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ABSTRACT 

In this study, we discuss the implementation of integrated simulation and genetic 

algorithm for patient scheduling optimization under two different settings, namely the 

“traditional” scheduling system and the “open access” scheduling system. Under the “traditional” 

setting, we propose a two-phase approach for designing a weekly scheduling template for 

outpatient clinics providing multiple types of services. Our results demonstrate that the two-

phase approach can efficiently find the promising weekly appointment scheduling templates for 

outpatient clinics. Under the “open access” setting, we propose a discrete event simulation and 

genetic algorithm (DES-GA) approach to find the heuristic optimal scheduling template for the 

clinic allowing both open access and walk-in patients. The solution provides scheduling 

templates consisting of not only the optimal number of reservations for open access 

appointments and walk-ins, but also the optimized allocation of these reserved slots, by 

minimizing the average cost per admission of open access or walk-in patient. 

  



iv 
 

ACKNOWLEDGMENTS 

I would like to express the deepest appreciation to my advisor and committee chair, Dr. 

Jing Shi, who has the attitude and the substance of a genius; he continually and convincingly 

conveyed a spirit of adventure in regard to research and scholarship, and an excitement in regard 

of teach. Without his guidance and persistent help this thesis would not have been possible. 

I would like to thank my committee members, Dr. Kambiz Farahmand, Dr. Jun Zhang, 

and Dr. Joseph Szmerekovsky, for offering time and individual expertise to support and guide 

me though this exciting and painstaking journey.  

In addition, I would like to thank Dr. Xiuli Qu and Dr. Nan Kong, for their diligent guide 

and support for my research.  

I would also like to thank my colleague Dr. Ergin Erdem, who is a loyal friend and 

provides me a lot of help and knowledge during the study.  

Last and most importantly, I want to thank my family for their selfless love and 

consistent support.  

   



v 
 

TABLE OF CONTENTS 

ABSTRACT ................................................................................................................................... iii 

ACKNOWLEDGMENTS ............................................................................................................. iv 

LIST OF TABLES ........................................................................................................................ vii 

LIST OF FIGURES ....................................................................................................................... ix 

1. INTRODUCTION ...................................................................................................................... 1 

1.1. Overview of Health Care Delivery System .......................................................................... 1 

1.2. The Outpatient Scheduling System ...................................................................................... 2 

1.3. Problem Statement ............................................................................................................... 4 

1.4. Organization of the Thesis ................................................................................................... 6 

2. LITERATURE REVIEW ........................................................................................................... 8 

3. APPOINTMENT SCHEDULING OPTIMIZATOIN FOR TRADITIONAL SCHEDULING 

SYSTEM .................................................................................................................................. 15 

3.1. Problem Description and Formulation ............................................................................... 15 

3.1.1. MILP model for decision making in Phase I ............................................................... 18 

3.1.2. SMIP model for decision making in Phase II .............................................................. 20 

3.2. Solution Approach.............................................................................................................. 27 

3.2.1. Step 1: initialization ..................................................................................................... 28 

3.2.2. Step 2: population evolution ........................................................................................ 29 

3.2.3. Step 3: best solution selection in the last generation ................................................... 29 

3.3. Case Study .......................................................................................................................... 30 

3.3.1. Data collection and study design ................................................................................. 30 

3.3.2. Algorithmic parameter selection for the GA-MC procedure ....................................... 32 

3.3.3. Case study results ........................................................................................................ 34 



vi 
 

4. APPOINTMENT SCHEDULING OPTIMIZATOIN FOR OPEN ACCESS SCHEDULING 

SYSTEM .................................................................................................................................. 45 

4.1. Problem Description and Formulation ............................................................................... 45 

4.1.1. Type 1: patients with pre-booked appointments .......................................................... 45 

4.1.2. Type 2: open access patients ....................................................................................... 46 

4.1.3. Type 3: walk-in patients .............................................................................................. 46 

4.1.4. Appointment scheduling template ............................................................................... 47 

4.1.5. Formulation ................................................................................................................. 48 

4.2. Solution Approach.............................................................................................................. 54 

4.2.1. Representation ............................................................................................................. 55 

4.2.2. Initialization ................................................................................................................. 56 

4.2.3. Evaluation of the solution candidates by discrete event simulation (DES) ................. 56 

4.2.4. Selection, crossover and mutation operations ............................................................. 58 

4.2.5. Formation of new generation ....................................................................................... 59 

4.2.6. Identification of the best solution ................................................................................ 59 

4.3. Case Study .......................................................................................................................... 59 

4.3.1. Experimental design .................................................................................................... 60 

4.3.2. Case study results ........................................................................................................ 64 

5. CONCLUSION ......................................................................................................................... 71 

REFERENCES ............................................................................................................................. 74 

APPENDIX. 12 CATEGORIES OF EVENTS IN SIMULATION ............................................. 85 

 

  



vii 
 

LIST OF TABLES 

Table                                                                                                                                           Page 

3.1: Notation used in Phase I ........................................................................................................ 19 

3.2: Notation used in Phase II ....................................................................................................... 23 

3.3: Weekly demand, no-show rate, and service time distribution for each service type ............. 31 

3.4: Clinic setting parameters and weighing coefficients in the case study.................................. 32 

3.5: Experiment design for selecting the parameters used in the GA-MC procedure .................. 32 

3.6: Weighted total cost of a chromosome estimated using each candidate sample size n2 ........ 33 

3.7: Parameters of the GA-MC Procedure used in the numerical study ....................................... 35 

3.8: Optimal master scheduling template for Case 1 * ................................................................. 36 

3.9: Optimal master scheduling template for Case 2 * ................................................................. 36 

3.10: Optimal master scheduling template for Case 3 * ............................................................... 36 

3.11: Master scheduling template used in the studied women’s clinic ......................................... 37 

3.12: Heuristic optimal scheduling templates for Case 1 ............................................................. 39 

3.13: Heuristic optimal scheduling templates for Case 2 ............................................................. 40 

3.14: Heuristic optimal scheduling templates for Case 3 ............................................................. 41 

3.15: Scheduling template used in the studied women’s clinic .................................................... 42 

3.16: Performance assessment of the proposed GA-MC procedure with two small-size  

instances ............................................................................................................................... 44 

4.1: Indices and parameters........................................................................................................... 48 

4.2: Random variables and decision variables .............................................................................. 49 

4.3: Parameters for the DES-GA approach ................................................................................... 62 

4.4: Model parameters for the base case ....................................................................................... 63 

4.5: Parameter adjustments for Cases 1-8 compared with Case 0 ................................................ 65 



viii 
 

4.6: Best scheduling templates found for Cases 0 –8 ................................................................... 66 

4.7: Summary of descriptive performance statistics for Cases 0- 8 .............................................. 70 

  



ix 
 

LIST OF FIGURES 

Figure                                                                                                                                         Page 

1.1: The scheme of the studied problem ......................................................................................... 6 

3.1: Convergence of the average objective value under 4 mutatuion rates .................................. 34 

3.2: Computational times and best objective function values for 19 optional values of n1 ......... 34 

4.1: A simple example showing the effect of scheduling template .............................................. 48 

4.2: Framework of the DES-GA approach ................................................................................... 55 

4.3: A chromosome example ........................................................................................................ 56 

4.4: Simulation flowchart.............................................................................................................. 57 

4.5: Number of reserved appointment slots with respect to parameter selections ........................ 68 

4.6: Number of double booking slots with respect to parameter selections ................................. 68 

 

  



1 
 

1. INTRODUCTION 

1.1. Overview of Health Care Delivery System 

The US health care industry, which began as a volunteer and charitable system, has now 

developed into the largest business in the country. It is reported that the United States spent 17.9% 

($ 2.7 trillion) of GDP on health care in 2011, which is more than any other countries in the 

world (WHO, 2011). In the meantime, the health care spending in the U.S. is growing at 3.7% - 

4.1% during 2009-2011 (Hartman et al., 2013), which is higher than the growth rate of the nation 

income. According to the statistics (BLS, 2013), the health care industry is employing more than 

17 million workers with a projection of 5.7 million new jobs by the year 2012.  

It is argued that the U.S. has the most formidable medical force and most modern medical 

technology in the world (Francois Sainfort, 2004). Despite the large amount of money, advanced 

technology and labor force invested in the health care industry, the health care delivery system in 

the U.S. has long been criticized for inadequate quality and lack of efficiency. Back to 2000, the 

World health Organization (WHO, 2000) ranked the U.S. health care delivery system 37
th

 among 

191 countries worldwide. In addition, the extremely high costs related to health care services put 

tremendous burden on the patients.  For many years, the entire health care industry has been 

under pressure to reduce care cost while improving care quality (Institution of Medicine, 2001).  

According to the report “Healthcare Delivery System in United States” conducted by 

Francois (2004), the healthcare industry is a very large, complex and inefficient industry. In the 

meanwhile, the Institute of Medicine (2011) has directed the inadequate quality of care in the 

U.S. to four underlying reasons: 1) the growing complexity of science and technology, 2) the 

increase in chronic condition, 3) the poorly organized health care delivery system, and 4) the 

constraints on exploiting the revolution in information technology. Due to the characteristic of 
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the current U.S. health care delivery system, Francois (2004) indicates the unlimited potential of 

industrial and system engineering to contribute and make significant change to the system. The 

capability of applying quantitative tools and model based analysis from engineering prospective 

has been highlighted for design of new system with great complexity and re-design of current 

health care delivery system. It is further indicated that the healthcare has recently been viewed as 

an “industry”, because of the rapid change to the sector, which is brought in by the increasing 

managed care. As such, it is concluded (Francois, 2004) that reengineering the delivery of 

healthcare services through innovative development, application, and use of proven and novel 

operations research and management sciences methods, theories, and tools coupled with modern 

and novel information and communication technology solutions can lead to tremendous cost 

savings and improved access to healthcare services, as well as improved quality of life for all 

citizens.  

1.2. The Outpatient Scheduling System 

As a key component of the entire healthcare delivery system, the outpatient clinics are 

experiencing long patient waiting time, which has long been identified as the source of 

inefficiency and rising cost in clinics. Many outpatient clinics have reported that operational 

excellence in appointment scheduling helps smoothen the patient flow, reduce patient waiting in 

clinics, and eventually leads to improved quality and reduced cost of care (Cayirli and Veral, 

2003; Armstrong et al., 2005; LaGanga and Lawrence, 2007; Gupta and Denton, 2008). In 

general, the objectives of appointment scheduling system have been defined as (Liu et al., 2010): 

(i) provide better service to customers by assigning them a short time window, during which they 

are guaranteed with a service; (ii) protect the system against demands fluctuation from time to 

time, which can lead to possible lacking of facility utilization at some time, or overloading at 
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other time. To be more specific, the objective of outpatient scheduling is to find an appointment 

system for which a particular measure of performance is optimized in a clinical environment (i.e., 

an application of resource scheduling under uncertainty), as defined by Cayirli and Veral (2003). 

As for the means of appointment booking process, typically, patients make phone calls or visit 

clinic in person to make appointments. Clinics schedule patients in available slots upon request.  

It is not until recently that, with the development of information technology, the online 

appointment scheduling systems have become available through a secured access to the websites 

of some clinics. 

It is well known that the outpatient scheduling systems have gone through many changes. 

In this study, we categorize the outpatient scheduling systems into two classes, namely, 

“traditional” and “open access” appointment scheduling systems. Under the setting of traditional 

appointment scheduling, patients make appointments weeks or months earlier by calling the 

clinic or right after their current visits. Usually, the appointments are not available in near term, 

since most clinics operate at their capacity. As a result, the patients need to wait several weeks or 

months for their clinic visits. In case of an urgent appointment, the patients may have to use the 

emergency department. It leads to a disruption of care continuity because they are not able to see 

their own providers in time. It also dramatically increases the care cost in an unnecessary way 

since the cost of emergency department visits is much higher than that of primary clinic visits. 

Meanwhile, patient no-show rate, cancellation rate, and late arrival rate are likely to increase due 

to the long waiting list for appointments. Numerous studies indicate that patient no-shows, 

cancellations and late arrivals increase volatility to the standard clinic process, which would in 

turn increases the healthcare expenditure and decrease clinic efficiency and patient accessibility. 

For this reason, in 1990s open access scheduling (or advanced access scheduling) was proposed 
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to mitigate the negative effects of patient no-shows, cancellations, and late arrivals, promote 

timely access to care, and improve patient satisfaction. The key concept of open access 

scheduling is to “do today’s work today”. Under this concept, a portion of clinic slots are 

reserved for the patients who need same-day appointments, while the non-reserved slots are 

scheduled in advance for patient with non-acute illness. As we can see, the key difference 

between traditional scheduling and open access scheduling system is that no slots are reserved 

for the same-day appointment of non-acute illness under the setting of traditional scheduling.  

1.3. Problem Statement 

In this study, the problem we are facing is to find the best scheduling template for a given 

clinic setting. A weekly/daily scheduling template refers to a set of rules that specifies the 

number of appointments and the appointment times that are reserved for each type of services in 

each clinic session during a week/day. In practice, when a patient requests an appointment, a 

scheduler in the clinic first compares the current schedule of each week/day to the weekly/daily 

scheduling template to find available appointment times for him/her, and then schedules an 

appointment for him/her at one of the available times that best matches his/her preference. The 

best scheduling template is defined as the one that minimizes the weighted sum of patient 

waiting time, provider idle time and provider over time during a clinic session under the setting 

of traditional scheduling system. However, this definition is modified into minimizing the cost 

per same day appointment during a day under the “open access” setting, where the cost is 

measured as weighted sum of patient waiting time, provider idle time and provider overtime 

during the day. The patient waiting time is measured as the time difference between the actual 

appointment start time and scheduled appointment start time. In case that the actual appointment 

starts before the scheduled appointment start time, the waiting time will be defined as zero. The 
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provider overtime is the time that a provider worked after scheduled working hour. As for the 

provider idle time, it is defined as the amount of time that a provider is not seeing any patient 

during the scheduled working hour. 

As introduced in Section 1.2, we classify the outpatient scheduling systems into 

“traditional” and “open access” scheduling systems. Hence, we have two separate tasks. In 

Figure 1.1, the scheme of the problem studied in this thesis is clearly illustrated. Task 1 is to 

develop the best scheduling template for a “traditional” scheduling system with various service 

categories, while Task 2 is to find the best scheduling template under the setting of “open access” 

scheduling with unique features. For the “traditional” scheduling system, we aim to develop a 

weekly scheduling template, which can balance the workload among sessions during the week 

and minimize weighted total of patient waiting time, provider idle time and provider overtime of 

each session. Note that, different types of appointment might be provided among sessions. 

However, only one category of appointment is offered in each session. The existing studies in 

literature have not been able to address the scheduling template issue for clinics with different 

appointment services. As such, the success of Task 1 fills an important research gap and 

contributes to the clinic scheduling research. For the “open access” scheduling system, we need 

to find a daily scheduling template that minimizes the cost per same day appointment, since the 

nature of open access scheduling requires a daily template rather than weekly template. It is 

worthwhile to mention that the walk-in patients are also considered under the “open access” 

setting.  In addition, the double booking strategy, patient no-shows and patient cancellations are 

considered under both settings. The contribution of Task 2 is also clear – it for the first time 

addresses the optimization problem of scheduling template for open access clinics that admits 

walk-in patients. For a detailed description of these two tasks, we refer reader to Sections 3.1 and 
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4.1, where the problem descriptions and formulations are given to Task 1 and Task 2, 

respectively.  

Find the best 
scheduling 
template

Task 1: find the best weekly 
scheduling template for clinic with 

different service types under 
tradition scheduling system

Task 2: find the best daily 
scheduling template for 

clinics that admit walk-in 
patients under open access 

scheduling system

Determine the service 
category and number of 

patients  for each clinic 
session during a week

Determine the appointment 
time for each patient in 

the clinic session

Determine the number of 
appointment reserved 

for open access

Determine how to assign the 
reserved appointment on the 

scheduling template

Fig. 1.1: The scheme of the studied problem 

 

1.4. Organization of the Thesis 

The remainder of the thesis is organized as follows. In Chapter 2, we provide a literature 

review of the existing studies on the patient scheduling problem and the relevant methodologies 

of this study. In Chapter 3, we propose a two-phase approach, which includes an integer linear 

programming model to balance the workload among sessions, a two-stage SMIP model to locate 

the best scheduling template under the “traditional” setting, and a solution approach for the 

SMIP model. A case study is also provided in Chapter 3, in order to demonstrate the 

performance of the proposed two-phase approach.  In Chapter 4, the DES-GA solution method is 

developed for optimizing the scheduling template under “open access” setting. In addition, a case 

study is also presented in Chapter 4, where numerical examples are summarized for sensitivity 
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analysis. Insightful discussion is provided based on the results. At last, we draw the conclusion in 

Chapter 5.  
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2. LITERATURE REVIEW 

The appointment scheduling problem in healthcare settings has attracted the interest of 

many researchers and practitioners over the past 60 years (Cayirli and Veral, 2003). There has 

been a rich body of operations research (OR) literature on outpatient appointment scheduling. 

For a comprehensive review of outpatient appointment scheduling, we refer to Cayirli and Veral 

(2003), where taxonomy of methodologies developed in previous literature is provided, and 

general problem formulations and modeling considerations are presented. For more literature on 

patient scheduling, we refer the readers to the review paper written by Gupta and Denton (2008), 

where the practical issues related to appointment scheduling and the art of modeling and 

optimization are discussed.  

Queuing theory and simulation are the major quantitative methods used to evaluate and 

optimize appointment schedules. Among the two, simulation is more relevant to our work so we 

will survey the relevant studies in details.  In early studies, simulation is primarily used to 

compare alternative appointment scheduling templates (or more commonly referred to as ASRs 

in the operations research literature) in outpatient clinics with respect to key system performance 

measures such as patient waiting time and provider idle time (Bailey, 1952, Fetter and Thompson, 

1966, Vissers, 1979). In more recent studies, simulation experiments are conducted to help 

identify the most appropriate ASR with various environmental characteristics (Klassen and 

Rohleder, 1996, Rohleder and Klassen, 2000, Ho and H-S, 1992, Ho and H-S, 1996, Cayirli, 

Veral and Rosen, 2006). For example, Klassen and Rohleder (1996 and 2000) compare various 

ASRs under different distributions of patient service time, and illustrate that the optimal ASR 

depends on the mean and variance of the service time. Ho and Lau (1992 and 1996) compare 

various ASRs with different specifications of patient service time as well as no-show rate and the 
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length of clinic sessions. Cayirli et al. (2006) further incorporate patient heterogeneity into the 

assessment of ASRs. Overall, these papers show that ASRs have significant effect on operational 

performance and that patient characteristics are important compounding factors, including walk-

in rate, no-show rate, and arrival punctuality.  

In recent years, optimization models have been developed for designing optimal ASRs in 

outpatient appointment scheduling. For example, Vanden Bosch et al. (1999) propose an 

efficient heuristic search algorithm to design an optimal ASR under the assumptions of 

independent service times following identical Erlang distribution and punctual patient arrivals. 

Vanden Bosch and Dietz (2000 and 2001) extend the model by considering general phase-type 

distributed service times as well as patient no-shows. Kaandrop and Koole (2007) propose a 

stochastic optimization model with a multimodular objective function and presented a local 

search method based on the multimodularity of the objective function. Rohleder and Klassen 

(2000) apply simulation optimization for optimal ASR design with more flexible clinical settings. 

It is worth noting that most of the recent studies incorporate patient no-show uncertainty in their 

models.   

In first task of our study, we formulate a scheduling optimization problem under 

“traditional” appointment scheduling setting with a Stochastic Mixed Integer Programming 

(SMIP) model. Stochastic programming has been applied to the appointment scheduling 

problems in healthcare settings, including operating rooms (Denton and Gupta, 2003; Denton et 

al., 2007; Batun et al., 2011) and outpatient clinics (Robinson and Chen, 2003; Begen and 

Queyranne, 2011; Begen et al., 2012). However, to the best of our knowledge, it has not been 

applied in multiple-provider outpatient appointment scheduling. The first task of our study 

differs in three ways from the previous appointment scheduling studies applying stochastic 
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programming in the literature. First, unlike the studies (Denton and Gupta, 2003; Denton et al., 

2007; Batun et al., 2011; Robinson and Chen, 2003; Begen and Queyranne, 2011; Begen et al., 

2012) assuming that the sequence(s) of all or subsets of surgeries/jobs is given or pre-determined 

by heuristic rules, in our study, the service sequence in each clinic session is determined by 

solving the proposed SMIP. Secondly, unlike the multiple-server scheduling problems studied by 

Batun et al. (2011), and Robinson and Chen (2003) which determine the continuous starting 

times of surgeries in each OR, in the first half of our scheduling problem, the services of each 

type are assigned with discrete appointment times, but not assigned to individual physicians (i.e. 

servers). In the problem, the patients with appointments in a clinic session will wait in a priority 

queue formed with their appointment times until being seen by one of the physicians working in 

the session. This is similar to a queuing system with multiple servers and a single priority 

waiting line. Thirdly, we consider discrete appointment times and continuous random service 

times in the problem. In the previous studies, continuous appointment times and continuous 

random service times are considered by Denton and Gupta (2003), Denton et al. (2007), Batun et 

al. (2011), and Robinson and Chen (2003), and discrete appointment times and discrete random 

service times are considered by Begen and Queyranne (2011), and Begen et al. (2012).  

In the second task of our study, we develop the appointment scheduling optimization 

problem under the setting of “open access” scheduling. In the past two decades, open access 

scheduling has been extensively studied. Murray and Tanau (1999) first propose the concept of 

open access scheduling to overcome the problem of high no-show rates in outpatient clinics. In 

the study, a successful case of open access scheduling in a clinic in the U.S. is demonstrated. 

Gupta et al. (2006) conduct an empirical study of clinics within Minneapolis metropolitan area 

that applies open access scheduling. It is pointed out that the factors, which include different 
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practice styles of doctors, differences in panel compositions, and patient preferences, could 

hinder the successful sustaining of supply-demand balance. Several performance measures are 

proposed to help management for monitoring and evaluating the implementation of open access 

scheduling. There are also other publications that report the successful implementations of open 

access scheduling, which all indicate that open access scheduling is capable of reducing 

healthcare cost while improving the access to care, clinic resource utilization and patient 

satisfaction (Kennedy and Hsu, 2003; Murray et al., 2003; O’Hare and Corlett, 2004; Mallard et 

al., 2004; Bundy et al., 2005; Parente et al., 2005; O’Connor et al., 2006; Cameron S et al., 2010). 

In addition, Rose et al. (2011) conduct a systematic review on the performance of open access 

scheduling, which shows the benefits of reducing patient waiting time and no-show rate as well. 

Generally, the critical parameters for open access scheduling systems are determined based on 

experts’ experiences rather than analytical methods. For instance, the percentage of open access 

appointments may range from 30% to 80% depending on the scheduler’s experience (Herriott, 

1999; Kennedy and Hsu, 2003; Murray and Tantau, 2000).  

Besides the empirical studies, mathematical modeling approaches have also been widely 

applied to analyze the open access scheduling systems. Green et al. (2007) study the relationship 

between the panel size and the probability of “working overtime” or “extra work” for a provider 

in an open access clinic. The “extra work” is measured by the expected number of extra patients 

that a provider has to see in the open access clinic. Kopach et al. (2007) conduct a simulation 

study to evaluate the effects of open access scheduling on the continuity of care. It is concluded 

that the increasing fraction of open access patients have an adverse effect on the continuity of 

care, but the adverse effect could be mitigated by providers working as a team. Qu et al. (2007) 

develop a closed-form approach to quantitatively determine the optimal percentage of open 
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access appointments to match daily provider capacity to demand. It shows that the optimal 

percentage of open access appointments mainly depends on the ratio of average demand for open 

access appointments to provider capacity and the ratio of the show-up rates for traditional and 

open access appointments. Liu et al. (2010) propose a dynamic programming model to study the 

heuristic policies of patient appointment scheduling by taking patient no-shows and cancellations 

into account. The results suggest that open access scheduling works best when the patient load is 

relatively low. Robinson et al. (2010) conduct a comparison study between traditional patient 

scheduling methods and open access scheduling. It is claimed that open access scheduling is 

significantly better than traditional methods in terms of patient waiting, provider idle and 

provider overtime. Lee and Yih (2010) conduct a simulation study to investigate the impact of 

open access configuration considering clinic setting conditions including demand variability, no-

show rate, and the percentage of same-day appointments. The performance of different open 

access configurations is analyzed in terms of patient waiting time, patient rejection rate, and 

clinic utilization. Furthermore, Dobson et al. (2011) develop a stochastic model to evaluate the 

performance of open access scheduling in a primary care practice. It is found that encouraging 

routing patients to call for same-day appointment is a key element for the success of open access 

scheduling. Qu et al. (2011) propose a hybrid policy for open access scheduling, which consider 

two time horizons instead of one for the short-notice appointments. It is shown that the hybrid 

policy is no worse than the single time horizon policy in terms of the expectation and variance of 

the number of patients seen. Balasubramanian et al. (2012) propose a two stage stochastic integer 

programming model to maximize timely access and patient-physician continuity simultaneously 

for open access clinics. Qu et al. (2012) propose a mean-variance model to optimize the ratio of 

traditional versus open access appointments for open access scheduling systems. In addition, 
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Patrick (2012) proposes a Markov decision model for determining optimal outpatient scheduling. 

In his study, open access scheduling is compared to the short booking window concept, and the 

latter appears to be more effective in term of cost minimization.  

In the meantime, there are also scheduling optimization studies considering walk-in 

patients. Kim et al. (2006) develop a stochastic mathematical overbooking model, which 

considers the probability distribution of walk-in patients during the process of determining the 

optimal number of appointments to be scheduled in order to maximize the expected total profits 

in diverse healthcare environment. Oh and Chow (2011) conduct a discrete event simulation to 

evaluate the impact of different patient appointment arrangement and patient-doctor allocation 

strategies on the patient cycle time of clinic visit. An exclusive allocation strategy is developed 

for walk-in patient seeking consultation for non-chronic conditions. Cayirili et al. (2012) propose 

a “Dome” appointment rule, which is formulated as a function of the clinic specified parameter, 

a “Dome” pattern parameter and the mean and variance of consulting time, for clinics with no-

shows and walk-in patients. In addition, they propose a model to adjust the mean and variance of 

consulting time considering the effect of no-shows and walk-in patients, while the simulation and 

nonlinear regression models are applied to estimate the clinic specified parameter. 

It can be seen that a number of qualitative and quantitative studies have been performed 

in the area of open access scheduling, but there is still a lack of investigations on how to allocate 

the reserved appointment slots in a scheduling template. In addition, no study has addressed the 

allocation of appointment slots complicated by admitting walk-in patients to open access clinics 

to the best of our knowledge. As such, to bridge this gap, we develop the mathematical 

programming model and a Discrete Event Simulation and Genetic Algorithm (DES-GA) 
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approach in this study to find the heuristic optimal scheduling template for open access clinics 

that admit walk-in patients.  

Throughout our study, the hybrid simulation and genetic algorithm are implemented as 

the general solution methodology. In literature, the combination of simulation and genetic 

algorithm (GA) has been widely used for solving optimization problems in different fields. A 

large number of studies apply simulation/GA approach to solve job shop scheduling problems 

(Nicoara et al., 2011; Gholami and Zandieh, 2009; Jeong et al. 2006). Many other studies can be 

found that apply simulation and GA to solve maintenance scheduling problems (Manbachi et al., 

2011; Cheu et al., 2004; Ma et al., 2004). More applications of simulation/GA approach can be 

found in other areas. Amiri et al. (2012) use this approach to optimize buffer allocation in 

unreliable production lines; Huang et al. (2012) adopt this approach to develop an optimum 

design for the arrangement of moisture-buffering materials in order to achieve a reliable indoor 

humidity environment; Lin et al. (2012) also employ this approach to optimize the scheduling of 

dispatching earthmoving trucks. In terms of simulation/GA applications in health care industry, 

only a few studies can be found. Yeh and Lin (2007) use the approach to improve the quality of 

service at a hospital emergency department by appropriately adjusting nurses’ schedules without 

hiring additional staff. Gul et al. (2011) propose a simulation and bi-criteria GA model to find 

the best scheduling heuristic for an outpatient procedure center, where the simulation is used to 

evaluate the performance of 12 different sequencing and patient appointment time-setting 

heuristics, while the genetic algorithm is used to determine if better solutions can be obtained for 

this single day scheduling problem. Nevertheless, each of these simulation/GA studies is 

problem-specific, and no general model, which could be easily adopted and customized for 

solving all problems, is available.  
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3. APPOINTMENT SCHEDULING OPTIMIZATOIN FOR TRADITIONAL 

SCHEDULING SYSTEM 

3.1. Problem Description and Formulation 

In many outpatient specialty clinics, the overall appointment scheduling process involves 

assignment decisions at two phases. In the first phase, a master scheduling template is developed 

to allocate healthcare service capacity to clinic sessions in response to projected patient 

appointment requests. Then in the second phase, appointments are scheduled to various time 

slots in each clinic session given the service type specified by the master scheduling template. 

When making first-phase decisions, various service types are clustered based on medical 

specialists and equipment they require. It is often the case that not any arbitrary pair of services 

can be scheduled in the same clinic session, as equipment changeover time needed between the 

two services is prohibitive or different medical specialties required cannot be covered by the 

same set of health professionals. 

In our study, we develop a two-phase approach for multi-category appointment 

scheduling in an outpatient specialty clinic to incorporate this feature. Our approach closely 

matches the real-world appointment scheduling process. We a priori cluster those services that 

do not require substantial changeover time into the same category. Hence, we require that 

services scheduled in the same clinic session belong to the same category. Although this 

restriction is a common feature in almost all outpatient clinics that provide multiple categories of 

services, to the best of our knowledge, multi-category appointment scheduling with 

incorporation of this feature has not been fully investigated by the healthcare management 

science research community. It is worth noting that we are aware of the fact that it is likely to 

achieve more reliable solutions when taking an approach that integrates category assignment and 
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slot assignment. However, such an integrated approach would lead to a stochastic optimization 

problem of much larger scale and the solution may not seem interactive in real-world practice. 

Furthermore, we incorporate uncertainty arising in patient no-show and service time. High 

patient no-show and large variation in service time are two common features in many outpatient 

clinics (Cayirli and Veral, 2003, Gupta and Denton, 2008).  

As mentioned above, this women’s clinic provides multiple types of services such as pre-

pregnancy checkup, routine prenatal visitation, obstetric examination for high-risk pregnancy, 

and routine gynecology examination for new and follow-up patients. In this women’s clinic, 

these different services are clustered into categories according to the requirements on service 

equipments. For example, for the obstetric examination of a high-risk pregnant patient, more 

advanced testing procedures and devices (e.g., transvaginal ultrasound) are needed to identify 

risks for the patient and her fetus at early stage of the pregnancy, whereas standard procedures 

and devices are sufficient for low-risk patients. Significant amount of time incurred by changing 

medical equipments makes it undesirable to schedule these two types of services in the same 

clinic session. In order to reduce the changeover time, this women’s clinic, like many other 

outpatient clinics around the nation, simply does not schedule a session with different types of 

services between which significant changeover time is required. This restriction, however, 

presents challenges in appointment scheduling. In addition, the studied women’s clinic, like 

many small-scale clinics that primarily serve the nation’s low-income populations, has serious 

issues with patient no-shows and large variation of service times. For certain service type, nearly 

half of the appointments are missed and the service time varies from a few minutes to more than 

an hour. The aforementioned restrictions and characteristics motivate us to study the multi-
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category appointment scheduling problem with considerations of patient no-shows and large 

variation of service times.  

On the other hand, appointments in the women’s clinic are scheduled for all available 

physicians instead of individual physicians. As a result, the patients scheduled in a session will 

be seen in a sequence based on their appointment times, and may be seen by any physician 

working in the session. Since multiple physicians are available in any clinic session, more than 

one appointment could be scheduled at the same appointment time. 

The aforementioned issues and characteristics in the women’s clinic motivate us to study 

this multi-category outpatient appointment scheduling problem, for which we propose a two-

phase mathematical model. In Phase I, each clinic session is assigned to one of the given service 

categories and specified with the number of appointments for each service type belonging to the 

assigned category. The goal of the Phase I assignment is to balance provider workload among 

sessions. In Phase II, an appointment time is determined for each appointment that is reserved for 

each service type in each session, with the objective of minimizing patient waiting time, provider 

idle time, and provider overtime. Since appointment times in outpatient clinics are only multiples 

of 5 minutes, only a finite number of discrete time points could be possible appointment times. 

To deal with discrete appointment times, each clinic session is divided into multiple time slots of 

predetermined equal length, which correspond to possible appointment times. In Phase II, the 

appointments reserved for each service type in each session are allocated into time slots in the 

session. Allocating an appointment into a time slot only indicates that its appointment time is the 

beginning of the slot, and the service time for the appointment could last over multiple time slots. 

To summarize, our two-phase approach is intended to identify promising weekly scheduling 

templates with incorporation of the uncertainty arising in patient no-shows and service times, 
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subject to the restriction that all appointments in each session must belong to the same service 

category.  

3.1.1. MILP model for decision making in Phase I 

In Phase I, we assign a service category to each clinic session and determine how many 

appointments should be scheduled in the clinic session for each service type that belongs to the 

assigned service category.  Given the demand forecast, the average service time, and the 

anticipated no-show rate of each service type within a prespecified decision period (e.g., 

typically one week), we consider a deterministic static assignment problem between a given set 

of appointments and a given set of clinic sessions in the period with the restriction that each 

clinic session can only contain appointments for services in the same category. We formulate this 

assignment problem with an integer program.  

Let M be the set of service types, C be the set of service categories, and S be the set of 

clinic sessions during the decision period. For each service category c C , we denote ( )M c M

to be the subset of service types that belong to category c. We use decision variable xms to 

represent the number of appointments to be scheduled for service of type m M  in clinic session 

s S . We also use binary decision variable wcs to indicate whether service category c C  is 

assigned to clinic session s S . In addition, parameters mr , m  and mD  denote the average 

service time, the anticipated no-show rate, and forecasted demand, respectively, for service type 

m M . The notation used in the integer program is summarized in Table 3.1.  

In Phase I, a healthcare manager intends to balance the workload among clinic sessions 

during each decision period because the balanced provider capacity utilization can reduce the 

differences of total patient waiting time and provider idle time among clinic sessions. We use the 
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expected total service time in a clinic session as a proxy for the expected workload in a session 

and present a mixed-integer program (P1) as follows.  

Table 3.1: Notation used in Phase I 

Index 

c Service category index 

m Service type index 

s Clinic session index 

Set 

C Index set of service categories 

M Index set of service types 

M(c) Index subset of service types belonging to service category c 

S Index set of clinic sessions in a decision period 

Parameter 

Dm Demand forecast on type m service in a decision period 

m  Patient no-show rate of service type m  

mr  Average service time of type m service 

Decision Variable 

 xms Number of appointments to be scheduled for type m service in clinic session s 

 wcs Indicator whether service category c is assigned to clinic session s  

 

   (P1)    min                    
1 2

1 2

1 2

,
  

1
(1 ) ( )

2
mm ms ms

s s S m M
s s

r x x
 



           (3.1) 

 s.t.  
ms m

s S

x D
 

 , for mM; (3.2) 

 1cs

c C

w
 

 , for sS; (3.3) 

 ms m csx D w , for cC, mM(c), sS;   (3.4) 

 msx Z , for mM, sS;  (3.5) 

 {0,1}csw  , for cC, sS.  (3.6) 

In (P1), the objective function 3.1 minimizes the aggregate absolute difference on the 

expected total service time over all pairs of clinic sessions. Constraints 3.2 enforce that for each 

service type, all requests for such service must be scheduled within the decision period. 

Constraints 3.3 and 3.4 ensure that in each clinic session, only appointments for services in the 
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same category can be scheduled. Note that in (P1) nonlinearity only appears in the objective 

function due to the consideration of the absolute difference. To linearize the objective function, 

we introduce two groups of nonnegative auxiliary decision variables of each pair of sessions (s1, 

s2)S, s1 ≠ s2 , 

1 2 1 2

1 2( , )

(1 ) ( ),   if (1 ) ( ) 0

0,   otherwise

m mm ms ms m ms ms

m M m M
s s

R x x R x x
u

 
 

     
 


 
, (3.7) 

and  
1 2 1 2

1 2( , )

(1 ) ( ),   if (1 ) ( ) 0

0,   otherwise

m mm ms ms m ms ms

m M m M
s s

R x x R x x
v

 
 

     
 


 
.  (3.8) 

Then the objective function is rewritten in the linear form as 

              min                     
1 2 1 2

1 2

1 2

( , ) ( , )

,
  

1

2
s s s s

s s S
s s

u v




          

and additional sets of constraints are added to (P1) as: 

1 2 1 2( , ) (1 ) ( )ms s m ms ms

m M

u R x x


   ,     for 1 2 1 2, ,s s S s s   ; (3.9) 

1 2 1 2( , ) (1 ) ( )ms s m ms ms

m M

v R x x


    ,     for 1 2 1 2, ,s s S s s   ; (3.10) 

1 2( , )s su , 
1 2( , ) 0s sv  ,     for 1 2 1 2, ,s s S s s   . (3.11) 

3.1.2. SMIP model for decision making in Phase II 

In Phase I, a mixed-integer program (P1) is solved to obtain *

msx , the optimal number of 

appointments to be scheduled for each type of service in each session. The solution *

msx  is used 

to specify the number of appointments of service type m assigned to time slots in clinic session s 

in Phase II. When scheduling appointments into slots, we take into account the potential no-

shows and service time uncertainty pertaining to each appointment. Hence, we develop a two-

stage stochastic mixed-integer programming (SMIP) model. The objective of the problem is to 
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improve the expected operational performance in terms of three commonly used measures, 

namely patient waiting time, provider idle time and provider overtime (Cayirli and Veral, 2003). 

For an introduction to stochastic integer programming, we refer to Birge and Louveaux (2011). 

To develop the SMIP model, we make the following assumptions. 

1) Each session is evenly divided into time slots; multiple appointments can be 

scheduled in one time slot. 

2) Once an appointment is made, it cannot be modified unless it is canceled by the 

patient. 

3) All patients must be seen once they arrive for their appointments. Each patient must 

be seen before any other patients with later appointments than hers. 

4) Patients arrive punctually for their appointments; otherwise, they are no-shows. 

Providers arrive punctually at the beginning of the session. 

5) For each service type, random service times are independent and identically 

distributed. 

6) Patient no-shows are independent of each other with known probability for each type 

of service.   

Many of the above assumption are commonly made in the outpatient appointment 

scheduling literature (Cayirli and Veral, 2003, Gupta and Denton, 2008). The others can be 

justified by the real-world setting investigated in this paper. For example, it is well observed that 

in many outpatient specialty clinics, patients tend to arrive earlier with the willingness of waiting. 

When a patient does not arrive in time, it typically implies that she would not come for the 

appointment. Literature indicates that more than 75% of the patients arrive early while fewer 

than 10% arrive late for longer than 5 minutes (O'Keefe ,1985). 
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We introduce the additional notation used in Phase II, as summarized in Table 3.2. In 

Phase I, we specify the set of service types to be scheduled in a clinic session and the number of 

appointments to be scheduled for each type of service. These specifications become the input to 

the second-phase problem. Let 
sM   and msD  denote the set of service types assigned to session s 

and the number of appointments to be scheduled for type m service in session s, respectively. 

Since we consider appointment assignment to time slots in individual sessions in Phase II, we 

suppress the clinic session index s in the remainder of the section for notational simplicity. In 

addition, we denote N and TΔ to be the number of appointment slots in a clinic session and the 

length of each slot. Then we define T := NTΔ to be the total length of a clinic session.  

In the developed two-stage stochastic program, we define ymn to be the first-stage 

decision variables, which represent the number of appointments scheduled for type Mm   

service in time slot n = 1,…,N. We define ( )jkb  and ( )jk

imnz   to be the second-stage decision 

variables, which indicate whether j is greater than or equal to the total number of patients seen by 

provider k = 1,…, K in the clinic session, and whether the j
th

 patient seen by provider k has the i
th

 

appointment for type Mm   service in the n
th

 slot, respectively. We model each scenario, 

denoted by ω, as a “snapshot” of the patient arrivals of each service type and the service time for 

each appointment scheduled in the clinic session. We let Ω denote the set of all scenarios. To 

generate the scenarios, we take advantage of the assumptions that patient no-shows are 

independent of each other. Let Qmn be the random variable representing the number of patients 

who arrive for their appointments for type Mm   service scheduled in the n
th

 slot. Then the 

assumption of independent no-shows implies that Qmn follows a binomial distribution with 

parameters ymn and 1 – m, i.e., Qmn ~ Binomial(ymn , 1 – m). For each scenario  , we define 
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( )mnq   to be the number of patients who actually arrive for their appointments under the scenario 

and thus 
1

( ): ( )
N

mn

m M n

J q 
 

  denotes the total number of patients seen in the clinic session. 

Table 3.2: Notation used in Phase II 

Index 

i Appointment index 

j
  

Patient index  

k Provider index 

m Service type index 

n Appointment slot index 

ω Scenario index 

Set 

M’ Index set of service types assigned to the considered clinic session 

Ω Index set of scenarios 

Parameter 

D'm Number of appointments scheduled for type m service in the considered clinic session 

K Total number of providers available in the considered clinic session 

N Number of appointment slots in the considered clinic session 

T Total length of the considered clinic session 

TΔ Length of an appointment slot 

m No-show rate of a patient with an appointment for type m service 

I Weighting coefficient of provider idle time 

O Weighting coefficient of provider overtime 

W Weighting coefficient of patient waiting time 

Random Variable 

qmn(ω) Number of patients who actually show up for their appointments scheduled for type m service in the n
th

 

slot under scenario ω 

J(ω) Total number of patients who actually show up for their appointments scheduled under scenario ω 

rimn(ω) Service time for the i
th

 appointment scheduled for type m service in the n
th

 slot under scenario ω 

Decision Variable 

ymn Number of appointments scheduled for type m service in the n
th

 slot (first-stage decision variable) 

)(jkb  =
0,  if   is greater than the total number of patients seen by provider  under scewnario 

1,  otherwise

j k 



 

)(jk

imnz

 
=

1,  if the  patient seen by provider  has the  appointment for type  service in the  slot 

        under scenario 

0, otherwise

th th thj k i m n









 

)(A

jkt  Appointment time of the j
th

 patient seen by provider k under scenario ω 

)(S

jkt  Actual starting time of the service for the j
th

 patient provided by provider k under scenario ω  

)(E

jkt  Actual completion time of the service for the j
th

 patient provided by provider k under scenario ω 

)( jk  Actual service time of the j
th

 patient seen by provider k under scenario ω 

)(W

jkt

 
Actual waiting time of the j

th
 patient seen by provider k under scenario ω 

)(I

kt  Actual idle time of provider k in the considered session under scenario ω 

)(O

kt  Actual overtime of provider k in the considered session under scenario ω 
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Furthermore, for each scenario  , we define rimn(ω) to be the service time of the i
th

 

appointment for type Mm   service scheduled in the n
th

 slot, n = 1, …, N. Finally, for each 

scenario  , we introduce auxiliary decision variables ( )jk  , ( )A

jkt  , ( )S

jkt  , ( )E

jkt  , ( )W

jkt  , 

( )I

kt  , and ( )O

kt   in the formulation to determine the patient waiting time, provider idle time, and 

provider overtime. Thus, a scenario-based formulation for the problem in Phase II is presented as: 

(P2)  min  
( )

1 1 1 1

( ) ( ) ( )
JK K K

W I O

W jk I k O k

k j k k

E t E t E t


       

   

     
      

    
       (3.12) 

 s.t. 
'

1

N

mn m

n

y D


 ,  for Mm  ;      (3.13) 

  
( ) ( )

1 1 1

( ) ( ),
mnq J K

jk

imn mn

i j k

z q
 

 
  

   for Mm  , n = 1,...,N, and  ;   (3.14) 

  
'

( )

1 1

( ) ( )
mnqN

jk

imn jk

n im M

z b


 
 

  , for j = 1,…,J(ω), k = 1,…,K, and  ;   (3.15) 

  ' ( ) ( )jkj k
b b  ,   for j, j' = 1,…,J(ω), j'  j, k = 1,…,K, and  ;  (3.16) 

  
'

( )

1 1

( 1) ( ) ( ),
mnqN

jk A

imn jk

n im M

n T z t


 

 

   for j = 1,…,J(ω), k = 1,…,K, and  ; (3.17) 

  
( )

1 1

( ) ( ) ( ),
mnqN

jk

imn imn jk

n m M i

r z


   
  

  for j = 1,…,J(ω), k = 1,…,K, and  ; (3.18) 

  ( ) ( ) ( ),E S

jk jk jkt t      for j = 1,…,J(ω), k = 1,…,K, and  ;   (3.19) 

  ( ) ( ),S A

jk jkt t    for j = 1,…,J(ω), k = 1,…,K, and  ;   (3.20) 

  
1,( ) ( ),S E

jk j kt t   for j = 1,…,J(ω), k = 1,…,K, and  ;   (3.21) 

  ( ) ( ( ) ( )) 2 (1 ( )),W S A

jk jk jk jkt t t T b        for j = 1,…,J(ω), k = 1,…,K, and  ; (3.22) 

  ( ) ( ( ) ( )) 2 (1 ( )),W S A

jk jk jk jkt t t T b        for j = 1,…,J(ω), k = 1,…,K, and  ; (3.23) 

  
( )

( )

1

( ) ( ) ( ),
J

I E

k J k jk

j

t t


   


   for k = 1,…,K and  ;   (3.24) 
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( )

1

( ) ( ),
J

I

k jk

j

t T


  


    for k = 1,…,K and  ;   (3.25) 

  ( )( ) ( ) ,O E

k J kt t T     for k = 1,…,K and  ;   (3.26) 

  ,mny Z    for Mm   and n = 1,..., N;   (3.27) 

( ) {0,1},jkb      for j = 1,…,J(ω), and  ;   (3.28) 

( ) {0,1},jk

imnz       for i = 1,…, ( )mnq  , Mm  , n = 1,..., N, 

 j = 1,…,J(ω), k = 1,…,K, and    (3.29) 

( ), ( ), ( ), ( ) 0,S E W

jk jk jk jkt t t       for, j = 1,…,J(ω), k = 1,…,K, and    (3.30) 

( ), ( ) 0,I O

k kt t     for k = 1,…,K and     (3.31)  

In the objective function 3.12 of (P2), the three terms capture the expected costs of 

patient waiting time, provider idle time, and provider overtime, respectively. The weights for 

patient waiting time, provider idle time, and provider overtime are specified by the clinic 

manager. Constraints 3.13 are first-stage constraints that enforce the number of appointments to 

be scheduled for each type of service in the considered clinic session. Constraints 3.14 – 3.26 are 

second-stage constraints. Different from the standard two-stage stochastic program with recourse, 

(P2) may lead to recourse problems of different sizes for various first-stage decisions and 

scenarios. Without complicating the model presentation, we conveniently use ( )mnq   in 

Constraint 3.14 to specify the number of patients who arrive for their appointments for type 

Mm   service scheduled in time slot n, which depends on the first-stage decision ymn and given 

scenario  . In other words, the coupling between the two stages in (P2) is reflected in the 

scenario-wise specification of ( )mnq  . 

For each scenario, Constraints 3.14 – 3.26 guarantee a valid assignment of appointments 

to slots in a clinic session. Constraints 3.14 guarantee that all patient showing up for their 
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appointments will be seen by some provider. Constraints 3.15 and 3.16 determine the sequence 

of patients seen by each provider. Constraints 3.17 and 3.18 specify the appointment times and 

service times of a sequence of patients seen by a provider. Constraints 3.19 validate the 

relationship of the starting time and the completion of each service and its service duration.  

Constraints 3.20 and 3.21 ensure that the starting time of each service must not be earlier than 

either its appointment time or the competition time of the previous service, i.e., for  , 

( 1),( ) min( ( ), ( ))S A E

jk jk j kt t t    for j = 1,…,J(ω), and k = 1,…,K. Constraints 3.22 and 3.23 are used 

to specify the waiting time of each patient, i.e., ( ) ( )( ( ) ( ))W S A

jk jk jk jkt b t t      for j = 1,…,J(ω), k 

= 1,…,K, and  . Constraints 3.24 and 3.25 specify the idle time of each provider, and 

constraints 3.26 specify the overtime of each provider. 

In clinics with significant patient no-shows and highly variable service times, there may 

be appointment scheduling templates that are insignificantly inferior to the optimal solution in 

terms of the objective function 3.12. Hence, it is more desirable in clinical practice to present the 

scheduling practitioners with these templates. It is also more desirable to select a subset of them 

that are expected to increase the satisfaction of both patients and providers, as well as increase 

the robustness of the schedule under uncertainty. Therefore, a secondary objective can be used to 

select a promising template from a small set of templates that are near-optimal in terms of the 

primary objective in 3.12. To increase patient satisfaction, a secondary objective considered in 

this study is to minimize the maximal expected waiting time among patients scheduled in 

different slots, i.e.,  

( ) ( )

1,...,
1 1

min max ( ) ( ) .
mnq JK

W jk

jk imn mn
n N

m M i k j m M

E t z y
 

 


   

   
  
   

                                                     (3.32) 
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The above secondary objective function is nonlinear, thus it is not incorporated into the 

objective function 3.12. Instead, from a set of near-optimal templates in terms of 3.12, we select 

the template according to this secondary objective, which achieves the highest satisfactory equity 

among the waiting times of patients scheduled into different time slots of the clinic session. Note 

that the genetic algorithm introduced in Section 5 readily provides a set of templates rather than 

only one template.  

3.2. Solution Approach 

The MILP model in Phase I can be quickly solved by most commercial optimization 

software packages such as CPLEX, LINGO, and GAMS. However, the SMIP model in Phase II 

presents severe computational intractability (e.g., see Klein and Van, 1999). Therefore, we focus 

on the solution approach in Phase II.  

In the decision-making problem in Phase II, it is relatively easy to evaluate the objective 

function for a given first-stage decision under certain scenario. However, it is difficult to 

evaluate the expected recourse function for a given first-stage decision. More specifically, the 

recourse problem is of different sizes under different scenarios and the service times are 

described with continuous random variables and may follow a variety of distributions (e.g., 

gamma, lognormal, and Weibull distributions), depending on the service type and patient 

population (Cayirli and Veral, 2003, Bailey, 1952 Klassen and Rohleder, 1996, Cayirli et al., 

2006). For two-stage SMIPs with continuous random variables, the expected recourse functions, 

in general, cannot be analytically derived for first-stage decisions. Hence, we apply Monte Carlo 

sampling to estimate the expected recourse. Furthermore, it is computationally challenging to 

identify promising first-stage decisions as the search space of feasible first-stage solutions is 

non-convex for the derived SMIP problems due to the integrality in the first stage (Klein and 
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Van, 1999,  Schultz R, 2003). For the state-of-the-art research on applying Monte Carlo 

sampling to SMIPs, we refer to Kleywegt et al. (2002). Finally, in real-world practice, it is 

desirable to present to clinic managers several promising suboptimal schedule templates rather 

than a provably global optimal template. Therefore, we develop a genetic-algorithm-based 

approach to identify promising first-stage decisions.  

Genetic algorithms are inspired by the biological evolution theory that the fittest 

individuals have more opportunities to reproduce. They define the population as a collection of 

solutions (termed chromosomes in the literature) to an optimization problem and generate new 

sets (termed generations in the literature) of solutions by combining pairs of good solutions in 

the existing population (Mitchell M, 1996). Along the evolution process, promising solutions are 

preserved and poor solutions are eliminated. By incorporating Monte Carlo (MC) sampling into 

genetic algorithm (GA), we develop the following procedure, named GA-MC procedure, to 

identify promising suboptimal solutions. The detailed procedures are summarized in the 

following: 

3.2.1. Step 1: initialization 

During initialization, the program will decide the value of population size p, the 

subpopulation size pc, the mutation rate β, the Monte Carlo sample sizes for iteration (n1) and 

best solution selection (n2), and the iteration limit gmax . 

After the parameters are initialized, the problem will set the iteration index g to 0, and 

randomly generate the initial generation of p candidate solutions, which are represented by 

chromosomes. Note that, the i
th 

candidate in the initial population will be denoted by x
(0)

(i). 

After the initial population is created, a Monte Carlo simulation with sample size n1 is run 

for each chromosome in the population to estimate the corresponding expected total cost. Note 

that the estimate expected cost for chromosome x
(0)

(i) will be denoted by w(i). 
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3.2.2. Step 2: population evolution 

During population evolution, pc chromosomes will be selected based on the roulette-

wheel rule. The selected chromosome will be dived into pc/2 pairs, and a two-point crossover 

operation will be conducted on each pair in order to generate new chromosomes. A mutation 

operation is then executed on each newly generated chromosomes to maintain the diversity of the 

population.  

After the new chromosomes are generated, the Monte Carlo simulation with sample size 

n1 is run to estimate the corresponding expected total cost of new chromosomes. The new 

chromosomes will replace the worst pc chromosomes (with the largest w(i) ) in the old generation 

“g”, and form the new generation “g+1”.  

Update w(i) of chromosomes in the new generation and set the current generation number 

to “g+1”, i.e. g= g+1. If g < gmax, then the evolution process is ended and the program will 

proceed to best solution selection; otherwise the evolution process will be repeated.  

3.2.3. Step 3: best solution selection in the last generation 

The Monte Carlo simulation with sample size n2 is run for each chromosome in the last 

generation to estimate the corresponding expected total cost and standard deviation. Note that, 

the i
th 

candidate in the last generation will be denoted by x
(g)

(i) and the corresponding expected 

total cost is denoted by w(i). 

At last, the program will report the chromosomes with the smallest w(i), as well as the 

chromosomes with w(i) that is not greater with statistical significance than the smallest w(i).  

The proposed GA-MC procedure is coded using MATLAB 7.12.0 (MathWorks, Inc., 

2012), and experiments are conducted to choose proper values for the parameters used in the 

GA-MC procedure, including the sample sizes n1 and n2. Based on our experimental results, a 

sample size of 200 is selected for iterative sampling, while a sample size of 2000 for the last 
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generation. Using the GA-MC procedure with these two sample sizes, it takes about 50 minutes 

to find a suboptimal solution for one instance of (P2). It is worth noting that when a new weekly 

scheduling template is implemented in the studied clinic, it generally takes at least a few weeks 

to test its performance before it is further implemented. Hence, the computational time required 

in the proposed GA-MC procedure is acceptable. 

3.3. Case Study 

In this section, we report a case study that demonstrates how well the proposed two-phase 

approach performs in the scheduling template design for a real clinic. The clinic characteristics 

and patient demand data used in the case study are collected from the women’s clinic that 

motivates our study. The values of the parameters p, pc, β, n1, n2, and gmax in the GA-MC 

procedure are selected through preliminary numerical experiments. The results of the case study 

are analyzed to identify the patterns of heuristic optimal scheduling templates.   

3.3.1. Data collection and study design 

The studied women’s clinic offers eight types of services in eight 4-hour clinic sessions 

per week. Two physicians are available in each clinic session. Among the eight types of services, 

the service of Developmental Pediatrics for newly-born babies is not considered in this case 

study due to its long service time, which is approximately 2 hours on average. Currently, two 

clinic sessions are allocated to schedule Developmental Pediatrics visits. Thus, we consider the 

case to allocate the remaining seven types of services in six clinic sessions. These seven types of 

services are clustered into three categories according to the requirement on service equipment. 

For each service type, the no-show rate of the appointments is estimated based on a two-month 

patient no-show data set, and the probability distribution of service times is obtained by 

analyzing a one-week clinical operations data. Similar to existing studies (Klassen and Rohleder, 

1996, Klassen and Yoogalingam, 2009, Cayirli et al., 2006), we assume that service times for 
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each service type are independent and lognormally distributed. Table 3.3 presents the no-show 

rate, the distribution of service times and the average number of weekly requests for each service 

type. The current average number of weekly requests for each service type was estimated by the 

clinic manager based on the historical clinical operations data. Due to the observed trend of 

increasing demand, the manager also predicted two levels of future demands, which are labeled 

as “Future I” and “Future II” in Table 3.3.   

Table 3.3: Weekly demand, no-show rate, and service time distribution for each service type 

 
 

 
Service time (in minutes) 

Average number of 

requests for service 

Service 

category 
Service type 

No-show 

rate 
Avg. Std. 

Distribution 

LN(,2
) 

Current Future I Future II 

Low Risk OB New Low Risk OB 0.162 25 8 LN(3.17,0.10) 4 8 11 

 Follow Up Low Risk OB 0.053 6 3 LN(1.68,0.22) 22 43 64 

High Risk OB Follow Up High Risk OB 0.080 10 6 LN(2.15,0.31) 35 70 105 

Gynecology New GYN 0.488 18 12 LN(2.71,0.37) 16 32 47 

 MAU GYN 0.487 13 3 LN(2.54,0.05) 4 8 12 

 Established GYN 0.384 10 5 LN(2.19,0.22) 17 33 49 

 Results GYN 0.321 15 4 LN(2.67,0.07) 5 9 14 

 

In the case study, each clinic session is divided into 16 slots with equal length of 15 

minutes. The weighting coefficients for patient waiting time, provider idle time and overtime are 

determined based on the average hourly wage and the average annual obstetrics-gynecology 

salary. Krueger (2009) reports that the average U.S. hourly wage is $17.4 per hour in 2009. 

Based on surveys of physicians in different medical specialties, the average annual obstetrics-

gynecology salary in the U.S. is $261,000 in 2011 (Medical Resource Group, 2011). Since on 

average an obstetrics-gynecology physician works 50 weeks per year and 40 hours per week, the 

average hourly cost of hiring an obstetrics-gynecology physician is $130.5. Meanwhile, 

considering the compensation for physicians’ unwillingness to work overtime, the provider 

overtime cost per hour is assumed to be 1.5 times of the regular payment. Thus, it is assumed in 

the case study that the weighting coefficients for patient waiting time, provider idle time and 
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overtime are 1, 7.5 and 11.25, respectively. These weighting coefficients as well as the 

parameters of clinic setting are summarized in Table 3.4.  

Table 3.4: Clinic setting parameters and weighing coefficients in the case study 

Notation Description Value 

K Total number of physicians available in each clinic session 2 

N Number of appointment slots in each clinic session 16 

Ts  Total length of each clinic session 4 hours 

TΔ  Length of an appointment slot 15 minutes 

I  Weighting coefficient of provider idle time 7.5  

O Weighting coefficient of provider overtime 11.25 

W  Weighting coefficient of patient waiting time 1 

 

3.3.2. Algorithmic parameter selection for the GA-MC procedure 

Several numerical experiments are conducted to determine good combinations of 

parameters used in the GA-MC procedure. Table 3.5 presents the optional values tested for the 

parameters (p, pc, β, n1 and n2). In the experiments, 16 appointments for New GYN service, 4 

appointments for MAU GYN service, 17 appointments for Established GYN service and 5 

appointments for Results GYN service are scheduled to time slots in a clinic session. Note that 

these different types of services belong to the same category.  

Table 3.5: Experiment design for selecting the parameters used in the GA-MC procedure 

Notation Description Levels 

 Mutation probability 0.5%, 1%, 5%, 10% 

n1 Sample size for interior sampling 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 

300, 400, 500, 600, 700, 800, 900, 1000 

n2  Sample size for the comparison of the last-generation 

chromosomes 

100, 200, 500, 1000, 2000, 5000 

p Population size 50, 100, 150 

pc Population size of subdivision for crossovers pc = rc  p  

rc  Percentage of chromosomes selected for crossover  0.2, 0.5, 0.8  

 

First, the sample size for the comparison of the last-generation chromosomes (n2) is 

determined according to the accuracy target that the 95% confidence interval of a weighted total 

cost estimated by Monte Carlo simulation is less than 3% of its average. Table 3.6 presents the 
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average and the standard error of the weighted total cost for a chromosome. These results 

demonstrate that it suffices to use 2000 for n2.  

Table 3.6: Weighted total cost of a chromosome estimated using each candidate sample size n2 

 Weighted total cost estimated by Monte Carlo simulation 

Sample Size (n2) Average Standard Error 95% Confidence Interval 

100 1254 37 125473 

200 1260 25 126049 

500 1275 15 127529 

1000 1268 11 126822 

2000 1259 8 125916 

5000 1268 5 126810 

 

Next, we investigate the best combination for parameters p, pc and β by comparing the 

performance of the GA-MC procedure under the 36 combinations for p, pc and β as listed in 

Table 3.5, in terms of the convergence rate and the best objective function value found. For each 

optional value of β, we identify the best pair of values for p and rc,, and Fig. 3.1 presents the 

performance of the GA-MC procedure under these best pairs of values. The results in this figure 

show that the best combination for p, pc, and β are 100, 50, and 1%, respectively. Meanwhile, 

Fig. 3.1 also illustrates that the GA-MC procedure using the best combination for p, pc, and β 

converges to a constant objective function value after about 100 iterations. Thus, the iteration 

limit (gmax) determined in the case study is 100. 

Finally, the sample size for iterative sampling (n1) is determined based on the 

computational time and the best objective function value found. Three replications are run using 

each candidate sample size n1. Fig. 3.2 illustrates the average, the minimum, and the maximum 

of the computational times and the best objective function values found using different sample 

sizes. It is observed in Fig. 3.2 that as the sample size n1 increases, the computational time 

roughly linearly increases, and the best objective function value found converges. To obtain a 

reasonably good solution within acceptable time, a sample size of 200 is chosen for iterative 
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sampling. Table 3.7 summarizes the values for parameters p, pc, β, n1, n2, and gmax of the GA-MC 

Procedure used in the case study. 

 

Fig. 3.1: Convergence of the average objective value under 4 mutation rates 

 

 

Fig. 3.2: Computational times and best objective function values for 19 optional values of n1 

 

3.3.3. Case study results 

 For the case study, we investigate the optimal scheduling template design in three cases, 

which correspond to the three demand levels in Table 3.3. Tables 3.3 and 3.4 summarize the 
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clinic characteristics and the weighting coefficients for patient waiting time, provider idle time, 

and provider overtime used in the three cases. For each case, a master scheduling template is 

developed first by solving (P1). Then, according to the assignment of service types specified in 

the master scheduling template, the appointments for each service type are allocated to 15-

minute slots by solving (P2).  

 

Table 3.7: Parameters of the GA-MC Procedure used in the numerical study 

Notation Description Value 

β Mutation probability 0.01 

gmax Iteration limit 100 

n1 Sample size for interior sampling 200 

n2  Sample size for the comparison of the last-generation chromosomes 2000 

P Population size  100 

pc Population size of subdivision for crossovers 50 

 

Tables 3.8 – 3.10 present the optimal master scheduling templates for the three cases, 

respectively. These master scheduling templates show that in the women’s clinic, two clinic 

sessions should be allocated to the services in each category. Meanwhile, the results in Table 3.8 

demonstrate that the utilization of provider capacity in any clinic session is lower than 35% in 

Case 1 comparing to physician capacity (two physicians available in each 4-hour clinic session). 

This observation implies that the current provider capacity in the studied women’s clinic can 

handle an increased demand. Tables 3.9 and 3.10 show that due to the increased demand, the 

utilization of provider capacity ranges from 42% to 67% in Case 2, and from 61% to 102% in 

Case 3. Furthermore, Table 3.11 presents the master scheduling template currently used in the 

studied women’s clinic and the provider capacity utilization under this template. The comparison 

of the master scheduling templates in Table 3.8 – 3.11 reveals that the optimal master scheduling 
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templates, presented in Tables 3.8 – 3.10, balance provider capacity utilization over clinic 

sessions much better than the master scheduling template used in the studied clinic.  

Table 3.8: Optimal master scheduling template for Case 1 * 

 Number of appointments for each service type in each clinic session 

Service Type Session 1 Session 2 Session 3 Session 4 Session 5 Session 6 

New Low Risk OB 2 2     

Follow Up Low Risk OB 11 11     

Follow Up High Risk OB   17 18   

New GYN     4 12 

MAU GYN     2 2 

Established GYN     12 5 

Results GYN     4 1 

Expected total service time (in minutes) 104.4 104.4 156.5 165.7 164.8 164.8 
*
 Case 1 corresponds to the “Current” level of the weekly demand in Table 3.3. 

 

Table 3.9: Optimal master scheduling template for Case 2 * 

 Number of appointments for each service type in each clinic session 

Service Type Session 1 Session 2 Session 3 Session 4 Session 5 Session 6 

New Low Risk OB 6 2     

Follow Up Low Risk OB 14 29     

Follow Up High Risk OB   35 35   

New GYN     12 20 

MAU GYN     4 4 

Established GYN     20 13 

Results GYN     6 3 

Expected total service time (in minutes) 205.3 206.7 321.5 321.5 205.3 206.7 

* Case 2 corresponds to the “Future I” level of the weekly demand in Table 3.3. 

 

Table 3.10: Optimal master scheduling template for Case 3 * 

 Number of appointments for each service type in each clinic session 

Service Type Session 1 Session 2 Session 3 Session 4 Session 5 Session 6 

New Low Risk OB 2 9     

Follow Up Low Risk OB 45 19     

Follow Up High Risk OB   53 52   

New GYN     32 15 

MAU GYN     3 9 

Established GYN     20 29 

Results GYN     4 10 

Expected total service time (in minutes) 297.6 296.5 487.8 478.6 478.6 478.6 
*
 Case 3 corresponds to the “Future II” level of the weekly demand in Table 3.3. 
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Table 3.11: Master scheduling template used in the studied women’s clinic 

 Number of appointments for each service type in each clinic session 

Service Type 
Wednesday 

morning 

Monday and 

Thursday morning 

Monday and 

Thursday afternoon 

Friday 

morning 

New Low Risk OB 3    

Follow Up Low Risk OB 15    

Follow Up High Risk OB  40   

New GYN   9 3 

MAU GYN   3 1 

Established GYN   9 4 

Results GYN   2 1 

Expected total service time (in minutes) 148.1 368.0 178.8 69.2 

 

Tables 3.12 – 3.14 present the optimal assignments of seven types of services to time 

slots in the three cases, respectively. For Case 1, the results in Table 3.12 demonstrate that the 

total patient waiting time, the waiting time of individual patients and provider overtime in the 

heuristic optimal scheduling template are relatively insignificant compared to the provider idle 

time. The reason is the low utilization of provider capacity in Case 1. The heuristic optimal 

scheduling template in Table 3.12 implies the following rules for cases with low capacity 

utilization.   

 No appointment should be scheduled in the last time slot, which could eliminate provider 

overtime. 

 For the low-risk or high-risk OB sessions, appointments should be evenly scheduled in 

time slots. 

 For the GYN sessions, more appointments for New GYN service should be scheduled in 

early time slots. Due to the higher variation in the service time among New GYN visits, 

scheduling them in later time slots increases the chance that provider overtime occurs. 

Compared to Case 1, the total patient waiting time increases and the total provider idle 

time decreases in Cases 2 and 3. In Case 2, the waiting time of individual patients is acceptable, 

and the provider overtime is still relatively insignificant. The heuristic optimal scheduling 
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template, as presented in Table 3.13, shows similar observations and provides similar managerial 

insights for cases with middle capacity utilization. In Case 3, the waiting time of individual 

patients and provider overtime significantly increase in the four sessions in which provider 

capacity utilization is about 100%. The heuristic optimal assignments of appointments in these 

four sessions imply the following rules for cases with high capacity utilization.   

 For the high-risk OB sessions, appointments should be evenly scheduled in time slots 

except the first slot. More appointments should be scheduled in the first slot. 

 For the GYN sessions, more appointments for Established GYN service should be 

scheduled in early time slots, and appointments for New GYN should be evenly 

scheduled. The reason is that scheduling visits with lower-variation service times could 

reduce patient waiting time. 
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Table 3.12: Heuristic optimal scheduling templates for Case 1 

 Sessions 1 and 2 Session 3 Session 4 Session 5 Session 6 

 Optimal Scheduling Templates 

Slot Index 

New Low 

Risk OB 

Follow Up 

Low Risk 

OB 

Follow Up 

High Risk 

OB 

Follow Up 

High Risk 

OB 

New 

GYN 

MAU 

GYN 

Established 

GYN 

Results 

GYN 

New 

GYN 

MAU 

GYN 

Established 

GYN 

Results 

GYN 

1 - - 2 2 1 - - 1 - - 2 - 

2 - 1 1 1 - - - - - - 1 1 

3 1 - 1 1 - - 2 - 2 - - - 

4 - 1 1 2 - 2 1 - 1 - - - 

5 - 1 1 1 - - 1 - 1 - - - 

6 1 - 2 1 - - 1 - 1 - - - 

7 - - - 1 1 - 2 1 2 1 - - 

8 - 1 2 1 1 - 1 - 1 - - - 

9 - 1 1 1 1 - 1 - 1 - - - 

10 - 1 1 1 - - 1 - 1 - - - 

11 - 1 1 1 - - 2 - 2 - - - 

12 - 1 1 2 - - - - - - - - 

13 - 1 2 1 - - - 2 - 1 1 - 

14 - 1 1 2 - - - - - - 1 - 

15 - 1 - - - - - - - - - - 

16 - - - - - - - - - - - - 

Total appointments 2 11 17 18 4 2 12 4 12 2 5 1 

 Performance of Scheduling Template 
*
 

Patient waiting time 0.0 1.4727 2.1 4.8 7.9 

Provider idle time 376.0 323.2 314.0 314.9 313.9 

Provider overtime 0.0 0.0 0.0 0.0 0.1 

Weighted total cost 2820 2425.7 2357.1 2366.6 2362.5 

Max. waiting time 
*
 0.0033 0.2806 0.3111 0.6214 1.3211 

The performance of the scheduling template is evaluated in terms of total patient waiting time, total idle time of two physicians, total overtime of two physicians, 

the weighted total waiting cost, and the maximum of the average waiting time per slot. All these times are in minutes. 
*
 Max. waiting time represents the maximum of the average patient waiting time per slot.  
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Table 3.13: Heuristic optimal scheduling templates for Case 2 

 
Session 1 Session 2 

Sessions 

3 and 4 
Session 5 Session 6 

 Optimal Scheduling Templates 

Slot Index 

New 

Low 

Risk OB 

Follow Up 

Low Risk 

OB 

New 

Low 

Risk OB 

Follow Up 

Low Risk 

OB 

Follow Up 

High Risk 

OB 

New 

GYN 

MAU 

GYN 

Established 

GYN 

Results 

GYN 

New 

GYN 

MAU 

GYN 

Established 

GYN 

Results 

GYN 

1 - 2 - 2 3 1 - 2 1 3 - 2 - 

2 - 2 1 1 2 1 - 2 - 2 - 1 - 

3 1 1 - 1 2 2 1 1 - 1 - 1 - 

4 1 - - 2 2 - 1 1 - - - 1 1 

5 - 1 - 2 3 1 - 2 - 1 - 1 1 

6 1 - - 2 2 2 - 1 - 3 - 1 - 

7 - 1 - 2 2 - - 2 - 2 - - - 

8 - 1 - 3 3 1 - 1 1 3 - - - 

9 1 1 - 2 2 - - 1 1 1 - - - 

10 1 - - 2 3 2 - 1 - 2 - 1 - 

11 - 1 - 2 2 2 - - 1 1 - - - 

12 - 1 - 2 2 - 2 - - - 1 2 - 

13 1 1 1 1 2 - - 1 1 1 1 - - 

14 - 1 - 1 2 - - 1 1 - 1 1 1 

15 - 1 - 2 3 - - 3 - - 1 2 - 

16 - - - 2 - - - 1 - - - - - 

Total appointments 6 14 2 29 35 12 4 20 6 20 4 13 3 

 Performance of Scheduling Template 
*
 

Patient waiting time 1.9 6.3 64.1 94.0 114.8 

Provider idle time 274.6 272.9 157.8 160.4 158.2 

Provider overtime 0.0 0.1 2.1 1.2 1.1 

Weighted total cost 2061.8 2053.9 1271.8 1310.1 1314.5 

Max. waiting time 
*
 0.7211 1.2647 3.5762 4.2118 6.2966 

The performance of scheduling template is evaluated in terms of total patient waiting time, total idle time of two physicians, total overtime of two physicians, 

weighted total waiting cost, and maximum of the average waiting time per slot. All these times are in minutes. 
*
 Max. waiting time represents the maximum of the average patient waiting time per slot.  
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Table 3.14: Heuristic optimal scheduling templates for Case 3 
 Session 1 Session 2 Session 3 Session 4 Session 5 Session 6 

 Optimal Scheduling Templates 

Slot Index 

New 

Low 

Risk OB 

Follow 

Up Low 

Risk OB 

New 

Low 

Risk OB 

Follow 

Up Low 

Risk OB 

Follow Up 

High Risk 

OB 

Follow Up 

High Risk 

OB 

New 

GYN 

MAU 

GYN 

Established 

GYN 

Results 

GYN 

New 

GYN 

MAU 

GYN 

Established 

GYN 

Results 

GYN 

1 - 3 1 1 6 5 4 - 2 1 1 2 2 2 

2 - 3 - 1 2 4 2 1 2 - - - 4 - 

3 - 3 2 - 4 3 2 - 1 - 2 - 1 1 

4 - 3 - - 3 3 3 - 2 - - - 2 2 

5 1 3 - 2 3 3 1 - 2 - 1 - 2 - 

6 - 2 1 2 4 3 - 1 1 1 2 - 3 - 

7 - 3 - 2 3 4 2 - 1 - - 2 1 - 

8 - 3 1 1 3 3 3 - 1 - 2 1 1 - 

9 - 3 - 2 3 3 - - 1 2 - - 2 1 

10 - 3 2 - 3 3 2 - 2 - 2 - 2 - 

11 1 2 1 - 4 3 2 - 2 - 1 1 3 - 

12 - 2 - 1 2 3 4 - 1 - - 1 1 1 

13 - 3 1 1 4 3 2 - - - 2 - 1 1 

14 - 4 - 2 3 3 1 1 1 - - 1 1 - 

15 - 3 - 2 4 3 3 - - - 2 - 3 1 

16 - 2 - 2 2 3 1 - 1 - - 1 - 1 

Total appointments 2 45 9 19 53 52 32 3 20 4 15 9 29 10 

 Performance of Scheduling Template 
*
 

Patient waiting time 83.8  33.2  720.0 644.4   637.3    589.9  

Provider idle time 182.7  182.1  21.6 25.5   40.9    39.7  

Provider overtime 0.1  0.1  31.5 26.3   41.0    38.0  

Weighted total cost 1455.5  1400.4  1235.8 1130.8   1405.8    1315.0  

Max. waiting time 
**

 2.9102  4.2010  19.8888 15.9322   24.2974    18.3732  
*
  The performance of scheduling template is evaluated in terms of the total patient waiting time, the total idle time of two physicians, the total overtime of two 

physicians, the weighted total waiting cost, and the maximum of the average waiting time per slot. All these times are in minutes. 
**

 “Max. waiting time” represents the maximum of the average patient waiting time per slot.  



 

42 
 

Table 3.15: Scheduling template used in the studied women’s clinic 

 Wednesday morning 
Monday and 

Thursday morning 
Monday and Thursday afternoon 

 Optimal Scheduling Templates 

Slot Index 

New Low 

Risk OB 

Follow Up 

Low Risk 

OB 

Follow Up High Risk 

OB 

New 

GYN 

MAU 

GYN 

Established 

GYN 

Results 

GYN 

1 - - 2 2 - - - 

2 1 1 2 - - 2 - 

3 - - 2 1 1 - - 

4 1 1 - - - - - 

5 - - 4 1 1 - - 

6 1 1 3 - - 2 - 

7 - - 3 2 - - - 

8 - 2 4 - - - - 

9 - 2 3 1 1 - - 

10 - 2 3 - - 2 - 

11 - 2 4 - - 1 1 

12 - 2 3 2 - - - 

13 - 2 3 - - - - 

14 - - 4 - - 2 1 

15 - - - - - - - 

16 - - - - - - - 

Total appointments 3 15 40 9 3 9 2 

 Performance of Scheduling Template 
*
 

Patient waiting time 2.5 340.6 9.4 

Provider idle time 332.0 113.5 301.4 

Provider overtime 0.0 3.6 0.1 

Weighted total cost 2492.2 1232.6 2270.6 

Max. waiting time 
*
 0.39 16.2 0.95 

The performance of the scheduling template is evaluated in terms of total patient waiting time, total idle time of two 

physicians, total overtime of two physicians, weighted total waiting cost, and maximum of the average waiting 

time per slot. All these times are in minutes. 
*
 Max. waiting time represents the maximum of the average patient waiting time per slot.  

 

To justify the promising performance of heuristic optimal scheduling templates in Tables 

3.12 – 3.14, we present in Table 3.15 the scheduling template currently used in the studied 

women’s clinic and its performance estimate via Monte Carlo sampling. The weekly patient 

demand with the scheduling template used in the clinic is comparable to the weekly demand in 

Case 2. The comparison between results in Tables 3.13 and 3.15 shows that the worst 
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performance of the scheduling template in Case 2 is better than that of the currently used 

scheduling template in terms of each considered performance metric. This performance 

improvement attributes to a better balance of provider capacity utilization in the master 

scheduling template obtained by solving (P1) and a better assignment of appointments to time 

slots for each individual clinic session obtained by solving (P2). The comparison result supports 

the conclusion that a better balance of provider capacity utilization can help reduce the longest 

waiting time of individual patients, provider idle time and overtime over various clinic sessions.  

To further assess the quality of solutions found by the proposed GA-MC procedure, we 

construct two small-size instances of (P2) whose optimal solutions can be found in affordable 

time using exhaustive search. In the two instances (Instance I and Instance II), five and six 

follow-up high-risk OB appointments, respectively, need to be allocated into 16 equal-length 

time slots in a clinic session. In both instances, the weighting coefficients of 1, 12 and 18 are 

used for patient waiting time, provider idle time and overtime, respectively. Table 3.16 

summarizes the sizes of the solution spaces of the two instances, the smallest objective function 

values found, and the computational times when using exhaustive search and the proposed GA-

MC procedure. A sample size of 2000 is chosen to estimate the expected objective function 

values during exhaustive search, while the parameter values in Table 3.7 are used in the GA-MC 

procedure. The results in Table 3.16 demonstrate that the GA-MC procedure finds an identical 

solution as exhaustive search for each instance but in significantly shorter time. Furthermore, the 

computational time using the GA-MC procedure is hardly affected by the size of the solution 

space, whereas the computational time using exhaustive search increases linearly with the 

increase in the solution space size. This implies that the GA-MC procedure is very efficient, 

especially when solving large-size instances of (P2). 
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Table 3.16: Performance assessment of the proposed GA-MC procedure with two small-size instances 

 

Number of 

95% confidence interval of  

the objective function value 
Computational time

*
 

 feasible 

solutions 
GA-MC procedure Exhaustive search GA-MC procedure Exhaustive search 

Instance I 15504 5208±8 5208±8 31.7 minutes 10.8 hours 

Instance II 54264 5098±9 5098±9 32.1 minutes 38.4 hours 

* Each instance was solved separately by the GA-MC procedure and exhaustive search on an average personal 

computer. 
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4. APPOINTMENT SCHEDULING OPTIMIZATOIN FOR OPEN ACCESS 

SCHEDULING SYSTEM 

4.1. Problem Description and Formulation 

In this problem, we consider a primary care clinic admitting three types of patients, 

namely, patients with pre-booked appointments (Type 1), open access patients (Type 2), and 

walk-in patients (Type 3). The clinic has a fixed number of slots during each clinical day and 

reserves a portion of these slots for Type 2 and Type 3 patients. This is the only way to allow 

Type 2 and Type 3 patients to be admitted by this clinic, because the primary care clinics usually 

have sufficient demand of Type 1 patient to fill all the slots of a clinical day in the United States. 

Meanwhile, we assume that the clinic adopts double booking policy to mitigate the adverse 

effect of patient no-shows and short-notice cancellations. Hence, each slot during a clinic day 

can be single booked, or double booked for Type 1 patients, or reserved for a Type 2 or Type 3 

patient. This way, an appointment schedule will be formed. The objective of this problem is to 

find the optimal scheduling template, which minimizes the average cost per unit of patient 

accessibility during a clinical day. In this paper, the cost is measured as the weighted sum of total 

patient waiting time, provider idle time, and provider overtime, while the patient accessibility is 

evaluated based on the total number of Type 2 and Type 3 patients admitted. In the following, 

the three types of patients are described in detail. Also, the patient accessibility is measured by 

the total number of same-day appointment patients and work-in patient admissions. 

4.1.1. Type 1: patients with pre-booked appointments 

Type 1 patients are scheduled days/weeks/months before their appointment dates. The 

patients can arrive for appointments on time, cancel their appointments, or do not show up. If 

they arrive on time, the provider is expected to see them on the scheduled appointment times. If 

an appointment is cancelled, the slot will be re-opened for booking patients of other types 
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immediately after the cancellation. If Type 1 patients do not show up for their appointments, the 

slots will be provided to walk-in patients who are still in the clinic. It is assumed that both no-

shows and cancellations are independent of patients, e.g., whether a patient is a no-show or not 

does not influence the probability of no-show for another patient. Late arrivals are not considered 

as a special case since we assume that the patients are treated as walk-ins if they arrive late. 

4.1.2. Type 2: open access patients 

For any open access clinic, a certain number of slots are reserved for the patients calling 

for same-day appointments. If there are slots available at the time of requesting, the request will 

be accepted and the patient will be scheduled into one of the available slots based on his/her 

choice; otherwise, the request will be rejected. Similarly to Type 1 patients, Type 2 patients with 

same-day appointments can arrive on time, cancel their appointments, or do not show up for their 

appointments. However, it is assumed that Type 2 patients have lower no-show rate and 

cancellation rate, compared with Type 1 patients. It is worthwhile to note that the re-opened 

appointments are also available for Type 2 patients.  

4.1.3. Type 3: walk-in patients 

The walk-in patients generally visit clinic without appointments. For clinics that admit 

walk-in patients, the walk-in patients are usually put into the first available slot if there are any 

slots left at the time of their arrivals. Otherwise, the walk-in patients need to wait for the re-

opened slots in the clinic. It is reasonable to assume that walk-in patients will stay in the clinic 

for a while in order to get a re-opened slot. If any slot is re-opened, it will be given to the walk-in 

patient who has the longest waiting time in the clinic. In case there are no walk-in patients at the 

time of re-opening, this slot will be kept available for both Type 2 and Type 3 patients until the 

time past the starting time of this appointment slot. However, if a walk-in patient cannot obtain 

an appointment within a certain waiting period, he/she will leave the clinic. 



 

47 
 

4.1.4. Appointment scheduling template 

We represent the appointment scheduling template as a set of N numbers, where N equals 

the number of slots in a clinical day. For each slot in the scheduling template, we need to decide 

how many Type 1 patients (0, 1, or 2) need to be scheduled in it. If the number is 0 for a slot, the 

slot is reserved for Type 2 or Type 3 patients; if the number is 1, only one patient with regular 

appointment is scheduled; if the number is 2, this slot is double booked. Given an appointment 

schedule, the provider expects to see the patients at the beginning of their appointment times. No 

patients will be seen before their appointment times. However, if a provider sees a patient after 

his/her appointment time, the delay between the starting time to see the patient and the 

appointment time is considered as the patient waiting time, which is a portion of the clinical day 

cost. Another portion of the clinical day cost is the provider idle time, which is measured as the 

total time when the provider does not see patients during working hours. The last portion of the 

clinical day cost is the provider overtime, which is measured by the total time that the provider 

spends to see patients after working hours. Note that the walk-in patient waiting period for the 

re-opened slot is not taken into consideration of the clinical day cost. This is because walk-in 

patients usually expect a period of waiting and the clinic has no obligation to serve these patients. 

To better illustrate how the appointment schedule templates influence the average cost 

per unit of patient accessibility, a simple example is presented in Fig. 4.1. In the example, a 

clinic provides eight 30-minute appointment slots. The clinic opens at time 0, and the first 

appointment starts at time 30. The working hours of the provider are from time 30 to time 270. It 

can be seen from the figure that there are two different appointment templates, both of which 

have 4 patients pre-booked but in different slots. If all the patients arrive on time, and open 

access appointment requests and walk-in patients are coming at the same time under both 

scheduling templates, i.e., two open access requests occur at time 90 and 150, one walk-in 



 

48 
 

patient arrives at time 210. It is clear that using template 1, the clinic can admit all these three 

patients in the reserved slots (5, 6, 7 and 8). However, using template 2, only the open access 

appointment request at 90 minutes could be accepted. As a result, 3 reserved slots in template 2 

will be wasted. Apparently, in this example, template 2 generates more cost due to longer 

provider being idle, while it also admits less Type 2 and Type 3 patients.  

1 2 3 4 5 6 7 8

30 60 90 120 150 180 210 240

open access patient request

walk in patient arrival

Template 1

Single pre-booked slot

Available slot

1 2 3 4 5 6 7 8

30 60 90 120 150 180 210 240

Template 2

0

All patients are on time All patients are on time

2700 270

 

Fig. 4.1: A simple example showing the effect of scheduling template 

4.1.5. Formulation 

To formulate the problem, we introduce the notations in the following: 

Table 4.1: Indices and parameters 

Indices 

i  Appointment index 

j  Index of patient seen by a provider 

p  Type 2 patient index 
q  Type 3 patient index 

t , 't  Time index 

Parameters 

T  Length of an appointment 

T  Length of a clinical day 

t  Time unit in the system 

N  Number of slots in a clinical day 

R  Cancellation rate of Type 1 patients 

O  Cancellation rate of Type 2 patients 

R  No-show rate of Type 1 patients 

O  No-show rate of Type 2 patients 

  Arrival rate of Type 2 patient requests 

  Arrival rate of Type 3 patients  

OIW  ,,  
Cost coefficients of patient waiting time, provider idle time, and provider overtime, 

respectively 
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Table 4.2: Random variables and decision variables 

Random variables 

P  Total number of appointment requests by Type 2 patients  

Q  Total number of Type 3 patient arrivals 

)(tC R
i  Number of Type 1 patient cancellations of slot i  occurred between time t  and tt  . 

)(tCO
i  Number of Type 2 patient cancellations of slot i  occurred between time t  and tt   

)(tN R
i  Number of Type 1 patient no-shows of slot i  occurred between time t  and tt   

)(tN O
i  Number of Type 2 patient no-shows of slot i  occurred between time t  and tt   

)(trO  Total number of Type 2 appointment requests received between time t  and tt   

O

pt  Arrival time the 
thp appointment request by Type 2 patients, Pp ,2,1  

W

qt  Arrival time of the 
thq  walk-in patient, Qq ,2,1  

W

qW  Time that the 
thq  walk-in patient is willing to wait before he/she can get a same-day appointment in 

the clinic 

)(tW  Total number of walk-in patients waiting in the clinic at time t  

)(tW A
 Number of walk-in patient arrivals between time t  and tt   

)(tW T
 Total number of walk-in patient arrivals by time t  

)(tW L
 Number of walk-in patients left the clinic without seeing the provider between time t  and 1t  

D
jP  Consultation time of the 

thj  patient seen by the provider 

Decision variables 

iA  Number of pre-booked patients in slot i , Ni ,2,1  






otherwise ,0

 by timeslot   in the scheduled is 2 Type ofpatient  a if ,1
)(

ti
tA

th

O

i  






otherwise ,0

 by time 3 Type ofpatient  a  toassigned isslot    theif ,1
)(

ti
tA

th

W

i  

)(trO
i  

Number of Type 2 appointment requests accepted and scheduled in slot i  between time t  and 

tt   

)(trW
i  Number of walk-in patients accepted and assigned to slot i  between time t  and tt   





 


otherwise ,0

   and  mebetween tislot    theinto scheduled ispatient in - walk  theif ,1
)(

tttiq
ta

thth

iq  

A
jP  The appointment index of the 

thj  patient seen by the provider 

S
jP  Consultation starting time of the 

thj  patient seen by the provider 

E
jP  Consultation ending time of the 

thj  patient seen by the provider 

W
jP  Waiting time of the 

thj  patient seen by the provider 

 

Given the notation in Table 4.1 and Table 4.2, the assumption of independent no-shows 

implies that the number of Type 1 patient no-shows of the i
th

 slot follows a binomial distribution 
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with parameters iA  and R , i.e. ),(~)( Ri

Tt

R

i ABinomialtN 


. Similarly, Type 1 patient 

cancellations, and Type 2 patient no-shows and cancellations of the i
th

 slot also follow a binomial 

distribution, i.e., ),(~)( Ri

Tt

R

i ABinomialtC 


, ),)((~)( O

Tt

O

i

Tt

O

i trBinomialtN 


, and 

),)((~)( O

Tt

O

i

Tt

O

i trBinomialtC 


, respectively. On the other hand, the independent arrivals of 

Type 2 and Type 3 patient requests indicate that the inter-arrival time of both requests follow 

exponential distributions, i.e. )exp(~1 O

p

O

p tt 
 and )exp(~1 W

q

W

q tt 
. By applying the indices, 

parameters, random variables, and decision variables shown in Table 4.1 and Table 4.2, the 

problem can be formulated as follows: 

Min 

       

















N

i

W

i

O

i

E

JO

J

j

D

j

E

JI

J

j

W

jW TATATPPTPTPf
111

))()((},0max{)},0max{(          

(4.1) 

s.t. 

 TPPP A

j

S

j

W

j
  j                   (4.2) 

 




 




  otherwise ,

 if  , 11

LP

TPPP
P

A

j

A

j

E

j

E

jS

j   j ,                    (4.3)  

D
j

S
j

E
j PPP    j  ,                  (4.4)  

20  iA
  

i ,                   (4.5)  





Tt

R
i

R
ii tNtCA )]()([   

i ,                 (4.6)  

)()()( tNtCtA O
i

O
i

O
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0)( 
iTt

R
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0)( 
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The objective function 4.1 is to minimize the average cost per unit of patient accessibility. 

The total cost is weighted sum of patient waiting time, provider idle time, and provider overtime, 

while the total patient accessibility number is the total number of Type 2 and Type 3 patients 

admitted. Eq. 4.2 – Eq. 4.37 are the constraints. Specifically, constraints 4.2 – 4.4 are the 

definitions of patient waiting time, real appointment start time, and real appointment ending time; 

constraints 4.5 ensure that a slot can be pre-booked with at most 2 patients; constraints 4.6 – 4.7 

ensure that the number of no shows and cancellations cannot exceed the number of scheduled 

appointment; constraints 4.8 – 4.12 enforce the definition of cancellation and no-show; 

constraints 4.13 – 4.14 are the definition of )(tAO
i  and )(tAW

i ; constrains 4.15 – 4.17 enforce the 

relationship between )(tAO
i  and )(tAW

i ; constraints 4.18 – 4.20 enforce the condition of Type 2 

and Type 3 patient admission; constraint 4.21 comes from the definition of )(trO ; constraints 

4.22 – 4.24 enforce the relationships among )(tW , )(tW L , )(trW
i  and )(tW A ; constraints 4.25 – 

4.26 are the definition of )(tW L  and )(tW A ; constraints 4.27 indicate that the number of patient 

seen by the provider in slot i equals the number of patients scheduled slot i minus the number of 

no-shows and cancellations; constraints 4.28 is the definition of )(trO ; constraints 4.29 – 4.30 are 

the definition of )(taiq ; constraints 4.31 – 4.34 enforce the rules for walk-in patient admission, 

i.e., walk-in patients should be scheduled into the first available slots at the time of arrival, while 

the re-opened slots should be given to the walk-in patient with the longest waiting in the clinic; 

constraints 4.35 – 4.36 are the definitions of A
jP ,

O

pt  and 
W

qt , respectively. They generally specify 

the sequence of patients seen by the provider, the sequence of Type 2 patient request arrivals and 

the sequence of Type 3 patient request arrivals.  
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4.2. Solution Approach 

As indicated above, the solution to the model is the optimal scheduling template. Given 

an appointment schedule, the corresponding objective value (average cost per unit of patient 

accessibility) is determined by a complex stochastic process, which includes innumerous 

uncertainties, such as random service time, patient no shows, and appointment cancellations. 

Hence, it is challenging to develop an analytical solution, which establishes the relationship 

between a scheduling template and the corresponding objective value. However, the discrete 

event simulation (DES) can provide us with the benefit of mimicking the clinic process, once a 

scheduling template is given. Thus, it provides us the way to estimate the objective value for a 

given appointment schedule.  

On the other hand, the solution space increases exponentially with the number of the 

appointment slots in the template. Unfortunately, even a small clinic usually has a scheduling 

template of more than 10 appointment slots on a clinical day. This makes it impossible to run an 

exhausted search on the solution space with the objective value of each candidate solution 

determined by the discrete event simulation. To address this, the genetic algorithm (GA) can be 

adopted to efficiently guide the solution searching process.  

Based on the above understanding, we develop an approach combining discrete event 

simulation and genetic algorithm in this study. The framework of the DES-GA approach is 

illustrated in Fig. 4.2. The genetic algorithm is used to efficiently search the solution space, 

while the discrete event simulation is used to estimate the objective value, which is the average 

cost per unit of patient accessibility, for a given clinic scheduling template. The entire DES-GA 

procedure is coded in-house in Matlab
TM

 environment. In the following, the DES-GA approach 

is discussed in detail. 
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Fig. 4.2: Framework of the DES-GA approach 

 

4.2.1. Representation 

The candidate solution is represented as a chromosome, which is a string consisting of N 

integer numbers. The values of the integer numbers can only be 0, 1 or 2, which indicate the 

number of pre-booked Type 1 patients in the corresponding slot. Fig. 4.3 shows an example of 

the candidate solution, represented as a chromosome. In this example, an appointment 

scheduling template of 8 slots is represented as the chromosome. The 1
st
, 7

th
, and 8

th
 slots are 
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single pre-booked with Type 1 patients; the 3
rd

 and 6
th

 slot are double pre-booked with Type 1 

patients; the 2
nd

, 4
th

 and 5
th

 slots are reserved for Type 2 and Type 3 patients.  

1 0 2 0 0 2 1 1
 

Fig. 4.3: A chromosome example 

 

4.2.2. Initialization 

In initialization, the initial population of p chromosomes is generated, namely, x
(0)

(1), …, 

x
(0)

(p). To generate a chromosome that properly represents an appointment scheduling template, 

we randomly assign 0, 1, and 2 to the slots which together make up the chromosome. 

Furthermore, the parameters for the genetic algorithm are also initialized, which include pc, the 

subpopulation size for crossover, β, the point mutation probability, n1 and n2, the sample sizes of 

discrete event simulation, and gmax, the generation limit. Note that n1 is the small sample size 

used in simulation before the maximum generation is reached, which n2 is the large sample size 

used at the last generation for identifying the best solution.  

4.2.3. Evaluation of the solution candidates by discrete event simulation (DES) 

According to the approach for advancing the simulation clock, the discrete event 

simulation can be divided into two types, which are time-driven clock simulation and event-

driven simulation. The time-driven simulation advances the time by a fixed time increment, 

while the event-driven simulation uses the next event time to advance the simulation clock. The 

advantage of the event-driven simulation is that the inactive period between two closest events 

can be skipped and the causality is guaranteed in the simulation. In this paper, the event-driven 

simulation is programmed due to such benefits. A flowchart of the discrete event simulation is 

shown in Fig. 4.4.  
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Fig. 4.4: Simulation flowchart 

 

In the initialization procedure of simulation, Type 1 patients will be generated for a given 

schedule. The status of patients (on time, cancellation and no show) will be randomly assigned 

based on the given probability. Type 2 and Type 3 patients will also be created based on the 

given arrival rates. After this, an event list will be formed with all the events arranged in time 

ascending order. In the following we provide the details for the initialization procedure: 

1) Obtain iA  from the given appointment schedule and set 1p , 1q  and 1j   

2) Generate P , Q , O

pt , W

qt and W

qW .  

3) Create no-show and cancellation events for both Type 1 and Type 2 patients. 

4) Create the event list 

5) Set system clock to 0 

1. Set simulation clock=0 

2. Initialize the system status 

and all the statistics 

3. Initialize the event list 

1. Update simulation clock 

2. Update the system status and 

all the statistics 

3. Update the event list 

Output the report 

Initialization 

Procedure 

 
Main Program 

Event 

Program 

1. Find the next event 

2. Call event program 

Generate 

Report 

Event list 

empty? 

Yes 

No 
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In this study, the events on the event list are classified into 12 categories, including Type 

1 patient on time, cancellation, no show, starting consultation and ending consultation, Type 2 

patient request, on time, cancellation, no show, starting consultation and ending consultation, 

Type 3 patient arrival, left, admission, starting consultation and ending consultation. Note that 

the starting and ending consultations of Type 1, Type 2 and Type 3 patient belong to the same 

category. Each type of event would trigger the corresponding activities. To better illustrate how 

the event is processed in our discrete event simulation program, we provide the details of 

procedure for handling events from each category in the APPENDIX A.  

4.2.4. Selection, crossover and mutation operations 

Selection, crossover and mutation are the GA operators for generating offspring. The 

selection operator selects pc chromosomes for crossover operation from the population of current 

generation by using the roulette-wheel rule. The probability that a chromosome will be chosen is 

proportional to the fitness value of the chromosome. The fitness value of the chromosome is 

determined of its corresponding rank in the population, where all chromosomes are ranked in a 

descending order by their estimated expected objective function value from the simulation 

procedure. Given the rank of chromosome in the population, the corresponding fitness value is 

defined by Eq. (4.38), where p is the population size (Pohlheim, 2006). 

1

1
2)(






p

rank
rankfitness                                                                                                         (4.38) 

In the crossover operation, the selected pc chromosomes, which are also known as parents, 

are divided into pc/2 pairs, and a two-point crossover is executed on each pair to generate pc new 

chromosomes. After crossover, a mutation operator will be executed on the newly generated 

chromosomes and form the offspring. In the mutation operation, each number on the 

chromosome may change with probability β, also known as the mutation rate. Note that the 
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numbers constituting chromosome can only be 0, 1, or 2. Hence, if the mutation happens, the 

changed number cannot take the values other than 0, 1, or 2.  

4.2.5. Formation of new generation 

The new generation is formed by replacing the chromosomes in the current population 

with the newly generated offspring. To be specific, chromosomes in the current population are 

ranked by their fitness values in a descending order. Then the last pc chromosomes will be 

replaced by the pc offspring, i.e., the chromosomes with low fitness value in the current 

population will be replaced by the offspring. The surviving chromosomes from the current 

population and the offspring together constitute the population of a new generation.  

4.2.6. Identification of the best solution  

After the maximum generation is reached, the discrete event simulation procedure is run 

again to better estimate the expected objective values of all chromosomes in the final generation. 

Unlike the small sample size n1 used in the previous generations, the large sample size n2 will be 

applied for indentify the best solution in the final generation. Note that n2 is selected to ensure 

that the standard error on the expected objective value of each chromosome is small enough to 

realize statistically significant separations among the chromosomes, while n1 is chosen to 

balance the computation efficiency and the solution quality, since as the sample size n1 increases, 

the procedure is more computationally expensive but is likely to converge to better solutions.  

4.3. Case Study 

In this section, we report a case study to demonstrate how the proposed solution approach 

works in finding the heuristic optimal scheduling template for open access clinics that admit 

walk-in patients. The results of the case study are analyzed to identify the patterns of heuristic 

optimal scheduling templates. Furthermore, a sensitive analysis is conducted to study how clinic 

settings influence the optimal scheduling templates.  
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4.3.1. Experimental design  

In order to verify the effectiveness of our proposed solution approach, we design 9 

different scenarios for the case study. In each scenario, we consider a clinic with one provider 

offering sixteen 30-minute appointments per day. The total length of a clinic day is 480 minutes 

(8 hours). The parameters used in the case study are chosen based on the data collected in an 

outpatient clinic in a local hospital and the statistical data in the literature. In the following, we 

summarize the related literature, as well as the parameter choices in our case study: 

First of all, regarding the non-attendance rate of Type 1 patients (which include no-shows 

and cancellations), the literature report the following, 

 Johnson et al. (2007) indicate that the no-show rate vary from 3% to 42%, with an 

average of 17%. 

 George and Rubin (2003) report that the non-attendance rate (no-shows and cancellations) 

in U.S. primary care clinics range from 5% to 55%. 

 Al-Shammari (1992) and Hermoni et al. (1990) report non-attendance rates of 29.5% and 

36%, respectively. 

 Moore et al. (2001) suggest that no-shows and cancelled appointments combined amount 

31.1% of appointments. 

In the case study, we consider three levels of patient attendance rate for Type 1 patients, 

namely, high attendance rate (on-time arrival: 95%, no-show: 3%, cancellation: 2%), medium 

attendance rate (on-time arrival: 70%, no-show: 17%, cancellation: 13%), and low attendance 

rate (on time: 45%, no-show: 42%, cancellation: 13%). Note that in the case of medium 

attendance rate, we considered the mean non-attendance rate of 30%, which is the average of the 

lower bound (5%) and upper bound (55%) of the non-attendance rate in U.S. primary care clinics. 
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Secondly, regarding the non-attendance rate of Type 2 patients, the literature report the 

following, 

 Open access scheduling has the ability to reduce patient no-show rate as well as the 

cancellation rate, when compared with the traditional scheduling system (Affiliated 

Computer Services, 2003, Lee and Yih, 2010). 

 Kopach et al. (2007) provide an estimate of the no-show rate of open access patients, 

which is 50% less than that of the pre-booked patients. 

In the case study, we assume that both the no-show rate and cancellation rate of Type 2 

patients are 50% less than those of Type 1 patients. Based on this assumption, we also consider 

three levels of attendance rate for Type 2 patients, namely, high attendance rate (on-time: 97.5%, 

no-show: 1.5%, cancellation: 1%), medium attendance rate (on-time: 85%, no-show: 8.5%, 

cancellation: 6.5%), and low attendance rate (on-time: 72.5%, no-show: 21%, cancellation: 

6.5%). 

Thirdly, regarding the arrival rates of Type 2 and Type 3 patients, the literature reports 

the following, 

 LaGanga and Lawrence (2009) propose to model the mean arrival rates of open access 

requests and walk-in patients as some fraction of the clinic capacity (e.g., 50%) 

In the case study, the capacity of the clinic is assumed to be two patients per hour and we 

consider three levels of arrival rate for both Type 2 and Type 3 patients, namely, low arrival rate 

(1 per 2 hour, 25% capacity),  medium arrival rate (1 per hour, 50% capacity) and high arrival 

rate (2 per hour, 100% capacity). 

The cost coefficients are chosen based on the hourly wages of all occupation and primary 

providers in United States. According to the Bureaus of Labor Statistics (BLS, 2013), the 10th, 
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50th and 90th percentiles of national hourly wage in 2012 are $8.7, $16.71, and $41.74, 

respectively, over all U.S. industry sectors. The average hourly wage of Family and General 

Practitioners is $86.95 in 2012. In addition, by considering the compensation for providers to 

work overtime, the hourly wage for providers working overtime is assumed to be 1.5 times of the 

regular hourly wage. Thus, in the case study, three sets of the cost coefficients for patient waiting 

time, provider idle time, and provider overtime are considered. The three ratios are 1:10:15, 

1:5.2:7.8 and 1:2.1:3.1 corresponding to the 10th, 50th and 90th percentiles of national hourly 

wage, respectively.  

Other parameters need to be determined as well, which include consultation time 

distribution, cancellation time distribution and the time that a walk-in patient is willing to wait 

before he/she obtains a same-day appointment. The parameter values are obtained based on our 

observations by working with a local clinic. Also, the parameters for genetic algorithm, shown in 

Table 4.3, are selected through trial runs. 

Table 4.3: Parameters for the DES-GA approach  

Notation Description Value 

β Mutation probability 0.01 

gmax Iteration limit 150 

n1 Sample size for interior sampling 200 

n2 Sample size for the comparison of the last-generation chromosomes 1000 

p Population size  100 

pc Population size of subdivision for crossovers 50 

 

Based on the above discussion, we design 9 scenarios, namely Case 0 – Case 8, with 

Case 0 being the base case. In the base case, we generally adopt the moderate values for the 

parameters. To be specific, we consider medium attendance rates for both Type 1 patients (on-

time: 70%, no-show: 17%, cancellation: 13%) and Type 2 patients (on-time: 85%, no-show: 

8.5%, cancellation: 6.5%), and medium arrival rate (1 patient per hour on average) for both open 

access appointment requests and walk-in patients. Note that Type 2 and Type 3 patient arrivals 
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are modeled by the inter-arrival time. In the case of the medium arrival rate, the inter-arrival time 

(minutes) follows an exponential distribution with the rate of 1/60. In addition, the cost 

coefficients 1:5.2:7.8 are used in the model, which correspond to the 50th percentiles of national 

hourly wage as mentioned above. Other parameters in Case 0, such as cancellation time, 

consultation time, and “willing-to-wait time”, are chosen based on our observations in a local 

clinic. To be specific, the cancellation time distribution suggests that a patient may cancel 

appointment at any time before the scheduled appointment time with equal chance; the 

consultation time distribution shows that a provider could finish seeing a patient within 20-30 

minutes; the parameter “willing to wait” explains how long a walk-in patient is willing to wait 

before he/she can obtain a same-day appointment. In Case 0, the distribution of “willing to wait” 

suggests a patient is willing to wait 0-120 minutes in order to get a same-day appointment. All 

parameters for the base case are in shown in Table 4.4. 

Table 4.4: Model parameters for the base case 

Parameters Rate/Distribution Parameters Rate/Distribution 

On time rate 
Type 1 patient 70% Inter-arrival time of type2 

patient (in minutes) 
Exponential(1/60) 

Type 2 patient 85% 

No show rate 
Type 1 patient 17% Inter-arrival time of type3 

patient (in minutes) 
Exponential(1/60) 

Type 2 patient 8.5% 

Cancellation 

rate 

Type 1 patient 13% Willing-to-wait time of type 

3 patients (in minutes) 
Uniform(0,120) 

Type 2 patient 6.5% 

Cancellation 

time of i
th

 

appointment 

Type 1 patient 
Uniform(0,(i-1) T ) 

c1 1 

Type 2 patient c2 5.2 

Consultation time per 

appointment (in minutes) 
Uniform(20,30) c3 7.8 

 

As the base case (i.e., Case 0) represents the moderate situation, we develop 8 other cases 

in order to show the proposed model would work under various situations and how the parameter 

selection influences the optimal scheduling templates. Compared with the base case, each of the 
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other eight cases represents a certain extreme condition by changing only one or a few 

parameters from the base case.  

 Cases 1 & 2 represent the situations of high attendance rate and low attendance rate, 

respectively, by altering the on-time rate, no-show rate and cancellation rate, 

simultaneously.  

 Cases 3 & 4 represent the situations of high arrival rate and low arrival rate of Type 2 

patients, respectively, by altering the inter-arrival time distribution of Type 2 patients.  

 Cases 5 & 6 represent the situations of high arrival rate and low arrival rate of walk-in 

patients, respectively, by altering the inter-arrival time distribution of walk-in patients.  

 Cases 7 & 8 illustrate the situation of provider seeing low-income patients and high-

income patients, respectively, by altering the cost coefficient.   

The altered parameters for Cases 1-8 are shown in Table 4.5. Note that, in each case, 

except for the altered parameters, all the remaining parameters are the same as those in the base 

case. For example, in Case 8, the cost coefficients are changed to 1:2.1:3.1, which correspond to 

the 90
th

 percentile of national hourly wage. However, all other parameters remain the same as 

Case 0.  

4.3.2. Case study results 

The proposed solution approach is used to find the best heuristic scheduling template for 

each case presented in Section 5.1. The DES-GA procedure is run on a personal computer with 

an Intel 2.67GHz i5 dual-core processor and 2.9GB RAM. It takes 4.5 hours to find the heuristic 

optimal scheduling templates for all 9 cases using one CPU core, and thus the average 

computation time for one case is 30 minutes. The best scheduling templates found for the nine 
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cases are shown in Table 4.6, and the descriptive performance statistics of each scheduling 

template are also presented.  

Table 4.5: Parameter adjustments for Cases 1-8 compared with Case 0 

Case number Parameter Rate/Distribution 

Case 1 

(high attendance rate) 

On time rate 
Type 1 patient  95% 

Type 2 patient 97.5% 

No show 

rate 

Type 1 patient  3% 

Type 2 patient 1.5% 

Cancellation 

rate 

Type 1 patient  2% 

Type 2 patient 1% 

Case 2 

(low attendance rate) 

On time rate 
Type 1 patient  45% 

Type 2 patient 72.5% 

No show 

rate 

Type 1 patient  42% 

Type 2 patient 21% 

Cancellation 

rate 

Type 1 patient  13% 

Type 2 patient 6.5% 

Case 3 (high requesting rate 

from type 2 patient) 

Inter-arrival time of type2 

patient/min 
Exponential(2/60) 

Case 4 (low requesting rate 

from type 2 patient) 

Inter-arrival time of type2 

patient/min 
Exponential(1/120) 

Case 5 (high requesting rate 

from type 3 patient) 

Inter-arrival time of type3 

patient / min 
Exponential(2/60) 

Case 6 (low requesting rate 

from type 3 patient) 

Inter-arrival time of type3 

patient / min 
Exponential(1/120) 

Case 7 (low-income patients) 
c2 10 

c3 15 

Case 8 (high-income patients) 
c2 2.1 

c3 3.1 

 

The heuristic optimal scheduling templates in Table 4.6 show that for each case, a portion 

of slots are reserved for Type 2 and Type 3 patients (i.e., open access and walk-ins) in order to 

achieve the best objective value. Furthermore, it is also shown that early appointment slots in a 

day should be scheduled with Type 1 patients, while the late appointment slots should be 

reserved for Type 2 and Type 3 patients. Table 4.6 indicates that the 1
st
 slot is pre-booked with 

Type 1 patient in all cases, while the last 7 slots are always reserved for Type 2 and Type 3 

patients. This is because early reservations are more likely to be wasted, since appointment 

requests from Type 2 and Type 3 patients may not arrive during the early reservation times. 
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However, the late reservations for Type 2 and Type 3 patients could possibly accommodate the 

appointment requests, as long as the patients arrive before the starting time of these slots.  

Table 4.6: Best scheduling templates found for Cases 0 –8 

slot index 
Case 

0 

Case 

1 

Case 

2 

Case 

3 

Case 

4 

Case 

5 

Case 

6 

Case 

7 

Case 

8 

1 2 2 2 2 2 2 2 2 2 

2 2 1 2 1 1 0 1 2 1 

3 1 1 2 2 2 2 2 2 1 

4 2 1 0 1 2 0 2 1 1 

5 1 1 2 0 1 0 1 0 2 

6 0 0 0 0 0 0 0 2 0 

7 0 2 2 0 1 0 1 0 0 

8 0 0 2 2 1 0 2 2 0 

9 2 0 0 0 2 2 2 0 0 

10 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 

15 0 0 0 0 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 

# of reserved appt. 10 10 10 11 8 13 8 10 11 

# of double booking 4 2 6 3 4 3 5 5 2 

# of single booking 2 4 0 2 4 0 3 2 3 

 

Meanwhile, it is clear that the heuristic optimal scheduling templates in Table 4.6 are 

different among the nine cases. For instance, Cases 0, 1, and 2 have a medium patient attendance 

rate, high patient attendance rate and low patient attendance rate, respectively. The heuristic 

optimal scheduling templates of the three cases have the same number of slots reserved for Type 

2 and Type 3 patients. However, the numbers of double booking are different: the least double 

booking slots in Case 1 versus the most double booking slots in Case 2. This observation 

validates that the double booking policy can be used as a solution to mitigating the adverse effect 

of low attendance rate (i.e., high patient no-show and cancellation rates). However, the 

attendance rate will not affect the number of slots reserved for Type 2 and Type 3 patients.  

Similarly, analysis can be conducted regarding how Type 2 patient request arrival rate, 

Type 3 patient request arrival rate, and cost coefficients affect the number of slot reservations 
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and double booking in a scheduling template. The results are shown in Figs. 4.5 and 4.6. Fig. 4.5 

indicates that the number of slots reserved for Type 2 and Type 3 patients decreases with the 

decrease of Type 2 and Type 3 request rates, while the attendance level and cost coefficient 

ratios do not significantly affect the number of reserved appointments. On the other hand, Fig. 

4.6 shows the number of double booking slots is negative linearly correlated with the patient 

attendance level and positively correlated with the cost coefficient ratio. When the attendance 

rate is high, double booking is likely to result in enormous patient waiting. Thus, less double 

booking is preferred in this situation. When the attendance rate is low, double booking can 

increase the probability that an appointment slot will not be wasted due to patient no-shows and 

cancellations. In addition, high Type 3 patient arrival rates might mitigate the adverse effect of 

no-shows and cancellations, since Type 3 patients usually wait in clinic for a while for the slots 

re-opened due to cancellations or no-shows. As such, high Type 3 patient arrival rates could 

reduce the number of double booking slots. At last, the cost coefficient ratio reflects the relative 

difference of time values between the patients and the provider. When the ratio is lower, the 

patients’ time is relatively more valuable. Therefore, they are less willing to accept longer 

waiting time caused by double booking. On the other hand, a high cost coefficient ratio indicates 

the gap of time values between the patients and the provider is large. This will lead to more 

double booking, because the patients’ time is less valuable and it is better to make more double 

booking to avoid provider idle rather than patient waiting.  

In Table 4.7, the objective value measures the average cost per unit of patient 

accessibility. The term “cost” indicates the total cost, which is the weighted summation of patient 

waiting time, provider idle time and provider, under the corresponding heuristic optimal 

scheduling template.  
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Fig. 4.5: Number of reserved appointment slots with respect to parameter selections 

 

 

Fig. 4.6: Number of double booking slots with respect to parameter selections 
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The term “same-day appt & walk-in” represents the number of Type 2 and Type 3 

patients seen during a clinic day. “Patient waiting”, “provider idle” and “provider overtime” 

record the total patient waiting time, provider idle time and provider overtime, respectively. In 

this paper, each heuristic optimal scheduling template is simulated 1,000 times to estimate its 

performance. The mean of performance metrics as well as the standard deviation of mean are 

presented in Table 4.7. The results reveal a few interesting phenomena which are commonly seen 

in practice.  For instance, Case 1 and Case 0 have the same clinic settings except for the 

attendance rate, where it is higher for Case 1. The statistics indicate that Case 1 has a lower 

objective value compared with Case 0, which supports the general concept that high attendance 

rates are preferred in clinics. This concept can also be revealed by comparing Case 2 with Case 0, 

where the attendance rate is higher for Case 0. For another instance, Case 3 and Case 4 have the 

same clinic settings except for the requesting rate (demand) from Type 2 patients, where the 

requesting rate is higher for Case 3. As a result, Case 3 has a lower objective value than Case 4. 

This supports the general concept that high same-day appointment demand is preferred for open 

access clinics. A similar observation can be made by comparing Case 5 and Case 6, where Case 

5 has a lower objective value and a higher arrival rate of Type 3 patients (demand) compared 

with Case 6.  In addition, Case 7 and Case 8 also have the same clinic settings except for the cost 

coefficient ratio, where Case 7 represents the scenario of low-income patients by using a high 

ratio. The statistics indicate that Case 7 have a higher objective value compared with Case 8. The 

implication is that high-income patients are preferred by the clinics.  
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Table 4.7: Summary of descriptive performance statistics for Cases 0- 8 

  
Case0 Case1 Case2 Case3 Case4 Case5 Case6 Case7 Case8 

Objective 
mean 59.8 42.1 83.9 48.7 76.1 37.2 91.2 94.4 30.2 

std of mean 0.94 0.57 1.27 0.63 1.35 0.47 1.56 1.40 0.49 

Cost 
mean 540.2 393.8 723.5 501.3 570.0 458.0 618.0 866.3 286.2 

std of mean 5.60 3.58 6.92 4.77 5.81 4.27 6.61 10.16 2.58 

Same-day appt 

& walk-in 

mean 9.49 9.67 9.14 10.60 8.00 12.61 7.29 9.51 10.14 

std of mean 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 

Patient 

waiting/min 

mean 172.7 143.4 84.5 116.5 177.2 129.8 219.5 284.8 65.8 

std of mean 4.98 1.80 3.67 3.20 4.74 3.64 5.80 7.77 1.89 

Provider 

idle/min  

mean 69.8 48.1 122.5 73.8 74.6 62.7 73.9 54.1 105.0 

std of mean 1.40 0.88 1.66 1.24 1.43 1.17 1.56 1.29 1.45 

Provider 

overtime/min 

mean 0.55 0.02 0.29 0.14 0.65 0.24 1.85 2.69 0.00 

std of mean 0.10 0.01 0.07 0.04 0.11 0.05 0.20 0.26 0.00 
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5. CONCLUSION 

In this study, we implement the approach of integrated simulation and genetic algorithm 

to develop optimal scheduling template for both “traditional” and “open access” scheduling 

systems with unique features that have not been well addressed in literature. This effort indicates 

that this approach is a promising and powerful solution methodology for complex stochastic 

programing problems. The potential of commercializing this approach for appointment 

scheduling optimization cannot be underestimated.  

Under the setting of traditional scheduling system, we propose a two-phase approach for 

designing a weekly scheduling template in an outpatient specialty clinic providing services of 

multiple types. These service types are clustered into several categories so that no substantial 

changeover time is incurred between any services in the same category. In the first phase of our 

approach, an MILP model is formulated to assign service categories to clinic sessions and 

determine the optimal number of appointments reserved for each service type in each clinic 

session. In the second phase, an SMIP is formulated to allocate appointments into equal-length 

time slots in each clinic session. To solve the SMIP, we develop a genetic algorithm embedded 

with Monte Carlo sampling. In our future research, we are interested in developing exact SMIP 

solution methods and sophisticated simulation optimization approaches with controllable 

performance guarantee. 

For the design of outpatient scheduling template, it is likely to achieve higher-quality 

solutions when integrating the MILP model and the two-stage SMIP model. However, such an 

integrated model would lead to a stochastic optimization problem of much larger scale and the 

solution approach would limit the interactions with clinic managers in real-world practice. In our 
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future research, we will investigate whether such an integrated model could find weekly 

scheduling templates that significantly improve the performance metrics. 

In the case study, we test the proposed two-phase approach for scenarios with different 

levels of patient demand and different weighting coefficients on patient waiting time, provider 

idle time, and provider overtime. Our results demonstrate that the proposed two-phase approach 

can efficiently identify promising weekly scheduling templates for an outpatient clinic on an 

average personal computer. The best weekly scheduling templates found can significantly reduce 

the total patient waiting time while maintaining the provider idle time. Meanwhile, our results 

suggest that the sampling based solutions to the SIMP in Phase II become more sensitive to the 

weighting coefficients as the provider workload increases. Moreover, our results suggest that the 

patterns of the best weekly scheduling templates found are different between cases with low and 

high levels of workload. This observation implies that in order to improve the performance of 

their appointment scheduling systems, individual clinics need to design scheduling templates 

based on their service processing characteristics. The two-phase approach proposed in this study 

provides a quantitative tool for outpatient specialty clinics to design better scheduling templates. 

In the future, we plan to test our approach in other outpatient clinics around the nation to 

investigate the regional differences and the differences among medical specialties. 

Under the setting of “open access” scheduling system, we propose a DES-GA approach 

to find the heuristic optimal scheduling templates for open access clinics that admit walk-in 

patients. The costs of patient waiting time, provider idle time, and provider overtime are adopted 

to form the cost function. The patient accessibility is measured by the number of same-day 

appointment patients and work-in patient admissions. The objective is to minimize the cost per 

unit of patient accessibility. The DES-GA approach employs discrete event simulation to 
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compare the solution candidates, while using genetic algorithm to guide the solution searching. 

Hence, it inherits the advantages of both simulation and genetic algorithm, which is capable of 

finding the heurist optimal solution among the huge solution space for complex non-linear 

programming problem. By using this approach, not only the optimal number/percentage of 

reserved appointments can be found, but also the optimal allocation of these reserved slots can be 

obtained.  

To demonstrate the effectiveness of this approach, a case study is conducted. The model 

parameters are collected from literature or hospital observations, and the heuristic optimal 

scheduling templates are determined for a variety of cases that adjust model parameters within 

reasonable ranges. In the case study, it is demonstrated that the heuristic optimal scheduling 

templates could change under different clinic settings. The level of demands for same-day 

appointments and walk-in admissions significantly impact the number of slot reservations in the 

heuristic optimal scheduling templates, while the number of double booking slots are greatly 

affected by patient attendance rate, cost coefficient as well as the level of demands for walk-in 

admissions. Our results also reveal that the first and last pre-booked slots should be double-

booked.  
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APPENDIX. 12 CATEGORIES OF EVENTS IN SIMULATION 

Category 1: Type 1 patient on time  

1. update system time to the event time  

2. check provider availability 

if provider is free, then  

     mark the corresponding provider as seized 

insert a corresponding “Type 1 patient starting consultation” event into the event list, with event 

time=system time 

else  

put the patient in waiting list 

re-order the waiting list by patient appointment time in ascending order 

      end 

3. remove this Type 1 patient on time event from the event list 

4. re-order the event list by event time in ascending order. 

 

 

Category 2: Type 1 patient cancellation  

1. update system time to the event time  

2. check the availability of the slot after the cancellation 

        if available, then 

 check walk-in patient queue 

   if empty, then 

         mark the slot as open for scheduling 

     else  

        drop the walk-in patient with the longest waiting time from walk-in patient queue 

           delete the corresponding “Type 3 patient left” event from the event list 

insert a corresponding “Type 3 patient on time” event into the event list, with event time = 

scheduled appointment starting time of the cancelled appointment 

 end 

        else 

            do nothing 

        end 

3. remove this Type 1 patient cancellation event from the event list 

4. re-order the event list by event time in ascending order. 

 

Category 3: Type 1 patient no show  

1. update system time to the event time  

2. check the availability of the slot after the no show 

        if available, then 

 check walk-in patient queue 

   if empty, then 

         do nothing 

     else  
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        drop the walk-in patient with the longest waiting time from walk-in patient queue 

           delete the corresponding “Type 3 patient left” event from the event list 

insert a corresponding “Type 3 patient on time” event into the event list, with event time = 

scheduled appointment starting time of the cancelled appointment 

 end 

        else 

            do nothing 

        end 

3. remove this Type 1 patient no show event from the event list 

4. re-order the event list by event time in ascending order. 

 

 

Category 4: Type 2 patient request  

1. update system time to the event time  

2. check the number of available appointment 

        if zero, then 

 do nothing  

        else 

            randomly select an available slot for the patient 

            randomly generate patient status (on time, cancellation or no show) 

            if on time, then 

                  insert a corresponding “Type 2 patient on time” event into the event list, with event time = 

start time of the selected slots 

            else if cancellation, then  

                 randomly generate a “cancellation time” 

                 insert a corresponding “Type 2 patient cancellation” event into the event list, with event 

time = “cancellation time” 

            else  

                 insert a corresponding “Type 2 patient no show” event into the event list, with event time = 

start time of the selected slots 

            end 

        end 

3. 1 kk  

4. remove this “Type 2 patient request” event from the event list 

5. re-order the event list by event time in ascending order. 

 

Category 5: Type 2 patient on time  

1. update system time to the event time  

2. check provider availability 

if provider is free, then  

     mark the corresponding provider as seized 

insert a corresponding “Type 2 patient starting consultation” event into the event list, with event 

time=system time 
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else  

put the patient in waiting list 

re-order the waiting list by patient appointment time in ascending order 

      end 

3. remove this Type 2 patient on time event from the event list 

4. re-order the event list by event time in ascending order. 

 

 

Category 6: Type 2 patient cancellation  

1. update system time to the event time  

2. check walk-in patient queue 

   if empty, then 

         mark the slot as open for scheduling 

     else  

       drop the walk-in patient with the longest waiting time from walk-in patient queue 

         delete the corresponding “Type 3 patient left” event from the event list 

 insert a corresponding “Type 3 patient on time” event into the event list, with event time = 

                   scheduled appointment starting time of the cancelled appointment 

 end 

3. remove this Type 1 patient cancellation event from the event list 

4. re-order the event list by event time in ascending order. 

 

Category 7: Type 2 patient no show  

1. update system time to the event time  

2. check walk-in patient queue 

   if empty, then 

         do nothing 

     else  

        drop the walk-in patient with the longest waiting time from walk-in patient queue 

          delete the corresponding “Type 3 patient left” event from the event list 

insert a corresponding “Type 3 patient on time” event into the event list, with event time = 

scheduled appointment starting time of the cancelled appointment 

 end 

3. remove this Type 1 patient no show event from the event list 

4. re-order the event list by event time in ascending order. 

 

 

Category 8: Type 3 patient arrival  

1. update system time to the event time  

2. check the number of available appointment 

        if zero, then 

 put patient in the walk-in patient queue 

insert a corresponding “Type 3 patient left” event to the event list, with event time = W

l

W

l tW   

        else 
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            select the 1
st
 available slot for the patient 

            insert a corresponding “Type 3 patient admission” event into the event list, with event time = 

start time of the selected slots 

        end 

3. 1 ll  

4. remove this “Type 3 patient arrival” event from the event list 

5. re-order the event list by event time in ascending order 

 

Category 9: Type 3 patient left  

1. update system time to the event time  

2. drop the patient from the walk-in patient queue 

3. remove this “Type 3 patient left” event from the event list 

4. re-order the event list by event time in ascending order. 

 

Category 10: Type 3 patient admission  

1. update system time to the event time  

2. check provider availability 

if provider is free, then  

    mark the corresponding provider as seized 

insert a corresponding “Type 3 patient starting consultation” event into the event list, with event 

          time=system time 

else  

put the patient in waiting list 

re-order the waiting list by patient appointment time in ascending order 

      end 

3. remove this Type 3 patient admission event from the event list 

4. re-order the event list by event time in ascending order. 

 
Category 11: patient starting consultation 

1. update system time to the event time  

2.mark the corresponding provider as seized 

3. get the appointment information of the corresponding event and assign it to A

jP  

4. assign current system time to S

jP  

5. random generate service time 
D

jP according to the distribution. 

6. assign 
D

j

S

j PP  to 
E

jP  

7. insert a corresponding “patient ending service” event into the event list, with event time = E

jP   

8. j=j+1 

9. remove this “patient starting consultation” event from the event list 

10. re-order the event list by event time in ascending order.  

 

Category 12: patient ending consultation 

1. update system time to the event time  

2. mark the corresponding provider as free 
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3.check patient waiting list 

If empty, then 

 do nothing 

else  

drop the patient ranked 1
st
 from the patient waiting list 

insert a corresponding “patient starting service” event into the event list, with event 

time=system time  

      end 

5. remove this event “patient ending service” event list 

6. re-order the event list by event time in ascending order. 

 

 

 


