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ABSTRACT 

The extensive development of power networks has increased the requirements for robust, 

reliable and secure monitoring and control techniques based on the concept of Wide Area 

Measurement System (WAMS). Phasor Measurement Units (PMUs) are key elements in WAMS 

based operations of power systems. Most existing algorithms consider the problem of optimal 

PMU placement where the main objective is to ensure observability. They consider cost and 

observability of buses ignoring the reliability aspect of both WAMS and PMUs. Given the twin 

and conflicting objectives of cost and reliability, this dissertation aims to model and solve a 

multi-objective optimization formulation that maintains full system observability with minimum 

cost while exceeding a pre-specified level of reliability of observability. No unique solution 

exists for these conflicting objectives, hence the model finds the best tradeoffs. Given that the 

reliability-based PMU placement model is Non-deterministic Polynomial time hard (NP-hard), 

the mathematical model can only address small problems. This research accomplishes the 

following: (a) modeling and solving the multi-objective PMU placement model for IEEE 

standard test systems and its observability, and (b) developing heuristic algorithms to increase 

the scalability of the model and solve large problems. In short, early consideration of the 

reliability of observability in the PMU placement problem provides a balanced approach which 

increases the reliability of the power system overall and reduces the cost of reliability. The 

findings are helpful to show and understand the effectiveness of the proposed models. However 

the increased cost associated with the increased reliability would be negligible when considering 

cost of blackouts to commerce, industry, and society as a whole. 



iv 

 

ACKNOWLEDGEMENTS 

I would like to express the deepest appreciation to my advisor, Professor Kambiz 

Farahmand, for his support and advice during my PhD study. I am grateful to him for his 

valuable guidance and encouragement. 

I would like to thank Professor Kendall Nygard for his support, guidance and 

encouragement during my research. I also would like to thank Dr. Jin Shi, and Dr. Jun Zhang, for 

their comments and careful evaluation of the dissertation. I am grateful to all of them for having 

patiently gone through the dissertation and the constructive suggestions which greatly improved 

its presentation.  

I would like to place on record, my sincere and heartfelt thanks to Professor Alagar 

Rangan who always provided me with encouragement and support in several ways. I am deeply 

indebted to him who always stood by me in times of need.    

I am what I am today because of my father and words fail me in expressing my love and 

gratitude to him. I express my gratefulness to my lovely wife for her never-ending love, support, 

understanding, and patience. I owe them everything in life and it is natural that I dedicate this 

dissertation to them. 

Finally, I would like to thank all my instructors, graduate students, friends and office staff 

of my department, who played a constructive role in my academics. They also made my life as a 

member of the NDSU family, a very interesting and memorable experience. 



v 

 

DEDICATION 

  
 

 

 

 

 

 

 

To my Father & Wife 



vi 

 

TABLE OF CONTENTS 

ABSTRACT ................................................................................................................................... iii 

ACKNOWLEDGEMENTS ........................................................................................................... iv 

DEDICATION ................................................................................................................................ v 

LIST OF TABLES ....................................................................................................................... viii 

LIST OF FIGURES ........................................................................................................................ x 

ABBREVIATIONS ....................................................................................................................... xi 

NOMENCLATURE ..................................................................................................................... xii 

CHAPTER 1. INTRODUCTION ................................................................................................... 1 

1.1. Reliability-Based PMU Placement ...................................................................................... 5 

1.2. Increasing the Scalability of the Model................................................................................ 7 

CHAPTER 2. LITERATURE REVIEW ........................................................................................ 9 

2.1. Background .......................................................................................................................... 9 

2.2. Literature Review ............................................................................................................... 14 

CHAPTER 3. MODELING .......................................................................................................... 24 

3.1. System Reliability Estimation ............................................................................................ 25 

3.2. Reliability-Based Placement .............................................................................................. 28 

3.2.1. Reliability-Based Placement Model ............................................................................ 30 

3.2.2. Discussions and Computational Results ...................................................................... 39 

3.3. Reliability-Based Multi-objective Placement .................................................................... 46 

3.3.1. Reliability-Based Multi-Objective Model ................................................................... 47 

3.3.2. Discussions and Computational Results ...................................................................... 48 

3.4. Goal Programming Approach for PMU Placement ........................................................... 52 

3.4.1. Goal Programming Model ........................................................................................... 53 



vii 

 

3.4.2. Discussions and Computational Results ...................................................................... 55 

3.5. Max Covering Approach for PMU Placement ................................................................... 65 

3.5.1. Max Covering Model ................................................................................................... 66 

3.5.2. Discussions and Computational Results ...................................................................... 68 

3.6. Genetic Algorithm Approach for PMU Placement ............................................................ 82 

3.6.1. Genetic Algorithm Model ............................................................................................ 82 

3.6.2. Discussions and Computational Results ...................................................................... 88 

CHAPTER 4. DISSCUSSIONS ................................................................................................... 94 

CHAPTER 5. CONCLUSIONS ................................................................................................. 100 

REFERENCES ........................................................................................................................... 103 



viii 

 

LIST OF TABLES 

Table                                                                                                                                           Page 

3.1. IEEE 14 bus system analysis. ................................................................................................ 40 

3.2. IEEE 30 bus system analysis. ................................................................................................ 40 

3.3. IEEE 57 bus system analysis. ................................................................................................ 41 

3.4. IEEE 118 bus system analysis. .............................................................................................. 41 

3.5. Alternative PMU locations with corresponding reliabilities for IEEE 30 bus system. ......... 45 

3.6. Placement results with proposed formulation. ....................................................................... 48 

3.7. PMU locations for placement results. .................................................................................... 49 

3.8. Fraction of outage cases that preserve full system observability. .......................................... 50 

3.9. Comparison of placement results. .......................................................................................... 51 

3.10. Comparison of placement results considering system reliability of observability. ............. 52 

3.11. GPB results for IEEE 14 test system. .................................................................................. 56 

3.12. GPB results for IEEE 30 test system. .................................................................................. 56 

3.13. GPB results for IEEE 57 test system. .................................................................................. 57 

3.14. GPB results for IEEE 118 test system. ................................................................................ 57 

3.15. GPB results for IEEE 14 considering zero-injection buses. ................................................ 58 

3.16. GPB results for IEEE 30 considering zero-injection buses. ................................................ 59 

3.17. GPB results for IEEE 57 considering zero-injection buses. ................................................ 59 

3.18. GPB results for IEEE 118 considering zero-injection buses. .............................................. 60 

3.19. PMU locations for GPB results with achieved minimum reliability of observability of  
90%. ..................................................................................................................................... 61 

3.20. Fraction of PMU outage cases that preserve full system observability for GPB approach. 62 

3.21. Fraction of Line outage cases that preserve full system observability for GPB approach. . 62 



ix 

 

3.22. Comparison of placement results. ........................................................................................ 64 

3.23. Comparison of placement results considering system reliability of observability. ............. 64 

3.24. Max covering placement results for IEEE 14 test system. .................................................. 68 

3.25. Max covering placement results for IEEE 30 test system. .................................................. 69 

3.26. Max covering placement results for IEEE 57 test system. .................................................. 70 

3.27. Max covering placement results for IEEE 118 test system. ................................................ 71 

3.28. Max covering placement results for IEEE 2383 test system. .............................................. 72 

3.29. Max covering placement results for IEEE14 incorporating zero-injection buses. .............. 75 

3.30. Max covering placement results for IEEE30 incorporating zero-injection buses. .............. 75 

3.31. Max covering placement results for IEEE57 incorporating zero-injection buses. .............. 76 

3.32. Max covering placement results for IEEE118 incorporating zero-injection buses. ............ 77 

3.33. Comparison of placement results with traditional PMU placement results. ........................ 80 

3.34. Comparison of placement results with RBP with R=0.90. .................................................. 81 

3.35. Comparison of placement results with RBP with same number of PMUs. ......................... 81 

3.36. Genetic algorithm parameters. ............................................................................................. 85 

3.37. Genetic algorithm placement results for PMU reliability of 0.95. ...................................... 89 

3.38. Genetic algorithm placement results for PMU reliability of 0.99. ...................................... 89 

3.39. Genetic algorithm placement results for PMU reliability of 0.99833. ................................ 90 

3.40. Genetic algorithm locations for PMU reliability of 0.95. .................................................... 91 

3.41. Genetic algorithm locations for PMU reliability of 0.99. .................................................... 91 

3.42. Genetic algorithm locations for PMU reliability of 0.99833. .............................................. 92 

4.1. Comparison of results for PMU reliability of 0.99. ............................................................... 94 

4.2. Comparison of placement prices for IEEE systems. .............................................................. 98 



x 

 

LIST OF FIGURES 

Figure                Page 

1.1. Structure of WAMS (Liu et al., 2009). .................................................................................... 4 

2.1. PMU block diagram. .............................................................................................................. 11 

2.2. Block diagram of the series system reliability. ...................................................................... 13 

2.3. Block diagram of the parallel system reliability. ................................................................... 14 

3.1. IEEE 14 bus system. .............................................................................................................. 27 

3.2. Pseudo-code for the two stage optimization model. .............................................................. 34 

3.3. Number of PMU based on r. .................................................................................................. 42 

3.4. Number of PMU based on r for bus 2383 system. ................................................................. 43 

3.5. Comparison of coverage between IEEE 14 and 30 bus systems. .......................................... 73 

3.6. Comparison of coverage between IEEE 57 and 118 bus systems. ........................................ 74 

3.7. Coverage for IEEE 2383 bus system. .................................................................................... 74 

3.8. Comparison of coverage between IEEE 14 and 30 bus systems. .......................................... 78 

3.9. Comparison of coverage between IEEE 57 and 118 bus systems. ........................................ 78 

3.10. Evolution of the quality of the incumbent solution provided by the GA for individual  
PMU reliability of 95% for IEEE 118 bus system. .............................................................. 93 

4.1. Effect of PMU reliability on the different IEEE standard test systems. ................................ 96 

4.2. Effect of the placement approach on the price of IEEE 14 & 30 test systems. ..................... 99 

4.3. Effect of the placement approach on the price of IEEE 57 & 118 test systems. ................... 99 

 

 

 

 



xi 

 

ABBREVIATIONS 

BUS………...Binary Unit System 

GA………….Genetic Algorithm  

GPB………...Goal Programming Based  

GPS…………Global Positioning System 

IEEE………...Institute of Electrical and Electronics Engineers 

NP-hard……..Non-deterministic Polynomial-time hard  

OPP…………Optimal PMU Placement  

PDC…………Phasor Data Concentrator  

PMUs……….Phasor Measurement Units 

RBP………...Reliability-Based Placement 

SCADA…….Supervisory Control and Data Acquisition 

WAMS……..Wide Area Measurement System 

 

 

 

 

 

 

 

 



xii 

 

NOMENCLATURE 

Ai,j…………...binary connection matrix of the system  

b…………….redundancy level for each bus 

c ……………total number of PMUs resulting from minimization problem  

C …………...number of PMUs available  

fi ………........total number PMUs of covering i th bus 

I ij …………...current phasor of line i - j  

i(t) ………….sinusoidal current function 

Imax ………….amplitude of current 

n …………… number of the buses in the network 

N(i) …………set of PMUs placed on buses    that are adjacent to  i th bus. 

P [B] ………..probability of failure of all PMUs observing i th bus  

pj…………….reliability of each PMU 

qj ……………probability of failure of j th PMU 

qj…………….probability of failure of j th PMU and 

R ……………system wide level of reliability of observability for whole network  

Rmin …………minimum reliability of observability requirement for whole network  

r……………..minimum reliability of observability requirement of each bus required to meet 
 system wide  reliability level 

r i…………….reliability of observability level for i th bus 

Iθ  …………..phase of current  

Vθ …………...phase of voltage  

∑ Ai,j xj ………total number PMUs of covering i th bus 

Ri(t) ………….reliability of the i th item 

Vj …………….voltage phasor of ith bus 

v(t) …………...sinusoidal voltage function 



xiii 

 

Vmax   ……….amplitude of voltage 

w ………...…angular frequency of voltage and current 

Xk …………...kth sample of the input signal taken over one period 

X …………….the fundamental frequency component of the Discrete Fourier transform 

xi …………….the binary decision variable vector, which will acquire value one if a PMU is  
 installed on the i th   bus and zero otherwise 

Zij ……………impedance of line i – j 



 

1 

CHAPTER 1. INTRODUCTION 

Recent research in electric power systems is focusing on novel monitoring and control 

techniques based on the concept of Wide Area Measurement System (WAMS) (Phadke and de 

Moraes, 2008 and Liu et al., 2009).  The WAMS based applications have significant potential in 

improving power system security, operation, control, and modeling. Phasor Measurement Units 

(PMUs) which provide time synchronized measurements of voltage and current phasors are key 

elements of WAMS (Phadke, 1993). The synchronization in PMUs is achieved via signals 

available from the Global Positioning System (GPS) (Phadke, 2008). This ability of a PMU to 

calculate synchronized phasors will improve the performance of state estimators. This feature 

makes PMUs one of the most important measurement devices in power system protection and 

control (Novosel et al., 2008 and Dua et al., 2008).  

Phasor Data Concentrators (PDCs) gather the measured data by PMUs and time stamps 

the data before sending it to the monitoring and control center in WAMS. This data is arranged 

chronologically using the time stamp. A bus is an electrical conductor, which serves as a 

conducting pathway for continuous connection of the loads and the sources of electric power 

between different parts of a power network. Transmission between buses is made through lines 

in the power network. A bus is called observable when the voltage phasor at that bus is 

estimated, and the power system is called observable if the measurement sets and their 

distributions are sufficient for solving the current state. By placing a PMU1 at a bus in a power 

system, one obtains: (a) the voltage phasor (magnitude and phase) at that bus; and (b) current 

phasors in all branches (i.e. lines) that are incident on that bus.  

                                                           

 

1 This dissertation only considers multi-channel PMUs. 



 

2 

Power system is called observable if the measurement sets and their distribution are 

sufficient for solving the current state of the power system. Availability of the voltage phasor of 

a bus and the entire incident line currents, the voltage phasor at adjacent buses can be calculated 

using the Ohm’s law:  

    ijijij IZVV −=             (1) 

where Zij is the impedance of line i - j. Therefore, a PMU placed at a bus makes that bus and all 

buses adjacent to it observable (Dongjie et al., 2004 and Denegri et al., 2002). Hence providing a 

precise model for the power systems, the addition of the PMU to the strategic buses makes those 

buses and all of their neighboring buses observable (Dongjie et al., 2004 and Denegri et al., 

2002). This implies that a network can be made observable with a lesser number of PMUs than 

the number of buses. As a result, the objective of the PMU placement is to obtain system wide 

observability by using the minimum number of PMUs. The use of PMUs at each bus will lead to 

a simplified linear state estimator (Phadke and de Moraes, 2008). Several algorithms have thus 

been proposed for optimal placement of PMUs to ensure observability. A graph theoretic 

procedure to find a minimal (not necessarily the minimum) PMU placement was reported in 

(Baldwin et al., 1993). An integer linear programming (ILP) approach to solve this problem was 

proposed by Xu and Abur (2004), and subsequently extended by Gou (2008) to address the cases 

of redundancy, partial observability and pre-existing conventional measurements. An exhaustive 

binary search algorithm for PMU placement is presented in Chakrabarti and Kyriakides (2008) . 

The optimal PMU placement problem is shown to be Non-deterministic Polynomial time hard 

(NP-complete) (Brueni and Heath, 2005). A systematic ILP approach for phasing of PMU 

placement considering failure of a single PMU and modeling zero-injection buses was developed 
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by Dua et al.( 2008). Kavasseri and Srinivasan (2010) considered reducing the number of PMUs 

needed for system observability through judicious placement of the power-flow measurements. 

Given a placement that is optimal with respect to cost, it is both of interest and 

importance to compute how reliable the arrangement is. It is intuitively clear that protecting 

against loss of observability under failures, such as transmission line faults, bus faults, outages, 

or metering failures, will require a level of redundancy with additional PMUs. In the foreseeable 

future, the power system operations will be increasingly depend on PMUs. It is thus natural to 

consider and assess the reliability of a group of networked PMUs when it is a part of WAMS, 

especially when several critical functions are entrusted to PMUs.  

The reliability of WAMS can be determined through the identification of its components 

such as PMUs, communication systems, and the central computation unit  then by estimating 

reliability of all of these components as a group. The overall WAMS reliability can be increased 

by using a backup of its subsystems and/or components (Marek et al., 2010). WAMS structure  

normally consists of PMUs installed in different locations around the power grid connected to 

PDC through a regional network. These groups of PMUs and PDC are connected to the 

Monitoring Center of WAMS through a Synchronous Digital Hierarchy (SDH) wide area 

communication network (Liu et al., 2009). Figure 1.1 shows the structure of WAMS. 

Li (2005) established a repairable reliability model of the power system based on a series 

parallel structure model and the Markov state-space method.  Liu et al. (2009) proposed 

reliability modeling of WAMS using the Markov process.  
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Figure 1.1. Structure of WAMS (Liu et al., 2009). 

 

A reliability estimation model for a single PMU was proposed in a paper by Yang et al. 

(2009). The model develops a series-parallel structure for a single PMU viewed as a collection of 

seven subcomponents and identifies the most critical component within the structure of a PMU. 

However, the literature on analyzing the reliability of a network of PMUs placed to 

achieve a certain objective, say observability, is scant. The existing PMU placement models 

consider cost and observability of buses ignoring the reliability aspect of both WAMS and 

PMUs. For example, optimal placements of PMUs that are robust against line (branch) or bus 

(node) failures have been proposed (Aminifar et al., 2010). However, such placement solutions 

call for additional or redundant PMUs to cover any bus or line failure. The existing PMU 

placement models require redundancy factor as an input to solve the placement problem.  

However, the redundancy factor is provided by the experts based on purely subjective 

assessment and, hence, there exists no means to assess or estimate the redundancy factor 

objectively. With traditional placement models, it is difficult to quantify the additional benefits 
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from a reliability standpoint. On the other hand, reliability-based models essentially focus on 

achieving a desired reliability of any given system while satisfying other requirements such as 

cost and observability.  Reliability-based models have been used widely in system design 

optimization to improve system functionality and reliability. However, reliability models have 

not been exploited in existing optimal PMU placement based algorithms. 

This motivates the consideration of the optimal placement problem from a reliability 

standpoint. In the proposed multi-objective models, the reliability of an individual PMU and the 

desired system level reliability are factored as inputs into the model. The redundancy factors 

(which call for additional PMUs) are thus dictated by these inputs subject to the system topology. 

The solution thus achieves complete observability while meeting or exceeding a specified level 

of reliability. In fact the reliability-based PMU placement model is NP-hard, therefore the 

mathematical model cannot address large scale problems by exact solution approaches.  Hence to 

increase the scalability of the model, we developed a genetic algorithm (GA) approach based on 

binary encoding for multi-objective placement of PMUs in power network.  

1.1. Reliability-Based PMU Placement 

The placement of a PMU at any given bus allows direct measurement of the voltage 

phasor at that bus and computation of the voltage phasors at neighboring buses. Further, the 

reliability of power system observability depends on the reliability of PMUs covering each bus. 

A bus is said to be observable if the voltage phasor at that bus is known. Therefore, the power 

system will be fully observable if all buses are covered with one or more PMUs. On the other 

hand, if none of the PMUs were redundant, the failure of any one PMU would result in the 

complete loss of system observability, which could result in system failure. This understanding 
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allows us to consider that from the reliability point of view, buses are connected in series 

structure. Further, in case of redundancy, each bus is covered by more than one PMU and these 

redundant PMUs will be treated as parallel connected.  Thus a parallel structure model can be 

used to estimate the reliability of bus observability. Hence we defined the reliability of 

observability of the system as (Khiabani et al., 2012): 

∏
=

∑
=−=

n

i

xA
j

n

j
jjiqR

1

)1( 1
,            (2) 

where qj represents the probability of failure of j th PMU, xi is the binary decision variable vector, 

which will acquire value one if a PMU is installed on the i th bus and zero otherwise, Ai,j is the 

binary connection matrix of the system which can be directly obtained by transforming the bus 

admittance matrix’s entries into binary form and ∑ Ai,j xj is the total number of PMUs covering i th 

bus. We formulated the optimal PMU placement problem as a two- stage optimization model 

from a reliability standpoint where redundancy levels for all buses in the system are the same 

(Khiabani et al., 2012a). However, maintaining separate objectives of minimizing the cost and 

maximizing the reliability results in infeasible solutions in some cases. This is because the 

formulation in (Khiabani et al., 2012a) overlooks combinations which could result in better 

solutions. Given the twin and conflicting objectives of cost and reliability, we presented a multi-

objective optimization formulation that maintains full system observability with minimum cost 

while exceeding a pre-specified level of reliability in (Khiabani et al., 2012b). This is achieved in 

the formulation by relaxing the assumption of identical redundancy levels (bus reliabilities(r)) at 

all buses in the system. The resulting formulation clearly dictates the placement of additional 

PMUs to achieve a specified level of overall reliability. Later we developed a goal programming 

multi-objective optimization formulation consisting of two goals (Khiabani et al., 2013a). The 
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first goal is to maintain full system observability while aiming for a pre-specified level of 

reliability.  The second goal is to minimize cost by placing less PMUs. Also zero-injection buses 

were incorporated into the model.  

The previously discussed multi-objective optimization (Khiabani et al., 2012b) and goal 

programming multi-objective optimization (Khiabani et al., 2013a) models, consider  minimizing 

the number of PMUs to reach full system observability maintaining a pre-specified level of 

reliability both relaxing the existence of a limited number of PMUs. However in practice the 

resources could be limited because of the high price of purchasing and installing the PMUs. In 

this case, the decision maker will decide to allocate the limited recourses either to the strategic 

locations or to cover the maximum possible buses. Therefore we considered the PMU placement 

problem from a maximum covering standpoint (Khiabani et al., 2013b). In the proposed model, 

the number of existing PMUs is factored as inputs into the model. The maximum coverage thus 

dictated by this input is subject to the system topology. 

1.2. Increasing the Scalability of the Model 

The reliability-based PMU placement and multi-objective models are able to solve small 

size problems such as IEEE 14, 30 and 57. However, larger problems could be tackled but not in 

a timely manner. As the problem size increases, the complexity of the system increases 

exponentially rendering the problem mathematically unsolvable. As noted earlier, the PMU 

placement model is NP-hard and cannot be solved using exact algorithm for large size problems. 

Further the addition of the second objective, which is maximization of reliability of 

observability, makes the NP-complete optimal PMU problem even more complex and renders it 

unsolvable for large scale problems using exact solution approaches. Therefore, a genetic 
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algorithm approach based on binary encoding for multi-objective optimal PMU placement 

problem consisting of two main goals to tackle large scale problems (Khiabani et al., 2013c) was 

developed. 
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CHAPTER 2. LITERATURE REVIEW 

2.1. Background 

The sources of  electrical power  are usually connected by a network or a transmission 

system that distributes the power to the various load centers. A power network usually consists 

of generators, transformers, loads, circuit breakers, and buses. Buses or nodes are the points of 

connection in the power network (Bergen and Vittal, 2000). In other words, a bus is an electrical 

conductor that serves as a conducting pathway for continuous connection of the loads and the 

sources of electric power between different parts of a power network.  There are two basic types 

of buses. PQ buses are nodes that have both constant real and reactive injections that represent 

load buses without voltage control, and PU buses   are connected to a generator represent 

generation buses with voltage control, which have constant voltage value. Transmission between 

buses is made through lines or branches in the power network. Each branch has two terminal 

buses which may be shared by one or more other branches in the network.   

In order to estimate the system state, power system state estimator uses a set of available 

measurements such as voltage phasor, magnitude and phase, and current phasor. Power system is 

called observable if the measurement sets and their distribution are sufficient for solving the 

current state of the power system. Given a set of measurements and their locations, the power 

network observability analysis will determine if a unique estimate can be found for the system 

state (Abur and Exposito, 2004). A bus is said to be observable if the voltage phasor at that bus is 

known and the power system is said to be observable when all the buses are observable.  

In steady state most power system voltages and currents are (at least approximately) 

sinusoidal of time with the same frequency. Phasor is complex number that contains the 
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amplitude and phase angle in formation of a sinusoidal function. Its concept can be developed 

relating the exponential function to the trigonometric functions using Euler’s identity. 

θθθ SinjCose j ±=±              (3) 

 Assuming that the Voltage and Current both are sinusoidal waveform represented by a 

unique complex number known as phasor with angular frequency of w. Considering a sinusoidal 

signal for Voltage and Current we have: 

)()( max VwtCosVtv θ+=             (4) 

)()( max IwtCosIti θ+=             (5) 

where Vmax and Imax are real numbers called the amplitude, and Vθ and Iθ are called the phase of 

voltage and current, respectively. Now using (3) the phasor representation is as follows: 

)(
22

)( maxmax θθθ SinjCos
V

e
V

tv j +==                      (6) 

)(
22

)( maxmax θθθ SinjCos
I

e
I

ti j +==                        (7) 

 In power system the PMU is a device capable of measuring the synchronized voltage and 

current phasor. Synchronization is obtained by same time sampling of all measurements using 

common reference signal provided by a GPS. PMU separates the fundamental frequency 

component and calculates its phasor representation applying the Discret Fourier Transform. If 

Xk’s are the N samples of the input signal taken over one period, then the phasor representation is 

given by (Phadke and Thorp, 2008): 
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∑
=

−

=
N

k

N

jk

keX
N

X
1

22 π

             (8) 

where X is the fundamental frequency component of the Discrete Fourier Transform.  

Phasor calculations demand accuracy of more than one millisecond. GPS is capable of 

providing a one microsecond second signal at any location around the world. Figure 2.1 depicts 

the block diagram of the PMU . The anti-aliasing filter, produces a phase delay from the input 

waveform frequency depending upon the filter characteristics. The phase locked oscillator 

converts the one pulse per second signal provided by a GPS receiver into a sequence high speed 

timing pulses used in the waveform sampling. The phasor microprocessor executes the Discrete 

Fourier Transform phasor calculations. For the final stepthe phasor is time stamped and uploaded 

to a collection device known as a data concentrator (IEEE Working Group H-8, 1998). 

 

 

 

 

  

 

Figure 2.1. PMU block diagram. 
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The injected currents at the nodes of an interconnected network are related to the voltage 

at the nodes via admittance representation which finds wide spread application in determining 

the network solution and forms an integral part of most modern-day power analysis. The network 

may then be solved to find the node voltages. Bus admittance representation is obtained in terms 

of primitive representation, which characterizes the electrical behavior of the various network 

components (Bergen and Vittal, 2000). The binary connection matrix A of system can be directly 

obtained by transforming the bus admittance matrix’s entries into binary form defined by: 



 =

=
otherwise

jtoadjacentisiorjieitherif
A ji 0

1
,          (9) 

Building the A matrix for IEEE 14 bus system yields: 
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          (10) 

System reliability is the probability that a system will perform its intended function for a 

given period of time under pre-specified operating conditions. The series system, parallel system, 

and K-out-of-N system are most used basic system configurations. In a series system 

configuration, the failure of any one item results in the failure of the system. In other words, for 
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the functional success of a series system, all of its items (blocks) must successfully function 

during the intended mission time of the system. Figure 2.2 depicts the reliability block diagram 

of a series system consisting of N blocks.  The reliability of the series system with N items is the 

probability that all N units succeed during its intended mission time t. Therefore, for the set of N 

independent units the system reliability Rs(t) is calculated as follows: 

∏
=

=
N

i
is tRtR

1

)()(          (11) 

where Ri(t) represent the reliability of the i th item. 

 

Figure 2.2. Block diagram of the series system reliability. 

 

A reliability block diagram is a parallel configuration in which the failure of all units 

results in a system failure. Therefore success of only one unit would be sufficient to guarantee 

the success of the system. Figure 2.3 depicts the reliability block diagram of a parallel system 

consisting of N blocks. For the set of N independent units the system reliability Rs(t) is calculated 

as follows: 
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Figure 2.3. Block diagram of the parallel system reliability. 

 

K-out-of-N system is a more general structure of series and parallel systems, in which if 

any combination of K units out of N independent units works, it guarantees the success of the 

system. By assuming that all units are identical, the binomial distribution can easily represent the 

probability that the system functions (Modarres et al., 2010): 
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2.2. Literature Review 

The PMU placement models in the literature mostly are related to cost minimization 

maintaining partial or full system observability. The synchronization in PMUs is obtained via 

signals available from the GPS (Phadke and Thorp, 2008).  This characteristic makes PMU an 

important aid for several applications such as state estimation, protection, and control of power 

systems in future (Novosel et al., 2008 and Dua et al., 2008). Kamwa and Grondin (2002) 

proposed two numerical algorithms to minimize the overall sensor response of the signals 

2 

N 
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captured via PMUs while minimizing the correlation among sensor outputs and to minimize the 

redundant information provided by multiple sensors. A PMU placed on a bus yields the voltage 

phasor at that bus and current phasors of all branches that are incident on the bus. Therefore, the 

presence of a PMU on a bus makes that particular bus and all of its immediate neighboring buses 

observable (Dongjie et al., 2004 and Denegri et al., 2002). Baldwin et al. (1993) reported a graph 

theoretic procedure to find a minimal (not necessarily the minimum) PMU placement based on 

topological observability theory. They used a modified bisecting search and simulated annealing 

based method to find the measurement set. In Marin et al. (2003) a genetic algorithm was 

developed to solve the optimal PMUs placement problem maintaining the network observability. 

Milosevic and Begovic (2003) proposed a non-dominated sorting genetic algorithm for the PMU 

placement problem. To reduce the initial number of PMU’s candidate locations, they considered 

the conflicting objectives of minimization of the number of PMUs and maximization of the 

measurement redundancy by estimating the individual optimal solution for these conflicting 

objectives using the graph theoretical procedure and a simple genetic algorithm. Then using the 

non-dominated genetic algorithm they searched for the best tradeoff. An integer linear 

programming (ILP) approach to solve the minimal PMU placement problem based on network 

observability was proposed in Xu and Abur (2004).  To further reduce the number of PMUs, this 

approach was extendable to include the pre-existing conventional measurements in the system. 

Gou (2008) extended the ILP approach to address the cases of redundancy, partial observability, 

and pre-existing conventional measurements. Also cases with and without zero injection and 

conventional measurements were considered. Nuqui and Phadke (2005) presented techniques for 

identifying placement sites for PMUs in power systems based on complete and incomplete 

observability. They introduced the novel concept of depth of unobservability and explained its 

impact on the number of PMU placements. Initially, they make use of spanning trees of the 
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power system graph and a tree search technique to find the optimal locations of PMUs. Then 

extended the modeling to recognize limitations in the availability of communication facilities 

around the network and pose the constrained placement problem within the framework of 

Simulated Annealing. Brueni and Heath (2005) show that the optimal PMU placement problem 

to be NP-complete. They introduced a new simpler definition of graph observability and several 

complexity results for PMU placement problem proving that minimum PMU placement requires 

no more than 1/3 of the nodes in a connected graph of at least 3 nodes. Peng et al. (2006) 

presented an optimal PMU placement method for full network observability using Tabu search 

algorithm based on the linearized power system state estimator model and using augmented 

incidence matrix. A transmission network fault location observability with minimal PMU 

placement was presented in Lien et al. (2006). The scheme combines the fault-location algorithm 

and the fault-side selector. Chawasak et al. (2007) proposed a new method for an optimal PMU 

placement problem considering both single measurement loss and single-branch outage in order 

to obtain a reliable measurement system.  An exhaustive binary search algorithm for PMU 

placement is presented in Chakrabarti and Kyriakides (2008).  They considered single branch 

outages and proposed a strategy to select the solution, in case of more than one solution, 

resulting in the most preferred pattern of measurement redundancy. Dua et al. (2008) developed 

a systematic ILP approach for phasing of PMU placement considering failure of single PMU and 

modeling zero-injection buses. They showed that zero-injection constraints can also be modeled 

as linear constraints in an ILP framework. Nabil and Hanafy (2009) proposed a unified approach 

for the optimal PMU locations integrating the impact of both existing conventional flow 

measurements and the possibility of single or multiple PMU loss into the decision strategy of the 

optimal PMU allocation. Chakrabarti et al. (2010) investigated three different methods of 

inclusion of PMU current phasor measurements in a power system state estimator. They 
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presented a comprehensive formulation of a hybrid state estimator incorporating conventional 

flow and PMU measurements. Aminifar et al. (2009) investigated the application of immunity 

genetic algorithm for the optimal PMU placement problem.  Sodhi et al. (2011) proposed a 

multi-criteria decision-making scheme for placing PMUs in multiple stages over a given time 

period that ensures complete power system observability even under a PMU or a branch outage. 

Wang et al. (2012) developed an improved particle swarm optimization approach for optimal 

PMU placement problem to avoid long-run time and trapping local optimal. The point of genetic 

algorithm and simulated annealing process is involved in basic particle swarm optimization to 

develop the improved particle swarm optimization model.  

Aminifar et al. (2010) presented contingency-constrained model such as measurement 

losses and line outages for the optimal placement of PMUs in electric power networks. In their 

proposed approach, optimal placement of PMUs are robust against line (branch) or bus (node) 

failures. Peng et al. (2010) developed a multi-objective optimal model of PMU placement using 

a non-dominated sorting differential evolution algorithm. Hurtgen and Maun (2010) used iterated 

local search metaheuristic for optimal PMU placement problem. Pai et al. (2010) presented 

algorithms to solve the restricted type of power domination on grids and provide approximation 

algorithms to deal with the fault-tolerant measurement placement when the number of faulty 

PMUs does not exceed three. Emami and Abur (2010) extended the PMU placement problem to 

those PMUs which are designed to monitor a single branch by measuring the voltage and current 

phasors at one end of the monitored branch, and also addressed the reliability of the resulting 

measurement design by considering PMUs, line, and transformer outages. Kavasseri and 

Srinivasan (2010) considered reducing the number of PMUs needed for system observability 

through judicious placement of the power-flow measurements. Vanfretti et al. (2011) presented a 
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new approach for PMU based state estimation incorporating phase bias correction. In Korres 

(2011) an efficient integer-arithmetic algorithm for observability analysis of systems with both 

conventional measurements and PMUs is presented. Jamuna and Swarup (2011) presented an 

optimal placement of PMU and supervisory control and data acquisition (SCADA) 

measurements for security constrained state estimation using integer programming and a genetic 

algorithm approach. Hajian et al. (2011) developed a modified binary particle swarm 

optimization algorithm for optimal PMU placement problem maintaining network observability.  

They started with an optimal placement set to achieve full network observability during no 

shortages then modified it in order to consider contingency conditions such as PMU loss or a 

single transmission line outage maintaining network observability. Ahmadi et al. (2011) studied 

a binary swarm optimization based methodology for the optimal PMU placement problem 

considering measurement redundancy. They used a topology-based algorithm in order to ensure 

full network observability. The results were compared with some newly reported methods and 

showed that the whole system can be observable with PMU installation on less than 25% of the 

system buses. Sodhi et al. (2010) presented a two-stage optimal PMU placement method for 

complete topological and numerical observability of power system. The first stage seeks for the 

minimum number of the PMUs needed to make the power system topologically observable, and 

the second stage checks if the solution resulted from first stage leads to full ranked measurement 

Jacobean. Jiang et al. (2012) proposed a two-stage fault-location optimization model along with 

defining a matching degree index for large transmission networks which use PMUs. Cepeda et 

al. (2012) presented a probabilistic approach to addresses the problem of PMU placement with 

the aim of achieving high observability of system dynamics that are associated to transient and 

other short-term phenomena, in order to perform reliable real-time dynamic vulnerability 

assessment.Koutsoukis et al. (2013) introduced a recursive Tabu search approach for optimal 
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PMU placement problem. Unlike most existing metaheuristic optimal PMU placement  

approaches, which are based on topological observability methods, they proposed  a numerical 

approach to check the network observability. Shahraeini et al. (2012) formulated a genetic 

algorithm approach for co-optimal simultaneous meters placement and their required 

communication infrastructure for state estimation in WAMS. 

Aminifar et al. (2011) presented a probabilistic multistage PMU placement in electric 

power systems using mixed-integer programming approach. The problem constraint was a 

predefined probability of observability associated with each bus. Kavasseri and Sirnivasan 

(2011) considered the problem of joint optimal PMU and conventional power flow 

measurements for fault observability of power systems. The placement results require fewer 

PMUs for fault observability compared to systems with fixed locations of conventional power 

flow measurements. Mahaei and Tarafdar Hagh (2012) presented a new method for minimizing 

the number of PMUs for the optimal PMU placement problem in power systems considering 

existing conventional measurements. The method provides suitable constraint for power systems 

with two adjacent injection measurements and constraints for considering the connection of two 

buses to each other and to an injection bus. This results in a reduction in the required number of 

PMUs maintaining the full system observability. Mahaei and Tarafdar Hagh (2012) compared 

the results to recently published papers, and they found that number of PMUs is equal or even 

decreased and the measurement redundancy increased. Uddin et al. (2013) formulated the PMU 

placement problem as an integer programming problem using a linear minimum mean squared 

error estimator as the state estimator. They looked for suboptimal algorithms and bounds on the 

optimal performance because of the prohibitively complexness of the placement of PMU’s in a 

large network. Anderson and Chakrabortty (2012) developed a graph-theoretic based minimum 
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cover algorithm for PMU placement problem for multi-area power system networks with the 

objective of identifying a dynamic equivalent model for the system. Wang et al. (2012) presented 

an optimal incremental PMU placement framework based on dynamic programming. Miljanic et 

al. (2013) developed the cellular genetic algorithm with an evolutional rule for PMU placement 

problem considering PMUs with different number of employed channels and communication 

constraints that may influence the optimal placement strategy.  They take into  account the 

robustness of a metering scheme and evaluated the ability of a metering scheme to maintain full 

observability even in case of contingencies such as single measurement or branch outage. An 

approach using topological charasteristics of the network was employed for reducing 

computational burden of the observability testing and for narrowing solution search space. 

Mosavi et al. (2012) presented an Ant Colony Optimization approach for optimal PMU 

placement problem using Global Positioning System. Huang and Wu (2013) presented a scalable 

solution for PMU placement problem under long-run data availabilities using Markov chains. 

Mahari and Seyedi (2013) developed a based on Binary Imperialistic Competition Algorithm 

method for optimal PMU placement in power systems considering different operating conditions. 

They considered both observability and maximum redundancy in the model. Venkateswaran and 

Kala (2012) presented a Differential Evolution algorithm based PMU placement problem 

considering the single PMU outage cases. Gao (2013) proposed a method incorporating both bus 

weight and voltage stability in order to further improve the accuracy and efficiency of PMU 

placement problem. Gomez and Rios (2013) developed a multistage optimal PMUs placement 

based on graph theory. The available budget, the power system expansion, redundancy in the 

PMU placement against the failure of a PMU or its communication links, user defined time 

constraints for PMU allocation, and the zero-injection effect has been taken account into the 

model. They also considered inter-area observability and intra-area observability criteria for 
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dynamic stability monitoring. Huang and Wu (2012) formulated a fault-tolerant PMU placement 

method. They employed particle swarm optimization algorithm to minimize the placement of 

additional PMUs without violating the required control reconfigurability. Abdelaziz et al. (2013) 

developed an observability assessment based on topological analysis for PMU placement 

problem for both normal operating conditions and single branch outages. Ketabi et al. (2012) 

formulated a multi-objective optimization model based on Pareto optimum method for optimal 

placement of PMUs in state estimation considering uncertainty. Tai et al. (2013) considered both 

static and dynamic state estimation for optimal PMU placement in power systems to minimize 

the state estimation error covariance. Miljanić et al. (2012) proposed a cellular genetic algorithm 

approach for optimal PMU placement considering  the availability of PMU measuring channels, 

and single measurement or branch outages. Jamuna et al. (2012) developed a multi-objective 

biogeography based optimization algorithm for PMU placement problem with two objectives,  

minimization of the number of PMUs and maximization of measurement redundancy. Kekatos et 

al. (2012) developed a convex relaxation approach for optimal PMU placement problem. A 

Multi-Stage simulated annealing algorithm for the joint placement of PMUs  with the existing 

conventional measurement units in the power system proposed in Gopakumar et al. (2013). 

Aminifar et al. (2013) proposed an analytic technique for optimal PMU placement problem  

considering both long-term economic aspects and existing technical issues. Azizi et al. (2012) 

developed an equivalent integer linear programming method for the exhaustive search-based 

PMU placement.  

Saha et al. (2012) presented a three stage optimal PMU placement method using network 

connectivity information. Gyllstrom et al. (2012) investigated the performance of a suitable 

greedy approximation algorithm for PMU placement and proved the NP-Completeness of 
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FullObserve, MaxObserve, FullObserve-XV, and MaxObserve-XV PMU placement problems. 

Xu et al. (2013) proposed a simplified version of chemical reaction optimization approach, a 

metaheuristic technique, for optimal PMU placement problem both with and without considering 

the zero-injection buses. A  PMU placement approach ensuring minimum number of channels 

associated with the given placement and considering both topological and numerical 

observability for complete observability of power system proposed in Gupta et al. (2012). A 

comprehensive literature review on  state of the art optimization methods on the optimal PMU 

placement problem and the solution methodologies are presented in Manousakis et al. (2012). A 

hybrid discrete particle swarm optimization technique for the solution of optimal placement of 

PMU in smart grids presented in Alinejad-Beromi et al. (2011). 

In the foreseeable future, the power system operations will be increasingly dependent on 

PMUs. It is thus natural to consider and assess the reliability of a group of networked PMUs 

when it is a part of a WAMS , especially when several critical functions are entrusted to PMUs.  

The reliability of WAMS systems can be determined through the identification of its components 

such as PMUs, communication systems, and the central computation unit and then by estimating 

reliability of each of these components. The overall WAMS reliability can be increased by using 

a backup of its subsystems and/or components Marek et al. (2005).  Li (2005) established a 

repairable reliability model of the power system based on a series parallel structure model and 

the Markov state-space method.  Liu et al. (2009) proposed reliability modeling of WAMS using 

the Markov process. The analysis of data acquisition system takes the PMU and PDC as the 

study objects, and gets the reliability evaluation of data acquisition system by series system 

model, the parallel system model and k/n judgment system model of those facility units. 

However in this model the number of buses would not have an effect on the reliability 
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evaluation.  Yang et al. (2009a) proposed a reliability estimation model for a single PMU. The 

model develops a series-parallel structure for a single PMU viewed as a collection of seven 

subcomponents and identifies the most critical component within a PMU. Yang et al. (2009b) 

presented a hierarchical structure of WAMS to satisfy requirements of reliable real-time data 

transfer. They developed methods of evaluating multiple reliability indices of regional networks 

in WAMS. A reliability modeling of PMUs using fuzzy sets was proposed and extended to 

consider options for the PMU hardware in Aminifar et al. (2010). They employed the Markov 

process to analyze the proposed model and to present an equivalent two-state, up-and-down 

model of PMUs. Yang et al. (2010) presented a quantified reliability analysis for the backbone 

communication network in WAMS and the overall WAMS from a hardware reliability viewpoint 

using combined Markov modeling and state enumeration techniques. Singh et al. (2013) 

proposed a reliability analysis of PMU incorporating standby redundancy as well as switching 

failure probability. They formulated a Markov model of each individual module. Ghosh et al. 

(2013) presented a reliability analysis of geographic information system aided optimal PMU 

placement taking pragmatic spatial aspects into account for smart grid operation on eastern 

India. They investigated the impact of topological attributes on commissioning PMU to ensure 

reliability through different phasor measurement unit connectivity configurations. 
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CHAPTER 3. MODELING 

As mentioned earlier Liu et al. (2009) proposed reliability modeling of WAMS using the 

Markov process.  The analysis of data acquisition system considers the PMU and PDC as the 

study objectives. While considering these objectives it determines the reliability evaluation of 

data acquisition system by a model in series structure, or a model in parallel structure along with 

the  k/n judgment model of those facility units. Some of the weaknesses and drawbacks of their 

model are as follows: 

• The number of buses would not have any effect on the reliability evaluation. 

• The division of the power grid into some areas is optional and is based on 

geographical scope only.  

• The model is for reliability evaluation after PMUs are placed in the power system.  

Therefore, the literature on analyzing the reliability of a network of PMUs which are 

placed to achieve a certain objective, such as observability, is scant. The existing PMU 

placement models consider cost and observability of buses ignoring reliability aspect of both 

WAMS and PMUs. However, such placement solutions call for additional or redundant PMUs to 

cover each bus or line failures. The existing PMU placement models require redundancy factor 

as an input to solve the placement problem.  However, the redundancy factor is provided by the 

experts based on purely subjective assessment and, hence, there exists no means to assess or 

estimate the redundancy factor objectively. With traditional placement models, it is difficult to 

quantify the additional benefits from a reliability standpoint.  
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On the other hand, reliability-based models essentially focus on achieving a desired 

reliability of any given system while satisfying other requirements such as cost and observability.  

Reliability-based models have been used widely in system design optimization to improve 

system functionality and reliability. However, reliability models have not been exploited in 

existing optimal PMU placement based algorithms. 

This motivates to consider the optimal placement problem from a reliability standpoint. 

In the proposed models, the reliability of an individual PMU and the desired system level 

reliability are factored as inputs into the model. The redundancy factors (which call for 

additional PMUs) are thus dictated by these inputs subject to the system topology. The solution 

thus achieves complete observability while meeting or exceeding a specified level of reliability. 

The problem is formulated as a multi-objective optimization formulation that maintains full 

system observability with minimum cost while exceeding a pre-specified level of reliability.  

3.1. System Reliability Estimation 

System reliability is the probability that a system will perform its intended function for a 

given period of time under pre-specified operating conditions. Moreover, for a system to perform 

its intended functions, it is important that all components and sub-systems contained in the 

system are highly reliable and able to perform specified functions within given requirements. 

The placement of a PMU at any given bus allows direct measurement of voltage phasor at that 

bus and computation of the voltage phasors at neighboring buses. Further, the reliability of 

power system observability depends on the reliability of PMUs covering each bus. A bus is said 

to be observable if the voltage phasor at that bus is known. Therefore, the power system will be 

fully observable if all buses are covered with one or more PMUs. On the other hand, if none of 
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the PMUs were redundant, the failure of any one PMU would result in the complete loss of 

system observability, which could result in system failure. This understanding allows us to 

consider that from reliability point of view buses are connected in series structure. Further, in 

case of redundancy, each bus is covered by more than one PMU and these redundant PMUs will 

be treated as parallel connected.  Thus a parallel structure model can be used to estimate the 

reliability of bus observability.   

For example, consider the IEEE bus 14 in Figure 3.1 with PMUs placed on buses 1, 2, 6, 

7 and 9. Assuming PMU reliability of 0.90, the reliability of observability of the bus 3 will be 

0.90 because it is observed by one PMU only. On the other hand, the bus 1 is covered by two 

PMUs (the one PMU placed at bus 2 also covers bus 1), which act as parallel (or redundant). 

Therefore, the reliability of observability of bus 1 is given as: 

99.0)]90.01(*)90.01[(11 =−−−=r                                           (14) 

This clearly explains that if any given bus is observed by more than one PMU then for 

reliability estimation purpose all PMUs covering that bus are treated as parallelly connected. In 

that case, the reliability of observability of the i th bus can be given as: 

∏
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1                       (15) 

where  represents reliability of the i th bus,  is probability of failure of j th PMU and  denotes 

the total number of PMUs covering i th bus. This equation indicates that observability of i th bus 

will fail only if all PMUs covering that bus have failed together. 
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Figure 3.1. IEEE 14 bus system. 

 

Now to develop a system reliability estimation model, let R denote the system wide level 

of reliability for whole network and  denote the reliability level for i th bus. As discussed earlier, 

considering that from reliability point of view buses are connected in series structure, the 

reliability of a network can be estimated as: 

∏
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where n is the number of buses in the network. The equation (15) can be modified as:  

if
ji qBPr −=−= 1][1                      (17) 
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where P [B] represents probability of failure of all PMUs observing i th bus and  indicates the 

number of PMUs covering i th   bus.       

As discussed earlier, equation (17) is the equivalent form of the parallel system reliability 

model, which assumes that all PMUs covering i th bus are parallelly connected for the purpose of 

reliability evaluation. The overall system reliability estimation equation (16) is now modified as:  
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The equation (18) provides more realistic estimation of system reliability by considering 

the number of buses in the power system network and PMU placement. Now we incorporate the 

reliability modeling in the network placement model to formulate a binary integer programming 

model in the next section. The objective would be to reach  full system observability and to 

minimize total cost sustaining a minimum system wide reliability level.    

3.2. Reliability-Based Placement 

Reliability-based models have been used widely in system design optimization to 

improve system functionality and reliability. There are few reliability evaluation models for the 

WAMS and PMU in the literature. The reliability of WAMS  can be determined through the 

identification of its components such as PMUs, communication systems, and the central 

computation unit and then by estimating reliability of each of these components. Marek et al. 

(2005) discussed the basic design and special applications of WAMS. They showed that the 

overall WAMS reliability can be increased by using back up of its subsystems and/or 

components. Yang et al. (2009) proposed a reliability estimation model for a single PMU. The 

model develops a series-parallel structure for a single PMU viewed as a collection of seven 
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subcomponents and identifies the most critical component within a PMU. Li (2005) established a 

repairable reliability model of the power system based on a series parallel structure model and 

the Markov state-space method. Yang et al. (2009b) presented a hierarchical structure of WAMS 

to satisfy requirements of reliable real-time data transfer. They developed methods of evaluating 

multiple reliability indices of regional networks in WAMS. Yang et al. (2010) presented a 

quantified reliability analysis for the backbone communication network in WAMS and the 

overall WAMS from a hardware reliability viewpoint using combined Markov modeling and 

state enumeration techniques. A reliability modeling of PMUs using fuzzy sets proposed and 

extended to consider options for the PMU hardware in Aminifar et al. (2010). They employed 

the Markov process to analyze the proposed model and to present an equivalent two-state, up and 

down, model of PMUs. Liu et al. (2009) proposed reliability modeling of WAMS using the 

Markov process. The analysis of data acquisition system takes the PMU and PDC as the study 

objects, and gets the reliability evaluation of data acquisition system by series system model, the 

parallel system model and k/n judgment system model of those facility units.  

The only study to attempt in evaluation of the PMU placement models incorporating 

reliability theory is proposed by Liu et al. (2009). However the proposed reliability evaluation by 

Liu et al. (2009) can be made after the placement of PMUs in the system. In addition, the 

reliability model does not take the number of buses into consideration for the reliability 

evaluation. Furthermore, the existing PMU placement models consider optimal placement of 

PMU where the main objective is to minimize cost and ensure system observability ignoring the 

reliability aspect of both WAMS and PMUs. However, neither the PMU placement nor a 

reliability evaluation model will ensure cost minimization and reliability simultaneously in the 

system, if used individually. Therefore both approaches need to be integrated into a single model 
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in order to ensure that the placement is optimal and reliable. This motivated the development of a 

systematic approach to address both cost minimization and reliability simultaneously using this 

study. Given the twin and conflicting objectives of cost and reliability, in this section we 

modeled and solved a multi-objective formulation that maintains full system observability with 

minimum cost while exceeding a pre-specified level of reliability of observability. To do this a 

more thorough reliability evaluation approach coupled with PMU placement optimization will 

result in a more precise and effective solution than the solution presented by the model 

developed by Liu et al. (2009).  

3.2.1. Reliability-Based Placement Model 

This section proposes a reliability-based PMU placement model. The model attempts to 

decide on PMU placement to minimize total cost and ensure the minimum level of system wide 

reliability of observability for given PMU reliability. Let R be the desired system wide reliability 

level and  be reliability of each PMU to be known and are factored as inputs to our model.  

The objective is to place a minimum number of PMUs in the system subjected to minimum 

system level reliability of R. This objective function also takes care of the cost minimization goal 

since minimizing the number of PMUs means reducing cost. The proposed model is given as: 
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where  is a binary decision variable, which will acquire value one if a PMU is installed on the 

i th bus and zero otherwise. Rmin is the predefined level of reliability of observability.  

Interestingly,  is no longer a decision variable for our model and is defined as: 

∑
∈

=
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ji xf           (20) 

where  is the set of PMUs placed on buses    that are adjacent to  i th bus. Now to ensure that 

the proposed reliability-based placement model is an integer linear programming (ILP) model, 

we modify the reliability constraint in the proposed model as follows:  

∏
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We further define r as: 

)(min ,...,2,1 in rr =                       (22) 

We then modify our model as given below: 
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1

                  (23) 

Subject to 

iallforrri ≥                   (24)                      

minRr n ≥                (25) 
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where  is the minimum reliability requirement of each bus required to meet system wide 

reliability level. Now assuming that all PMUs are identical and hence having the same level of 

PMU reliability, the constraint (24) can be written as: 

rq if ≥−1               (26) 

The Equation (26) ensures a minimum level of system reliability R. Further, the 

minimum number of PMUs required to cover i th bus and to ensure given reliability target is given 

as: 








 −
≥

q

r
f i log

)1log(
         (27) 

 is the smallest integer greater than or equal to k. 

Finally denoting the right hand side of the equation (27) by b, the final model can be 

expressed as: 

∑
=

n

i
ixMin

1

                  (28) 

Subject to 

iallforbf i ≥                                                  (29)                      

minRr n ≥                             (30) 

The value of b, which represents redundancy level for each bus, is derived based on 

system reliability target and factored as input into the model. The proposed ILP model may have 

several alternative optimal solutions, meaning there are multiple placement solutions meeting the 

minimum desired system reliability level.   
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In the second stage, the optimal number of PMUs obtained from the ILP model is 

considered as a constraint to identify the solution that maximizes system reliability. This is done 

in Equations 31-33. Let us denote the resulting total number of PMUs from minimization 

problem as c then maximization model would turn out to be: 

RMax           (31) 

Subject to 

bf i ≥             (32) 

cx
n

i
i ≤∑

=1

          (33) 

Note that the objective function of the second stage Equation 31 is nonlinear. Also note 

that nonlinear optimization is the process of solving a system of equalities or inequalities, 

collectively termed as constraints, over a set of unknown variables along with an objective 

function to be maximized or minimized, where some of the constraints or objective functions are 

nonlinear. In our purposed model, the objective function, reliability maximization, turns out to be 

nonlinear. The pseudo-code for the proposed two-stage optimization model is shown in Figure 

3.2.  
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Read Inputs R and q 

   

//where n is the total number of nodes 

  

Min                  

 

                                                      

            

If (no solution exists) 

end 

else  

//next stage is to find the best alternative (if needed) 

c = resulting total number of PMUs from minimization problem  

Max                                             

 

               

       

end. 

Figure 3.2. Pseudo-code for the two stage optimization model. 

We demonstrate the applicability of the proposed approach by considering several 

examples of power systems. Consider the IEEE 14 bus system as shown in Figure 3.1. Suppose 

the system wide reliability level  is given as 0.75, and probability of failure of each PMU  is 

given as 0.1. Then minimum reliability of observability of each bus  would turn out to be  

 0.98. Now for given minimum reliability target of 0.98 for each bus, the minimum redundancy 

level   is calculated using Equation (27), which is equal to 2. Thus the ILP model for IEEE 14 

bus system is given below: 
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Min                                         (34) 

 

                                       (35) 

                                      (36) 

                                       (37) 

                             (38) 

                                         (39) 

                                               (40) 

                                           (41) 

                                              (42) 

                           (43) 

                            (44) 

                           (45) 

                            (46) 

                              (47) 

                                           (48) 
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The solution shows that at least 9 PMUs are required to maintain complete system 

observability and to achieve system wide reliability level of 0.75. These PMUs are placed at 

buses 1, 2, 3, 6, 7, 8, 9, 10 and 13 to ensure the redundancy level of 2 for each bus that gives 

system wide reliability as 0.9097. The results are comparable to single PMU outage case in Dua 

et al. (2008). As mentioned earlier, the ILP problems provide several alternative solutions. We 

therefore set out to search for a better alternative solution using the second stage that maximizes 

system reliability.  

Max                                     (49) 

 

                    (50) 

              (51) 

In the second stage, by changing the objective function to a system reliability 

maximization and adding additional constraint (51) to our initial model of IEEE 14 bus system, 

the better alternative solution also places 9 PMUs but on a different set of buses (2, 4, 5, 6, 7, 8, 

9, 11 and 13) and maximizes system wide reliability to 0.9189, which is greater than the previous 

solution. 

The proposed model is extendable for both considering zero injections and flow 

measurement cases. Having a flow measurement along a given branch allows the calculation of 

one of the terminal bus voltage phasors when the other one is known. Hence, the constraint 

equations associated with the terminal buses of the measured branch can be merged into a single 
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constraint. Considering the power flow measurement on 12-13 line in Figure 3.1, the model can 

be updated as follows: 

1413126131212
141312613

1312612 xxxxfff
xxxxf

xxxf
new +++=+=





+++=

++=
                 (52) 

In the case of zero-injection bus, considering bus 7 as zero-injection bus, if the phasor 

voltages at any three out of the four buses 4, 7, 8 and 9 are known, then the fourth one can be 

calculated using the Kirchhoff’s Current Law applied at bus 7 where the net injected current is 

known. The three most used methods in the literature are as follows: 

• Nonlinear constraint 

• ILP approach presented in Dua et.al (2008) 

• Topology transformation 

 

The Nonlinear constraint method can be applied to the model by eliminating f7 and 

following updates: 

9879754324 .. fffxxxxxxf ++++++=          (53) 

974878 .. fffxxf ++=           (54) 

87414109749 .. fffxxxxxf +++++=         (55) 

By applying the following properties of logical AND as well as OR operators: 

ABABBABA ==+→⊂ .&                (56) 
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We can further simplify the equations (53), (54) and (55) as follows: 

1481089754324 .. xxxxxxxxxxf +++++++=        (57) 

98748 xxxxf +++=                               (58) 

85838214109749 ... xxxxxxxxxxxf +++++++=        (59) 

However the best approach for applying the zero injection-buses to our model would be 

the ILP approach presented in Dua et.al (2008). For instance in case of zero injection, we can 

update constraints (38), (41), (42) and (43) plus adding a new constraint (64) as follows: 

49754324 bxxxxxxf ≥+++++=          (60) 

798747 bxxxxf ≥+++=           (61) 

8878 bxxf ≥+=            (61) 

914109749 bxxxxxf ≥++++=          (63) 

bbbbb 39874 ≥+++            (64) 

This will yield a reduction in the number of PMUs required for desired leve of reliability 

of observability. In the case of topology transformation method, the main idea is to merge the 

bus which has the injection measurement, with any one of its neighbors (Eliminate f7): 









++++=

++=

+++++=





+=

+++=

14109849

9848

9854324

878

98747

xxxxxf

xxxf

xxxxxxf

xxf

xxxxf

n

nn

n

       (65) 

Further, in order to deal with criticality of certain buses or lines in the network having a 

greater importance such as a generator, HV buses, or buses at intertie locations, the PMU 
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placement at those critical buses can be made mandatory. This can be ensured by appending an 

additional constraint: 

1=kX         For all k                                (66) 

where k represents critical buses.  Since only 1 PMU can be placed at a bus, the addition 

of constraint (66) takes care of criticality of buses in a better way rather than assigning weights 

to those buses.  

3.2.2. Discussions and Computational Results 

To further demonstrate the usefulness of the proposed approach, we considered several 

types of power systems such as IEEE 14, 30, 57, and 118 bus systems.  We also looked into 

different alternative solutions of IEEE 30 bus system for the second stage optimization to select 

the better alternative with higher system reliability. For all power system types, it is assumed that 

all PMUs are identical and three different PMU reliability values (0.80, 0.90, and 0.95) are 

chosen to show how PMU reliability value influences decision on PMU placement. To get better 

understanding and further insight into the model, we selected system reliability target at three 

different levels:  0.70, 0.80, and 0.90. The computations were performed with Wolfram 

Mathematica 8.0. on a 2.66 GHz Intel(R) Core™ 2 Quad CPU with system memory of 2.96 GB.  

 For all power system types, results are summarized in Tables 3.1, 3.2, 3.3 and 3.4 giving 

number of PMUs required, level of redundancy (b), and actual system reliability achieved for all 

combinations of system reliability target and PMU reliabilities. 
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As shown in all Tables, for some combinations of system reliability target (R) and PMU 

reliability (p), there exists no feasible solution within given constraints or limitations. These 

scenarios are indicated as N/A (not applicable). 

Table 3.1. IEEE 14 bus system analysis. 

Desired R p #PMU b Achieved R 

 0.8 N/A N/A N/A 

0.9 0.9 N/A N/A N/A 

 0.95 9 2 0.98 

 0.8 N/A N/A N/A 

0.8 0.9 9 2 0.91 

 0.95 9 2 0.98 

 0.8 N/A N/A N/A 

0.7 0.9 9 2 0.91 

 0.95 9 2 0.98 

 
 

Table 3.2. IEEE 30 bus system analysis. 

Desired R p #PMU b Achieved R 

 0.8 N/A N/A N/A 

0.9 0.9 N/A N/A N/A 

 0.95 21 2 0.95 

 0.8 N/A N/A N/A 

0.8 0.9 N/A N/A N/A 

 0.95 21 2 0.95 

 0.8 N/A N/A N/A 

0.7 0.9 21 2 0.83 

 0.95 21 2 0.95 
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Table 3.3. IEEE 57 bus system analysis. 

Desired R p #PMU b Achieved R 

 0.8 N/A N/A N/A 

0.9 0.9 57 3 0.96 

 0.95 57 3 0.995 

 0.8 N/A N/A N/A 

0.8 0.9 57 3 0.96 

 0.95 35 2 0.9 

 0.8 N/A N/A N/A 

0.7 0.9 57 3 0.96 

 0.95 35 2 0.9 

 
 

Table 3.4. IEEE 118 bus system analysis. 

Desired R p #PMU b Achieved R 

 0.8 N/A N/A N/A 

0.9 0.9 N/A N/A N/A 

 0.95 115 3 0.99 

 0.8 N/A N/A N/A 

0.8 0.9 115 3 0.93 

 0.95 115 3 0.99 

 0.8 N/A N/A N/A 

0.7 0.9 115 3 0.93 

 0.95 68 2 0.83 

 

For example, consider IEEE 30 bus system. To achieve a system reliability target of 0.90 

with having PMU reliabilities of 0.80 or 0.90, a redundancy level of 3 PMUs is needed for each 

bus system. However, this will require in total 33 PMUs assigned to 30 buses in the system 

violating our binary constraint of assigning one PMU to each bus. It is very clear from this 
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analysis that to get a feasible solution and satisfy the binary constraint, the PMUs should be 

highly reliable. Further, the results also indicate that when individual PMU reliability is higher, 

the total number of PMUs and the redundancy level requirement decreases accordingly. For 

example, for IEEE 57 bus system when PMU reliability is changed from 0.90 to 0.95, the total 

number of PMUs and redundancy level values change from (57, 3) to (35, 2) for the given 

system wide reliability targets of 0.80 and 0.70. The same argument is applicable to other power 

systems as well. 

The number of PMUs versus bus reliability (r) for all IEEE bus systems is shown in 

Figures 3.1 and 3.2. The figures clearly demonstrate that for higher system or bus reliability, the 

required number of PMUs increases initially and becomes constant after a certain level. This 

clearly puts a limit on the level of redundancy per bus and beyond which it does not influence 

system reliability but cost will certainly increase. The figures further indicate that as the system 

complexity increases (larger bus system), the required number of PMUs also increases.  

 

Figure 3.3. Number of PMU based on r. 
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Figure 3.4. Number of PMU based on r for bus 2383 system. 

 

To investigate the scalability of the proposed approach, a large 2383 bus system is also 

considered to demonstrate the model applicability. For given input values of system reliability 

targets and PMU reliability values, we were able to find an optimal solution for only one 

combination, i.e. having PMU reliability 0.99 and system reliability target of 0.70, which gave us 

actual reliability of 0.84 after finding the optimal solution.  This clearly shows that for achieving 

higher system reliability for a large system, each PMU has to be highly reliable and hence 

demonstrates the criticality of PMU on power system network. The number of PMUs versus bus 

system reliability for IEEE 2383 bus system has the same shape but much larger number of 

PMUs as shown in Figure 3.4. 

Comparing the results to the previous placement studies in the literature (Dua et al., 2008 

and Kavasseri and Sirnivasan, 2010) although placement results (in terms of the number of 

PMUs) are very similar, the proposed approach  allows a clear evaluation of reliability benefits 

gained by redundant PMUs, and provides further insight on system reliability and component  
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criticality. Although, the inspection of results show that the trade-off between system wide 

reliability and the number of PMUs derived from optimization procedure result in more  PMUs 

as compared to existing placement studies in the literature but this is a cost worth paying to 

achieve a certain reliability level. Moreover, this increase in total number of PMUs is dependent 

on individual PMU reliability as having highly reliable PMUs will require less number of PMUs 

to meet system wide reliability requirement as demonstrated earlier. Further, in existing 

placement models, the level of redundancy ( was determined based on some expert knowledge 

without considering system reliability requirement and PMU reliabilities. However, the proposed 

approach determines level of redundancy based on system reliability requirement and individual 

PMU reliabilities. Such an approach may be more suitable and practical, especially as the electric 

grid grows in structural complexity.  

The simple extension of the model, adding constraint (66), facilitates due consideration to 

critical buses or lines in power system and ensures higher reliability of observability for those 

buses of higher importance. The proposed model can also deal with situations of having different 

PMUs with different reliability. In that case, the proposed model considers lowest PMU 

reliability while solving the placement problem and ensures sort of lower bound of system 

reliability. Note that consideration of lowest PMU reliability in solving placement problem will 

provide the actual system reliability higher than the reliability suggested by the solution because 

of the higher PMU reliabilities. However, to consider the actual reliability of individual PMU’s 

in the PMU placement model, one has to develop a different solution approach (or algorithm) to 

solve the placement model. Table 3.5 shows several alternative solutions for the IEEE 30 bus 

system with acheived reliability levels. It is clear from the Table that each alternative provides 

different system level reliability with the same number of 21 PMUs. The reliability maximization 
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model in the second stage of our proposed approach searches for better solution from several 

alternative solutions.  In this particular case, alternative 1 with 21 PMUs provides better system 

reliability values. 

Table 3.5. Alternative PMU locations with corresponding reliabilities for IEEE 30 bus system. 

Desired 
System 

R 

PMU(p) Alternative 
solution 

Placement node Achieved 
R 

 0.8 N/A N/A N/A 

 0.9 N/A N/A N/A 

  1 1,2,3,5,6,9,10,11,12,13,15,16,18,19,22,24,25,26,27,28,29 0.959979 

0.9  2 1,3,5,6,7,8,9,10,11,12,13,15,17,18,19,22,24,25,26,29,30 0.957136 

 0.95 3 2,3,4,6,7,9,10,11,12,13,15,17,19,20,22,24,25,26,27,28,30 0.955322 

  4 1,2,3,5,6,9,10,11,12,13,15,16,18,19,21,23,25,26,27,28,30 0.955424 

  5 1,2,3,5,6,9,10,11,12,13,15,16,18,19,21,23,25,26,27,28,29 0.955424 

 0.8 N/A N/A N/A 

 0.9 N/A N/A N/A 

  1 1,2,3,5,6,9,10,11,12,13,15,16,18,19,22,24,25,26,27,28,29 0.959979 

0.8  2 1,3,5,6,7,8,9,10,11,12,13,15,17,18,19,22,24,25,26,29,30 0.957136 

 0.95 3 2,3,4,6,7,9,10,11,12,13,15,17,19,20,22,24,25,26,27,28,30 0.955322 

  4 1,2,3,5,6,9,10,11,12,13,15,16,18,19,21,23,25,26,27,28,30 0.955424 

  5 1,2,3,5,6,9,10,11,12,13,15,16,18,19,21,23,25,26,27,28,29 0.955424 

 0.8 N/A N/A N/A 

  1 1,2,3,5,6,9,10,11,12,13,15,16,18,19,22,24,25,26,27,28,29 0.84570 

  2 1,3,5,6,7,8,9,10,11,12,13,15,17,18,19,22,24,25,26,29,30 0.834451 

0.7     0.9 3 2,3,4,6,7,9,10,11,12,13,15,17,19,20,22,24,25,26,27,28,30 0.830008 

  4 1,2,3,5,6,9,10,11,12,13,15,16,18,19,21,23,25,26,27,28,30 0.830591 

  5 1,2,3,5,6,9,10,11,12,13,15,16,18,19,21,23,25,26,27,28,29 0.830591 

  1 1,2,3,5,6,9,10,11,12,13,15,16,18,19,22,24,25,26,27,28,29 0.959979 

  2 1,3,5,6,7,8,9,10,11,12,13,15,17,18,19,22,24,25,26,29,30 0.957136 

 0.95 3 2,3,4,6,7,9,10,11,12,13,15,17,19,20,22,24,25,26,27,28,30 0.955322 

  4 1,2,3,5,6,9,10,11,12,13,15,16,18,19,21,23,25,26,27,28,30 0.955424 

  5 1,2,3,5,6,9,10,11,12,13,15,16,18,19,21,23,25,26,27,28,29 0.955424 
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3.3. Reliability-Based Multi-objective Placement 

In the previous section we formulated the optimal PMU placement problem as a two- 

stage optimization model from a reliability standpoint where redundancy levels for all buses in 

the system are the same Khiabani et al. (2012a). However, maintaining separate objectives of 

minimizing the cost and maximizing the reliability results in infeasible solutions in some cases. 

This is because the formulation in (Khiabani et al., 2012a) overlooks combinations which could 

result in better solutions. This is because of the assumption of identical redundancy levels (bus 

reliabilities(r)) at all buses in the system. In this section we propose a multi-objective 

optimization model relaxing the identical redundancy level at all buses to reduce the number of 

PMUs required to reach a desired level of reliability of observability of overall system. 

Given the twin and conflicting objectives of cost and reliability, in this section we present 

a multi-objective optimization formulation that maintains full system observability with 

minimum cost while exceeding a pre-specified level of reliability  (Khiabani et al., 2012b). In 

other words, we present an optimization model to minimize cost per unit of reliability. This is 

achieved in the formulation by relaxing the assumption of identical redundancy levels (bus 

reliabilities(r)) at all buses in the system.  

This multi-objective model solved for the IEEE 14, 30, 57 and 118 bus systems. The 

resulting formulation clearly dictates the placement of additional PMUs to achieve a specified 

level of overall reliability. It is to be noted that (i) the notion of reliability in this model is with 

respect to random failures in either the devices themselves or transmission line outages which 

affects state estimation and not that of the power system at large; and (ii) the accuracy of PMU 
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measurements is not modeled in this formulation, meaning that a bus is considered observable as 

long as a non-trivial PMU measurement is available. 

3.3.1. Reliability-Based Multi-Objective Model 

To solve the multi-objective PMU placement problem, the following non-linear 

programming model is developed. The components of the model are developed based on 

Equations (14-18), binary decision variable vector and binary connection matrix definitions.  The 

dual objectives of minimizing cost while maximizing unit reliability can be achieved with 

respect to exceeding a pre-specified level of reliability of observability and expressed as:   

min
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where  is a binary decision variable, which  acquires value one if a PMU is installed on 

the i th bus, and zero otherwise.  is the reliability of the observability of the i th bus and  denotes 

the total number of PMUs covering i th bus which are given in Equations (15) and (20) 

respectively. Here, Rmin is the desired system wide reliability of observability level. The objective 

function in (67) is to maximize unit reliability of observability of the system while minimizing 

the total number of PMUs required for complete system observability.  
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The model can be modified to incorporate both zero injection (Dua et al., 2008) and flow 

measurement cases (Kavasseri and Srinivasan, 2010) and to yield further reduction in the number 

of PMUs needed to achieve desired system reliability of observability.  

3.3.2. Discussions and Computational Results 

The proposed multi-objective PMU placement model is solved for the IEEE 14, 30, 57 

and 118 test systems. A summary of results for all cases are shown in Table 3.6 for two 

combinations of the given desired reliability of observability level (Rmin) and PMU reliabilities 

(p) , the achieved number of PMUs required and actual overall system reliability . 

Table 3.6. Placement results with proposed formulation. 

IEEE 
System 

 p=0.95  p=0.95 

#PMUs Achieved R #PMUs Achieved R 

14 8 0.933 5 0.922 

30 21 0.960 13 0.922 

57 39 0.929 31 0.901 

118 96 0.919 76 0.908 

 

The levels of PMU reliability (p) were considered since PMU reliabilities are near 98%. 

Locations of PMU buses for each system for Rmin= 0.90 and p = 0.99 are shown in Table 3.7. The 

robustness of the proposed placement model has been evaluated in Table 3.8 for Rmin= 0.90 and p 

= 0.99 for the IEEE test systems given in Table 3.6.   
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Table 3.7. PMU locations for placement results. 

IEEE System PMU Location 

14 2,4,6,7,9 

30 1, 2, 6, 7, 9,10, 12, 15, 19, 24, 25, 27, 29 

57 
1, 3, 4, 6, 11, 12, 13, 15, 20, 21, 22, 24, 25, 27, 29, 30, 32, 33, 35, 36, 38, 

39, 41, 45, 47, 48, 51, 52, 54, 56, 57 

118 

1, 3, 4, 5, 6, 9, 10, 12, 13, 15, 16, 18, 20, 21, 25, 27, 28, 29, 30, 32, 34, 35, 
37, 39, 41, 42, 44, 45, 46, 47, 49, 52, 56, 57, 58, 59, 61, 62, 63, 64, 66, 67, 
68, 70, 71, 72, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 

93, 94, 96, 100, 103, 105, 106,109, 110, 111, 112, 115, 116, 118 

 

Table 3.8 shows the results for the two cases of PMU outages and line outages. The 

fraction of cases where the system is fully observable is reported for each system. When 

considering PMU outages, the lines are assumed to be intact. Starting with the initial 

configuration (i.e. placement results in Table 3.6), PMUs are disabled one at a time and after 

each PMU has been disabled the system is checked for observability. The number of placement 

scenarios for which the system is unobservable is noted in Table 3.8. For example, the IEEE 118 

bus system is observable in all but 8  of 76 cases of PMU outage, meaning that the fraction of 

observable cases is 68/76 = 0.895. Similarly, when considering line outages, the PMUs are 

assumed to be intact. Starting with the initial configuration (i.e. placement results in Table 3.7), 

lines line are disabled one at a time and after each line has been disabled the system is checked 

for observability. For example, the IEEE 118 bus system is observable in all but 8 (out of 179) 

cases of lines outage, meaning that the fraction of observable cases is 171/179 = 0.995. 
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Table 3.8. Fraction of outage cases that preserve full system observability. 

IEEE 
System 

 PMU outage  Line outage 

#PMUs Fraction #Lines Fraction 

14 4 0.200 7 0.632 

30 7 0.462 6 0.854 

57 8 0.742 8 0.893 

118 8 0.895 8 0.955 

 

To investigate the usefulness of the proposed multi-objective optimization model, we 

compared the results obtained to the placement results in Kavasseri and Srinivasan (2011). 

Results for the case of p=0.99 are shown in Table 3.9 for IEEE 14, 30, 57 and 118 bus systems. 

Although the proposed model requires more PMUs, it achieves a higher system reliability level. 

The results show that with increasing system size, higher redundancy in terms of the number of 

PMUs is required to maintain the desired reliability levels. For instance in IEEE 14 bus system, 

the location of PMUs is the same for both models except that an additional PMU is placed on bus 

4 in the proposed model.  However in the case of IEEE 118 bus system, we need 44 additional 

PMUs compared with the traditional model, and recall that such placements are not fault tolerant.  

Furthermore, the optimal solutions for the PMU placement problem results in alternative 

optimal solutions in which each alternative solution will result in a different reliability level. 

Therefore we need to investigate higher reliability level among the alternative solutions; 

however, the proposed model solves the placement model to reach the highest level of reliability 

using the least number of PMUs. Table 3.10 compares the results of the multi-objective PMU 

placement and reliability-based PMU placement presented in previous section (Khiabani et al., 
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2012a) for PMU reliability 0f 99% (p=0.99) and objective of predefined reliability of 

observability  level of 90% (Rmin=0.90).  

Table 3.9. Comparison of placement results. 

IEEE 
System 

With R #PMU R Without R #PMU R 

14 2,4,6,7,9 5 0.92 2,6,7,9 4 0.89 

30 
1, 2, 6, 7, 9,10, 12, 15, 19, 24, 

25, 27, 29 
13 0.91 

1,10,12, 15,18,2, 25, 
27, 6, 9 

10 0.84 

57 

1, 3, 4, 6, 11, 12, 13, 15, 20, 21, 
22, 24, 25, 27, 29, 30, 32, 33, 
35, 36, 38, 39, 41, 45, 47, 48, 

51, 52, 54, 56, 57 

31 0.90 

1, 4, 9, 10, 19, 22, 
25, 26, 29, 32, 36, 
39, 41, 44, 46, 49, 
53 

17 0.62 

118 

1, 3, 4, 5, 6, 9, 10, 12, 13, 15, 
16, 18, 20, 21, 25, 27, 28, 29, 
30, 32, 34, 35, 37, 39, 41, 42, 
44, 45, 46, 47, 49, 52, 56, 57, 
58, 59, 61, 62, 63, 64, 66, 67, 
68, 70, 71, 72, 73, 75, 77, 78, 
80, 81, 82, 84, 85, 86, 87, 88, 
89, 90, 91, 92, 93, 94, 96, 100, 
103, 105, 106,109, 110, 111, 

112, 115, 116, 118 

76 0.91 

1, 5, 9, 12, 15, 17, 
21, 25, 28, 34, 37, 
40, 45, 49, 52, 56, 
62, 63, 68, 70, 71, 
76, 77, 80, 85, 86, 

90, 94, 101, 
105,110,114 

32 0.44 

 

As shown in the Table 3.10, the proposed multi-objective model reaches the desired 

reliability level of 90% with fewer PMUs, which significantly decreases the cost. The cost saving 

occurs due to eliminating the need for the identical redundancy levels for all buses in the system, 

with the help of the multi-objective approach. Therefore, the proposed model solves the 

placement model to reach the highest level of reliability using the least number of PMUs.  In the 

case of IEEE 118 bus system, the number of PMUs is reduced by ~34% compared to the 
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reliability-based placement model (Khiabani et al., 2012a) with the proposed multi-objective 

model. 

Table 3.10. Comparison of placement results considering system reliability of observability. 

IEEE 
System 

           Multi-objective placement        Reliability-based placement 

#PMUs Achieved R #PMUs Achieved R 

14 5 0.92 9 0.98 

30 13 0.91 21 0.95 

57 31 0.90 57 0.99 

118 76 0.91 115 0.99 

 

3.4. Goal Programming Approach for PMU Placement 

In this section we developed a goal programming based approach with two objectives of 

maximizing the reliability and minimizing the placement cost of PMUs for full observability in 

power systems (Khiabani et al., 2013a). The model developed to investigate the possibility of 

existence of better trade-offs to be able to further optimize the multi-objective PMU placement 

model. The weighted sum goal programming formulation incorporates the reliability of 

individual PMUs and finds a placement to resolve the conflicting objectives of minimum number 

of PMUs cost-wise and maximum level of system-wide reliability. This multi-objective problem 

is formulated as a nonlinear goal programming model in which weights are associated with the 

objectives. A weight associated to a goal reflects the relative importance given to that goal. 

Therefore, a higher weight assigned to the overall system reliability of observability dictates the 

placement of additional PMUs as compared to the traditional PMU placement problems and 

eventually results in a higher cost. This extra cost is the cost of reliability, and is worth paying in 

order to achieve a higher level of reliability. Further cost minimization seeks for a zero-injection 
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approach compatible with non-linear programming.  Therefore, zero-injection buses were 

incorporated into the model to further optimize the model.  

3.4.1. Goal Programming Model 

The goal programming placement model has been formulated as a two-objective 

problem. The objectives are (1) to maximize the reliability of observability of the system while 

(2) minimizing the number of PMUs resulting in reduced cost. Thus the objectives are to seek 

the reliability of observability level Rmin and to place minimum number of PMUs. It is assumed 

that the PMUs are identical; therefore minimization of the number of PMUs will result in cost 

minimization. The total cost (number of PMUs) must increase to reach higher redundancy in 

observability. Therefore, the objective of maximizing the reliability of observability and 

minimizing the cost are in conflict. To resolve the conflict, we developed a weighted sum goal 

programming model by assigning relative weight to each goal to combine the two conflicting 

objective functions into a single objective function. The goal programming model formulated as 

a weighted sum nonlinear programming is as follows: 
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where qj represents the probability of failure of j th PMU,  is a binary decision variable, which 

will acquire value one if a PMU is installed on the i th bus and zero otherwise.  denotes the total 

number of PMUs of covering i th bus which is given in Equation (20). Here, Rmin is the desired 
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system wide reliability of observability level, Bus is the number of buses in the system, and w 

defines the weight associated to each goal. The denominators are for normalizing the values of 

the objectives.   

The objectives in equation (68) are to minimize the total number of PMUs required for 

maximum level of system reliability of observability. w defines the weight associated with the 

objectives and is a decision tool for the problem solver. If reliability maximization is more 

important, then w should be increased. However, if cost is more important than reliability, then a 

smaller value of w should be used. 

To yield further reduction in the number of PMUs needed for system observability, the 

model can be modified to incorporate zero-injection buses. As explained in previous sections, a 

zero-injection bus is a bus where there is neither generation nor load; therefore, the sum of the 

flows on the all incident buses to the zero-injection bus is zero (Dua et al., 2008). 

Hence if zero-injection buses are incorporated in the model, the total number of PMUs 

may further be reduced. If current phasors for each line incident to a zero-injection bus except 

for one are known, the current phasor of that line can be calculated using Kirchhoff’s current 

law. Furthermore the voltage phasor of the bus at the other end of the line can be calculated 

using Kirchhoff’s voltage law. Therefore the zero-injection models can be developed by 

updating fi’s of the adjacent buses of the zero-injection bus. Consider bus 7 in IEEE 14 bus 

system, shown in Figure 3.1, as zero-injection bus (in red), neighbored with the buses 4, 8, 9. 

With the zero-injection modification, a PMU at any of the buses 4, 7, 8 or 9 will make all  four 

and other buses neighboring the bus with the PMU observable. A word of caution needs to be 

added here, if optimal solution chooses to place a PMU on bus 8, it would not make all four 
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buses observable in case they are not covered by another PMU. However because of the nature 

of the reliability-based modeling this case would not happen. It means the algorithm will prevent 

placing a PMU on bus 8 to maximize reliability of observability.  For instance with the 

placement of a PMU at bus 9 it will make buses 4, 7, 8, 9, 10, and 14 observable, of course with 

the consideration of bus 7 as a zero-injection bus.  

3.4.2. Discussions and Computational Results 

The proposed placement model is solved for the IEEE 14, 30, 57 and 118 bus standard 

test systems considering both with and without zero-injection buses. Results are reported with 

Rmin = 0.9 for all system types. 

A summary of results for the four standard IEEE types, not considering the zero-injection 

buses, are noted in Tables 3.11-3.14. In these tables the required number of PMUs and achieved 

actual overall system reliability are calculated for several combinations of the weight (w) and 

PMU reliabilities (p=1-q). In reality PMU reliabilities are near 98%, therefore we considered 

two levels of 95% and 99% for PMU reliability (p).  
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Table 3.11. GPB results for IEEE 14 test system. 

w 
 p=0.95  p=0.99 

#PMUs Achieved R #PMUs Achieved R 

0.1 7 0.8843 4 0.8952 

0.2 9 0.9797 5 0.9315 

0.3 9 0.9797 7 0.9793 

0.4 9 0.9797 7 0.9793 

0.5 9 0.9797 9 0.9992 

0.6 11 0.9893 9 0.9992 

0.7 11 0.9893 9 0.9992 

0.8 14 0.9967 9 0.9992 

0.9 14 0.9967 9 0.9992 

0.99 14 0.9967 14 0.9999 

 
Table 3.12. GPB results for IEEE 30 test system. 

w 
 p=0.95  p=0.99 

#PMUs Achieved R #PMUs Achieved R 

0.1 21 0.9598 10 0.8507 

0.2 21 0.9599 14 0.9307 

0.3 21 0.9599 21 0.9983 

0.4 21 0.9600 21 0.9983 

0.5 25 0.9784 21 0.9983 

0.6 30 0.9906 21 0.9984 

0.7 30 0.9906 21 0.9984 

0.8 30 0.9906 21 0.9984 

0.9 30 0.9906 21 0.9984 

0.99 30 0.9906 30 0.9997 
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Table 3.13. GPB results for IEEE 57 test system. 

w 
 p=0.95  p=0.99 

#PMUs Achieved R #PMUs Achieved R 

0.1 38 0.9098 29 0.9188 

0.2 40 0.9274 35 0.9861 

0.3 46 0.9658 37 0.9963 

0.4 47 0.9704 38 0.9964 

0.5 55 0.9904 40 0.9968 

0.6 55 0.9904 40 0.9968 

0.7 55 0.9904 40 0.9968 

0.8 55 0.9904 40 0.9974 

0.9 57 0.9908 48 0.9991 

0.99 57 0.9908 55 0.9998 

 

Table 3.14. GPB results for IEEE 118 test system. 

w 
 p=0.95  p=0.99 

#PMUs Achieved R #PMUs Achieved R 

0.1 82 0.7584 71 0.9084 

0.2 88 0.8061 79 0.9652 

0.3 90 0.8066 86 0.9664 

0.4 92 0.8161 89 0.9752 

0.5 92 0.8161 89 0.9752 

0.6 92 0.8161 91 0.9859 

0.7 93 0.8512 91 0.9859 

0.8 95 0.8718 91 0.9859 

0.9 95 0.8718 92 0.9964 

0.99 101 0.9220 101 0.9977 
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As mentioned earlier, incorporating zero-injection buses may result in  reduced cost. 

Therefore, summary of results for all cases, considering the zero-injection buses, are shown in 

Tables 3.15-3.18. In these tables, the required number of PMUs and achieved overall system 

reliability of observability are calculated for several combinations of the weight (w) and PMU 

reliabilities (p). The zero-injection buses for the IEEE standard bus systems are as follows (Dua 

et al., 2008): 

14 bus :{ 7} 

30 bus :{ 6, 9, 11, 25, 28} 

57 bus :{ 4, 7, 11, 21, 22, 24, 26, 34, 36, 37, 39, 40, 45, 46, 48} 

118 bus :{ 5, 9, 30, 37, 38, 63, 64, 68, 71, 81} 

Table 3.15. GPB results for IEEE 14 considering zero-injection buses. 

w 
 p=0.95  p=0.99 

#PMUs Achieved R #PMUs Achieved R 

0.1 6 0.9240 3 0.8774 

0.2 7 0.9749 5 0.9693 

0.3 7 0.9749 6 0.9889 

0.4 7 0.9749 6 0.9889 

0.5 7 0.9749 7 0.9990 

0.6 10 0.9915 7 0.9990 

0.7 10 0.9915 7 0.9990 

0.8 13 0.9990 7 0.9990 

0.9 13 0.9990 7 0.9990 

0.99 14 0.9992 13 1.0000 
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Table 3.16. GPB results for IEEE 30 considering zero-injection buses. 

w 
 p=0.95  p=0.99 

#PMUs Achieved R #PMUs Achieved R 

0.1 16 0.9625 8 0.9030 

0.2 16 0.9625 10 0.9399 

0.3 16 0.9625 16 0.9985 

0.4 16 0.9625 16 0.9985 

0.5 20 0.9811 16 0.9985 

0.6 26 0.9955 16 0.9985 

0.7 26 0.9955 16 0.9985 

0.8 26 0.9955 16 0.9985 

0.9 26 0.9955 16 0.9985 

0.99 28 0.9959 26 0.9999 

 

Table 3.17. GPB results for IEEE 57 considering zero-injection buses. 

w 
 p=0.95  p=0.99 

#PMUs Achieved R #PMUs Achieved R 

0.1 33 0.9324 27 0.9482 

0.2 33 0.9368 31 0.9868 

0.3 35 0.9589 32 0.9969 

0.4 41 0.9788 32 0.9969 

0.5 46 0.9913 32 0.9972 

0.6 46 0.9931 33 0.9973 

0.7 47 0.9937 34 0.9977 

0.8 48 0.9939 34 0.9978 

0.9 51 0.9948 38 0.9990 

0.99 54 0.9951 47 0.9999 

 



 

60 

Table 3.18. GPB results for IEEE 118 considering zero-injection buses. 

w 
 p=0.95  p=0.99 

#PMUs Achieved R #PMUs Achieved R 

0.1 83 0.8227 65 0.8910 

0.2 87 0.8809 76 0.9471 

0.3 90 0.8777 83 0.9853 

0.4 90 0.8777 85 0.9858 

0.5 94 0.8901 85 0.9858 

0.6 95 0.8923 85 0.9862 

0.7 95 0.9342 85 0.9862 

0.8 96 0.9395 85 0.9865 

0.9 96 0.9395 90 0.9870 

0.99 96 0.9395 90 0.9875 

 

Comparing the results with zero-injection cases, when zero injection is incorporated, a 

certain reliability of observability is achievable with fewer PMUs.  

The placement locations for the cases reached the minimum reliability level of 90% with 

the associated weights and tables not considering the zero-injection buses are shown in Table 

3.19. 
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 Table 3.19. PMU locations for GPB results with achieved minimum reliability of observability 
of 90%. 

IEEE 
System 

PMU Location w Table
# 14 2, 6, 7, 9, 13 0.2 3.11 

30 1, 2, 5, 6, 9, 10, 12, 15, 16, 19, 24, 25, 27, 29 0.2 3.12 

57 
1, 4, 6, 9, 12, 14, 15, 18, 20, 22, 24, 25, 27, 28, 29, 31, 32, 36, 37, 

41, 45, 47, 48, 50, 51, 53, 54, 56, 57 
0.1 3.12 

118 

2, 5, 7, 8, 9, 10, 11, 12, 15, 17, 20, 21, 23, 25, 26, 28, 29, 32, 33, 
35, 37, 40, 41, 43, 44, 46, 49, 50, 52, 53, 54, 56, 57, 58, 59,61, 62, 
63, 65, 67, 68, 70, 71, 72, 73, 76, 77, 78, 79, 80, 85, 86,87, 89, 91, 
92, 93, 94, 96, 100, 102, 103, 105, 106, 108, 110, 111, 112, 114, 

117, 118 

0.1 3.14 

 

The robustness of the proposed placement model has been evaluated for p = 0.99 for the 

IEEE test systems given in Table 3.19 and compared to the placement results in Kavasseri and 

Srinivasan (2011). Tables 3.20 and 3.21 show the results for p=0.99  for the two cases of PMU 

outages and line outages respectively. The fraction of cases where the system is fully observable 

is reported for each IEEE standard system. In the PMU outage scenario, it is assumed that there 

is no failure in the lines. Starting with the initial configuration (i.e. placement results in Table 

3.19 and Table 3.22), a PMU is disabled then the system is checked for observability. Finally, 

the PMU is enabled and the same process is repeated for each PMU in sequence. The number of 

placement scenarios for which the system is unobservable is noted in Tables 3.20 and 3.21. For 

example, the IEEE 57 bus system is observable in all but 7 of 29 cases of PMU outage, meaning 

that the fraction of observable cases is 22/29 = 0.76. Similarly, in the line outage scenario, the 

PMUs are assumed to be fully functioning. Starting with the initial configuration (i.e. placement 

results in Table 3.19 and Table 3.22), a line is disabled then the system is checked for 
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observability. Finally the line is enabled and the same process is repeated for each line in 

sequence. For example, the IEEE 57 bus system is observable in all but 7  of 75 cases of lines 

outages, meaning that the fraction of observable cases is 68/75 = 0.91. By comparing the results 

from both models from Tables 3.20 and 3.21 one can conclude that the proposed multi-objective 

goal programming model is more robust than the traditional cost-based method. 

 

Table 3.20. Fraction of PMU outage cases that preserve full system observability for GPB 
approach. 

IEEE 
System 

Goal programming 
approach 

Traditional cost-based 
approach 

#PMUs Fraction #PMUs Fraction 

14 4 0.20 4 0.00 

30 7 0.50 10 0.00 

57 7 0.76 17 0.00 

118 8 0.89 32 0.00 

 

Table 3.21. Fraction of Line outage cases that preserve full system observability for GPB 
approach. 

IEEE 
System 

Goal programming 
approach 

Traditional cost-based 
approach 

#Lines Fraction #Lines Fraction 

14 6 0.68 9 0.53 

30 4 0.90 15 0.63 

57 7 0.91 34 0.55 

118 9 0.95 64 0.64 
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To further investigate the usefulness of the proposed multi-objective goal programming 

model, we compared the results to the placement results in Khiabani et al. (2012a) and Kavasseri 

and Srinivasan (2011). Results for the case of p=0.99 with minimum desired system wide 

reliability of observability level of Rmin=0.90 are shown in Table 3.22 and Table 3.23 for IEEE 

14, 57, and 118 bus systems.   

Based on the data from Table 3.22 it is clear that although the proposed model requires 

more PMUs, it achieves a higher system reliability level. The results show that, with increasing 

the system size, higher redundancy in terms of the number of PMUs is required to maintain the 

desired reliability level. For instance in IEEE 14 bus system, the location of PMUs is the same 

for both models, except that an additional PMU is placed on bus 13 in the proposed model.  

However, in the case of IEEE 118 bus system, we need 39 additional PMUs compared with the 

traditional model (Kavasseri and Srinivasan, 2011) to increase the reliability of observability by 

47%. It should be noted that in the conventional PMU placement problems, loss of a PMU would 

result in loss of the observability of the majority of the neighboring buses. Therefore, loss of a 

single PMU will result in loss of observability of the system. Hence, such placements are not 

fault tolerant.  
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Table 3.22. Comparison of placement results. 

IEEE 
System 

With R #PMU R Without R #PMU R 

14 2, 6, 7, 9, 13 5 0.93 2,6,7,9 4 0.89 

30 
1, 2, 5, 6, 9, 10, 12, 15, 16, 19, 

24, 25, 27, 29 
14 0.93 

1, 2, 6, 9, 10, 12, 15, 
18, 25, 27 

10 0.84 

57 

1, 4, 6, 9, 12, 14, 15, 18, 20, 22, 
24, 25, 27, 28, 29, 31, 32, 36, 
37, 41, 45, 47, 48, 50, 51, 53, 

54, 56, 57 

29 0.92 

1, 4, 9, 10, 19, 22, 
25, 26, 29, 32, 36, 
39, 41, 44, 46, 49, 

53 

17 0.62 

118 

2, 5, 7, 8, 9, 10, 11, 12, 15, 17, 
20, 21, 23, 25, 26, 28, 29, 32, 
33, 35, 37, 40, 41, 43, 44, 46, 
49, 50, 52, 53, 54, 56, 57, 58, 

59,61, 62, 63, 65, 67, 68, 70, 71, 
72, 73, 76, 77, 78, 79, 80, 85, 
86,87, 89, 91, 92, 93, 94, 96, 
100, 102, 103, 105, 106, 108, 
110, 111, 112, 114, 117, 118 

71 0.91 

1, 5, 9, 12, 15, 17, 
21, 25, 28, 34, 37, 

40, 45, 49, 52, 
56,62, 63,68, 70, 71, 
76, 77, 80, 85, 86, 
90, 94, 101, 105, 

110, 114 

32 0.44 

 

Table 3.23. Comparison of placement results considering system reliability of observability. 

IEEE 
System 

Goal programming 
based placement 

Multi-objective 
placement 

Reliability-based 
placement 

#PMUs Achieved R #PMUs Achieved R #PMUs Achieved R 

14 5 0.93 5 0.92 9 0.98 

30 14 0.93 13 0.91 21 0.95 

57 29 0.92 31 0.90 57 0.99 

118 71 0.91 76 0.91 115 0.99 
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As shown in  Table 3.23 the proposed model reaches the desired reliability of 

observability level of 90% with fewer PMUs compared to multi-objective (Khiabani et al., 

2012b) and reliability-based (Khiabani et al., 2012a) models which significantly decreases the 

cost. The only exception is for IEEE 30 bus system in which the multi-objective model reaches 

the 90% system reliability of observability level with 13 PMUs where for the goal programming 

model it is 14 PMUs. The cost saving occurs due to eliminating the need for the identical 

redundancy levels for all buses in the system, with the help of the goal programming approach. 

Therefore, the proposed model solves the placement model to reach the highest level of 

reliability using the least number of PMUs for the given weight (w).  In the case of IEEE 118 bus 

system, the number of PMUs is reduced by ~40% compared to the reliability-based placement 

model (Khiabani et al., 2012a)  with the proposed goal programming approach. This means ~6% 

reduction in the number of PMUs as compared to multi-objective placement model. It is worth 

noting that the proposed goal programming approach could even reach better results by assigning 

different weights (w). For instance by assigning w=0.19 in the case of IEEE 30 bus system and 

running the model resulted in 13 PMUs required with the PMUs placed on buses 2, 3, 5, 6, 9, 10, 

12, 15, 17, 19, 24, 25 and 27, and  91% achieved reliability of observability level.  

3.5. Max Covering Approach for PMU Placement 

The multi-objective optimization (Khiabani et al., 2012b) and goal programming multi-

objective optimization (Khiabani et al., 2013a) models described earlier considered  minimizing 

the number of PMUs to reach full system observability while maintaining a pre-specified level of 

reliability of observability. Both models relax the existence of limited number PMUs. However 

in practice the resources could be limited because of the high price of the purchasing and 

installing PMUs. In this case the decision maker will decide to allocate the limited recourses 
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either to the strategic locations or to cover the maximum possible buses. Therefore we 

considered the PMU placement problem from a maximum covering standpoint (Khiabani et al., 

2013b). In the proposed model, the number of existing PMUs is factored as inputs into the 

model. The maximum coverage thus dictated by this input is subject to the system topology.  

In case that the number of the PMUs are sufficient for full system observability, the 

observability constraint was added to the model. The problem is formulated as an integer linear 

programming (ILP) model with the objective of maximizing the network coverage and reaching 

the full network observability when possible. The solution thus achieves maximum coverage 

with complete observability and incomplete observability depending on the availability of the 

recourses. Then the reliability evaluation method presented in Khiabani et al. (2012a) is used to 

evaluate the reliability of the resulting placement.  

3.5.1. Max Covering Model 

The maximum covering placement model has been formulated as an ILP problem. The 

main objective is to maximize the coverage of the buses in the power network through assigning 

the limited number of PMUs available to the strategic buses. Clearly the resource limitation 

would not allow reaching the complete observability of the power network. However in the case 

with the sufficient number of PMUs, the observability constraint will be added to the 

optimization model. The addition of an extra constraint may result in reduced coverage but will 

maintain the full system observability. The integer linear programming model formulated as a 

maximum covering is as follows: 
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where  is a binary decision variable, which will acquire value one if a PMU is installed 

on the i th bus and zero otherwise.  denotes the total number PMUs of covering i th bus which is 

given in Equation (20). Here, c is the number of PMUs available. The objective function in (69) 

is to maximize the coverage of the power system. In case a limited number of PMUs is sufficient 

to reach complete system observability the following constraint can be added to the model: 

1
1

≥∑
=

n

i
if           (70) 

Decision maker may need to cover some of the strategic buses in the system. To do this if 

the number of PMUs is not sufficient for full system observability, then only the i th element of 

the constraint Equation (70) could be added to the optimization problem to make sure bus i is 

covered. The model can be modified to incorporate both zero-injection buses (Dua et al., 2008) 

and flow measurement cases (Kavasseri and Srinivasan, 2011) for further reduction in the total 

number of PMUs needed for full system observability. The model developed in Dua et al.( 2008) 

has been modified for the proposed max covering problem to incorporate zero-injection buses in 

the system. The reliability evaluation portion of the reliability-based placement model presented 

in Khiabani et al. (2012a) is used to evaluate the reliability of observability of the power system.  
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3.5.2. Discussions and Computational Results 

The proposed maximum covering placement model is solved for the IEEE 14, 30, 57, 118 

and 2383 bus standard test systems. The observability constraint was added where complete 

power system observability was possible. The reliability of the placement solutions has been 

calculated. Results are reported with PMU reliabilities assumed to be 0.99 for all cases for both 

incorporating zero-injection buses and without zero-injection buses. The comparison plots have 

been done using Matlab. A Mathematica code using a ‘For’ loop has been applied for all sets of 

possible inputs for all IEEE standard bus systems. 

The results for IEEE 14, 30, 57, 118 and 2383 standard bus systems are shown in Tables 

3.24-3.28 for the number of PMUs given, the total coverage, and overall system reliability of 

observability achieved. The overall system reliability of observability has been calculated after 

and based on the optimization problem results and the PMU reliabilities was assumed to be 99%. 

The 99% level of PMU reliability assumed since PMU reliabilities are near 98%. 

  Table 3.24. Max covering placement results for IEEE 14 test system. 

#PMU Cover R 

1 6 0 

2 11 0 

3 16 0 

4 18 0.89 
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Table 3.25. Max covering placement results for IEEE 30 test system. 

#PMU Cover R 

1 8 0 

2 15 0 

3 21 0 

4 26 0 

5 31 0 

6 36 0 

7 41 0 

8 45 0 

9 49 0 

10 52 0.83 
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Table 3.26. Max covering placement results for IEEE 57 test system. 

#PMU Cover R 

1 7 0 

2 14 0 

3 20 0 

4 26 0 

5 31 0 

6 36 0 

7 41 0 

8 46 0 

9 51 0 

10 56 0 

11 60 0 

12 64 0 

13 68 0 

14 72 0 

15 76 0 

16 80 0 

17 69 0.62 
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Table 3.27. Max covering placement results for IEEE 118 test system. 

#PMU Cover R #PMU Cover R 

1 10 0 17 119 0 

2 19 0 18 125 0 

3 27 0 19 131 0 

4 35 0 20 137 0 

5 42 0 21 143 0 

6 49 0 22 148 0 

7 56 0 23 153 0 

8 63 0 24 158 0 

9 70 0 25 163 0 

10 77 0 26 168 0 

11 83 0 27 173 0 

12 89 0 28 178 0 

13 95 0 29 183 0 

14 101 0 30 188 0 

15 107 0 31 193 0 

16 113 0 32 164 0.45 
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Table 3.28. Max covering placement results for IEEE 2383 test system. 

#PMU Cover R 

1 10 0 

2 20 0 

3 30 0 

4 40 0 

5 50 0 

6 60 0 

7 69 0 

8 78 0 

9 87 0 

10 96 0 

11 105 0 

12 114 0 

13 123 0 

14 132 0 

...
 

...
 

...
 

...
 

...
 

...
 

745 3714 0 

746 3288 3.90705*10^-8 
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The results for IEEE 14, 30, 57, 118 standard bus systems has been summarized and 

shown in Figures 3.5 and 3.6. The figures show the cover, number of buses with installed PMUs  

and the evaluated reliability. The results for IEEE 2383 standard bus system have been shown in 

Figure 3.7.   

 

Figure 3.5. Comparison of coverage between IEEE 14 and 30 bus systems. 
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Figure 3.6. Comparison of coverage between IEEE 57 and 118 bus systems. 

 

Figure 3.7. Coverage for IEEE 2383 bus system. 
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The results for IEEE 14, 30, 57, 118 standard bus systems considering the zero-injection 

buses are shown in Tables 3.29-3.32 for the number of PMUs given, the total coverage, and 

overall system reliability achieved. The overall system reliability has been calculated after and 

based on the optimization problem results, and the PMU reliabilities was assumed to be 99%. 

 

Table 3.29. Max covering placement results for IEEE14 incorporating zero-injection buses. 

#PMU Cover R 

1 7 0 

2 13 0 

3 15 0.88 

 
Table 3.30. Max covering placement results for IEEE30 incorporating zero-injection buses. 

#PMU Cover R 

1 13 0 

2 23 0 

3 33 0 

4 43 0 

5 52 0 

6 61 0 

7 57 0.86 
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Table 3.31. Max covering placement results for IEEE57 incorporating zero-injection buses. 

#PMU Cover R 

1 9 0 

2 18 0 

3 26 0 

4 33 0 

5 40 0 

6 47 0 

7 54 0 

8 61 0 

9 68 0 

10 75 0 

11 82 0 

12 88 0 

13 72 0.65 
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Table 3.32. Max covering placement results for IEEE118 incorporating zero-injection buses. 

#PMU Cover R #PMU Cover R 

1 12 0 15 144 0 

2 24 0 16 152 0 

3 36 0 17 160 0 

4 46 0 18 167 0 

5 56 0 19 174 0 

6 66 0 20 181 0 

7 76 0 21 188 0 

8 85 0 22 195 0 

9 94 0 23 202 0 

10 103 0 24 209 0 

11 112 0 25 215 0 

12 120 0 26 221 0 

13 128 0 27 227 0 

14 136 0 28 184 0.47 

 

 

The results for IEEE 14, 30, 57, and 118 standard bus systems considering zero-injection 

buses have been summarized and shown in Figures 3.8 and 3.9. The figures show the cover, 

number of buses with installed PMUs, and the evaluated reliability.  
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Figure 3.8. Comparison of coverage between IEEE 14 and 30 bus systems. 

 

Figure 3.9. Comparison of coverage between IEEE 57 and 118 bus systems. 



 

79 

The usefulness of the proposed max covering optimization model was investigated, 

comparing the results to the PMU placement results in Kavasseri and Srinivasan (2011). 

Comparison results are shown in Table 3.33 for IEEE 14, 30, 57 and 118 bus systems. The 

comparison of the results shows that the models reach the same output with minor difference. 

However, the proposed model has less complexity and also can consider the cases where 

reaching the full observability is not feasible. This ability of the proposed model will empower 

the decision maker through availability of more options for the cases that involve limited 

resources. Almost each section in output is the same in Table 3.33 except the placement buses 

for the PMUs, this is trivial for the placement problems because of the existence of the 

alternative optimal solutions. However each alternative optimal solution will result in a different 

reliability level. This can be seen in Table 3.33 for the IEEE 30 bus system. 

To further investigate the usefulness of the proposed model, we compared the results to 

the reliability-based placement results in Khiabani et al. (2012a). Since the results for the 

Khiabani et al. (2012a) analyzed for PMU reliability of 0.95 therefore for this comparison only 

we run the max covering model and evaluate the reliability with the PMU reliability of 0.95 with 

the selection of results reaching the overall system reliability of at least 0.90. Comparison results 

are shown in Table 3.34 reaching the minimum system wide reliability level of 0.90 and in Table 

3.35 with the same amount of PMUs for IEEE 14, 30, 57 and 118 bus systems. The results show 

that the comparison between reliability-based placement model and the max cover model derived 

from optimization procedure result in more cover as compared to reliability-based placement in 

the literature. On the other hand the reliability-based placement model reached higher system 

wide reliability levels compared to the max covering problem. 
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Table 3.33. Comparison of placement results with traditional PMU placement results. 

IEEE 
System 

Max cover PMU placement 

Placement #PMU R Placement #PMU R 

14 2,6,7,9 4 0.89 2,6,7,9 4 0.89 

30 
2,4,6,9,10,
12,15,18,2

5,27 
10 0.83 

1, 2, 6, 9, 10, 
12, 15, 18, 

25, 27 
10 0.84 

57 

1,4,9,13,1
9,22,25,26
,29,32,36,
39,41,45,4

7,50,53 

17 0.62 

1, 4, 9, 10, 
19, 22, 25, 
26, 29, 32, 
36, 39, 41, 
44, 46, 49, 

53 

17 0.62 

118 

3,5,9,12,1
5,17,20,23
,28,30,34,
37,40,45,4
9,52,56,62
,64,68,71,
75,77,80,8
5,86,90,94
,101,105,1

10,114 

32 0.45 

1, 5, 9, 12, 
15, 17, 21, 
25, 28, 34, 
37, 40, 45, 

49, 52, 
56,62, 63,68, 
70, 71, 76, 
77, 80, 85, 
86, 90, 94, 
101, 105, 
110, 114 

32 0.44 
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Table 3.34. Comparison of placement results with RBP with R=0.90. 

IEEE 
System 

Max cover Reliability-based placement 

#PMU Cover R #PMU Cover R 

14 11 44 0.94 9 37 0.98 

30 28 108 0.90 21 85 0.95 

57 55 203 0.90 57 207 0.99 

118 117 474 0.93 115 470 0.99 

 

Table 3.35. Comparison of placement results with RBP with same number of PMUs. 

IEEE 
System 

Max cover Reliability-based placement 

#PMU Cover R #PMU Cover R 
14 9 38 0.85 9 37 0.98 

30 21 88 0.69 21 85 0.95 

57 57 207 0.99 57 207 0.99 

118 115 470 0.84 115 470 0.99 
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3.6. Genetic Algorithm Approach for PMU Placement 

The reliability-based PMU placement model is able to solve small size problems such as 

IEEE 14, 30, 57 and 118. However, it can also solve some large size problems but not in a timely 

manner. As the problem size increases the complexity of the system increases exponentially 

rendering the problem mathematically unsolvable. As noted earlier, the PMU placement model is 

NP-hard and cannot be solved using exact algorithm for larger size problems. Furthermore, the 

addition of the second objective, maximization of reliability of observability makes it even more 

complex as it brings non-linearity into the mathematical model. Therefore, in this section we 

developed a genetic algorithm for multi-objective optimal PMU placement problem in order to 

increase the scalability of the model and solve the large size problems. The genetic algorithm 

approach is based on binary encoding and consists of two main objectives to tackle large scale 

problems (Khiabani et al., 2013c). 

3.6.1. Genetic Algorithm Model 

We proposed a multi-objective optimal PMU placement model using a genetic algorithm 

based on binary encoding. The model consists of two main and contradicting objectives--that is 

maximization of reliability of observability of system and minimization of the number of PMUs 

and is designed to be able to tackle large scale problem instances. The model ensures full system 

observability and aims to reach a pre-specified level of reliability of observability while placing 

the minimal number of PMUs. The model is solved for the IEEE 14, 30, 57, 118, and 2383 bus 

systems. The genetic algorithm consists of four objectives: 1) Ensuring the overall system 

observability; 2) Placing the minimum number of PMUs in the system; 3) Reaching the pre-

specified system level of reliability of observability; and 4) Maximizing of the overall system 
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reliability of observability. The weights associated with the objectives are derived from both the 

relative importance given to the goals and computation runs. Clearly, incorporating the reliability 

into the model will dictate placement of additional PMUs as compared to traditional PMU 

placement problems and, eventually, results in more costlier solution. This extra cost is the cost 

of achieving a higher reliability level.  

The objectives of PMU minimization and reliability of observability maximization are in 

conflict since the number of PMUs must increase to reach higher levels of reliability of 

observability. To resolve the conflict, relative weights should be assigned to each objective to 

combine two conflicting objective functions into a single objective function. The multi-objective 

programming model can be formulated as follows: 
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1

21

1

             (70) 

where R is given in (18), Rdesired is the desired system wide reliability of observability 

level, xi  is the  binary decision variable  indicating whether or not a PMU placed on  bus i, and 

wi defines the weight associated to each objective. Note that the sum of wi is equal to one, and N 

is the total number of buses in the system. The weights in (70) are derived both from the relative 

importance given to the objectives and pilot runs. The scales are different for R and x, therefore 

the model in (70) has been standardized by dividing the total number of buses without PMUs by  

the total number of buses in the system for the second objective to assign the value between 0 

and 1, so that the two objectives can be represented by a compatible scale.  



 

84 

In the multi-objective PMU placement problem, we develop a genetic algorithm based 

approach. The algorithm basically mimics the process of natural evolution using the inheritance 

and adaptive processes. In addition to those, the mutation and crossover operators are also used.  

In this approach, a binary encoding is implemented for the genetic algorithm. The 

presence of the PMU at a particular bus is represented with a binary number. If the PMU is 

placed on that particular bus, then the corresponding value of the bus is set to 1 indicating that a 

PMU is placed. Otherwise, it takes the value of 0. Below is an example representation of a 

particular solution for the genetic algorithm in a 10-node system. 

1 0 1 0 1 0 0 0 1 0  

Based on this particular representation, the PMUs are placed on the nodes 1, 3, 5, and 9. The 

genetic algorithm begins with the generation of the initial population. 

For creating the solutions that constitute the initial population, the first step is creating 

random numbers that are uniformly distributed between 0 and the bus size. Based on this 

number, a reference threshold value is calculated by dividing this randomly generated number by 

the number of buses. For each bus, a random number that is uniformly distributed between 0 and 

1 is generated to decide whether a PMU is placed on a particular bus. If the generated number is 

less than the threshold value, then a PMU is placed in the corresponding bus, otherwise no PMU 

is placed. For example, in a 30 bus system, suppose that initially, number 18 is generated. That 

corresponds to the threshold value of 0.6. Suppose that for the first bus the generated random 

number turns out to be 0.65. Since the number is larger than 0.6, a PMU is not placed on that 

bus. This will be repeated for each bus in the system to obtain the first randomly generated 

solution. This procedure is repeated for each solution in the initial pool. Table 3.36 provides the 
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parameters associated with the genetic algorithm. Note that some values are divided by the 

separator (i.e., |), which means that for the 14, 30, 57, and 118 bus systems, the first value 

applies, whereas for 2383 bus system, the second value is utilized. To cite an instance, for the 

2383 bus system, a population size of 500 is used, whereas for the others, a population size of 60 

is used.  

 

Table 3.36. Genetic algorithm parameters. 

Parameter Values 

 

Population Size 

 

60|500 

Number  of offsprings created in each generation 30|74 

Number of population members selected by the  elitist selection rule 10|50 

Number of population members selected by the  roulette wheel selection 50|450 

Mutation probability 0.01 

Generation Limit 5000|15000 

ω1 4/9 

ω2 1/10 

ω3 2/5 

ω4 1/18 
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After the initial population generation, a corresponding fitness function is calculated. The 

fitness function is calculated based on several factors:  

• Number of covered buses divided by total number of buses (i.e., 1θ ) 

• Number of buses that no PMU is placed divided by total number of buses (i.e., 2θ ) 

• Whether the system threshold reliability level is exceeded or not (i.e.,3θ -a binary value, 0 

if not exceeded, 1 otherwise) 

• Overall system reliability level (4θ ) 

Note that all θ values are between 0 and 1. This standardization helps us develop the 

corresponding weights for each factor. Based on these criteria, the following fitness function is 

devised:  

i
i

iθωµ ∑
=

=
1

             (71) 

Where  µ  is the corresponding fitness function value of the particular solution and iω is 

the corresponding weights associated with the particular criterion which is listed above.   

After the fitness value for each solution is calculated, the solutions are ranked according 

to the descending order of fitness values. Based on these values, using roulette wheel selection 

scheme, the chromosomes that will undergo reproduction will be selected. Based on the roulette 

wheel selection scheme, the chromosomes having higher fitness function value, have higher 

probability of being selected for producing offsprings. For producing offspring, two different 

approaches are followed depending on the length of the chromosome (i.e., number of buses). For 
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14, 30, and 57bus systems, a traditional two-point crossover operator is applied. For the 118 and 

2383 bus systems, a four-point traditional crossover operator is utilized.    

In a two-point traditional crossover operator, two crossover sites are randomly selected 

and the part of the chromosome between those sites is exchanged among the parents. An 

example of the traditional two-point crossover is as follows:  

Parent 1: 1  0  0  0 | 1  0  0 | 0  0  0  1  0  0  0   

Parent 2: 0  0  1  1 | 0  1  0 | 1  0  1  0  1  0  1   

Offspring 1:  1  0  0  0  | 0  1  0 | 0  0  0  1  0  0  0   

Offspring 2:  0  0  1  1  | 1  0  0 | 1  0  1  0  1  0  1   

For 118 and 2383 bus systems, four-point crossover operator is applied. In the four-point 

crossover operator, four crossover sites are randomly selected. In that scheme, the bits between 

the first and the second, and the third and fourth sites are exchanged among the parents to 

produce offsprings. In addition to two-point crossoveroperator (Weile and Michielssen, 1997), 

the efficiency of multi-point crossover operator especially for the chromosome representations 

involving long strings has been analyzed in the literature as well (De Jong and Spears, 1992). An 

example of the four-point crossover is as follows: 

Parent 1: 1  0  0 | 0  1  0  0 | 0  0  0 | 1  0  0  0   

Parent 2: 0  0  1 | 1  0  1  0 | 1  0  1 | 0  1  0  1   

Offspring 1: 1  0  0 | 1  0  1  0 | 0  0  0 | 0  1  0  1   

Offspring 2: 0  0  1 | 0  1  0  0 | 1  0  1 | 1  0  0  0   
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After offsprings are created, the mutation operator is applied for the offpsrings. Bit by bit 

consideration is provided for the mutation. A random number uniformly distributed between 0 

and 1 is generated for each bus in the chromosome representation. If the generated number is 

smaller than the mutation probability, then the corresponding bit is switched from 0 to 1 or 1 to 

0, thus placing or removing the PMU on the corresponding bus.   

After all the offpsprings are created using the crossover operator and modified using 

mutation operator, the existing population and created offsprings are collected in a single pool 

and ranked based on the descending order of the fitness function which is presented in 

Equation(71). A combination of the elitist and roulette wheel selection is applied for forming the 

new generation. Again a distinction is made based on the problem size. For 14, 30, 57, and 118 

bus systems, the top 10 chromosomes are selected and included directly in the new generation 

using the elitist generation scheme. For the 2383 bus system, this number is set to be 50. The 

remaining chromosomes are selected based on the roulette wheel selection rule. After forming 

the new generation, the same sequence of procedures are applied (i.e., selection for producing 

offsprings, crossover, mutation, and the selection for the new generation) on the new generation, 

and this is repeated until the generation limit is reached (i.e., 15,000 for 2383 bus systems, 5000 

for the rest).  

3.6.2. Discussions and Computational Results 

The proposed genetic algorithm is tested for the IEEE 14, 30, 57, 118, and 2383 bus 

standard test systems. The code is developed on Matlab 2010a platform and run on a computer 

having 2.66 GHz Intel(R) Core™ 2 Quad CPU with memory of 2.96 GB. The results are 

reported with Rdesired  parameter set to be 0.90 for all system types. 
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A summary of the results for the all standard IEEE types is presented in Tables 3.37, 

3.38, and 3.39 for individual PMU reliability of 0.95, 0.99, and 0.99833 respectively. The IEEE 

2383 test system is missing in Table 3.37 since the test system is not able to reach the desired 

reliability of observability of 0.90 with the PMU reliability of 0.95. The PMU reliabilities of 0.99 

and 0.99833 are achieved for the reliability of observability of 0.90 in IEEE 2383 standard bus 

system. The required number of PMUs and achieved overall system reliability of observability 

are calculated for PMU reliabilities of 0.95, 0.99, and 0.99833. In practice, PMU reliabilities are 

reported around the value of 0.99 (Yang Wang et al., 2009b).   

 
Table 3.37. Genetic algorithm placement results for PMU reliability of 0.95. 

IEEE System #PMU Reliability Achieved 

14 8 0.9329 

30 20 0.9142 

57 35 0.901 

118 82 0.9009 

 

Table 3.38. Genetic algorithm placement results for PMU reliability of 0.99. 

IEEE System #PMU Reliability Achieved 

14 5 0.9315 

30 13 0.9123 

57 27 0.9004 

118 59 0.907 

2383 2250 0.9003 
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Table 3.39. Genetic algorithm placement results for PMU reliability of 0.99833. 

IEEE System #PMU Reliability Achieved 

14 4 0.9818 

30 10 0.9736 

57 17 0.9244 

118 35 0.9045 

2383 1993 0.9004 

 

The PMU locations for the standard IEEE test systems for PMU reliability of 0.95, 0.99, 

and 0.99833 are shown in Tables 3.40, 3.41, and 3.42 respectively. It should be noted that for the 

IEEE 2383 test system, non-PMU buses rather than PMU-buses are presented for the purpose of 

brevity. 

Based on the results shown in Tables 3.37, 3.38 and 3.39, it is clear that with the increase 

in the bus size, higher redundancy level in terms of the number of PMUs is required to maintain 

the desired reliability of observability levels since overall reliability is calculated by 

multiplication of the individual bus reliabilities.  
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Table 3.40. Genetic algorithm locations for PMU reliability of 0.95. 

IEEE 
System 

PMU Locations 

14 2,4,5,6,7,9,11,13 

30 1, 2, 3, 5, 6, 9, 10, 11, 12, 13, 15, 16, 18, 19, 22, 24, 25, 27, 28 

57 
1, 2, 4, 6, 9, 10, 11, 12, 15, 18, 19, 21, 22, 24, 25, 27, 28, 29, 30, 32, 33, 34, 36, 37, 39, 41, 

44, 45, 46, 47, 49, 50, 53, 54, 56 

118 

1, 2, 5, 6, 7, 9, 10, 11, 12, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 34, 35, 36, 37, 
40, 42, 43, 44, 45, 46, 47, 49, 51, 52, 53, 54, 56, 57, 59, 61, 62, 64, 65, 66, 68, 70, 71, 73, 75, 

76, 77, 78, 79, 80, 83, 84, 85, 86, 87, 89, 90, 91, 92, 94, 96, 100, 101, 105, 106, 108, 109, 
110, 111, 112, 114, 115, 116, 117, 118 

 

Table 3.41. Genetic algorithm locations for PMU reliability of 0.99. 

IEEE System PMU Locations 

14 2,6,7,9,13 

30 1, 2, 6, 9, 10, 12, 15, 16, 19, 24, 25, 27, 30 

57 
1, 4, 6, 9, 12, 15, 19, 21, 22, 24, 26, 27, 29, 30, 32, 34, 36, 37, 41, 45, 46, 47, 49, 

50, 52, 54, 56 

118 
1, 5, 7, 9, 10, 11, 12, 15, 17, 19, 21, 22, 24, 26, 27, 28, 30, 32, 34, 36, 37, 40, 44, 
45, 46, 49, 51, 52, 54, 56, 57, 59, 62, 64, 65, 66, 68, 70, 71, 75, 77, 78, 80, 83, 

85, 86, 89, 90, 92, 94, 96, 100, 101, 105, 106, 109, 110, 114, 118 

2383 

All buses except {17, 25, 26, 27, 31, 36, 52, 54, 59, 69, 79, 95, 98, 115, 120, 129, 
160, 165, 166, 199, 203, 208, 221, 234, 283, 286, 318, 323, 347, 349, 376, 378, 
413, 417, 431, 439, 443, 465, 497, 503, 549, 561, 565, 570, 590, 596, 598, 604, 
610, 618, 621, 643, 653, 702, 725, 770, 771, 772, 775, 785, 804, 808, 838, 890, 
893, 918, 921, 926, 947, 1055, 1058, 1066, 1088, 1089, 1130, 1143, 1169, 1193, 
1196, 1215, 1220, 1223, 1266, 1344, 1372, 1380, 1398, 1411, 1445, 1479, 1500, 
1501, 1527, 1536, 1552, 1566, 1579, 1582, 1638, 1658, 1663, 1674, 1702, 1704, 
1724, 1742, 1752, 1826, 1833, 1838, 1863, 1881, 1902, 1950, 1960, 1962, 1965, 
1971, 2014, 2020, 2037, 2038, 2097, 2138, 2155, 2156, 2194, 2249, 2321, 2344, 
2352, 2357, 2380} 
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Table 3.42. Genetic algorithm locations for PMU reliability of 0.99833. 

IEEE 
Syste

m 
PMU Locations 

14 2,6,7,9 

30 1, 2, 6, 9, 10, 12, 15, 19, 25, 27 

57 1, 4,  9, 10, 20, 22, 25, 27, 29, 32, 36, 39, 41, 45, 46, 49, 54 

118 
3, 5, 9, 12, 15, 17, 21, 23, 27, 29, 30, 32, 34, 37, 40, 45, 49, 51, 54, 56, 62, 64, 68, 71, 75, 

77, 80, 85, 86, 89, 92, 96, 100. 105, 110 

2383 

All buses except {5, 10, 11, 14, 15, 20, 21, 24, 26, 27, 29, 35, 36, 41, 44, 46, 47, 59, 60, 66, 
70, 75, 76, 80, 83, 87, 88, 91, 98, 101, 110, 115, 117, 123, 126, 131, 143, 144, 150, 154, 
159, 162, 163, 166, 167, 169, 170, 172, 182, 187, 194, 195, 210, 211, 212, 220, 222, 226, 
234, 237, 238, 244, 253, 254, 256, 269, 270, 272, 281, 282, 283, 290, 294, 296, 298, 303, 
304, 307, 308, 317, 324, 333, 340, 342, 349, 363, 370, 372, 381, 389, 400, 410, 412, 417, 
420, 426, 427, 430, 431, 432, 439, 449, 451, 452, 457, 478, 484, 487, 489, 491, 506, 523, 
532, 534, 536, 537, 544, 547, 553, 559, 564, 567, 570, 572, 575, 579, 581, 584, 595, 596, 
603, 605, 607, 609, 616, 617, 627, 634, 636, 637, 640, 641, 651, 655, 665, 668, 670, 684, 
687, 704, 705, 709, 714, 729, 731, 732, 735, 739, 746, 748, 749, 757, 773, 779, 782, 789, 
793, 794, 813, 823, 830, 834, 840, 842, 865, 866, 888, 890, 899, 900, 917, 924, 932, 960, 
963, 964, 975, 982, 994, 1000, 1001, 1003, 1016, 1021, 1042, 1045, 1062, 1074, 1077, 
1079, 1098, 1105, 1117, 1134, 1142, 1144, 1155, 1164, 1169, 1173, 1189, 1194, 1195, 
1204, 1207, 1210, 1223, 1227, 1235, 1236, 1252, 1262, 1264, 1276, 1291, 1292, 1312, 
1320, 1326, 1328, 1329, 1339, 1342, 1343, 1344, 1363, 1372, 1373, 1374, 1375, 1377, 
1390, 1394, 1395, 1401, 1403, 1411, 1417, 1420, 1421, 1427, 1444, 1450, 1459, 1466, 
1471, 1478, 1491, 1492, 1495, 1501, 1515, 1517, 1526, 1549, 1553, 1557, 1560, 1563, 
1565, 1566, 1567, 1577, 1583, 1586, 1591, 1598, 1606, 1612, 1613, 1634, 1644, 1646, 
1650, 1659, 1670, 1683, 1700, 1702, 1705, 1709, 1715, 1718, 1720, 1737, 1743, 1744, 
1745, 1752, 1759, 1762, 1775, 1777, 1778, 1788, 1791, 1795, 1801, 1815, 1819, 1831, 
1838, 1847, 1848, 1853, 1869, 1891, 1897, 1911, 1916, 1924, 1932, 1935, 1942, 1945, 
1947, 1956, 1959, 1960, 1965, 1966, 1967, 1983, 1988, 1989, 1990, 1992, 1995, 2000, 
2014, 2039, 2073, 2087, 2088, 2090, 2093, 2097, 2107, 2123, 2126, 2127, 2128, 2136, 
2147, 2165, 2171, 2180, 2188, 2193, 2198, 2220, 2227, 2229, 2238, 2242, 2250, 2254, 
2264, 2265, 2267, 2285, 2292, 2304, 2309, 2316, 2319, 2322, 2326, 2328, 2331, 2335, 

2336, 2341, 2344, 2353, 2359, 2362, 2368, 2375, 2376} 
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Figure 3.10 provides the evolution of the quality of the best solution found during the 

computation with respect to generations based on individual PMU reliability of 95% for GA. The 

left y-axis indicates the number of PMUs, whereas the right y-axis indicates the overall score and 

the total system reliability. The x-axis indicates the generation number. Note that throughout the 

generations, the number of PMUs is decreasing, whereas the overall score that is provided in 

Equation(71) is increasing. In terms of the total system reliability, there is a fluctuation. Initially, 

the system reliability at some generations exceeds the level of 0.96, but throughout the 

generations, it converges to the target level of 0.9, whereas the number of PMUs is decreasing 

initially from the 114 to 82. Better PMU placement, results in fewer PMUs which leads to less 

costly PMU placement strategies, can retain relatively the same level of reliability of 

observability. Another interesting point to note is that after approximately a generation number 

of 2750, the population converges and no other changes are observed afterwards.  

 

Figure 3.10. Evolution of the quality of the incumbent solution provided by the GA for 
individual PMU reliability of 95% for IEEE 118 bus system. 
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CHAPTER 4. DISSCUSSIONS 

The effectiveness of the proposed approaches is further investigated by comparing the 

results of the Genetic Algorithm (GA) presented in Khiabani et al. (2013c), the Reliability-Based 

Placement (RBP) approach presented in Khiabani et al. (2012a), Goal Programming Based 

(GPB) approach in Khiabani et al. (2013a), and Optimal PMU Placement (OPP) results in 

Kavasseri and Srinivasan (2011). Results for the case of p=0.99 with minimum desired system 

wide reliability of observability level of 0.90 (i.e., Rdesired) are presented in Table 4.1 for IEEE 

14, 30, 57, 118, and 2383 standard bus systems. 

Table 4.1. Comparison of results for PMU reliability of 0.99. 

 #PMU  R 

IEEE System GA GPB OPP RBP GA GPB OPP RBP 

14 5 5 4 9 0.93 0.93 0.89 0.98 

30 13 14 10 21 0.91 0.93 0.84 0.95 

57 27 29 17 57 0.90 0.92 0.62 0.99 

118 59 71 32 115 0.90 0.91 0.44 0.99 

2383 2250 N/A N/A N/A 0.90 N/A N/A N/A 

 

The mentioned approaches fail to solve IEEE 2383 bus system with reliability 

considerations (Kavasseri and Srinivasan, 2011, Khiabani et al., 2012a, and Khiabani et al., 

2013a). Not only the GA approach is able to solve the 2383 bus-system problems but also 

performs better in terms of solution quality as compared to other approaches for solving large 

scale systems. 
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Comparison of GA and OPP based on Table 4.1 indicates that although the GA approach 

presents the solutions with more PMUs as compared to OPP, the solution achieves a higher 

system wide reliability of observability level. Only for the case of IEEE 14 bus system, the OPP 

performs slightly worse than the GA based-solution by placing 4 PMUs and almost reaching the 

minimum required reliability of 0.9 as compared to GA based-solution. However, in the case of 

IEEE 118 bus system, the system requires 27 additional PMUs to increase the reliability of 

observability from 44% to the desired target value of 90%. It should be noted that in the 

conventional PMU placement problems, loss of a PMU would result in loss of the observability 

of the majority of the neighboring buses and, therefore, loss of observability of the system. 

Hence, such placements are not fault tolerant.   

Also comparing the GA approach to RBP and GPB, it is clear that the former 

outperforms the latter ones. Since the proposed GA model reaches the desired reliability of 

observability level of 90%  with approximately half the number of PMUs that would be required 

for the RBP based solution, using the GA based approach might lead to significant cost savings. 

To cite an instance, GA based solution for the 118 bus system specifies 12 fewer PMUs as 

compared to GBP. For the case of comparison of GA with the RBP, the difference is much more 

significant, i.e., 56 PMUs. Although RBP and GPB based approaches provide higher level of 

reliability of observability at the expense of higher number of PMUs, they are considered to be 

overkill especially when the target level is set to be 0.9. GA based approach reaches the desired 

level of reliability with fewer PMUs.  Hence, the proposed GA model not only is able to solve 

the large scale problems but also gives a better solution for the majority of the small size 

problems as compared to the two other reliability-based approaches by using the least number of 

PMUs given the desired level of reliability of observability. The GA based approach provides the 
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solution with a closer value of system reliability to the target level as compared to the other 

approaches. 

The comparison of the effect of PMU reliability on the multi-objective placement has 

been shown in Figure 4.1. From the figure, as expected, it can be seen that higher level of 

individual PMU reliability results in fewer PMUs required to reach the desired overall system 

reliability of observability and the effect increases as the size of the system grows. The 

secondary y-axis indicates the IEEE 2383 bus system values only. 

 

 

  

Figure 4.1. Effect of PMU reliability on the different IEEE standard test systems. 
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These findings are helpful to understand the effectiveness of the proposed models. 

However to further investigate the effectiveness of the presented approaches, lets analyze the 

results cost wise. Damir Novosel (2007) reported the cost of the blackouts for the customers and 

society in general as well as for the power companies and emphasized on the importance of the 

reliability of the power grid. Although large-scale blackouts are rare, they carry enormous costs 

and consequences for the customers, society, and power companies. The research reported an 

estimated society cost of six billion dollars for August 14, 2003 blackout in the US and Canada. 

They reported typical PMU deployment, High-end hardware, Engineering and Training and 

installation costs of $47,000, $30,000 and $25,000 respectively. 

Abbasy and Ismail (2009) reported the cost of PMUs to be approximately between 

$30,000 and $40,000. They described that the prices would vary based on many factors such as 

number of channels (terminals), GPS antenna connection, power connection, station ground 

connection, current transformers (CT)  and potential transformers (PT) connections. Miller 

(2010) reported reduction in the PMU prices, with the new cost of $14,000 on average with the 

installation costs which typically exceed $20,000. Because of the trend of decreasingcost of 

PMUs, a cost of $30,000 in total for a PMU and installation was assumed.  Table 4.2 shows the 

costs associated with the placement results in Table 4.1. Based on the results, OPP approach is 

cost effective, yet does not consider reliability of power systems.  

By not considering the grids reliability, OPP may result in immense blackout costs in the 

long term. Therefore considering both the reliability aspect and cost of the power system, GA is 

the best scenario.  Figures 4.2 and 4.3 show the effect of the OPP, GA, GPB and RBP 

approaches on the PMU placement costs for the IEEE 14, 30, 57 and 118 bus systems.  
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Table 4.2. Comparison of placement prices for IEEE systems. 

IEEE System GA GPB OPP RBP 

14 $150,000 $150,000 $120,000 $270,000 

30 $390,000 $420,000 $300,000 $630,000 

57 $810,000 $870,000 $510,000 $1,710,000 

118 $1,770,000 $2,130,000 $960,000 $3,450,000 

 

As mentioned before, prior studies that have noted the importance of the reliability of the 

smart grid emphasized on the long term cost effectiveness associated with the reliability of the 

smart grid. Therefore the models developed in this dissertation will be beneficial and useful for 

the power customers, power producers, transmission companies, distributed energy resources, 

and electric utility companies. The avoidance of the cost of blackouts on society and the 

economy would far outweigh the costs invested on the reliability of the grid.  
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Figure 4.2. Effect of the placement approach on the price of IEEE 14 & 30 test systems. 

  

Figure 4.3. Effect of the placement approach on the price of IEEE 57 & 118 test systems. 
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CHAPTER 5. CONCLUSIONS 

This dissertation presents modeling and solving multi-objective PMU placement 

approach for power system observability. Efficient and reliable WAMS is crucial to preventing 

outages and cascading failures in the smart grid. Since PMUs are the critical parts of the WAMS, 

the questions of the arrangement and number of PMUs to use and place in order to assess risk 

must be addressed. 

The key idea is in the consideration of system and PMU reliabilities in order to determine 

different redundancy levels at different buses. The main contribution of this dissertation was to 

bring reliability considerations into PMU placement in large and complex power systems. The 

consideration of targeting overall system reliability along with individual PMU reliability 

provides much better understanding and insight while determining redundancy level at each node 

or bus.  The concept of reliability of observability was introduced to incorporate and connect 

PMU reliabilities to power network observability.   

In this study a reliability-based two-stage optimization model was proposed (Khiabani et 

al., 2012a). The model was then improved by developing a multi-objective optimization 

approach (Khiabani et al., 2012b) and a goal programming multi-objective optimization 

formulation (Khiabani et al., 2013a) to fix the identical level of the redundancy levels for all 

buses in Khiabani et al. (2012a) relaxing the existence of the limited number of PMUs. In 

Khiabani et al. (2013b) the PMU placement problem was considered from a maximum coverage 

standpoint, since in practice the resources are limited due to the high cost of PMUs and their 

installation. 
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Previous reliability-based approaches fail to provide a solution for IEEE-2383 bus 

system; therefore, a genetic algorithm approach was proposed. In this approach, two conflicting 

objectives of exceeding a target reliability of system observability and minimizing the number of 

PMUs were tackled. The proposed algorithm is compared to other approaches using the IEEE-

14, 30, 57, 118, and 2383 bus power systems with different individual PMU reliabilities. 

Compared to the traditional optimal PMU placement methods, the proposed approaches are 

superior in terms of reliability of system observability. As compared to OPP based approach, the 

GA approach significantly improved the system reliability of observability  from ~45% to more 

than ~90% for IEEE 118 bus system.  

In short, the proposed GA based solution methodology provides a balanced approach for 

providing the desired level of system reliability of observability with the optimal or near-optimal 

number of PMUs as compared to other approaches.   The proposed approach is the most 

balanced approach in satisfying both objectives of reaching the level of the desired reliability of 

system observability and minimizing the total number of PMUs placed, as compared to other 

reliability-based approaches. At the same time, it also considers the reliability perspective of the 

system that is neglected by traditional PMU placement approaches by placing the minimum 

additional number of PMUs at the expense of reduced reliability where the failure of one PMU 

might result in the total loss of system observability.  

 Although the inclusion of system reliability constraint results in the placement of more 

PMUs, this improves reliability of observability significantly. However, this increase in the 

number of PMUs can be managed by ensuring the usage of highly reliable PMUs. These models 

are very effective in computing placement solutions with the desired levels of system reliability, 

given the reliability of individual PMUs. This connection between observability and system 
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reliability could be potentially useful in evaluating the reliability of placement scenarios in large 

and complex electric grids.  

This dissertation presents and highlights the reliability-based PMU placement. However 

in the future the reliability of the WAMS can further be investigated with the inclusion of the 

real time PMU failure rates, PDC failure rates, etc. in the multi-objective model and 

investigating the placement scenario considering the reliability of observability target of the 

WAMS. Further studies with the focus on economic analysis of the WAMS could also be 

considered. A comprehensive model considering cost of reliability, blackouts, PMUs of different 

channel types, PDCs, etc. could be developed and the number and locations of the PMUs could 

be determined incorporating the long run blackout costs. In this model the goal will be to 

maximize the overall power system reliability with the limited number of PMUs dictated by the 

economic factors. In addition incorporating the conventional flow measurements into the multi-

objective model is suggested. This model will be helpful in reducing the investment needed to 

reach the predefined level of reliability of observability. The conventional flow measurements 

incorporation would be helpful since fewer number of PMUs will be used, given that the flow 

measurement costs are 1/3 of the PMU cost. In that scenario, the PMU and flow measurement 

reliabilities and the desired system wide reliability of observability would be factored as inputs 

into the model. In the case of existing power systems with the conventional flow measurements 

already installed, the model could be used to find the required number of PMUs and their 

arrangement.  

In future investigations, it might be possible to incorporate the lines and their reliabilities 

into the model to develop a comprehensive multi objective model.  
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