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ABSTRACT

Agriculture is increasingly driven by massive data, and some challenges are not

covered by existing statistics, machine learning, or data mining techniques. Many

crops are characterized not only by yield but also by quality measures, such as sugar

content and sugar lost to molasses for sugarbeets. The set of features furthermore

contains time series data, such as rainfall and periodic satellite imagery. This study

examines the problem of identifying relationships in a complex data set, in which there

are vectors (multiple attributes) for both the explanatory and response conditions.

This problem can be characterized as a vector-vector pattern mining problem. The

proposed algorithm uses one of the vector representations to determine the neighbors

of a randomly picked instance, and then tests the randomness of that subset within

the other vector representation. Compared to conventional approaches, the vector-

vector algorithm shows better performance for distinguishing existing relationships.
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CHAPTER 1. INTRODUCTION

Agricultural applications provide a rich and complex data source, and existing

data mining techniques are insufficient for addressing the complexity. Farmers are

not interested in just the yield they achieve as quantified by the weight of the

crop, but also in its quality, such as protein content for wheat, or sugar content

and the sugar lost to molasses in sugarbeets. That means that crop production

performance in sugarbeets can be measured with a three-dimensional vector. Weather

significantly affects crop development, and the associated time series can also be

viewed as a multi-dimensional vector, possibly after applying dimensionality reduction

techniques. Satellites and hand held sensors can be used to periodically measure the

’greenness’ of plant canopies, to get a series of snap shots of the apparent plant

health. Many statistical, machine learning, and data mining techniques exist that

use multi-dimensional vector data for predicting a single categorical or continuous

attribute, but they lack the ability of testing relationships of vector data to other

vector data. Yet, in order to find interesting patterns and understand dimensionality

reduction and other preprocessing questions, it is important to use the full available

information.

1.1. Problem Statement

The agricultural data used in this study, in contrast to many data mining

problems, has multiple characteristics described by multiple dimensions. In the

agricultural domain, it is critical to observe that for some crops the importance

of quality may be similar to that of quantity. For sugarbeets, increasing the sugar

content (quality) may be even more important than one would estimate by calculating

the total weight of sugar gained from the yield (quantity): sugarbeets that are low in

sugar have a correspondingly higher water content, and energy has to be expended
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Figure 1. Toy data suggesting a potential pattern to be found in
agricultural data. In the left panel, each line represents the yield,
sugar, and sugar lost to molasses measured in a single field. In the
right panel, each line represents monthly rainfall totals estimated for a
particular field.

to remove that water. Conversely, just looking at sugar content alone would be

insufficient, as a crop with high sugar content but very poor yield may not be worth the

harvesting expense. Toy values for these 3 performance metrics are plotted in the left

panel of Figure 1. The right panel shows toy data for a time series of monthly rainfall

totals. In order to make more accurate end of season crop performance predictions, it

would be interesting to know if there is a relationship between particular performance

results and rainfall patterns.

Traditional statistics and machine learning techniques are able to capture re-

lationships between vector data and one-dimensional categorical or continuous at-

tributes. When attempting to relate two vectors to each other, it is important not to

lose the multi-dimensional nature of the problem. Figure 2 illustrates the problem of

determining significant relationships based on one-dimensional projections. In many

situations, data is normally distributed (or relationships are very weak) with respect

2



to any single attribute. A projection to either axis shows both the × and the ◦ data

points as having a normal distribution. In two dimensions, however, it can easily be

seen that × and ◦ data points are not evenly distributed. This kind of setting is

well-known in classification problems. Many techniques use multi-dimensional input

to predict a value or class label for new instances. Using information from multiple

attributes (a vector) is a proven method for finding interesting relationships in a

complex data set.

When approaching a dataset as shown in Figure 1, the key characteristic to

notice is that there is a multi-dimensional vector of attributes describing both the

explanatory variables of rainfall and the response variables of crop performance.

Meeting the challenge of a multi-dimensional vector of explanatory attributes can be

met with existing methods. Yet the techniques would be limited in their application

to the crop performance attributes. One approach could be to build a model for each

of the performance attributes individually, e.g. predict the Yield (Y) based on the

monthly rainfall after planting. Alternatively, the three dimensions could be projected

into a single dimension. With either approach, information is discarded, and the risk

of missing patterns as shown in Figure 2 is raised. Techniques have been developed

to take into account all of the information in vectors of explanatory variables to find

patterns, there is a similar need to develop techniques that can find patterns in a

search space described by a multi-dimensional vector of explanatory and a second

multi-dimensional vector of response attributes.

Figure 3 illustrates the solution. The two left panels can be viewed as the

vector of crop performance data, with one quantity and one quality attribute. The

two right panels can represent the vector of rainfall data, simplified for this example

to 3 attributes. Typical statistical and data mining techniques could describe either

response variable a or b in terms of explanatory attributes 1, 2, and 3. The proposed

3
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Figure 3. Conceptual question to answer using vector-
vector pattern mining. If a set of instances is similar
based on attributes a and b, will those same instances
show similarity based on attributes 1, 2, and 3? In this
toy data, there is a clear pattern in the top row but not
in the bottom row.

algorithm seeks to find a relationship that is based on both a and b. Instead

of seeking to evaluate the relationship between each individual response attribute

and the explanatory attributes, an intermediate classification is first determined

by selecting a set of instances that are similar according both attributes a and b.

Then, using that classification as a new attribute, the distribution of data described

by the explanatory attributes is evaluated according to vector-item pattern mining

techniques that were adapted from [5, 6].
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CHAPTER 2. RELATED WORKS

From the data mining perspective, finding a pattern in a single group of at-

tributes is related to frequent pattern mining. Frequent pattern mining algorithms

were originally developed for item sets [1] and were then generalized to include

continuous data [3, 23, 19, 4]. These techniques do not, however, consider two groups

of continuous attributes jointly. Recent data mining techniques have generalized such

approaches to complex feature spaces that include time series and other multivariate

data. One such technique is vector-item pattern mining [5, 6]. Item sets are used

to define a subset of the vector data, and the distribution of the vector data in that

subset are then compared with the full set of instances or with those instances that

do not have the item. Similar approaches in bioinformatics are known as gene set

enrichment analysis [27, 26], but lack the full multi-dimensional treatment.

A standard approach to comparing distributions is the Kullback–Leibler di-

vergence, which was used in [6]. The current work also includes an approach that

calculates the KL divergence based on nearest neighbors [32, 18], because of the

availability of highly optimized code. The contribution of the current work is an

extension to data mining of patterns between vectors.

An important problem in agriculture is the prediction of yield and other response

variables. The traditional statistics approach is to fit the data to a linear model,

using some set of available explanatory attributes. Normalized Difference Vegetation

Index (NDVI) and surface temperature have been used to predict county and state

wide yields [9]. Previous studies have found that using data mining techniques that

deal well with a vector of explanatory variables can lead to more successful yield

predictions [20]. Neural networks, decision trees, and support vector regression have

all been applied to predicting crop yields. Significant work has also been directed

towards dynamic models of crop growth [24, 25]. Dynamic models focus on predicting

6



the growth of individual plants, based on an input of many parameters expected to

have an impact. To the best of our knowledge, previous work has focused on the

ability to predict a total yield without regard to crop quality. The current work

provides a method to include both quantity and quality measures in the pattern

finding effort.

In the context of lengthy time series, much work has been done to appropriately

reduce the number of dimensions before applying analysis techniques. In the case

of rainfall, this typically involves a total rainfall for the growing season or counting

the number of rainy days in a season. Additional statistics, such as Precipitation

Concentration Index can be used to capture intra-seasonal variability [2, 16, 15]. But

such summary numbers still lose information about when during the growing season

the precipitation occurred. It has already been demonstrated that the availability of

more data from over the course of the growing season can improve the yield predictions

from neural networks [21]. Furthermore, it has been demonstrated that more accurate

rainfall predictions can improve dynamic crop model yield predictions, as water stress

(indicated in part by wet and dry periods) has a larger impact on plant growth then

seasonal rainfall totals [7]. The benefit of the proposed approach is that the impact

of different time series processing strategies can be quantitatively compared.

Another approach frequently used to assess plant health is to calculate a vege-

tation index, such as the Normalized Difference Vegetation Index (NDVI) [17]. NDVI

can be obtained on a periodic basis from satellites and on demand using sensors or

aerial flyovers. It has been demonstrated that NDVI provides an accurate assessment

of nitrogen uptake in sugar beets. When tops are left as green fertilizer, the measured

NDVI of the sugar beet canopy can be used to determine nitrogen credit for the

next year’s crop [10]. As with rainfall, aggregating NDVI values can provide more

information than using just single data points. The sum of NDVI over a specific

7



portion of the growing season was useful in linear models predicting county and state

wide wheat yields [8]. Others have focused on what time period during the growing

season provides the best predictions. One study found that for wheat yields, NDVI

at growth stage 7 was better predictor then at NDVI at growth stage 10 [11]. As with

rainfall, these efforts have attempted to determine a single attribute that is most

affective for future predictions. Using the proposed pattern mining technique will

allow additional information to be considered when testing for relationships.
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CHAPTER 3. CONCEPTS

In data mining, it is common to consider multiple attributes simultaneously.

From a mathematical standpoint, these attributes are treated as dimensions of a

vector. The current work considers continuous vector spaces, i.e. Dy attributes

yj ∈ R, 0 ≤ j < Dy are considered as one “vector” attribute y with domain dom(y) =

RDy . Vector representations are standard in clustering problems and, when combined

with a categorical class label, in classification problems. Vector-item pattern mining

approaches [6] look for patterns between vector attributes and item data. Item data

can be represented as binary attributes B(i), 0 ≤ i < M that represent presence or

absence of an item.

In this work, item data is defined as identifying those vectors x with domain

dom(x) = RDx that are within a neighborhood of a specific vector xi

B(i) = H(d− |x− xi|) (1)

where H is the Heaviside step function that is 1 when the argument is positive and

0 when negative. The cutoff d is selected such that the relative support of item i has

a predefined value, and that support is varied between 0.01 and 0.99.

For a given cutoff d, the KL-divergence is calculated for the subset Pi of vectors

y for which B(i) = 1 with regard to the subset Qi for which B(i) = 0. This definition

allows defining one binary attribute for each instance in the database. That means

that statements can be made about individual instances, rather than only about

vectors as defined over the entire data set. It also means that for any pair of vector

attributes x and y, there are as many KL divergence values defined, for a single

threshold, as there are instance under consideration. The ability of deriving many

KL divergence values is used for testing the algorithm and for evaluating parameters:

9



Even for vectors that are relatively weakly related, it can be expected that KL

divergences are typically larger than for randomly selected subsets.

If the vector pair is strongly related, it is expected that the KL divergence of

vectors P with regard to Q is always larger than for a random subset. If the vector

pair is not as strongly related, it is expected that some of the KL divergency values

of randomly selected vectors may be larger than for vectors that are defined based on

a neighborhood of a point xi. Using the KL divergences as a measure of confidence

that a relationship exists, the area under the receiver operating characteristic curve

(ROC) is calculated for the set of KL divergences. If a strong relationship exists,

it is expected that area should approach 1. The larger the ROC, the stronger the

relationship is expected to be.

In [5] it was shown that the significance of classification results can be used

as an alternative to a comparison of distributions. In other words, the ability of

predicting B(i) from P and Q is an alternative route towards a confidence measure

that there is a relationship between vector attributes x and y. The information

gain of the contingency table of the prediction is analogous to the KL divergence,

although mathematically the two are not fully equivalent, in that the information

gain compares the information with knowledge of the classification result with the

information without that knowledge, while the KL divergence tests the distribution

of one subset (B(i) = 1) against the other (B(i) = 0).

Both KL-divergence and classification-based approaches use the full vector in-

formation in x and y. Typical traditional statistics approaches compare distributions

between individual continuous attributes. Such approaches miss information such

as represented in Figure 4. After briefly discussing some terminology, we will then

consider the practical implications of these three types of approaches.

10
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Figure 4. Examples analogous to Figure 3 but using real data: On the left side yield,
sugar and sugar lost to molasses are plotted with a subset of related records being
rendered in black. The grey background indicates the range of data for the remaining
records. On the right hand side the monthly rainfall totals are plotted with the
same subset again rendered in black. The distribution comparison indicated a strong
pattern for the top row and a weak pattern for the bottom row.
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3.1. Terminology

When labeling each of the vectors throughout this paper, the terms explanatory

and response are often used. Explanatory variables are also commonly referred to as

independent variables. In the two applications, rainfall and INSEY are considered as

the explanatory variable. For the vector-vector algorithm, the vector of explanatory

variables is used for the distribution comparison step. Response variables are also

commonly referred to as dependent variables. For the vector-vector algorithm, the

vector of response variables is used for the initial neighborhood selection step. This

usage was selected since the length of our response variables vector was shorter than

the length of the explanatory variables. The nearest neighbor selection according to

Euclidean distance is more suitable for lower numbers of variables.

The precipitation data used for this study includes all forms of precipitation,

e.g. rain, snow. For the growing season in North Dakota, the precipitation is typically

rainfall. Thus precipitation and rainfall are often used interchangeably throughout

this paper.

3.2. Distribution Comparisons

The first step is to carry out a neighborhood selection in the space of vectors

x. In a normalized, low-dimensional vector space, Euclidean distance is an effective

means to determine similarity. The crop performance data that will be used in

the evaluation consists of only 3 dimensions (yield, sugar, sugar lost to molasses).

Thus, neighborhood membership determined by selecting the nearest neighbors as

determined by Euclidean distance is a suitable choice for identifying a subset of

instances.

A critical aspect of the vector-vector pattern mining algorithm is to compare

the distribution of vector data associated with a subset of the instances (P ) with the

12



remainder of the instances (Q). The subset (P ) has already been defined based on

the first vector of data. Examining the data in a second vector of attributes, it must

be determined if there is a difference between the subset of instances P and Q. A

number of approaches are possible, the following were evaluated:

3.2.1. KL Divergence

The Kullback–Leibler (KL) divergence can be used to evaluate the difference

between two distributions. A standard KL divergence [13] has been calculated using

10 neighbors. A Voronoi cell based KL divergence has also been calculated.

DKL(P ||Q) =

∫ ∞
−∞

ln(
dP

dQ
) dP (2)

Since most of our calculations are done for relatively sparse data, the following

alternative approach towards modeling the probability distributions that are used in

the KL divergence can be considered: The probability is modeled as being constant

within Voronoi cells that are seeded by those instances that have a particular item.

Figure 5 shows the Voronoi construction. The Voronoi cell for seed S is defined to

contain all those instances that are closer to S than to any other seed. Probabilities

are based on the total number of points in each cell. In practice, this means that, for

every instance that does not have the item, the closest instance with item is being

determined. The probability of instances with the item is taken to be 1 divided by

the volume of the cell. Figure 5 shows how Voronoi cells may have widely differing

numbers of instances when the distribution of instances with the item differs from

the overall distribution.

3.2.2. Information Gain

Treating the membership in the subset (P) as a class label (as determined

by the first data vector), now a multi-dimensional prediction model can be used

to determine if the data in the second vector could be used to predict the class
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Figure 5. Voronoi construction for estimating prob-
abilities in the KL divergence.

label. If such a predictive model is possible, it has been demonstrated that there

is an underlying pattern between the two vectors. The strength of the predictive

model can be evaluated by calculating the information gain (entropy - conditional

entropy, Equation 5) from the confusion matrix. The confusions matrix tallies the true

positives (TP), false positives (FP), false negatives (FN), and true negatives (TN).

Many evaluations of the confusions matrix are possible (e.g. Accuracy, Precision),

information gain was selected since it takes into account all 4 values of the contingency

matrix and it also is analogous to the KL divergence. For this study a Naive Bayes

model [14] and a Nearest Neighbors (k=10) [31] model are used for making the

predictions. 2/3 of the data were used for the model generation (or as a basis for

future predictions) and the remaining 1/3 of the data were used for testing.
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H(T ) =−
(
TP + FN

total

)
log

(
TP + FN

total

)
−
(
TN + FP

total

)
log

(
TN + FP

total

) (3)

H(T |a) =− TP log

(
TP

TP + FP

)
− FP log

(
FP

TP + FP

)
− FN log

(
FN

FN + TN

)
− TN log

(
TN

FN + TN

) (4)

Information Gain = H(T )−H(T |a) (5)

3.2.3. Single Attribute

For evaluating the importance of using multi-dimensional information, two stan-

dard one-dimensional statistics tests commonly used for distribution comparisons

have been selected for comparison purposes. At each time step in the time series

vector, a Welch Two Sample t-test and a Two-sample Kolmogorov-Smirnov (KS) test

are used to compare the distribution between the P and Q subsets. The Welch t-

test is related to the Student t-test, with the addition that the variances of the two

populations are not assumed to be equal. It is a test to determine if the means of

the populations are equal. The KS-test is a non-parametric test, and compares the

distribution of the two populations, thus it is sensitive to more than just the mean

value of the two populations. After evaluating the statistical test at each time step,

the mean p-value is used to evaluate the effectiveness of the test.
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3.3. Evaluation Technique

3.3.1. Receiver Operating Characteristic

The final step in the process is to determine if a pattern has been distinguished

by the test. A number of concerns must be met. First, the single attribute distribution

comparison methods produce a p-value, but with the number of variables being tested

the risk of over fitting the data is high. Second, the multi-dimensional distribution

comparisons do not have a standard confidence evaluation. Finally, the results from

each of the 6 methods need to be compared with each other. A typical approach

to answer the question of pattern presence is to determine if the result could arise

from a random set of data. The described neighborhood selection and distribution

comparison is repeated for a number of starting instances. Next, a set of baseline

comparison data is generated. This is done by creating a ”neighborhood” of random

instances, then using this subset for the distribution comparison step. The process

using random neighborhoods is repeated the same number of times as it was repeated

for the calculated neighborhoods. If the distribution comparison provides similar

results for both the original groups and these ”random” groups, there is no evidence

of an underlying pattern. To make this determination, the area under the receiver

operating characteristic curve (ROC) is calculated. Both groups of distribution

comparisons (some from nearest neighbor and some from random neighborhoods)

are now ordered together and the ROC calculated. If no pattern is present or can not

be detected by the algorithm or distribution comparison, the nearest neighbor and

random results will be randomly ordered, and the ROC will approach 0.5. An ROC

approaching 1 indicates neighborhood defined by nearest neighbors always showed

a stronger distribution difference as compared to random neighborhood selection.

Intermediate values indicate that a pattern was found only for a portion of the query

points or the distribution comparison test was unable to detect it in every case. As
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different data preparation and algorithm parameters were varied, the changes in the

ROC were used to evaluate the effect of the parameter.

3.3.2. Linear Regression

A practical method to test the usefulness of information discovered using the

vector-vector pattern mining technique is to check if it improves the accuracy of future

predictions. A linear model was built to predict yield as a function of other weather

affects (e.g. growing degree days) and farm management decisions (e.g. cover crops,

ridge tilling, starter fertilizer). This baseline model did not include in season rainfall

or satellite data. To test the effect of any particular variable under study, additional

models were built. For each particular value in the experiment, 5 models were built.

For each of the 5 models, a different year of data was left out of the training data.

Typically, the correlation coefficient (R2) values is used to evaluate the linear model.

This gives a measurement of the accuracy for each particular field. For sugarbeet

farming, it is also important to know what the total yield will be in the growers’

co-op, since the processing plant capacity may limit the weight of beets that can be

harvested. The overall accuracy (Equation 6) of the linear model in predicting the

total sugarbeet harvest is calculated by totaling the predicting tons harvested from

each field for the year left out of the model building. The mean of the 5 accuracy

values is then used to evaluate the experiment.

Accuracy = 1− |actual regional yield− predicted regional yield|
actual regional yield

(6)
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CHAPTER 4. ALGORITHM

The goal of our vector-vector pattern mining algorithm is to relate a vector of

continuous explanatory variables to a vector of continuous response variables. The

first major step is to define a neighborhood (P ) based on the Euclidean distance

of one vector of data. The second major step is to compare between P and Q (the

remaining instances) the distribution of the second vector of data. After the algorithm

is complete, the results are evaluated.

Algorithm 1 was implemented in R [30], an open source programming language

typically used for statistics calculations.

The first step is to start with a selection of seed instances from the overall data

set. For each of these seed instances, a neighborhood of interest (P ) is identified.

For this implementation, the nearest neighbors based on Euclidean distance of the

3 response variables was used, except for the evaluation of the effect of response

variables on the effectiveness of the algorithm. The size of P was held constant at 10%

of the total instances, except for the portion of the study where the neighborhood size

was examined. The remaining instances are assigned to Q. Next vector-item pattern

mining techniques are applied, using the rainfall time series as the vector data and

membership in P as the item data. For purposes of evaluating the robustness of the

proposed algorithm, a variety of tests are used to compare the distribution of the

explanatory variables (rainfall time series) between P and Q. After making these

calculations for each of the seed instances, the process is repeated for random data.

Instead of using Euclidean distance to find nearest neighbors, the subset P was defined

by taking a random sample from the data set. The total number of points in P was

held constant for both parts of the analysis. The distribution comparisons were then

calculated based on the random subsets.
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Algorithm 1: Vector-Vector Pattern Mining Algorithm

Data: U /* all instances */

Data: seeds /* starting instances */

Data: response /* crop performance */

Data: explanatory /* time series, rainfall or INSEY */

Result: dist comp /* distribution comparison */

1 foreach seed ∈ seeds do
2 Pi = NearestNeighbor(response,seed);
3 Qi = U \ Pi;
4 foreach test ∈ tests do
5 distribution comptest = evaluate(test, Pi, Qi, explanatory);

6 for i = 1 to |seeds| do
7 randomPi = randomSubset(response);
8 Qi = U \ randomPi;
9 foreach test ∈ tests do

10 distribution comptest = evaluate(test, randomPi, Qi, explanatory);

11 return dist comps

The algorithm steps are illustrated in Figure 6. The first panel renders all

of the data in the crop performance vector as grey lines. Each line indicates one

instance, connecting the yield, sugar, and sugar lost to molasses reported for a

particular sugarbeet field. The dashed line is the seed instance randomly selected

for one iteration through the first loop of the algorithm. The second panel adds the

information calculated during step 2 of the algorithm, the black lines indicate the

particular sugarbeet fields with crop performance that are the most similar to the

seed instance. Those lines are the instances assigned to the set P. In the last row, the

vector of rainfall data is now considered, and is shown in the right hand panel. Data

for the instances in the set P are again rendered in black; the grey lines indicate the

remaining data that are assigned to the set Q. A pattern is visually apparent; the

black lines are not evenly distributed among the grey lines. Step 5 of the algorithm

numerically compares the distribution between P and Q.
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Figure 6. Illustration of the steps in the vector-vector algorithm. Performance
Attributes are Yield (Y), Sugar (S), and Sugar Lost to Molasses (SLM). Top row:
Step 1, a particular seed instance is randomly chosen. Second row: Step 2, the
nearest neighbors of the seed instance, according to the crop performance (response)
attributes. Third row: Step 5, the right panel highlights the corresponding instances
that will be used for the distribution comparison.
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CHAPTER 5. DATA PREPARATION

Before proceeding to the results, the data set used for the study will be de-

scribed and the processing steps required to bring data from many disparate sources

together into a cohesive format that can be easily examined will be discussed. The

vector-vector pattern mining algorithm was applied to a data set compiled to study

sugarbeet agriculture in the Red River Valley. This includes confidential data from

American Crystal Sugar Company augmented by public data from the U.S. Geological

Survey Landsat satellites and the National Oceanic and Atmospheric Administration

(National Weather Service). The data was collected from 2007 to 2011. The spatial

range covers the Red River Valley of the North, in eastern North Dakota and north

western Minnesota. The precipitation data and the rest of the public data have been

preprocessed and associated to the correct fields using GRASS [29] GIS software.

It is important to recognize that instances from a particular growing season

are highly correlated, due to experiencing similar weather patterns. If training data

is selected at random from the entire dataset, any patterns found can typically be

attributed to the hidden variable of the calendar year. This difficulty has been resolved

using two different approaches. For the vector-vector pattern mining algorithm, if

multiple years are used at one time, the neighborhood P is dominated by instances

from a single growing season. To avoid this, the vector-vector approach is applied

to only single years of data at a time. The technique is applied separately to each

growing season, and the results are averaged together. A second approach is used

when making future predictions with the linear model. Data is from an entire growing

season is withheld from the training data, and then use the withheld year’s data as

testing data. This procedure is also repeated for each growing season, and the results

averaged together.
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5.1. Field Data

Substantial data about their fields and their growing practices are collected

by farmers. The American Crystal Sugar Company has compiled information from

member farmers, including the geographical location of each farm. Some attributes

are categorical in nature, such as what seeds were planted, the previous year’s crop,

and the soil type. Other attributes are continuous, such as the fertilizers applied,

acreage harvested, and actual nitrogen levels measured in the soil. For vector-vector

pattern mining, three continuous attributes pertaining to the crop performance are

used. Yield is a measurement of total mass harvested from the field. Sugar is a

measurement of how much of the yield is sugar content. Sugar lost to molasses is a

measurement of the sugar lost during the beet processing. High yield, high sugar, and

low sugar lost to molasses are the desirable outcomes. All farm data is at field level

resolution. For purposes of this study, each attribute was z-normalized to allow for

direct use of Euclidean distances between the records in the vector of crop performance

attributes. Additional grower practice variables were selected and used for the linear

model. Since that portion of the data is confidential, the specific variables used in

the base line linear model are deliberately left unstated.

5.2. Rainfall Data

Weather data pertaining to the study area is publicly available from the National

Weather Service (NWS) of the National Oceanic and Atmospheric Administration.

Precipitation data [22] is preprocessed by the NWS using radar estimates biased

with rain gauge measurements. The data is provided as a grid of vector points with

data points roughly 4km apart. Figure 7 highlights that the sugarbeet fields are

much smaller than the grid spacing. The vector format does not lend itself well to

large scale distance calculations: to find the rainfall vector point that is the nearest

22



Figure 7. Physical scale of the precipitation and field
data. The × represent precipitation data interspersed
among sugar beet fields.

neighbor to a particular field, the distance between the field and every vector point

must be calculated. Converting the vector information to a raster format (illustrated

by Figure 8) provides for faster querying. The entire study area is broken into pixels

on a resolution to contain one rainfall vector point, and each pixel is assigned the

corresponding precipitation value. After this conversion, precipitation can be directly

queried based on the latitude and longitude of any particular sugar beet field.

Each map downloaded from the NWS provides the daily total precipitation,

so the above process is repeated for each day of the study period. The daily total

precipitation values are used as the base time series in our work. The daily rainfall

for each particular field was time shifted such that day zero of the series aligned with

the day the field was planted. Additional dimension reduction was studied by further

aggregating the data to weekly, monthly or other sized bins. When studying other

23



Figure 8. Conversion of the National Weather Service precipitation data from
vector to raster data. The figure shows a small portion of the study area.
The left panel plots the vector data points, after zero rainfall points have been
removed. The center panel overlays the vector data over the raster data. The
right panel depicts the final raster.

aspects of the algorithm, a consistent reduction to monthly precipitation totals was

used.

5.3. Satellite Imagery

Satellite imagery is available from the Landsat program, image tiles 30026

and 30027 from the Landsat 5 and Landsat 7 satellites [28] have been used. The

images were processed using standard techniques available in GRASS GIS, including

converting the raw data to reflectance, identifying cloud cover, calculating the NDVI

according to Equation 7, merging the two tiles, and excluding the cloud cover. Mean

NDVI values were calculated for each field area, excluding the outer 60m perimeter

(2 pixels) to avoid edge effects. This pre-processing work was completed by other

members of our research group. Figure 9 gives a visual representation of the study

area including demarkation of sugarbeet fields.
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Figure 9. Calculated Normalized Difference Vegetation Index (NDVI) over a portion
of the study area. Sugarbeet fields have been marked with black borders. Darker
green corresponds to higher NDVI values. The large white areas are cloud cover
when the Landsat image was taken.
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NDVI = 1− near infrared− visible red

near infrared + visible red
(7)

Next, the time series data was compiled for use in this study. Each of the

Landsat 5 and 7 satellites passes over a particular location on 16 day intervals. Both

series were used for this study, so the time series is at roughly weekly intervals. The

time series for each field has numerous gaps, when clouds covered the field when the

satellite image was taken. Any field with 10 or fewer NDVI values in the time series

was excluded from the study. For the remaining instances, missing values were filled

in by linear interpolation. If the missing value was at the beginning or end of the

series, the nearest existing value was used for extrapolation. The time series of NDVI

values for each field was constructed starting from the day the field was planted.

To compare NDVI values taken at different times of the year, and from different

growing seasons, the timing of the image must be accounted for. In general, NDVI

will increase at the beginning of the year. With a dry fall, the NDVI my decline

towards the end of a growing season. To compare values from different times in the

growing season, two approaches are generally used. The easiest approach is to divide

the NDVI value by the number of days between planting and when the image was

taken. A more nuanced approach takes into account the accumulated heat the crop

has experiences. This provides for an estimation of the plant growth stage. The

accumulated heat is referred to as the Growing Degree Days (GDD). The GDD are

calculated for each day, and then totaled for the period of interest. GDD is based on

the minimum and maximum daily temperatures, with some crop dependent baseline

parameters. Temperatures are adjusted according to equations 8 and 9, and then

GDD is calculated according to equation 10. All temperatures are in units of degree

Fahrenheit.
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Tmin = Max(Actual Daily Min Temperature, 34 ◦F ) (8)

Tmax = Min(Actual Daily Max Temperature, 86 ◦F ) (9)

GDD ◦F =
Tmax + Tmin

2
− 34 ◦F (10)

For this study, daily temperature data was prepared to allow GDD to be

calculated at any point during the season. The final step in the NDVI processing

is to account for the plant growth stage at the time of the image, as estimated by

the GDD. This value is often referred to as the In-Season Estimate of Yield (INSEY)

value. INSEY is calculated by dividing the NDVI value by the number of growing

degree days the field has accumulated from planting to the day the satellite image

was taken, according to equation 11.

INSEY =
NDVI

GDD
(11)
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CHAPTER 6. RESULTS - RAINFALL

The results of the vector-vector pattern mining algorithm have been evaluated

by comparing its performance against single variable tests. In this section, a vi-

sualization of the patterns discovered with the algorithm has been provided. To

better understand the accuracy of the algorithm the performance is evaluated while

varying the number of attributes in the vectors as well as the size of the neighborhood

subset. This includes using single attributes to confirm that using multiple attributes

is advantageous. The speed impact of considering multi-dimensional data is also

addressed. Finally, the findings are applied to linear models predicting future harvests

to determine if the model accuracy could be improved.

6.1. Example Pattern

Figure 10 shows an example pattern that can be found for the data set. In this

example some portions of the rainfall time series can be linked to a specific growing

result and not be relevant to others. In the left panel the black lines correspond to a

neighborhood of instances having high yield with low sugar content and low amounts

of sugar lost to molasses. The first 2 months of rainfall exhibit a tight range, indicating

this portion of the time series was important for high yielding crops that were also

low in sugar. In the right panel, the black lines correspond to a neighborhood of

similar instances having average yield with high sugar content and average sugar lost

to molasses. The 3rd and 4th months show a tight range, indicating this portion

of the time series correlates to high sugar content with average yield. Those same

periods of rainfall exhibit no patterns for the other crop performance. These patterns

only become apparent when the multi-variate nature of both the rainfall and the crop

performance is considered.
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Figure 10. Examples of rainfall trends corresponding to different crop performance
regimes. The grey area indicates the range of all rainfall data for the year, while
the black lines in each plot are for instances with similar crop performance. The two
panels highlight the rainfall associated with two different crop performance outcomes.

6.2. Accuracy

The premise of the vector-vector pattern mining algorithm is that examining

multiple dimensions for both explanatory and response variables will provide a basis

for discovering interesting patterns. We next will examine the effect of varying the

number of dimensions (attributes) included in each of these vectors.

The neighborhood around each starting instance is defined by taking the nearest

neighbors as measured by the Euclidean distance of the normalized crop performance

metrics (yield, sugar, sugar lost to molasses). To confirm if using all 3 crop per-

formance attributes was advantageous, all other parameters are held constant and

repeated the analysis using alternate data for the Euclidean distance calculation.

Using each attribute individually as well as each combination of 2 attributes was

evaluated. Results for each dimensionality were averaged and are shown in Figure 11.

All distribution comparisons show stronger correlations as the number of attributes

used to determine the neighborhood increases. By considering both quantity and

quality of the crops, it is possible to group similar instances together. Figure 11 also
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Figure 11. Evaluation of the impact of the length of the vector used
to define the neighborhood (P ) of similar crop performances. The
response dimensions are combinations of yield, sugar, and sugar lost
to molasses. A data series for each of the distribution comparison
methods described in Section 3.2 is shown.

demonstrates that the divergence based distributions comparisons show the strongest

performance, while the single attribute distribution comparison methods show the

weakest performance.

An important decision for time series exploration is to what extent the dimen-

sionality should be reduced. A balance should be made between reducing processing

time without discarding too much information. As an additional consideration in

the case of rainfall in the agricultural domain, it is expected that 1” of rain x days

after planting would have the same effect as rainfall x+1 days after planting. Thus

some amount of smoothing will be required to ensure a difference of one day does

not create noise that would obscure patterns. Attribute reduction of the rainfall time
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Figure 12. Evaluation of the impact on accuracy of the length of the
vector used for the distribution comparison. Explanatory dimensions
indicate the number of time steps the rainfall time series was reduced
to.

series is accomplished by using subtotals for increasing larger time periods. The time

periods ranged from 3 months (2 attributes) to 1 day (197 attributes). As shown

in Figure 12, for all distribution comparison methods (except the Kullback–Leibler

Voronoi method which was effective for all situations), some attribute reduction was

helpful to reduce the noise found in daily data. Conversely, on the other extreme,

over reduction led to a deterioration of performance.

The effect of the size of the neighborhood (P ) assigned to each of the query

points was examined. For a static set of 20 neighborhood starting seeds, the algorithm

was run 11 times, with varying neighborhood proportions. Results are in Figure 13.

Very small or large neighborhoods (1% and 99%) resulted in lower ROC scores.

The discrimination of the KL divergence method more quickly approached perfect.
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Figure 13. Influence of the number of nearest neighbors assigned to the
neighborhood (P ) of similar crop performance.

Information gain from the Naive Bayes and nearest neighbor methods improved as the

split was closer to 50/50. Single variable methods never consistently reached perfect,

indicating that using a distribution comparison that could account for the entire time

series at one time was more effective in finding patterns. It is important to note

that neighborhood size will change the type of pattern that is discovered. Very small

neighborhoods show poor results as there are many other variables not included in

the analysis (e.g. temperature, nitrogen), thus there is still a large amount of noise.

As the neighborhood size increases past 50%, the more typically performing fields are

compared against the outliers.
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6.3. Speed

The speed impact of including additional dimensions in the time series data

as well as how the algorithm would scale with an increasing number of instances is

next described. For both experiments, the times reported are for 100 repetitions [12]

of the distribution comparison calculation. The initial neighborhood selection using

nearest neighbors will not depend on the number of attributes in the second vector,

and will scale as O(log n) with the number of instances being examined. 10% of the

instances were assigned to the neighborhood (P ). A value of k=10 neighbors was

used for the KL divergence and NN algorithms. 1/3 of the instances were reserved

for testing the naive Bayes and nearest neighbors distribution comparison methods.

The KL Voronoi distribution comparison method has been recently developed and

not yet optimized for speed. It currently exhibits the slowest performance of all the

methods used.

The timeseries of rainfall data was reduced by varying degrees, as described in

Section 6.2. This data is then used as the second vector in the algorithm, evaluating

the distribution comparison. A dataset was used with 3558 instances and the same

length of vectors as in Figure 12. The resulting performance times are shown in

Figure 14. As would be expected, increasing the number of dimensions used in

the distribution comparison increases the run time. For a medium range (6-26)

of dimensions, however, the speed impact is less than a single order of magnitude

larger as compared to using two dimensions. Note that this intersects well with the

accuracy of the algorithm. Adding enough dimensions to reach the most accurate

area of performance does not impose a prohibitive time penalty.

The number of instances available in our data set is large relative to what is

normally available in the agricultural domain, yet is certainly small compared to many

data mining applications. Running times for this dataset on commodity hardware are
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Figure 14. Evaluation of the impact on speed of the length of the vector used for the
distribution comparison. Explanatory dimensions indicate the number of time steps
the rainfall time series was reduced to.
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Figure 15. Time impact of scaling each distribution comparison to larger data sets.

acceptably fast for our application. Figure 15 demonstrates the scaling of the running

time relative to the number of records in the data set. The single attribute t-test

(based on the means of the two populations) has the best scaling, but was earlier

demonstrated to provide the least information. The other single attribute test (KS-

test) scales at a similar pace as the multi-dimensional distribution comparisons. In

situations where the distribution is important (such as distribution of rainfall during

a growing season), using a KL divergence comparison does not impose a significant

speed penalty compared to a single dimension distribution test.

35



6.4. Predictions

The patterns and trends described in the previous sections are interesting on

their own merit, but using the observations to improve future yield predictions pro-

vides a concrete benefit for the work. Future predictions have so far focused on the

yield, so in this portion of the study only the yield portion of the crop performance

vector is considered.

Adding rainfall data to an existing linear prediction model for sugar beet yield

increases the accuracy of future predictions. As discussed in Section 6.2 and shown

in Figure 12, the strength of the patterns between crop performance and rainfall were

stronger for intermediate dimension reduction. The mean ROC of the four divergence

and information gain based distribution comparisons is plotted in Figure 16. Two

additional pieces of information have been added. First, data is added about the corre-

lation coefficient (R2) characterizing the linear model that includes the corresponding

rainfall time series. Finally, the mean accuracy of predicting a held back year of data

is added. The calculated correlation coefficient continues to increase (improve) as

the number of dimensions increases. This goes contrary to our expectations, since

the rainfall occurring at day 141 after planting should not have a different effect as

compared to similar rainfall at day 142 after planting. This intuition is validated

by the prediction results for holding back one year of data from the training, the

accuracy when testing it first improves as more dimensions are added, but then begins

to decrease as the highest dimensions are reached. This trend is matched in the ROC

trend, indicating that the pattern strength measured by the vector-vector algorithm

illuminates the physical situation.
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Figure 16. Impact of dimension reduction on apparent effectiveness.
The correlation coefficient (R2) measures the linear model fit on a field
by field basis, the ROC measures the strength of the vector-vector
patterns, and accuracy is the linear model performance when predicting
total tonnage harvested in the study region in one year.
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CHAPTER 7. RESULTS - INSEY

A portion of the analysis has been repeated on an independent vector of time

series data, the In-Season Estimate of Yield (INSEY). The INSEY value is calculated

from the Normalized Difference Vegetation Index (NDVI) and the Growing Degree

Days (GDD). GDD itself is calculated from the minimum and maximum daily tem-

peratures experienced by the crop. In this section we will report on some example

patterns as well as an accuracy evaluation to determine the length and starting point

of the INSEY time series that exhibits the strongest patterns.

7.1. Example Pattern

Figure 17 shows an example pattern that can be found in the data set. The

left panel highlights the instances with above average yield and high sugar content.

A strong INSEY value is observed for most of the growing season. The right panel

highlights instances with below average yield and sugar content. As expected, a lower

INSEY values is observed for most of the growing season.

7.2. Accuracy

Validating the premise that using additional attributes in the distribution com-

parison is helpful was explored with rainfall data in Figure 12. The same question is

examined again using the INSEY data. For rainfall, the number of dimensions was

changed by aggregating the data. For INSEY the number of dimensions is varied by

increasing the duration of the time series used. The rainfall patterns suggested that

some aggregation was helpful and Figure 18 shows an analogous result. Using only the

values obtained at the end of the season (small number of time points) resulted in a

lower ROC value, indicating that the short duration of the time series is missing some

useful information. This is to be expected, as the crop canopy health (measured by
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Figure 17. Examples of INSEY trends corresponding to different crop performance
regimes. The grey area indicates the range of all INSEY data for the year, while
the black lines in each plot are for instances with similar crop performance. The two
panels highlight the INSEY associated with two different crop performance outcomes.

NDVI) might be significantly affected by late season weather, while significant yield

or sugar storage was accomplished during different growing conditions in the middle

of the season. Yet adding too much information also began to weaken the strength

of the pattern as the highest number of dimensions was reached.

Previous research had demonstrated that NDVI values at growth stage 7 showed

higher predictive ability then at growth stage 10 for particular crops. To follow up

on this result using the vector-vector pattern mining technique, a small time series

window is tested over a series of starting points during the growing season. A four

week window was used with 2 week time steps for the starting point. Figure 19

provides the data indicating that the strongest distribution differences were found

in the periods starting from week 7 to 11. It is important to note that this doesn’t

necessarily indicate that this is when the most sugarbeet growth is occurring, only

that the INSEY measurement (using NDVI and GDD) provides the most information

during that time period.
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Figure 18. Effect of increasing the length of the INSEY time series
in pattern strength. The INSEY time series used for the distribution
comparison always ends at week 17 after planting, and the starting
point is moved earlier in the season as the number of time points
increases.
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Figure 19. Relative importance of different time periods on pattern
strength. The INSEY time series used for the distribution comparison
is held constant at a 4 week window, while the starting point is varied.

41



CHAPTER 8. CONCLUSIONS

A new algorithm for finding relationships between two multi-dimensional vectors

has been demonstrated to successfully find interesting patterns in a complex data

set. Along with the traditional use of multi-dimensional information in explanatory

attributes, this algorithm also takes into account multi-dimensional information in

response attributes. The use of the vector-vector algorithm was compared with using

single dimensional techniques (both as one attribute or calculated summary numbers),

and the vector-vector algorithm was demonstrated to be more effective. One aspect

of the vector-vector algorithm is to compare the distribution of two sets of data.

A number of distribution comparisons techniques were evaluated. Kullback–Leibler

divergence was the most robust distribution comparison method tested. The vector-

vector algorithm was tested on data from the agricultural domain. Using multi-

dimensional crop performance data in conjunction with a time series of rainfall data,

the algorithm was able to find significant patterns. It was demonstrated that the

algorithm successfully determined the optimal level of dimension reduction (time

series smoothing) for the rainfall data.
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