of the newly emerging 3ADON population 

over the prevalent 15ADON population. Population genetic analyses using DNA markers 

revealed a significant genetic differentiation between the two populations. The information 

obtained in this study could have an impact on development of FHB resistant wheat cultivars and 

disease management. 
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2.2. Introduction  

Fusarium head blight (FHB) or head scab is a devastating disease of wheat (Triticum 

aestivum L) and barley (Hordeum vulgare L) in North America (McMullen et al. 1997; Jones 

and Mirocha, 1999; Gilbert and Tekauz, 2000; Windels, 2000) and many other regions of the 

world (Parry et al., 1995; Goswami and Kirstler, 2004). The disease not only causes significant 

yield losses, but also reduces the quality of harvested grains due to contamination of mycotoxins 

produced by the Fusarium pathogens (Scott, 1990, Bai and Shaner, 1996). Consumption of 

mycotoxin-contaminated grains and their products poses acute or chronic health hazards to 

human and livestock (Nelson et al., 1993, Desjardins, 2006).  

Several Fusarium species can cause FHB in barley and wheat, but Fusarium 

graminearum Schwable [teleomorph: Gibberella zeae (Schweinitz) Petch] is the primary causal 

agent of the disease in North America. The fungal pathogen belongs to the F. graminearum 

species complex (Fg complex), which has been separated into at least 11 distinct phylogenetic 

species (O’Donnell et al., 2004; Starkey et al., 2007). The Fg complex and the other five closely 

related species produce various B-trichothecene metabolites, including deoxynivalenol (DON) 

and its derivatives [3-acetyl deoxynivalenol (3ADON), 15-acetyl deoxynivalenol (15ADON)] 

and nivalenol (NIV) (O’Donnell et al. 2000). Based on the profile of trichothecenes produced, F. 

graminearum isolates can be grouped into one of three chemotypes, i.e., 3ADON, 15ADON and 

NIV (Miller et al., 1991, O’Donnell et al. 2004). A 3ADON chemotype produces DON and 

primarily 3ADON while a 15ADON chemotype generates DON and primarily 15ADON. 

Isolates with a NIV chemotype produce NIV and its acetylated derivatives. Previous studies 

indicated that isolates with a 15ADON chemotype in the Fg complex were predominant and 

largely responsible for FHB epidemics in North America (Miller et al., 1991;, Abramson et al. 
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2001). Zeller et al. (2003; 2004) analyzed and compared populations of F. graminearum from 

seven states of central and eastern United States (US) and found a low genetic differentiation 

among them. They suggested that these local populations represent a subset of a larger panmictic 

population in North America (Zeller et al., 2004). However, several recent studies indicated that 

genetically differentiated populations of F. graminearum have emerged in Canada and the US. In 

a global molecular surveillance of FHB pathogens, Starkey et al. (2007) identified six F. 

graminearum isolates with a NIV or 3ADON chemotype in Louisiana. Gale et al. (2007) 

identified highly divergent populations of F. graminearum in North Dakota and Minnesota 

where 3ADON chemotype isolates were identified, which showed a significant genetic 

differentiation from the 15ADON populations. More recently, Ward et al. (2008) and Guo et al. 

(2008) reported a significant increase of the F. graminearum isolates with the 3ADON 

chemotype in Canada. The newly emerging 3ADON population appears to be more aggressive 

than the 15ADON population based on growth rate and DON production in vitro (Ward et al. 

2008). However, little information is available on the aggressiveness and DON production of the 

3ADON population in spring wheat cultivars with different sources of FHB resistance. The 

objective of this study was to test the hypothesis that the increasing 3ADON population collected 

from spring wheat in North Dakota is more aggressive in disease development and DON 

production compared to the prevalent 15ADON population. We characterized F. graminearum 

isolates collected from 1980 to 2000 and those collected during 2008 from North Dakota spring 

wheat by multiplex PCR chemotyping, greenhouse inoculation on three wheat genotypes with 

different levels of FHB resistance, amplified fragment length polymorphism (AFLP) and 

variable number of tandem repeat (VNTR) analyses. 
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2.3. Materials and Methods 

2.3.1. Fungal isolation and identification  

A total collection of 165 isolates of F. graminearum, including 120 collected from 1980 

to 2000, two collected in 2004, and 43 collected in 2008 from different counties of North 

Dakota, were used in this study. These fungal isolates were isolated from symptomatic wheat 

spikes collected from farmers’ fields. Kernels showing FHB symptoms were surface sterilized 

with 6% sodium hypo-chloride for 2-3 minutes, rinsed 2-3 times with sterile distilled water, and 

kept on three layers of moist blotting paper. Visible fungal mycelia grown from kernel surfaces 

were transferred into half-strength (1/2) potato dextrose agar (PDA) (100g of potato, 10g of 

dextrose, 7.5g of bacto-agar per liter of water). After 5-6 days of growth, spore mass was picked 

with an inoculation loop and streaked onto a new 1/2-PDA plate. The individual single spores 

were allowed to germinate for 24 h. After that, a single-spore colony was picked and transferred 

into a new 1/2 PDA plate.  After 7 days of growth, the single spore cultures were stored in 20% 

glycerol and kept at –80

C until needed. Morphological characters as well as the Fg-specific 

PCR primer sets, UBC85F410/ UBC85R410 (Schilling et al., 1996) and Fg16F/Fg16R 

(Nicholson et al., 1998), were used to confirm the identity of all isolates used in the study. To 

further identify the isolates in the Fg complex to the phylogenetic species level (O’Donnell et al. 

2004), portions of the reductase and histone H3 genes were amplified by PCR from each of the 

isolates and sequenced according to the methods previously described (O’Donnell et al. 2000; 

2004). 

2.3.2. DNA extraction and PCR-based chemotyping 

DNA was extracted from mycelia of the 6-7-day-old single-spore cultures grown over 

cellophane on 1/2 PDA using the FastDNA
®
 Kit and FastPrep

®
 instrument (MP Biomedicals, 
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Irvine, CA). For chemotype determination, the trichothecene primer 3CON (5-

TGGCAAAGACTGGTTCAC-3) and the three chemotype-specific primers 3NA (5-

GTGCACAGAATATACGAGC-3), 3D15A (5-ACTGACCCAAGCTGCCATC-3), and 3D3A 

(5-CGCATTGGCTAACACATG-3) were used for PCR amplification with the conditions 

described by Ward et al. (2002) and Starkey et al. (2007). These primer combinations amplify 

fragments of 840, 610, or 243 bp that correspond to the NIV, 15ADON, or 3ADON chemotypes, 

respectively (Ward et al. 2002). 

2.3.3. Aggressiveness evaluation 

A greenhouse experiment was conducted to test the aggressiveness of 25 randomly 

selected isolates of F. graminearum (twelves 15ADON and thirteen 3ADON isolates) (Table 2) 

on the spring wheat genotypes Grandin, Steele-ND, and ND 2710. Grandin is a spring wheat 

cultivar that is highly susceptible to FHB. Steele-ND exhibits a moderate level of resistance to 

FHB, which is thought to be derived from Triticum dicoccoides (Mergoum et al., 2007). ND 

2710 is a spring wheat line with a high level of FHB resistance derived from Sumai 3 (Frohberg 

et al. 2004). A randomized complete block design (RCBD) was used with three replications and 

all isolates were randomized within each replication. For each wheat genotype, hill plots per 

replication were planted on a bed filled with sterilized topsoil, with 15 cm space between plots 

and 8-10 seeds/plot. The plants were grown at approximately 23±2

C with 16 h of supplemental 

lights until anthesis. Irrigation was done daily and plants were fertilized with Multicote
®
4 

containing N:P:K (14:14:16)  and minor nutrients (Heifa Biochemical, Israel).  

To prepare spores for inoculation, each of the isolates was grown on mung bean agar 

(MBA) (Evans et al., 2000) plates at room temperature with a combination of fluorescent and 

near-UV light at 12- h light and dark cycle for 10-12 days. Then conidia were harvested from the 
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agar plates by adding sterilized distilled water, scraping the agar surface with a rubber 

policeman, then filtered through two layers of cheesecloth and quantified with a hemocytometer. 

Final inoculum at 1×10
5
 macroconidia/ml in water was used to inoculate wheat spikes using the 

single-floret injection method (Rudd et al., 2001). The central floret of individual spikes at 

anthesis was inoculated with 10 l of the inoculum using a micropipette. Inoculated heads were 

misted with the overhead misting nozzles for 30 seconds at 30-min intervals to maintain high 

humidity. Disease rating was done at 21 days after inoculation (dai) using the pictorial scale 

developed by Stack and McMullen (1995). The disease severity for each inoculated spike was 

measured based on the number of spikelets infected: no infection as 0%, one spikelet infected as 

7%, two as 14%, three as 21%, four as 33%, ½ of the spike as 50%, 2/3 of the spike as 67%, ¾ 

of the spike as 80%, and the whole spike or dead rachis as 100%. At least eight spikes were 

inoculated and rated in each replication (hill plot) for each wheat genotype. The average disease 

severity was calculated according to Stack and McMullen (1995).  

2.3.4. Analysis of trichothecenes from grains and rice cultures 

For evaluation of trichothecene accumulation in grains, the inoculated heads of each 

cultivar from each replication were harvested and threshed. The grains were ground to a fine 

powder using a coffee grinder and sent to the Veterinary Diagnostic Laboratory, NDSU, for 

mycotoxin analyses. The amount of DON, its derivatives (3ADON, 15ADON) and NIV was 

quantified using the gas chromatography-mass spectrometry (GC-MS) method (Tanaka et al., 

2000). 

Mycotoxin production in rice cultures was measured according to Burlakoti et al. (2008) 

and Walker et al. (2001) with some modifications. Thirty grams of rice grains were soaked in 

deionized distilled water overnight (10 h) in a 250-ml Erlenmeyer flask. Excess water was 



44 

drained from the flask. After autoclaving, the rice grains were inoculated with three plugs of agar 

containing growing mycelia from a 4-5-days-old culture on PDA. Each flask was considered as 

one replication and three flasks for each isolate were prepared. To facilitate equal distribution of 

fungal growth, the culture was stirred with a sterile glass rod on the 2
nd

, 4
th

 and 6
th

 days. Then, 

the cultures were grown in the dark for 30 days at 23 ±1

C. Each rice culture was transferred into 

a 50-ml centrifuge tube and stored at -80
0
C overnight and lyophilized for 6 days at -40


C. Then, 

the rice cultures were ground with a coffee grinder and five grams of each sample were analyzed 

for mycotoxins using the same method as used for the grain samples.  

2.3.5. Growth rate and sporulation test 

The growth rate and sporulation of isolates were evaluated in vitro on MBA plates in 

three replications. A small agar plug (5 mm in diameter) of each isolate was placed in the center 

of a 9-cm MBA plate and incubated the same way as that for inoculum preparation. Radial 

growth was measured at every 24 h until mycelia completely covered the plate surface. After 7 

days of growth, conidia were harvested by adding one milliliter of distilled water and scraping 

the surface of the agar with a rubber policeman. The spores were counted under a compound 

microscope using a hemocytometer.  

2.3.6. AFLP analysis 

AFLP analysis was performed according to Vos et al. (1995) with some modifications. 

DNA templates for pre-selective amplification were prepared using the AFLP
®
 Core Reagent Kit 

(Invitrogen Corporation Carlsbad, CA) according to the manufacturer’s protocol. Pre-

amplification reactions contained 1:2 diluted DNA templates (approximately 62.5ng of DNA), 

36ng of each EcoRI primer (E-A) and MseI primer (M-C), 0.2 mM dNTPs, 1× buffer, 1.5mM 

MgCl2, and 1 unit of Taq DNA polymerase and was performed for 20 cycles of 94

C for 30s, 
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56

C for 60s, and 72


C for 60s. Five sets of primer combinations (E-AC+M-CG, E-AT+M-CC, 

E-AA+M-CC, E-AA+M-CT, and E-AA+M-AT) were used in the selective amplification with 

the E- primers labeled with the fluorescent dye IRD 700 (Li-COR, Lincoln, NE). The selective 

amplification conditions were same as described by Vos et al. (1995). After selective 

amplification, the PCR reaction was mixed with 10l of Formamide loading dye, heated at 95

C 

for 3 minutes and immediately chilled on ice, and loaded (0.5l) on a polyacrylamide gel in the 

Li-COR system (Li-COR, Lincoln, NE). The gel was prepared by using 20ml of Rapid Gel-XL 

6% Liquid Acrylamide (USB Corporation, Cleveland, OH), 15l of Tetramethylethylenediamine 

(TEMED)  and freshly prepared 10% Ammonium Persulfate. AFLP fragments of 90 to 600 bp 

were scored manually with reference to a 50-bp ladder (Li-COR, Lincoln, NE) and those 

fragments absent in at least one isolate but present in other isolates were considered as 

polymorphic. The presence and absence of fragments were scored as one and zero, respectively.  

2.3.7. VNTR analysis 

Nine VNTR markers (HK913, HK917, HK957, HK965, HK967, HK977, HK1059, 

HK1073, HK1043) developed by Suga et al. (2004) and one additional VNTR marker (HK1003) 

reported by Gale et al. (2005) were used to analyze the same set of isolates used in the AFLP 

analysis. To detect VNTR markers on Li-COR system (Li-COR, Lincoln, NE, USA), forward 

primers were synthesized with the M13 primer sequence (CACGACGTTGTAAAACGAC) 

added at the 5’-end and the M13 primer labeled with IRD-700 or -800 (Eurofins MWG Operon, 

AL, USA) was included in the PCR reactions. Each PCR reaction contained a total volume of 10 

μl consisting of 1× buffer, 200 μM of dNTP, 1.0 μM of each primer (forward, reverse and IRD-

700/800-labeled M13), 1 unit of Taq polymerase, and 25-30ng/μl of genomic DNA. PCR 

amplification was performed using a PTC-100 thermal cycler (MJ Research, USA). 
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Amplification was completed with initial denaturation at 94
o
C for 3 minutes followed by 3 

cycles of 94

C for 30s, 56


C for 30s and 72


C for 1 minute and additional 25 cycles of 94


C for 

30 s, 52

C for 30s, and 72


C for 45 s and final extension at 72


C for 5 minutes. PCR products 

were loaded on the Li-COR system (Li-COR, Lincoln, NE) following the same procedure used 

for detecting AFLP markers as described above. VNTR alleles were scored manually with 

reference to a 50bp ladder (Li-COR, Lincoln, NE). Amplicons with the same size were 

considered the same allele. 

2.3.8. Statistical analyses 

Analysis of variance (ANOVA) for disease severity and mycotoxin accumulation was 

performed on Arcsine and Log transformed data, respectively (Gomez and Gomez, 1984). 

ANOVA, least significance difference (LSD) for mean separation and Pearson Correlation 

Coefficients and t-test for population comparison were performed using SAS 9.1.3, (SAS 

Institute, Cary, NC). Standard deviation and standard error in disease severity and mycotoxin 

accumulation among isolates were calculated using Microsoft Excel 2003. 

Genetic distance (D), Nei`s unbiased gene diversity (H) (Nei, M. 1973), and gene flow 

(Nm) (McDermott, and McDonald, 1993) were analyzed using POPGENE version 1.32 (Yeh et 

al., 1997). The software Multilocus 1.3 was used to calculate the genotype diversity (GD) as (n/n 

-1) (1- ∑pi
2
), where pi is the frequency of the i

th
 genotype and n is the number of individuals 

sampled (Agapow and Burt, 2001). Then the index of linkage disequilibrium (LD) was 

calculated to test non-random association of alleles at different gene loci based on the index of 

association (IA). GenAlEx 6 was used for pair-wise population differentiation (Fst), gene flow 

(Nm) and analysis of molecular variance (AMOVA) (Peakall and Smouse, 2006). 
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2.4. Results 

2.4.1. Fusarium species identification and trichothecene chemotyping 

The primers UBC85F410 and UBC85R410 generated a Fg-complex-specific 332-bp 

amplicon, which was observed for all isolates analyzed except for R709. Phylogenetic analysis 

of the reductase and histone H3 gene sequences indicated that R709 is F. culmorum and all other 

isolates belong to the F. graminearum sensu stricto (data not shown). 

Among the 120 isolates collected from 1980 to 2000 in ND, 93% were of the 15ADON 

chemotype and only a few isolates (3% and 4%) were of the 3ADON or NIV chemotypes, 

respectively (Fig. 2.1A). In contrast, 44% of the 43 isolates from the new collection (2008) were 

of the 3ADON chemotype, while 56% of the isolates were of the 15ADON chemotype and no 

NIV isolates were found (Fig. 2.1B). 

2.4.2. Aggressiveness evaluation on spring wheat genotypes 

The 25 isolates of F. graminearum s. str. evaluated on the three spring wheat genotypes 

(Grandin, Steele-ND and ND 2710) varied in aggressiveness. Analysis of variance indicated that 

interaction between fungal isolate and wheat genotype was not significant, but disease severity 

was significantly different among isolates or wheat genotypes (Table 2.1). The average disease 

severity caused by individual isolates pooled based on wheat genotype ranged from 13.5±3.6 to 

55.6±5.4%. Isolate Fg08-001 had the highest disease severity but was not significantly different 

from some other isolates (Fg08-003, Fg08-004, Fg08-006, Fg08-008, Fg08-009, Fg08-010, 

Fg08-011, Fg08-012, R1700). The majority of the 3ADON isolates was highly aggressive 

causing a higher level of disease than the 15ADON isolates except for R1700 (Table 2.1).  

Among the three wheat genotypes tested, ND 2710 showed the lowest disease severity 

(DS=21.2%) while no significant differences were observed between Grandin (DS=46.4%) and 
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Steele-ND (DS=42.4%). The two populations (3ADON and 15ADON) interacted differently 

with the wheat genotypes, with the 3ADON population causing a significantly higher DS than 

the 15ADON population on the susceptible Grandin (t=4.4; p<0.0001) and the moderately 

resistant ND 2710 (t=2.7; p=0.0087) (Fig. 2.2). However, no significant difference in DS was 

detected on Steele-ND between the two populations (t=1.9, p=0.065) (Fig. 2.2).  

2.4.3. Trichothecene production in rice culture and grains 

The total amount of DON, 15ADON and 3ADON produced by individual isolates in rice 

cultures varied, ranging from no detection to 398.5 ± 81.5 ppm (standard error) (Table 2.1). Two 

15ADON isolates (R465 and R1247) had DON production below the detection level. All 

3ADON isolates except for Fg08-002 and R459 produced a large amount of 3ADON (61.6 to 

258.2 ppm), but the amount of 15ADON produced by the 15ADON isolates was relatively low 

(maximum of 19 ppm) (Table 2.1). Grouping of the isolates based on the chemotypes showed 

that the 3ADON population produced 1.5 times more DON and 86 times higher 3ADON but 6 

times less 15ADON than the 15ADON population in rice cultures (Table 2.3).  

The DON levels in grains harvested from the inoculated spikes were relatively low 

compared to those produced in rice cultures, ranging from 1.5±0.3 to 27.8±5.0 ppm (Table 2.1). 

The mean DON accumulated in grains from the susceptible cultivar Grandin (18.8 ppm) was 

significantly higher than that accumulated in those from ND 2710 (8.17 ppm) and Steele-ND 

(10.47 ppm). Although Steele-ND and ND 2710 showed significant differences in disease 

severity, the DON accumulation was similar between these two wheat genotypes, suggesting that 

different mechanisms may operate for resistance to FHB severity and DON accumulation. 

Comparison of the two populations (3ADON and 15ADON) on individual wheat genotypes 

indicated that the 3ADON population produced a significantly higher DON than the 15ADON 
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population on Grandin (t= 3.9; p=0.0006) and ND 2710 (t= 3.6; p=0.0016) (Fig. 2.3). 

Interestingly, the two populations did not show a significant difference in DON accumulation on 

Steele-ND (t= 1.7, p=0.1057) (Fig. 2.3). 

2.4.4. Growth rate and sporulation 

No significant differences in growth rates were observed between isolates of the 3ADON 

population and those of the 15ADON population (data not shown), but the 3ADON isolates 

produced a significantly (t=2.0, p=0.05) higher number of macroconidia (4.40.60 million 

conidia/ml) on MBA compared to the 15ADON isolates (3.30.74 million conidia/ml). 

2.4.5. Correlation between trichothecene production and disease severity 

A highly significant positive correlation existed between disease severity and DON 

production in both rice culture (R=0.58, P=<0.01) and grains (R=0.85, p=<0.01) (Fig. 2.4A and 

1.4D). A significant positive correlation was also identified between disease severity and 

3ADON (R= 0.57, p= <0.01) produced in rice culture (Fig. 2.4B). However, no significant 

correlation was found between disease severity and 15ADON amount (R=-0.05, p=0.64) (Fig. 

2.4C). 

2.4.6. Population genetic analyses 

A total of 33 isolates (Table 2.1) were subjected to AFLP analysis. The five primer pairs 

(E-AC+M-CG, E-AT+M-CC, E-AA+M-CC, E-AA+M-CT, and E-AA+M-AT) generated 40, 39, 

23, 38 and 32 polymorphic fragments, respectively. Among 172 AFLP loci scored, 70.9% were 

polymorphic in the 15ADON population compared to 64.5% in the 3ADON population. Both 

15ADON and 3ADON populations showed a genotype diversity (GD) value of 1, indicating that 

all isolates had a unique genotype. The gene diversity (H) was 0.189 for the 15ADON population 

and 0.166 for the 3ADON population, respectively. The linkage disequilibrium (LD) value was 
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0.057 (p<0.001) for the 15ADON population and 0.075 (p<0.001) for the 3ADON population. 

There was significant population genetic differentiation between two population (Fst=0.065, p= 

0.001) but two populations had relatively high gene flow (Nm= 7.1).  

Analysis of the same set of isolates with the VNTR markers showed that 60.8% of the 

VNTR loci were polymorphic in the 15ADON population and 49.3% were polymorphic in the 

3ADON population. The gene diversity was 0.161 and 0.148 for the 15ADON and 3ADON 

populations, respectively. The LD value was 0.001 (p=0.30) for the 15ADON population and 

0.075 (p=0.001) for the 3ADON population. The Nei`s unbiased genetic distance (D) was 0.055 

and the gene flow was relatively lower (Nm = 2.04) between the two populations. Analysis of 

molecular variance (AMOVA) showed 20% genetic variation between populations and 80% 

variation among individuals within population. There was significant population genetic 

differentiation (Fst= 0.197, p = 0.001) between 3ADON and 15ADON population. 

2.5. Discussion  

Our study showed that the frequency of F. graminearum isolates with a 3ADON 

chemotype was very low (3%) in the old collection, but increased by 15-fold in the new 

collection (Fig. 2.1A and 1.1B). This result is consistent with those reported previously (Gale et 

al. 2007; Ward et al. 2008; Guo et al. 2008), which demonstrated that a F. graminearum 

population with a 3ADON chemotype has emerged and increased since 1998. Gale et al. (2007) 

had reported genetically divergent populations of F. graminearum in North Dakota and 

Minnesota where thirty 3ADON isolates (9.4%) were identified among 587 isolates collected 

from 1999 to 2000. Ward et al. (2008) analyzed populations of F. graminearum in Canada and 

found that the 3ADON chemotype frequency in western Canada increased more than 14 fold 

between 1998 and 2004. They also demonstrated a dramatic longitudinal cline in which 3ADON 
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isolates were significantly more common in eastern Canada than in western provinces of Canada. 

In addition, Guo et al. (2008) analyzed F. graminearum samples collected from 15 locations of 

Manitoba from 2004 to 2005 and found that percentages of isolates with a 3ADON chemotype 

ranged from 0 to 95.7% depending on the locations sampled. These findings contradict earlier 

reports by Zeller et al. (2003, 2004), who suggested that the F. graminearum population in North 

America is homogeneous and can be represented by local inocula in breeding programs. Lack of 

significant differentiation or subdivision among the F. graminearum populations analyzed by 

Zeller et al. (2003, 2004) might be due to absence or very low frequency of the 3ADON isolates 

in their samples collected from 1999 and 2000. The dramatic population changes in F. 

graminearum and significant increase of the 3ADON isolates might have not occurred in the 

United States until 2000.  

Based on the genetic variation derived from the AFLP and VNTR, we found higher gene 

diversity, polymorphic loci and significant linkage disequilibrium on 15ADON isolates 

compared to 3ADON isolates. Further, the significant population differentiation (Fst) and limited 

gene flow (Nm) between two populations showed that 3ADON population might be new origin. 

This result is consistent with the finding of Ward et al. (2008) which showed the significant level 

of genetic differentiation between 3ADON and 15ADON populations. However, to define the 

population genetic relation prevailing in North Dakota isolates, analysis of lager collection of 

isolates is necessary.  

The origin of 3ADON isolates in the North American population is not known, but it was 

suggested that they were introduced from other continents through contaminated seed (Gale et al. 

2007; Ward et al. 2008). Gale et al. (2007) compared 30 isolates of the 3ADON chemotype 

collected from North Dakota and Minnesota with a small sample of isolates collected from Italy, 



52 

and found significant genetic similarity between the two populations; therefore, they suggested 

that the 3ADON population in the Upper Midwest of the US might have originated from Europe. 

Ward et al. (2008) further indicated that Canadian 3ADON populations were more closely 

related to Italian populations than to the sympatric 15ADON populations and thus concluded that 

the 3ADON populations in North America were due to a transcontinental introduction. However, 

if the 3ADON populations did originate from other continent(s), the first introduction might not 

have occurred recently since three toxic and relatively aggressive isolates with a 3ADON 

chemotype were identified among the isolates collected between 1979 and 1981 from Ontario, 

Canada (Ouellet and Seifert, 1993; Gilbert et al. 2001) and two of these isolates were genetically 

connected to the 3ADON population (3P) from Prince Edward Island (Ward et al. 2008). We 

also identified three 3ADON isolates (R458, R459, and R1391) in the old collection during 

1980s from North Dakota, suggesting that 3ADON isolates were present in the Upper Midwest 

of the US at least at the same time as they were in eastern Canada. It is not known where these 

old 3ADON isolates came from. Further studies are required to reveal their relationship to the 

new 3ADON isolates in ND and those previously reported in other regions of North America 

(Gale et al. 2007; Ward et al. 2008).  

 Our study indicated that 3ADON isolates accumulated significantly higher DON than 

15ADON isolates in rice culture. This is consistent with the study of Ward et al. (2008), which 

demonstrated that mean trichothecene accumulation was significantly greater for isolates with a 

3ADON chemotype than observed for the 15W population with a 15ADON chemotype in vitro. 

We inoculated three wheat genotypes with a subset of isolates from each of the two populations 

with a 3ADON or 15ADON chemotype and showed that the average trichothecene accumulation 

by 3ADON isolates inoculated on the susceptible wheat cultivar Grandin was greater than that 
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observed for 15ADON isolates. Mean trichothecene accumulation on the moderately resistant 

wheat line ND 2710 also was significantly greater for 3ADON isolates than for 15ADON 

isolates. However, no significant difference in trichothecene accumulation on Steele-ND was 

observed between the two chemotypes. These results suggest that the two chemotypes may 

interact differently with wheat genotypes having different levels or sources of FHB resistance. 

Similar results were observed in the study of Ward et al. (2008), which showed that the mean 

DON accumulation was significantly higher for the 3ADON population than for the 15ADON 

population on the susceptible cultivar Robin; however, this difference was not statistically 

significant on the moderately resistant cultivar 5062 HR. 

Our study also showed that the 3ADON population caused a significantly higher level of 

disease than the 15ADON population on Grandin and ND 2710 although no significant 

difference in disease level was observed between the two chemotypes when inoculated on 

Steele-ND. This is in contrast to the result of Ward et al. (2008) who found no significant 

difference in pathogenicity between the two chemotypes on either of the two cultivars (Robin 

and 5062 HR) evaluated. The discrepancy between the results of Ward et al. (2008) and ours was 

probably due to the inoculation methods used. Ward et al. (2008) used spray inoculation while 

we used single-floret inoculation. Previous studies demonstrated that DON is not required for 

initial infection by F. graminearum to cause FHB, but it facilitates the disease spread from an 

infected floret into neighboring florets of a spike (Jansen et al., 2005; Proctor et al., 1995). 

Therefore, the spray-inoculation method might not be able to identify the differences in 

aggressiveness between isolates with different levels of DON production. In a field experiment, 

we also did not observe significant differences in disease severity on Trooper (susceptible to 

FHB) or Alsen (moderately resistant to FHB) when spray inoculated with the 3ADON and 
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15ADON isolates, although the DON levels were significantly higher for the 3ADON isolates 

than for the 15ADON isolates (Ali et al., unpublished data). 

The spring wheat genotype ND 2710 with FHB resistance derived from Sumai3 

(Frohberg et al. 2004) showed a significantly higher disease severity when inoculated with the 

3ADON population than with the 15ADON population, but no significant disease severity 

difference was observed in Steele-ND (Fig. 2.2), a cultivar with FHB resistance from T. 

diccocoides (Mergoum et al. 2005), when inoculated with the two chemotype groups. Similarly, 

the 3ADON isolates accumulated higher DON in grains of ND 2710 and Steele-ND compared to 

the 15ADON isolates, but a significant difference in DON accumulation between the two 

chemotype populations were only observed on ND 2710 (Fig. 2.3). These results strongly 

suggest that differences in aggressiveness and DON production between the chemotype groups 

vary with host genotype used. In the Northern Great Plains, most recently released wheat 

cultivars such as ‘Alsen’, ‘Faller’ and ‘Glenn’ have FHB resistance derived from Sumai3 

(Frohberg et al., 2004) while Steele-ND has resistance derived from Triticum dicoccoides 

(Mergoum et al. 2007). It remains to be investigated whether these wheat cultivars have different 

reactions to the two chemotypes and if FHB resistance plays any role in the population shift of F. 

graminearum. 

Significantly high correlations between disease severity and total DON production were 

observed in three wheat genotypes inoculated with either of the two chemotypes (Fig. 2.4). This 

is consistent with the results of previous studies (Goswami and Kristler, 2005; Wang et al 2006; 

Carter et al., 2002). Mesterhazy et al. (1999), Bai et al. (1996), Paul et al. (2005), and Ma et al. 

(2009) showed a strong positive correlation between Fusarium-diseased kernels and total DON 

accumulation. The amount of total DON accumulation depends on the level of host resistance 
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and is generally higher in susceptible cultivars (Mesterha`zy et al. 1999; Mesterha`zy, 2002). 

However, other studies had shown a zero or negative correlation between FHB severity and 

amount of DON accumulation in grains (Martin and Johnston, 1982; Edwards et al., 2001; 

Alvarez et al., 2010). The contradictions among those studies could be due to the use of different 

hosts or isolates and/or inoculation methods.  

In summary, our results indicate that F. graminrarum isolates with a 3ADON chemotype 

have increased very rapidly in recent years in North Dakota. They are more aggressive by 

causing more disease in wheat cultivars and produce a higher amount of total DON in grains 

harvested from inoculated spikes. This information has implications on development of FHB-

resistant wheat cultivars and disease management. First, the F. graminearum population in North 

America consists of chemotypes with different aggressiveness and mycotoxin productivity. It is 

postulated that changes in agricultural practices such as use of host resistance and fungicides 

may drive the pathogen populations to shift to those with greater aggressiveness and DON 

production. Thus, sampling and monitoring of F. graminearum populations periodically on local 

and national scales are still necessary. In addition, screening of resistance for FHB should be 

made with inocula combining representative isolates with different trichothecene types in 

breeding programs. This will ensure the development of cereal crops with broad resistance to 

FHB pathogens. Finally, wheat genotypes with different sources of FHB resistance may react 

differentially to different chemotypes in disease severity and DON accumulation. This highlights 

the need and importance of using different sources of host resistance in combating the disease. 
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Figure 2.1. Frequency distribution of chemotypes among the 120 Fusarium graminearum 

isolates collected during 1981-2000 (A) and the 43 isolates collected in 2008 (B) from different 

locations of North Dakota. 
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Figure 2.2. Disease severity (DS) on each of the three wheat genotypes (Grandin, Steele-ND, 

and ND 2710) averaged based on chemotype populations (3ADON or 15ADON). The 3ADON 

population caused a higher DS on Grandin and ND 2710 than the 15ADON population at a 

highly significant p<0.0001) and significant level p=0.0087), respectively. However, no 

significant difference in DS was detected on Steele-ND between the two populations (p=0.065). 
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Figure 2.3. DON accumulation in harvested grains of the three wheat genotypes (Grandin, 

Steele-ND, and ND 2710) averaged based on chemotype population (3ADON or 15ADON). The 

3ADON population accumulated significantly more DON on Grandin (p=0.0006) and ND 2710 

(p=0.0016) than the 15ADON population. However, no significant difference (p=0.1057) in 

DON accumulation was detected on Steele-ND between the two populations. 
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Figure 2.4. Correlation between disease severity (DS) and trichothecene production in rice 

culture and grains harvested from inoculated heads of the three wheat genotypes (Grandin, 

Steele-ND and ND 2710). A. DS with total DON in rice culture, B. DS with 3ADON in rice 

culture, C. DS with 15ADON in rice culture, and D. DS with DON in grains. 
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Table 2.1. Chemotype, aggressiveness based on disease severity (%), and trichothecenes (DON, 15ADON, 3ADON and NIV) (mg/kg = ppm) of 

the 33 Fusarium graminearum isolates used in the study. 
Isolate Year of 

collection 

Origin  Chemotypea DSb Trichothecenes in rice culture (ppm)c Trichothecenes in grains (ppm)d  

DON 3ADON  15ADON  NIV DON 3ADO

N 

15ADON 

Fg08-001 2008 Foster/ ND/USA 3ADON 55.65.4a 253.8  27.6 142.918.3 * * 22.58.0 1.2 -e 

Fg08-002 2008 Barnes/ ND/USA 3ADON 23.25.8ik 25.7  7.3 3.41.4 - - 5.11.4 - - 

Fg08-003 2008 Steele / ND/USA 3ADON 44.83.9af 305.4  44.3 182.633.8 * * 24.04.0 0.6 - 

Fg08-004 2008 Barnes/ ND/USA 3ADON 45.74.6ae 305.3  59.5 172.819.9 2.1 * 16.910.7 0.9 - 

Fg08-005 2008 Foster/ ND/USA 3ADON 36.53.5dh 221.8  1.7 94.611.2 * * 15.75.1 0.9 … 

Fg08-006 2008 Steele/ ND/USA 3ADON 51.76.8ab 298.3 14.5 210.315.8 2.1 * 21.75.1 0.6 - 

Fg08-007 2008 Foster/ ND/USA 15ADON 31.80.2fi 188.8  33.5 * 196.7 * 7.92.2 - 0.6 

Fg08-008 2008 Steele/ ND/USA 3ADON 46.07.4af 300.4  7.3 228.629.7 * * 19.33.1 0.7 - 

Fg08-009 2008 Foster/ ND/USA 3ADON 51.410.6ac 398.5  81.8 258.238.1 2.80.8 * 20.79.0 1.7 - 

Fg08-010 2008 Barnes/ ND/USA 3ADON 42.73.4ag 282.5  47.2 235.536.7 2.1 2.2 16.96.8 - - 

Fg08-011 2008 Foster/ ND/USA 3ADON 47.93.3ad 320.9  71.1 252.736.2 2.30.3 * 21.57.5 0.7 - 

Fg08-012 2008 Steele/ ND/USA 3ADON 45.75.9ae 273.5  16.4 174.619.0 * * 27.65.0 1.1 - 

Fg08-013 2008 Steele/ ND/USA 15ADON 31.62.4fi 158.9  23.7 * 3.5 * 3.41.2 - - 

Fg08-018 2008 Steele/ ND/USA 15ADON 39.23.2bh 396.2  40.9 2.10.1 10.13.1 * 6.82.5 - - 

Fg08-019f 2008 Foster/ ND/USA … … … … … … … … … 

Fg08-020f 2008 Barnes/ ND/USA … … … … … … … … … 

Fg08-021f 2008 Barnes/ ND/USA … … … … … … … … … 

R010 1983 -/ ND/USA 15ADON 38.02.2dh 398.1  77.7 * 11.31.9 * 14.94.0 - 0.6 

R366 1981 - / ND/USA 15ADON 23.22.6ik 1.3  0.7 - … … 2.81.3  - 

R458f 1981 -/ ND/USA … … … … … … … … … 

R459 1981 - / ND/USA 3ADON 33.42.9ei 4.4   0.2 - * - 2.31.4 - - 

R465 1981 - / ND/USA 15ADON 13.53.6k * * * * 2.70.9 - - 

R1171 1991 Cavalier/ ND/USA 15ADON 35.47.0di 195.1  49.0 2.20.2 16.0 * 10.53.7 - 0.6 

R1215f 1993 -/ ND/USA … … … … … … … … … 

R1247 1993 - / ND/USA 15ADON 16.35.2jk * * * * 1.50.3 - - 

R1265f 1994 - / ND/USA … … … … … … … … … 

R1310 1995 Benson/ ND/USA 15ADON 34.31.1di 145.9  66.6 2.50.7 17.57.0 * 8.71.0 - - 

R1318 1995 Cass/ ND/USA 15ADON 38.26.2ch 136.8  8.6 * 11.21.2 * 12.14.9 - - 

R1390 1990 -/ ND/USA 15ADON 26.42.7ij 107.8  20.4 * 3.81.2 * 6.92.7 - - 

R1391 1990 - / ND/USA 3ADON 29.65.0gi 144.1  19.0 61.67.1 * * 11.13.0 - - 

R1628f 2001 Mountrail/ND/USA … … … … … … … … … 

R1694f 2004  Cass/ND/USA … … … … … … … … … 

R1700 2004 Cass/ ND/USA 15ADON 45.85.4ae 285.0  14.4 * 5.31.6 * 12.85.1 - 0.9 
a
Chemotype was determined by the multiplex-PCR assay of Ward et al. (2002).
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b
The disease severity (DS) was recorded from Grandin, Steele-ND and ND 2710 at 21 days after inoculation and the averaged DS was 

calculated across the three wheat genotypes for each isolate. Least significant difference (LSD) analysis was done with the Arcsine 

transformed value of DS. DS values indicated with the same lowercase letter (s) were not significantly different at = 0.05. 
c
Trichothecenes in rice culture were measured and averaged from three replications. 

d
Trichothecenes in grains was obtained from wheat heads inoculated in the greenhouse and averaged from the three wheat genotypes. 

ppm = part per million (mg/kg of samples), * =Not detected at <2ppm, -= not detected at <0.5ppm,  = Standard Error of Mean  
e
– indicates the information is unknown. 

f
These isolates were only included in the genetic diversity analysis. 
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Table 2.2. Analysis of variance of disease severity (DS) on the three wheat genotypes (Grandin, 

Steele-ND and ND 2710) inoculated by 30 isolates of Fusarium graminearum. 

Source of variation
a
 df MS

b
 F value P>F 

Fungal isolate  24 444.5 5.47 <0.0001 

Wheat genotype  2 5618.2 68.67 <0.0001 

Fungal isolate  wheat genotype 48 83.5 1.12 0.45 

df=degree of freedom. 

A twenty fine isolates Fusarium graminearum and three wheat genotypes (Grandin, Steele-ND 

and ND 2710) were used in this study. 
b
Arcsine transformation of disease severity. Mean square (MS) derived from the type III sum of 

squares. 

 

Table 2.3. Comparison of the 3ADON population with the 15ADON population of Fusarium 

graminerum in trichothecene production in rice culture and grains harvested from the inoculated 

wheat genotypes. 

a
The 3ADON population consisted of 13 isolates and the 15ADON population contained 12 

isolates of Fusarium graminearum. 
b
Mean of DON or its derivatives was calculated among the isolates used in each population.  

c
- not detected. 
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CHAPTER 3. RNA-SEQ REVEALED GENE EXPRESSION DIFFERENCES BETWEEN 

3ADON AND 15ADON POPULATIONS OF FUSARIUM GRAMINEARUM IN 

VITRO AND IN PLANTA 

3.1 Abstract 

Fusarium graminearum is the major causal agent of Fusarium head blight (FHB) of 

wheat and barley worldwide. The fungus produces several trichothecenes [Deoxynivalenol 

(DON) and its acetylated derivatives, 3-acetyldeoxynivalenol (3ADON) and 15-

acetyldeoxynivalenol (15ADON) as well as nivalenol (NIV)], which are harmful to humans and 

animals. Recent studies showed that the 3ADON-producing isolates dramatically increased in the 

fungal population and were more aggressive and accumulated more DON in wheat grains than 

the prevalent 15ADON-producing isolates in North America. To understand the genetic and 

molecular basis of the differences between these two populations, we compared transcriptomes 

of the 3ADON and 15ADON populations in vitro in culture media and in planta inoculation on 

susceptible host ‘Briggs’ using RNA-seq technology. The total number of reads generated from 

each sample (replicate) ranged from 26.4 to 49.5 million for the 3ADON population and 27.8 to 

39.1 million for the 15ADON population. The in vitro gene expression comparison between the 

3ADON and 15ADON population identified a total of 479 up-regulated and 801 down-regulated 

genes in the 3ADON population. Of the 479 up-regulated genes, 18.6% are involved in functions 

for C-compound and carbohydrate metabolism and 7.72% for polysaccharide metabolism, while 

57.6% of them are under category of unclassified proteins. Further pair-wise gene expression 

comparisons between the two fungal populations in planta revealed 477, 451 and 303 

differentially expressed genes at 48, 96, and 144 hours after inoculation (HAI), respectively. The 

3ADON population had 185, 89, and 62 in planta up-regulated genes compared to the 15ADON 
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population, respectively. The in planta up regulated genes in 3ADON population were 

significantly enriched for categories related to non-vesicular cellular import, degradation of 

glutamine, C-compound and carbohydrate metabolism and transport, allantoin and allantoate 

transport at 48 HAI; genes for detoxification, cell rescue, defense and virulence at 96 HAI; and 

genes for metabolism of acetic acid derivatives, detoxification, and non-vesicular cellular import 

at 144 HAI. The comparative analyses of in planta versus in vitro gene expression profiles 

further revealed 2,159, 1,981 and 2,095 genes in 3ADON and 2,415, 2,059 and 1,777 genes in 

15ADON were up-regulated in planta at three time points, respectively. Of these, 633, 526 and 

668 genes were only up-regulated in the 3ADON population at the three time points.  Our RNA-

seq analyses provide a foundation for further understanding of molecular mechanisms 

contributing to the increased aggressiveness and DON production of the recently emerged 

3ADON population. 

3.2. Introduction 

Fusarium graminearum (telomorph Gibberrella zeae) is the major causal agent of 

Fusarium head blight (FHB) in North America and other regions of the world. The pathogen not 

only causes direct yield losses, but also produces various types of trichothecenes 

[Deoxynivalenol (DON) and its acetylated forms (3-acetyl-4-deoxynivalenol=3ADON and 15-

acetyl-4-deoxvevalenol=15ADON), nivalenol (NIV) and its acetylated form 4-acetylnevalenol] 

(Desjardins, 2006). DON is a eukaryotic protein synthesis inhibitor which acts as a virulence 

factor during disease development (Jansen et al., 2005; Proctor et al., 1995) and poses severe 

health hazards to human and animals (McLaughlin et al., 2009; Desjardins et al. 2000; 

Desjardins and Hohn, 1997). FHB and DON are primarily managed through an integrated 

approach that combines use of moderately resistant cultivars, reduction of sources of local 
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inoculum and a timely fungicide application (McMullen et al., 1997). However, sources of 

effective FHB resistance are limited and use of single source of resistance in commercial 

cultivars may create selection pressure on the pathogen and  lead to outbreak of more 

virulent/aggressive pathogen population (Bai and Shaner, 2004; Buerstmayr et al., 2009).  

In recent years, population genetics, global species structure and trichothecene 

chemotype diversity have been extensively studied to understand the FHB pathogen complex 

(Ward et al., 2008; Starkey et al., 2007, Gale et al., 2002, O’Donnell et al., 2004). Studies have 

shown that one chemotype is dominant in specific geographic regions along with co-existence of 

other types in small fractions. Dominance of NIV-type isolates along with low frequency of 

15ADON- or 3ADON-type isolates is more common in Asian regions (Qu et al., 2008, Yang et 

al., 2008; Puri et al., 2012). In North America, dominance of 15ADON-type isolates along with 

presence of 3ADON- or NIV-type isolates was observed (Zeller et al. 2003; 2004; Puri and 

Zhong, 2010; Gale et al., 2011). However, recent studies have indicated that 3ADON-type 

isolates have been significantly increased in this region (Gale et al. 2007; Ward et al. 2008). 

More recently, significant increase of the F. graminearum isolates with the 3ADON chemotype 

has been reported in China (Zhang et al., 2010), Canada (Ward et al. 2008) and North Dakota 

(Puri and Zhong, 2010). The newly emerging 3ADON population appears to be more aggressive 

based on growth rate, disease severity on different cultivars with varied levels of resistance, and 

DON production in vitro (Ward et al. 2008; Puri and Zhong, 2010). Our data from two years of 

field experiments using susceptible and moderately resistant wheat cultivars also indicated that 

the 3ADON producers accumulated a higher level of DON on grains irrespective of host 

resistance after spray inoculation (unpublished). The recovery of Fusarium isolates from 

artificially inoculated heads with a mixture of both 3ADON- and 15ADON-type isolates 
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indicated the recovery frequencies were similar for both types of isolates; suggesting that the 

3ADON isolates do not have advantage of outcompeting 15ADON isolates during infection. 

However, it is still not known why the 3ADON population produces a higher level of DON over 

the 15ADON population.  

Trichothecenes produced by F. graminearum can be broadly categorized into two groups 

(type A or type B trichothecenes) based on presence or absence of oxygen atoms at carbon atoms 

7 (C-7) and 8 (C-8) (Alexander et al., 2009; Desjardins, 2006). Type A trichothecene (T-2 toxin, 

HT-2 toxin, and 4,15-diacetoxyscirpenol) has no hydroxyl group at C-7 but has a hydroxyl group 

and ester group or no oxygen substitution at carbon atom C-8, whereas Type B trichothecenes 

(e.g. DON, NIV, and its derivatives) has a hydroxyl group at C-7 and a keto (carbonyl) group at 

C-8  (Desjardins et al. 1993; Ueno, 1980; McCormick et al., 2011). DON and NIV have 

structural differences; DON and its acetylated forms (3ADON or 15ADON) lack an oxygen 

atom at carbon C-4 while NIV and its C-4 acetyl derivatives having an oxygen atom at carbon C-

4 (Alexander et al., 2009; Kimura et al., 2007).  

Trichothecene biosynthesis in Fusarium involves a complex pathway consisting of 

oxygenation, isomerization and esterification steps (Alexander et al., 2009). The enzymes 

involved in these biosynthetic steps are encoded by 15 different TRI genes located at three loci 

on different chromosomes. These include the TRI core cluster with 12 genes (Tri3, Tri4, Tri5, 

Tri6, Tri7 Tri8, Tri9, Tri10, Tri11, Tri12, Tri13, and Tri14) (Brown et al., 2004), the two-gene 

(Tri1-Tri16) locus (Brown et al., 2003; Meek et al., 2003, Peplow et al., 2003), and a single gene 

(Tri101) locus (Kimura et al., 1998). Production of DON or NIV trichothecene depends on the 

function of the two genes, Tri13 (cytochrome P450 monooxygenase) and Tri7 (acetyltransferase) 

(Lee et al., 2002). Both genes are functional and required in the NIV producers, while the DON 
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producers carry non-functional copies of these genes due to multiple deletion or insertions events 

(Lee et al., 2002; Brown et al., 2002). The genetic basis of 3ADON and 15ADON production 

and their biological significance are still not clear. Recently, Alexander et al. (2011) indicated 

that Tri8 (for trichothecene C-3 esterase) regulates the production of 3ADON or 15ADON and is 

required to convert diacetylated 3- and 15- ADON intermediate into 3ADON and 15ADON, 

respectively. However, Kimura et al. (2003) showed that Tri3 and Tri8 are not necessary for 

3ADON biosynthesis based on comparative sequence and structure analysis of Tri5 gene cluster 

of 15ADON (strain H-11) and 4ANIV (strain 88-1) with 3ADON (strain F15). They further 

highlighted the involvement of three pathway genes (FgTri4, FgTri5 and FgTri11) in 3ADON 

biosynthesis. In addition, other research groups have identified genetic markers at Tri3, Tri12 

and Tri13 (Starkey et al., 2007; Ward et al., 2008; Wang et al., 2008) which are correlated with 

the production of 3ADON, 15ADON or NIV. However, the causal relationship among these 

markers with 3A- or 15A- DON biosynthesis and their in planta expression have not been 

demonstrated yet (Alexander et al., 2009). Thus, a global gene regulation and transcript 

abundance study is required to understand the difference in DON production between the 

3ADON populations and the existing 15ADON population during host infection (in planta) and 

under axenic culture (in vitro) conditions. 

Gene expression profiles and their relationships with DON accumulation, virulence or 

aggressiveness during F. graminearum-wheat and barley interactions have been studied using 

DNA microarrays (Boddu et al. 2006, 2007; Gardiner et al. 2009, 2010; Lysøe et al. 2011). 

However, comparative studies of transcriptomes of the two trichothecene types (3ADON and 

15ADON) during host infection have not been conducted and the mechanisms involved in higher 

DON production in 3ADON isolates are not known. With the development of next generation 
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sequencing technologies, new tools such as RNA-seq provide more effective approaches to study 

the gene expression profile changes of organisms under different conditions (Wang et al. 2009). 

The RNA-seq method is more sensitive than microarrays especially in detecting those transcripts 

that are rarely expressed (Wang et al. 2009). Wang et al. (2009) showed that 8 million reads are 

sufficient to reach RNA-Seq saturation for most samples with large genome sizes. More 

recently, Bashir et al. (2009) have demonstrated that more than 90% of the transcripts in human 

samples can be adequately covered with just a million sequence reads. The coverage is more 

than sufficient to reach the saturation needed in RNA-Seq for small genomes such as those of 

filamentous fungi, while costs are comparable to the DNA microarray approach. Thus, the 

overall goal of this study is to understand the molecular mechanisms that make the 3ADON 

population accumulate a higher DON on grains than the 15ADON population during infection on 

a susceptible cultivar with the following specific objectives: i) to compare the transcriptomes of 

the 3ADON- and 15ADON-type populations in vitro and in planta using the RNA-seq approach, 

and ii) to identify the candidate genes related to production of DON, and 3ADON or 15ADON in 

F. graminearum. 

3.3. Materials and Methods 

3.3.1. Fusarium graminearum isolates 

Twenty F. graminearum isolates with ten each trichothecene (3ADON- and 15ADON-

type) were collected during 2008 to 2010 from North Dakota and characterized for disease 

aggressiveness and DON accumulation (Puri and Zhong, 2010; and this study) (Table 3.1). Each 

isolates were tested on greenhouse experiments using point inoculation on three spring wheat 

genotypes with various levels of resistance to FHB, including Grandin (susceptible), Steele-ND 

(moderately resistant), and ND 2710 (resistant). Inoculated heads were harvested at maturity and 
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the amount of DON on grains was analyzed. The plant growth conditions, inoculum preparation, 

inoculation, disease scoring, data analysis, and DON evaluation were the same as previously 

described (Puri and Zhong, 2010).  

3.3.2. Sample collection for RNA-seq 

The in vitro samples were collected from axenic cultures of individual population (mixed 

spores) plated on the cellophane membrane overlaid on Mung Bean Agar (MBA) media. The 

fungal cultures were grown at 23±1°C with alternate 12 h dark and light cycles, and arranged in 

Completely Randomized Design (CRD) with two replicates. At fifth day after plating, mycelia 

were scrapped, frozen immediately in liquid nitrogen, grounded to a fine powder and stored at -

80°C until use. In in vitro a toal four samples {two fungal populations (10 isolate mixtures from 

each population) with two replications} were used for RNA isolation. 

The in planta samples were collected at various infection stages from the FHB 

susceptible wheat cultivar ‘Briggs’ (Devkota et al., 2007) inoculated with the 15ADON and 

3ADON populations separately. Seven seeds were planted on 15cm plastic buckets. The buckets 

were filled with Sunshine pot mix (Sun Gro Horticulture Canada Ltd.) and kept under 

greenhouse with 16 h supplemental lights at 23±1°C. Plants were fertilized with slow releasing 

Osmocote
+
 (15:9:12) (Everris NA, Inc, Marysville OH) and Plantex 20-20-20 (Plant Products 

Co. Ltd, Ontario, Canada) at a two weeks interval. Two isolate populations were arranged on 

Randomized Complete Block Design with two replications. 

Single central spikelet of individual head was inoculated during anthesis (Feekes growth 

stage 10.5) with 3ADON and 15ADON populations separately. For each population, 10 F. 

graminearum isolates were used. Inoculum was prepared as described by Puri and Zhong (2010). 

The central florets of eight to ten heads/reps were inoculated with 1000 macro-conidia per floret 
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and the florets adjacent to the inoculated floret were marked with sharpie markers. Then, the 

plants were kept in a humidity chamber for 48 h with temperature at 26-27°C and 18 h light 

under a high humidity condition (vapor misting run for 30 s on every 8 m). After 48 h, the plants 

were moved back to the greenhouse under normal conditions. The inoculated florets were 

collected from 8-10 heads per replicate at 48, 96 and 144 hours after inoculation (HAI), 

respectively, frozen immediately in liquid nitrogen, and stored at -80°C until use. Thus in total, 

12 floret samples {three time points (48, 96, and 144 HAI), two treatments (15ADON and 

3ADON), and two replications} were used for total RNA isolation. 

3.3.3. RNA extraction, library preparation and RNA sequencing 

Total RNA was extracted from approximately 30 mg of ground plant or mycelial tissue 

using the SV total RNA isolation system (Promega BioSciences LLC, CA, USA) following the 

manufacturer’s instruction. RNA integrity, quantity and quality were determined using a 1.2% 

Agarose gel and the Bio-Analyzer 2100 (Agilent Technologies, San Diego, CA). Total RNA was 

diluted to 50 ng/µl and stored at -80°C for further use. Approximately 3µg of total RNA was 

used to prepare library using the TruSeq RNA Sample Preparation Kit (Illumuna, San Diago, 

CA) according to the manufacturer’s protocol. Briefly, the poly-A containing mRNA was 

purified from the total RNA sample using the poly-T oligo attached to the magnetic beads. After 

purification, mRNA was fragmented into small pieces using divalent cations under elevated 

temperature. The fragmented mRNA was converted to first strand cDNA using reverse 

transcriptase and random primers. Single strand cDNA was further converted to double strand 

(ds) cDNA using DNA polymerase I and RNase H. Then, the ds cDNA was processed for end 

repair and added with single ‘A’ base to the 3’ ends. The products were ligated with indexing 

adapters, purified and enriched with PCR to develop the final sequencing library. The prepared 
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libraries were sent to Huntsman Cancer Institute, University of Utah (Salt Lake City, UT) for 

sequencing. The Illumina HiSeq 2000 sequencing system was used for generating 50bp single-

end reads for total 16 libraries (4 in vitro + 12 in plnata).  

3.3.4. Mapping sequence reads to the reference genome and identification of differentially 

expressed genes 

The sequence read mapping, transcript abundance, and differential gene expression 

analysis were performed as described by Trapnell et al. (2012). The assembled and annotated F. 

graminearum PH-1 genome sequence was downloaded from the Broad Institute 

(http://broadinstitute.org/annotation/genome/fusarium_group/MultiDownloads.html; files: 

supercontigs.fasta and transcripts.gtf) for estimation of transcript abundances and other analyses. 

All sequence reads were trimmed to remove the low-quality sequences (first 13 bases). The 

trimmed reads (37 bases) were then aligned to the F. graminearum reference genome (433 

contigs, 13,321 genes and 37,516 exons) using the short DNA sequences aligner Bowtie v0.12.5 

(http://bowtie-bio.sourceforge.net/index.shtml; Langmead et al., 2009) and TopHat v2.0.0 

(http://tophat.cbcb.umd.edu/; Trapnell et al., 2009; 2012) with the default settings. The aligned 

reads were further processed for downstream analysis using Cufflinks v0.9.3 

(http://cufflinks.cbcb.umd.edu/; Trapnell et al., 2010) which assembles individual transcript 

reads from RNA-Seq and map them into the genome. The normalized gene expression levels 

based on fragments per kilobase of transcript per million fragments mapped (FPKM) were 

calculated using all parameters on default settings (Trapnell et al. 2010). The transcript was 

considered as expressed when the FPKM value was greater than 0.1 and the lower boundary for 

FPKM value was greater than zero at 95% confidence interval. 

http://broadinstitute.org/annotation/genome/fusarium_group/MultiDownloads.html
http://bowtie-bio.sourceforge.net/index.shtml
http://tophat.cbcb.umd.edu/
http://cufflinks.cbcb.umd.edu/
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Once the transcript abundance (e.g. FPKM) was calculated for individual sample files 

using Cufflinks, output files were merged pairwise for each comparison (in vitro comparison 

between two populations, in planta comparison between two populations and in planta versus in 

vitro for each population) using Cufflinks utility program, Cuffmerge, which gives a single 

annotation file for differential analysis (Trapnell et al, 2012). The pairwise comparisons of 

differential expression at gene level for each time point of infection or in culture media were 

done using the Cuffdiff program on the Cufflinks version 1.3.0 (Trapnell et al, 2010). The genes 

were considered to be significant in differential expression if Log2 FPKM (fold change) was 

≥1.0 and false discovery rate (FDR, the adjusted P value) was <0.01.  The q-value which is a 

positive FDR analogue of the p-value was set to <0.01 (Storey and Tibshirani, 2003).  

In order to visualize the expression data from all samples into two dimensions, principal 

component analysis (PCA) was performed using JMP (JMP Genomics v 6.0 SAS Institute Inc., 

Cary, NC) for all genes (with novel transcripts excluded). The expression data were transformed 

using mean normalization prior to PCA. The expression data of individual conditions were 

divided by their mean values across all treatment conditions in order to neutralize the influence 

of hidden factors. 

3.3.5. Functional categorization of differently expressed genes 

The functional categorization analysis of differently expressed genes was done online for 

all pairwise comparisons using the Munich Information Center for Protein Sequences (MIPS) 

functional catalogue (Ruepp et al. 2004). The functional categories and subcategories were 

regarded as enriched in genome if an enrichment P- and FDR-value were below <0.05. The 

KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analyses were performed using 
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interface on Blast2GO (Blast2GO v2.6.0, http://www.blast2go.com/b2ghome) for all DEGs to 

identify gene enrichment on specific pathway.  

3.4. Results 

3.4.1. Aggressiveness in disease development and DON production of the 3ADON and 

15ADON populations 

Randomly selected F. graminearum isolates from both populations (3ADON and 

15ADON) were evaluated for aggressiveness in disease development at 21 days after point 

inoculation, and for DON accumulation on grains using three spring wheat genotypes (Grandin, 

Steele-ND, and ND 2710). The results indicated that the differences in aggressiveness based on 

disease severity (DS) were not significant between the two populations in all genotypes 

evaluated (Grandin, t=1.6, p=0.1939; Steele ND, t=0.58, p=0.5676; ND 2710, t=0.42, p=0.6825). 

The average DS on the susceptible cultivar Grandin was 65.3±11.4% for the 3ADON population 

and 56.8±16.3% for the 15ADON populations. In the resistant genotype ND 2710, DS was 

29.6±7.2% and 27.9±10.1% for the 3ADON and 15ADON populations, respectively.  

However, DON levels on the harvested grains produced by the 3ADON isolates were 

higher than those produced by the 15ADON isolates on all genotype evaluated (Fig 2.1). The 

3ADON population produced a significantly higher DON on the susceptible cultivar Grandin 

(t=8.1, p< 0.0001) and on the resistant genotype ND 2710 (t=3.4, p=0.0034), while no significant 

difference was found on the moderately resistant cultivar Steele ND (t=0.8, p=0.44) (Fig. 3.1). 

The DON derivaries i.e. (3ADON and 15ADON) were not detectable on grains from inoculated 

heads. 
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3.4.2. RNA-Seq read analyses 

The Illumina sequencing of the 16 cDNA libraries generated 559,577,636 sequence 

reads, totaling 27.97 gigabase-pairs (Table 3.2). The numbers of sequence reads generated from 

each in-vitro sample (replicate) ranged from 32.2 to 40.9 million. For the in planta samples, the 

numbers of sequence reads varied from 26.4 to 49.5 million for the 3ADON population, and 27.8 

to 39.1 million for the 15ADON population. No significant differences were found in the total 

numbers of sequence reads generated for the two populations (t=0.99, p=0.34).  

Of the total reads generated from the in vitro samples, more than 80.3% of the reads were 

mapped to the reference genome of F. graminearum (PH-1) where at least 79.01% reads were 

uniquely matched and 1.07% reads were matched to  multiple genomic locations. In in planta 5.3 

to 13.3% of total reads in 3ADON and 6.5 to 8.2% of total reads in 15ADON populations were 

mapped to the reference genome, respectively.  The unique matches (matched only one time in 

genomic location of reference genome) were 5.1-12.5 % in 3ADON, and 6.1-7.8% in 15ADON 

of the total reads, respectively. The total numbers of unmatched reads were significantly higher 

in the in planta samples (86.7-94.7% of total reads) than in the in vitro samples (17.6-19.9% of 

total reads) (Table 3.2). This is expected because most of the sequence reads were from the host 

(wheat) in the in planta samples. 

3.4.3. Transcript abundance analyses 

We examined transcript abundance, transcriptional changes, and differentially expressed 

genes between in vitro samples, and between two populations in planta at different infection 

stages, and by pair-wise comparisons between in planta conditions and corresponding in vitro 

conditions (Table 3.3). The total numbers of transcripts expressed at the estimated gene-level 

were higher in the in vitro samples than in the in planta samples. The numbers of transcripts 
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expressed ranged from 14,242 to 14,564 in in vitro samples and 12,163 to 13,586 in in planta 

samples (Fig. 3.2). A significant difference was found in the total number of transcripts 

expressed between the 3ADON and 15ADON populations in planta at 144 HAI (t=6.7, p=0.02) 

and under the in vitro (t=5.6, p=0.03) growth conditions, but the difference was not significant 

between the two populations at 48 HAI (t=1.6, p=0.26) and 96 HAI (t=2.9, p=0.12), respectively.  

The PCA of transcript abundance, measured as the FPKM (fragments per kilobase pair of 

exon model per million fragments mapped) values, among all the 16 samples, identified the 

expression pattern into two major components. The principle component 1 (PC1) accounted for 

21.6% variation, and clearly differentiated the in vitro samples from the in planta samples, while 

PC2 describes 14.6% variation and differentiates the early infection (48 HAI) from the late 

infection (96 and 144 HAI). However, no clear differentiation was observed between the 

3ADON and 15ADON samples under both in vitro and in planta conditions based on the PCA 

result (Fig. 3.3).  

The expression of genes involved in secondary metabolites production including genes 

required for biosynthesis of the trichothecene mycotoxin, polyketide synthases and non-

ribosomal peptide synthetases in F. graminearum varied under both in vitro and in planta 

conditions (Fig.2. 4). The genes (Tri1, Tri3, Tri5, Tri8, Tri9, Tri11, Tri12, Tri14, Tri15, Tri101 

and NPS9) were up-regulated in planta compared to the in vitro growth conditions, while the 

genes (NPS7, NPS11, PKS3, PKS4, PKS6, PKS11, PKS12, and PKS13) had a higher expression 

in vitro than in in planta. At the early infection stage (48 HAI), the FPKM values of Tri1, Tri4, 

Tri5, Tri9, Tri14 and Tri101 were higher in both populations, and decreased successively 

afterwards (Fig. 3.4), indicating their crucial involvement in the establishment of early infection. 
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The higher expression of Tri8 and Tri12 in the 15ADON population might be specific for this 

chemotype only (Fig 2.4).  

3.4.4. Differential expression and functional analysis of in vitro expressed genes between 

3ADON and 15 ADON populations  

The comparative gene expression analysis between 3ADON and 15ADON population 

during in vitro growth identified 479 up-regulated and 801 down-regulated genes in the 3ADON 

population. The gene and novel transcripts (here after called gene/s) were considered as 

differentially expressed in one population if the FPKM Log2 folds change value was ≥1 and 

false discovery rate (FDR) was 0.01 or less. Functional analysis identified the corresponding 454 

and 723 genes in the MIPS database for two populations, respectively (Table 3.3). Among the 

up-regulated genes, categories in ‘metabolism’ (p=1.8×10
09

), ‘cellular transport, transport 

facilities and transport routes’ (p=0.033), and ‘interaction with the environment’ (p=0.0272) 

were enriched. The genes enriched within the ‘metabolism’ category include those related to 

metabolism of polysaccharide (p=8.9×10
18

), C-compound and carbohydrate (2.4×10
16

), 

extracellular (5.0×10
05

), secondary metabolism (0.0108), lipid, fatty acid, and isoprenoid 

metabolism (0.011), as well as polysaccharide and amino acid degradation. Further, the genes 

involved in non-vesicular cellular import, carbohydrate transport, heavy metal ion transport (Cu
+
, 

Fe
3+

), cation transport (H
+
, Na

+
, K

+
, Ca

2+
, NH4

+
), metabolism and FAD/FMN binding  related 

genes were highly enriched. The genes for polyketide synthases [PKS2 (FGSG_04694) and 

PKS15 (FGSG_04588)], the non-ribosomal polyketide synthetase [NPS9 (FGSG_10990)], 

putative C2H2 zinc finger transcription factor [TRI15 (FGSG_11025)], galactose oxidase 

precursor [GAOA (FGSG_11032)] and oxidoreductase that involved in production of aurofusarin 

[aurO (FGSG_02321)] were up regulated exclusively in the 3ADON population.   



81 

Among the down-regulated genes, the most frequently observed gene category was 

unclassified proteins (586/723; 81%), in which genes were present in a significantly higher 

percentage (p=2.9×10
22

) than those found in the whole genome (Ruepp et al. 2004). An 

additional major group of enriched genes was within the metabolism category, with function for 

metabolism of many compounds such as melanins, membrane lipid, sugar alcohols, 

sesquiterpenes, glycolipid, alanine, primary metabolic sugar derivatives, and secondary 

metabolites, as well as genes related to NAD/NADP binding and virulence or disease related 

factors (P>0.05). The genes for trichothecene 3-O-esterase [Tri8 (FGSG_03532)], TOX4 

(FGSG_10551), putative 3-hydroxyacyl-CoA-dehydrogenase [OrfI (FGSG_03546)], deacetylase 

[OrfG (FGSG_03544)], non-ribosomal peptide synthetase [NPS1 (FGSG_11026)] and [HETs 

(FGSG_10600)] were exclusively down regulated in the 3ADON population.  

KEGG pathway analysis of differently expressed genes under the in vitro growth 

conditions further identified a number of up-regulated genes involved in metabolism of starch, 

sucrose, methane, drugs, and required for inter-conversions of pentose and glucuronate, while 

down regulated genes were  enriched on purine and thiamine metabolism (Fig. 3.5). 

3.4.5. Differential gene expression between 3ADON and 15ADON population in-planta 

We further analyzed differential gene expression between the 3ADON and 15ADON 

isolates in planta to determine the differences during host infection. By comparison, the numbers 

of up regulated genes in the 3ADON population were always lower than those of down regulated 

genes (up-regulated in 15ADON). We identified 185, 89, 62 up-regulated genes, and 292, 361, 

241 down-regulated genes in the 3ADON population compared to the 15ADON population at 

48, 96 and 144 HAI, respectively (Table 3.3). Four genes (FGSG_04621, FGSG_04694, 

FGSG_06540, and FGSG_10632) were found to be commonly up-regulated across all three time 
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points, while 167, 63 and 44 genes were up-regulated specifically at 48, 96 and 144 HAI 

respectively (Fig. 3.6).  

Of the 717 genes for transcription factors (TF) identified by Ma et al. (2007), four genes 

(FGSG_00342, FGSG_08246, FGSG_11061, FGSG_13008) with C2H2 zinc finger domain at 

48 HAI, three genes (FGSG_01214 with C2H2 zinc finger domain, and  FGSG_04747 and 

FGSG_09177 with Zn2Cys6 domain) at 96 HAI, and three genes (FGSG_03881 with C2H2 zinc 

finger domain, FGSG_03695 with nucleic acid-binding with OB-fold domains, and 

FGSG_10277 with Zinc finger CCHC-type domain) at 144 HAI were exclusively up-regulated in 

the 3ADON population. Among the down regulated TFs, FGSG_04626 with GATA type zinc 

finger domain was common across all three time points, while additional two TFs (FGSG_07546 

with Myb domain and FGSG_10508 with C2H2 zinc finger domain) were found at 96 and 144- 

HAI respectively. Besides these three TFs, additional twelve genes (FGSG_00196, 

FGSG_00725, FGSG_03292, FGSG_04083, FGSG_04293, FGSG_04747, FGSG_06436, 

FGSG_07116, FGSG_07482, FGSG_08617, FGSG_11271, FGSG_12134) at 48 HAI, and eight 

genes (FGSG_02874, FGSG_03399, FGSG_03649, FGSG_08064, FGSG_08954, FGSG_09368, 

FGSG_10030, FGSG_13314) with various protein domains were down-regulated at 96 HAI.  

We further compared the expression of gene families encoding sugar-cleaving enzymes 

(carbohydrate active enzymes; CAZymes) at each time point and found that the glycoside 

hydrolase (GH) encoding genes (FGSG_00143, FGSG_01748, FGSG_02834, FGSG_04313, 

FGSG_04768, and FGSG_07593) were the most abundantly up-regulated in the 3ADON 

population during early infection, along with three GHs (FGSG_05401, FGSG_07351, 

FGSG_07639) at 96 HAI and three GHs (FGSG_00571, FGSG_03628, FGSG_03695) at 144 

HAI. Uniquely, the genes encoding for glycosyltransferases (FGSG_01882, FGSG_08902, and 
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FGSG_11341), carbohydrate esterase (FGSG_03544, FGSG_11229, and FGSG_11578) and 

carbohydrate binding module (FGSG_11032) were up-regulated only at early infection stage (48 

HAI), suggesting that these genes might be involved in the establishment of early infection. Of 

the 171 gene encoding the predicted proteins of F. graminearum involved in degradation of 

different cell components identified by Brown et al (2012), FGSG_04768 (required for 

degradation callose), FGSG_11032 and FGSG_11229 (required for degradation of hemi-

cellulose) were up regulated at 48 HAI in the 3ADON population. Similarly, genes for 

hemicellulose degradation (FGSG_07639) and starch degradation (FGSG_04704) were up-

regulated at 96 HAI. At the late infection stage (144 HAI), FGSG_03695 and FGSG_03628 for 

cellulose degradation, and FGSG_00028 for protein degradation were up-regulated. 

Functional analysis of differently expressed genes among all infection stages were further 

classified based on functional catalogue (FunCat) annotation. More than 50% of the differently 

expressed genes were un-classified proteins with un-known functions. Among the functionally 

categorized genes, majority of the genes belonged to the functional category ‘metabolism’, in 

which maximum numbers of genes were either up- (20.9 %, of total 177), or down- regulated 

(31.2 % of the total 285) at 48 HAI (Table 3.4). Then, the numbers of both up and down 

regulated genes belonging to the metabolism category decreased at 96- and 144- HAI (Table 

3.4). Among the gene sets for metabolism, those involved in energy, protein with binding 

functions, regulation of metabolism and protein function, cellular transport, involved in cell 

rescue, defense and virulence, and for interaction with environment were significantly enriched 

and down regulated at 48 HAI. Further, the genes required for cell rescue, defense and virulence 

were also significantly enriched and up-regulated at 96 HAI. Except them, none of the functional 

categories showed significant enrichment (Table 3.4).  Further in-depth analysis of significant 
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sub-categories indicated that the genes up-regulated at 48 HAI in the 3ADON population were 

enriched for degradation of glutamine (p=0.0055); C-compound and carbohydrate metabolism 

(p=0.011); glutamine metabolism (p=0.0153); arginine biosynthesis (0.0241); metabolism of 

urea cycle, creatine and polyamines metabolism (0.036); lipid, fatty acid and isoprenoid 

metabolism (0.046); and assimilation of ammonia, metabolism of the glutamate group (0.0499). 

At the same time, genes required for non-vesicular and cellular import, transport of compounds 

such as C-compound and carbohydrate, allantoin and allantoate transport, vitamine/cofactor and 

sugar transport, and genes required for post-transcriptional control were enriched (p<0.05) at 48 

HAI. At 96 HAI, the genes for detoxification by degradation (p= 0.0028) and modification 

(p=0.0062); cell rescue, defense and virulence (p=0.0059); and required for defense related 

proteins (p=0.0098) were highly enriched. Other enriched genes were involved in metabolism of 

secondary products, polyketides, acetic acid derivatives, and glycosides; sugar, glucoside, polyol 

and carboxylate catabolism, degradation exogenous compounds; required for oxidative stress and 

heat shock response; catalase reaction and NAD/NADP binding (P<0.05). At 144 HAI, genes 

enriched for secondary and polyketides metabolism, acetic acid derivatives metabolism, purine 

nucleotide catabolism, required for anaerobic respiration; somatic/mitotic recombination; DNA 

processing; detoxification by modification and degradation; required for degradation of ester 

compounds; non-vesicular cellular import; C-compound and carbohydrate transport; disease, 

virulence and defense; perception of nutrients and nutritional adaptation etc. were the most 

abundant (P<0.05).  

We identified 36 genes that had at least 5 times expression changes in planta between the 

3ADON and 15ADON populations. These genes may play important roles in contributing to the 

differences between the two chemotype populations. Seven genes (FGSG_02324, FGSG_02326, 
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FGSG_02327, FGSG_02329, FGSG_05805, FGSG_06540, and a novel transcript 

Supercontigs_3.7:2269192-2269685) had at least 10 fold greater expression, while 24 genes had 

at least 10 fold lower expression in 3ADON compared to 15ADON population in planta (Table 

3.5). Two genes (FGSG_00032 and FGSG_04621) showed continuous up-regulation till 96 HAI. 

FGSG_05935 at 96 and 144 HAI, and FGSG_06540 at 48 and 144 HAI had at least five time 

greater expression in the 3ADON population. Three genes (FGSG_02672, FGSG_08961, and 

FGSG_10636) were continuously down regulated throughout all three infection stages evaluated. 

3.4.6. Differential gene expression analysis of in planta vs in vitro samples 

The comparative analysis of in planta and in vitro gene expression profiles identified a 

set of genes up-regulated during specific stages of infection in planta. A total of 2,159, 1,981 and 

2,095 genes in the 3ADON isolates, and 2,415, 2,059 and 1,777 genes in the 15ADON isolates 

were in planta up-regulated compared to the corresponding in vitro conditions at 48, 96, and 144 

HAI, respectively (Table 3.3). Further pairwise comparison considering only in planta up-

regulated genes in both the 3ADON and 15ADON populations identified 1,526, 1,455 and 1,427 

co-expressed genes between the two populations at the three respective time points (Fig. 3.7 A, B 

and C). This result indicates that majority of the up-regulated genes required for early infection 

and subsequent colonization are common between the two chemotype populations. Except for 

the commonly up-regulated genes, 633, 526, 668 genes in the 3ADON isolates, and 889, 604, 

350 genes in the 15ADON population were uniquely up-regulated at 48-, 96-, and 144- HAI 

(Fig. 2.7 A, B, and C), respectively. Further analysis of exclusively up-regulated genes revealed 

a set of 503, 196, and 331 unique genes specific to the 3ADON population at 48, 96 and 144 

HAI, respectively (Fig. 2.7D). The commonly up-regulated genes (301 genes) between 96 and 

144 HAI were more than those between 48 and 96 HAI (94 genes) as well as between 48- 144 
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HAI (101 genes) (Fig 2.7D). Thus, our data clearly indicated that within 3ADON population, 

more specific genes were expressed at the early infection stage than at the late infection stage 

(Fig 2.7D). Among the up-regulated genes in 3ADON population, 65 genes were common at all 

three infection points.  

3.4.7. Functional categorization of up-regulated genes in planta compared to in vitro 

Functional categorization (FunCat) analysis of in planta up regulated genes further 

indicated a chemotype specific functional enrichment in both populations. We first combined all 

up-regulated genes at all three time points in each population and then focused on those unique 

genes for functional categorization. After removal of the duplicated copies of up-regulated genes, 

1396 genes in the 3ADON population and 1398 genes in the 15ADON population were 

identified to be unique. Of them, 1257 genes in the 3ADON population and 1278 genes in the 

15ADON population were found in the database of the Munich Information Centre for Protein 

Sequences (MIPS) functional catalogue (Ruepp et al. 2004) and were further categorized. The 

functional categories and subcategories of the genes exclusively up-regulated in 3ADON 

revealed significant enrichment in major categories, such as ‘metabolism’ (400 genes, p= 0), 

‘protein synthesis’ (134 genes, p = 1.210
38

), and ‘protein with binding function or cofactor 

requirements (structural or catalytic) (339 genes, p=1.710
5
). In the 15ADON population, the 

major enriched categories were ‘metabolism’ (536 genes, p=0), ‘energy’ (77, p= 0.0017), and 

‘cell rescue, defense and virulence’ (162 genes, p=0.0014) (Fig. 3.8). Majority of the genes from 

both 3ADON (552/1257, 43.9%) and 15ADON (516/1278, 40.3%) populations belonged to the 

‘unclassified proteins’ category (Fig. 3.8). Major functional sub-categories significantly enriched 

among the genes expressed only in the 3ADON population were those involved in nitrogen, 

sulfur and selenium metabolism (p=0.0199), pentose-phosphate pathway (p=0.0085), RNA 
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processing (p=0.0002), ribosome biogenesis (p=1.8x10
46

), ribosomal proteins (p=6.8x10
40

), 

translation (p=2.67x10
26

), translation initiation (p=0.0002), translation elongation (p=0.0012), 

protein (p=0.034), nucleic acid (p=2.2x10
05

) and RNA binding (p=5.1x10
07

), oxidative stress 

response (p=0.0243), detoxification by modification (p=0.0249), and related to nucleolus 

(p=0.0437). 

Further analyses of the same gene sets using the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway identified 205 genes involved in 65 metabolic pathways in the 

3ADON population, and 178 genes involved in 72 metabolic pathways in the 15ADON 

population (Table 3.6). Table 3.6 highlights various metabolic pathways, in which genes from 

both 3ADON and 15ADON population were up-regulated in planta compared to in vitro; only 

the pathways consisting of at least two genes from either population are shown. Higher number 

of genes involved in pathways for metabolism of purine, arginine, proline and pyrimidine; citrate 

cycle (TCA cycle); valine, leucine and isoleucine biosynthesis, pentose phosphate pathway, 

carbon fixation pathways in prokaryotes, and carbon fixation in photosynthetic organisms were 

up-regulated in the 3ADON population (Table 3.6). In contrast, more genes involved in nitrogen 

metabolism, pentose and glucuronate inter-conversions, starch and sucrose metabolism, drug 

metabolism - cytochrome P450, N-Glycan biosynthesis, various types of N-glycan biosynthesis, 

benzoate degradation, chloroalkane and chloroalkene degradation, metabolism of xenobiotics by 

cytochrome P450 were up-regulated in the 15ADON population (Table 3.6). 

Differential gene expression analysis also identified a set of known genes specifically 

enriched in the two chemotype populations. These include PKS2 (FGSG_04694) for polyketide 

synthases, (WC-2) (FGSG_00710) for zinc finger protein white collar 2, OrfJ (FGSG_03547) for 

NADH cytb reductase, OrfI (FGSG_03546) for 3-hydroxyacyl-CoA-dehydrogenase, NPS6 
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(FGSG_03747) for AM-toxin synthetase (AMT), HNM1 (FGSG_08347) for choline permease, 

FGB1 (FGSG_09870) for CPC2 protein, and EF1A (FGSG_08811) for translation elongation 

factor alpha 1, which were up-regulated in the 3ADON population. In the 15ADON population, 

the genes encoding polyketide synthase [PKS1 (FGSG_17387), PKS7 (FGSG_08795), and 

PKS15 (FGSG_04588)], non-ribosomal peptide synthetase [NPS1 (FGSG_11026) and NPS10 

(FGSG_06507)], CHS-2 chitin synthase 2 (FGSG_16005), phosducin [BDM1 (FGSG_04105)], 

extracellular matrix protein precursor [FEM1 (FGSG_00523)], lysine permease [LYP1 

(FGSG_12440)], endo-1,4-beta-xylanase [xylA (FGSG_10999)] and regulatory protein alcR 

[ZBC1 (FGSG_02874)] were up-regulated. 

Interestingly, all known TRI genes (Tri1, Tri3, Tri4, Tri5, Tri6, Tri8, Tri9, Tri10, Tri11, 

Tri12, Tri14, and Tri15) involved in the biosynthesis or regulation of trichothecene production 

were up-regulated in both populations in planta compared to in vitro. These genes showed 10 to 

1516 and 6.3 to 5782.1 fold expression increases in the 3ADON and 15ADON populations in 

planta, respectively (Fig 2.9, the values are shown in Log2 scale). The highest fold increase was 

observed for the Tri3 gene in both populations followed by Tri4, Tri5, Tri1 and others (Fig 2.9). 

Five Tri genes (Tri1, Tri6, Tri10, Tri11, and Tri12) showed at least 1.4 times higher expression 

in the 3ADON population compared to the 15ADON population. 

Of the 65 genes commonly up-regulated within the 3ADON population across all 

infection time points, 61 were found in the MIPS database. However, 55.7% (35/61) of them 

belonged to the ‘unclassified proteins’ category. The remaining 27 genes were enriched in 

functions related to protein synthesis (p=4.4×10
6
), translation (p=0.0002), ribosome biogenesis 

(p=0.0003), translation, and amino acid metabolism (p=0.0177), as well as metabolism of the 

pyruvate family (alanine, isoleucine, leucine, valine) and D-alanine, DNA processing and 
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degradation; polyketides metabolism; peptide, antigen and GTP binding; and cation transport 

(H
+
, Na

+
, K

+
, Ca

2+
, NH

4+
 etc.). KEGG pathway analyses identified six genes involved in five 

metabolic pathways, including valine, leucine and isoleucine biosynthesis (FGSG_09589, 

FGSG_02056); inositol phosphate metabolism (FGSG_06735); phosphatidylinositol signaling 

system (FGSG_06735); glycine, serine and threonine metabolism (FGSG_10211), and 

pantothenate and CoA biosynthesis (FGSG_02056) pathway. 

3.5. Discussion 

In this study, we examined and compared aggressiveness and DON accumulation in 

grains, and gene expression in the 3ADON and 15ADON populations of F. graminearum in vitro 

and in planta. We found that the 3ADON population was more aggressive with a higher but non-

significant disease severity than the 15ADON population. In our previous study, we showed the 

significant differences on disease severity (DS) between 3ADON and 15ADON on the resistant 

wheat line ND 2710 and the susceptible cultivar Grandin (Puri and Zhong, 2010). The 

discrepancy might be due to the different isolates used. In the present study, 80% (eight) of the 

3ADON isolates were the same as used in the previous study (Puri and Zhong, 2010). However, 

in the 15ADON population used in this study, only two isolates were the same as used in the 

previous study and eight new isolates were used. All of the 15ADON isolates used in the present 

study were collected in 2008 and 2010 while 75% (9/12) of the isolates used in the previous 

study were sampled during 1980-2004. However, the results on DON accumulation in grains 

were consistent between the two independent studies. The 3ADON population produced a 

significantly higher DON on the resistant genotype ‘ND 2710’ and the susceptible cultivar 

Grandin, but no significant difference in DON amount was found on the moderately resistant 

cultivar ‘Steele ND’ (Puri and Zhong, 2010). 
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Our results showed that the 15ADON population had more expressed transcripts than the 

13ADON population under in-vitro growth conditions (Fig 2.2). However, a different 

phenomenon was observed during in planta host infection. The 15ADON population had a 

higher but not significant number of transcripts in the first two infection stages (24 HAI and 

96HAI), but a significantly lower number of transcripts at 144 HAI compared to the 3ADON 

population, indicating a difference in transcriptomes during different infection stages between 

the two populations. Noticeably, the number of transcripts expressed increased at 144 HAI 

compared to the early infection stages in the 3ADON population. The infection and colonization 

process by F. graminearum in wheat is well understood, which starts at anthesis, and the fungus 

grows along the epicarp to the endosperm (Jansen et al., 2005). A high concentration of DON is 

produced during infection of epicarp leading to early host cell death and fungal growth. DON 

acts as a virulence factor during disease development (Jansen et al., 2005; Proctor et al., 1995). 

The higher number of transcripts expressed at the late stage of infection by the 3ADON 

population correlates with its higher DON accumulation and virulence nature. Several gene 

knockout studies have shown that DON is required for fungal spread from floret to rachis, and 

DON deficient mutants are unable to spread beyond inoculated spikelets (Jansen et al., 2005, 

Maier et al., 2006). IIgen et al. (2009) found an intensive expression of a reporter gene (TRI5) on 

rachis node at 4-7 days post inoculation, which constitutes a formidable barrier for fungus 

spread, and thus higher DON biosynthesis is required to overcome this major obstacle for 

successful infection in wheat (Jansen et al., 2005, Maier et al., 2006). Thus, the higher DON 

biosynthesis and more aggressive nature of 3ADON population are prominent for vigorous 

infection establishment than the 15ADON population.   
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Lysøe et al. (2011) studied a global gene expression pattern of F. graminearum during 

infection of the wheat cultivar Bobwhite using microarrays and showed the number of expressed 

genes increased from 48 hai (>4000 genes) to 96 hai (>8000), but declined after 144 hai. In our 

study with RNA-seq, at least 12,100 gene transcripts were detected in all infection stages and 

more genes were expressed at the early stage than at the late stage. The significantly higher 

number of transcripts detected in our study might be due to the more sensitive nature of RNA-

seq than the microarray technique in detecting those rarely expressed transcripts (Wang et al. 

2009). A greater than 9,000-fold range was observed in transcriptional landscape of 

Saccharomyces cerevisiae using RNA-seq in comparison with the results obtained with 

microarrays (Nagalakshm et al., 2008). However, the higher number of genes expressed at the 

early stage than the late stage of infection observed in our study could be due to differences in 

plant inoculation and sampling methods used for RNA extraction. We used point inoculation and 

only collected inoculated spikelets at each time point for RNA extraction. In contrast, spray 

inoculation was used and whole spikes were used in the study of Lysøe et al. (2011). A different 

level of disease severity and DON content was also observed in spray versus point inoculated 

heads (Ward et al., 2008). The different hosts (‘Briggs’ in this study and ‘Bobwhite’ in the 

previous study) used may also contribute the differences in the number of expressed fungal genes 

at different infection stages. The number of F. graminearum transcripts expressed in vitro is 

consistent with those observed in the previous gene expression study using Affymetrix GeneChip 

(Güldener et al. 2006). 

This is the first comprehensive transcriptional expression study on F. graminearum 

3ADON and 15ADON chemotype populations during in vitro growth and in planta host-

infection stages using RNA-sequencing. Our results identified highly conserved in planta up 
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regulated genes between two chemotype populations during infection (1526, 1455 and 1417 at 

48, 96 and 144 HAI) compared to in vitro growth. In general, all known Tri genes required for 

trichothecene biosynthesis and genes involved in secondary metabolites production were 

expressed commonly in the two populations. Among them, Tri5 which encodes trichodiene 

synthase (the first step in the trichothecene biosynthetic pathway) and required for DON 

synthesis (Hohn and Beremand, 1989), and Tri8 which encodes C-15 esterase or C-3 esterase in 

3ADON and 15ADON producers, respectively, and were responsible for production of 3ADON 

or 15ADON (Alexander et al., 2011), had a similar expression in the two populations, indicating 

that previously identified genes for 3ADON or 15ADON chemotype differentiation might be 

conserved in both populations (Alexander et al., 2011). However, three Tri genes (Tri1, Tri6 and 

Tri11) had at least 2.6 times higher expression in the 3ADON population compared to the 

15ADON population (Fig. 3.9). Tri1 is located outside the Tri-cluster and encodes a P450 

oxygenase. The deletion mutant of Tri1 accumulated calonectrin (McCormick et al., 2004), an 

intermediate precursors for 3ADON biosynthesis in F. culmorum (Hesketh, et al., 1992). Tri11 

encodes cytochrome P-450 monooxygenase and is required for hydroxylation in trichothecene 

biosynthesis (McCormick et al., 2004). Tri6 is a pathway-specific transcriptional regulator in 

trichothecene biosynthesis (Seong et al., 2009; Peplow et al., 2003). Nasmith et al. (2011) 

showed that Tri6 regulates expression of six Tri genes (Tri1, Tri3, Tri6, Tri7, Tri12 and Tri14) 

within the Tri cluster and additional 192 potential genes in F. graminearum. Similarly, Tri10, 

another regulatory gene which is required for trichothecene biosynthesis and regulates 

expression of six more trichothecene genes (Tri3, Tri7, Tri8, Tri9, Tri11 and Tri12) in F. 

sporotrichioides (Peplow et al., 2003), had almost 1.4 times greater expression in the 3ADON 

population than the 15ADON population. The higher expression of these global regulating genes 
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might play an important role in the fitness advantage of the 3ADON isolates. The higher 

expression of Tri3 gene in 15ADON isolates compared to 3ADON isolates can be explained by 

its role in biosynthesis of all three trichothecenes (3ADON, 15ADON and NIV) (Alexander et al. 

2011) or in negative regulation of gene expression involved in biosynthesis pathway for 

3ADON. Previous study showed that Tri3 encodes 15-O-acetyltransferase in F. sporotrichioides 

and is required for conversion of 15-decalonectrin into calonectrin (McCormick et al., 1996).  

A number of uniquely expressed genes were identified in each population at the three 

infection stages. At the early stages (48 HAI and 96 HAI), the two populations had a similar 

number of uniquely expressed genes. However, the uniquely expressed genes were double in the 

3ADON population compared to those in the 15ADON population at the late infection stage (144 

HAI) (Fig 2.7 A-C). IIgen et al. (2009) identified expression of Tri5 gene on rachis node than the 

adjacent rachis at 4-7 days post inoculation, and required to overcome host resistance and 

successive spread of pathogen form inoculated to un-inoculated spikelets. Several other 

independent studies highlighted the role of DON to tackle host defense due to rachis node 

thickening in wheat (Jansen et al., 2005, Maier et al., 2008, Miller et al., 2011). Thus, the 

expression of higher number of genes at late stage of infection in 3ADON population might 

correlate with the need of specialized genes for successful disease establishment, spread and 

accumulation of higher DON on grains. However, the functional characterization of those stage 

specifically up-regulated genes is required to answer this question. 

Functional analysis of uniquely expressed in planta genes than in-vitro in both 3ADON 

and 15ADON isolates identified a chemotype specific gene expression and the metabolic and 

potential molecular mechanisms during infection (Table 3.8). Among the genes found in the 

MIPS functional catalogue, 552 (43.9%) genes in 3ADON population and 516 (40.3%) genes in 
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the 15ADON population were unclassified proteins of unknown functions. Lysøe et al. (2011) 

studied the transcriptomes of F. graminearum during wheat infection stages and found that 

majorities of gene exclusively expressed in wheat were with unknown functions (72.6%). Seong 

et al. (2008) also noticed a similar overrepresentation of unclassified genes (52.3% to 76%) 

during spore germination of F. graminearum during 0 to 24 h. Major enriched functional 

categories identified in this study were consistent with those reported in the previous study 

(Lysøe et al. 2011), although some of the categories were specific to a particular chemotype 

population. For example, the functional category of nitrogen, sulfur and selenium metabolism 

was specific to the 3ADON population, and other categories (secondary metabolism, virulence 

factors, detoxification, degradation of lipids and polysaccharides, and allantoin and allantoate 

transport) were specific to the 15ADON population. Because of the high sensitivity of RNA-seq, 

we identified a very high number of genes on several significant functional categories. The 

highly specific functional categories exclusively enriched in the 3ADON population were protein 

synthesis, protein with binding function or cofactor requirements and sub-categories under 

metabolism. Within metabolism, genes involved in assimilation of ammonia, metabolism of the 

glutamate group, degradation and biosynthesis of amino acids such as glutamine, leucine and 

homocysteine; metabolism and biosynthesis of arginine, leucine, isoleucine, glycine, valine and 

glutamine; and metabolism and degradation of lysine were highly enriched. It is a well-

established concept that nutrients availability and their acquisition by pathogens are pre-

requisites for successful colonization and fungal establishment (Divon and Fluhr, 2007). The role 

of various nitrogen and carbon sources in trichothecene biosynthesis, secondary metabolite 

production, and virulence is well understood in many fungi including F. graminearum (Calvo et 

al., 2002; Gardiner et al., 2009, López-Berges et al., 2010). The nitrogenous compounds such as 
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ammonia, glutamine, glutamate, asparagine etc. are the primary nutrient sources for many fungi 

including S. seeviceae, A. nidulans, N. crassa etc. However, in case of lack or very low 

concentration of primary sources, fungi utilize many alternative nitrogen sources such as nitrate, 

nitrite, purines, amides, most amino acids and proteins after de novo secretion of pathway-

specific catabolic enzymes and permeases (Marzluf, 1997, Crawford et al., 1993). In this study, 

genes involved in various metabolic pathways, and required for protein synthesis and processing 

complex were up-regulated in 3ADON (Table 3.4).  

Members of the C2H2 (Cys-Cys-His-His) zinc finger transcription factor (TF) family 

were expressed more abundantly in the 3ADON population than in the 15ADON population.  

Transcription factors have a diverse role in signal transduction, respiration, nitrogen utilization, 

peroxisome proliferation, stress tolerance, drug resistance, gluconeogenesis, sugar and amino 

acid metabolism etc. (Shelest, 2008). Among the 76 TFs with C2H2 zinc finger domains 

identified in the F. graminerum genome (Ma et al., 2010), eight (FGSG_00764, FGSG_01298, 

FGSG_01350, FGSG_04288, FGSG_06701, FGSG_10350, FGSG_10470, FGSG_13964) were 

found to be exclusively up-regulated in the 3ADON population. The function of the C2H2 zinc 

finger proteins in F. graminearum is unknown, but they are required for calcium signaling in 

Aspergillus nidulans (CrzA) (Hagiwara et al., 2008), and for regulation of other biological 

processes such as sexual development (SteA) in Aspergillus (Vallim et al., 2000) and ustilagic 

acid biosynthesis (Rua1) in Ustilago maydis (Teichmann et al., 2010). Of the TFs up-regulated in 

the 3ADON population, two TFs (FGSG_00764 and FGSG_01298) with C2H2 zinc finger 

domain were found to be involved in regulating the virulence and DON (Son et al., 2011). Three 

TFs [(FGSG_09286 and FGSG_10142 with bZIP domain) and (FGSG_09871 with bromo 

domain)] along with additional two TFs (FGSG_09871 and FGSG_10142) were also found to be 
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involved in virulence and DON biosynthesis (Son et al. 2011). Of the 52 TFs up regulated in the 

15ADON population, three were involved in virulence and none of them had effect on DON 

biosynthesis (Son et al. 2011). Thus, the up-regulated genes expressed specifically in the 

3ADON population might be the cause that makes this population different from the 15ADON 

population more aggressiveness and DON accumulation during host infection. 

Our gene expression analysis of in vitro samples further identified considerable 

differences in gene expression profiles, and the associated physiological and cellular metabolic 

processes between the two populations. Most remarkably, genes annotated for cellular transport, 

transport facilities and transport routes were significantly up-regulated in the 3ADON isolates. 

These include those required for  ion (16 genes) and cation (H
+
, Na

+
, K

+
, Ca

2+
, NH4

+
) (15 genes) 

transport; sugars (10 genes)  and carbohydrate transport (27 genes); and those involved in 

transported compounds (58 genes); as well as those required for cellular (31 genes) and non-

vesicular (28 genes) import. Functional annotation of the up-regulated genes in the 3ADON 

isolates showed that they were inriched in genes those involved in active metabolism of internal 

metabolites and for uptake of additional nutrients from environments. This result is consistent 

with those of  Seong et al. (2008) who identified a considerably high number (216 genes) of 

genes annotated for permeases or transporters during conidial germination (0-24h) and a higher 

number of genes enriched in permease and transporters in fresh spores and hyphae under the 

nutrient limiting condition. Further, Hallen et al. (2007) analyzed the changes in gene expression 

during perithecial development and compared them with those in vegetative mycelia (four days 

old) of the fungus. They identified 162 predicted ions transporter genes associated with 

perithecium development stages, which were considered to be needed for rapid change in protein 

profiles during development of sexual structures. In many fungi, nutrient deficiency is prominent 
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during their sporulation and early infection, and fungus requires transport of various nutrients 

(nitrogen and carbon sources) (Divon and Fluhr, 2007). We observed high sporulation of this 

fungus on mung bean agar media at five to seven days after plating. Thus, expression and 

enrichment of transporter genes in 3ADON population might be essential for uptake and 

metabolism of various carbon and nitrogen compounds during nutrient starvation period and for 

higher spore production. Of the 12 up-regulated TFs in the 3ADON population, FGSG_08403 

(with bHLH domain) is involved in perithecial production (Son et al., 2011), indicating that 

some of genes up regulated in the 3ADON isolates are required for sexual development.  

Polyketide synthases (PKS), non-ribosomal peptide synthetases (NRPs), and Terpenoid 

synthases (TS), are major enzymes responsible for fungal secondary metabolisms (Cuomo et al., 

2007). The up-regulation of PKS2 (FGSG_04694, 68.8 fold) and PKS15 (FGSG_04588, 47.6 

fold), NPS9 (FGSG_10990, 22.4 fold), and Tri15 (FGSG_11025, 2.8 fold) further provide 

evidence that they might play important roles in growth, development and trichothecene 

production of the 3ADON population. Although the function of NPS9 and PKS15 is not clear, 

PKS2 was shown to be involved in mycelial growth (Gaffoor et al. 2005). Tri15 is not required 

or negatively regulates trichothecene biosynthesis in F. sporotrichioides (Alexander et al., 2004).  

We found that NPS1 (FGSG_11026), TOX4 (FGSG_10551, KP4 killer toxin ortholog), 

TRI8 (FGSG_03532, trichothecene 3-O-esterase), OrfG (FGSG_03544, deacetylase) and OrfI 

(FGSG_03546, putative 3-hydroxyacyl-CoA-dehydrogenase) located on the right side of the 

trichothecene gene cluster (Brown et al., 2004) were down regulated in the 3ADON isolates. 

Tobiasen et al. (2007) showed that NPS1 is related to NPS hydroxamate siderophore biosynthesis 

and required for iron uptake, transport, and storage. They further demonstrated that NPS1 is 

expressed only in planta and hypothesized that it plays a role in host infection in barley but not 
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in wheat, because no expression of NPS1 was detected during wheat infection and the in vitro 

expression might be media specific. The gene expression studies of 12 ORFs along the 14-16 kb 

of up or downstream to the trichothecene core cluster indicated that none of them are required for 

trichothecene biosynthesis (Brown et al. 2004). Thus, the highly down regulated ORFs (OrfG 

and OrfI) found in the 3ADON isolates in this study might be involved in pathways other than 

trichothecene biosynthesis or might negatively regulate trichothecene biosynthesis. The down 

regulation of Tri8 in the 3 ADON isolates supports the finding of Kimura et al (2003), who 

found that FgTri3 and FgTri8, and pseudo FgTri13 genes were apparently unnecessary in 

biosynthesis of 3ADON, but contradicts with the recent finding of Alexander et al. (2011), who 

showed that Tri8 regulates the production of 3ADON and 15ADON, and is required to convert 

diacetylated 3- or 15- ADON intermediate into 3ADON and 15ADON, respectively. Kimura et 

al (2003) further highlighted involvement of three genes FgTri4, FgTri5, and FgTri11 within the 

FgTri5-cluster for 3ADON production. However, in our study these genes were expressed 

equally on both populations. 

Pairwise comparisons of gene expression profiles between the 3ADON and 15 ADON 

populations during host infection at three different time points identified a set of differently 

expressed and up-regulated genes in the 3ADON population. Tracking differential gene 

expression patterns in the host after subsequent pathogen infection provides an insight to 

understand mechanisms of host infection and pathogenicity (Huibers et al. 2009). Several studies 

on transcriptional changes of pathogens during host infection have been conducted to identify 

novel genes related to pathogenicity or virulence in many plant pathogenic fungi including F. 

graminearum (Lysøe et al., 2011), Stagonospora nodorum (Ipcho et al., 2012),  

Pseuodperonospora cubensis (Savory et al., 2012), Phytopthora phaseoli (Kunjeti et al., 2012). 
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When gene expression profiles were examined on a time course (Fig. 3.6), 185 genes of the 

3ADON population were up-regulated only at 48 HAI, which were at least twice the genes 

expressed at 96 HAI or 144 HAI. Lysøe et al. (2011) identified at least 10 times more genes 

expressed at 96 HAI than at any other time points compared (from 24 to 192 HAI), and 

concluded that those expressed genes were required to overcome resistance governed by the 

rachis system to stop further disease spread (Jansen et al., 2005). However, the early expression 

of more genes at 48 HAI in this study might be explained as the differences in sampling method 

and tissues used (discussed above). Some of the genes up-regulated during early infection might 

acts as pathogenicity factors in this fungus. This result is further supported by the expression of a 

large number of gene families encoding sugar-cleaving enzymes (carbohydrate active enzymes; 

CAZymes) at 48 HAI as compared to the remaining infection stages. Of the 12 glycoside 

hydrolase encoding genes up regulated across all three infection time points, six were expressed 

at 48 HAI. Genes encoding different carbohydrate active enzymes such as glycosyl transferases, 

carbohydrate esterase and carbohydrate binding module were also expressed only at 48HAI, 

providing further evidence that CAZYs enzymes were required for early infection and had 

multiple functions such as host penetration, nutrient gaining and pathogen cell wall remodeling 

(Ma et al., 2010, Vincent et al. 2008). Up-regulation of genes for cell wall degrading enzymes 

(FGSG_04768 for callose degradation, FGSG_11032 and FGSG_11229 for hemi-cellulose 

degradation) also highlights their role in breakdown of complex cell substrates in the fungus 

(Brown et al. 2012).  

Our study indicated that a set of transporter encoding genes were differently expressed, 

up-regulated and enriched in the 3ADON population. These include the genes involved in 

transport of carbohydrate, sugars, allantoin and allantoate, vitamine/cofactor transport and those 
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required for host invasion and utilization of nutrient sources such as carbohydrates, proteins, 

lipids and vitamins during early infection. While none of the transporter genes were enriched at 

96 HAI, genes for carbohydrate transport and cellular import and required for transported 

substrate compound were enriched at 144 HAI.  The allantoin and allantoate transport category, 

which is required to utilize uric acid, a host induced catabolic process with response to pathogen 

infection, was found specific to wheat infection under nutrient limiting conditions (Lysøe et al., 

2011). The enrichment of this category among the up-regulated genes in the 3ADON population 

at 48 HAI signifies its importance in early infection and fitness advantage.   

Metabolism is an important cellular function for degradation of nutrients and biosynthesis 

of cellular components. In this study, a large number of genes involved in nutrient metabolism 

were expressed and down regulated at 48 HAI than any other infection points. Similarly, genes 

in other categories for energy, protein with binding function, cellular transport, cell rescue and 

interaction with environment were also significantly enriched and down regulated. The genes 

involved in cell rescue, defense and virulence were up-regulated in 3ADON at 96 HAI only. At 

the late infection stage (144 HAI); genes for biosynthesis of secondary metabolites and 

detoxification of anti-microbial plant metabolism were significantly up regulated. In this study, 

genes for detoxification involving cytochrome P450 (four genes) and detoxification by 

degradation (five genes) were found significantly down regulated. Fungal cytochrome P450s is 

involved in oxygenation during secondary metabolite production and contributes to fungal 

virulence via detoxification of antimicrobial plant metabolites (van den Brick et al., 1998). Some 

of genes involved in secondary metabolite biosynthesis i.e. Tri3, NPS11, Tri12, or responsible 

for 3ADON or 15ADON inter conversion (Tri8) were down-regulated. The Tri3 which is found 

functional among all three chemotype populations, was down regulated during early infection 
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(48-96 HAI), while the Tri8 which is determinant for either 3ADON or 15ADON production 

(Alexgnder et al., 2011), was expressed across all infection time course and down regulated. 

Taken together, this finding suggests that virulence of F. graminearum is a function of timely 

expression of genes required for cell wall degradation, assisting mycotoxin production and 

metabolites that alter host resistance (Miedaner, 1997). In conclusion, this study has revealed a 

set of genes that were expressed differentially in the 3ADON and 15ADON populations during 

in vitro and in planta conditions. The future functional analysis (which is in progress) of the 

genes transcriptionally different between the two chemotype populations under both in vitro and 

in planta conditions might provide insights into the mechanisms involved in the higher virulence 

and DON production of the newly emerging 3ADON isolates. 
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Figure 3.1. Total amount of Deoxynivalenol (DON) accumulated on grains obtained from 

inoculated spikes with 3ADON and 15ADON isolates. Three wheat genotypes namely Grandin 

(susceptible), Steele-ND (moderately resistant), and ND 2710 (high resistant) were inoculated 

separately. The 3ADON population accumulated a significantly high DON on Grandin (P 

<.0001) and ND 2710 (P=0.0034) than 15ADON. However, no significant difference (P=0.4366) 

was found in DON accumulation between two populations on Steele ND. 
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Figure 3.2. Total numbers of transcripts expressed both in vitro and in planta. Transcript-

fragment reads form each samples were mapped to the F. graminearum PH-1 reference genome 

using Bowtie version 0.12.5 (Langmead et al., 2009) and TopHat version 2.0.0 (Trapnell et al., 

2009). FPKM, fragments per kilobase of transcript per million fragments mapped, were 

calculated by Cufflinks version 0.9.3 (Trapnell et al., 2010). Each transcript was considered 

expressed when FPKM value was greater than 0.1, and lower boundary for FPKM value at 95% 

confidence interval was greater than zero. HAI: hours after inoculation, 3ADON: population 

producing 3-acetyl-deoxynivalenol and DON, 15ADON: population producing 15-acetyl-

deoxynivalenol and DON, vertical bar represents standard error of means between replications; 

MBA: mung bean agar media (in vitro). 
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Figure 3.3. The principle component analysis of transcriptomes from all (16) samples. The 

principle component 1 (PC1) describes 21.6% variance, and differentiate in vitro samples from 

in planta samples, while principle component 2 (PC2) describes 14.6% variation and 

differentiate early infection stage (48 HAI) from the late infection stages (96 HAI and 144 HAI). 
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Figure 3.4. Expression of genes involved in biosynthesis of secondary metabolite. The genes 

(Tri1, Tri3, Tri5, Tri8, Tri9, Tri11, Tri12, Tri14, Tri15, Tri101 and NPS9) were expressed higher 

in planta than in vitro, while genes (NPS7, NPS11, PKS3, PKS4, PKS6, PKS11, PKS12, and 

PKS13) had a higher expression in vitro.  
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Figure 3.5. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of in vitro 

up-regulated genes. Values with log2 fold change >1 and false discovery rate (<0.01) were 

considered as differentially expressed. Only pathways having at least two genes up-regulated on 

either of population are shown.  
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Figure 3.6. Venn diagram of differentially expressed in planta genes in 3ADON population 

compared to 15ADON population. Among 185, 89, 62 up-regulated genes in 3ADON, a total 

167, 63 and 44 genes were specific to three time points after inoculation, respectively. HAI: 

hours after inoculation, 3ADON: population producing 3-acetyl-deoxynivalenol and DON, 

15ADON: population producing 15-acetyl-deoxynivalenol and DON.  
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Figure 3.7. Venn diagram comparing exclusively up-regulated genes in planta vs in vitro in the 

two populations 3ADON and 15ADON at 48 (A), 96 (B), 144 (C) hours after inoculation (HAI). 

A total 633, 526, and 668 genes were up-regulated at three respective points in 3ADON). D). 

Comparison of genes upregulated within 3ADON population. Total 503, 196 and 331, genes 

were exclusively upregulated at 48, 96 and 144 HAI. Of which 65 genes were co-expressed 

among all three stages. 3ADON: population producing 3-acetyl-deoxynivalenol and DON, 

15ADON: population producing 15-acetyl-deoxynivalenol and DON.  
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Figure 3.8. Functional analysis of in planta up-regulated genes in the 3ADON and 15ADON 

populations. Only genes up-regulated in 3ADON and 15ADON population were used for 

functional categorization. Total numbers of gene found in MIPS catalogue are listed in 

parenthesis. The functional categories in which members are significantly enriched than those 

found in the whole genome are marked with asterisks (p < 0.05, FDR < 0.05). 
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Figure 3.9. Fold change in expression of TRI genes during in planta infection compared to in 

vitro. The average of in planta fold-increase (Log2) across the all infection points were compared 

with corresponding in vitro expression in both populations. Tri1, Tri6, and Tri11 were up-

regulated in all infection points on 3ADON population. While Tri3, OrfA and Tri15 were 

upregulated among all infection points on 15ADON population. Fold change in gene expression 

were measured using relative changes in FPKM values, and were statistically significant at FDR 

<0.01. Error bars represent the standard error of means. 
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Table 3.1. Name, origin, PCR based chemotype and collection information of 20 Fusarium 

graminearum isolates used in the study. 

Isolate
a
 Origin  Cultivar Year Chemotype Collected by 

Fg 08-001 Foster, ND, USA Reeder  2008 3ADON S. Zhong 

Fg 08-003 Steele , ND, USA wheat 2008 3ADON S. Zhong 

Fg 08-004 Barnes, ND, USA wheat 2008 3ADON S. Zhong 

Fg 08-005 Foster, ND, USA Reeder 2008 3ADON S. Zhong 

Fg 08-006 Steele, ND, USA wheat 2008 3ADON S. Zhong 

Fg 08-009 Foster, ND, USA Steele ND  2008 3ADON S. Zhong 

Fg 08-010 Barnes, ND, USA wheat 2008 3ADON S. Zhong 

Fg 08-012 Steele, ND, USA wheat 2008 3ADON S. Zhong 

Fg 08-025 ND, USA wheat 2008 3ADON S. Zhong 

Fg 08-029 ND, USA wheat 2008 3ADON S. Zhong 

Fg 08-007 Foster, ND, USA Vantage  2008 15ADON S. Zhong 

Fg 08-013 Steele, ND, USA wheat 2008 15ADON S. Zhong 

Fg 08-026 ND, USA wheat 2008 15ADON S. Zhong 

Fg 08-030 ND, USA wheat 2008 15ADON S. Zhong 

Fg 08-034 ND, USA wheat 2008 15ADON S. Zhong 

Fg 08-036 ND, USA wheat 2008 15ADON S. Zhong 

Fg 08-037 Foster, ND, USA wheat 2008 15ADON S. Zhong 

Fg 08-043 Foster, ND, USA Durum  2008 15ADON S. Zhong 

Fg 08-057 Foster, ND, USA Alsen  2008 15ADON S. Zhong 

09-1-H1-1 Dicky, ND, USA wheat 2009 15ADON S. Ali 
a
Ten isolates from each population (3ADON and 15ADON) were first separately evaluated for 

disease aggressiveness and amount of DON accumulation in grains using three spring wheat 

genotypes (Grandin, Steele ND and ND 2710) under the greenhouse conditions. While for 

transcriptome analysis, isolates form each population are mixed equally and inoculated on 

susceptible wheat cultivar ‘Briggs’ for in planta sample collectioan and  grown for five days on 

mung bean agar media for in vitro sample collection. 
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Table 3.2. Summary of sequence reads (in millions) from each 16 RNA sequences library samples. 

 Summery
a
 

in vitro in planta_48 HAI in planta_96 HAI in planta_144 HAI 

3A_R1 3A_R2 15A_R1 15A_R2 3A_R1 3A_R2 15A_R1 15A_R2 3A_R1 3A_R2 15A_R1 15A_R2 3A_R1 3A_R2 15A_R1 15A_R2 

Total reads 40.92 34.87 34.58 32.23 34.42 30.27 27.81 34.50 33.43 26.48 39.18 36.94 49.56 41.21 29.17 34.01 

Mapped reads 
33.71 28.53 27.71 25.99 1.89 1.60 1.98 2.29 2.63 3.14 2.85 2.80 6.57 4.77 2.38 2.20 

82.4% 81.8% 80.1% 80.7% 5.5% 5.3% 7.1% 6.6% 7.9% 11.8% 7.3% 7.6% 13.3% 11.6% 8.2% 6.5% 

Unique match 
33.43 28.21 27.34 25.71 1.82 1.55 1.90 2.21 2.53 3.04 2.68 2.64 6.21 4.64 2.28 2.10 

81.7% 80.9% 79.1% 79.8% 5.3% 5.1% 6.8% 6.4% 7.6% 11.5% 6.9% 7.2% 12.5% 11.3% 7.8% 6.2% 

Multi-position 

match 

0.28 0.32 0.37 0.28 0.07 0.05 0.08 0.08 0.10 0.09 0.17 0.16 0.36 0.13 0.10 0.10 

0.68% 0.92% 1.07% 0.86% 0.22% 0.16% 0.30% 0.24% 0.31% 0.35% 0.42% 0.44% 0.73% 0.31% 0.35% 0.28% 

Unmapped 

  

7.21 6.33 6.87 6.24 32.53 28.68 25.83 32.21 30.80 23.35 36.33 34.14 42.99 36.45 26.78 31.81 

17.6% 18.2% 19.9% 19.4% 94.5% 94.7% 92.9% 93.4% 92.1% 88.2% 92.7% 92.4% 86.7% 88.4% 91.8% 93.5% 
a
Sequence reads from each treatment were mapped to the reference genome of F. graminearum (PH-1) using Bowtie v0.12.5 

(Langmead et al., 2009) and TopHat v2.0.0 (Trapnell et al., 2009). HAI: hours after inoculation; 3A: 3ADON (3-acetyl-

deoxynivalenol); 15A: 15ADON (15-acetyl-deoxynivalenol); R: Replicate. 
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Table 3.3. Pair-wise comparison of gene expression profiles on 3ADON and 15ADON 

populations. 

Comparison
a
 

significantly up-

regulated genes
b
 

significantly down-

regulated genes 

A. In vitro only 

  3ADON-v-15ADON 479 (454) 801 (723) 

B. In-planta only 

  48 HAI: 3ADON-v-15ADON 185 (177) 292 (285) 

96 HAI: 3ADON-v-15ADON 89 (85) 362 (339) 

144 HAI: 3ADON-v-15ADON 62 (59) 241 (228) 

C. In planta versus in vitro      

3ADON: 48 HAI-v-in vitro 2159 1631 

3ADON: 96 HAI-v-in vitro 1981 2694 

3ADON: 144 HAI-v-in vitro 2095 2632 

15ADON: 48 HAI-v-in vitro 2415 1510 

15ADON: 96 HAI-v-in vitro 2059 1975 

15ADON: 144 HAI-v-in vitro 1777 2087 
a
Number of differentially expressed genes in each population were identified for three seaparte 

comparision A. compared within in vitro; B. compared within in planta;  and among in planta all 

infection stages with corresponding in vitro condition for each 3ADON and 15ADON 

populations. 
b
Number of differentlyexpressed genes were calculated using Cuffdiff within Cufflinks v1.3.0 

(Trapnell et al., 2010)]. Genes were considered significantly up-regulated or down-regulated if 

FPKM (fragments per kilobase of transcript per million fragments mapped) log2 (fold change) 

value was greater than one at the false discovery rate (q) of 1 % (<0.01). The numbers in 

parentheses denotes the numbers of genes found in MIPS functional catalogue (Ruepp et al., 

2004). HAI, hours after inoculation; 3ADON, 3-acetyl-deoxynivalenol; 15ADON, 15-acetyl-

deoxynivalenol.
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Table 3.4. Functional annotation of in planta only up or down- regulated genes in 3ADON population at three respective infection 

points.  
 

 

  

Up-regulation Down-regulation 
Whole genome 

Functional category 48 HAI 

(177)
a
 

96 HAI 

(85) 

144 HAI 

(59) 

48 HAI 

(285) 

96 HAI 

(339) 

144 HAI 

(228) 

 

01 Metabolism 37 (20.9%) 13 (15.2%) 13 (22%) 89 (31.2%) 63 (18.5%) 40 (17.5%) 2322 (16.7%) 

02 Energy 3 (1.69%)  5 (5.88%) 2 (3.38%) 18 (6.31%) 9 (2.65%) 6 (2.63%) 503 (3.63%) 

10 Cell cycle and DNA processing 3 (1.69%) 2 (2.35%) 2 (3.38%) 9 (3.15%) 3 (0.88%) 1 (0.43%) 659 (4.76%) 

11 Transcription 3 (1.69%) - 1 (1.69%) 6 (2.1%) 1 (0.29%) 4 (1.75%) 718 (5.19%) 

12 Protein synthesis 2 (1.12%)  - 1 (1.69%) 4 (1.4%) 1 (0.29%) 1 (0.43%) 370 (2.67%) 

14 Protein fate  3 (1.69%)  1 (1.17%) 1 (1.69%) 19 (6.66%) 13 (3.83%) 5 (2.19%) 920 (6.65%) 

16 Protein with binding function  12 (6.77%) 7 (8.23%) 5 (8.47%) 46 (16.1%) 30 (8.84%) 19 (8.33%) 1714 (12.3%) 

18 Regulation of metabolism and 

protein function 

- - - 11 (3.85%) 4 (1.17%) 1 (0.43%) 242 (1.75%) 

20 Cellular transport 15 (8.47%)  10 (11.7%) 9 (15.2%) 39 (13.6%) 41 (12%) 23 (10%) 1390 (10%) 

30 Cellular communication - - - 5 (1.75%) 4 (1.17%) 1 (0.43%) 312 (2.25%) 

32 Cell rescue, defense and virulence 9 (5.08%)  12 (14.1%) 5 (8.47%) 37 (12.9%) 22 (6.48%) 16 (7.01%) 856 (6.19%) 

34 Interaction with the environment 5 (2.82%)  5 (5.88%) 4 (6.77%) 25 (8.77%) 19 (5.6%) 10 (4.38%) 606 (4.38%) 

36 Systemic interaction with the 

environment 

- - - 1 (0.35%) - 1 (0.43%) 12 (0.08%) 

40 Cell fate  1 (0.56%)  1 (1.17%) 1 (1.69%) 7 (2.45%) 4 (1.17%) 1 (0.43%) 240 (1.73%) 

42 Biogenesis of cellular components 3 (1.69%)  1 (1.17%) 1 (1.69%) 9 (3.15%) 8 (2.35%) 4 (1.75%) 617 (4.46%) 

43 Cell type differentiation - - - 6 (2.1%) 2 (0.58%) 1 (0.43%) 273 (1.97%) 

99 Unclassified proteins 126 (71.1%) 61 (71.7%) 38 (64.4%) 148 (51.9%) 234 (69%) 165 (72.3%) 9004 (65.1%) 
a
Numbers on parenthesis indicates number of genes found on MIPS FunCat. 

b
Number of genes present on whole in the specific functional category (retrieved from MIPS database). 

-
indicates genes that were not detected on specific functional category. 

Numbers on bold letters are those significantly enriched at p= <0.05 and FDR>0.05. 
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Table 3.5. Differentially expressed Fusarium graminearum genes in 3ADON population 

showing at least 5-fold greater expression than 15ADON in planta expression or with 

corresponding in vitro expression. 

Gene ID
a
 Condition Gene description 

Gene 

name 

Compared to 

15ADON
b
 

Compared 

to in vitro  

FGSG_00002 48HAI Conserved hypothetical protein .. 6.5 22.7 

FGSG_00032 
48HAI Related to non-heme chloroperoxidase .. 5.2 16.2 

96HAI Related to non-heme chloroperoxidase .. 7.4 8.8 

FGSG_00143 48HAI Hypothetical protein .. 6.5 189.9 

FGSG_02321 

48HAI Oxidoreductase that catalyses the 

conversion of dimeric 9-

hydroxyrubrofusarin to aurofusarin 

aurO 5.8 .. 

FGSG_02324 

48HAI Polyketide synthase that catalyse the 

condensation of one acetyl-coa and six 

malonyl-coa resulting in formation of nor-

rubrofusarin 

PKS12 35.0 .. 

FGSG_02325 48HAI Conserved hypothetical protein   6.4 .. 

FGSG_02326 

48HAI O-methyltransferase that catalyse the 

methylation of nor-rubrofusarin resulting in 

formation of rubrofusarin 

aurJ 10.4 .. 

FGSG_02327 

48HAI Flavin depend monooxygenase that 

catalyses the oxidation of rubrofusarin to 9-

hydroxyrubrofusarin 

aurF 10.2 .. 

FGSG_02328 
48HAI Laccase that catalyse the dimerization of 

two 9-hydroxyrubrofusarin in C7 positions 

gip1 7.9 .. 

FGSG_02329 48HAI Conserved hypothetical protein .. 10.0 .. 

FGSG_02833 48HAI Probable alpha-glucoside transport protein .. 7.6 49.6 

FGSG_02966 144 HAI Conserved hypothetical protein .. 5.0 .. 

FGSG_03335 144 HAI Conserved hypothetical protein .. 7.0 .. 

FGSG_03336 144 HAI Related to integral membrane protein .. 6.6 .. 

FGSG_04599 
48HAI Related to peroxisomal short-chain alcohol 

dehydrogenase 

.. 5.1 76.7 

FGSG_04621 
48HAI Related to monoamine oxidase N .. 8.4 4.2 

96HAI Related to monoamine oxidase N .. 5.8 11.5 

FGSG_04694 144 HAI Polyketide synthase PKS2 6.0 19.7 

FGSG_04717 
96HAI Probable cytochrome P450 

monooxygenase (lova) 

.. 5.2 194.7 

FGSG_04787 144 HAI Conserved hypothetical protein .. 5.1 .. 

FGSG_05322 
48HAI Probable fatty-acyl-coa synthase, beta 

subunit 

.. 5.1 .. 

FGSG_05805 96HAI Related to aliphatic nitrilase .. 15.0 31.2 

FGSG_05928 144 HAI Conserved hypothetical protein .. 26 12.1 

FGSG_05935 

96HAI Related to triacylglycerol lipase V 

precursor 

.. 6.6 2.1 

144 HAI Related to triacylglycerol lipase V 

precursor 

.. 7.7 .. 

FGSG_06540 
48HAI Conserved hypothetical protein .. 17.3 9.1 

144 HAI Conserved hypothetical protein .. 6.0 3.5 

FGSG_06580 48HAI Probable acetyl-coa carboxylase .. 5.7 .. 

FGSG_07666 144 HAI Related to quinate transport protein .. 5.8 10.8 

FGSG_08076 48HAI Hypothetical protein .. 5.0 2.7 

FGSG_09175 48HAI Conserved hypothetical protein .. 6.3 .. 

FGSG_10326 48HAI Conserved hypothetical protein .. 5.3 6.4 

(continued)  
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Table 3.5. Differentially expressed Fusarium graminearum genes in 3ADON population 

showing at least 5-fold greater expression than 15ADON in planta expression or with 

corresponding in vitro expression. (continued) 

Gene ID
a
 Condition Gene description 

Gene 

name 

Compared to 

15ADON
b
 

Compared 

to in vitro  

FGSG_11722 48HAI Conserved hypothetical protein .. 6.3 4.6 

FGSG_11723 48HAI Conserved hypothetical protein .. 5.6 3.3 

FGSG_12049 48HAI Hypothetical protein  .. 5.9 31.9 

FGSG_12132 48HAI Conserved hypothetical protein .. 5.2 2.1 
SC_3.1:373085-
373840 

48HAI .. .. 5.2 .. 

SC_3.2:942339-

943229 
48HAI .. .. 5.2 .. 

SC_3.7:2269192-

2269685 
48HAI .. .. 14.1 93.5 

FGSG_02672 

48 HAI Probable cytochrome P450 monooxygenase (lova) .. -72.3 2.5 

96 HAI Probable cytochrome P450 monooxygenase (lova) .. -60.0 5.3 

144 HAI Probable cytochrome P450 monooxygenase (lova) .. -40.4 6.5 

FGSG_03384 144 HAI Probable exopolygalacturonase .. -10.7 .. 

FGSG_04008 
96 HAI Conserved hypothetical protein .. -13.5 .. 

144 HAI Conserved hypothetical protein .. --13.1 .. 

FGSG_04679 144 HAI Related to beta-mannosidase .. -43.9 51.0 

FGSG_04702 144 HAI Related to dehydrogenase .. -11.4 .. 

FGSG_04823 144 HAI Hypothetical protein .. -24.2 .. 

FGSG_04892 
96 HAI Conserved hypothetical protein .. -12.5 .. 

144 HAI Conserved hypothetical protein .. -41.7 .. 

FGSG_07205 96 HAI Conserved hypothetical protein .. -20.0 .. 

FGSG_07804 144 HAI Hypothetical protein .. -22.8 .. 

FGSG_08960 144 HAI Related to kinesin light chain .. -43.2 .. 

FGSG_08961 

48 HAI Conserved hypothetical protein .. -12.9 .. 

96 HAI Conserved hypothetical protein .. -59.1 .. 

144 HAI Conserved hypothetical protein .. -87.8 .. 

FGSG_09072 
96 HAI Conserved hypothetical protein .. -10.9 13.5 

144 HAI Conserved hypothetical protein .. -11.7 12.3 

FGSG_09641 
96 HAI Conserved hypothetical protein .. -37.8 .. 

144 HAI Conserved hypothetical protein .. -33.5 .. 

FGSG_10085 
48 HAI Related to integral membrane protein .. -10.7 2.4 

144 HAI Related to integral membrane protein .. -34.8 .. 

FGSG_10086 
96 HAI Conserved hypothetical protein .. -22.1 6.8 

144 HAI Conserved hypothetical protein .. -18.1 6.0 

FGSG_10603 144 HAI Putative protein [EST hit] .. -21.3 .. 

FGSG_10636 

48 HAI Probable IgE -dependent histamine-r-factor .. -10.2 .. 

96 HAI Probable IgE -dependent histamine-r-factor .. -12.7 5.6 

144 HAI Probable IgE -dependent histamine-r-factor .. -19.1 6.3 

FGSG_10670 144 HAI Probable acetylxylan esterase precursor .. -79.0 69.6 

FGSG_11009 96 HAI Conserved hypothetical protein .. -10.3 117.9 

FGSG_11449 144 HAI Conserved hypothetical protein .. -13.8 9.1 

FGSG_13464 48 HAI Conserved hypothetical protein .. -184.6 2.8 

FGSG_13505 144 HAI Conserved hypothetical protein .. -12.7 38.2 
SC_3.2:5039491-

5040187 
144 HAI .. .. -61.7 39.5 

SC_3.2:5039551-

5040054 
96 HAI .. .. -95.8 .. 

a
The differentially expressed genes were identified using Cuffdiff within Cufflinks interface 

(Trapnell et al., 2010). Genes were considered significantly up or down-regulated in expression 
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if the absolute value of FPKM (fragments per kilobase of transcript per million fragments 

mapped) Log2 (fold change) value was greater than one at the false discovery rate (q<0.01).  
b
Values indicated with (-) sign were fold down-regulated in 3ADON compared to 15ADON (in 

planta expression), and only genes with least 10 fold lower expression are shown. While, values 

indicated with bold letters are fold up-regulated in 15ADON condition as compared to in vitro 

expression. 

..no information.  



118 

Table 3.6. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of in planta 

up-regulated genes in 3ADON and 15ADON populations compared to in vitro.  

(continued) 

Pathway
a
 3ADON

b
 15ADON 

Purine metabolism 15 10 

Arginine and proline metabolism 11 2 

Glycine, serine and threonine metabolism 8 6 

Pyrimidine metabolism 8 4 

Citrate cycle (TCA cycle) 7 2 

Valine, leucine and isoleucine biosynthesis 7 1 

Methane metabolism 6 9 

Glyoxylate and dicarboxylate metabolism 6 4 

Cysteine and methionine metabolism 6 3 

Phenylalanine, tyrosine and tryptophan biosynthesis 6 3 

Pentose phosphate pathway 6 1 

Alanine, aspartate and glutamate metabolism 5 2 

Pantothenate and CoA biosynthesis 5 2 

Carbon fixation pathways in prokaryotes 5 1 

Nitrogen metabolism 4 6 

One carbon pool by folate 4 3 

Glycolysis / Gluconeogenesis 4 2 

Carbon fixation in photosynthetic organisms 4 - 

Amino sugar and nucleotide sugar metabolism 3 5 

Thiamine metabolism 3 4 

Valine, leucine and isoleucine degradation 3 3 

Butanoate metabolism 3 2 

Fructose and mannose metabolism 3 2 

Glutathione metabolism 3 2 

Glycerolipid metabolism 3 2 

Inositol phosphate metabolism 3 2 

Lysine biosynthesis 3 2 

Phenylalanine metabolism 3 2 

Lysine degradation 3 1 

Tryptophan metabolism 3 1 

Phosphatidylinositol signaling system 3 - 

Pyruvate metabolism 3 - 

Pentose and glucuronate interconversions 2 8 

Starch and sucrose metabolism 2 6 

Tyrosine metabolism 2 4 

beta-Alanine metabolism 2 2 

Aminobenzoate degradation 2 1 

Cyanoamino acid metabolism 2 1 

Oxidative phosphorylation 2 1 

Riboflavin metabolism 2 1 

Steroid biosynthesis 2 1 

C5-Branched dibasic acid metabolism 2 - 
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Table 3.6. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of in planta 

up-regulated genes in 3ADON and 15ADON populations compared to in vitro. (continued) 

a
Only pathways that includes at least two genes up regulated on either population were listed. In 

3ADON population, total 205 genes involved in 65 metabolic pathways were identified. While in 

15ADON population, total 178 genes involved in 72 metabolic pathways were identified. 
b
Number of genes on specific pathway from each population.  
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CHAPTER 4. MOLECULAR CHARACTERIZATION OF FUSARIUM HEAD BLIGHT 

PATHOGENS SAMPLED FROM A NATURALLY INFECTED DISEASE NURSERY 

USED FOR WHEAT BREEDING PROGRAMS IN CHINA 

4.1. Abstract 

Fusarium head blight (FHB) is an important disease of wheat and barley worldwide. The 

disease is primarily caused by members of the Fusarium graminearum species complex, 

consisting of at least 14 phylogenetically distinct species. To determine the population structure 

of the FHB pathogens in a naturally infected disease nursery located at Jianyang, Fujian 

province, China, 160 isolates of the F. graminearum complex were recovered from symptomatic 

wheat spike samples collected in two consecutive years (2008 and 2009) and characterized using 

species- and chemotype-specific polymerase chain reaction as well as variable number tandem 

repeat (VNTR) markers. All isolates analyzed were identified as F. asiaticum except for one 

isolate, which was identified as F. avenaceum. Among the 159 F. asiaticum isolates, 126 (79%) 

isolates were of the nivalenol (NIV) type while 29 (18%) isolates were of the 15-acetyl 

deoxynivalenol (15ADON) type and only 4 (3%) isolates were of the 3-acetyl deoxynivalenol 

(3ADON) type. The 10 VNTR markers revealed 124 distinct haplotypes and 76 polymorphic 

alleles across the whole population. The two subpopulations (FA-08 and FA-09) grouped based 

on the year of collection exhibited low genetic differentiation (Fst = 0.032) and high gene flow 

(Nm = 15.13). However, a significant genetic differentiation was found within the NIV-type 

isolates as revealed by the Structure software. The pairwise linkage disequilibrium tests did not 

support the hypothesis of random mating in the population because half (48.8%) of the locus 

pairs showed a linkage disequilibrium (P > 0.05). Our results suggest that FHB in this nursery 

was caused by a genetically homogenous and non-random mating population of F. asiaticum in 
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2008 and 2009, which consisted of all three trichothecene types with various levels of 

aggressiveness. 

4.2. Introduction 

Fusarium head blight (FHB), or scab, is a major disease of wheat and barley worldwide. 

The disease causes significant losses in yield and quality of the two crops (McMullen et al., 

1997; Windels, 2000). In North America, more than $3 billion of losses were estimated after the 

FHB epidemics during the 1990s (McMullen et al., 1997). Frequent disease outbreaks also have 

been reported from Asia, Europe, and South America in recent years, posing a potential threat to 

the world's grain production and food supply (Goswami and Kistler, 2004). In China, the first 

FHB outbreak occurred in 1936 in Anhui province but epidemics were sporadic for almost a half 

century after that year (Xu and Chen, 1997). Since 1985, the disease has become more frequent 

and widespread in major wheat-growing areas of eastern and central China, especially along the 

lower and middle reaches of the Yangtze River Valley as well as the northeastern and central 

parts of China (Bai et al., 2003; Qu et al., 2008). 

Several Fusarium spp. can cause FHB but the predominant pathogens vary with regions 

and may change over time. In many regions of the world, FHB is mainly caused by members of 

the Fusarium graminearum species complex, consisting of at least 14 phylogenic species 

(O’Donnell et al., 2000; O’Donnell et al., 2004; Starkey et al., 2007; Yli Mattila et al., 2009). In 

China, F. graminearum sensu lato was found in 94.5% of the samples recovered from 20 

provinces along the Yangtze River Valley and 17 other Fusarium spp. were also isolated (Wang, 

1997). Global studies of Fusarium spp. composition and population structure showed that F. 

graminearum sensu stricto, one member of the F. graminearum complex, is dominant in North 

America (O’Donnell et al., 2000; O’Donnell et al., 2004; Starkey et al., 2007), although other 
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species were also found in some other regions of the United States (Gale et al., 2011). In China, 

F. asiaticum and F. graminearum sensu stricto are the dominant species to initiate FHB in wheat 

(Gale et al., 2002; Qu et al., 2008; Zhang et al., 2007) and barley (Yang et al., 2008; Zhang et al., 

2010a; Zhang et al., 2010b), with F. asiaticum being more common in southern China and F. 

graminearum sensu stricto being more frequent in the north (Qu et al., 2008). F. asiaticum and 

F. graminearum were also found to be the predominant etiological agents of FHB in Japan, 

although their distributions vary depending on the regions (Karugia et al., 2009a; Karugia et al., 

2009b; Suga et al., 2008).  

Population subdivision of F. graminearum correlates to geographical differences and 

trichothecene types worldwide (Gale et al., 2002; Gale et al., 2007; Ward et al., 2008; Yang et 

al., 2008). Previously, Karugia et al. (2009a) found 42.3% of isolates were of nivalenol (NIV) 

type and 57.7% were of 3-acetyl deoxynivalenol (3ADON) type but no 15-acetyl deoxynivalenol 

(15ADON)-type isolates were identified among 208 isolates collected from Zhejiang province in 

China. However, a recent study of 448 F. asiaticum isolates collected from barley at 18 sampling 

sites along the Yangtze River Valley identified all three trichothecene types (NIV = 109, 

3ADON = 159, and 15ADON = 14) (Zhang et al., 2010). They also found significant genetic 

differentiation among populations originated from upper, middle, and lower regions of Yangtze 

River. Earlier studies on population genetics of F. graminearum indicated a relatively 

homogenous population in the United States (Zeller et al., 2003; Zeller et al., 2004), but more 

recent studies revealed genetically divergent populations in the Northern Great Plains of the 

United States and Canada (Gale et al., 2007; Puri and Zhong, 2010; Ward et al., 2008).  

Although population genetics of FHB pathogens have been studied extensively on a 

global to regional scale (Gale et al., 2007; Qu et al., 2008; Ward et al., 2008; Yang et al., 2008; 
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Zeller et al., 2004; Zhang et al., 2010a; Zhang et al., 2010b), information on the species 

composition, trichothecene types, and genetic structure of the pathogen population from a 

smaller area or experimental unit is relatively limited. In Jianyang, Fujian province of China, 

where the weather is consistently warm and humid during and after wheat anthesis, FHB 

develops very well under natural infection conditions every year (Bai et al., 2003; Zhu and Fan, 

1989). For this reason, a scab nursery was established in the early 1970s and has been used for 

screening breeding lines or other materials of wheat for FHB resistance ever since. However, the 

pathogen profile of the nursery is not known. Studies of the genetic structure of pathogen 

populations not only may provide important information regarding the epidemiology and 

evolutionary potential of the F. graminearum complex but also could lead to improved strategies 

for controlling this pathogen (Zeller et al., 2003). We attempted to answer several questions, 

including (i) how many species of the F. graminearum complex caused FHB in the nursery, (ii) 

what were the number and relative frequency of trichothecene types, and (iii) was there genetic 

differentiation in the pathogen population? Therefore, the major objectives of our study were to 

determine (i) species composition, (ii) trichothecene types, and (iii) genetic structure of FHB 

pathogens from this small (approximately 500 m
2
) disease nursery under natural infection. 

4.3. Materials and Methods 

4.3.1. Fungal isolates  

Symptomatic wheat heads were sampled from an FHB nursery (10 by 50 m
2
 in size) 

located at Jianyang, Fujian province, China (Fig. 4.1), in two consecutive years (2008 and 2009). 

In 2008, wheat spikes showing FHB symptoms were randomly collected from representative 

plots of the nursery. In 2009, two to three scabby heads were sampled from each of 54 spots 

evenly distributed in the nursery, with a distance of 5 to 10 m between two neighboring spots. 
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Fungal isolation, growth, and storage were done as described by Puri and Zhong (2010). Each 

isolate was named after JY (Jianyang, the nursery location) followed by 08 or 09 (collection 

year) and serial numbers. For example, JY08-001 represents the isolate collected from Jianyang 

in 2008 with a serial number 001. 

4.3.2. DNA extraction, Fusarium spp. identification, and trichothecene type determination 

For DNA isolation, mycelia were harvested from a single spore-derived culture of each 

fungal isolate grown on cellophane layered over half-strength potato dextrose agar for 6 to 7 

days. DNA was extracted using the Fast DNA Kit and Fast Prep instrument (MP Biomedical) 

according to the manufacturer’s instructions, and then quantified using a Nano Drop (Nano Drop 

Technologies). To confirm the identity of the Fusarium spp., a portion of the histone H3 gene 

was amplified using polymerase chain reaction (PCR) according to the method described by 

O’Donnell et al. (2000, 2004). The amplicons were purified by Exo SAP IT (USB Corporation) 

and sent to the University of Hawaii for sequencing. The isolates with identical DNA sequences 

were grouped together. The sequences (JQ435850 to JQ435858) from the representative isolates 

in each of the groups were used for BLASTN search against the National Center for 

Biotechnology Information GenBank database. The primers (6A3AF, 6A3AR, 6CNF, 6ANR, 

6G3AF, 6G3AR, 3D15AF, and 3D15AR) developed and described by Suzuki et al. (2011) were 

used to differentiate F. graminearum and F. asiaticum. Trichothecene types were determined by 

PCR using the trichothecene-specific multiplex primers and conditions previously described 

(Starkey et al., 2007; Ward et al., 2002). The PCR products were separated on a 1% agarose gel 

and sized with reference to a 100-bp DNA ladder (NEB). The amplicon at 840, 610, and 243 bp 

corresponds to the NIV, 15ADON, or 3ADON type, respectively (Ward et al., 2002). 
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4.3.3. Analysis of variable number tandem repeats 

Nine variable number tandem repeat (VNTR) markers (HK913, HK917, HK957, HK965, 

HK967, HK977, HK1043, HK1059, and HK1073) developed by Suga et al. (2004) and one 

additional VNTR marker HK1003, described by Gale et al. (2005) were used to analyze the 

population structure of the FHB pathogens. Information of the primer pairs used to detect the 10 

VNTR markers is provided in Table 4.1. The forward primer of each primer pair was labeled 

with IRD700/800 at the 5′ end (Eurofins MWG Operon). PCR was performed as described by 

Suga et al. (2004), with some modifications. Each PCR reaction was run in a total volume of 10 

μl containing 1× reaction buffer, 200 μM dNTP, 1 μM each primer (forward and reverse), 1 unit 

of Taq polymerase, and genomic DNA at 25 to 30ng/μl on a PTC-100 thermal cycler (MJ 

Research). Amplification profile consisted of initial denaturation at 94°C for 3 min; followed by 

25 cycles of 94°C for 30 s, 52°C for 30 s, and 72°ºC for 45 s; and a final extension at 72°C for 5 

min. The PCR products were detected on the Li-COR system (Li-COR) according to the method 

previously described by Puri and Zhong (2010). For each primer pair, amplicons with the same 

size were considered as the same allele and scored on size (bp). A binary system (i.e., 1 = present 

and 0 = absent) was also used as required for analysis. 

4.3.4. Population genetic analysis 

Initially, we used Structure 2.3.2 software based on a Bayesian-model-based clustering 

method (Falush et al., 2003; Pritchard et al., 2000) to assign each multilocus genotype to user-

defined genetic K clusters. The analysis was performed with K = 1 to 5 for five iterations with 

100,000 Markov Chain Monte Carlo reps after burn-in period of 10,000 (Pritchard et al., 2000). 

The exact number of clusters (K) was determined based on ln (P) curve for each subpopulation 

probability and verified with Structure Harvester, a web-based program to visualize Structure 



133 

output implementing the Evanno method (Earl and vonHoldt, 2011). To test whether there was a 

genetic differentiation between isolates collected from the 2 years, we also grouped isolates into 

populations according to the year of collection. Isolates collected from 2008 were grouped into 

one population (FA-08) and those from 2009 were grouped into another population (FA-09). The 

genotypic diversity (GD) and index of multilocus linkage disequilibrium (rd) were calculated 

using software MULTILOCUS 1.3 with the algorithm G = (n/n–1){(1 – Σpi
2
)}, where n is the 

number of individuals sampled and pi is the frequency of i
th

 genotype (Agapow and Burt, 2001). 

The GD has a value of 0 if every individual is of the same genotype or 1 if every individual is 

different in the population. The index (rd) was used to test a hypothesis of random mating within 

a subpopulation after 1,000 permutations. The index (rd) gives a value of zero if there is no 

association among alleles on unlinked loci, as expected on null hypothesis of random mating. 

The significant linkage disequilibrium (LD) among VNTR loci and successive P values were 

generated using a Marcov chain length of 10
4
 and dememorization of 10

4
, as implemented in 

ARLEQUIN 3.1. The genetic differentiation and other population parameters were determined 

using different statistical tools and techniques. Analysis of molecular variance (AMOVA), 

population differentiation or fixation index (Fst), and number of migrants exchanged between 

two populations or gene flow (Nm) were calculated using ARLEQUIN 3.11 (Excoffier et al, 

2005). The allele frequencies, percentage polymorphic loci, gene diversity (Nai, 1973, 1978), 

Nei’s unbiased genetic distance (D) (Nei, 1978), and fixation index (Gst) for individual loci were 

calculated using POPGENE ver. 1.32 (Yeh et al., 1997). Molecular variance (AMOVA) was 

performed to test hierarchical partition of genetic variation between two populations and 

individuals within the whole population (Excoffier et al., 1992). The gene flow was calculated by 
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Nm = (1– Fst)/2Fst), where N is the effective population size and m is the migration rate per 

generation. The statistical significance of pairwise Fst was tested by 1,000 permutations. 

4.3.5. Aggressiveness evaluation of representative F. asiaticum isolates 

A greenhouse experiment was conducted to test the aggressiveness of 16 representative 

isolates of F. asiaticum, including 6 15ADON-type isolates, 4 3ADON-type isolates, and 6 NIV-

type isolates, on the spring wheat ‘Briggs’ (susceptible to FHB). Seed were sown in plastic 

buckets (30 by 20 by 35 cm3) filled with Sunshine pot mix (Sun Gro Horticulture Canada Ltd.) 

with two rows (8 seeds/row) per bucket. For each isolate, three rows (replicates) of the plants 

were used for inoculation at the anthesis. Plant growth conditions, inoculum preparation, 

inoculation, and disease scoring were the same as previously described (Puri and Zhong, 2010), 

except that the inoculated plants were kept in a humidity chamber for 72 h instead of overhead 

misting.  

4.4. Results 

4.4.1. Fusarium spp. identification 

In total, 160 Fusarium isolates (59 from 2008 and 101 from 2009) were first analyzed 

using the species-specific multiplex PCR (Suzuki et al., 2010). The result indicated that all 

isolates except isolate JY09-030 showed the amplicons unique to F. asiaticum. Further analysis 

of histone H3 gene sequences indicated that JY09-030 (JQ435857) was F. avenaceum and the 

rest of isolates were identified as F. asiaticum. Compared with the histone H3 gene sequence of 

the F. asiaticum strain (F. graminearum species complex number 9086), 92% of the F. asiaticum 

isolates analyzed in this study had no or one base difference and only 8% isolates had two to four 

base differences.  
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4.4.2 Trichothecene type determination 

Trichothecene types were determined for the 159 F. asiaticum isolates using the 

multiplex PCR (Nei, 1972; O’Donnell et al., 2000). Among them, 126 (79%) of the isolates were 

of the NIV type while 29 (18%) and 4 (3%) isolates were of 15ADON and 3ADON types, 

respectively (Fig. 4.2C). In 2008, 45 (76%) isolates were of the NIV type and 14 (24%) isolates 

were of the 15ADON type but no 3ADON type was detected (Fig. 4.2A). In 2009, all three 

trichothecene types were identified, with 81 (81%) being of the NIV type, 15 (15%) being of the 

15ADON type, and 4 (4%) being of the 3ADON type (Fig. 4.2B).  

4.4.3. Population genetics analyses 

In all, 144 F. asiaticum isolates were analyzed using the 10 VNTR markers and 76 

polymorphic alleles were generated among them. The number of alleles generated by individual 

VNTR markers varied from 2 to 26 (Table 4.1). Gene diversity (H) also differed among the 10 

VNTR markers, with HK1003 being the highest (0.94), followed by HK957 (0.82), HK1073 

(0.78), and HK1059 (0.78). Marker HK967 and HK917 had the lowest H (0.02 and 0.13, 

respectively; Table 4.1). Using POPGENE, a fixation index (Gst) was generated for each VNTR 

marker. Marker HK917 had the highest Gst value (0.064) followed by marker HK965 (0.038). 

However, the three markers named HK917 (Gst = 0), HK1043 (Gst = 0.002), and HK967 (Gst = 

0.005) had very low fixation indices (Table 4.1). Of the 144 isolates, 132 isolates remained after 

clone removal. All clonal isolates were found in 2008 and clones with the same haplotype 

belonged to the same trichothecene type. Using Structure, we assigned the 131 (excluding F. 

avenaceum) clone-corrected isolates into distinct clusters. Assignment of isolates into a specific 

genetic cluster was based on the average membership value q = 0.8 or above. Using this 

standard, 98 isolates, in total, were assigned into one of the three clusters (numbers 1, 2, and 3) 
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with the highest probability. However, 33 isolates did not fit to any of the clusters and, thus, 

were not assigned into any populations. Cluster 1 (q mean = 0.941, standard deviation [SD] = 

0.036) had a total 45 isolates consisting of 44 NIV-type isolates and 1 15ADON-type isolate (q = 

0.978), which was named as population NIV-1. Cluster 2 (q mean = 0.908, SD = 0.053) had 18 

isolates comprising 16 NIV-type and 2 15ADON-type isolates and named population NIV-2. 

Because cluster 3 (q mean = 0.937, SD = 0.042) consisted of 18 NIV-type, 15 15ADON-type, 

and 2 3ADON-type isolates, we further divided them into two subpopulations, one named NIV-

3, containing all NIV isolates, and the other named DON, consisting of the 3ADON-type and 

15ADON-type isolates. AMOVA among the four populations (NIV-1, NIV-2, NIV-3, and DON) 

indicated that 17% of genetic variation was due to differences among populations and 83% of 

variation was from individuals within population. The three populations NIV-1, NIV-2, and 

DON had a similar level of gene diversity (0.41 to 0.46) whereas NIV-3 had relatively high gene 

diversity (0.54) across all loci. Population-wise comparison showed a significant differentiation 

among them, except between NIV-3 and DON (Table 4.2). A high gene flow (25.9) and a very 

low population differentiation (0.019 and P = 0.139) was found between NIV-3 and DON.  

The genetic distance was low (D = 0.05) and genetic identity was high (I = 0.95) between 

the two populations (FA-08 and FA- 09) grouped according to the years of collection. The 

hierarchical AMOVA showed that genetic variation between the populations accounted for only 

3.23% while most of the genetic variation (96.77%) was from individuals within population. 

Genetic differentiation was low (Fst = 0.032) and gene flow was high (Nm = 15.13) between FA-

08 and FA-09. The rd index was low in both populations (i.e., 0.073 for FA-08 and 0.050 for FA-

09) but was significantly different from zero at P < 0.001. The index of association, another 

measure of linkage disequilibrium, was 0.575 and 0.424 for FA-08 and FA-09, respectively, and 
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was also significantly different from zero (P < 0.001). Analysis of linkage disequilibrium 

between loci pairs of the 10 VNTR loci showed that almost half (48.8%) of the 45 possible 

locus-pair combinations were in linkage disequilibrium (P > 0.05; Table 4.3), suggesting that 

out-crossing was not frequent in the population.  

4.4.4. Aggressiveness evaluation 

The average disease severity (DS) caused by individual isolates on Briggs ranged from 

12.4% (JY08- 013) to 96.2% (JY09-45E). Analysis of variance indicated significant differences 

(P > 0.0001) in aggressiveness among the isolates based on the DS caused on Briggs. Isolate 

JY09-45E (a 3ADON type isolate) and JY08-043 (a 15ADON-type isolate) induced the highest 

DS, which was not significantly different from those induced by isolates JY08-009 and JY09-

045 (Fig. 4.3). However, all NIV-type isolates evaluated were significantly less aggressive 

compared with the 3ADON and 15ADON isolates (Fig. 4.3). 

4.5. Discussion 

Our results indicated that F. asiaticum is the primary etiological agent prevalent in the 

FHB disease nursery. This is consistent with previous studies, which showed that F. asiaticum is 

the predominant and primary pathogen of FHB for all major cereals (wheat, barley, and rice) in 

warmer regions of Asian countries, including China, Korea, and Japan (Lee et al., 2009; Qu et 

al., 2008; Suga et al., 2008). The majority of Fusarium isolates collected from FHB-infected 

wheat and barley samples in eastern and central China along the Yangtze River were identified 

as F. asiaticum in several independent studies (Gale et al., 2002; Karugia et al., 2009a; Karugia 

et al., 2009b; Zhang et al., 2010a; Zhang et al., 2010b). Qu et al. (2008) reported that 79% of the 

437 isolates collected from warmer (>15°C) regions of China were F. asiaticum. Karugia et al. 

(2010b) identified 179 F. asiaticum isolates among 183 isolates sampled in a small experimental 
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field in Japan. Lee et al. (2009) found that all of the 249 isolates collected from rice fields in 

southern provinces of Korea were F. asiaticum whereas isolates from eastern provinces of Korea 

were either F. asiaticum or F. graminearum sensu stricto. They hypothesize that F. asiaticum has 

a host preference and specificity to rice, and perithecium production typically favors rice straws 

under warmer conditions. The Jianyang nursery is located in the warmer region, and the field 

was planted with rice before wheat was grown for FHB evaluation (J. Huang, personal 

communication). Rice was the major cereal crop in Jianyang and no wheat, barley, and corn were 

grown around the region. Thus, initial infections might have come from inoculum sources 

originated from rice straws, as found in Korea (Lee et al., 2009). However, this hypothesis needs 

further investigation by comparing isolates originated from the nursery with those from the rice 

fields surrounding the nursery.   

We found that a majority (79%) of the F. asiaticum isolates were of the NIV type 

although isolates of the 15ADON type (18%) and the 3ADON type (3%) were also identified. To 

our knowledge, this is the first time that all three trichothecene types were found in the same 

place in southeastern China. Karugia et al. (2009a) analyzed 208 isolates of F. asiaticum 

collected during 2000 by Gale et al. (2002) from four locations in Zhejiang province 

(approximately 500 km north of Jianyang) and showed that NIV and 3ADON isolates accounted 

for 42.3 and 57.7%, respectively, but no 15 ADON isolates were detected. Zhang et al. (2007) 

analyzed a 1999 collection of 299 isolates from 12 provinces along the middle and lower reaches 

of Yangtze River and found that 231 (77%) of the isolates were F. asiaticum. Of the 231 F. 

asiaticum isolates, 67% were of the 3ADON type and 23% were the NIV type but only 10% 

were 15ADON isolates (Zhang et al., 2007). The higher frequency of 15ADON isolates found in 

the present study may reflect a geographical difference between FHB epidemic regions in China 
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because Jianyang is the furthest place in southeast China where F. asiaticum isolates have been 

sampled and analyzed. 

Our population genetics study suggested that the two F. asiaticum populations (FA-08 

and FA-09) grouped based on the year of collection were genetically similar. This conclusion is 

supported by the high genetic identity (95%), high gene flow (Nm = 15.13), and very low genetic 

differentiation (Fst = 0.032) between FA-08 and FA-09. Gale et al. (2002) found a high gene 

flow (Nm = 7 to 30) and low Fst (0.01 to 0.07) among F. asiaticum populations collected from 

four fields located in Zhejiang province, China. Using the VNTR markers, Karugia et al. (2010b) 

analyzed F. asiaticum isolates collected in two successive years from a small wheat field (500 

m
2
) in Japan and failed to reveal distinct genetic differentiation between the populations sampled 

during the 2 years. Zeller et al. (2003) also observed a large number of migrants (approximately 

70) and high genetic identity (99%) among F. graminearum isolates sampled in two small fields 

located in North Dakota and Kansas, respectively (Zeller et al., 2003). These results suggest that 

a pathogen population from a small, isolated disease nursery may keep stable for some period of 

time. However, population subdivisions based on trichothecene type, geographic difference, and 

temperature gradient within and outside China from a larger geographic area have been reported 

by several studies (Gale et al., 2007; Karugia et al., 2009a; Starkey et al., 2007; Ward et al., 

2002; Yang et al., 2008; Zhang et al., 2010a;  Zhang et al., 2007;  Zhang et al., 2010b). Thus, 

information from a local population may not be applicable to a larger population across China or 

vice versa. Population studies on field, regional, and global scales are still necessary to have a 

better understanding of genetic variation and population structure of the pathogen. 

Although little genetic differentiation was found between the two subpopulations (FA-08 

and FA-09) grouped based on the years of collection, three distinct subpopulations existed (NIV-
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1, NIV-2, and NIV-3) within the NIV-type isolates, as revealed by the membership assignment 

using the Structure software and further confirmed by the other genetic population analyses. 

Interestingly, the non-NIV-type isolates were clustered with one of the NIV-type subpopulations. 

This result suggests that a significant genetic differentiation occurred in the pathogen population 

of the disease nursery. Population subdivision has been reported for wheat and barley isolates of 

F. asiaticum collected along the Yangtze River in southern China (Zhang et al., 2010a) and for 

F. graminearum isolates sampled from the United States and Canada (Gale et al., 2011; Gale et 

al., 2007; Puri et al., 2010; Ward et al., 2008). The genetic differentiation found between the 

NIV-type populations (NIV-1, NIV- 2, and NIV-3) in our study likely suggests lack of enough 

sexual recombination between the NIV isolates (see below). 

Out-crossing of F. graminearum was demonstrated in the laboratory by using nitrate non-

utilizing mutants (Bowden and Leslie, 1999). Recently, Chen and Zhou (2009) reported out-

crossing frequency of 5.7 to 20.9% in F. graminearum in field conditions in China. However, 

our LD analysis showed that almost half (48.8%) of the 45 possible locus pairs were in linkage 

disequilibrium. This result suggests that out-crossing among isolates of the F. asiaticum 

population in the Jianyang nursery might have been very rare. Previously, Gale et al. (2002) 

found 36% restriction fragment length polymorphism loci in linkage disequilibrium among the 

F. asiaticum isolates collected from Zhejiang province. Karagua et al. (2009b) also showed 10 to 

12% of the VNTR loci in linkage disequilibrium condition in Japanese isolates. Thus, out-

crossing might not be the major evolutional force for maintaining high genotype diversity of the 

population in the Jianyang nursery. 

Our greenhouse inoculation experiments indicated that the DON-type isolates (15ADON- 

and 3ADON-type isolates) were similar in aggressiveness whereas they were more aggressive 
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than the NIV-type isolates on Briggs. This result agrees with the previous studies (Gale et al., 

2011; Maier et al., 2006), which indicated that DON-type isolates are generally more aggressive 

on wheat compared with the NIV-type isolates. The aggressiveness difference between DON and 

NIV types may be due to different amounts or types of mycotoxins produced by the FHB 

pathogens (Alexander et al., 2011). DON-type isolates generally accumulated a higher level of 

trichothecene toxins than the NIV type isolates (Gale et al., 2011; Puri and Zhong et al. 

unpublished). Previous studies indicated that both DON and NIV are virulence factors, either of 

which is required for the Fusarium pathogen to cause disease spread in wheat spikes (Bai et al., 

2001; Desjardins et al., 1996; Maier et al., 2006). However, the mechanism of how NIV is 

involved in pathogen infection and FHB development remains to be investigated.  

Among trichothecenes, DON has attracted more attention than NIV (Pasquali et al., 

2009), which may be due to the fact that DON contaminations were more common in cereal 

grain samples collected in North America, as is exemplified in the global analysis data of 

mycotoxin contamination reported by Placinta et al. (1999). However, in Asian countries, 

including China, Japan, Korea, and Vietnam, a high incidence and generally high concentrations 

of NIV have been reported earlier (Tanaka et al., 1988). In a more recent analysis of mycotoxin 

occurrence and concentrations in food and raw food materials from 12 European countries 

(Schothorst et al., 2004), 16% of the samples were also found to be positive for NIV. Although 

several studies suggested that NIV has higher cytotoxicity than DON (Eriksen et al., 2004; 

Minervini et al., 2004) in the experiments with animal or human cells and could be linked to a 

high incidence of cancer of the esophagus and gastric cardia in China (Hsia et al., 2004), there is 

limited information on the specific toxic effects of long-term NIV exposure in humans or the 

comparative toxicity of NIV and DON. Considering the fact that NIV-type Fusarium pathogens 
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are common in Asian countries, Europe, and the southern United States, and NIV-contaminated 

grains or food products were frequently detected in the FHB-affected samples; more attention 

should be paid to NIV and its impacts on cereal crop production as well as animal and human 

consumptions. 

In summary, the FHB pathogen population from the small disease nursery was primarily 

composed of F. asiaticum, with the NIV type being predominant. However, isolates of F. 

asiaticum with 3ADON and 15ADON types were also present. Population subdivision based on 

year of collection was not significant, although a genetic differentiation was observed within the 

NIV-type isolates collected in the 2 years. This study provides important information about the 

population structure of F. graminearum complex in the nursery that has been used for FHB 

resistance evaluation for more than 25 years. The presence of all trichothecene types, which vary 

in aggressiveness and mycotoxin production, ensures the value of this particular nursery in FHB 

resistance evaluation and in breeding wheat cultivars with broad-spectrum FHB resistance. 
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Figure 4.1. Map of Fujian province (low right), which is located in the southeast region of China 

(up). The naturally infected Fusarium head blight (FHB) disease nursery is at the city of 

Jianyang, north of Fujian province. Symptomatic wheat heads were randomly collected from a 

field (10×50 m
2
) in the nursery for two consecutive years (2008 and 2009). 
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A. 2008 collection (59 isolates)      B. 2009 collection (100 isolates)  C. total collection (159 isolates) 

 

Figure 4.2. Frequency distribution of chemotypes among Fusarium asiaticum isolates collected in 2008 

(A), 2009 (B) and the two years combined (C).  
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Figure 4.3. Average disease severity (DS) caused by each of the 16 representative isolates of 

Fusarium asiaticum: (six 15-acetyl deoxynivalenol [15ADON] isolates, four 3-acetyl 

deoxynivalenol [3ADON] isolates and six nivalenol [NIV] isolates) on the susceptible spring 

wheat cultivar Briggs in greenhouse. Single floret inoculation was used and infected spikelets in 

each of the inoculated spikes were counted at 21 days after inoculation. In general, the 3ADON-

type and 15ADON-type isolates caused significantly higher DS than the NIV isolates 

(P<0.0001). Vertical bar represents standard error. Isolates followed by the same letters 

(indicated at the top of bar) were not significantly different at P <0.0001.  
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Table 4.1. Number of alleles, gene diversity and fixation index (Gst) of 10 variable number 

tandem repeat (VNTR) markers used to analyze the 144 Fusarium asiaticum isolates collected 

from the disease nursery at Jianyang, China. 

VNTR
a
  Location

b
 No of 

Alleles 

Gene   

Diversity
c
 

  Gst
d
 

 2008 2009 Overall 

HK1043 Ch1/Ct1.52/41,839 3 0.38(0.39) 0.44(0.44) 0.42(0.42) 0.002 

HK957 Ch1/Ct1.91/16,055 7 0.81(0.84) 0.80(0.81) 0.81(0.82) 0.012 

HK967 Ch2/Ct1.154/53,868 2 0.00(0.00) 0.02(0.02) 0.02(0.02) 0.005 

HK1003 Ch1/Ct437/6,986 26 0.90(0.93) 0.94(0.95) 0.94(0.95) 0.017 

HK1073 Ch4/Ct1.398/70,812 12 0.75(0.77) 0.78(0.79) 0.78(0.79) 0.022 

HK1059 Ch3/Ct1.196/164,228 6 0.74(0.76) 0.77(0.78) 0.78(0.78) 0.024 

HK977 Ch3/Ct1.208/47,696 4 0.10(0.1) 0.29(0.29) 0.24(0.24) 0.020 

HK917 Ch1/Ct1.82/2,471 3 0.15(0.15) 0.12(0.12) 0.13(0.13) 0.000 

HK913 Ch1/Ct1.73/664 6 0.74(0.76) 0.63(0.63) 0.70(0.70) 0.064 

HK965 Ch2/Ct1.154/51,671 7 0.64(0.66) 0.75(0.75) 0.74(0.75) 0.038 

 
Mean 7.6 0.52(0.53) 0.55(0.55) 0.56(0.56) 0.026 

a
HK1003 was described by Gale et al. (2005) and the others were reported by Suga et al. (2004). 

b
Marker location in the genome was indicated by Chromosome (Ch) No./Contig (Ct) 

No./Position in contig. 
c
Nei`s gene diversity (H) (Nei, 1973) within populations was calculated using POPGENE 1.32 

(Yeh et al., 1997). Values in parenthesis were calculated by ARLEQUIN 3.1 (Excoffier et al., 

2005). 
d
Gst fixation index (Nei, 1973) for individual loci were calculated for the 132 clone corrected 

isolates using POPGENE 1.32 (Yeh et al., 1997).  
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Table 4.2. Nei’s genetic distance D (above diagonal) and P value from the exact tests for genetic 

differentiation PT (below diagonal) between four populations of Fusarium asiaticum collected 

from the Fusarium head blight disease nursery in China. 

Populations
a
 NIV-1 NIV-2 NIV-3 DON 

NIV-1 --- 0.240
b
 0.299 0.419 

NIV-2 <0.001
c
 --- 0.346 0.399 

NIV-3 <0.001 <0.001 --- 0.076 

DON <0.001 <0.001 0.139 --- 
a
The four populations, NIV-1, NIV-2, NIV-3, and DON, are genetically defined and subdivided 

according to the member assignment by STRUCTURE and by taking into account the 

trichothecene types. 
b
Nei`s unbiased genetic distance (D) (Nei, 1972) was calculated using POPGENE (Yeh et al., 

1997). 
c
The population differentiation PT (analogous to Fst) was calculated as proportion of variance 

among and within population relative to the total variance (Excoffier et al., 1992) using 

GENALEX 6.4 (Peakall and Smouse, 2006). PT = AP / (WP + AP) = AP/TOT, where AP = 

estimated variance among population, WP = estimated variance within population, and TOT = 

total variance. The probability of obtaining equal or lower value was determined by 1,000 

random permutations. 
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Table 4.3. Significant linkage disequilibrium (P < 0.05) between 10 variable numbers of tandem 

repeat (VNTR) markers in 132 clone-corrected isolates of Fusarium asiaticum. 

VNTR marker Pair
a
 P value VNTR marker Pair

a
 P value 

HK1043(1),HK957(1)  0.004 HK1003(1),HK1059(3)  0.000 

HK1043(1),HK967(2)  0.000 HK1003(1),HK977(3)  0.037 

HK1043(1),HK1073(4)  0.004 HK1003(1),HK913(1)  0.000 

HK1043(1),HK1059(3)  0.025 HK1073(4),HK1059(3)  0.000 

HK1043(1),HK913(1)  0.0003 HK1073(4),HK917(1)  0.004 

HK957(1),HK1003(1)  0.007 HK1073(4),HK913(1)  0.004 

HK957(1),HK1073(4)  0.009 HK1073(4),HK965(2)  0.036 

HK957(1),HK1059(3)  0.024 HK1059(3),HK913(1)  0.010 

HK957(1),HK913(1)  0.003 HK1059(3),HK965(2)  0.032 

HK967(2),HK913(1)  0.013 HK977(3),HK917(1)  0.000 

HK1003(1),HK1073(4)  0.000 HK913(1),HK965(2)  0.048 
a
Pair-wise estimate of linkage disequilibrium, based on Fisher’s exact probability test by Slatkin 

(1994), was calculated for 45 possible marker pairs among 10 VNTR loci using Marcov chain 

length of 10
4
 with 10

4
 dememorization implemented in ARLEQUIN 3.1 (2005). Only significant 

loci combinations (P<0.05) were shown in the table. Number in parenthesis is the chromosome 

on which a particular VNTR locus resides. 
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CHAPTER 5. VALIDATION AND HAPLOTYPING OF FUSARIUM HEAD BLIGHT 

RESISTANCE SOURCES IN A DIVERSE SPRING WHEAT GERMPLASM 

5.1. Abstract 

Fusarium head blight (FHB), primarily caused by Fusarium graminearum Schw., is the 

most destructive disease of wheat and barley in North America. Use of host resistance is one of 

the most efficient and economic strategies for disease management. However, sources of FHB 

resistance used in breeding programs are very limited. In this study, we re-evaluated and 

haplotyped 71 PI accessions from the National Small Grains Collections (NSGC), which were 

previously reported to show various levels of resistance to FHB. Seventeen DNA markers 

associated with FHB resistance QTLs on the chromosomes 2B (Triticum carthlicum 

‘Blackbird’), 3A (T. aestivium ‘Frontana’ and T. dicoccoides ‘Israel A’), 3B (T. aestivium 

‘Sumai 3’ and ‘Wanshuibai’), 5A (‘Sumai 3’ and ‘Frontana’), 6B (‘Blackbird’ and 

‘Wangshuibai’), and 7A (T. dicoccoides) were used in the haplotype analysis. Forty-nine of the 

PI accessions were different at the marker loci on 3B and 5A from Sumai 3, the most frequently 

used FHB resistance source in spring wheat breeding programs. Twenty two accessions had a 

haplotype different from all of the known resistance sources used in the study, suggesting that 

they may carry novel loci for FHB resistance. The novel FHB resistance sources could be 

utilized to develop wheat varieties with enhanced FHB resistance.  

5.2. Introduction 

Fusarium head blight (FHB), caused by Fusarium graminearum Schwabe (teleomorph: 

Gibberella zeae), is an important disease of wheat and barley in the United States and many 

other regions of the world (Parry et al., 1995; McMullen et al., 1997; Windels, 2000). Disease 

epidemics often occur when the flowering stage of the crops coincides with warm and humid 
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weather conditions (Parry et al., 1995; McMullen et al., 1997). During 1990s, economic losses of 

around $3 billion were reported in the United States (McMullen et al., 1997; Windels, 2000) and 

a similar loss occurred in eastern Canada due to the impacts of FHB on the cereal crops (Gilbert 

and Tecauz, 2000). The disease not only causes direct yield losses due to infected grains being 

shriveled, discolored, and reduced in weight (Snijders et al., 1990, Bai and Shaner, 2004), but 

also results in down grading the grain products due to mycotoxin contamination, which poses a 

severe health hazard to human and animals (Desjardins et al., 1993; Bai et al., 2001). 

An integrated approach of combining host resistance, cultural practices and fungicide 

application is the most efficient and effective way for FHB management (Bai and Scanner, 2004; 

Wegulo et al., 2011; McMullen et al., 2013). Use of FHB resistant cultivars is a very important 

component in reducing the impacts of this disease on cereal production (Bai and Shaner, 1996). 

Several types of FHB resistance have been proposed, including Type I (resistance to initial 

infection), Type II (resistance to spread) and Type III (resistance to DON accumulation) 

(Schroder and Christensen 1963; Mesterhazy, 1995; Bai and Shaner, 2004). Among them, type II 

resistance is the most stable and widely used in wheat breeding programs in the world (Bai and 

Shaner, 2004).  

Large efforts have been devoted in screening of various germplasm and integrating the 

identified resistance sources into adapted cultivars (Liu and Anderson, 2003; Somers et al., 2003; 

Zhang et al., 2008; Zwart et al., 2008). Key spring wheat genotypes with good type II resistance 

were identified, including Sumai 3, Wangshuibai, several Ning selections from China; 

Nobeokabozu Komugi, Saikai 165 etc. from Japan; Frontana and Encruzilhada from Brazil and 

some CIMMYT genotypes (Wang and Miller, 1987; Snijders, 1990; Anderson et al., 2001; Ban, 

2000; Steiner et al., 2004; Zhou et al., 2004). In addition, a few winter wheat cultivars (Renan, 
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Arina, and Praag-8) were identified as a good source of resistance to FHB in the European gene 

pool (Snijders, 1990; Ruckenbauer et al., 2001; Gervais et al., 2003).  Meanwhile, major and 

minor QTLs for FHB resistance have been identified across many genetic backgrounds (see 

review by Buerstmayr et al., 2009). These QTLs were mapped on all wheat chromosomes except 

7D (Buerstmayr et al., 2009). The Asian spring wheat cultivar Sumai 3 has consistently showed a 

high level of type II resistance in a wide range of environments and genetic backgrounds (Bai et 

al., 1999; Anderson et al., 2001, Bai and Shanner, 2004; Buerstmayr et al., 2002, 2003; Yang et 

al., 2003; Zhou et al., 2004).  It has major QTLs for FHB resistance on chromosome 3BS, 5AS, 

6BS and minor QTLs for FHB resistance on 6AS and 2AS (Waldron et al., 1999; Anderson et 

al., 2001; Buerstmayr et al., 2002; Zhou et al., 2002; Shen et al. 2003; Yang et al., 2003). 

Similarly, major QTLs governing FHB resistance were mapped on chromosome 3BS of 

Wangshuibai (Zhou et al., 2004), chromosomes 2DL and 4BS of Wuhan-1 (Somers et al., 2003), 

chromosome 5DL of Chokwang (Yang et al., 2005), and chromosome 3AL of Frontana (Steiner 

et al., 2004). The European winter wheat cultivar Arina has major QTLs on chromosome 4AL, 

5BL and 6DL (Paillard et al., 2004; Draeger et al., 2007; Semagn et al., 2007), while another 

cultivar Renan had QTLs on chromosomes 2BS and 5AL (Gervais et al., 2003).  

Although the number of QTLs identified for FHB resistance is large, the Sumai 3 

resistance gene known as Fhb1 (Qfhs.ndsu-3BS) (Waldron et al., 1999; Cuthbert et al., 2006; Liu 

et al., 2006) is the most commonly used source for FHB resistance in most of wheat breeding 

programs worldwide. However, continuous reliance on a single source of resistance might create 

a selection pressure on the pathogen population and eventually make the existing resistance 

ineffective (Gervais et al., 2003). Thus, identification of new sources of resistance and 

integration of them into adapted cultivars are vital for combating FHB. Recently, Zhang et al. 
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(2008) screened 1035 wheat accessions from the USDA ARS, National Small Grain Collection 

(NSGC) Aberdeen, Idaho, USA, and identified 73 spring wheat PI accessions showing some 

resistance to FHB under field conditions. However, the novelty, type and source of FHB 

resistance in most of these accessions were not well understood. Therefore, the major objectives 

of this study were to i) haplotype the PI accessions (71) using SSR markers linked to QTLs for 

FHB resistance in known sources, and ii) validate the levels of FHB resistance of these 

accessions under field and greenhouse conditions in North Dakota. 

5.3. Materials and Methods 

5.3.1. Plant materials 

A total of 71 spring wheat accessions (Table 5.1) previously reported to possess various 

levels of FHB resistance (Zhang et al., 2008) were selected and used in the study. Seeds were 

obtained from the USDA ARS, National Small Grain Collection (NSGC), Idaho. Additionalls six 

spring wheat genotypes (ND 2710, Sumai 3, PI 277012, Alsen, Steele ND and Choteau) were 

included as checks (Table 5.1). ND 2710 is an experimental breeding line with a high level of 

FHB registance derived from Sumai 3 (Frohberg et al., 2004). PI 277012 is from Spain and 

possesses a high level of FHB resistance (Chu et al., 2011). Alsen has a moderate resistance to 

FHB, which was derived from Sumai 3 (Frohberg et al., 2006). Steele-ND has a moderate 

resistance to FHB, which is derived from another source different from Sumai 3 (Mergoum et al., 

2005). Choteau (PI 633397) is susceptible to FHB (Lanning et al., 2004) and has been routinely 

used as one of the most susceptible checks in FHB studies. 

5.3.2. Haplotype analysis  

Genomic DNA was extracted from leaves of one-week old seedling plants of each 

accession using the method described by Riede and Anderson (1996) with some modifications. 
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DNA was quantified using NanoDrop (Wilmington, DE) and diluted to 50ng/l for further use. 

Seventeen SSR markers linked to nine different FHB resistance QTLs were used for haplotyping. 

These markers are localized on chromosomes 2B (Triticum carthlicum ‘Blackbird’ e.g. wmc102, 

wmc441, gwm55, gwm388 (Somers et al., 2006), 3A {T. aestivium ‘Frontana’ e.g. dupw227 

(Eujayl et al., 2002), and T. dicoccoides ‘Israel A’ e.g. gwm2 (Otto et al., 2002)}, 3B {T. 

aestivium ‘Sumai 3’ e.g. umn8, gwm533, barc147 (Zhou et al., 2002)}, 5A {‘Sumai 3’ e.g. 

barc180, barc186 (Somers et al., 2004) and ‘Frontana’ e.g. gwm129 (Steiner et al., 2004)}, 6B 

{Triticum carthlicum ‘Blackbird’ e.g. gwm193 (Somers et al., 2006) and ‘Wangshuibai’ e.g. 

wmc397, gwm644)}, and 7A- T. dicoccoides e.g. wmc488, barc121 (Song et al., 2005). 

Haplotyping was conducted in the USDA-ARS Biosciences Research Lab, Fargo, ND, USA. The 

polymerase chain reaction (PCR) conditions were optimized for M13-tailing (e.g. 5’-

CACGACGTTGTAAAACGAC+ microsatellite sequence-3’) and fluorescent capillary 

electrophoresis was run on an Applied Biosystems 3130xl Genetic Analyzer. Individual PCR 

amplification reaction was performed in 10µl of total volume containing 1× PCR buffer (NEB), 

0.125 mM each dNTPs, 3 pmols M13 fluorescently labeled FAM or VIC or NED or PET primer 

(Applied Biosystems), 0.4 pmols forward and reverse primer, 0.05U Taq DNA polymerase 

(NEB) and 50 ng template DNA. GeneAmp PCR 9700 system (Applied Biosystems) was used 

for thermal cycling with the following amplification conditions: 94°C for 2 min, then 40 cycles 

at 94°C for 1 min, 50°C for 1 min, 72°C for 1 min, with a final extension of 5 min at 72°C.  PCR 

reactions for each dye were pooled and 3ul of each pooled aliquot were mixed with 7 µl of 

formamide plus size standards, denatured at 95°C for 5 min, ice chilled and run on the ABI 

system. Data analysis was performed on GeneMaper v3.7. The genetic relationships among PI 

accessions were analyzed using the NTSYSpc version 2.1 (Applied Biostatistics Inc., New York, 
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NY).  The SHAN module was performed for cluster analysis using the unweighted pair group 

arithmetic mean (UPGMA). The polymorphism information content (PIC) of each molecular 

marker to identify their ability to detect polymorphism within a population was calculated using 

in build algorithm in SAS (v9.23; SAS Institute, Cary, NC). 

5.3.3. FHB evaluation and DON testing in field experiments 

Field experiments were conducted to evaluate FHB resistance of the PI accessions in 

2009 and 2010 at two locations (Fargo and Prosper) in North Dakota. The numbers of wheat 

lines evaluated varied with different years and locations due to poor seed germination or lack of 

sufficient numbers of heads for disease scoring. In 2009, 73 and 76 lines (including checks) were 

evaluated at Fargo and Prosper, respectively. In 2010, 75 lines (including checks) were tested at 

both Fargo and Prosper locations. Individual lines were planted in hill plots on a randomized 

complete block design and replicated three times. Only two replications were planted in 2010 at 

the Prosper location. Four individual hills (12-15 seeds/hill) were planted 30 cm apart in each 

row spaced one meter.  

Inoculum was prepared using mixture of 20 F. graminearum isolates (ten 3ADON type 

isolates and ten 15ADON type isolates). The fungal isolates were collected from ND in 2008 or 

in 2009 and characterized for chemotype and aggressiveness (Puri and Zhong, 2011; and 

unpublished). To produce spores (macroconidia), isolates were grown on Mung Bean Agar 

(MBA) media (Evans et al., 2000) for 3-4 days with a 12h alternate dark and 12h light cycles. 

Spores were recovered, counted and adjusted to 1×10
5
 spores/ml. Spores prepared from each of 

the 20 isolates were mixed equally before inoculation. The infested corn kernels used as 

inoculum for field nurseries were prepared as described by Zhang et al. (2008). Briefly, clean 

yellow dent corn kernels were soaked in water for 24h, drained and transferred to steel trays 
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(46306 cm
3
). The corn trays were covered with tin foil and autoclaved for 2.5h, cooled 

overnight, and inoculated with 10-15ml spore solution (10
5
 macro-conidia/ml) in the next 

morning. Inoculated corn kernels were incubated at room temperature until complete 

colonization by the fungus and then stored at 4ºC or frozen till needed for nursery inoculations. 

To assure uniform disease pressure and proper ascospores production, infested corn 

kernels were applied to the nurseries at a rate of approximately 0.20kg/m
2
 starting at the jointing 

stage (Feekes growth stage 5) of wheat, and repeated every two weeks until all wheat accessions 

completed anthesis (Feekes growth stage 10.5). During the inoculation period, plots were 

sprinkled with overhead misting for 30s to 2 min in every 2h interval depending on weather 

conditions. During flowering time, overhead misting was run for 10 seconds per hour during 

nights to ensure high humidity for uniform disease development. Fifteen to twenty heads/hill 

were rated at 21 days after flowering based on the scale developed by Stack and McMullen 

(1995). For DON testing, 10-15 randomly selected spikes from each accession were harvested 

and threshed manually. In each year and location, grains from all replications of the same 

accession were combined, ground to powder using a coffee grinder and sent to the Veterinary 

Diagnostic Laboratory, North Dakota State University, ND, for mycotoxin (DON, 15ADON and 

3ADON) analysis. 

5.3.4. FHB evaluation in greenhouse 

The same sets of wheat accessions were evaluated in greenhouse to measure type II 

resistance (disease spread after single-floret inoculation) in 2009 and 2010. They were planted in 

plastic buckets (30×20×35cm
3
) filled with Sunshine pot mix (Sun Gro Horticulture Canada Ltd). 

Seeds were sown in rows with eight to ten seeds/row and two rows per bucket. Plants were 

grown in greenhouse at 23±2°C with 16h supplemental lights, fertilized with Multicote 4 
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(N:P:K::14:14:16  plus minor nutrient) (Heifa Biochemical, Israel), and extra liquid fertilizers 

(20:20:20, J.R. Peters, Inc. Allentown, PA) once a week. Plants were arranged in a completely 

randomized block design (RCBD) with three replications. Four isolates mixture of F. 

graminearum {two 3ADON type (Fg08-001, Fg08-008) and two 15ADON type isolates (Fg08-

013, Fg08-018)} were used for inoculation. Spores from each isolates were prepared as described 

above, adjusted to 1×10
5
 spores/ml, and mixed equally before inoculation. At anthesis, the 

central spikelets of ten to twelve heads from each replicate were injected with 1000 macro-

conidia. The plants were kept in a humidity chamber for 48 to 72 hours and then returned to the 

greenhouse with the same conditions as before inoculation. Disease rating was done at 21 days of 

inoculation using the scale described by Stack and McMullen (1995). 

5.3.5. Statistical analysis of phenotypic data 

Disease severity (DS) data were tested for homogeneity of variance using Brown and 

Forsythe`s test of homogeneity (hovtest=BF) using GLM procedure on SAS (v9.3; SAS Institute, 

Cary, NC). Due to lack of homogeneity among the field experiments, analysis of variance 

(ANOVA) for DS was calculated separately for individual years and locations using the GLM 

procedure on SAS. Mean separation was performed by least significance difference (LSD) test 

among the accessions. Logarithmic transformation (log+1) was done for total DON for further 

statistical analysis. Pearson correlation coefficient between disease severity and DON of each 

experiment and across all experiments were calculated using means across replications. 

Greenhouse data were combined after homogeneity test and analyzed for ANOVA, LSD and 

correlation between combined DON across all experiments. 
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5.4. Results  

5.4.1. Haplotyping of wheat genotypes 

A total of 77 wheat accessions (71 PI plus checks) were analyzed using seventeen 

microsatellite (SSR) markers linked to nine putative QTLs for FHB resistance. Among the 17 

markers used, only 11 markers amplified the specific allele linked to resistant QTLs on Sumai 3 

(3B and 5A), Frontana (3A and 5A), Wangshuibai (6B), or T. dicoccoides (Td) (7A), and were 

polymorphic among all accessions (Table 5.2). However, the specific alleles of SSR markers 

linked to resistant QTLs on 2B and 6B of T. carthlicum and 3A of T. dicoccoides (3A) were not 

detected on any genotypes used in this study. Among the 71 PI accessions genotyped, 49 had one 

or more alleles from one or more known sources for FHB resistance, while 22 had alleles 

different from any known sources (Table 5.1). Among the 49 accessions with at least one known 

resistant allele, six had alleles from Wangshuibai, 14 had at least one allele from Frontana, 24 

had alleles from Sumai 3, and 33 had alleles from T. dicoccoides. Some accessions also carried 

multiple alleles from more than one sources (Table 5.1). Among check genotypes, Alsen and ND 

2710 had alleles from Sumai 3. While other checks i.e.  PI 277012, Steele ND and Choteau had 

resistant alleles different from Sumai 3, but they had at least one allele from T. dicoccoides 

(Table 5.2).  

Cluster analysis using 13 SSR markers (barc121, barc147, barc180, barc186, dupw227, 

gwm2, gwm129, gwm193, gwm644, umn8, wmc102, wmc397, wmc488) linked to nine Fusarium 

head blight resistance QTLs on chromosomes 3A and 5A of Frontana, 2B and 6B of T. 

carthlicum, 3A and 7A of T. dicoccoides, 3B and 5A of Sumai 3, and 6B of Wangshuibai 

divided the 77 wheat accessions into four distinct clusters (Fig. 5.1). Groupings were primarily in 

accordance with country of origin and source of FHB resistance. The first group consisted of 
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three wheat accessions from South America and one from Europe. The second group consisted 

of a total of 27 accessions including 14 from Europe and 13 from South America. This group 

was further divided into two sub-clusters at a similarity level of 0.50 and grouped based on 

presence or absence of resistant alleles (Fig. 5.1). Fourteen accessions had no known alleles 

while five accessions had allele from T. dicoccoides (7A); three accessions had allele from 

Sumai 3 (5A) and the remaining three accessions had alleles from more than one sources. The 

third group consisted of 26 accessions that originated in South America (14), Europe (7), Asia 

(3) and the US (2). Accessions in this group had resistant alleles from Frontana (3A, 5A), Sumai 

3 (5A), Wangshuibai (6B), T. dicoccoides (7A), or were without any known resistant alleles. The 

fourth group contained 18 accessions, including all of wheat genotypes of Sumai 3 origin. All of 

these accessions had resistant alleles from Sumai 3 (3B, 5A) and T. dicoccoides (7A) except one 

line PI 344454 which had only one allele for 3BS QTL of Sumai 3. Twelve wheat accessions of 

this group were originated from Asia and two each from Europe, South America and the US. 

5.4.2. FHB resistance in greenhouse screening 

The 71 wheat accessions along with the checks were evaluated for type II resistance by 

single floret inoculation in the greenhouse. Significant differences in FHB severity were 

observed among accessions (p>0.001) with mean severity ranging from 10.7 (PI 277012) to 

77.2% (Choteau). The wheat accession PI 462151 (Shu Chou Wheat No. 3) carrying the same 

alleles as Sumai 3 had significantly lower disease (10.9%) than other accessions, but was similar 

to the highly resistant checks, ND 2710 (11.1%) or PI 277012 (10.7 %). Seven PI accessions [PI 

344465 (Laah), PI 382153 (Nobeoka Bozu), PI 382154 (Nyu Bai), PI 382167, PI 644124 

(Chuko), PI 644133 (Funo), and PI 644144 (Cluj 49-926)], which carries at least one resistance 

allele from known sources, showed a disease level (~26%) similar to those of Alsen, Sumai 3 
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and Steele ND (Table 5.3). Also, no significant difference in FHB severity was observed 

between these accessions and five PI accessions [PI 113948 (Kooperatorka), PI 185843 

(Surpresa), PI 272348 (Lontoi), PI 644129 (Hatvani), and PI 644131(Prodigio Italiano)], had 

alleles different from any of the known resistance alleles.  

5.4.3. FHB resistance in field conditions 

In all four field experiments, wheat accessions with a low disease severity in greenhouse 

inoculations generally showed a similar or low level of disease severity in the field with some 

exceptions. Analysis of variance for individual years and locations showed a significant 

difference in disease severity (P<0.01) among the accessions. However, due to the highly 

variable nature of disease to the prevailing environmental conditions, we did not find the 

homogeneity of variance among experiments that were conducted in different field locations. 

Thus, we analyzed data separately. 

At Fargo location in 2009, the disease severity varied from 7 % (PI 277012) to 45.4 % 

(Choteau). Two PI accessions e.g. Cltr 17427 (without known resistant allele) and PI 644135 

(with known resistant allele) showed low DS (10.1% and 8.8% respectively), which were 

statistically different from those of the highly resistant checks (Sumai 3 and ND 2710). Eleven 

accessions had a disease severity below the resistant check Alsen (16.1%). These included six 

accessions [Cltr 12002 (Renacimiento), PI 83729 (Magyarovar 81), PI 104131 (Excelsior), PI 

382167 (16-52-9), PI 462151 (Shu Chou Wheat No. 3), and PI 644148 (selection from 

Encruzilhada)], which carried at least one resistant allele of known sources, and five accessions 

[PI 113949 (Stepnjachka), PI 272348 (Lontoi), PI 644114 (selection from Belgrade 4 ), PI 

644130 (selection from Iv C 390 ½ 10132), and PI 644140 (selection from 533b)] without any 

known resistant alleles. Other 17 accessions showed a disease severity below 20% but were 
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higher than Alsen (Table 5.3). In 2010 at the same location, the DS ranged from 11% (ND 2710) 

to 69% [PI 362437 (Iii/14-B], where the resistant check Alsen also had a high DS (41.4%). 

However, PI 462151 (Shu Chou Wheat No. 3) had a disease severity (11.2%) similar to those of 

the three resistant checks (Sumai 3, PI 277012, and ND 2710). Three PIs [PI 382153 (Nobeoka 

Bozu), PI 644119, PI 644123 (Norin 34)] and other 10 PIs had a similar DS compared to Sumai 

3 (Table 5.3).  

In Prosper, disease severity ranged from 12.1% [PI 382140) (Abura)] to 76.2% [PI 

233207 (Odesskaja 13)] in 2009 and 8.9% [PI 434987 (Estanzuela Young)] to 77.9% (PI 

644134, selection from Academia 48) in 2010. Two accessions [PI 382140 (Abura) and PI 

434987 (Estanzuela Young)] had a significantly lower disease compared to the resistant checks 

in 2009 and 2010 respectively. In 2009, PI 182561 (Sin Chunaga) and PI 644124 (Chuko) had a 

disease level similar to Alsen and Sumai 3 (14.3%), while other twelve accessions showed a 

disease level lower than Steele ND (22 %) (Table 5.3). In 2010, the DS was relatively high for 

the resistant checks, Alsen (41.5%), PI 277012 (38.5%) and Sumai 3 (27.9 %). Twenty-eight 

accessions showed a disease severity lower than Sumai 3 and four accessions [PI 104131 

(Excelsior), PI 344467 (Oncativo Inta), PI 382154 (Nyu Bai), and PI 519790 (274-1-118)] had a 

less disease than Steele ND (13.9 %). Two accessions [PI 434987 (Estanzuela Young) and PI 

345731 (Tezanos Pintos Precoz)] had a disease less than ND 2710 (11.4%) (Table 5.3). 

5.4.4. DON accumulation and correlation with DS 

The amount of DON content in the harvested grains varied greatly among the wheat 

accessions. In the Fargo location, the average DON content ranged from 0.5 to 9.2 ppm in 2009 

and 2.1 to 31.7 ppm in 2010. In general, DON accumulation was higher in 2010 compared to 

2009. In 2010, only 9 lines had DON content below 5 ppm, whereas in 2009 71 accessions had 
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DON content below 5ppm. In the Prosper location, DON accumulation ranged from 0.5 to 21.6 

ppm in 2009 and 0.7 to 14.3 ppm in 2010. There were 38 accessions with DON below 2 ppm in 

2009, and 13 accessions with DON below 2 ppm in 2010. In general, wheat accessions with a 

low level of disease had a relatively low DON content (Table 5.3). The average DON content 

was lower in Prosper nursery compared to Fargo nursery in both years. The amount of DON in 

grains was positively correlated with disease severity (DS) in all experiments. In Fargo, DON 

concentration was highly significant (p>0.0001) and positively correlated with DS in both years 

(r = 0.36 in 2009 and r = 0.30 in 2010). However, in Prosper, significant and positive correlation 

was only observed in 2009 (r = 0.32, p < 0.0001). The correlation between DON and DS was 

positive but not significant in 2010 (r= 0.21, p<0.075).  

Average DON content combined across all field experiments ranged from 1.2 ppm [PI 

382161 (Tokai 66) to 17.7ppm [PI 362437(Iii/14-B)] (Table 5.3). The two resistant checks, ND 

2710 and Sumai 3, had DON content below 2ppm. Twenty-three accessions with known resistant 

alleles (14 from Sumai 3 and 9 from non-Sumai 3 sources) and seven accessions without any 

known resistant alleles had a DON level below 5 ppm. Four accessions [PI 382153 (Nobeoka 

Bozu), PI 382154 (Nyu Bai), PI 382161 (Tokai 66), and PI 644124 (Chuko)] showed DON 

below 2 ppm (Table 5.3), three of which were among the four PIs identified to be very resistant 

(VR) to DON (Zhang et al. 2008). Significant positive correlation was observed between 

combined DON content on grain from field experiment with DS across all field experiments (r = 

0.36, P<0.0001) (Fig. 5.2A) or with DS in greenhouse screening (r = 0.39, P<0.0001) (Fig. 

5.2B). Overall the PI accessions with a combination of known resistance alleles linked to QTLs 

on Sumai 3 (3B, 5A) and T. dicoccoides (7A) had a low DS and DON content in both field and 

greenhouse. 
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5.5. Discussion 

In this study, we evaluated 71 spring wheat PI accessions of the global origins using 

diverse molecular markers linked to the known sources of FHB resistance. The microsatellite 

marker alleles linked to the resistance QTLs from Sumai 3 (3B and 5A); Frontana (3A and 5A); 

Wangshuibai (6B); and T. dicoccoides (Td) (7A) were found in 69 % (49) of the accessions. 

However, a large number (24) of the accessions carried the haplotype of Sumai 3. This is due to 

the fact that Sumai 3 is the most commonly used resistance source in FHB breeding across the 

world (Parry et al., 1995; Bai et al., 2003). The majority of accessions with the Sumai 3 

haplotype were originated from Asia (11 accessions, 46%), South America (eight accessions, 

33%) and Europe (five accessions, 21%). Twenty-two PI accessions did not have resistance 

alleles from any known sources used and were from non-Asian in origin. The FHB resistance 

QTLs and resistance alleles present in these accessions might be novel and different from those 

currently used in breeding programs. In contrast, the resistance alleles linked to QTL of 

chromosome 3A in T. dicoccoides, and chromosomes 2B and 6B in T. carthlicum were not 

identified form wheat accessions used in this study. Sources of resistance to FHB in spring wheat 

has been reported from Asia, Europe and South America (Bai and Shaner, 2004; Buerstmayr et 

al., 2009). Independent to Asian sources, other resistant sources include those such as Brazilian 

line ‘Frontana’ (Steiner et al., 2004); European sources ‘Arina’ (Paillard et al., 2004); Dream 

(Schmolke et al., 2005) and US winter wheat lines Erine (Mckendry et al., 1995), Freedom 

(Gooding et al., 1997), Goldfield (Ohm et al., 2000), Roane (Griffey et al., 2001), Truman 

(McKendry et al., 2005) etc.  

Buerstmayr et al. (2009) summarized 52 FHB resistant QTL distributed on all of wheat 

chromosomes except 7D. The major QTLs identified on 3BS locus (Fhb1) of Sumai 3 and its 



167 

derivatives are the most stable and consistent source of type II resistance to date (Buerstmayr et 

al., 2002, 2003, 2009). In our study, all of Sumai 3 type accessions were of Asian origin, except 

two PI lines [PI 382161 (Tokai 66) from Brazil and PI 351816 (Froment Du Japon) from 

Switzerland], which carry the same QTL alleles as Sumai 3 (3BS, 5A) and T. dicoccoides (7A). 

This result is consistent with Liu and Anderson (2003) who grouped these two PI lines into the 

same haplotype group. Using five SSR markers linked to Qfhs.ndsu-3BS, Liu and Anderson 

(2003) analyzed 74 wheat lines (54 from worldwide collection and 20 from North America) and 

found 26 accessions had the Sumai 3 alleles at least at one locus and 12 lines had the Sumai 3 

alleles at least on four loci. They identified 42 lines as putative new sources for FHB resistance. 

The North American wheat line ND 2710 (ND2603/Grandin) had the same haplotype as Sumai 3 

(3BS, 5AS) and T. dicoccoides (7A). Cultivar Alsen also carries Sumai 3 QTLs on chromosomes 

3BS, 5AS and T. dicoccoides on 7A. Thus these cultivars might be very useful parents for 

introgression of resistance QTLs into other germplasm because these cultivars are well adapted 

in this growing region and have better agronomic quality than the exotic Sumai 3 source.  

Most of the wheat accessions were clustered based on their geographic origin and 

haplotypes from different sources of resistance. Accessions carrying the haplotype of Sumai 3 

related sources were separated from the non-Sumai 3 sources. All Asian accessions (14 in total) 

with the same haplotype as Sumai 3 were clustered together. This result is consistent with Yu et 

al. (2006) who reported that cultivar Funo (a Italian cultivar and a parent of Sumai 3) and Avrora 

(a Russian cultivar and a parent of Ning) were clustered separately from the Chinese or Japanese 

landraces. They used 25 SSR markers associated with FHB-resistance QTLs and amplified 

fragment length polymorphism (AFLP) markers using 24 primer combinations for genotyping 

and genetic clustering. However, three accessions [PI 382161 (Tokai 66), PI 344454 (Buck 
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Austral) and PI 382140 (Abura)] from South America and one accession PI 351816 (Froment Du 

Japon) from Europe were clustered with Asian accessions and they also carried the alleles from 

Sumai 3. Tokai 66 and Abura were originally from Japan and later introduced to Brazil (Zhang et 

al., 2008). Our study further indicated that these two lines might have originated from Japan. The 

close relationship between the Chinese and Japanese accessions was as expected, since several 

independent studies had also grouped Chinese and Japanese landraces together (Bai et al., 2003; 

Yu et al., 2006).  

Resistance to Fusarium head blight is a quantitative trait and the disease severity can vary 

depending on environmental conditions such as temperature, humidity, and host growth stage 

(Parry et al., 1995). Thus, FHB screening needs to be repeated in multiple environmental 

conditions to test all of disease components, including initial infection, disease spread, DON 

content etc. (Campbell and Lipps, 1998; Fuentes et al., 2005; Zhang et al., 2008). Our re-

evaluation of 71 accessions from four field and two greenhouse experiments identified 

potentially new sources of resistance to FHB. Three PI accessions, PI 382153 (Nobeoka Bozu), 

PI 382154 (Nyu Bai) and PI 382161 (Tokai), showed a low disease severity and DON content 

similar to or lower than the resistant checks (ND 2710, PI 277012 or Sumai 3), which had the 

same haplotype as Sumai 3 and carried resistant alleles from Sumai 3 (QTL on 3B, 5A) and T. 

dicoccoides (QTL on 7A). These lines were found very resistance (VR) to all components of 

FHB i.e. disease index, VSK and DON agreed with results of Zhang et al. (2008). PI 462151 

(Shu Chou Wheat No. 3) which had the same haplotype as Sumai 3 (QTL on 3B, 5A) and T. 

dicoccoides (QTL on 7A), showed consistently low or similar DS and DON as resistant check 

ND 2710. This line will be a potentially new source for FHB breeding programs. This line was 

previously classified as resistant (R) based on index, VSK and DON (Zhang et al., 2008). 
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Our results indicated that 13 PI accessions previously identified as resistance (R) (Zhang 

et al. 2008) based on disease index showed varied disease responses in our field and greenhouse 

conditions. Four accessions PI 182561 (Sin Chunaga) (R allele from Sumai 3 3B, 5A, Td 7A), PI 

382140 (Abura) (R allele from Sumai 3 3B, Frontana 5A; and Td 7A), two PIs without a resistant 

allele PI 644131 (selection from Prodigio Italiano), and PI 185843 (Surpresa) showed 

consistently low disease reaction in both field and greenhouse inoculations. However, six 

accessions including PI 644123 (selection from Norin 34), PI 644125 (selection from Norin 43) 

[R allele from Sumai 3 3B, 5A and Td], and those without resistant alleles, such as PI 519790 

(274-1-118), PI 345731 (Tezanos Pintos Precoz), PI 644141 (Newthatch Selection), and PI 

344467 (Oncativo Inta) showed very good resistance in the field condition but were susceptible 

after single floret inoculation in the greenhouse experiments. Among the PIs without a resistant 

allele, PI 644141 (Newthatch selection), PI 519790 (274-1-118), PI 113949 (Stepnjachka) and PI 

344467 (Oncativo Inta) showed a very good resistance to DON content similar as in Zhang et al. 

(2008). Similarly, seven PIs without resistant alleles, namely PI 113948 (Kooperatorka), PI 

113949 (Stepnjachka), PI 272348 (Lontoi), PI 644128 (selection from Prodigio Italiano), PI 

644129 (selection from Hatvani), and PI 644144 (selection from Cluj 49-926 with R allele of 

Td), and PI 644133 (selection from Funo with R allele of Sumai 3), had very good resistance to 

disease spread in greenhouse but were susceptible in field conditions. However, these accessions 

had a mixed disease response to FHB in the previous report and were classified as susceptible to 

resistant (Zhang et al., 2008). These accession namely Cltr 5103 (274), PI 81791 (Sapporo Haru 

Komugi Jugo) and Cltr 12002 (Renacimiento), which classified previously as resistant (Zhang et 

al., 2008), were found susceptible in both field and greenhouse experiments in our study. The 

varied response of wheat accessions in greenhouse and field conditions might be due to a 
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different type of resistance mechanism existing in wheat or the influence of prevailing 

environmental conditions in different locations (Rudd et al., 2001; Xu, 2003; Osborne and Stein, 

2007). The resistance from Sumai 3 or its derivatives and from Wangshuibai (3BS) are primarily 

type II, which prevents disease spread in spikes after initial infection (Buerstmayr et al., 2002, 

2003; Zhou et al., 2004) or for DON accumulation (Somers et al., 2003), while resistance from 

Frontana (3A) and its derivative prevents initial infection (Singh et al., 1995, Steiner et al., 

2004). Thus, FHB resistance present in these accessions might be novel and work for either type 

I or type II or DON resistance, and could be useful for gene pyramiding in wheat breeding 

programs or used for further genetic analysis.  

Our result showed a moderate but significant positive correlation between disease 

severity (DS) and DON content. Previous studies also showed a consistent result and 

demonstrated a high positive correlation between DS and total DON (Mesterhazy, 2002; Paul et 

al., 2005; Puri and Zhong, 2010). However, some studies indicated no or negative correlation 

between these two components (Edwards et al., 2001; Champeil et al., 2004; Alvarez et al., 

2010) or DON degradation on a resistant cultivar (Miller and Arnison, 1986). Paul et al. (2005) 

analyzed 163 different studies on correlation between DON and components of FHB (disease 

severity, disease index, disease intensity, visual scabby kernels etc.) and found that 65% of the 

studies had a correlation (r) values >0.50 and only 7% of the studies had correlation (r) below 

zero. Such contradictory results might be due to difference in inoculation methods (Yu et al., 

2008), types of host resistance (Mesterhazy, 2002), difference in isolates and their trichothecene 

type (Puri and Zhong, 2010), or cropping system (Champeil et al., 2004). Differences in 

harvesting methods, blowing speed during threshing, DON analysis methods, weather 

conditions, and stage of crop infection can also fluctuate the results (Yu et al., 2008). In our 
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study, the low disease severity was always associated with low DON content. However, the same 

genotypes with similar disease level showed a varied amount of DON in two different 

experimental conditions. The non-significant correlation in 2010 Prosper field indicates the 

impact of weather conditions on DS and DON. Similar deviation on DS and DON had also been 

observed by Champeil et al. (2004). 

In summary, we identified sources of FHB resistance, alternative to the predominant 

Asian source Sumai 3, among the NSGC spring wheat collections. Accessions with the FHB 

resistance haplotype of Sumai 3 sources were the most dominant. However, haplotype of 

Frontana, Wangshuibai, T. dicoccoides were also identified among the accessions. 

Approximately 30% of the accessions were without a haplotype of a known source. In general, 

accessions carrying haplotype from Sumai 3 showed a low disease severity and DON 

accumulation and were also genetically clustered together. Further, a close and positive 

correlation between FHB resistance and DON content indicates that the FHB resistant or 

moderately resistant accession might inhibit DON accumulation. Thus, the information on the 

haplotyping, FBH disease severity, DON content and genetic clustering among the accessions 

will permit breeders to select the most appropriate material for their breeding program to develop 

a new cultivar with high level of resistance to FHB and DON. 
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Figure 5.1. Dendrogram generated by cluster analysis using the unweighted pair group arithmetic mean (UPGMA) from thirteen SSR 

markers linked to nine Fusarium head blight resistance quantitate trait loci (QTLs) on chromosomes 3A, 5A (Frontana); 2B, 6B 

(Triticum carthlicum); 3A, 7A (T. dicoccoides); 3B, 5A (Sumai 3); and 6B (Wangshuibai) of 77 (including checks) wheat accessions 

of different origin and adaptability. A total of 98 polymorphic bands were used in analysis. The scale on the figure represents genetic 

similarity coefficient calculated according to Dice (1945). Shaded areas represent major genetic clusters. 



173 

 

 

 

 

 

 

 

 

Figure 5.2. Correlation between disease severity (DS) and total deoxynivalenol (DON) production in 

grains harvested from field.A. Field disease severity with total DON in grains harvested from field B). 

Greenhouse disease severity with total DON on harvested grains in field. 

  

A B A B 
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Table 5.1. Origin and SSR allele of known resistant quantitative trait loci information of 

National Small Grains Collection (NSGC) wheat accessions and common checks used in the 

study
a
. 

NSGC 

Accession
b

 
Allele

c
 

New NSGC 

Accession 
Name Origin Status Pedigree 

Cltr 12002 cd   Renacimiento Uruguay Cultivar Americano 25C open pollinated 

Cltr 12470 ade PI 644116 Frontana Brazil Cultivar Fronteira/Mentana 
Cltr 13136 c   Rio Negro Brazil Cultivar Supresa/Centenario 

PI 104131 df   Excelsior Argentina Cultivar Arminda/Virtue 

PI 163439 e PI 644120 - Argentina Cultivated - 
PI 182561 bcf   Sin Chunaga Japan Cultivated - 

PI 214392 ae   Colotana 266/51 Brazil Breeding Colonista/Frontana 

PI 233207 f   Odesskaja 13 Ukraine Cultivar Erythrospermum 7623-1/Lutescens 62 
PI 285933 f   Chudoskaja Poland Cultivated - 

PI 344454 c   Buck Austral Argentina Cultivar 
Sola 50//Quivira/Guatrache/3/Massaux 

No.1/Buck Quequen 2-2-11 

PI 344465 def   Laureano Alvarez Laah Argentina Cultivar Benvenuto Inca/Klein 157 
PI 351816 bcf   Froment Du Japon Switzerland Cultivated - 

PI 352062 f   Vivela Mar Argentina Cultivated - 

PI 362437 a   Iii/14-B Yugoslavia Landrace - 
PI 382140 bdf   Abura Brazil Cultivar - 

PI 382153 bcf   Nobeoka Bozu Japan Landrace - 

PI 382154 bcf   Nyu Bai Japan Landrace - 
PI 382161 bcf   Tokai 66 Brazil Cultivar - 

PI 382167 a   16-52-9 Brazil Breeding Red Hart/PG 1 

PI 411132 bcf   Gogatsu-Komugi Japan Cultivar Gokuwase 2/Norin 61 
PI 462151 bcf   Shu Chou Wheat No. 3 China Cultivated - 

PI 584926 f   Pantaneiro Brazil Cultivar Sonora 63*2/Lagoa Vermelha 

PI 584934 f   Whestphalen Brazil Cultivar CNT 10/Burgas 2//Jacui 
Cltr 2492 bcef PI 644113 White Russian China Landrace - 

PI 57364 f PI 644117 CItr 7175 China Landrace Selection from PI 163429 

PI 132856 d PI 644118 Mentana Italy Cultivar Rieti/Wilhelmina//Akagomughi 
PI 163429 c PI 644119 PI163429 Argentina Cultivated - 

PI 168716 cdf PI 644121 Klein Condor Argentina Cultivar Standard F.C.S./Sud Oeste F.C.S. 

PI 168727 c PI 644122 Bahiense Argentina Cultivar Klein Sinmarq/Eureka F.C.S 
PI 182568 bcf PI 644123 Norin 34 Japan Cultivar Shinchunaga/Eshimashinriki 

PI 182583 bcf PI 644124 Chuko Japan Landrace - 

PI 182586 bcf PI 644125 Norin 43 Japan Cultivar Shiromansaku/Akakomugi 3//Shichunaga 

PI 182591 bcf PI 644126 Norin 61 Japan Cultivar Fukuoka 18/Shinchunaga 

PI 203083 de PI 644132 Wabian Paraguay Cultivated - 
PI 213833 c PI 644133 Funo Italy Cultivar Duecentodieci/Damiano 

PI 256958 f PI 644134 Academia 48 Romania Cultivar Selection from Romanian land variety 

PI 264927 cf PI 644135 220 Greece Landrace - 
PI 264940 a PI 644136 111a Greece Landrace - 

PI 264946 d PI 644137 1032 Italy Landrace - 

PI 294975 f PI 644139 Artemowska Bulgaria Cultivated - 
PI 351256 f PI 644142 Japon 2 Japan Cultivated - 

PI 351256 f PI 644143 Vaulion Switzerland Cultivar - 

PI 351743 f PI 644144 Cluj 49-926 Romania Cultivar - 
PI 351748 f PI 644145 Jasi 10t Romania Cultivar - 

PI 351993 c PI 644146 Z.88.54 Switzerland Breeding - 

PI 360869 bcf PI 644147 Fujimi Komugi Japan Cultivar Norin 67/2*Norin 26 
PI 382144 f PI 644148 Encruzilhada                         Brazil Cultivar Fortaleza/Kenya Farmer 

PI 81791 f   
Sapporo Haru Komugi 

Jugo 
Japan Cultivar - 

PI 83729 cf   Magyarovar 81 Hungary Cultivar - 

Cltr 12021 * PI 644115 Centenario Uruguay Cultivar Selection from CItr 12021 

Cltr 17427 *   16-52-2 Brazil Breeding - 

Cltr 5103 *   274 Argentina Landrace - 
PI 104138 *   Klein Triunfo Argentina Cultivar Americano 25C/Pelon 33C1 

PI 113948 *   Kooperatorka Ukraine Cultivar Selection from Krymka 

PI 113949 *   Stepnjachka Ukraine Cultivar Selection from Banatka Khersonskaya 
PI 184512 * PI 644127 H 51 Argentina Breeding Americano 25e/Favorito//Universal 

PI 185383 *   3084 Argentina Cultivated - 
PI 185843 *   Surpresa Brazil Cultivar Polyssu/Alfredo Chaves 6-21 

PI 192634 *   Trintecinco Brazil Cultivar Alfredo Chaves 3-21/Alfredo Chaves 4-21 

(continued) 
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Table 5.1. Origin and SSR allele of known resistant quantitative trait loci information of 

National Small Grains Collection (NSGC) wheat accessions and common checks used in the 

study
a
. (continued) 

NSGC 

Accessionb 

Allelec New 

NSGC 

Accession 

Name Origin Status Pedigree 

PI 272348 *   Lontoi Hungary Cultivar - 
PI 344467 *   Oncativo Inta Argentina Cultivar Thatcher/Sinvalocho M.A.//Beckman 1971 

PI 345731 *   
Tezanos Pintos 

Precoz 
Argentina Cultivar Frontana//Thatcher/Sinvalocho 

PI 434987 *   Estanzuela Young Uruguay Cultivar 
Bage/4/Thatcher/3/Frontana//Kenya 

58/Newthatch 

PI 519790 *   274-1-118 Uruguay Breeding 
Bage/Tehuacan/3/Frontana/Kenya 
58/Newthatch/RL 4151  

Cltr 11215 * PI 644114 Belgrade 4 Yugoslavia Cultivated  Selection from Cltr 11215 

PI 185380 * PI 644128 Prodigio Italiano Italy Cultivated  Selection from PI 185380 
PI 192219 * PI 644129 Hatvani Hungary Cultivar - 

PI 192498 * PI 644130 Iv C 390 1/2 10132 Argentina Cultivated Selection from PI 192498 

PI 192660 * PI 644131 Prodigio Italiano Italy Cultivated Selection from PI 192660 
PI 349534 * PI 644140 533b Switzerland Landrace Selection from PI 349534 

PI 351221 * PI 644141 
New thatch 

Selection 
Switzerland Cultivated Selection from PI 351221 

PI 615543 abc   Alsen USA Cultivated ND674//ND2710 (PI 633976)/ND688 

PI 633974 af   Choteau USA Cultivated MT 9401/MT 9328 

PI 633976 bcf   ND 2710 USA Cultivated Sumai3 / Wheaton // Grandin. 
PI 277012 ef   I 826 Spain Breeding  Extremo Sur / Argelino // T.timopheevii 

PI 634981 F   Steele ND USA Cultivated 'Parshall' (PI 613587)/5/ 'Grandin' 

PI 481542 bcf   Sumai 3 China Cultivated Funo / Taiwan Xiaomai 
a
Wheat accession origin, their original and new NSGC accession number, name, status and sources etc. is retrieved 

form Zhang et al. (2008) and online www.ars-grin.gov. 
b
Wheat accessions collected and maintained in National Small Grains Collection (NSGC), Aberdeen, Idaho, USA. 

c
Accession with one or more known resistant SSR alleles and their sources: a = Frontana (3A), b = Sumai 3 (3B), c 

= Sumai 3 (5A), d = Frontana (5A), e = Wangshuibai (6B) and f = T. dicoccoides (7A). 
-
information not available. 

*
Wheat accessions (separated by horizontal line) without a known alleles of known FHB resistance QTL on 

Frontana, Sumai 3, Wangshuibai and T. dicoccoides and common checks used in study. 
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Table 5.2. Distribution of microsatellite markers linked to the known FHB resistance QTLs on Triticum carthlicum (2B, 6B); T. 

dicoccoides (3A, 7A); Frontana (3A, 5A) and Sumai 3 (3B, 5A) among 71 NSGC wheat accessions and six checks. 

Genotypes 

Triticum carthlicum Triticum dicoccoides Frontana Sumai 3 Wangshuibai 

2B 6B 3A 7A 3A 5A 3B 5A 6B 

wmc 

102a 

gwm 

55 

gwm 

388 

wmc 

441 

gwm 

193 

gwm 

2 

wmc 

488 

barc 

121 

dupw 

227 

gwm 

129 

umn 

8 

gwm 

553 

barc 

147 
barc 

180 

barc 

186 

wmc 

397 

gwm 

644 

Cltr 12002 187 156 185 180 189 234 121 130 219 214 238 273 nd 126 201 211 184 184 

Cltr 12470 187 151 183 182 191 221 104 130 219 206 238 273 135 143 193 214 174 nd 

Cltr 13136 187 nd 183 182 201 nd 104 130 233 214 240 273 135 143 201 211 180 177 

PI 104131 187 143 183 nd nd 221 nd nd 217 nd 238 nd nd 145 190 nd nd 188 

PI 163439 187 155 191 168 191 221 104 130 219 214 241 273 nd 126 193 201 174 186 

PI 182561 187 149 187 172 191 230 104 137 217 214 242 268 162 126 201 211 176 192 

PI 214392 187 151 183 182 191 221 104 130 219 206 241 273 135 143 193 201 174 nd 

PI 233207 187 155 185 169 203 230 104 137 233 214 240 273 170 128 nd 208 182 184 

PI 285933 187 155 183 179 191 232 121 137 217 214 244 273 177 126 nd 201 194 179 

PI 344454 187 145 nd 177 191 221 nd nd nd nd nd 281 nd nd 196 211 nd 181 

PI 344465 187 155 187 177 191 221 115 130 217 214 238 273 148 126 nd 214 174 196 

PI 351816 187 147 187 172 191 230 104 140 217 214 242 268 162 126 201 211 176 192 

PI 352062 187 145 191 193 191 221 121 137 217 214 240 273 135 126 196 201 180 196 

PI 362437 187 155 187 199 189 232 104 nd 230 206 242 273 nd 157 193 201 182 nd 

PI 382140 187 149 183 173 191 230 104 137 217 214 238 268 160 126 nd 201 178 188 

PI 382153 187 151 nd 172 191 234 104 137 217 214 244 268 160 128 nd 211 178 177 

PI 382154 187 152 183 172 191 234 104 137 217 214 244 268 160 128 nd 211 178 177 

PI 382161 187 141 183 172 191 234 104 137 217 214 244 268 160 128 190 211 178 177 

PI 382167 187 143 187 177 201 225 121 130 235 206 240 273 135 nd 193 201 178 192 

PI 411132 187 149 187 172 191 230 104 140 217 214 242 268 160 126 nd 211 176 192 

PI 462151 187 162 183 172 191 221 104 137 219 214 242 268 162 126 201 211 176 192 

PI 584926 187 143 187 177 191 225 104 137 nd 214 242 273 135 143 196 201 180 196 

PI 584934 187 143 187 177 191 236 104 137 219 214 240 273 135 143 193 201 190 196 

PI 644113 187 nd 191 193 191 nd 104 137 217 214 242 268 nd nd 190 211 174 184 

PI 644117 187 nd 183 nd nd 223 102 137 nd nd nd nd nd 126 178 201 nd nd 

PI 644118 187 152 185 172 191 221 104 130 219 214 238 281 nd 123 193 214 191 184 

PI 644119 187 153 187 180 191 221 104 111 233 214 240 273 nd 126 201 211 184 186 

PI 644121 187 147 189 nd 191 221 104 137 233 214 238 273 148 126 175 211 178 186 

(continued)
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Table 5.2. Distribution of microsatellite markers linked to the known FHB resistance QTLs on Triticum carthlicum (2B, 6B); T. 

dicoccoides (3A, 7A); Frontana (3A, 5A) and Sumai 3 (3B, 5A) among 71 NSGC wheat accessions and six checks. (continued) 

Genotypes 

Triticum carthlicum Triticum dicoccoides Frontana Sumai 3 Wangshuibai 

2B 6B 3A 7A 3A 5A 3B 5A 6B 

wmc 

102a 

gwm 

55 

gwm 

388 

wmc 

441 

gwm 

193 

gwm 

2 

wmc 

488 

barc 

121 

dupw 

227 

gwm 

129 

umn 

8 

gwm 

553 

barc 

147 
barc 

180 

barc 

186 

wmc 

397 

gwm 

644 

PI 644122 187 nd 187 180 191 221 104 111 233 214 240 276 nd nd 201 211 184 186 

PI 644123 187 147 185 172 191 230 104 137 217 214 242 268 162 126 201 211 178 186 

PI 644124 187 143 183 172 191 234 104 137 217 214 244 268 160 128 196 211 178 177 

PI 644125 187 149 191 172 191 228 104 137 217 214 242 268 nd 126 199 211 176 192 

PI 644126 187 nd 187 172 191 230 104 140 217 214 242 268 162 126 201 211 176 192 

PI 644132 187 nd 183 182 191 221 104 130 219 214 238 273 135 143 193 214 174 184 

PI 644133 187 132 183 172 191 221 104 130 219 214 240 273 135 126 nd 211 182 184 

PI 644134 187 156 183 179 189 232 121 137 217 214 240 273 137 126 nd 208 184 186 

PI 644135 187 145 183 nd 203 221 119 137 226 214 240 273 186 126 201 201 178 192 

PI 644136 187 141 187 180 201 221 104 130 235 206 240 273 135 126 199 201 178 186 

PI 644137 187 151 185 172 191 221 104 130 219 214 238 281 nd 123 193 214 176 184 

PI 644139 187 147 191 179 191 221 121 137 228 214 240 273 150 126 nd 201 190 179 

PI 644142 187 149 191 168 191 223 104 137 217 214 240 273 172 nd 196 201 184 181 

PI 644143 187 150 191 193 191 232 119 137 226 214 240 273 nd 126 196 201 184 186 

PI 644144 187 nd 191 193 191 221 119 137 235 214 242 273 135 126 178 201 176 184 

PI 644145 187 143 191 193 191 219 121 137 217 214 242 273 135 126 nd 201 180 194 

PI 644146 187 154 189 182 189 221 104 130 226 214 241 273 nd 126 nd 211 172 184 

PI 644147 187 149 183 174 189 230 104 137 217 214 242 268 160 126 201 201 186 nd 

PI 644148 187 159 187 177 201 236 104 137 235 214 241 273 nd 143 199 201 178 nd 

PI 81791 187 155 nd 168 nd 223 nd 137 235 nd 240 273 nd 161 196 201 nd 181 

PI 83729 182 145 nd 187 nd 223 nd nd 217 nd nd 273 nd 126 nd 211 nd 184 

Cltr 12021 187 157 185 nd 201 221 115 130 230 214 243 273 nd 126 190 201 182 186 

PI 17427 187 145 nd 177 nd 225 130 nd 233 nd 240 273 nd 143 196 201 nd 192 

Cltr 5103 184 149 nd 168 nd 223 nd nd 230 nd 241 nd nd 145 nd 201 nd 188 

PI 104138 187 155 191 168 201 234 104 130 228 214 nd 273 nd 126 190 201 182 186 

PI 113948 187 156 187 nd 191 230 106 133 230 214 242 273 148 128 nd 201 176 186 

PI 113949 187 155 187 nd 191 230 106 133 230 214 242 273 148 128 193 201 176 186 

PI 184512 187 155 191 168 201 221 104 130 226 214 242 281 nd nd 193 201 182 194 

PI 185383 187 nd 183 nd nd nd nd nd nd 214 nd 281 158 nd nd 201 nd nd 

PI 185843 187 153 nd 182 203 221 104 130 235 214 241 273 135 143 199 201 182 177 

(continued)
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Table 5.2. Distribution of microsatellite markers linked to the known FHB resistance QTLs on Triticum carthlicum (2B, 6B); T. 

dicoccoides (3A, 7A); Frontana (3A, 5A) and Sumai 3 (3B, 5A) among 71 NSGC wheat accessions and six checks. (continued) 

Genotypes 

Triticum carthlicum Triticum dicoccoides Frontana Sumai 3 Wangshuibai 

2B 6B 3A 7A 3A 5A 3B 5A 6B 

wmc 

102a 

gwm 

55 

gwm 

388 

wmc 

441 

gwm 

193 

gwm 

2 

wmc 

488 

barc 

121 

dupw 

227 

gwm 

129 

umn 

8 

gwm 

553 

barc 

147 
barc 

180 

barc 

186 

wmc 

397 

gwm 

644 

PI 192634 187 143 183 nd 201 234 115 130 237 214 240 281 158 nd 190 201 180 183 

PI 272348 187 145 191 193 189 223 121 130 219 214 242 273 133 126 nd 201 180 186 

PI 344467 177 nd 187 nd nd nd nd nd nd nd nd nd nd nd 203 nd nd nd 

PI 345731 nd 141 nd 182 191 221 nd nd 235 214 nd 273 nd 143 nd 214 nd 184 

PI 434987 187 nd nd 182 176 221 115 130 230 214 242 273 135 126 196 201 180 186 

PI 519790 187 151 183 182 176 221 115 130 230 214 242 273 135 126 196 201 180 186 

PI 644114 187 nd 191 nd 191 232 121 133 221 214 240 273 nd 126 193 201 184 184 

PI 644128 187 nd 189 184 191 221 119 128 226 214 242 273 137 126 196 201 182 nd 

PI 644129 184 155 187 168 nd 232 133 nd 226 nd 242 273 135 167 196 201 nd 204 

PI 644130 187 155 191 168 201 234 115 130 230 214 241 273 135 126 190 201 182 186 

PI 644131 187 nd 189 184 191 nd 119 128 226 214 242 273 137 126 196 201 182 198 

PI 644140 187 151 187 nd 199 232 104 133 226 214 241 273 135 126 nd 201 178 190 

PI 644141 187 155 185 180 189 221 121 130 219 214 242 273 nd 126 184 201 184 184 

Alsen 187 nd 191 193 191 223 115 130 230 206 242 268 162 126 201 211 184 198 

Choteau 187 nd nd nd 191 221 115 137 230 206 242 273 135 nd 190 201 182 184 

ND 2710 187 141 191 193 191 221 104 137 235 214 242 268 162 126 nd 211 176 196 

PI 277012 187 145 191 nd 191 221 104 137 226 214 240 273 nd 147 193 201 174 nd 

Steele ND 187 nd 191 193 191 223 115 137 230 214 242 273 137 143 nd 201 184 196 

Sumai 3 187 nd 183 172 191 221 104 137 219 214 242 268 162 126 201 211 176 192 

PIC
b
 0.10 0.88 0.71 0.85 0.48 0.72 0.79 0.80 0.17 0.69 0.43 0.77 0.55 0.78 0.49 0.84 0.84 

NOA
c
 4 16 5 13 6 9 12 9 2 6 4 12 9 9 4 11 13 

a
Numeric value: the amplication size (base pairs) of the respective markers. 

b
PIC = polymorphism information content. 

c
NOC = number of alleles. 

Color coding:  green cell- accessions with the allele of same size as the Triticum dicoccoides linked to 7A FHB resistant QTL; yellow cell- 

accessions with the allele of same size as the Frontana linked to 3A or 5A FHB resistant QTLs; gold and blue cells- accessions with the allele of 

same size as the Sumai 3 linked to 3B and 5A FHB resistant QTLs respectively; and pink cell - accessions with the allele of same size as the 

Wangshuibai linked to 6B FHB resistant QTL. Accessions with the allele of same size as Triticum carthlicum linked to 2B and 6B or T. 

dicoccoides linked to 3A FHB resistant QTL were not detected in this study. nd = no data. 



179 
 

Table 5.3. Average Fusarium head blight disease severity (DS) and deoxynivalenol (DON) 

concentration of 71 wheat accessions and common checks used in the study. 

Genotypes
a
 Allele

b
 

Disease Severity (%)
c
 DON Concentration (ppm)

d
 

Fargo Prosper Green-

house 

Fargo Prosper Combined 

DON
e
 2009 2010 2009 2010 2009 2010 2009 2010 

Cltr 12002 cd 15.7 57.6 16.7 38.7 26.4 2.8 15.1 2.8 5.7 6.6 

Cltr 12470 ade - 36.8 - 41.7 49.5 0.5 11.2 2.0 7.6 9.4 

Cltr 13136 c 35.8 31.1 47.2 46.0 52.5 3.4 18.0 2.7 5.6 7.4 

PI 104131 df 11.5 26.5 20.9 12.0 30.6 1.5 9.9 7.6 1.7 5.2 

PI 163439 e 26.6 - 48.9 - 71.6 7.4 20.0 4.4 - 5.9 

PI 182561 bcf 17.2 22.4 14.1 15.9 27.5 1.3 3.9 1.5 2.4 2.3 

PI 214392 ae 20.7 62.5 19.0 18.8 48.5 1.2 15.0 1.6 14.3 8.0 

PI 233207 f 19.1 20.4 76.2 17.1 36.9 3.2 18.6 1.6 2.3 6.4 

PI 285933 f 20.5 22.4 40.5 15.3 40.1 0.8 10.9 0.8 1.5 3.5 

PI 344454 c 29.6 38.3 36.9 50.5 31.7 1.3 30.4 2.4 2.4 9.1 

PI 344465 def 19.2 19.9 37.2 14.5 24.2 1.8 11.7 1.8 3.2 4.6 

PI 351816 bcf 16.4 36.3 16.2 20.8 41.1 0.5 5.6 1.1 2.7 2.5 

PI 352062 f 21.6 25.0 28.1 17.3 39.7 0.9 12.6 1.9 1.7 4.3 

PI 362437 a 25.8 69.0 58.6 48.5 56.0 6.4 31.7 21.6 11.0 17.7 

PI 382140 bdf 22.2 23.6 12.2 20.3 27.9 0.5 8.7 1.7 4.4 3.8 

PI 382153 bcf 17.8 16.1 30.2 14.9 12.4 1.0 3.9 0.8 1.8 1.9 

PI 382154 bcf 18.3 33.4 28.3 13.1 25.7 0.5 2.6 1.2 2.2 1.6 

PI 382161 bcf 25.1 23.9 27.7 22.0 26.5 0.5 2.1 1.3 0.7 1.2 

PI 382167 a 11.5 36.8 17.5 26.3 25.3 1.1 7.6 2.5 3.7 3.7 

PI 411132 bcf 33.3 29.7 16.1 25.6 44.4 2.0 8.6 1.6 2.6 3.7 

PI 462151 bcf 12.9 11.2 15.0 19.8 10.9 2.1 3.1 1.1 2.6 2.2 

PI 584926 f 16.4 40.1 40.6 54.4 65.0 4.4 16.7 4.9 4.3 7.6 

PI 584934 f 19.0 25.4 43.8 19.3 74.6 1.4 9.5 2.7 5.0 4.7 

PI 644113 bcef 19.1 40.2 34.5 47.7 29.6 1.3 20.7 2.5 5.8 7.6 

PI 644117 f 21.0 51.2 32.0 65.0 54.6 0.5 26.5 5.8 4.9 9.4 

PI 644118 d 30.6 30.5 30.0 - 30.4 1.8 15.5 9.7 5.8 9.0 

PI 644119 c 25.6 16.2 30.7 15.5 43.1 3.4 10.1 1.3 2.4 4.3 

PI 644121 cdf 25.3 20.1 25.5 27.2 49.9 5.9 29.3 7.9 3.7 14.4 

PI 644122 c 24.3 18.9 28.0 16.5 30.5 3.0 17.5 2.5 2.8 6.5 

PI 644123 bcf 20.5 16.3 19.6 27.2 32.5 0.5 4.3 1.8 9.4 4.0 

PI 644124 bcf 20.4 27.1 13.1 31.7 16.7 0.5 4.8 0.5 7.5 1.9 

PI 644125 bcf 21.4 27.7 17.4 19.8 35.8 1.2 10.7 2.1 5.7 4.9 

PI 644126 bcf 19.1 25.7 14.8 28.1 31.4 0.9 6.8 0.5 1.8 2.5 

PI 644132 de 24.5 18.8 20.3 41.1 47.9 1.4 9.2 5.2 7.7 5.3 

PI 644133 c 18.3 43.0 - 45.3 21.5 1.0 19.8 1.5 9.2 10.0 

PI 644134 f 18.8 27.0 24.4 78.0 56.9 1.6 11.2 1.4 2.8 4.3 

PI 644135 cf 10.1 49.3 15.5 - 36.6 0.9 12.9 2.0 1.8 5.3 

PI 644136 a 22.1 31.7 27.2 25.1 41.7 2.7 23.6 4.7 7.7 9.7 

PI 644137 d 20.0 27.1 22.6 28.2 28.7 1.4 8.9 1.6 7.2 4.8 

PI 644139 f 27.1 24.1 33.2 43.3 49.8 1.9 14.8 6.8 3.8 6.8 

PI 644142 f - 21.3 28.9 20.1 48.9 0.7 6.5 1.4 6.4 4.8 

PI 644143 f 30.1 35.3 32.0 44.9 66.6 1.4 19.0 1.8 6.6 7.2 

PI 644144 f 19.4 18.0 35.6 39.5 25.4 0.7 10.4 2.2 3.5 4.2 

PI 644145 f 30.5 22.8 24.2 44.3 70.3 0.7 20.3 1.4 2.4 6.2 

PI 644146 c 34.5 19.0 37.9 33.3 29.7 1.9 9.8 2.2 2.8 4.2 

PI 644147 bcf 19.0 20.4 22.6 46.7 47.9 1.6 14.1 1.4 3.4 5.1 

PI 644148 f 14.7 36.8 31.0 36.2 47.3 2.0 15.1 1.7 5.2 6.0 

PI 81791 f 24.4 40.2 22.2 16.9 33.2 1.1 19.3 3.5 7.3 7.8 

(continued)
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Table 5.3. Average Fusarium head blight disease severity (DS) and deoxynivalenol (DON) 

concentration of 71 wheat accessions and common checks used in the study. (continued) 

Genotypes
a
 Allele

b
 

Disease Severity (%)
c
 DON Concentration (ppm)

d
 

Fargo Prosper Green-

house 

Fargo Prosper Combined 

DON
e
 2009 2010 2009 2010 2009 2010 2009 2010 

PI 83729 cf 13.0 44.0 32.7 47.9 30.7 1.0 26.0 4.6 3.1 8.7 

CItr 12021 * 30.9 29.0 30.7 14.5 38.9 0.7 13.2 3.3 3.0 5.1 

Citr 17427 * 8.8 20.3 27.6 56.9 50.4 0.9 8.6 3.9 5.7 4.8 

Citr 5103 * 23.3 33.2 35.3 54.6 39.4 0.5 12.2 2.4 1.3 4.1 

PI 104138 * - 35.1 34.2 22.6 67.5 1.7 29.8 9.0 2.3 13.7 

PI 113948 * 25.5 39.9 37.2 51.5 26.1 1.3 18.9 2.8 2.5 6.4 

PI 113949 * 12.9 46.1 41.7 67.0 30.1 1.4 11.8 7.3 2.8 5.8 

PI 184512 * 27.2 19.3 28.7 26.4 44.3 2.6 19.5 4.8 6.0 8.2 

PI 185383 * 31.5 27.5 27.6 45.7 34.7 - 23.2 2.2 7.3 10.9 

PI 185843 * 18.8 24.7 28.2 32.3 24.6 1.9 14.3 2.9 2.1 5.3 

PI 192634 * 28.0 42.1 30.3 26.0 34.9 3.2 16.4 9.6 10.7 10.0 

PI 272348 * 13.9 56.7 29.7 54.2 24.6 1.8 24.7 2.2 3.5 8.1 

PI 344467 * 16.4 22.6 25.5 13.6 68.2 1.1 6.9 1.8 1.6 2.9 

PI 345731 * 22.2 25.9 22.8 10.7 56.1 1.0 15.1 1.2 3.4 5.2 

PI 434987 * 20.4 18.7 54.9 8.9 42.0 1.8 9.1 1.2 2.3 3.6 

PI 519790 * 21.5 17.0 30.8 12.3 32.3 0.7 12.1 1.7 1.7 4.1 

PI 644114 * 11.9 51.9 34.7 30.5 28.4 0.8 15.9 6.1 3.4 6.6 

PI 644128 * 27.9 35.0 26.0 50.3 27.4 1.5 21.6 4.7 4.9 8.2 

PI 644129 * 20.8 48.0 28.7 31.7 17.3 - 20.3 1.9 5.9 9.4 

PI 644130 * 16.1 19.3 39.0 24.2 36.1 3.7 14.2 3.9 2.9 6.2 

PI 644131 * 22.9 21.7 25.5 40.7 23.4 0.6 12.2 3.3 3.4 4.9 

PI 644140 * 11.6 48.0 31.6 51.8 64.1 1.6 26.6 4.1 4.6 9.2 

PI 644141 * - 19.1 23.9 21.1 40.2 0.5 6.5 2.0 2.2 2.8 

Alsen abc 16.4 50.3 14.2 41.6 14.2 1.1 17.4 2.0 3.8 6.1 

Choteau af 45.3 55.1 51.2 48.3 77.2 9.2 23.4 1.5 4.4 9.6 

ND 2710 bcf 10.4 11.1 12.4 11.4 11.1 0.5 3.3 0.5 2.0 1.6 

PI 277012 ef 7.0 13.3 12.8 38.5 10.7 1.1 8.2 4.1 3.1 4.1 

Steele ND f 34.6 26.8 22.0 14.0 24.4 0.9 14.4 1.2 1.9 4.6 

Sumai 3 bcf 10.7 15.5 14.3 28.0 23.8 0.5 5.0 0.5 1.1 1.8 

LSD   17.2 20.1 16.6 28.7 21.1  
   

  
a
Wheat genotypes includes PI accession collected and maintained in National Small Grains Collection 

(NSGC) Aberdeen, Idaho, USA; PI carrying allele from known resistance source and checks used were 

separated by horizontal line. 
b
Accession with one or more known resistant SSR alleles and their sources: a = Frontana (3A), b = Sumai 

3 (3B), c = Sumai 3 (5A), d = Frontana (5A), e = Wangshuibai (6B) and f = T. dicoccoides (7A) and *
 
=

 

accession without a known FHB resistance alleles that linked to resistant sources Frontana, Sumai 3, 

Wangshuibai or T. dicoccoides 
c
Disease severity (DS) % was recorded at 21 days after flowering in filed (corn inoculated) or 21 days 

after point inoculation in greenhouse. Field data were average of three replications. Prosper 2010 and all 

greenhouse data were average of two replications. The least significant difference (LSD) was calculated 

for individual years or locations using SAS 9.2. 
d
Deoxynivalenol (DON) in grains was obtained from wheat grains harvested in field. Samples were 

prepared combining grains from all replications and grounded. ppm = part per million (mg/kg of 

samples). 
e
DON value averaged from all four-field experiments; - Disease or DON data not available 
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