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ABSTRACT 

 From 2008-2011, we analyzed brood habitat selection and survival of Chinese ring-

necked pheasant (Phasianus colchicus) from hatch until approximately 30 days post-hatch. We 

monitored 98 broods at two sites in Adams County, ND. These sites were previously enrolled in 

the Conservation Reserve Program and were being managed under a multiple land use system 

including hayed, idled and season-long grazed land as well as no-till corn (Zea mays) and no-till 

barley (Hordeum vulgare) crop treatments. Measurements pertaining to the insect and vegetation 

community and structure were recorded at utilized brood locations and available locations within 

the study sites. Variability in brood survival was best explained by precipitation events, 

temperature, brood age a linear and quadratic time trend. Comparisons among models were made 

using Akaike’s Information Criterion (AICc). Within our study area, no habitat selection was 

found in the season-long, hay, and idle treatments with respect to the habitat variables we 

measured.  
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INTRODUCTION 

 The Chinese ring-necked pheasant (Phasianus colchicus) is an introduced game bird 

species in North America (Trautman 1982). In North and South Dakota, this is the most 

frequently harvested game bird during recent years. Therefore, it draws significant attention due 

to its economic importance and its historical legacy. An abundance of pheasant has not always 

occurred in the Dakotas, with large scale fluctuations in North Dakota’s population common 

throughout its colonization (Cluett 1941). In 1953, 1966 and 1969 pheasant populations in South 

Dakota were low enough to close the pheasant hunting season (Trautman 1982). Economically, 

declines in pheasant hunting not only hurt the state’s revenue through a loss of hunting licenses 

sold, but also negatively impacts rural landowners that may benefit from fee hunting or another 

hunting related industry. 

 Pheasant populations respond to large scale changes in land use such as conservation 

easements, like the Conservation Reserve Program (CRP) created by the United States Congress 

and the President. This program is implemented through the United States Department of 

Agriculture (USDA) (Riley 1995). The mechanisms behind this relationship are most likely the 

increased nesting and brood rearing habitat provided by idled farmland under such programs 

(Erickson and Wiebe 1973; King and Savidge 1995; Riley 1995; Ryan et al. 1998; Evard 2000; 

Eggebo et al. 2003; Nusser et al. 2004). Nesting habitat is generally viewed as one of the biggest 

factors limiting population size (Robertson 1996), while other studies have found the brood 

rearing stage as a critical period during the pheasant’s life cycle (Warner 1984; Riley et al. 

1998). 
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 Conservation efforts similar to the CRP began in 1956 with the Soil Bank Act. Since their 

establishment, these conservation practices have played an important role for North Dakota’s 

agriculture and wildlife production. As of December 2012, active CRP contracts in North Dakota 

totaled 967,568 hectares in 32,379 contracts from 16,065 farms, totaling around 5.3% of the 

state’s land base (USDA 2012). These contracts provide a temporary diversion from crop 

production and promote the planting of perennial grasses, providing valuable wildlife habitat, 

improving water quality and reducing soil erosion on marginal and highly erodible farmlands. 

Contracts last for ten years or longer. As contracts expire many landowners will return their land 

to active crop production, which is likely to have impacts on the natural resources of the area. 

 Loss of CRP lands may negatively affect pheasant populations in some areas as well as 

limit incoming revenue through hunting related activities. The purpose of our study is to gain a 

better understanding of pheasant habitat requirements during the brood rearing stage (mid to Late 

Summer) under a multitude of land uses reflecting the changes that occur when a CRP contract 

expires. Understanding this relationship is critical to predicting the impact that loss of CRP lands 

will have on pheasant populations.  

 Understanding the micro-habitat and macro-habitat selection by pheasant broods will 

help us understand the impact that expiring CRP contracts have on pheasant populations. This 

information is valuable to landowners and wildlife managers in order to protect the tradition of 

pheasant hunting as well as the monetary value it provides. Furthermore, post-CRP land can be 

returned to several different types of production, and different options may be more compatible 

with pheasant production then others. Evaluation of different land uses on the critical life stages 

of pheasant can allow landowners and wildlife professionals to make conservation minded 
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decisions and protect future wildlife populations, and provide a source of income to the rural 

communities. 
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LITERATURE REVIEW  

Importance of Hunting in Rural Economics 

 Chinese ring-necked pheasants (Phasianus colchicus), hereafter pheasant, are an 

economically important natural resource in southwestern North Dakota. Hunters annually 

stimulate economic activity in these rural communities through direct purchases of hunting 

equipment and indirect service requirements such as lodging and dining. By maintaining 

pheasant habitat, landowners create recreational revenue that is supplemental to ongoing 

agricultural operations or conservation leases. Consequently, loss of pheasants and habitat is 

equivalent to the loss of money in these communities. A study of the northern bob-white quail 

(Colinus virginianus) in the southeastern United States found population decline of this bird was 

correlated with hunter attrition, lack of hunter recruitment, and caused economic losses in rural 

communities and specific industries (Burger et al. 1999). Sustaining stable pheasant numbers and 

habitat in North Dakota is both environmentally and economically important, for similar reasons. 

 Profits and revenues derived from hunting are not limited to the purchase of hunting 

licenses alone. Many of these additional expenses directly benefit rural communities that support 

pheasant hunting. Approximately 90% of the money spent on pheasant hunting and 80% of non-

resident expenditures in South Dakota go towards goods, services, and hunting accommodations 

(Trautman 1982). These expenses were clarified by Steinback (1999) when he described three 

levels of economic impacts created by sportsmen. These expenses are directly applicable to 

pheasant hunters in North Dakota. Direct impacts are created from the sales, income, and 

employment generated through initial purchases (i.e., fees to landowners for hunting privileges). 

Indirect impacts are the sales, income, and employment to those industries that support the 

activity (e.g., sale of hunting equipment, lodging, and gasoline sales). Finally, induced impacts 
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are created when the recipients of this economic impact continue to circulate this income (e.g., 

commodities bought by employees of supporting industries). The sum of these three areas is the 

total economic impacts created by sportsmen and illustrates the diversity of economic benefits 

that come with pheasant hunting in North Dakota. Calculating these expenditures is not always 

straightforward. However, a study by Grado et al. (2001) in Mississippi showed the diversity of 

hunting related expenses for waterfowl (Table 1).  

Table 1. Distribution of expenditures ($/hunter/activity day) in a six county region during 
the 1998-1999 waterfowl hunting season in Mississippi (Grado et al. 2001). 

$ = U.S. Dollars 

 

 A study by Gan and Luzar (1993) on total impacts of waterfowl hunters in Louisiana, 

showed the average cost of hunting per season for those hunters who leased recreation access 

was calculated at $1,371.93, which included hunting-related expenses such as lodging, gas, and 

ammunition. They found that the total cost of hunting per season was not the biggest influence 

Expenditure 
Public sites Private lodges 

$ % $ % 
Ammunition 3.95 6.5 1.95 1.0 
Clothing, boots 1.25 2.1 0.03 0.0 
Dog-related 0.08 0.1 4.07 2.0 
Entertainment 5.00 8.3 1.70 0.8 
Equipment-related 5.70 9.4 0.00 0.0 
Game processing 0.50 0.8 0.00 0.0 
Guns, knives, etc. 1.64 2.7 0.00 0.0 
Hunter accessories 0.58 1.0 0.00 0.0 
Hunting and site fees 1.05 1.7 185.75 92.3 
Licenses 0.86 1.4 0.01 0.0 
Lodging 11.04 18.3 0.00 0.0 
Restaurants, groceries 14.86 24.6 3.26 1.6 
Shopping 6.28 10.4 0.00 0.0 
Transportation 7.61 12.6 4.36 2.2 
Total 60.41 100.0 201.14 100.0 



 

6 
 

on hunter’s decisions to hunt waterfowl. However, maximum duck bag limit and length of 

hunting season were ranked as major influences. These results suggest that if the cost of hunting 

increases, money from hunters will continue to enter rural communities if adequate game 

remains in the area. Therefore, loss of habitat or decreased pheasant numbers can diminish this 

incoming revenue. 

 Loss of habitat has been found as a major factor preventing waterfowl hunters as well as 

other outdoor enthusiast from pursuing their sports in other states (Adams et al. 1997). The 

similarities between waterfowl hunting and upland game bird hunting imply that loss of pheasant 

habitat could be directly equivalent to loss of money in rural North Dakota communities. 

Furthermore, loss of habitat can lead to site congestion in remaining hunting areas. Site 

congestion was a major influence on the decision of whether or not to hunt in a study done in 

Louisiana (Gan and Luzar 1993). Other important factors that influence hunters were travel time 

to hunting area, type of hunting party and type of hunting areas.  

 Pheasant hunting not only provides a valuable economic stimulus to rural North Dakota 

communities but also helps diversify the local economy. Creating multiple sources of income in 

communities helps stabilize the economy and add resilience and adaptability during recession. 

These benefits, which often go overlooked, are important factors for the future of any economy 

and opportunities for diversification should be capitalized. In southwestern North Dakota the 

addition of recreational hunting revenue to an economy driven mainly by agriculture, helps both 

supplement and diversify the land owner’s income. 
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History of Ring-Necked Pheasant 

 Pheasant introductions in North America and Europe have a complex history. These birds 

were introduced from Asia and have become an abundant species in several countries outside 

their natural range. Efforts to establish pheasants were driven by its popularity as a game species, 

and pheasant hunting in the United States is an economically and culturally significant activity 

(Trautman 1982). The history of pheasant colonization involves many different subspecies and 

several groups attempting to introduce the bird. Currently the pheasant subspecies of England is 

a hybrid known as the “English ring-necked pheasant” and this strain along with Asiatic 

subspecies made up the early introductions into the United States. These isolated attempts to 

establish pheasant in North America all ended in failure until a Chinese subspecies was 

introduced in the Willamette Valley of Oregon. This introduction combined with supplemental 

introductions of other subspecies led to the current American strain containing a genetic makeup 

of 15 different subspecies. The American strain that emerged from this complicated series of 

breeding and introductions is known simply as Phasianus colchicus, Chinese ring-necked 

pheasants, or pheasant. 

 The earliest recorded attempt to establish pheasants in the United States was by the 

former Governor of New York, Colonel John Montgomerie in 1733 (Studholme et al. 1956). 

Montgomerie introduced one dozen Old English Black Necked Pheasants on Nutten Island now 

known as Governors Island in New York. A second attempt at pheasant introduction in 1790 was 

carried out in New Jersey by Richard Bach, the son-in-law of Benjamin Franklin. Later, in the 

early 19th century, both George Washington and Governor Wentworth of New Hampshire 

introduced pheasant into the northeast but their attempts were also unsuccessful. All of these 
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introductions most likely utilized the Old English Black Necked strains from aviaries or game 

farms (Weigand and Janson 1976). 

 The first substantial and successful introduction occurred in 1882 through Judge Owen N. 

Denny in the Willamette Valley/Peterson Butte area in Oregon (Bent 1963). These birds were 

shipped from the American Counsel in Shanghai, China and they flourished upon introduction. 

Slightly later, in 1887, the eastern United States had its first successful introduction through 

Rutherford Stuyvesant with pheasant taken from England. Successful stocking efforts in South 

Dakota took place quickly after these introductions. The release of pheasant in North Dakota 

began only a few years later. However, North Dakota Game and Fish Department personnel 

suggest South Dakota’s stocking efforts had more of an influence on pheasant populations than 

introductions within North Dakota (ND GF, First Annual Report, 1930, p. 54). 

 The first recorded effort to release pheasant in South Dakota was documented in 1891 in 

a Sturgis newspaper (Trautman 1982). The article reported N. L. Witcher was in the process of 

receiving pheasant from Oregon and planned on releasing them in the West River grouse range. 

However, it is unclear if these birds were ever received or released. In 1898, Dr. A. Zetlitz of 

Sioux Falls, South Dakota received several varieties of pheasant from Illinois. Zetlitz released 10 

of these birds, which were most likely the English ring-neck variety, near the junction of the 

Split Rock and Sioux rivers in Minnehaha County, South Dakota. These birds were initially 

successful and were documented as far away as Yankton County, South Dakota in 1902. 

Eventually, this population of birds disappeared and another release was carried out by Dr. 

Zetlitz in 1903 near the Split Rock Township of eastern South Dakota. Trautman (1982) 

suggested the original release may have been unsuccessful due to poorly managed hunting. In 

1908 and 1909, A. E. Cooper and E. L. Ebbert released pheasant in Spink County, South Dakota. 
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These birds were purchased from a game farm in Pennsylvania but it is unknown what 

subspecies these birds belonged to. This introduction was also successful. Ten years later Spink 

County became home to the first South Dakota pheasant hunting season (1919). The South 

Dakota Department of Game and Fish took over the majority of pheasant introductions in 1911. 

Pheasant were purchased from aviaries and commercial game farms and released primarily in 

East River counties in South Dakota. 

 The earliest stocking effort in North Dakota was documented in 1910 using 75 birds from 

the St. John Hatchery (Johnson and Knue 1989). Later, pheasant stocking operations were aided 

substantially by the Bottineau and Grafton State Game Farms in 1915. The biggest effort in 

North Dakota was made by the North Dakota Game and Fish department in 1932 when 15,460 

birds were trapped in Dickey, Sargent, and Richland counties and released in 45 counties 

throughout the state. These efforts combined with hard work from farmers and sportsmen 

throughout the state established strong pheasant populations in most of North Dakota. 

 Table 2 (below) shows the first pheasant hunting seasons in some states and provinces 

around ND as well as Oregon, a state which played a key role in pheasant introductions 

throughout North America. Hunting seasons in North Dakota were brief for the first 8 years 

(1931-1938) and never lasted longer than 10 days (Trautman 1982). By the mid 1940s pheasant 

were abundant in North and South Dakota despite liberal bag limits and longer hunting seasons. 

South Dakota pheasant populations reached a peak of over 16 million estimated birds during 

1945.  Pheasant populations fluctuated widely after 1945 and went into decline until the mid 

1950s when another population boom occurred. This period of high density, between 1956-1963, 

is often cited as a response to the abundant favorable habitat established by idle farmland 

through the Soil Bank Program (Trautman 1982; Johnson and Knue 1989).   
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Table 2. Date of first hunting season in selected states and provinces for ring-necked 
pheasant (Studholme et al. 1956; Trautman 1982; Blair 1987; Johnson and Knue 1989). 

  

 

 Hunting success fluctuated widely during pheasant colonization. Cluett (1941) estimated 

that 20 million birds were harvested in South Dakota from 1919 to 1940 with an average kill of 

1.5 million per season between 1929 and 1940. In the peak harvest year of 1945 approximately 

7.5 million birds were taken in South Dakota (Trautman 1982). However, in 1953, 1966, and 

1969 the South Dakota and North Dakota pheasant seasons were closed. The latter two of these 

closures were most likely associated with a severe winter in 1964 - 1965 and the expiration of 

Soil Bank Contracts returning idled land to agricultural production (Johnson and Knue 1989). In 

the 1970s pheasant hunting fell behind both sharp-tailed grouse (Tympanuchus phasianellus) and 

hungarian partridge (Perdix perdix) with respect to birds harvested. Current pheasant harvests in  

North Dakota are fairly stable and average 622,602 total harvested birds per season for 2000–

2010 (North Dakota Game and Fish data; Table 3). 

 

 

State Year 
Montana 1928 
Wyoming 1933 
Nebraska 1927 
South Dakota 1919 
Oregon 1892 
North Dakota 1931 
Minnesota 1924 
Saskatchewan 1939 
Manitoba 1941 



 

11 
 

 Table 3. Number of ring-necked pheasants harvested in North Dakota from 2000-2010. 

Year Resident Harvest Non-Resident Harvest Total Harvest 
2000 199,514 84,245 283,759 
2001 261,487 160,099 421,586 
2002 339,669 178,152 517,821 
2003 401,321 190,745 592,066 
2004 353,234 230,785 584,019 
2005 574,673 235,102 809,775 
2006 529,356 221,431 750,787 
2007 586,098 321,336 907,434 
2008 586,645 190,064 776,709 
2009 453,758 198,020 651,778 
2010 401,920 150,964 552,884 

 

 

Winter Habitat 

 Severe winter weather in the Northern Great Plains can alter the availability of adequate 

winter cover and cause increased mortality of pheasants (Gabbert et al. 1999). This critical 

period, defined as the overwintering stage, takes place from late autumn to the onset of spring. 

Overwintering is considered one of the critical stages within the annual life cycle of pheasant 

along with the reproductive and brood rearing stages (Trautman 1982). Several studies 

conducted in the Northern Great Plains suggest winter survival may be the limiting factor for 

pheasant populations in this region (Riley et al. 1994; Evard 1996; Homan et al. 2000). Winter 

survival in the Northern Great Plains can be described as a breeding population bottleneck where 

the severity of the winter season determines the proportion of the autumn population that 

survives to participate in the next breeding season (Trautman 1982). These poor winters result in 

low autumn to spring hen carryover which results in a low breeding population. Kimball (1948) 

found that pheasant in South Dakota will generally experience severe winter mortality 

approximately one out of every six years. These high periods of mortality are functions of 
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extended snow cover that buries food sources and renders certain habitat types ineffective 

combined with extended periods of low temperatures, strong winds, and increased diurnal 

movement in search of resources (Frank and Woehler 1969; Perkins et al. 1997). The pheasant of 

the Northern Great Plains are not alone in this regard. Research from other regions, such as 

southern Idaho, has also found that winter mortality may be the limiting factor for pheasant 

populations (Lepitch 1992).  

 Concentrated storms are an important cause of winter mortality. A blizzard in early 

March of 1966 killed 86% of pheasant in north-central counties of South Dakota (Trautman and 

Fredrickson 1967). These events, combined with other poor conditions, such as lower breeding 

success, have the potential to wipe out populations in two years due to the short life span of these 

birds. In order to avoid these local crashes in pheasant populations there has been a tremendous 

amount of research focusing on winter habitat selection and survival of this bird. Adequate cover 

and food resources during severe weather events allow populations to survive through the winter 

(Trautman 1982). These studies span most of the pheasant’s range because local patterns of 

habitat use and movements vary in response to local habitat conditions which makes regional 

data on pheasant behavior not universally applicable (Gatti et al. 1989). These studies generally 

look for the disproportional use of some habitat types over others. Furthermore, because winter is 

often the season where the carrying-capacity for pheasants is the lowest, due to mowing and 

harvest operation, land use is often a major concern. 

 Wetlands, sloughs, and marshlands serve as quality winter habitat for roosting and 

loafing when available during mild winters (Frank and Woehler 1969; Trautman 1982; Penrod 

Hill 1985; Gatti et al. 1989; Gabbert et al. 1999; Homan et al. 2000). Emergent vegetation within 

these habitat types has stiff erect characteristics that resists lodging and generally retains leaves 
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throughout the winter. This vegetation provides thermal protection from storms and winds as 

well as escape cover from predators. This plant community is generally composed of willow 

(Salix spp.) and cattail (Typha spp.) species. In South Dakota this community was described by 

Larsen et al. (1994) as primarily being made up of cattails, river bulrush (Scirpus fluviatilis), 

common reed (Phragmites communis), and willow. In southern Idaho, this habitat was associated 

with irrigation drain water and consisted mostly of common cattail (Typha latifolia) and willow 

which also provides habitat for overwintering pheasant (Lepitch 1992). In North Dakota, 

pheasant were found to move into the semi-permanent wetland habitats from upland vegetation 

when snow depths became ≥ 30cm (Homan et al. 2000). Peak use of shrub-sedge wetlands, 

which are distinctive Wisconsin wetland plant communities dominated by small woody 

vegetation, occurred in November and December, but were the most widely used habitat from 

October through April in Wisconsin (Gatti et al. 1989). Recently, there has been a push towards 

cattail management in North Dakota favoring sparser stands of emergent vegetation with higher 

ecological function and diversity. These practices eliminate important thermal protection and 

cover for overwintering pheasant (Homan et al. 2000).  

 Despite preference for wetland habitats, pheasant showed plasticity in selection of 

overwintering habitats during severe conditions. When wind-driven snow inundates herbaceous 

habitats and renders them unavailable for use, woodland and food plot habitats are essential to 

the winter survival of pheasants (Gabbert et al. 1999). In these conditions, pheasant habitat use 

will shift towards wooded habitats such as shelterbelts or riparian woodlands (Trautman 1982; 

Gatti et al. 1989; Gabbert et al. 1999; Homan et al. 2000). Gabbert et al. (1999) investigated this 

relationship using radio-marked hens and showed a significant relationship between pheasant 

survival and utilization of shelterbelts during extreme winters. In Wisconsin, pheasant 
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increasingly utilized upland hardwoods when snow cover exceeded 28cm (Gatti et al. 1989). In 

North Dakota, this value was slightly higher and transitions from cattail communities to 

woodlands did not occur until ≥ 38cm (Homan et al. 2000). 

  Shrubs and coniferous species are particularly important for effective woodland winter 

habitat as they provide visual obstruction in the understory creating thermal and protective cover 

(Larsen et al. 1994). Bue (1949) found that shelterbelts should be at least 200 feet wide and 

contain a substantial understory of low branches and one more row of dense shrubs around the 

outside. In South Dakota the majority of shelterbelts, generally consist of seven to eight rows of 

woody vegetation and were planted between 1936 and 1965. These shelterbelts lacked upkeep 

and experienced improper use by livestock through rubbing, overgrazing, and excessive 

trampling from high densities, causing many of these structures to decline in value (Trautman 

1982). Many of these shelterbelts may no longer be able to provide effective severe winter 

habitat for these birds.  

 A study done in central Illinois also noted the value of continuous winter cover in the 

survival of pheasant over the winter (Warner and David 1982). In Utah, wooded habitat for 

overwintering pheasant is provided by sagebrush communities (Smith and Greenwood 1983). 

Understory visual obstruction is also important in these communities and grazing was shown to 

negatively affect pheasant utilization of these communities over non-grazed units (Lepitch 1992). 

Additionally, shelterbelts also may provide protection from raptor species and shade for wildlife 

during the summer months, and thereby serve a dual purpose (Trautman 1982).  

 A winter food source is vital for the survival of overwintering pheasant (Trautman 1982). 

An eastern South Dakota study showed that female pheasant with access to an adequate corn or 

corn-sorghum food plot, had higher quality diets and more fat reserves than females without 



 

15 
 

access to food plots (Larsen et al. 1994). Without an annual food plot, pheasant will utilize weed 

patches, grain stubble, harvested crop fields and other food sources to meet energy requirements. 

Animal food material in winter is scarce; mostly limited to only grasshopper remains, and this 

amount generally decreases steadily from December to February (Trautman 1982). Plant material 

consumed during the overwintering stage is also somewhat scarce and made up largely of grain 

hulls and waste grains. For this reason, agricultural policies that favor waste grain and mimic 

more antiquated farming procedures will provide pheasant with more food sources during the 

overwintering stage. Artificial feeding, in contrast to providing an annual food plot, is generally 

ineffective and labor intensive for the land manager, landowner or wildlife specialist (Trautman 

1982). 

 In many localities, corn or sorghum wheat (Sorghum bicolor) annual food plots are used 

to support overwintering pheasant (Bogenschultz et al. 1995). Comparisons between these two 

food sources did not suggest that one diet provided a better food source than another. Diets 

consisting entirely of these food sources may lack certain nutrients or amino acids but pheasant 

most likely supplement these diets with surrounding natural foods in order to obtain all their 

dietary requirements. Annual food plots can be utilized as winter cover habitat in areas lacking 

natural winter cover (Frank and Woehler 1969). Annual plots of forage sorghums and sorghum-

sudan grass hybrids (S. bicolor x S. sudanese) provide good winter cover on upland sites lacking 

woodland or wetland winter habitat. Frank and Woehler (1969) also showed that these annual 

food/cover plots can be used to provide short term winter cover until other winter habitats are 

established such as a newly planted shelterbelt. These plots can even be supplemented by adding 

corn and soybeans into the mixture. 
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 Juxtaposition of winter habitats to annual food sources is important to pheasant winter 

survival (Larsen et al. 1994; Bogenschultz et al. 1995). Proximity of food sources to winter 

habitats helps minimize diurnal movements and reduces energy requirements (Warner and David 

1982). Proximity is also a dominant factor for winter habitat selection (Grondahl 1953). This 

relationship was evident in a study conducted by Kirsh (1950) where 88% of the woodland 

habitats utilized by pheasant were within ¼ mile of a significant food source. As travel time 

increases pheasant predation also increased (Trautman 1982; Gatti et al. 1989). This relationship 

was displayed by Gatti et al. (1989) where those females preyed upon had significantly larger 

home ranges then surviving females. Increases in movement may be a result of buried food 

sources, loss of adequate habitat and increased energy requirements all of which are correlated 

with extreme winter conditions. Juvenile birds also have been found to have significantly larger 

daily movements than adult pheasant (Homan et al. 2000).  

 Pheasant predation may occur from small mammalian carnivores such as; red fox (Vulpes 

vulpes), raccoon (Procyon lotor), badger (Taxidea taxis), striped skunk (Mephitis mephitis), 

spotted skunk (Spilogale putorius), and feral cat (Felis domesticus) or avian predation (Trautman 

1982). Avian predation is correlated with increased snow depth and cover (Wagner et al. 1965; 

Dumke and Pils 1973; Penrod and Hill 1985; Homan et al. 2000). Furthermore, frequency of 

occurrence of pheasants in red fox stomachs increases in years when winter severity is high 

(Dumke and Pils 1973). Trautman (1982) suggested that the abundance of these predators has 

probably increased due to changes in land use and habitat alteration. Abandoned farmsteads, 

establishment of woody species and removal of large predators may be responsible for the high 

numbers of smaller carnivores. 
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 Starvation is also a frequent cause of death in pheasant overwintering in South Dakota 

(Trautman 1982). In the severe winter of 1936-1937, 80% percent of the autumn population died 

of starvation (Beed 1938). However authors noted that this mortality may have been influenced 

by an earlier severe drought which produced a crop shortage, limiting the food available to 

overwintering pheasant. Starving pheasant will die when body weight reaches 50-60% of their 

normal weight (Trautman 1982). These birds become thin and lethargic and unable to fly or 

walk, they start feeding on extremely low quality food sources such as straw, fragments of 

cornstalks, manure and even carrion. These birds will generally perish in their roosts. Pheasant 

may also perish from freezing, asphyxiation from ice buildup on the nostrils, pneumonia, and 

illegal shooting during the winter months (Green 1938). For example, Warner and David (1978) 

found that 82% of dead birds had food in their crops and normal reserves of body fat after an 

intense winter storm suggesting a cause of death other than starvation or predation.  

Spring Dispersal and Territory Establishment 

 Pheasant are seasonally territorial (Leffingwell 1928; Wight 1933; Basket 1947; Taber 

1949; Burger 1966). During late winter, pheasant are concentrated in areas offering food and 

thermal cover (Burger 1966). As the days gradually get warmer, males begin to appear further 

away from these wintering areas marking the beginning of the dispersal period. The newly 

inhabited territory is defined as territory cover for males and nesting cover for females. For 

males, this is where territory displays and crowing will take place (Robertson 1996). These 

movements coincide with the disintegration of male groups and increased male to male conflict. 

Females at this stage begin to form harems and select a male to mate with. Some studies have 

shown this period to be a gradual and leisurely transition from winter to summer range (Burger 
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1966; Schmitz and Clark 1999). Other studies describe the spring dispersal period to be an 

explosive phenomenon (Gates and Hale 1974).  

 The spring dispersal period is one of two periods of local movement for an otherwise 

sedentary bird with the other movement period being the congregation of winter habitat around 

October (Hill and Ridley 1987). The majority of the male spring dispersal movement occurs in 

April and males generally break up from pairs in March (Burger 1966). Dominant males may 

tend to separate earlier from winter male groups. Taber (1949) found that by the end of February, 

the most successful and dominant males generally separated from one another. Females disperse 

from winter habitat at a later date, generally mid-April to early May (Gates and Hale 1974). 

April is also the period of the highest courtship display activity (Taber 1949). In June, July and 

August pheasant gradually end their courtship and breeding activity with males relinquishing 

territories and ceasing to crow (Taber 1949). When males begin to peacefully congregate 

together at a common feeding station, territorial behavior has ceased (Burger 1966).   

 Male territory habitat is often overlooked by managers (Clark et al. 1999). However, 

some research suggests that this habitat may be a limiting factor in some areas of North America 

(Robertson 1996; Leif 2005). Suitable male territory cover contains shrubs and woody cover that 

surrounds areas of relatively open habitat. These territories are also in close proximity to existing 

patches of winter cover and suitable nesting habitat (Taber 1949; Burger 1966; Smith et al. 1999; 

Leif 2005). Males displayed avoidance for monotypic habitats in a study by Burger (1966) 

during this time period. However, in areas where only monotypic habitat is available, idled 

herbaceous cover has been shown to meet both the male and female breeding requirements. 

Presence of woody cover with high ground-level stem density will enhance this habitat (Leif 
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2005). Furthermore, Gates and Hale (1974) found that a strong preference was shown for some 

component of wetland cover in the breeding territories of cocks in Wisconsin.  

 During this time period, breeding pheasants use woody and idled habitat more frequently 

in midday hours and open habitats and cropland in the early morning. This pattern increases their 

chances of being seen by potential mates in the morning and provides concealment from 

predators and escape cover later in the day (Leif 2005). More dominant males, which are able to 

defend local territories closer to wintering habitat, have smaller home ranges that contain a larger 

proportion of woody habitat and less open territory. Males that are forced to disperse to more 

ephemeral habitats have more enlarged home ranges and a greater proportion of open habitats. 

This may reflect the lower suitability of these open habitats for territory cover. These open and 

semi-open areas are used heavily by males as peak-hour crowing sites, display sites and 

courtship sites (Burger 1966). Areas of habitat with higher proportions of cover were utilized 

during the remainder of the day which suggests that predator avoidance is also responsible for 

habitat selection in the spring (Smith et al. 1999). Furthermore, edge density within a hen’s 

spring habitat had an inverse relationship to instantaneous mortality such as mammalian and 

avian predation (Schmitz and Clark 1999). 

 Spring dispersal movements vary considerably based on sex and age (Gates and Hale 

1974; Hill and Ridley 1987; Smith et al. 1999). Hens are more mobile than cocks, and juveniles 

are more mobile than established adults during the spring dispersal period. There is also a 

positive relationship between the density of the winter population and the distance of dispersal in 

the spring (Gates and Hale 1974).  This relationship may function as a population control 

mechanism as higher populations of pheasants are required to disperse further in the spring into 

lower quality habitat where reproduction is less successful. Finally, dispersion movements are 
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also related to the severity of the winter (Gates and Hale 1974; Leif 2005). More severe winters 

cause habitat degradation from snow-pack, wetlands filling with water and matted herbaceous 

cover that forces pheasant to move further in the spring to find adequate habitat.  

 Leif (2005) studied pheasant in eastern South Dakota and found that males dispersed 

further into lower quality upland habitat when they were juveniles and stayed relatively closer to 

winter habitats as adults. He divided these two groups into localized and ephemeral breeders. 

Seventy three percent of male pheasants dispersed >500m from winter habitat to their spring 

breeding location and they moved an average of 3.2 ± 0.3 km. Those males on the more 

ephemeral territories held larger territories then localized males at 45.4 ± 2.9 ha and 18.4 ± 0.9 

ha, respectively (Leif 2005). Larger territory sizes were not related to more females (Ridley and 

Hill 1987).   

 Male territories show plasticity and may change due to environmental changes, hen 

movements, and pressure from adjacent cocks (Taber 1949). Territories changed in a gradual and 

definite direction as the breeding season progressed and males frequently followed harems 

outside of their original territory (Burger 1966). Territory size is inversely related to population 

density, and changes will occur as latecomers attempt to establish territories in already crowded 

areas or when a male dies and creates a vacancy. Gates and Hale (1974) found that the territories 

of cocks were overlapping and not confined to a defended area. Instead, cocks formed zones of 

intolerance. Males that ventured too close to a male of a defending territory, often while 

following a harem of females, would elicit a territorial response from that male. Kuck et al. 

(1970) found that South Dakota hens had an average home range of 12.5 ha in the spring and 

summer. Females have been found to nest outside of the male’s territory that they copulated 

with. Therefore, females generally have a larger territory then males at this time of year (Ridley 
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and Hill 1987). During this period the female spends around 35% of her time outside the range of 

the male. 

 As females disperse from winter cover they form smaller harem groups which will later 

be accompanied by a male (Ridley and Hill 1987). Harems accumulate gradually and are not 

only a function of females preferring to live in groups but most likely evolved as a function of 

mate guarding with females selecting males that fend off harassment of other males. Excessive 

energy expenditure during the early spring season leads to lower nesting success and females 

escorted by a territorial male spend more time feeding, less time running and less time being 

alert. This relationship infers that females are selecting for the quality of the occupying male in 

the habitat and not simply the quality of the habitat itself.  

 Once females settle into their breeding ranges they remain monogamous with that male 

(Ridley and Hill 1987). Harem size is larger than should be expected in some harems which 

imply that there are unequal breeding opportunities for males in the population (Ridley and Hill 

1987; Swenson 1978; Goransson 1980; Ridley and Hill 1987). Females select for established 

males over new males and will breed with the same male for more than one year even if his 

territory position has changed (Ridley and Hill 1987). Males selected by females have 

demonstrated that they are the undisputed dominant within the area. They spend significantly 

less time feeding and more time alert then other males which enable females to feed and remain 

free of harassment by other males. Sparring, chasing, bluffing and other aggressive male to male 

behaviors were found to be density dependent (Taber 1949; Burger 1966; Gates and Hale 1974). 

As population pressure increases some males can be seen sparring 3-4 times daily (Taber 1949).  

 Spring dispersal is also correlated with crowing behavior for male pheasant (Taber 1949; 

Burger 1966). Crowing alerts rival males as well as potential mates of the cock’s location in the 
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landscape. Maximum crowing intensity occurs from 45 minutes before to 30 minutes after 

sunrise (Burger 1966). Cocks will begin crowing in late February, with most of the cocks 

crowing by mid-April. Crowing ceases by the end of June. However, cocks that begin crowing 

later in the season also stop crowing later in the season so that all males generally show a three 

month crowing season. Variations in the initiation of crowing may be related to testis weight 

which was shown to have a direct correlation with crowing intensity (Taber 1949). Bouts of mid-

day concentrated crowing are often triggered by a passage of hens into areas of higher cock 

densities. These bouts generally involve 3 - 10 males all crowing for 15 - 40 minutes (Burger 

1966). 

 Several studies documented the occurrence of non-territorial males (Taber 1949; Burger 

1966; Gates and Hale 1974; Hill and Ridley 1987; Leif 2005). Males that failed to establish and 

defend a territory may have done so for several reasons. Non-territorial males may be injured or 

be in poor condition (Burger 1966). They may be pen-raised birds or birds with a direct lineage 

to pen-raised birds that are more sedentary and unable to successfully establish a territory (Gates 

and Hale 1974; Leif 2005). Non-territorial males have never been documented crowing, they 

retain small wattles until they are in very close contact with hens, which rarely happens, and they 

do not cluck, fight, or display to hens after mid-April (Taber 1949). Generally, non-territorial 

males were as localized as territorial cocks during the breeding season and were more 

concentrated around winter habitat then in upland areas. 

Nest Selection 

 Providing attractive and secure nesting cover increases a hen’s chances of successfully 

hatching a clutch (Robertson 1996). Many studies have been conducted to determine what 

defines secure nesting cover throughout the pheasant range in North America. This habitat is 
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generally viewed as one of the biggest factors limiting population size (Robertson 1996). 

However, it should be noted that winter survival and male territory cover can also play large 

roles in determining pheasant abundance especially in certain regions. Nesting birds should 

select parts of the landscape that will enhance reproduction and survival (Clark et al. 1999). This 

relationship allows researchers to study nesting cover preference based on nest success and the 

habitat selection during nest initiation.  

 In most studies large blocks of grassland show the greatest nest success; however, the 

surrounding landscape is also important (Clark et al. 1999). During the initial one third of the 

nesting season, from April to mid-May, residual/old plant material from the previous year is the 

only material available for nesting (Trautman 1982; Nielson et al. 2008). Therefore, mowing, 

livestock grazing, burning and late summer plowing may not harm the current year’s nests but it 

will take away from early season nesting cover for the following year. Furthermore, hay cutting 

in late summer will also reduce the value of nesting cover for pheasant the following spring 

(Hays and Farmer 1990). Potential nesting sites during this early part of the nesting season are 

mainly comprised of scattered fencerows, roadsides, tree groves, shelterbelts, sloughs, weedy 

grain stubble, ungrazed or lightly grazed pastures, steep rough or wet patches in hayfields or odd 

acreages, and those lands set aside as undisturbed land. In mid-May, alfalfa (Medicago sativa) 

quickly provides more nesting cover (Hanson and Progulske 1973). 

 Different regions vary in their ability to provide nesting cover. In Illinois, forbs like red 

clover (Trifolium pratense), alfalfa, sweet clover (Melilotus officianalis), white clover (Trifolium 

repens), and grasses such as timothy grass (Phleum pratense) and smooth brome (Bromus 

inermis) are important species providing nesting cover (Hanson 1970). Alfalfa and cool season 

grasses were also found to be important nesting cover for pheasant in Nebraska (Baxter and 
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Wolfe 1973). In our study plots, located in Adams County, North Dakota, nest sites were 

composed primarily of cool season grasses (87%); including smooth brome and intermediate 

wheatgrass (Thinopyrum intermedium), with alfalfa and sweet clover common legumes at 10% 

of the composition (Geaumont 2009). Seeded warm season pastures for livestock forage such as 

switchgrass (Panicum virgatum), Indian grass (Sorgastrum nutans) and big bluestem 

(Andropogon gerardii) provided suitable nesting cover for pheasant in a study conducted in Iowa 

(George et al. 1979) 

 A study by King and Savidge (1995) suggested that vegetation structure may be more 

important to nesting birds than plant species. Hens nesting in Wisconsin found a variety of plant 

species acceptable for canopy cover so long as the plant’s old or new growth provided  

concealment (Dumke and Pils 1979). Plant height and density were important factors in nest site 

selection in Illinois (Hanson 1970) and in Montana (Fondell and Ball 2004). Height and density 

correlated positively with nest density. These vegetation factors may reduce losses from 

predators and provide cooler micro-environments through shading which favor egg hatching. In 

Adams County, North Dakota, the average Visual Obstruction Reading (VOR) around nests was 

2.08 dm in season-long grazed pastures and 2.0 dm on Idle pastures (Geaumont 2009). The 

greatest number of nests in these two cover types was initiated in areas of greater than or equal to 

a VOR of 2.50dm. No nests were initiated in the 0-0.49 dm VOR category (Geaumont 2009; 

Table 4). 

 In many regions single-species stands of vegetation are rarely used for nesting (Dumke 

and Pils 1979). However in drier regions, such as eastern Colorado, winter wheat (Triticum 

aestivum) crops provide the most valuable nesting cover during years of high precipitation 

(Snyder 1984).   
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Table 4. Visual obstruction readings at ring-necked pheasant nests on idle and season-long 
grazed Conservation Reserve Program lands in southwest North Dakota, 2006-2008 
(Geaumont 2009). 
a n=69 
b n=35 

c =n·ha-1
·yr-1 

 

 

 In 1979 and 1980, nests initiated in winter wheat in eastern Colorado contained an 

average of 87% of the successful nests. The high success rate of these nests may be due to the 

grasslands in this area providing poor nesting habitat by having a lower vegetation height and 

lower density. Similarly, pheasant in the high plains of Texas utilized forage crops and small 

grains as nesting cover (Whiteside and Guthery 1983). However, pheasant tend to select suitable 

cover at nest sites irrespective of plot-level conditions, suggesting birds select based on micro-

site selection rather than plot level conditions (Fondell and Ball 2004). Small variations within a 

crop field or pasture may provide suitable nesting cover that is often overlooked by managers 

and landowners. 

 

 In most regions, diverted farmland and grassland pastures are primary nesting habitats 

(Dumke and Pils 1979, Warner and Etter 1989, Riley et al. 1994, King and Savidge 1995, 

Treatment 

Season-Longa Idleb 

VOR 
category 

(dm) 

Available 
nesting 

habitat (%) 

Nests/ha 
available 
coverc 

Nest 
Attempts 

(%) 

Available 
nesting 

habitat (%) 

Nests/ha 
available 
coverc 

Nest 
Attempts 

(%) 
0-0.49 8 0.00 0 2 0.00 0 
0.50-
0.99 16 0.29 17 12 0.13 3 
1.0-1.49 31 0.19 22 23 0.55 22 
1.50-
1.99 22 0.26 22 19 0.66 25 
2.0-2.49 14 0.11 8 24 0.32 16 
≥ 2.50 9 0.95 31 20 0.66 34 
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Schmitz and Clark 1999). Warner and Etter (1989) stated that diverted farmland that is safe 

nesting cover has been and probably always will be an important component of prime pheasant 

range in the Midwest. A study conducted in Wisconsin found that retired cropland was favored 

over hayfields, wetlands, and strip cover because it provided adequate nesting cover for the 

entire nesting season (Dumke and Pils 1979). However, wetlands and strip cover were used early 

in the nesting season. In Nebraska, cool season pastures, warm season pastures and native prairie 

all had greater numbers of nesting females than crop land (King and Savidge 1995). The most 

successful nests, in a four year Iowa study, were located in idle cover and grassed waterways 

(Riley et al. 1994). Grassed waterways contained 31% of the nests, although they only 

represented 3% of the study area. Schmitz and Clark (1999) also found that pheasant in Iowa 

selected home ranges in the spring with proportionally more grassland than was available across 

the landscape. 

 Nests are considered successful if the hen is able to hatch at least one chick. However, 

estimating nest success is not as straightforward. Nests can be evaluated as simply as the number 

of nests observed that end up hatching, or they can be evaluated based on their stage of 

development. By incorporating the stage of development into the analysis, researchers account 

for the amount of risk/exposure that a nest has already gone through before discovery. 

Incorporating this factor into the analysis was proposed by Mayfield (1969) and is known as the 

Mayfield method. Agricultural operations, predation, trampling and nest abandonment are the 

main causes of nest failure. A four year study conducted in Iowa found 44% of nesting females 

were successful in their first nesting attempt (Riley et al. 1994). Their analysis did not 

incorporate the Mayfield method into their estimation. Initial nest success levels for each year 

varied from 28% to 55% in this study.  
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 In North Dakota, Geaumont (2009) found that nest success levels varied among cover 

types, including season-long grazing, idled land, hayed pastures, no-till corn, and no-till barley. 

Annual success rates did not differ between treatments; however, a treatment X year interaction 

was recognized which did not allow for a discussion of treatments (Geaumont 2009; Table 5). 

 Pheasant generally lay one egg per day and lay an average clutch size of 10 eggs. These 

eggs are then incubated for 23-24 days. Therefore, the complete nesting cycle averages 33-34 

days, which is generally incompatible with alfalfa harvest for all but the earliest of nests 

(Trautman 1982). Furthermore, the time spent on nests increased with the amount of eggs laid 

(Kuck et al. 1970). The length of time that nesting cover remains undestroyed is an important 

factor determining nest success in active agricultural areas. Seeded warm season pastures such as 

switchgrass , Indian grass, and big bluestem had significantly higher nest success than alfalfa, 

orchard grass (Dactylis glomerata) and other hay meadows due to early season cutting of the 

later land uses (Fondell and Ball 2004). 

 
Table 5. Pheasant apparent nest success (%) and standard errors by treatment on Post-
Conservation Reserve Program lands in southwest North Dakota (Geaumont 2009). 
 

Year(s) 
Treatments 

Season-Long Idle Hay Pasture No-till 
Corn 

No-till 
Barley 

2006 80 (18) 10 (10) 50 (14) 0 100 (100) 
2007 50 (5) 60 (5) 100 (100) 0 0 
2008 65 (48) 70 (31) 0 0 0 

2006-2008 65 (17) 47 (32) 50 (21) 0 33 (33) 
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 Every region will have slightly different circumstances related to agricultural conflicts 

and nesting activities. Any hay cutting during the nesting season reduces nesting success and 

increases female and chick mortality (Warner and Etter 1989). Generally, mowing/haying 

operations should wait until after July in order to ensure nests have hatched and broods are 

mobile (Patterson and Best 1996). However, in eastern Colorado, cutting winter wheat crops 

prior to the incubation stages (April to Early May) increases nest success, otherwise nests will be 

destroyed during the early spring harvest and re-nesting will occur in wheat fields which could 

then be destroyed again in July harvests (Snyder 1984).  

 Poor timing with agricultural activities can significantly reduce pheasant populations. In 

Iowa, mowing operations in early June destroyed all nests and killed 73% of hens in an 

alfalfa/orchard grass pasture (George et al. 1979). Initial cultivation of stubble fields destroyed 

more pheasant nests than were lost to predators in eastern Colorado, thereby representing a 

significant contribution to nest destruction (Snyder 1984). About 65% of incubating hens were 

struck by farm equipment in Illinois and only 1 of 7 hens struck during cutting was typically 

alive at the end of the summer (Warner and Etter 1989). Additionally, emergency hay cutting on 

CRP fields during the pheasant nesting and brood rearing season significantly reduced 

production due to nest destruction and direct mortality (Hays and Farmer 1990). 

 Trends in modern agriculture threaten nest success (Warner et al. 1999). In many areas, 

the lack of undisturbed cover from increased agriculture production, leads to more nests in 

vulnerable landscapes (Warner and Etter 1989). These nests experience higher levels of nest 

destruction from haying or trampling. There has also been a significant trend towards earlier hay 

harvest in all states except Indiana and Missouri since WWII. Most alfalfa in the Midwest is now 

cut 4-5 times compared with 2-3 times only a few decades ago. Cultivation procedures and other 
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structures installed on to machinery will decrease nest destruction but are not commonly used 

(Snyder 1984). Installing flushing bars onto farm equipment is one practice found to increase 

nesting success (Calverley and Sankowski 1995). Equipment with these structures installed may 

still destroy the nest but allows the hen to escape. However, these structures can be costly for 

producers and are rarely used.  

 Nest trampling by livestock is considered rare but can be a direct result of livestock 

presence (Fondell and Ball 2004). Ungrazed plots consisted of reduced forb cover, increased 

litter cover, increased litter depth, and increased VOR of vegetation. Pheasant nest locations in 

Montana were positively correlated with VOR and therefore negatively correlated with grazing 

(Fondell and Ball 2004). However, nest selection is correlated with vegetation and grazing is 

only a factor affecting the plant community. Therefore, grazing should not be looked at as the 

chief factor determining nest site selection in areas with grazing and nesting activity. Geaumont 

(2009) found no significant nest success differences among different post CRP treatments, which 

included season-long grazing and idled land, in a study done in southwestern, North Dakota. 

 Several studies showed nest predation as the primary cause of nest failure (Chesness et al. 

1968; Dumke and Pils 1979; Riley et al. 1994; Clark et al. 1999; Schmitz and Clark 1999; 

Geaumont 2009). Mammalian predation was generally the dominant form of predation. 

However, avian predation did play a significant role in several areas including eastern Colorado 

(Snyder 1985). In Colorado, great horned owls (Bubo virginianus), cooper’s hawks (Accipiter 

cooperii) and prairie falcons (Falco mexicanus) were identified as the dominant avian predators. 

In intensely farmed regions crow (Corvus brachyrhynchos) can also become a common nest 

predator (Chesness et al. 1968). 
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 Predation was the primary cause of death to hens in spring in an Iowa study, and 

accounted for 87.5% of the deaths (Schmitz and Clark 1999). The majority of deaths (66.7%) 

were due to mammalian predation. Another study in Iowa found that mammalian predation 

accounted for 61% of nest losses over a four year period (Riley et al. 1994). Mammalian 

predators accounted for 98% of nest failures in southwestern, North Dakota and striped skunks 

(Mephitis mephitis) were the primary culprit (Geaumont 2009). Patterson and Best (1996) found 

that the primary mammalian predators of pheasant nests in Iowa were red fox (Vulpes vulpes), 

striped skunk, raccoon (Procyon lotor) and farm cats (Felis catus). Chesness et al. (1968) found 

a similar suite of predators in southern MN. 

 Predation varied depending on several factors; however, predation was highest on poorly 

concealed nests (Chesness et al. 1968). The highest predation rates were shown to take place on 

nests established early in the season in residual cover from the previous year. Increased edge 

habitat has also been shown to increase predation (Clark et al. 1999). On a land with different 

habitats, predators will concentrate their hunting pressure to areas with heavier cover (Chesness 

et al. 1968). Therefore, increasing distance from edge and limiting fragmentation are important 

factors for improving nest success (Clark et al. 1999). Birds showed preference for nesting in 

areas further away from the edge.  

 Nest abandonment is another factor limiting nest success. Hens will sometimes abandon a 

nest based on discovery of the researcher (Gates 1966). Ten of eleven abandonment cases in a 

four year Iowa study were investigator related (Riley et al. 1994); four of five hens abandoned 

their nests when they were initially radio-equipped in a study conducted in South Dakota (Kuck 

et al. 1970). Geaumont (2009) found that 35% of nests were abandoned in southwestern, North 
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Dakota. However, hens are less likely to abandon their nests as the length of incubation 

progresses (Warner and Etter 1989).  

 The percentage of hens that eventually produce a brood is higher than the percentage of 

nests that are successful (Gates 1966). Therefore, hens will initiate another nest when the 

previous one has failed; this behavior is called re-nesting. A period of renewed ovarian 

development, called the re-nesting interval, takes place between nesting events. The re-nesting 

interval lengthens as the stage of incubation advances when the first nest was terminated. The re-

nesting interval for two hens in a South Dakota study was 10 and 11 days (Kuck et al. 1970). 

However, re-nesting can be close to instantaneous in some situations when eggs are un-incubated 

(Gates 1966). In Wisconsin, there was an average of 6.4 days between nest loss and onset of 

laying a second clutch (Dumke and Pils 1979). In this same study, all unsuccessful hens re-

nested at least once and many re-nested even after this. One hen was recorded re-nesting four 

times, hatching a brood on 3 August. Re-nesting efforts produced 40% of the broods in 

Wisconsin.  Of hens losing their first nest, 71% re-nested during a four year study in Iowa. Their 

second nests had a success rate of 40% (Riley et al. 1994). Another study in Iowa found that 83% 

of adults re-nested after losing their first nest; whereas, only 58% of juveniles re-nested after 

losing their first nest. However, juvenile re-nests were more successful than adult’s at 75% to 

15% respectively (Riley et al. 1994). Hens are also more likely to re-nest if disrupted early in 

incubation (Kuck et al. 1970). 

 Because of agricultural activity, the suite of available nesting habitats for pheasant will 

change from the initial nest selection period (Gates 1966). Pheasant usually do not re-nest in 

tracts where their nests were destroyed, therefore re-nesting attempts may occur in an entirely 

different cover types (Warner and Etter 1989). In Wisconsin, 79% of re-nesting efforts were 
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initiated in cover types different from the original cover (Dumke and Pils 1979). There was an 

average distance between nests of 396 m, (range 63 m – 2,264 m) between the first and second 

nesting effort. In South Dakota, two hen pheasant were recorded re-nesting approximately 148 m 

and 176 m from the first nest (Kuck et al. 1970). 

 Ranges for hens were 8 ha – 21 ha, and averaged 12.5 ha during the nesting season (Kuck 

et al. 1970).  As incubation progresses hens remain closer to their nests, shrinking their activity 

centers (Hanson and Progulske 1973). Average home range size was found to be the smallest 

during the peak hatching period (15 - 30 June) in a South Dakota study (Hanson and Progulske 

1973). Following hatching, home range sizes increase in the post-breeding season with a large 

increase in home range size in August and September. This range size increase could likely be a 

response to crop harvests and activity centers may shift after these events.  

Brood Rearing 

 The brood rearing stage is another critical period during the pheasant’s life cycle. 

Successful brood rearing is enhanced by access to particular food resources, mostly insects, as 

well as appropriate cover habitat (Trautman 1982). Cover is dependent on vegetation 

characteristics such as VOR and litter depth. These plant communities also support the insect 

populations the broods depend on, therefore these two requirements are inter-related and are the 

focus of many brood rearing studies (Hill 1985). Upon hatching chicks are capable of 

locomotion immediately; however, their ability to escape predators is still relatively undeveloped 

and predation becomes a major threat to brood survival (Trautman 1982). Riley et al. (1998) 

reported mammalian predation was responsible for greater than 85% of brood mortality in Iowa. 

Brood rearing habitat must provide for both the dietary requirements of young chick as well as 

their cover. Marginal habitats have been shown to increase the territory that broods are required 
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to cover to meet their resource needs. As a consequence these movements further expose broods 

to the risk of predation (Warner 1984).  

 Adequate brood rearing habitat varies by region and can be affected by the predominant 

agricultural activities in the area (Warner et al. 1999). In most localities broods show 

disproportional use for certain habitat types over others available in the landscape (Hammer 

1973). One exception to this rule is the Willamette Valley in Oregon where pheasant showed no 

significant differences in use of cover types over those available within the landscape (Meyers et 

al. 1998; Table 6). Nevertheless, the survival of Willamette Valley broods was related to the 

habitat the birds utilized as well as the age of the broods. Grain fields (wheat, oat (Avena sativa) 

and barley) provided the most secure hatching and early brood rearing cover (from 1-7 days). 

Strip cover (roadsides, fencerows and roadside ditches) was the least productive habitat for 

hatching success and early brood survival due to predation pressure. However, it was shown to 

be selected during nest establishment and was used frequently by broods that survived during 

days 8 - 44. Survival of broods in the Willamette Valley is therefore related to frequency and 

timing of habitat use by broods.    

 Alfalfa, proved to be an important cover type throughout the brood rearing season for all 

months from June to October in South Dakota (Hanson and Progulske 1973). Alfalfa was the top 

selection for overall preference during all periods of the brood rearing stage when analyzed with 

a cover use index procedure developed by Robel et al. (1970). Other habitats, such as sown small 

grain fields, corn fields, and shelterbelts, were used intermittently for nesting and roosting during 

this same period. Pheasant targeted corn (33%), small grains (oats and rye (Secale cereal)) 

(23%), alfalfa (15%), and residual cover (14%) more than any other land types. Residual cover 

and small grains were most heavily used in early summer and approximately 90% of the birds 
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Table 6. Cover type use by pheasant broods comparing survived and perished for three 
time periods in western Oregon, 1980-1983 (Meyers et al. 1998).  

aDistribution of percentage among the 5 cover types were significantly different between those 
broods that survived and those that did not for each period. Significant individual comparisons 
within a time period are shown with * (P < 0.05) and ** (P < 0.01).  
bSample size (number of broods; number of locations). 
 

 

observed were in these locations during June and the first half of July. In September, only 7% of 

the locations were in these habitats. Small grains were highly preferred from mid-June to mid-

July. Corn was used during all periods of the day after 1 July and was utilized progressively 

more after mid-July. 

 In Illinois, an area that is intensely dominated by row crop agriculture, brood activity was 

significantly higher in oat fields compared to hay fields (Warner 1979). Oat fields provide 

appealing cover for pheasant in Illinois (Warner 1984). Ease of movement, concealment, and 

abundance of insects make oat fields a prime foraging cover for pheasants (Warner 1984). Prime 

feeding areas during this time period are strongly correlated with insect abundance (Basore et al. 

1987). During the early brood rearing stage (1-4 weeks) other habitats in Illinois, such as corn 

and soybeans, are of little value to pheasant chicks because of their low arthropod abundance 

  Cover type used (%)a 

Cover Types 

Hatching Days 1-7 Days 8-44 

Broods 
that 
perished 
in ≤7 days 
(n=26;26)b 

Broods 
surviving 
≥8 days 
(n=67;67)b 

Broods 
that 
perished in 
≤7 days 
(n=26;27) b 

Broods 
surviving 
≥8 days 
(n=70;130)b 

Broods 
that 
perished 
between   
8-44 days 
(n=26;94)b 

Broods 
survivin
g ≥45 
days 
(n=28; 
277)b 

Grain fields 15 55**  15 52**  44 40 
Strip 
vegetation 35 8**  11 4 5 15* 
Seed Grasses 27 15 19 18 16 7* 
Grassland 16 16 37 15* 30 30 
Miscellaneous 8 6 19 11 5 8 
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(Hill 1976). Nevertheless, pheasant broods will attempt to utilize the habitats available when 

ideal cover types are absent. Basore et al. (1987) found that pheasant in Iowa will utilize row 

crops for food in the absence of hayfields for the early brood rearing stage. In certain situations 

arthropod abundance is not the primary factor determining habitat selection. For example, a 

British study found that during the first four weeks, 68% of pheasant chick locations were in 

cereal fields, and only 8% in woodlands, which were significantly less then what was available 

in this area (Hill 1985). Avoidance of woodland habitat was still present despite a higher level of 

arthropod abundance. These pheasant also showed preference for rough grass, weedy areas and 

winter barley (Hordeum vulgare). 

 Several studies have shown that differences in brood survival are associated with the 

habitats utilized during this time period (Meyers et al. 1988; Riley et al. 1998; Clark and 

Bogenschutz 1999). For example, broods hatched in grain fields perished significantly less 

frequently than those hatched in other habitats in the Willamette Valley of Oregon (Meyers et al. 

1988). In northern Iowa researchers found a positive association between hens with broods in 

grassland cover and brood survival (Riley et al. 1998). Lower amounts of grassland cover 

corresponded to more variability in chick survival. This study also found that highly fragmented 

landscapes, did not allow for high numbers of chick survival. There is also a lower survival rate 

associated with late-hatched chicks from re-nesting attempts (Clark and Bogenschutz 1999). 

 Changes in modern agriculture have also had an effect on brood rearing habitat (Warner 

1979; Warner 1984; Basore et al. 1987; Clark and Bogenschutz 1999; Warner et al. 1999). Oat 

fields, which are high value brood rearing habitat, are threatened with changing farm practices 

favoring less small grains and more soybeans and corn crops in Illinois (Warner 1984). Without 

small grain habitat, pheasant broods will make greater use of marginal brood rearing habitat such 
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as corn and soybeans. Warner (1979) concluded that availability of insects and weedy forbs for 

pheasant chicks in this area had reached critical levels which may detrimentally affect their 

ability to complete normal life cycles. Under these intense agricultural situations, brood rearing 

habitat may be equally as limiting as nesting habitat (Warner 1979; Clark and Bogenschutz 

1999). Other changes in modern agriculture, such as the late seeding of mono-typic oats in 

Illinois, have also been found to be of little value to foraging pheasant (Warner et al. 1999). No-

tillage fields, while beneficial for soil health and other ecological properties did not show a 

significantly different availability of arthropods when compared with other tillage practices in a 

study done in Iowa. However, the value of no-tillage fields to meet other requirements of the 

brood rearing stage compared to conventional tilling is unclear (Basore et al. 1987).  

 The effects of herbicide, pesticide and insecticide application have the ability to reduce 

available food and quality habitat for pheasant broods (Warner 1984). Prior to the advent and 

usage of herbicides, most crops had an undergrowth of grassy weeds and forbs that provided 

invertebrates and small seeds for young chicks (Warner et al. 1999). Brood rearing habitat in 

intensely farmed regions, such as Illinois, has not only decreased in size but has also declined in 

quality. Researchers have shown improvements in chick survival by eliminating the use of 

pesticides on small grain field margins, there-by increasing insect forage and providing more 

food for pheasant broods (Chiverton 1994). Other studies such as Warner et al. (1982) have 

found similar relationships; insect control for soybean farming has been linked to smaller insect 

populations in central Illinois and thus less food for pheasant chicks.  

 Utilization of specific cover types throughout the diurnal cycle has been another major 

focus of brood rearing research (Hanson and Progulske 1973; Warner 1979; Meyers et al. 1998). 

Variation in this selection also appears to be regional and Meyer et al. (1988) found that there 
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was no difference in cover types used by broods during morning, mid-day and afternoon time 

periods in the Willamette Valley of Oregon. In contrast, South Dakota broods were found in corn 

fields, pastures, and summer fallow pastures during the day but avoided these areas at night 

(Hanson and Progulske 1973). They utilized small grain fields equally throughout the 24 hour 

period and shelterbelts were used at their greatest extent in the morning period but the least in the 

afternoon. Alfalfa was found to be the most extensively used cover type for both day and night 

throughout the brood rearing season. In Illinois, differences in cover type have been studied 

based on the diurnal cycle (Warner 1979). Broods focused activity primarily in oat fields during 

the day as well as the night when this habitat was available, suggesting that oat fields in this area 

are valuable both as suitable roosting cover and as primary feeding areas. In Nebraska, hayfields 

were most frequented by pheasant at nighttime (Hammer 1973). 

 The use of row crops by pheasants has generally been shown to increase during the 

afternoon hours (Bennet and Hendrickson 1938; Hammer 1973; Hanson and Progulske 1973; 

Warner 1979). Pheasant broods roosted primarily in hay and small grains, and they were 

relatively inactive until after sunrise (Warner 1979). Several researchers believe this period of 

inactivity may correspond with dew accumulation on vegetation (Fisher et al. 1947; Klonglan 

1955; Warner 1979). During the early morning period pheasant in Iowa moved to open areas, 

which was likely a response to the heavy dew in the grass habitat. During the mid-day hours, 

pheasant moved to heavier cover areas as the dew evaporated (Warner 1979). Pheasant waited 

until after daylight to leave nesting cover and return to their roost. These daily movement 

patterns were recorded by Warner (1979) and displayed below (Warner 1979; Table 7). 
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Table 7. Frequency of locations of pheasant broods by primary cover types for different 
daily time periods in Illinois (Warner 1979). 

    Brood Locations   

Time Period 
Observed v. 
Expected 

Corn and 
Soybeans 

Hay and 
Oats 

Edge, strip, 
and Roadside Total 

Night               
(2131-0530) 

OBS                  
EXPa 

3                           
7.3 

14               
9.6 

5                        
5.1 

22                           
� x2

2 = 
4.55b 

Early 
Morning 

(0531-0930) 
OBS                  
EXP 

36               
36.6 

46             
47.8 

28                
25.7  

110                           
� x2

2 = 0.29 

Midday      
(0931-1330) 

OBS                  
EXP 

44                
51.6 

70               
67.3 

41                    
36.2 

155                           
� x2

2 = 1.87 

Afternoon 
(1331-1730) 

OBS                  
EXP 

45            
33.9* 

44           
44.3 

13                      
23.8� 

102                           
� x2

2 = 
8.54‡ 

Evening            
(1731-2130) 

OBS                  
EXP 

16               
14.6 

14             
19.1 

14                            
10.3 

44                           
� x2

2 = 2.82 
Total 144 188 101 433 

� x4
2   7.43 3.56 7.08 

� x8
2 = 

18.07‡ 
aExpected values (EXP) calculated from the percentage of total locations observed (OBS) in each 
cover type for all periods combined: 144/433 � 144 = 7.3. 
bRepresenting the chi square notation using two degrees of freedom 
* 0.10 > P > 0.05; � 0.05 > P > 0.025; ‡ 0.025 > P > 0.01. 
 
 
 
 Considerable variation between home range sizes has also been detected and varies by 

location. The variation is correlated with the age of the brood, agricultural activities and habitat 

quality (Kuck et al. 1970; Warner 1979; Hanson and Progulske 1973; Hill 1985; Riley et al. 

1998). Immediately upon hatching females and broods stay close to their nest for several hours 

unless predators, machinery or some other disturbance force them to move (Baskett 1947).  

During the peak hatching period, the home range of hens and their broods is the smallest it will 

be for the entire brood rearing season (Hanson and Progulske 1973). In South Dakota, significant 

increases in home range size were seen after this period (Hanson and Progulske 1973). In South 



 

39 
 

Dakota, brood ranges increased from the nesting range to 12.9 - 15.7 ha in July through the first 

two weeks in August (Hanson and Progulske 1973). During the last two weeks of August this 

range increased to 28.7 ha followed by a range decrease to 22.3 ha for the last two weeks of 

September. 

 Another South Dakota study looked at hen home ranges during the brood rearing stage 

(Kuck et al. 1970). Home ranges were recorded at 8.1 - 21 ha and averaged 12.5 ha. Brood 

rearing was restricted to 2 – 4 ha around the nest for the first 3 weeks following hatch. Similar 

patterns were found in northern Iowa (Riley et al. 1998). A four year study conducted by Riley et 

al. (1998) found that broods generally stayed within 100 m of their nest location for two 2 days 

after hatch. After this, movements up to 1,000 m were observed. This study was conducted in 

two counties in Iowa; they found the mean home range area in the two counties to be 76 and 66 

ha for the duration of the study (Riley et al. 1998; Table 8).  

 Comparisons of brood home range size were broken down by Hill (1985) for the first 

three weeks of the brood rearing stage. In Great Britain home ranges were reported as 4.8 ± 1.0 

ha, compared to Illinois broods which occupied 5 -10 ha. In South Dakota, broods home ranges 

were at 2 - 4 ha (Kuck et al. 1970) and 11 ha (Hanson and Progulske 1973). Movements between 

successive nocturnal roosts were recorded by Hill (1985) in Great Britain. Roosts had a mean 

maximum range length (the distance between the two most widely separated locations) of 376 ± 

38 m (range 235-493 m), and the mean distance between successive nocturnal roosts was 75 ± 13 

m. 
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Table 8. Home range area (ha) based on minimum convex polygon estimator of pheasant 
hens with chicks during nesting and brood rearing in Palo Alto and Kossuth counties, 
Iowa, 1990-94 (Taken from Riley et al. 1998). 

 

 

 

 

 

 

 

 

 

a Number of hens with broods 

 Variations in brood home range size were found to be correlated with the quality of brood 

rearing habitat (Warner 1984; Hill 1985; Warner et al. 1999). Illinois pheasant broods in diverse  

habitats had smaller home ranges than their counterparts in corn-soybean monocultures (Warner 

1984; Warner et al. 1999). These increases in range size are likely a function of food supply and 

the brood’s dietary needs (Hill 1985). However, Warner et al. (1999) speculated that this 

increase could represent the hen’s dietary requirements as well because little is known about 

whether brooding hens forage primarily in response to their own nutritional needs or if they will 

alter their optimal feeding pattern to accommodate chicks. Dietary analysis by Hill (1985) found 

that there was overlap in diets between the hens and broods during the brood rearing stage.  

However, arthropods were still only a minor part of the hen’s diet. Increases in home range size 

do not come without a price, and Hill (1985) confirmed an increase in brood rearing failure with 

  Palo Alto county, IA Kossuth county, IA 

Year mean SE Mi
a mean SE Mi 

1990 56 22 16 63 42 7 

1991 21 6 19 15 2 3 

1992 111 26 25 52 18 5 

1993 84 17 15 179 90 3 

1994 102 29 13 57 18 11 

1990-94 76 20 88 66 30 29 
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increases in distance between the two furthest locations of nocturnal roost sites. Hill’s research 

(1985) also illuminated the diversity of arthropods present in the diet of pheasant chicks (Hill 

1985; Table 9). 

 

 Table 9. Composition of arthropod component by dry weight (%) of pheasant 
chick’s diets (seven brood) and selection index (value derived by dividing arthropod 
samples collected from the home range by the weight value represented in the diet) of 
pheasant in England (Hill 1985). 

 

 

 

 

Food item Percent in the diet Selection Index 

Araneidae 2.3 0.2 

Aphididae 8.1 1.8 

Cicadellidae 4.1 0.3 
Delphacidae 10.4 1.3 
Heteroptera 17.5 0.7 
Sawfly adult 0.1 1.0 

Sawfly larvae 18.6 4.0 
Lepidoptera larvae 11.6 8.9 
Ichneumonidae 0.7 2.3 
Braconidae 1.1 0.4 
Formicidae 0.7 7.0 
Carabidae adult 2.3 2.9 
Carabidae larvae 0.4 4.0 

Staphylinidae adults 1.0 0.6 
Staphylinidae larvae 0.6 6.0 
Curculionidae 3.7 1.4 
Elateridae 2.2 22.0 

Other Coleoptera 1.6 0.6 
Tipulidae 6.4 64.0 
Other Diptera 5.7 0.5 

Chrysomelidae 0.1 0.5 
Dermaptera 0.6 6.0 
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 Many of the changes in behavior and home range size throughout the brood rearing 

season can be clarified by looking at the change in dietary requirements as pheasant chicks 

mature (Hanson and Progulske 1973; Warner 1979; Warner 1984; Hill 1985). Young chicks eat 

animal matter almost exclusively (Hill 1976; Whitmore et al. 1986; Basore et al. 1987). Dietary 

shifts towards a higher proportion of plant matter occur from 2 - 4 weeks at which time pheasant 

broods primarily target weed seeds and cultivated grains (Warner et al. 1982; Hill 1985). Hill 

(1985) analyzed fecal matter from broods in Great Britain at this stage and found a 

significant increase in the biomass of Poa annua and Agrostis spp. as chicks increased in age. 

During this dietary shift home range size often increases and broods will show increased use of 

cropfields until 6 - 7 weeks of age where this effect levels off (Hanson and Progulske 1973; 

Warner 1979; Hill 1985). This relationship becomes an important factor in determining the 

quality of brood rearing habitat in an area. In intensely farmed regions, younger broods have a 

significantly higher mortality rate than their slightly older counterparts (Warner 1984; Meyers et 

al. 1988). This difference may be due to the changes in dietary requirements that allow broods to 

utilize new habitats but also their increased mobility and flight ability which allows them to 

escape predators. 

 
 It is important to note that not all researchers have observed this relationship (Ewing et al. 

1992). In some areas, cover types may have the ability to provide for both younger and older 

chicks without requiring an expansion in home range. This relationship is one that requires 

further research and also requires a landscape level analysis of an area. Agricultural activities 

have also been cited for the increase in home range size as the aging of broods often coincides 

with crop harvests (Kozicky 1951; Hammer 1973; Hanson and Progulske 1973; Warner 1979).  

However, a study by Warner (1979) found that changes in use of cover by broods over the 
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summer appeared to be more a function of age and maturation rather than crop phenology or 

harvest.  

 Because brood dietary requirements are a major factor in determining behavior and 

habitat use of young chicks, there have been many studies targeting the needs and preferences for 

young pheasant (Scott et al. 1955; Woodward et al. 1977; Warner et al. 1982; Hill 1985; Basore 

et al. 1987). Mortality has been linked to the amount of protein in the diet for young pheasants 

with increases in protein leading to higher rates of survival (Scott et al. 1955). Hill (1985) found 

that arthropod densities in the home range of broods explained 75% of the variables often 

coincide with chick survival during the brood rearing stage but this relationship may not always  

be directly caused by death from exposure to inclement weather. Hill (1985) found that when 

mean temperature in the month of May was combined with variations in insect abundance using 

a multiple regression analysis, 95% of the variation in chick survival was explained. 

 Monthly temperatures and rainfall were able to explain variation in arthropod 

communities. Therefore, inclement weather while still directly causing mortality in some cases 

also has an indirect effect of limiting the food supply to young broods, causing additional stress. 

Insect abundance is strongly correlated with brood survival (Hill 1985). However, most 

arthropod abundances occur towards the end of the summer after the majority of the brood’s 

diets have already shifted towards plant based foods (Basore et al. 1987). 

 Receiving sufficient protein levels during the first 24 days post-hatch is necessary for 

adequate growth (Warner 1984). High protein diets favor good early feathering and allow for 

satisfactory growth (Woodward et al. 1977). However these results decline with age, and the 

amount of protein needed in the diets of older pheasant chicks to maintain adequate growth 

becomes increasingly smaller up to 14 weeks. In a laboratory study conducted by Woodward et 
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al. (1977), optimal levels of dietary protein for young chicks were determined to be 24% for the 

first 8 weeks, 20% for the next 8 weeks and 10 - 12% protein was sufficient after 16 total weeks. 

Protein in this study was entirely plant based, demonstrating that sources other than arthropod 

biomass can be important protein resources. Determining the minimal amount of arthropod 

abundance needed for growing broods therefore depends on both the characteristics of the plant 

tissue in the habitat as well as the quality and quantity of the protein source provided by the 

insects. 

 Another laboratory study demonstrated that the differences in growth between pheasant 

on a low and high protein diet were most evident during the first three weeks (Warner et al. 

1982). Beyond 24 days both low protein diets as well as high protein diets allowed for adequate 

growth. Despite the need for protein in the diet of young pheasant, restricted protein diet studies 

found that pheasant fed high protein levels and low protein levels all weighed the same by 20 

weeks of age; however the timing of their growth was not equal (Woodward et al. 1977).  

 A multiple regression analysis in Great Britain found that weather variables and insect 

abundance explained 95% of the variation in chick survival (Hill 1985). In this analysis four 

insect groups (carabids, chrysomelids and sawfly and lepidoptera larvae) explained 67% of the 

variation, demonstrating that some insect groups are more important during the brood rearing 

stage than others. Using a fecal analysis, Hill (1985) was able to determine that several groups of 

insects were highly preferred by pheasant broods, while several other groups (Araneidae, 

Cicadellidae and Braconidae) were not. This study found that pheasant broods were 

opportunistic feeders and would feed heavily on ants when they were present in large numbers.        

 Higher biomass consumption was shown to have a positive relationship with chick 

survival (Hill 1985). However, different insect taxa were found to explain significantly more of 
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the chick survival than other arthropods. This relationship infers that some insect groups provide 

higher quality food resources than other. Chicks ingesting more sawfly larvae and Heteroptera 

showed higher survival rates than other broods. 

 Insects found in pheasant diets were represented in both corn and soybean fields in Iowa 

(Basore et al. 1987). These habitats have previously been cited as marginal brood rearing habitat 

despite the presence of the following orders (Isopoda, Araneida, Orthoptera, Homoptera, 

Coleoptera, Lepidoptera, Diptera, Hymenoptera, Odonata, Nueroptera, Ephemeroptera, 

Trichoptera and Hemiptera). Problems with this environment may be related to arthropod 

distribution and density or other requirements of brood rearing pheasant such as roosting and 

concealment. 

 Pheasant chick survival and mean brood size are two other indicators of population health 

that are often documented (Riley et al. 1998; Riley and Riley 1999; Riley and Schulz 2001). In 

North Dakota, mean brood size declined statewide between 1962 and 1993, and between 1971 

and 1993 in the central region of the state (Riley and Riley 1999). In South Dakota the same 

trend was observed between 1978 and 1996. There has also been a steady decrease documented 

in brood survival in Illinois from 78% in the 1940s to 54% in the late 1970s (Warner et al. 1999; 

Riley and Schulz 2001). Survival has been even more extreme for young pheasant in northern 

Iowa where chick survival at 28 days was estimated to be 11-57% (Riley and Schulz 2001). The 

significant, long term declines in mean brood size and chick survival for pheasants over much of 

the Midwest have been attributed to habitat loss, especially grasslands due to their importance as 

nesting and brood cover. However, extreme single or multi-year weather events during the 

pheasant nesting and brood rearing season can cause declines (Riley et al. 1999).  
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 Because predation takes such a large toll on pheasant survival, predator control programs 

have often been implemented (Riley et al. 1999). Riley and Schulz (2001) researched both the 

feasibility and effectiveness of these programs and determined that they can be effective in 

increasing pheasant populations if practiced regularly and intensely. However, maintaining these 

programs is costly and generally economically unfeasible. Investing money in conservation 

practices that reduce predation pressure and encourage pheasant production may be more 

effective in increasing pheasant numbers than predator control alone (Riley and Schulz 2001). 

For example, the cost of removing predators in Idaho was conservatively estimated at 736 labor 

hours being used in 1995 - 1996 to remove 37 foxes, 57 skunks, and 45 feral cats on two study 

areas. The cost was calculated to be $75 to $100 per predator. Furthermore benefits to pheasant 

populations last only as long as predator control programs remain in effect and predator numbers 

can quickly increase once control is removed. 

 Timing and mass at hatch have been linked to chick survival (Riley et al. 1998). Chick 

mortality in Iowa has been shown to increase by 2.3% for each day chicks are hatched after 

median hatch date (Riley et al. 1998). Mass at hatch was also found to be related to chick 

mortality. For every gram above the average chick mass at hatch (18.5 ± 0.13g) survival was 

decreased by 10%. Broods from late hatches or re-nesting attempts show lower clutch sizes, 

lower chick mass, and subsequently reduced chick survival. This evidence suggests that broods 

from re-nesting attempts have a higher chance of mortality, which demonstrates the importance 

of quality nesting habitat that persists through the season.  

 Exposure is another significant cause of mortality for pheasant chicks and affects younger 

chicks substantially more than older ones (Ryser and Morrison 1954). Thermal neutrality in 14 

day old domestic chickens (Gallus domesticus), another gallinaceous species, has been shown to 
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be around 35°C (Barott and Pringle 1946). Temperatures below this can be acclimated to by 

chicks but the acclimatization requires cold weather stimulus (Scott et al. 1955). Cold snaps 

before the acclimatization process, such as immediately upon hatching can be detrimental for 

pheasant broods. Young birds continue to be more susceptible to colder temperatures following 

the hatching period and a laboratory study found exposure of three day old chicks to 30 min at 

20°C was enough to kill 50% of the chicks, at seven days old this same temperature exposure 

only killed 14%, and while at 11 days, no birds were killed (Ryser and Morrison 1954). Riley et 

al. (1998) inferred that starvation may also play a role in these deaths since arthropods, which are 

the primary diet at this stage, are also unable to survive these adverse weather conditions. 

Conservation Reserve Program 

 The Conservation Reserve Program, Title XII of the Federal Food Security Act (i.e., 

Farm Bill), was created in 1985 under the administration of the United States Department of 

Agriculture, although similar conservation practices were achieved with an earlier piece of 

legislation, the Soil Bank Act in 1956. The goals of CRP were to promote planting of perennial 

grasses and forbs which would improve water quality and prevent soil erosion, two consequences 

associated with intensive agricultural practices (Geaumont 2006). Under CRP, farmers are able 

to enter 10-year contracts that defer marginal and highly erodible cropland from agricultural use. 

Recently CRP contracts have also focused on creating prime wildlife habitat, winter wildlife 

food resources and pollinator habitat.  

 There have been other federal farm programs initiated in the past that have also 

temporarily retired private agricultural land from both crop production and livestock grazing 

(Berner 1988). The Agricultural Act of 1956, created the Soil Bank Program allowing farmer’s 

to retire cropland under contract for annual payment. The land retirement portion of this program 
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was repealed in 1965. The Food and Agricultural Act of 1965 continued the long term diversion 

programs under the Crop Adjustment Program (CAP) of 1965.  Both programs contributed 

significantly to wildlife habitat and were the predecessors to the modern CRP program (Erickson 

and Wiebe 1973; Berner 1988; Riley 1995). Recent recoveries of pheasant populations have been 

attributed to the perennial grasslands currently enrolled in the CRP (Schmitz and Clark 1999). 

 Poor nesting success and loss of native grasslands is a major factor for pheasant decline 

in the Midwest (Clark et al. 1999; Eggebo et al. 2003). However, the large blocks of perennial 

grassland set aside from the CRP have shown a positive correlation with pheasant abundance 

(Erickson and Wiebe 1973; King and Savidge 1995; Riley 1995; Ryan et al. 1998; Evard 2000; 

Eggebo et al. 2003; Nusser et al. 2004). Several studies have also shown positive trends in 

nesting density and nesting success associated with CRP land compared to other land uses in the 

area (Luttschwager and Higgins 1992; Camp and Best 1994; Patterson and Best 1996). Pheasant 

have also been positively correlated with the landscape level characteristics of an area (King and 

Savidge 1995; Nielson et al. 2008). In Nebraska, areas with approximately 20% of the land 

enrolled in CRP contracts contained significantly more pheasant than areas with <5% CRP (King 

and Savidge 1995).  

 Utilization studies of CRP lands have also been a major focus of research and pheasant 

were found to be a frequent user of CRP lands in Kansas, Nebraska, Minnesota, Wisconsin, 

Illinois and Missouri (Best et al. 1995). Pheasant have been observed in the winter on CRP land 

in Missouri (McCoy et al. 2001a) as well as Iowa, Michigan and Kansas (Best et al. 1998). They 

utilize these areas as valuable winter habitat in both North Dakota and Nebraska (Delisle and 

Savidge 1997; Homan et al. 2000).  
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 CRP contracts are not uniform throughout a region and many decisions on plant 

establishment have to do with program requirements, landowner preference, location, slope, soil 

type and the hydrology of an area. In North Dakota the main options for establishment are 

permanent introduced grasses and legumes known as Conservation Practice 1 (CP1) and 

permanent native grasses (CP2). Within these categories there are also several different options 

for seed mixtures. However, common CP1 grass species include crested wheatgrass (Agropyron 

cristatum), smooth brome, timothy (Best et al. 1998; McCoy et al. 2001a; Geaumont 2009). 

Common CP1 legumes are alfalfa and sweet clover (Melilotis spp.). Native warm season grasses 

that are commonly planted in CP2 pastures are Indiangrass, switchgrass and big bluestem. 

Recently alternative options for CRP have been initiated including: permanent wildlife habitat 

(CP4D), which is aimed at providing cover, food and wildlife; wildlife food plots (CP12), which 

are generally annual crop species aimed at providing a winter food resource to wildlife; rare and 

declining habitat (CP25), aimed at conserving tall and mixed grass prairie in certain counties in 

North Dakota; and pollinator habitat (CP42), which establishes plant species that aid pollinators.  

 Current active CRP contracts in the United States, as of July 2012, consisted of 11.97 

million ha in 737,873 contracts from 409,374 farms nationwide (USDA 2012). In North Dakota 

current CRP contracts were totaled at 967,589 ha, in 32,379 contracts from 16,065 farms, 

totaling around 5.3% of the state land. Vegetation structure was analyzed in CP1 and CP2 

plantings established in 1986-1987 and analyzed in the summer and winter of 1989 (Burger et al. 

1990). Winter VORs were significantly higher in CP2 plots (x� = 7.6 cm) compared to CP1 

plots (x� = 2.9cm), summer VORs were higher with CP2, averaging 43.2cm compared to 

21.6cm in the CP1 plots. Litter depth did not differ between CP1 and CP2 plots in winter or in 

the summer.  
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 Comparisons between CP1 and CP2 pastures as suitable pheasant habitat were carried out 

by Eggebo et al. (2003) in a study conducted in eastern South Dakota. This study, which was 

conducted in June, found that more crowing pheasant and brood sightings were recorded in older 

(10-13 years) cool-season (CP1) CRP plots than any other age or cover type. Newly established 

CP1 plots (1-3 years) acquired vegetation structure faster than CP2 plots of a similar age and 

these new cool season fields were structurally indistinguishable from old CP1 and CP2 fields one 

year after establishment. These data help explain the observation noted by Eggebo et al. (2003) 

that many landowners have resisted planting warm-season grass mixtures not only because the 

seed is more expensive and requires specialized equipment for planting but also because the 

vegetation normally takes 3-5 years to establish. 

 CP1 fields 10-13 years of age provided the best pheasant habitat for both the nesting and 

brood rearing season (Eggebo et al. 2003). Furthermore, 2-3 and 10-13 year old CP1 fields 

provided better nesting and brood rearing habitat than CP2 fields of comparable age. Researchers 

also noted that intermediate aged fields (4-7 years) which still contain a forb component may 

provide optimal nesting cover and brood rearing habitat. Furthermore, CP2 fields, may have been 

undervalued in this study due to the timing of sampling. Researchers noted that an analysis 

conducted later in the summer would show an increase in CP2 vegetation structure after these 

plants have completed their growing season. These plants also provide valuable winter cover due 

to the stiffness of the vegetation associated with warm season species. From this study, 

researchers recommended extending CRP contracts another 5-10 years to provide the adequate 

vegetation structure. They also recommended higher flexibility in seed choices including a 

mosaic of both cool season introduced species and warm season grasses to aid pheasant 

throughout their life cycle. 
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 The CRP contracts in 2004 were modified to include a stronger commitment to mid-

contract management. Practices included disking and interseeding to replenish the forb 

component of CRP pastures. Without these practices many CRP lands increasingly convert to a 

monotypic grassland with thick litter accumulation (Millenbah et al. 1996, McCoy et al. 2001b). 

Matthews et al. (2012a, 2012b) looked at the response of pheasant populations to these 

management practices compared to traditionally managed CRP field in northeastern Nebraska. 

Hens showed selection for greater forb cover and vertical density, therefore favoring the 

interseeded CRP over the traditionally managed pastures. The mechanisms behind this selection 

may be related to greater invertebrate abundance and, therefore, food resources from the 

increased forb component, as well as the vegetation structure and its effects on predators 

(Matthews et al. 2012b). Therefore disking and interseeding legumes could be responsible for 

increases in nest survival and brood rearing (Matthews et al. 2012a, Matthews et al. 2012b). 

Landscape Effects 
 
 As technology increases there are an increasing number of state and national databases 

available to assess landscape level agricultural and environmental trends in natural resources 

(Nusser et al. 2004). Obstacles to large scale data are being overcome by federally sponsored 

surveys that monitor the status and trends in land use, natural resources and agricultural 

practices, including the U.S. Forest Service Inventory and Analysis Program, the USDA Census 

of Agriculture, and the USDA National Resources Inventory which shows trends for non-federal 

lands. State based surveys, such as the Illinois Landcover Database, have helped landscape level 

analyses related to wildlife research. Improvement in software has also aided these assessments 

and programs like Geographic Information Systems (GIS), Landsat, Remote Sensing and Spatial 

Pattern Analysis Program for Categorical Maps (FRAGSTATS). Older databases are also being 
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used for landscape level research such as black and white aerial photography (Woodward et al. 

2001).  

 Habitat use is a multi-scale phenomenon and the landscape context should always be 

evaluated (Best et al. 2001). Constible et al. (2006) stated that landscape characteristics have the 

ability to influence biotic processes, abiotic processes, and species’ interactions to influence the 

space use in certain species. These characteristics have been broken down into several commonly 

analyzed macro-habitat variables that are currently the foci of these research studies. Some of 

these variables include, but are not limited to; habitat patch size, patch shape, isolation or 

connectivity, proximity to edge features, habitat richness, evenness, interspersion, juxtaposition, 

mean landscape composition, changes in landscape composition or Landscape Change Index 

(LCI), current landscape composition, proportion of a certain cover type and proximity to 

resources such as water. Knowledge of the extent and distribution of potentially suitable 

landscapes can enhance management efforts as well as determine the presence or absence of a 

suitable landscape matrix (Roseberry and Sudkamp 1998). 

 This research has helped clarify many relationships that wildlife have with their habitat, 

which would have been hard to determine with smaller scale studies. For example, a study done 

in Iowa utilized large scale units such as Major Land Resource Area (MLRA), eight digit 

Hydrological Unit Code (HUC), and the county to define polygons throughout the state (Nusser 

et al. 2004). These polygons were then matched up with count data from the state’s annual 

pheasant population survey to analyze the impacts of CRP on pheasant populations. Landscape 

level analyses also have the ability to tease out certain data relationships that would be hard to 

reveal using conventional smaller scale studies. Nielson et al. (2008) looked at a variety of 

habitat types including CRP across nine states and found that of these habitats, percent 
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herbaceous vegetation in CRP within 1,000 m was positively associated with pheasant 

populations. There have been several other landscape level studies focused on a variety of 

species. This research offers valuable insight towards the tools and methods that can be used to 

enhance our understanding of the pheasant relationship with their landscape. These studies 

should be a major focus of future research.  
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MATERIALS AND METHODS 

Study Area 

 This study was conducted at two separate sites near Hettinger, North Dakota, in Adams 

County located approximately eight to ten km apart. Both sites were located on private land 

leased to North Dakota State University to conduct research on CRP lands. The two study sites 

will be hereby known as the Fitch and Clement sites after their landowners. These sites were 

located in an un-glaciated region of the Northern Great Plains characterized by rolling terrain and 

scattered buttes. Adams County lies entirely within the Major Land Resource Area (MLRA) 54, 

known as the Rolling Soft Shale Plains (NRCS 2010). This MLRA is located primarily in North 

and South Dakota, with a small fraction (3%) located in Montana. This area comprises 75,870 

km2 and is underlain by soft calcareous shales, siltstones, and sandstones which contain the 

principal sources of groundwater in this region. Farming and ranching operations are the major 

land uses in this area, producing a combination of cash grains and livestock. Over half of this 

MLRA still supports native grasses and shrubs that support grazing livestock. Around one-third 

of the land is used for dry-farmed crops like wheat, barley, oats, rye, flax (Linum usitatissimum), 

corn, alfalfa, and sunflowers (Helianthus annuus). Small portions of this region are irrigated.   

 The   climate   in   this   region   is continental and semiarid, characterized by warm 

summers and relatively cold winters (Ulmer and Conta 1987).  Annual precipitation in this 

region is 31.5 cm, with an average air temperature of 6.14°C over the last 21 years (NDAWN 

2012). Approximately 80 percent of this precipitation is received from April through September 

(NDAWN 2012). This area is prone to fluctuating fluvial and drought cycles. The town of 

Hettinger, which is near both study sites, has an elevation of 813.8 meters above mean sea level. 
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 Parent materials on these study sites are calcareous shale and sandstone (Ulmer and 

Conta 1987). Three dominant soils and several minor soils exist. At the Clement site, Vebar-

Flasher and Vebar-Parshall are the dominant soils and Shambo loam, Harriet loam, and Arnegard 

are the minor soils, both dominant soils are well drained (Sebesta 2010; USDA-NRCS 2012a). 

The dominant ecological sites associated with these soil types are sandy for Vebar-Flasher and 

loamy overflow for Vebar-Parshall. However, other ecological sites that were associated with the 

Clements site are loamy, shallow loamy, and loamy fine sand. On the Fitch site, Vebar-Parshall 

and Harriet loam are the dominant soils while Belfield-Savage-Daglum and Daglum-Rhoades are 

the minor soils (Sebesta 2010; USDA-NRCS 2012b). Harriet loam soils are generally poorly 

drained. The dominant ecological site associated with Harriet loam soils is saline lowland. 

Primary conservation concerns in our study region with respect to soil are wind erosion, water 

erosion, maintenance and control of organic matter, management of soil moisture, and control of 

saline seeps (USDA-NRCS 2010)  

 The Clement site was 259 ha and located on sections 19 and 30, T129N, R95W, and 24, 

T129N, R96W, approximately four km south of Hettinger. The Fitch site was also 259 ha and 

located on sections 31 and 32, T130N, R96W, approximately eight km west of Hettinger. Both 

sites have a vegetation composition in regulation with CRP requirements (USDA-SCS 1988, 

1989, 1992). The Fitch site was established as CRP cover vegetation in 1989 under a permanent 

introduced grasses and legumes (CP1) mixture. This site was planted as 60% intermediate 

wheatgrass (Elymus hispidus (P. Opiz) Melderis), 30% alfalfa (Medicago sativa L.), and 10% 

yellow sweet clover. The Clement site was made up of two separate contracts. The first of these 

was established in 1988 and reflects the same vegetation cover as the aforementioned Fitch site. 

The second portion of the Clement site, enrolled in 1992, also planted as a CP1 mixture, was 
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established with a seed mixture of 30% intermediate wheatgrass, 30% crested wheatgrass 

(Agropyron cristatum (L.) Gaertn), 30% alfalfa, and 10% yellow sweet clover. 

Treatment Application 

 Research was conducted in compliance with the North Dakota State University 

Institutional Animal Care and Use Committee (IACUC) throughout this study (Protocol # A0845 

and A11034). Our study sites were developed to represent two replicates in order to evaluate the 

ability of a multiple land use management system to provide both agricultural and wildlife 

outputs on post-CRP lands in North Dakota. The original study employed a randomized 

complete block design (RCBD) with four treatments and a control, with the treatments including: 

1) 129 ha season-long grazing (SL); 2) 32 ha hay land (HAY), 3) 32 ha no-till corn (NTC), 4) 32 

ha no-till Barley (NTB); and 5) a control, consisting of 32 ha of land left idle (IDLE) and 

represented CRP under continued enrollment.  

 The SL treatment was grazed from June 1 to January 1 annually with Angus cattle. 

Stocking rates were adjusted annually to meet 50 percent disappearance of vegetation and varied 

between 33 and 45 cow-calf pairs for the 129 ha treatment per year. Stocking rates for our grazed 

treatments varied between 1.6 AUM/ha and 2.4 AUM/ha throughout the four years of the study 

(Table 10). These densities were determined by the site’s ability to produce forage and maintain 

wildlife cover, which varied depending on weather factors such as precipitation, and 

temperature.  
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Table 10. Stocking rates (AUM/ha) by treatment on the Fitch and Clement sites near 
Hettinger, ND, in 2008-2011. 

  

 

The HAY treatment was harvested annually by the second week in July, with the 

harvested hay fed to cattle during the spring calving season. Both the NTB and NTC plots were 

sprayed with glyphosate at a rate of 5.22 l/ha in late-April, 2006, when the crops were 

established. In early May, barley was planted annually with a no-till seeder in the NTB 

treatments and later harvested as hay. The NTC was planted with a no-till seeder in early June 

and left as standing feed for cattle and wildlife forage. Cattle were allowed to graze the NTC and 

residue from the NTB from January 1 until mid-April.  

Nest Searching 

 In order to tag broods with radio tracking devices, we needed to be present with the 

chicks during, or quickly after, the hatching period. We located nests in late spring and early 

summer using two primary methods. Our first method to locate nests utilized the chain drag 

technique as described by Higgins et al. (1969). This method required a 30 m chain, 0.80 cm in 

diameter attached behind two all-terrain vehicles and driven 20 m apart at 11 to 15 km/hour 

across each treatment. When hens were flushed, the area was scanned thoroughly until a nest was 

found or it was determined that no nest was present. Each treatment was searched in its entirety 

Years Clement Season-
long Treatment 

Clement Cropland Fitch Season-long 
Treatment 

Fitch Cropland 

2008 2.1 2.1 2.1 2.1 

2009 2.3 2.3 1.9 1.9 
2010 1.8 2.4 1.6 2.1 
2011 1.8 2.4 1.6 2.1 
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four to five times annually. The time between searches varied from between 10 to 14 days. Any 

previously located nests were avoided during future nest searches. 

 Any nests containing at least one egg were marked by a handheld Global Positioning 

System (GPS) device and a wire stalked flag placed 5 m north of the nest. The second method 

(Chessness et al. 1968) used to locate nests required investigators to search on foot through pre-

marked 0.405 ha plots. Investigators walked abreast through the plots using PVC poles or sturdy 

sticks to part the vegetation in front of them while they walked. Each plot was covered in its 

entirety. Ten percent of the SL treatment and idle control were searched at each site. A small 

number of our nests were found by following radio-marked hens which were the focus of another 

ongoing study looking at winter survival. 

 We determined nest stage and initiation date of the nest by utilizing the egg floating 

method developed by Westerskov (1950). This method uses the development and enlargement of 

the air sack inside the egg and its corresponding changes in buoyancy to determine hatching date 

and stage of development. In this method, an egg is removed from the nest and placed into water. 

Prior to becoming buoyant the angle at which the egg sits in the bottom of the water will 

gradually change with development until the egg is positioned vertically in the column. These 

angles are correlated with embryo development. At eight to eleven days of embryo development 

the egg floats above the water plane. Upon buoyancy, the area of the egg above water can be 

measured to predict the days until hatch. Nest searching began the first week of May and 

continued until early or mid-July.  



 

59 
 

Marking Broods 

 Investigators returned to each nest on the date predicted for egg hatching. Newly hatched 

chicks were captured by hand after the hen had flushed from the nest. Chicks were tagged with 

two different radio transmitters depending on the year they were captured. We used a 0.56 gram 

transmitter with a warranty life of 15 days in 2008 and 2009. However, in 2010 and 2011 we 

switched to a 0.65 gram transmitter with a warranty life of 33 days. This switch was done in 

order to collect a greater amount of data and analyze broods at a later stage of development. 

These transmitters did not contain a mortality switch. To attach these transmitters a small area of 

feathers were shaved from between the chick’s wings in the scapular region and attached to this 

bare region using superglue. A study done looking at a similar, but more invasive radio-marking 

technique, found the transmitters of similar weights caused no significant weight differences, 

growth behaviors, survival differences or pecking behaviors in pheasant chicks (Ewing et al. 

1994). 

 Investigators attempted to attach transmitters to at least three chicks in each brood. 

However, if fewer than three birds were captured or if less than three transmitters were available 

broods were still tagged with one or two transmitters but excluded from the survival analysis.  

Monitoring Broods 

 Broods were tracked on 1-3 day intervals using a handheld Yagi antenna and R2000 

receiver (Advanced Telemetry Systems). Broods were located using the homing technique as 

described by White and Garrott (1990). Some broods were classified as un-located when 

searches were terminated due to it being unreasonable the transmitters were still active and 

investigators determined they were unlikely to find the brood. In some cases, lightning 

threatened the safety of the researchers using telemetry equipment and searching was ended 
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prematurely. Depending on time, these broods were either found later that same day or became 

the primary target of the next day’s search to ensure that the brood was not lost entirely. In some 

instances, broods moved onto private land. Some landowners allowed us to track these broods 

while others did not permit access. In the latter situations, triangulation was used whenever 

possible to determine the land use cover that the brood was utilizing (White and Garrott 1990). 

Signals that failed to move and were located on inaccessible private land were determined 

dead/lost after failure to move for three or more days. Nevertheless, these signals were still 

located daily to ensure that the brood was not just exceedingly sedentary. 

 When brood movement between two days was smaller than average, we would flush the 

hen and brood in order to ensure survival. Each chick would be located individually to ensure the 

bird was alive and that the radio transmitter was still attached to the chick. This method was also 

used when one signal from a chick was separated at a reasonable distance from the remainder of 

the brood. Failures to locate broods later in the season were generally due to loss of battery 

power in the radio transmitter. These failures could be supported by the number of days the 

transmitter had been deployed. Other failures to locate chicks were attributed to dispersal of the 

brood which increased travel distances among chicks and more frequent and farther movements 

onto adjacent private land.  

 Successfully located broods were recorded by location using a GPS handheld receiver. 

We avoided flushing the hen whenever accurate reads could be taken. This was especially true 

on cold and wet days with younger broods to avoid disturbing young chicks already experiencing 

thermal stress. Time of day, land use and GPS coordinates were taken at brood location. We 

made an effort to find broods utilizing all cover types at different times throughout the diurnal 

cycle to have a wide range of informative data from each year. Time stages were divided into 
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four periods: morning (sunrise to three hours after); midday (five to eight hours after sunrise); 

evening (four hours before sunset to sunset); and night (one hour after sunset to one hour before 

sunrise). 

Vegetation Sampling 

 Vegetation characteristics were taken at approximately every fourth known brood 

location regardless of treatment. Vegetation characteristics were quantified within a week of the 

brood’s presence to ensure the vegetation community still reflected the same characteristics 

present upon utilization. To determine available cover within each treatment, a random point 

within 50 m of the used location was generated and vegetation was quantified at each random 

point using similar techniques as those used at each brood location. Random points were kept 

within the same treatment type as its corresponding used location. 

 Vegetation at both used and available points was quantified along two perpendicular 25 

m transects that intersected either the used or random point. Visual Obstruction Readings (VOR) 

were collected using a Robel pole at 1.5 m in height and marked out at 0.25 dm intervals (Robel 

et al. 1970). The Robel pole was observed from a distance of 4.0 m and at a height of 1.0 m from 

the four cardinal directions. The first marking on the Robel pole that was not obstructed was 

recorded by investigators and the pole was read at each of the four cardinal directions. The mean 

of these four measurements was calculated to obtain a site average. Litter depth, maximum live 

and maximum dead standing vegetation measurements were gathered at one meter intervals 

along each transect. The VOR, litter depth, maximum live and dead standing vegetation from 

each set of perpendicular transects were averaged across all frames to generate one set of data for 

each quantified brood or available location. 
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 Canopy cover was estimated using a 1.0 m2 frame placed at two meter intervals along 

each transect. Measurements were calculated for the percent of each vegetative species within 

the frame using ocular estimates. This technique was modified from the Daubenmire method 

(Daubenmire 1959). The Daubenmire frame is 20 x 50 cm2, where our frame was 1.0 m2.  

Measurements were taken on an undisturbed transect side to avoid a human trampling effect. 

Along with the percent of each plant species occurring in each frame, the percent litter and 

bareground within each frame were recorded.  Transect data were an average from all frames to 

generate one set of data for each quantified brood or available location. We also formed 

functional group categories based on the average frame data for each plot.  Functional groups 

included grass, grass-like, shrubs, and forbs. 

 Basal cover was estimated using a 10-pin point frame at 1 m intervals along each transect 

(Owensby 1973; Cook and Stubbendieck 1986). This instrument allows for 10 narrow aluminum 

pins to drop vertically onto basal cover, allowing investigators to determine the basal cover 

percentages attributed by litter, bare ground and live species. The 10-pin point data were 

averaged across all frames to generate one set of data for each quantified brood or available 

location. 

Insect Sampling 

 Insect collections were performed on the same plots that were used during vegetation 

sampling within 36 hours of brood discovery to accurately reflect the insect community when the 

brood was present. We collected insects using a sweep net, 40.5 cm in diameter, designed for 

sampling insects. This device consisted of a tube of cloth sealed at one end with a circular metal 

frame connected to keep the cloth open. The frame was attached to the end of a wooden handle. 

Insects were sampled by starting at one end of each 25 m transect and sweeping insects as the 
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sampler walked along the right side of the tape until the end was reached. The sampler then 

turned around and swept insects on the opposite side of the tape until reaching their original 

starting point.  Insects collected at each perpendicular 25 m transects were combined to make 

one sample representative of either a brood location or an available site. All collection was done 

at walking speed. 

 The investigator would quickly close the net opening to keep flying insects from escaping 

at the end of the collection. The contents of the sweep net were transferred into a one gallon re-

sealable plastic bag for storage and future analysis. Collections were frozen for ≥ 12 hours to kill 

insects prior to sorting. After freezing, all plant matter was removed from the collections and 

insects were sorted by order (Orthoptera, Hemiptera, Coleoptera, Diptera, Hymenoptera, Aranae, 

Nueroptera, and others). These orders were weighed upon separation giving us a wet weight of 

each insect order at each used or available location. We also calculated total insect biomass for 

each used or available location. 

Statistical Analyses 

 To facilitate the evaluation of differences in the insect and plant communities at used and 

random plots, we performed a non-metric multi-dimensional scaling (NMS) on both the plant 

species data (frequency) and insect data based on insect orders. The NMS procedure can be used 

as an ordination technique or it can be used to assess the dimensionality of a data set (McCune 

and Grace 2001). We used the NMS analyses as a data reduction technique to reduce the 

dimensionality of our plant species and insect data down to selected axes which best described 

the data. For the NMS analyses, we grouped all used and available plots regardless of treatment. 

We used PC-ORD 6, manufactured by MjM Software in Gleneden Beach, Oregon, U.S.A. and 

the Relative Sorenson distance measure during NMS analyses (Kruskal and Wish 1978; Clarke 
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1993; McCune and Mefford 2011). Starting coordinates were random and supplied by a random 

number generator within PC-ORD 6. We set the maximum number of iterations to 500 and the 

maximum number of axes to six. The NMS analyses were performed using the autopilot tool 

provided in PC-ORD 6. Axes selection used the following criteria: 1) the highest dimensions 

with a reduction of 5 or more in the stress of real data, 2) a P≤ 0.05 for the Monte Carlo test 

comparing stress for the real data to a randomized dataset, and 3) final solutions with stress < 20, 

number of iterations <150, and instability <0.0005. All graphical outputs were varimax rotated. 

Plant species or insect orders that had an r-value of > 0.4 or < 0.4 with the selected axes were 

considered significant drivers of our ordination axis and provided the ability to describe the 

patterns of plant and insect community ordination. Both the insect and plant species data were 

transformed prior to analyses. We used the arc-sine transformation for the plant canopy data. 

Insect data were transformed using the square root transformation. Budescu and Appelbaum 

(1981) recommended this transformation when the largest variances are found in the largest 

samples of the data set and when the largest sample is more than five times the size of the 

smallest sample in the data set.  Our insect data met both these criterion justifying our 

transformation procedures.   

 Axis scores for the selected axes of each transect were recorded and used in future 

logistic regression analyses. This procedure allowed us to detect differences in the assemblage of 

plant or insect species at each transect which may not be apparent when the data are analyzed by 

functional forms or total insect biomass alone. 

 Due to too few brood locations in some treatments within certain years, we were unable 

to evaluate habitat variables within some treatments. We considered five used locations per 

treatment per year as sufficient; however, this criterion was not easily met for both the NTB and 
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NTC treatments.  Therefore, we choose to group used and random locations at both study sites in 

the season-long treatment by year (Table 11).  We also selected to group used and random 

locations at both study sites within the idle and hay treatments by year.  Hence, we compared 

brood habitat use between a grazed (season-long) and ungrazed (idle and hay) treatment.   

Table 11. Season-long (SL) and Non Grazed (NG) treatment by year groupings and the 
number of pheasant brood utilized transects in each group. These groupings contained 
enough utilized observations to be used in the logistic regression procedure in a study near 
Hettinger, ND 2008-2011. 
  

Study area, 
treatment and year 

Number of Used 
Transects 

Study area, 
treatment and year 

Number of Used 
Transects 

Fitch SL 2008 40 Clement SL 2008 11 

Fitch SL 2009 17 Clement SL 2009 14 

Fitch SL 2010 7 Clement SL 2010 10 

Fitch SL 2011 19 Clement SL 2011 7 

Fitch NG 2008 6 Clement NG 2009  16 

Fitch NG 2009 8 Clement NG 2011 10 

Fitch NG 2011 5   

 

 

 Univariate logistic regression was performed to detect differences in the selected axis 

scores generated during NMS analyses between used and available plots. We used logistic 

regression to assess differences in VOR, litter depth, maximum and dead vegetation height, and 

for each functional group between used and available plots within each grazed and non-grazed 

grouping. We also used logistic regression to assess differences in basal area density which was 

assessed with our 10-pin intercept frame. For all tests a P-value of ≤ 0.05 for the Likelihood 

Ratio statistic was considered significant. We hypothesized that there would be no difference 
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between used and random sites for all selected resource characteristics (Manly et al. 2002). We 

chose logistic regression opposed to other forms of regression because of its ability to handle 

multiple continuous variables (ratio and interval data) as well as discrete, scale and categorical 

variables which allows us to comprehensively evaluate the influence of the habitat variables on 

brood locations at the micro-habitat scale (Neter et al. 1996; Hosmer and Lemeshow 2000). The 

regression procedure was run using the SAS PROC LOGISTIC procedure as implemented in the 

Enterprise program (SAS Institute 2010).    

 We excluded four measurements from our logistic regression analysis due to their 

irregular data properties and their overall lack of presence in our study. These four variables 

were forb and grass density assessed using the 10-pin point frame, and shrub and grass-like 

canopy cover plant functional groups. Shrubs and grass-like plants were mostly absent from the 

transects, although some sedges such as thread-leaf sedge (Carex filifolia) and sun sedge (Carex 

heliophila) were found.  

 Following logistic regression analyses, we used a data fusion procedure known as 

Fisher’s combined probability test to perform a meta-analysis on the independent tests conducted 

using logistic regression (Mosteller and Fisher 1948). Fisher’s combined probability test 

produces a test statistic X2 that has a chi-squared distribution with 2k degrees of freedom with k 

being the number of P-values being combined. The null hypothesis of Fisher’s combined 

probability test assumes the null hypothesis for every independent test is true. This method helps 

assess a global null hypothesis that pheasant were not showing selection or avoidance for any of 

these habitat variables regardless of treatment groups.  A P-value ≤ 0.05 was considered 

significant.  
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 Daily survival rates (DSR) of broods were estimated using the nest survival capability 

available in program MARK (White and Burnham 1999). Use of this analyses type was justified 

due to the irregularity with which some broods were found (Dinsmore et al. 2002). We estimated 

DSR as a function of the additive contributions of two or more explanatory and time-specific 

individual covariates (White and Burnham 1999). We ranked candidate models based on 

Akaike’s Information Criterion (AICc) corrected for small sample size (AICc; Akaike 1973, 

Burnham and Anderson 2002). AICc has been justified for selecting the most parsimonious 

models through balancing uncertainty and variance in model selection (Sugiura 1978; Hurvich 

and Tsai 1989). Those models scoring the lowest AICc have the shortest Kullback-Leibler 

distance, and represent the models closest to full truth, which is never completely known. We 

used ∆AIC, a second order variant to AIC, to rank models from the most to least supported by 

the data (Rotella et al. 2004). We calculated Akaike weights (wi) for our models which 

represented weight of support for each model.  We summed the Akaike weights for like models 

that contained common terms to evaluate the support for each term or covariate (Burnham and 

Anderson 2002). Models were run using the logit-link function available through program 

MARK. We standardized all years to a common start date of 6 June which was the earliest hatch 

date recorded throughout our study. Furthermore, the last day we monitored broods throughout 

our study was 29 July, resulting in 54 estimates of DSR. We were unable to perform goodness of 

fit testing for our specific data type because no method currently exists in Program MARK. We 

proceeded under an assumption of normality during our analysis as well as an assumption of a 

moderate to low level measure of over-dispersion. No model averaging was performed with our 

data due to recommendations against this procedure when working with survival data which 

incorporate linear or quadratic time trends found in Wilson et al. (2007). 
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 Analyses of DSR were performed in two stages based on a priori models attempting to 

explain the variation on survival rates. During the first stage of analysis, we fit a null model with 

no covariates and a constant DSR for comparison with models that included covariates.  We then 

evaluated the impact of habitat type, year, and brood age with constant, linear (T) and quadratic 

(T2) time trends on DSR of broods. We treated years as separate attribute groups. We evaluated 

eight models during stage one of DSR analyses. We hypothesized that DSR would vary by year, 

habitat type, within the brooding season, and by brood age.  

 During the second stage of DSR analyses, we compared the best model from stage one 

analyses with models that added other temporal variables to the best model from stage one. 

Models used in stage two included all possible 1-, 2-, 3-way additive combinations of temporal 

variables including, maximum daily temperature (C°), minimum daily temperature (C°), daily 

precipitation (cm), and a one day lag in precipitation. The weather data used for these analyses 

were from the North Dakota Agricultural Weather Network Station in Hettinger, North Dakota. 

We hypothesized that survival would increase with higher maximum temperatures and decrease 

following precipitation events. Mechanisms underlying these relationships may be the inability 

of chicks to thermo regulate during the early stages of life (Aulie 1976; Horak and Applegate 

1999). We evaluated nine models during stage two analyses of DSR. 
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RESULTS 

Habitat Characteristics 

 We observed 90 broods from 2008 through 2011; 33 in 2008, 21 in 2009, 12 in 2010 and 

24 broods in 2011. A total of 786 pheasant brood locations were observed throughout the four 

year study (Table 12). These locations can be compared to the brood’s original tagging locations 

found in Table 13. Yearly observations consisted of 202, 143, 73, and 368 sightings from 2008 

through 2011; respectively. The majority of pheasant locations occurred in the season-long 

treatment. Habitat data were recorded on 389 transects, with 197 brood locations and 192 

random locations comprising the total transects. Number of transects by land use type utilized by 

the broods is displayed in Table 14. 

Table 12. Number of pheasant brood observations by year and treatment near Hettinger, 
ND, in 2008 - 2011. 

Observations 

  2008 2009 2010 2011 Treatment Totals 
Season-Long 112 53 25 114 304 
Hay 29 31 10 74 144 
Idle 24 23 13 31 91 
Corn 8 0 0 6 14 
Barley 7 20 9 22 58 
Private 18 15 16 105 154 
Other 4 1 0 16 21 
Annual Total 202 143 73 368 786 
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Table 13. Original tagging locations by treatment and year of pheasant broods near 
Hettinger, ND, in 2008 - 2011. 

Tagging Locations by Treatment 
Season-long Idle Hay Corn Barley Other Total 

2008 24 6 2 0 0 1 33 
2009 11 5 3 0 2 0 21 
2010 7 3 2 0 0 0 12 
2011 13 4 5 0 0 2 24 

 

 
 
Table 14. Number of transects for utilized pheasant broods by year and location, and 
number of transects by land use type within year and location near Hettinger, ND in 2008 – 
2011.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

* Fallowed Barley field 

Utilized Transects 
2008 Clement 2008 Fitch 

14 
Transects Hay 3 53 Transects Hay 1 

Season-long 11   Season-long 40 
2009 Clement   Idle 5 

32 
Transects Hay 12   Barley 3 

Season-long 14   Corn  3 
Idle 4 2009 Fitch 
Barley 2 25 Transects Hay 4 

2010 Clement   Season-long 17 
12 
Transects Hay 1   Idle 4 

Season-long 10 2010 Fitch 
Idle 1 13 Transects Hay 2 

2011 Clement   Season-long 7 
23 
transects Hay 6   Idle 2 

Season-long 7   Barley 2 
Idle 4 2011 Fitch 
Barley 6 25 Transects Hay 2 

  Season-long 19 
  Idle 3 
  Other* 1 
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 The earliest recorded hatch of the study occurred on 6 June 2008. The latest recorded first 

hatch of the season occurred on 11 June 2009. In 2010 and 2011, the first hatch occurred on 9 

June and 8 June, respectively, resulting in a very narrow difference in initial hatch dates for all 

four years. The latest recorded hatch for each year was 14 July, 9 July, 15 July and 20 July in 

2008 through 2011, respectively. Hatching dates are described throughout the season for each 

year in Figure 1.  

 

 

Figure 1. Number of ring-necked pheasant nests hatched within five 10 day periods near 
Hettinger, ND in 2008 - 2011.  

 

Vegetation 

 The average ring-necked pheasant brood location had a VOR of 2.0 dm, maximum live 

vegetation height of 7.23 dm, and average litter depth of 0.29 cm (Table 15). The typical brood 

location consisted of a canopy cover of 37.6% grass, 29.2% forbs, 12.5% litter cover and 20.1% 

bare ground (Table 15). Basal cover at these sites, consisted of 21.5% bare ground, 71.3% litter 

cover, 5.1% grass and 2.1% forbs (Table 15). 
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Table 15. The overall mean and standard deviation (σ) for each habitat variable used by 
ring-necked pheasant broods for the Clement and Fitch study sites near Hettinger, ND, 
from 2008-2011. 

Vegetation Variable Mean for all broods and study sites Standard Deviation (σ) 
VOR       2.0 dm1     1.2 dm 
Maximum Live Height        7.23 dm     2.0 dm 
Litter Depth         0.29 cm2       0.37 cm 
Canopy Bare Ground 20.1%      16.9% 
Canopy Litter Cover 12.5% 10.8% 
Canopy Forbs 29.2% 24.1% 
Canopy Grass 37.6% 21.0% 
Basal Bare Ground 21.5% 23.1% 
Basal Litter 71.3% 21.4% 
Basal Grass   5.1%  5.0% 
Basal Forbs   2.1%  2.3% 

1 (dm) = Decimeter 
2 (cm) = Centimeter 
 
 
 
 
 The average random point had a VOR of 1.97 dm, average maximum live vegetation 

height of 7.12 dm, and average litter depth of 0.30 cm (Table 16). A canopy cover characteristic 

of these random transects averaged 36.1% grass, 31.1% forbs, 13.5% litter cover and 18.4% bare 

ground (Table 16). Basal cover characteristics of these random transects were 23.2% bare 

ground, 69.8% litter cover, 5.1% grass and 1.9% forbs (Table 16). Some of these transect 

characteristics are broken down further in Appendix A. 

 

 

 

 



 

73 
 

Table 16. The overall mean and standard deviation (σ) for each habitat variable of random 
locations for the Clement and Fitch study sites near Hettinger, ND, from 2008-2011.  

1 (dm) = Decimeter 
2 (cm) = Centimeter 
 

 

 Non-metric Multi-dimensional Scaling 

 The plant community analysis had a final stress score of 12.31 with 110 iterations and a 

final instability of <0.001. Axis one explained 32.5% of the structure in the data while axis two 

explained 31.1% and axis three 24%. A total of 106 individual plant species occurred in our 

random and used plots. Axis scores generated during NMS analyses are presented in Appendix 

A-D. These scores were the values used in our logistic regression analysis between grazed and 

non-grazed treatments, study year and study site.  

 We found that axis one had a negative relationship with smooth brome (r-value = -0.507) 

and Kentucky bluegrass (r-value = -0.676 (Appendix E). Axis one had a positive relationship 

with intermediate wheatgrass (r-value = 0.528) and alfalfa (r-value = 0.658). Axis two had a 

positive relationship with intermediate wheatgrass (r-value = 0.73).  Finally, axis three had a 

Vegetation Variable Mean for all broods and study sites Standard Deviation (σ) 
VOR          1.97 dm1        1.38 dm 
Maximum Live Height        7.12 dm        2.02 dm 
Litter Depth         0.30 cm2        0.46 cm 
Canopy Bare Ground 18.4% 17.7% 
Canopy Litter Cover 13.5% 10.8% 
Canopy Forbs 31.1% 24.3% 
Canopy Grass 36.1% 22.9% 
Basal Bare Ground 23.2% 22.8% 
Basal Litter 69.8% 21.4% 
Basal Grass   5.1%   7.5% 
Basal Forbs   1.9%   2.2% 
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positive relationship with crested wheatgrass (r-value = 0.642) and a negative relationship with 

smooth brome (r-value -0.638). 

 Logistic Regression Analysis 

 We found no differences (P<0.05) in vegetation axis scores between used and available 

plots generated using NMS (Appendix G). Of the 221 independent logistic regression tests run 

on the various vegetation variables, six tests were statistically different according to the 

likelihood ratio test. Two of these were related to vegetative habitat characteristics, maximum 

height of live vegetation in the Clement 2009 NG group (P=0.0395) and percent bare ground in 

the Fitch 2011 season-long grazed group (P=0.0096). No differences were seen with respect to 

any other vegetative variables between used versus available plots in these groupings. All 

regression test results are reported in Appendix G. 

 Fisher’s Combined Probability Test 

 The meta-analysis using Fisher’s combined probability test with all the p-values from the 

vegetative variable logistic regression analysis supported the overall null hypothesis; there is no 

evidence that pheasant broods are showing selection for the measured vegetative habitat 

variables compared to those that are available within our study sites. Results of the meta-analysis 

test for vegetation are presented in Tables 17 and 18. However, the logistic regression and meta-

analysis tests were only applicable to our previously described treatment groupings of season-

long grazed and non-grazed treatments. Because of the limited number of samples in certain 

treatments that necessitated the grouping of treatments over sites, the original design and 

treatments were not investigated with this analysis. 
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Table 17. Incremental R2 values from non-metric multi-dimensional scaling analysis of the 
vegetation composition data on pheasant brooding habitat near Hettinger, ND, in 2008 - 
2011. 

 

 

 

 

 

Insects 

 Utilized brood locations had an average total insect biomass of 3.15 g per transect 

throughout the duration of the study (Table 19). The most abundant order of insects, in terms of 

biomass, was Orthoptera with an average 1.83 g at each utilized transect. Neuroptera was the 

least abundant insect order, although more rare insect orders may have been present but were 

included in the other category in our analysis. In contrast, random transects had an average total 

insect biomass of 3.46 g (Table 20). Orthoptera was still the most abundant Order reported, 

averaging 2.04 g per transect. Similarly, Neuroptera was the least abundant Order with an 

average 0.01 g per transect. Total insect biomass is broken down further in Appendix I. 

 

 

 

 

 

 

Vegetation 
R2 

Axis Increment 
1 0.325 
2 0.311 
3 0.240 
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Table 18. Results from Fisher’s combined probability test ran on independent logistic 
regression tests between used and available pheasant brood vegetative habitat variables, 
combining p-values by variable for grazed and non-grazed treatments, near Hettinger, ND, 
from 2008-2011. 

Grazed Treatments Non-Grazed Treatments 
Factors Probability 

Score 
Number of    

p-values 
combined 

Factors Probability 
Score 

Number of    
p-values 

combined 
Bare Ground 0.3002 8 Bare Ground 0.7312 5 

VOR 0.5917 8 VOR 0.7950 5 
Canopy % 

Grass 
0.5727 8 Canopy % 

Grass 
0.8638 5 

Canopy % 
Forbs 

0.8016 8 Canopy % 
Forbs 

0.5805 5 

Litter Depth 0.8772 8 Litter Depth 0.4844 5 
Basal Bare 

Ground 
0.6506 8 Basal Bare 

Ground 
0.9709 5 

Basal Litter 0.9360 8 Basal Litter 0.7571 5 
Canopy % 

Litter Cover 
0.8988 8 Canopy % 

Litter Cover 
0.4551 5 

Max Live 
Plant 

0.7379 8 Max Live 
Plant 

0.4112 5 

Max Dead 
Plant 

0.7173 8 Max Dead 
Plant 

0.3714 5 

Vegetation 
Axis 1 

0.8281 8 Vegetation 
Axis 1 

0.8565 5 

Vegetation 
Axis 2 

0.7818 8 Vegetation 
Axis 2 

0.5032 5 

Vegetation 
Axis 3 

0.8724 8 Vegetation 
Axis 3 

0.5667 5 
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Table 19. Mean insect biomass in grams (g) by Order from transects utilized by ring-
necked pheasant broods near Hettinger, ND, from 2008-2011. 

 
 
 
 
Table 20. Mean insect biomass in grams (g) by Order from transects available to ring-
necked pheasant broods near Hettinger, ND from 2008-2011. 

 

  

 Non-Metric Multi-Dimensional Scaling 

 The insect analysis using non-metric multi-dimensional scaling showed a final stress of 

8.42 for the 3-dimensional solution, with 70 iterations and a final instability of 0.00. Axis one 

explained 54.8% of the structure in the data while axis two explained 26.7% and axis three 

Order Mean Insect Biomass (g) per Transect 
Orthoptera 1.83 
Hemiptera 0.54 
Coleoptera 0.24 
Diptera 0.14 
Hymenoptera 0.05 
Araneae 0.05 
Nueroptera 0.02 
Other 0.27 
Total Biomass 3.15 

Order Mean Insect Biomass (g) per Transect 
Orthoptera 2.04 
Hemiptera 0.66 
Coleoptera 0.22 
Diptera 0.19 
Hymenoptera 0.07 
Araneae 0.06 
Nueroptera 0.01 
Other 0.23 
Total Biomass 3.46 
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14.2%. The order Orthoptera had a positive relationship with axis one (r-value = 0.585) 

(Appendix I). There were no orders that had an r-value deemed interpreted for Axis 2 or 3. 

 Logistic Regression Analysis 

 Based on logistic regression analysis, there were three differences between used and 

available plots with respect to the axis scores generated from NMS of insect biomass. These 

differences included insect Axis 2 in the Clement 2008 season-long grazed group (P=0.04), 

insect Axis 2 in the Fitch 2009 season-long grazed group (P=0.0365), and insect Axis 3 in the 

Fitch non-grazed 2009 group (P=0.038) (Appendix G). Another difference (P=0.0481) was 

revealed in total insect biomass between used and available plots in the Fitch season-long 2008 

grazed group.  

 Fisher’s Combined Probability Test 

 The Fisher’s combined probability test using the p-values from various insect variables 

found no differences (P<0.05) between brood locations and available sites. Results of the meta-

analysis test for insects in Tables 21 and 22. Using the p-values from all the variables the 

Fisher’s combined probability test found that neither the grazed or non-grazed analyses resulted 

in any significant differences between used and available (Table 23). 

Table 21. Incremental R2 values from non-metric multi-dimensional scaling analysis of the 
Insect community data on pheasant brooding habitat near Hettinger, ND, in 2008 - 2011. 

Insect Community 
R2 

Axis Increment 
1 0.548 
2 0.267 
3 0.142 
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Table 22. Results from Fisher’s combined probability test ran on independent logistic 
regression tests between used and available pheasant brood habitat insect variables, 
combining p-values by variable for grazed and non-grazed treatments, near Hettinger, ND, 
from 2008-2011. 

Grazed Treatments Non-Grazed Treatments 
Factors Probability 

Score 
Number of    

p-values 
combined 

Factors Probability 
Score 

Number of    
p-values 

combined 
Total Insect 

Biomass 
0.4381 8 Total Insect 

Biomass 
0.3882 5 

Insect Axis 1 0.3752 8 Insect Axis 1 0.7189 5 
Insect Axis 2 0.3199 8 Insect Axis 2 0.6087 5 
Insect Axis 3 0.8746 8 Insect Axis 3 0.1432 5 

 

 

Table 23. Results from Fisher’s combined probability test ran on independent logistic 
regression tests between used and available pheasant brood habitat variables, combining p-
values by study site, treatment and year, as well as for all years and all habitat variables for 
grazed and non-grazed treatments near Hettinger, ND, from 2008-2011. 

Combined Factors, Each Treatment/Year 
For All Factors Combined with 

Treatment 

Treatment/ Year 
Combined 

p-value 

Number 
of    p-
values 

combined Test 
Probability 

Score 
Combined 

p-value 

Clement SL 2008 0.6621 17 
All Grazed, 
All Factors 0.9943 136 

Clement SL 2009 0.8609 17 

All Non-
Grazed, All 
Factors 0.9448 85 

Clement SL 2010 0.8347 17 
Clement SL 2011 0.8557 17 
Fitch SL 2008 0.5697 17 
Fitch SL 2009 0.5799 17 
Fitch SL 2010 0.9904 17 
Fitch SL 2011 0.7338 17 
Clement NG 2009 0.2047 17 
Clement NG 2011 0.9981 17 
Fitch NG 2008 0.7002 17 
Fitch NG 2009 0.3658 17 
Fitch  NG 2011 0.9637 17 
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Brood Survival Analysis 

 Sixty-eight broods were used during survival analyses. Based on stage one analysis of 

daily survival rates (DSR), brood survival was a function of brood age, linear time trend, and a 

quadratic time trend (Table 24). This model estimated four parameters and had an Akaike’s 

Information Criterion score (AICc) of 250.62. Support for this model was only 0.14 AICc units 

better than the second best model with three estimated parameters. However, the second best 

model also included a linear time trend and a quadratic time trend. Summed AICc weights were 

greatest for the linear time trend (0.95; Table 24). The DSR of broods tended to increase 

throughout the brood rearing season with periodic reductions in success. Also, DSR of broods 

increased as the brood aged, although the confidence interval for this parameter included zero 

(��broodage = 0.06 (95% CL = -0.02, 0.13). There was little support for models that included habitat 

or year effects. Beta estimates from the top model are included in Table 24. 

 Stage two analysis of DSR indicated that, in addition to broodage, linear time trend, and 

quadratic time trend, brood survival was a function of a one day lag in precipitation and 

maximum daily temperature (Table 24). This model estimated six parameters and had an 

Akaike’s Information Criterion adjusted for small sample size score (AICc) of 244.92. This 

model was 1.82 AICc units better than the second model which included the addition of 

minimum daily temperature. In general, DSR of broods decreased the day following a rain event 

and increased with increasing maximum daily temperatures. However, several parameter 

estimates on a logit scale included zero. Beta estimates for the top model are presented in Table 

25.  
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Table 24. First and second stage models of daily survival rates of ring-necked pheasant 
broods near Hettinger, ND from 2008-2011. Models are ranked by difference in Akaike’s 
Information Criterion for small sample size (∆AIC c), T1 = Linear Time Trend, T2 = 
Quadratic Time Trend. 

Models 
No. of 

parameters AIC c 
Delta 
AIC c 

AIC c 
weights 

(wi) 
First-stage models 
S*(Broodage + [T1] + [T2]) 4 250.62 0.00 0.33 
S([T1]+ [T2]) 3 250.76 0.14 0.30 
S([T1]) 2 251.83 1.22 0.18 
S(Broodage + [T1]) 3 252.35 1.74 0.14 
S(Null) 1 255.42 4.80 0.03 
S(Broodage) 2 256.01 5.40 0.02 
S(Idle + Season-Long + Hay) 3 258.61 8.00 0.01 
S(Year) 4 260.43 9.82 0.001 
Second-stage models 
S(Broodage + [T1] + [T2] + Precipitation 
Lag + Maximum Temperature (C°)) 6 244.92 0.00 0.37 

S(Broodage +[T1] + [T2] + Precipitation 
Lag + Maximum Temperature (C°) + 
Minimum Temperature (C°)) 7 246.12 1.21 0.20 
S(Broodage +[T1] + [T2] + Precipitation 
Lag) 5 246.64 1.72 0.16 

S(Broodage + [T1] + [T2] + Maximum 
Temperature (C°)) 5 246.96 2.05 0.13 

S(Broodage + [T1] + [T2] + Precipitation + 
Precipitation Lag) 6 248.31 3.39 0.07 

S(Broodage + [T1] + [T2] + Precipitation 
Lag + Minimum Temperature (C°)) 6 248.66 3.74 0.06 
S(Broodage + [T1] + [T2] + Precipitation) 5 252.32 7.41 0.01 

S(Broodage + [T1] + [T2] + Minimum 
Temperature (C°)) 5 252.61 7.70 0.01 

*S = Survival probability as a function of the contained variables 
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Table 25. Parameter estimates for the model with the lowest AICc score in Program MARK 
evaluating daily survival rate for Linear Time Trend (T), Quadratic Time Trend (T2), One 
Day Lag in Precipitation (LagPrecip), and Maximum Daily Temperature for pheasant 
broods near Hettinger, ND from 2008-2011. 

 

 

 

 

 

 The estimate for a one day lag in precipitation did not include zero and had a combined 

AICc weight of 0.80 (Table 25). We evaluated the effects of brood age, one day lag in 

precipitation, and time within the brooding season on DSR by plotting curves with select values 

for each variable in the logistic regression equation. Using precipitation data from 2010, Figures 

2 and 3, show the effect of precipitation on brood survival for broods that were one and 20 days 

of age during early, mid, and late brood rearing season while holding the maximum daily 

temperature at an average value. We considered days 1-18 as early (6 June-23 June), days 19-36 

as mid (24 June-11 July) and 37-54 as late (12 July-29July) within the brood rearing season. 

Broods occurring during each time period had similar survival patterns as those depicted in 

Figures 2 and 3 with broods hatching early in the season having lower survival rates than those 

hatched mid and later in the season. Regardless of time period in which broods occurred the 

effect of precipitation on brood survival was negative and resulted in decreased survival. Data 

from 2010 were used to evaluate the effect of maximum daily temperature on brood survival for 

a brood which was present early, mid, and late during the brooding season for broods at 10 days 

95% Confidence Interval 
Parameter Beta Standard Error Lower Upper 
Broodage 0.05 0.04 -0.03 1.13 
T 0.10 0.08 -0.06 0.25 
T2 -0.001 0.001 -0.003 0.001 
LagPrecip -1.11 0.50 -2.09 -0.13 
MaxTemp 0.06 0.03 -3.75E-04 0.11 
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(Figure 4). Conversely to the negative effect of precipitation on brood survival, warming 

temperatures increased the survival probability of broods throughout the season. 

 

 

Figure 2. Daily survival rate (DSR) of pheasant broods modeled by precipitation one day 
lag near Hettinger, ND in 2010, representing broods that were beginning rearing stage at 
20 days of age. Days 1-18 on the x-axis represent both the early 1-18 (6 June-23 June), days, 
the mid; days 19-36 (24 June-11 July), and late days 37-54 (12 July-29 July) depending on 
line style. Brood age was held constant at 20 days of age. 
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Figure 3. Daily survival rate (DSR) of pheasant broods modeled by precipitation one day 
lag near Hettinger, ND in 2010. Graphs represent broods that were beginning rearing stage 
at 1 day of age. Days 1-18 on the x-axis represent both the early 1-18 (6 June-23 June), 
days, the mid; days 19-36 (24 June-11 July), and late days 37-54 (12 July-29 July) 
depending on line style. Brood age was held constant at one day of age. 
 
 

 

Figure 4. Daily Survival Rate (DSR) of pheasant broods modeled by temperature data 
beginning at 10 days of age near Hettinger, ND in 2010. Days 1-18 on the x-axis represent 
both the early 1-18 (6 June-23 June) days, the mid; days 19-36 (24 June-11 July), and late 
days 37-54 (12 July-29 July) depending on line style. Brood age was held constant at 10 
days of age. 
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DISCUSSION 

Habitat Selection 

 Despite the presence of individual habitat variables that showed selection by pheasant 

broods, these results were not indicative of an overall pattern of selection as demonstrated by the 

combined p-value test. The combined p-value test attempts to reveal the probability of the 

sequence of independent measures of brood selection which under this study was found to be 

consistent with a series of chance events. Previous wildlife studies have found that animals will 

select for specific vegetation characteristics and habitat resources such as thermal cover, food 

abundance, and predator avoidance (McDonald et al. 2012). Selection for food resources may 

occur to maximize energy intake, obtain specific nutrients or minimize toxin intake. These 

selection processes enhance survival or diminish chances of mortality. Several opportunities 

should exist within our study areas that would logically benefit these broods. For example, 

higher levels of insect biomass should provide more abundant food sources for pheasant broods. 

Furthermore, this relationship could have been illuminated by the higher forb components these 

insects depend on. Nevertheless, higher forb and insect abundance were not selected by broods 

compared to available habitat.  

 Higher measures of visual obstruction should also help conceal broods and protect them 

from predation; therefore, diminishing their chance of mortality. These survival advantages 

related to concealment cover were found in Hanson (1970) from research on pheasant nest 

density and vegetation characteristics. Fondell and Ball (2004) noted a similar relationship in 

their research in Montana with pheasant nesting. Height and density correlated positively with 

nest density. These vegetation factors may reduce losses from predators. Other vegetation 

characteristics allowing efficient escape from predators should also enhance brood survival. This 



 

86 
 

relationship, between escaping ability of the prey and the characteristics of the vegetation in the 

habitat, was illuminated in a study by Rumble and Flake (1983) while looking at waterfowl 

broods in South Dakota. Several other hypotheses could be formulated in addition to these 

explanations. However, there are also several explanations for the lack of significant selection 

and avoidance processes we observed. 

 Pastures at our study sites were all planted to the standard 1989 CP1 permanent and 

introduced grass mixtures explained earlier in this manuscript. One possible explanation for the 

lack of selection or avoidance is that these pastures did not contain enough variability to detect 

any differences because of this uniform planting. Our study sites were fairly uniform throughout 

the 259 ha, with only a few exceptions such as a small saline seep at the Fitch season-long 

treatment and a small area of low productivity in the southwestern portion of the Clements 

season-long treatment. This lack of variability may have precluded any selection processes 

occurring within our study areas. However, this habitat apparently meets all the requirements for 

brood rearing pheasant. Pheasant broods might not be forced to select for specific locations 

within the study site because all of their needs were met regardless of where they sit on the 

landscape. The selection between habitats or landscape level selection was not analyzed in this 

study. This study was restricted to micro-habitat selection within treatments or habitats. There 

could very well be selection among habitats and landscapes. Such an analysis if undertaken 

could very well show that habitats with low concealment values and thermal protection like the 

corn treatment was different from perennial vegetation. Conducting this same study design on an 

area with more variability, such as native pasture, may either elucidate brood rearing habitat 

selection or require broods to show selection which is not occurring at our study area. The 

question remains that even if selection was shown to be occurring in diverse habitats is that 
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selection essential for meeting the requirements of the broods in this area given those 

requirements were met without selection on these treatments? 

 Another possible explanation for these results could be explained by the availability of 

food during the first eight weeks of brood rearing. During these critical weeks, broods are 

dependent on insects as their primary food source (Hill 1976; Whitmore et al. 1986; Basore et al. 

1987). These insects are dependent on forbs (Warner 1984) which were abundant on our study 

sites. A diminished forb component, which can occur with pasture age, could have the ability to 

constrain a pheasant brood’s food resource. This study design, repeated on pastures with a less 

abundant forb component may have revealed selection processes occurring with respect to forb 

abundance as well as insect biomass depending on these plants. 

 Additionally, the pheasant’s ability to colonize diverse habitats throughout North 

America demonstrates their adaptability as a generalist species. This trait may help explain some 

of our observations. Generalist species have the ability to meet their habitat and survival 

requirements easier than some other species, particularly those dependent on a specific plant or 

insect species. In our study area, pheasant broods may have all their brood rearing habitat 

requirements met, utilizing their advantage as a generalist species and therefore failing to show 

any selection processes occurring in our study. 

 No other pheasant brood rearing studies, that we are aware of, found a total lack of 

selection similar to our research. This may reflect many things including the somewhat 

conservative grazing intensity that we utilized as well as the uniformity of our study sites. 

Furthermore, our results may be specific to our region. Nevertheless, our management practices 
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on these study sites show evidence that we created quality brood rearing habitat. This may be 

related to the surrounding landscape and land use practices. 

Brood Survival 

 Results from the brood survival analysis contained two closely parsimonious models 

when we evaluated our results using AICc scores, which have the ability to balance the fit of the 

model against the number of parameters estimated. These two models explained the variability in 

brood survival through daily temperature, precipitation events, brood age, and a linear and 

quadratic time trend. These analyses rarely provide the mechanisms behind these variables and 

our study is no exception. However, several of these relationships have been reported in other 

research studies allowing us to make strong predictions about these underlying mechanisms 

behind these models (Ryser and Morrison 1954; Aulie 1976; Horak and Applegate 1999). 

 Brood survival was shown to increase throughout the season, and in our study, common 

causes of mortality in pheasant broods were exposure, predation, and conflict with haying 

equipment. As broods gain mobility and flight ability with age, they have a stronger ability to 

evade predators (Aulie 1976; Horak and Applegate 1999). It is possible that this increase in 

mobility may also help broods avoid haying equipment. Another mechanism underlying this 

relationship may come from increased cold resistance and thermoregulatory abilities pheasant 

chicks gain with body mass and age (Ryser and Morrison 1954). These traits affect a chick’s 

ability to survive inclement weather and precipitation events. Young chicks frequently perish 

following rainstorms coupled with cold temperatures, but as broods age their chances of 

surviving these events becomes greater (Horak and Applegate 1999). Therefore, this relationship 

not only helps explain the presence of brood age in the model, but also relates to maximum 

temperature and the precipitation lag variable. The precipitation lag variable has been tested in 
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other avian brood rearing studies and nest survival studies (Moynahan et al. 2007). This variable 

may be related to the predation of young broods. These are two weather components that showed 

a direct impact on brood survival.  

 The effects of the precipitation lag variable may also be explained by the moisture 

facilitated predation hypothesis (Lehman et al. 2008). The mechanisms underlying this 

hypothesis state that as precipitation increases, wet birds create more scent from increased 

bacterial growth on the skin and feathers (Syrotuck 1972). Mammalian predators relying on 

olfactory cues are then able to locate these birds better, increasing predation. Therefore, the days 

following precipitation events, when the birds are still wet and the predators are active, could 

lead to an increase in chick mortality through mammalian predation. 

 The presence of the linear and quadratic time trends in this model suggest that brood 

survival increased as the season progressed, but that a decrease, or curvature in survival was 

present somewhere throughout the season. This relationship may also be related to weather. The 

presence of early spring storms and cold temperatures during early June may have an impact on 

brood survival. Curvature of survival could be a function of our haying operation on these study 

sites, which was responsible for an increase in chick mortality. However, this curvature could 

also be related to other factors such as increased predation or weather characteristics. Additional 

research would be needed to uncover the underlying mechanism behind this relationship. 

 Researchers also found that intense hailstorms early in the year could significantly 

increase brood mortality. Weather events such as these, as well as differences in predator 

abundance from year to year, can help explain variation in annual brood survival. Survival can 

also be attributed to the differences in the quality of nesting habitat as well as the quality of 
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breeding adults each season, both of which are affected by weather and the size of the pheasant 

population in the immediate area. Population pressure has been shown to force competition for 

quality nesting habitat and territory cover which can drain pheasant of precious energy reserves 

during this critical period. Gates and Hale (1974) illuminated this relationship by showing a 

positive relationship between winter population density and the distance of dispersal in the 

spring. This loss of energy may carry over to the brood rearing stage and may also force hen’s to 

re-nest after their first attempt is unsuccessful. Re-nesting attempts have been shown to have 

higher failure rates and those nests that hatch would also be at a disadvantage (Riley et al. 1994). 

Additionally, hard winters with excessive snow pack leave much less senesced vegetation for 

nest concealment, forcing pheasant to move further in the spring to find adequate habitat which 

continues to support the relationship between population size, weather and brood survival 

variation (Leif 2005). However, many more factors may influence annual brood survival 

variation and only a targeted research study could tease out these relationships for each 

individual year. 

Weather Data 
 

 Weather differences among years were not drastic enough to cause year to be a 

significant driver of brood survival. Nevertheless, weather variables were an important aspect of 

brood survival as predicted by several top models.  

 Precipitation and temperature varied within each of the four studied brood rearing 

seasons. July and August were the hottest months in our study region based on average 

maximum daily temperature and focusing on the months of May through August (Table 26). 

Rainfall was generally the greatest in June and July with the exception of 2009 where July only  
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received 3.18 cm (NDAWN 2012). Throughout the study, the month with the highest amount of 

rainfall was June of 2008 with 14.40 cm. Based on the months of May through August, 2010 was 

the wettest, with 33.83 cm of precipitation falling, 2009 was the driest brood rearing season with 

20.3 cm. Our results clearly demonstrate the role weather can play on brood survival and 

therefore need to be considered as we draw conclusions from this research and managers make 

management decisions. However, while managers can control such things as grazing pressure 

and land use, they have little ability to manipulate the weather and therefore need to make 

management decisions that provide ideal habitat that will aid pheasants during times of 

precipitation and cold weather events. 

Table 26. Weather variables during the pheasant brood rearing season from 2008 – 2011 
from the North Dakota Agricultural Weather Network Hettinger station (NDAWN 2012). 

Year Month 

Average 
Maximum 

Temperature 
(C°) 

Average 
Minimum 

Temperature 
(C°) 

Total Rain-fall 
(cm) 

2008 May 19 3 2.67 

 June 23 11 14.40 

 July 26 13 12.24 

 August 27 13 3.63 

2009 May 19 4 3.94 

 June 23 10 6.35 

 July 25 11 3.18 

 August 24 11 6.83 

2010 May 20 8 5.74 

 June 24 12 9.70 

 July 27 15 9.80 

 August 27 15 8.59 

2011 May 18 6 7.98 

 June 24 13 6.65 

 July 29 16 8.08 

 August 27 14 4.50 
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Regional Pheasant Data 
 

 Regional changes in pheasant abundance were characterized by the North Dakota Game 

and Fish Department’s annual brood survey (Table 27). Based on the North Dakota Game and 

Fish Department’s brood count data, the southwest district, which encompasses our study area, 

had the highest concentration of broods in 2008 (S. Kohn personal communications, January 

2012). During this year, there was an average of 23.4 broods observed for every 100 mile or 

160.9 km transect. The lowest brood concentrations were seen in 2011. Bird concentration was 

the greatest in 2008 with 205.7 birds observed per transect and it was the lowest in 2009 with 

113.7 birds per transect. These regional values likely influence the pheasant abundance on our 

study sites and must be taken into consideration when evaluating our results. 

Table 27. North Dakota Game and Fish Department pheasant brood summary from the 
southwest district (district 3) from 2008 – 2011 (S. Kohn personal communications, 
January 2012). 

Totals 
Observed 2008 2009 2010 2011 

Broods per 100 
miles 23.4 14.8 18.9 14.0 

Birds per 100 
miles 205.7 113.7 160.3 118.7 

 

 

Economic Considerations 

 North Dakota’s pheasant population is an important economic resource, particularly in 

some rural communities. Their value can be seen through revenue generated from fee hunting, 

lodging expenses, the sale of hunting supplies, and several other sources (Steinback 1999). CRP 

contracts are a closely related economic issue which protect and retain this population. 
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Unfortunately, CRP contracts have undergone a two percent reduction in the percentage of North 

Dakotan land enrolled in CRP between 2002 and 2012 (USDA 2012). This reduction went from 

7.3 percent to 5.3 percent. The trend is expected to continue due to fluctuating agricultural 

prices. As the value of certain crops rise, CRP contract holders may discover economic 

opportunities through retiring their CRP contracts rather than renewing them.  

 Homan et al. (1998) and Geaumont (2009) showed that CRP lands are important pheasant 

habitat in North Dakota. Conversions of active CRP contracts into row crops may impact the 

ability of the landscape to support pheasant populations (Luttschwager and Higgins 1992; Camp 

and Best 1994; Patterson and Best 1996). While our study shows no direct evidence that brood 

rearing would be threatened in a row crop dominated habitat, it does show that active CRP 

contracts as well as land uses that retain perennial vegetation likely meet all the habitat 

requirements for these broods, which supports pheasants compatibility with moderate grazing 

levels. We would suggest retention of CRP contracts will continue to support pheasant 

populations and that these contracts also serve as important habitat during the brood rearing 

stage. Furthermore, economic opportunities that arise from agricultural fluctuations may be short 

lived, whereas, wildlife habitat and the populations they support; provides a long term renewable 

resource.  

Food Resources 

 Food availability is another primary concern during the brood rearing stage. Pheasant 

brood-rearing habitat requires a food resource from arthropods which are aided by forb 

abundance. A healthy forb community will ensure a good arthropod population. While our 

research did not detect any selection processes in regard to insect or forb abundance, researchers 

did note that the pastures retained an abundant forb component contributed to the ability of these 
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pastures to provide adequate brood rearing habitat. Older stands with diminishing forb 

components can be improved through reseeding, which is a common practice with many CRP 

contracts. Forb abundance can also be improved through prescribed grazing and burning. 
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CONCLUSIONS 

 Our results suggest perennial vegetation retained through active CRP contracts, and those 

land conversions that retain perennial vegetation, meet habitat requirements for the pheasant 

brood rearing stage. There are several factors which may limit the applicability of these findings 

to other situations. Our results may be specific to southwestern North Dakota and northwestern 

South Dakota. Furthermore, it also may be specific to those stands within this region with an 

abundant forb component and similar ecological sites and uniformity. Native range situations 

and other deviations from our study area may show different relationships with pheasant brood 

rearing habitat selection. 

 Our research does uphold the importance of CRP and perennial vegetation for pheasant 

habitat and notes that declines in CRP, especially when that land is converted to cropland, may 

limit the species’ ability to successfully hatch and rear offspring as was alluded to by the lack of 

brood locations occurring in our cropping treatments. Habitats similar to our study area, both 

vegetative and with respect to insect abundance can be expected to meet brood rearing 

requirements. Our management suggestions support the conservation of these habitats as well as 

some of the more traditional management practices related to harvesting protected nesting cover. 

 Our survival analysis supports some of the relationships found by other brood rearing 

research. Survival of young broods is heavily influenced by weather patterns as well as predation 

and altercations with farm equipment. As broods age, we can expect their likelihood of survival 

to increase. 

 Extensions of our research to landscape level selection could aid our knowledge and 

future decision making. Other more closely related questions, could help researchers 
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discriminate more selection processes. Additional data could also be used to analyze selection 

processes in cropland habitat and aid research in building more complex models of resource 

selection within broods.  

 Furthermore, it would be beneficial to study this question in areas practicing different 

grazing systems. Our grazed pasture proved to be compatible with the pheasant brood rearing 

stage, more intensive grazing may have been incompatible. However, the compositional changes 

that occur after grazing may offer benefits by reinvigorating forb species. Changes in cover, 

plant species composition and patchiness under different grazing strategies should be included in 

the future of pheasant research. 
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MANAGEMENT IMPLICATIONS 

 There are several important management considerations that our research generates. The 

most important of these being CRP land, as well as agricultural practices retaining perennial 

vegetation on post-CRP lands, provides both brood rearing and nesting habitat for pheasant in 

southwestern North Dakota and northwestern South Dakota. If pheasant conservation is a 

concern for CRP contract holders, they should be aware that removal of this habitat may affect 

their land’s ability to provide habitat during these critical life stages. If CRP contracts are to be 

retired, agricultural uses retaining perennial vegetation, such as grazing and haying on these 

lands will provide adequate habitat for brood rearing and nesting pheasant. In those lands 

converted to a haying operation, pheasant conservation can likely be enhanced by haying later in 

the season, altering traditional cutting patterns, and using structures such as flushing bars. 

Protecting food availability to brooding pheasant in these habitats depends on maintaining a 

healthy and abundant forb component. Older pastures with a diminished forb component can 

likely be enhanced as brood rearing habitat by increasing desirable forb species which in return 

should provide habitat for arthropods that young pheasant rely on.  
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APPENDIX A: MEANS AND STANDARD DEVIATIONS ( σ) OF HABITAT 
VARIABLES AT PHEASANT BROOD LOCATIONS AND RANDOM PO INTS FOR 

THE CLEMENT AND FITCH SEASON-LONG (SL) AND NON-GRAZ ED (NG) 
TREATMENTS NEAR HETTINGER, ND, IN 2008 – 2011 

(dm) = Decimeter 
(cm) = Centimeter 

 
VOR (dm) 

Litter Depth 
(cm) 

% Bare 
Ground 
Canopy 

% Grass 
Canopy  

 mean σ mean σ mean σ mean σ n 
Clement SL 2008 

Utilized 
1.54 1.17 0.45 0.35 25.38 13.72 48.50 6.36 11 

Clement SL 2008 
Available 

1.85 1.33 0.59 0.37 25.61 14.96 44.80 8.15 7 

Clement SL 2009 
Utilized 

1.59 1.12 0.21 0.15 10.74 11.73 18.84 17.71 14 

Clement SL 2009 
Available 

0.84 0.57 0.14 0.09 14.05 7.92 18.36 29.46 13 

Clement SL 2010 
Utilized 

2.21 0.90 0.27 0.43 4.92 3.86 49.22 20.91 10 

Clement SL 2010 
Available 

2.34 1.31 0.36 0.64 9.57 7.16 46.99 9.07 13 

Clement SL 2011 
Utilized 

1.98 0.69 0.16 0.14 27.87 10.10 44.70 12.67 7 

Clement SL 2011 
Available 

1.32 1.00 0.15 0.14 30.97 9.88 34.34 11.54 7 

Fitch NG 2008 
Utilized 

1.62 0.62 1.11 0.60 13.81 12.42 36.71 10.12 6 

Fitch NG 2008 
Available 

1.90 1.06 1.53 0.91 10.21 15.21 44.20 11.21 8 

Fitch NG 2009 
Utilized 

1.56 0.98 0.48 0.52 2.03 0.81 8.10 16.73 8 

Fitch NG 2009 
Available 

1.57 0.75 0.44 0.50 7.05 9.66 2.82 2.93 10 

Fitch NG 2011 
Utilized 

2.99 0.73 0.16 0.09 19.45 5.49 43.97 20.64 5 

Fitch NG 2011 
Available 

2.47 1.10 0.21 0.09 17.70 15.88 45.62 19.09 5 

Clement NG 2009 
Utilized 

2.03 0.90 0.43 0.50 6.54 7.08 20.29 12.61 16 

Clement NG 2009 
Available 

1.81 0.72 0.27 0.42 9.20 9.31 24.70 13.07 19 



 

112 
 

 

 

 

 

 

 

 

 

 

 

 
VOR (dm) 

Litter Depth 
(cm) 

% Bare 
Ground 
Canopy 

% Grass 
Canopy  

 mean σ mean σ mean σ mean σ n 
Clement NG 2011 

Utilized 
3.30 0.91 0.21 0.09 23.69 11.32 39.19 13.66 10 

Clement NG 2011 
Available 

3.06 0.96 0.18 0.08 25.45 13.59 36.27 10.85 10 

Fitch SL 2008 
Utilized 

1.31 0.39 0.25 0.23 35.59 13.94 47.99 8.20 40 

Fitch SL 2008 
Available 

1.25 0.48 0.31 0.33 34.58 14.08 46.91 5.31 14 

Fitch SL 2009 
Utilized 

0.98 0.43 0.16 0.07 4.18 4.16 4.93 7.77 17 

Fitch SL 2009 
Available 

0.97 0.39 0.17 0.09 10.05 23.41 5.81 15.24 17 

Fitch SL 2010 
Utilized 

1.38 0.42 0.17 0.05 10.20 11.03 56.21 8.98 7 

Fitch SL 2010 
Available 

1.77 1.45 0.26 0.33 7.91 7.13 60.46 10.46 7 

Fitch SL 2011 
Utilized 

3.18 0.85 0.14 0.03 23.24 6.64 45.81 10.17 19 

Fitch SL 2011 
Available 

3.44 0.79 0.15 0.03 17.29 5.05 46.35 13.76 19 
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APPENDIX B: CLEMENT GRAZED TRANSECT AXIS SCORES FOR  INSECT 
ORDER AND PLANT SPECIES NMS ANALYSIS 

* N/R = not recorded 

Used v Available Year 
Insect 
Axis 1 

Insect 
Axis 2 

Insect 
Axis 3 

Veg 
Axis 1 

Veg 
Axis 2 

Veg Axis 
3 

Available 1 0.3453 0.1934 -0.0352 0.7287 0.8241 0.0639 
Available 1 -0.6253 0.1939 -0.2172 -0.1131 -0.6409 1.7910 
Available 1 -0.8155 0.4928 -0.3794 -1.0807 -0.0938 0.6492 
Available 1 -0.8981 0.3728 0.0799 -0.4223 -0.3230 0.9669 
Available 1 -1.0749 0.2531 0.0927 0.7650 0.3901 0.0528 
Available 1 -0.9208 0.8767 -0.2545 0.7592 0.4781 0.0879 
Available 1 -0.6978 0.8795 -0.2553 0.1706 0.4634 0.1199 
Used 1 0.4589 -0.2226 0.3090 0.6402 0.4923 -0.0419 
Used 1 -0.0993 0.8634 -0.1911 0.7499 0.3944 0.1232 
Used 1 -0.0136 -0.1328 -0.1415 0.6656 0.7415 0.0193 
Used 1 0.3917 0.1267 -0.4363 -0.3058 0.1981 -0.5268 
Used 1 0.2783 0.0559 0.0588 0.6451 0.9038 0.1069 
Used 1 -1.0384 0.4462 0.1244 -0.1704 -0.6540 1.7533 
Used 1 0.1202 -0.3898 -0.1807 -0.1657 -0.5783 1.6561 
Used 1 -0.7235 -0.5038 0.4390 -0.5000 0.1857 0.4877 
Used 1 -0.9388 -0.7581 0.3996 0.6529 0.6788 0.1127 
Used 1 -0.3836 -0.2981 -0.6812 0.7987 0.6834 0.0532 
Used 1 0.2562 -0.1330 -0.1401 0.7383 0.5719 0.0709 
Available 2 -0.4533 -0.3663 0.0113 0.7518 -0.9318 -0.2822 
Available 2 -0.4673 -0.6171 0.5932 0.4703 -0.7937 -0.4304 
Available 2 -0.3268 -0.5029 0.0590 -0.4854 -0.8474 0.1436 
Available 2 -0.3834 -0.3150 -0.1143 0.7460 -0.8811 -0.2346 
Available 2 0.3466 0.0629 -0.0191 0.5843 -0.8678 -0.2066 
Available 2 0.3968 0.0402 0.0679 0.6425 -1.0005 -0.2867 
Available 2 0.8198 0.2223 0.0737 -0.4966 -0.4019 1.4062 
Available 2 0.6939 0.2074 0.0618 0.6266 -0.8459 -0.2264 
Available 2 0.2876 -0.0782 -0.0161 0.6275 -0.9856 -0.2748 
Available 2 -0.0560 -0.2722 0.0321 0.7884 -0.9502 -0.2725 
Available 2 0.9408 0.1905 0.0847 0.5528 -1.1129 -0.3577 
Available 2 0.6430 -0.1653 -0.4236 -0.3878 -0.4031 1.3239 
Available 2 1.0788 0.0832 0.0210 0.2764 -0.9837 1.0251 
Used 2 -0.7344 -0.7434 0.7368 0.5757 -0.8378 -0.3071 
Used 2 -0.6385 -0.6375 0.3539 0.5553 -0.8708 -0.2778 
Used 2 -0.5104 -0.5078 0.1500 -0.6391 -0.5869 0.2662 
Used 2 0.3069 -0.0540 0.0880 0.1381 -0.7406 -0.5921 
Used 2 0.3876 0.1184 0.0793 0.2443 -0.8065 -0.4770 
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Used v Available Year 
Insect 
Axis 1 

Insect 
Axis 2 

Insect 
Axis 3 

Veg 
Axis 1 

Veg 
Axis 2 

Veg Axis 
3 

Used 2 0.2228 -0.2285 -0.0728 0.5668 -1.1468 -0.3006 
Used 2 0.7134 0.0181 -0.1004 0.0746 -0.4824 -0.0536 
Used 2 -0.3905 -0.0095 0.2815 0.3047 -0.7490 0.0353 
Used 2 0.2134 -0.1646 -0.0293 -0.7712 -0.4189 0.6873 
Used 2 0.6374 -0.0284 -0.0616 0.3682 -0.8275 -0.4188 
Used 2 0.0071 -0.2940 0.1373 0.7713 -0.9571 -0.3163 
Used 2 0.3673 -0.0448 -0.3953 -0.0072 -0.4878 -0.3391 
Used 2 0.4878 0.0871 -0.0579 0.4956 -1.3752 -0.2151 
Used 2 0.3707 0.1515 -0.2139 -0.1809 -0.4446 -0.0798 
Used 3 N/R* N/R* N/R* 0.1554 -0.5098 1.3850 
Available 3 0.0851 0.1231 0.2690 0.5961 0.5074 0.0826 
Available 3 0.7182 -0.0793 0.1823 -0.8726 -0.4671 1.0260 
Available 3 -0.1242 -0.4750 0.7421 0.6889 0.4371 0.0543 
Available 3 0.0135 -0.1077 0.0870 0.7096 0.4088 0.0428 
Available 3 0.9341 -0.0596 0.0038 -0.9431 -0.4653 0.9473 
Available 3 0.7016 -0.0624 0.1363 -0.1831 -0.7818 1.5125 
Available 3 0.9655 0.0519 0.0580 0.5288 0.6518 0.2675 
Available 3 0.6696 -0.1054 0.2012 0.7075 0.3922 0.0177 
Available 3 0.7912 0.0369 0.1441 -0.3736 -0.3500 1.1240 
Available 3 0.6235 0.0322 0.1773 0.6871 0.4251 0.0788 
Available 3 -0.8866 0.7775 0.4788 0.7707 0.4480 0.0240 
Available 3 0.1809 -0.0483 0.1579 0.6851 0.4539 0.0532 
Used 3 0.3795 -0.2602 0.3531 -0.4628 -0.5143 1.3607 
Used 3 -0.5053 -0.5745 -0.0345 0.4813 0.5176 0.4546 
Used 3 0.8062 -0.0310 0.1531 -0.7575 -0.3593 1.1206 
Used 3 -0.0127 0.7024 0.2153 0.3190 0.1440 0.4262 
Used 3 0.7579 0.3032 0.0965 -1.1142 0.7252 0.6305 
Used 3 0.8536 -0.0463 -0.5826 0.5852 0.4094 0.0040 
Used 3 0.7013 0.2112 -0.0997 0.7367 0.3608 0.0458 
Used 3 0.8667 -0.0177 -0.1585 -0.3890 0.5257 0.5535 
Available 4 -0.9790 -0.2752 -1.2724 0.0426 0.3495 0.0689 
Available 4 -0.9352 -0.1301 0.4140 0.8055 0.3448 0.1139 
Available 4 -0.4185 0.0539 0.0745 0.7633 0.2317 0.2609 
Available 4 0.5469 0.0582 -0.0330 0.1751 -0.2484 1.5984 
Available 4 -0.3247 -0.2609 0.5079 0.4808 0.4429 0.1630 
Available 4 -1.0732 1.1687 0.1694 0.6256 0.2777 -0.0098 
Available 4 -0.2451 -0.7546 -0.0751 -0.7935 -0.0128 0.7426 
Used 4 -0.6721 0.3991 -1.0088 0.1493 0.6495 0.3188 
Used 4 -0.9291 -0.2873 0.4265 0.6588 0.3127 0.0067 
Used 4 -0.8498 0.5565 -0.0305 -0.4528 0.2186 0.0500 
Used 4 0.5286 0.0302 0.0461 -0.4540 -0.1743 1.2041 
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Used v Available Year 
Insect 
Axis 1 

Insect 
Axis 2 

Insect 
Axis 3 

Veg 
Axis 1 

Veg 
Axis 2 

Veg Axis 
3 

Used 4 -0.3232 -0.6502 0.4355 0.6270 0.6112 0.0915 
Used 4 -0.8874 1.5989 0.2401 0.5046 0.3164 0.1098 
Used 4 -0.7828 -0.3692 0.6574 -0.8591 -0.3021 0.8974 
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APPENDIX C: CLEMENT NON-GRAZED TRANSECT AXIS SCORES  FOR INSECT 
ORDER AND PLANT SPECIES NMS ANALYSIS 

* N/R = not recorded 

Used v 
Available Year 

Insect 
Axis 1 

Insect 
Axis 2 

Insect 
Axis 3 

Veg Axis 
1 

Veg Axis 
2 

Veg Axis 
3 

Available 1 0.2394 -0.1664 0.2107 -0.1256 0.5717 -0.1538 
Available 1 -0.7532 0.6646 0.5548 0.3832 0.8379 -0.1328 
Available 1 -1.2008 0.0424 0.8685 0.1173 0.5673 -0.1550 
Available 1 -1.2814 -0.1030 0.4399 0.6336 0.9952 0.1204 
Available 1 -0.3539 0.2961 -0.2732 -1.3147 0.0815 0.3824 
Available 1 0.9622 0.0388 0.1062 0.5078 0.8337 0.0068 
Available 1 -0.6978 0.8795 -0.2553 -0.8258 0.1812 -0.7631 
Available 1 0.0773 -0.1285 0.4166 0.5698 0.8014 -0.0221 
Available 1 0.8947 -0.0194 0.1032 -1.3714 -0.1639 0.5947 
Available 1 -1.1347 -0.5153 0.3229 -0.8134 0.4595 0.6088 
Available 1 -1.0762 0.1510 0.2428 0.2752 0.2291 0.3611 
Available 1 -1.0952 -0.6878 0.1023 0.7083 0.8539 0.0952 
Available 1 -0.9038 -0.4608 0.5029 -0.1765 0.7897 0.0684 
Available 1 -0.7157 -0.7967 0.5716 0.1977 0.7732 -0.2482 
Used 1 -0.0411 -0.5120 0.6593 0.1920 0.5259 0.0882 
Used 1 -1.1404 -0.0105 0.9571 0.5039 1.1148 0.0025 
Used 1 -0.6812 -0.8302 0.8649 0.2849 0.8301 -0.0207 
Used 1 0.0470 -0.5173 -0.3812 0.4038 1.0311 0.3211 
Used 1 0.0634 0.2635 0.3123 0.4938 1.0232 0.1347 
Used 1 -0.7081 0.3586 -0.1470 0.1987 0.8444 -0.3394 
Used 1 0.0179 0.2423 -0.3266 -0.2571 1.2182 0.9143 
Used 1 0.4491 -0.1280 0.0587 -0.8380 0.2284 -0.6180 
Used 1 -0.2693 -0.7764 0.6455 0.0788 0.7938 0.2068 
Used 1 -0.3451 -0.6745 0.7952 0.5890 0.6424 -0.0636 
Used 1 -0.1925 0.7591 -0.1863 0.0856 0.8189 -0.1793 
Used 1 -0.0339 0.3589 -0.0906 0.2749 0.8373 0.2735 
Used 1 0.1625 0.1667 -0.1167 -1.0572 0.0308 -0.7204 
Used 1 0.2554 0.9526 0.1872 -1.0062 0.3579 0.3298 
Used 1 0.1091 -0.5423 0.1214 -1.0719 0.0211 -0.6371 
Used 1 -1.1810 0.3624 0.7967 -0.8552 0.9436 1.5188 
Used 1 -0.4606 -0.5653 1.1287 0.6278 0.9488 0.2012 
Used 1 -1.0197 -0.6630 -0.7663 -0.8095 0.8326 1.4892 
Used 1 0.5480 -0.1416 -0.8214 -1.1006 0.6305 0.9551 
Used 1 0.3286 0.2847 -0.3730 -0.2305 -0.1388 -0.6709 
Used 1 -0.3679 -0.1991 -0.1251 0.5210 0.8073 0.1876 
Used 1 -1.1384 -0.6104 -0.5905 0.1252 0.9316 0.0491 



 

117 
 

Used v 
Available Year 

Insect 
Axis 1 

Insect 
Axis 2 

Insect 
Axis 3 

Veg Axis 
1 

Veg Axis 
2 

Veg Axis 
3 

Used 1 -1.1404 -0.0104 0.9571 0.1203 0.7961 -0.2267 
Used 1 0.1508 -0.3835 0.4916 0.4007 0.8105 -0.0710 
Used 1 0.4589 -0.2226 0.3090 0.0149 0.7001 -0.4995 
Used 1 0.9574 -0.6379 -0.5857 0.1320 1.0635 0.2824 
Used 1 0.2076 0.0605 0.3109 0.3861 0.8351 -0.0293 
Used 1 0.0573 0.0469 0.3778 0.4060 0.9413 -0.0962 
Used 1 0.2437 0.4131 -0.0638 -0.8132 0.0558 -0.7393 
Used 1 -1.1173 0.8325 0.7144 0.5417 0.7503 0.1179 
Used 1 -0.3468 -0.8003 0.2188 0.4706 0.7287 0.3447 
Used 1 -0.1071 0.6815 0.3495 0.1504 0.7429 0.0777 
Used 1 -0.9418 -0.9567 1.1353 0.5782 0.9345 0.1291 
Used 1 N/R* N/R* N/R* 0.0654 0.7908 -0.0260 
Used 1 -0.5624 0.8306 0.4416 -0.9198 0.1405 -0.4916 
Used 1 0.9005 0.3347 0.8936 0.3920 0.8951 0.0420 
Used 1 0.9582 -0.6457 -0.5761 -1.1795 0.5404 0.0563 
Used 1 0.0753 -0.0164 -0.3464 0.3005 0.7914 -0.1504 
Used 1 -1.1748 0.7808 -0.3333 0.2446 0.7056 0.2622 
Used 1 -0.8550 -0.3250 0.3465 0.2556 0.5897 -0.0246 
Available 2 1.1146 0.0877 0.0531 -0.7624 -0.1009 -0.3549 
Available 2 1.0555 0.1558 0.0554 0.2997 -1.0660 -0.4294 
Available 2 1.0518 0.0750 0.0089 -0.8607 0.1302 -0.8501 
Available 2 0.8268 0.2026 -0.0537 -0.5523 -0.0240 -0.8138 
Available 2 1.0123 0.0749 -0.0047 -1.3993 1.8633 -0.6303 
Available 2 1.0224 0.1492 0.0235 -0.3996 -0.7816 -0.0496 
Available 2 0.8501 0.0158 -0.0092 -0.1797 -0.9152 0.0455 
Available 2 0.8023 0.0754 0.0112 0.5117 -1.1417 -0.3455 
Available 2 0.8341 0.1481 0.0192 -0.0647 -0.8173 -0.3702 
Available 2 0.7883 -0.0120 0.0310 0.4347 -0.9886 -0.2288 
Available 2 0.8461 -0.0362 -0.1150 0.1842 -0.7532 -0.5323 
Available 2 1.0084 0.1806 0.0581 -0.0688 -0.8485 -0.5891 
Available 2 0.9440 0.1738 0.0156 -0.8517 0.0221 -1.0931 
Available 2 1.0730 0.0736 0.0720 0.3572 -1.3177 -0.3292 
Available 2 0.8068 0.0545 0.0835 0.3035 -0.9347 0.0563 
Available 2 1.0739 0.0802 0.0457 -1.0551 0.5853 1.1511 
Available 2 0.8324 0.0780 0.0758 0.2365 -0.7408 -0.2505 
Used 2 0.7631 -0.1048 0.0497 -1.0548 -0.0685 0.2611 
Used 2 1.1021 0.0896 0.0765 -0.5276 -0.2014 -0.3325 
Used 2 1.1039 0.1489 0.0626 -0.3872 -0.0622 -0.9266 
Used 2 1.0846 0.0824 0.0484 -0.4266 -0.0390 -0.9697 
Used 2 1.0081 0.0510 0.0161 -1.2283 0.0647 0.2929 
Used 2 0.9088 0.0388 -0.0063 0.5804 -1.1200 -0.2559 
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Used v 
Available Year 

Insect 
Axis 1 

Insect 
Axis 2 

Insect 
Axis 3 

Veg Axis 
1 

Veg Axis 
2 

Veg Axis 
3 

Used 2 0.6481 -0.0492 0.0076 0.6246 -0.9985 -0.2630 
Used 2 0.8368 0.0974 0.0046 0.4180 -0.8834 -0.4361 
Used 2 0.6364 0.0694 0.0064 0.3518 -0.8345 -0.3136 
Used 2 0.8844 0.0288 0.0768 0.0237 -0.8417 -0.1915 
Used 2 0.9121 0.0069 0.0001 0.1508 -0.8483 -0.2891 
Used 2 0.8591 0.0034 0.0578 0.2482 -0.9462 -0.1997 
Used 2 0.5650 0.0480 0.0040 -1.2957 -0.1966 0.3749 
Used 2 0.9102 -0.0144 0.0737 -0.7830 -1.1083 0.1384 
Used 2 0.4413 -0.2911 -0.2479 -0.7524 -0.0239 -0.6038 
Used 2 1.0780 0.0859 -0.0091 -0.9686 -0.0442 -0.7992 
Used 2 1.0255 0.0646 0.0485 -0.8607 -0.0444 -0.5703 
Available 3 1.0490 0.2353 -0.0025 -1.3650 -0.1657 0.6797 
Available 3 N/R* N/R* N/R* -0.8323 0.0506 -0.6804 
Available 3 1.1312 0.1196 -0.0043 -0.4676 0.4618 -1.2580 
Available 3 0.1128 0.3648 0.2858 -0.0099 0.7974 -0.1460 
Available 3 -0.5348 -0.0780 0.3518 -0.4423 0.1383 -0.6197 
Available 3 N/R* N/R* N/R* 0.6668 0.9681 0.0761 
Available 3 N/R* N/R* N/R* -1.0599 0.0127 -0.1909 
Used 3 N/R* N/R* N/R* -0.7228 0.1061 -0.5480 
Used 3 1.1933 0.1237 0.0545 -0.0833 0.4951 -0.1667 
Used 3 N/R* N/R* N/R* -1.2721 -0.1236 0.2706 
Used 3 N/R* N/R* N/R* 0.2416 0.4571 0.3285 
Used 3 0.4604 0.0504 -0.0110 -0.0576 0.4429 -0.1803 
Used 3 0.2479 0.1158 0.2667 -0.4542 0.1683 -0.5159 
Used 3 1.1932 0.1237 0.0545 -0.6938 0.3005 0.3073 
Available 4 -0.9993 0.0788 0.2720 0.4613 0.5275 0.1279 
Available 4 -0.7838 -0.1870 -0.3618 -0.9071 0.1432 -0.9568 
Available 4 -1.1989 -0.4960 -0.0084 -0.0738 0.3243 -0.1699 
Available 4 0.4381 0.0004 -0.0576 0.1393 0.3569 -0.0360 
Available 4 0.9000 0.1829 -0.0335 -0.0124 0.1495 -0.4633 
Available 4 0.9071 0.0257 0.0660 0.0748 0.3433 -0.2384 
Available 4 1.0628 0.0783 -0.0014 -1.0803 0.0806 -0.1783 
Available 4 1.0135 0.0677 0.0702 -1.2445 -0.0765 -0.0473 
Available 4 -0.3582 0.1433 -0.1343 0.6500 0.2429 0.0872 
Available 4 0.9694 0.0716 -0.0975 0.3396 0.1168 0.0663 
Available 4 0.6253 0.0083 0.1864 0.1809 0.2073 -0.2331 
Available 4 0.7075 0.0746 -0.0293 0.8405 0.3536 0.0148 
Available 4 1.0279 0.0867 -0.0437 0.7910 0.3267 -0.0187 
Available 4 1.0812 0.0859 -0.0052 -0.6655 0.4058 -0.4397 
Available 4 0.9329 0.0566 0.0160 0.5499 0.2991 -0.0222 
Available 4 0.8383 -0.0129 0.1419 0.4733 0.3687 -0.2544 
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Used v 
Available Year 

Insect 
Axis 1 

Insect 
Axis 2 

Insect 
Axis 3 

Veg Axis 
1 

Veg Axis 
2 

Veg Axis 
3 

Available 4 0.2636 -0.0598 -0.0659 0.4183 0.0861 0.2549 
Available 4 0.6187 -0.1360 0.2257 0.8476 0.1883 -0.1339 
Available 4 N/R* N/R* N/R* 0.6184 0.3953 -0.0979 
Used 4 -0.7684 -0.6915 -0.1091 -0.1291 0.4986 0.3811 
Used 4 -0.7417 -0.3479 -0.4594 -0.9415 0.1667 -0.5831 
Used 4 -1.0513 -0.2636 0.0749 0.5398 0.3926 -0.0548 
Used 4 0.1799 0.0141 0.0269 0.1361 0.4165 -0.3187 
Used 4 0.7442 0.0189 0.0145 -0.1785 0.3991 -0.0281 
Used 4 1.0063 0.1497 0.0089 -0.1782 -0.0988 -0.7154 
Used 4 1.0255 0.0632 0.0176 -1.0034 0.1288 -0.6607 
Used 4 1.1149 0.0848 0.0576 -1.0737 0.0800 -0.4723 
Used 4 -0.0454 -0.0318 -0.0740 0.7739 0.3977 -0.0535 
Used 4 0.9420 0.1113 0.0521 0.7147 0.4742 0.0248 
Used 4 0.8556 0.0212 0.0686 0.7115 0.2717 0.0027 
Used 4 0.8385 0.0058 0.0218 0.0961 0.2356 -0.2418 
Used 4 1.1933 0.1237 0.0545 0.2995 0.2984 -0.2561 
Used 4 0.8143 0.1200 0.0332 0.3376 0.5170 0.1226 
Used 4 0.7913 0.0869 -0.0504 0.7210 0.3288 0.0132 
Used 4 1.0149 0.0644 0.0279 0.2089 0.3766 -0.0309 
Used 4 0.2517 -0.3284 0.4248 0.7519 0.3976 -0.0653 
Used 4 0.8586 0.1843 -0.3267 0.3107 0.3863 -0.3779 
Used 4 N/R* N/R* N/R* 0.3824 0.2803 -0.3293 
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APPENDIX D: FITCH GRAZED TRANSECT AXIS SCORES FOR I NSECT ORDER 
AND PLANT SPECIES NMS ANALYSIS 

* N/R = not recorded 

Used v 
Available Year 

Insect Axis 
1 

Insect Axis 
2 

Insect Axis 
3 

Veg Axis 
1 

Veg Axis 
2 

Veg 
Axis 3 

Available 1 0.2394 -0.1664 0.2107 -0.1256 0.5717 -0.1538 
Available 1 -0.7532 0.6646 0.5548 0.3832 0.8379 -0.1328 
Available 1 -1.2008 0.0424 0.8685 0.1173 0.5673 -0.1550 
Available 1 -1.2814 -0.1030 0.4399 0.6336 0.9952 0.1204 
Available 1 -0.3539 0.2961 -0.2732 -1.3147 0.0815 0.3824 
Available 1 0.9622 0.0388 0.1062 0.5078 0.8337 0.0068 
Available 1 -0.6978 0.8795 -0.2553 -0.8258 0.1812 -0.7631 
Available 1 0.0773 -0.1285 0.4166 0.5698 0.8014 -0.0221 
Available 1 0.8947 -0.0194 0.1032 -1.3714 -0.1639 0.5947 
Available 1 -1.1347 -0.5153 0.3229 -0.8134 0.4595 0.6088 
Available 1 -1.0762 0.1510 0.2428 0.2752 0.2291 0.3611 
Available 1 -1.0952 -0.6878 0.1023 0.7083 0.8539 0.0952 
Available 1 -0.9038 -0.4608 0.5029 -0.1765 0.7897 0.0684 
Available 1 -0.7157 -0.7967 0.5716 0.1977 0.7732 -0.2482 
Used 1 -0.0411 -0.5120 0.6593 0.1920 0.5259 0.0882 
Used 1 -1.1404 -0.0105 0.9571 0.5039 1.1148 0.0025 
Used 1 -0.6812 -0.8302 0.8649 0.2849 0.8301 -0.0207 
Used 1 0.0470 -0.5173 -0.3812 0.4038 1.0311 0.3211 
Used 1 0.0634 0.2635 0.3123 0.4938 1.0232 0.1347 
Used 1 -0.7081 0.3586 -0.1470 0.1987 0.8444 -0.3394 
Used 1 0.0179 0.2423 -0.3266 -0.2571 1.2182 0.9143 
Used 1 0.4491 -0.1280 0.0587 -0.8380 0.2284 -0.6180 
Used 1 -0.2693 -0.7764 0.6455 0.0788 0.7938 0.2068 
Used 1 -0.3451 -0.6745 0.7952 0.5890 0.6424 -0.0636 
Used 1 -0.1925 0.7591 -0.1863 0.0856 0.8189 -0.1793 
Used 1 -0.0339 0.3589 -0.0906 0.2749 0.8373 0.2735 
Used 1 0.1625 0.1667 -0.1167 -1.0572 0.0308 -0.7204 
Used 1 0.2554 0.9526 0.1872 -1.0062 0.3579 0.3298 
Used 1 0.1091 -0.5423 0.1214 -1.0719 0.0211 -0.6371 
Used 1 -1.1810 0.3624 0.7967 -0.8552 0.9436 1.5188 
Used 1 -0.4606 -0.5653 1.1287 0.6278 0.9488 0.2012 
Used 1 -1.0197 -0.6630 -0.7663 -0.8095 0.8326 1.4892 
Used 1 0.5480 -0.1416 -0.8214 -1.1006 0.6305 0.9551 
Used 1 0.3286 0.2847 -0.3730 -0.2305 -0.1388 -0.6709 
Used 1 -0.3679 -0.1991 -0.1251 0.5210 0.8073 0.1876 
Used 1 -1.1384 -0.6104 -0.5905 0.1252 0.9316 0.0491 
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Used v 
Available Year 

Insect Axis 
1 

Insect Axis 
2 

Insect Axis 
3 

Veg Axis 
1 

Veg Axis 
2 

Veg 
Axis 3 

Used 1 -1.1404 -0.0104 0.9571 0.1203 0.7961 -0.2267 
Used 1 0.1508 -0.3835 0.4916 0.4007 0.8105 -0.0710 
Used 1 0.4589 -0.2226 0.3090 0.0149 0.7001 -0.4995 
Used 1 0.9574 -0.6379 -0.5857 0.1320 1.0635 0.2824 
Used 1 0.2076 0.0605 0.3109 0.3861 0.8351 -0.0293 
Used 1 0.0573 0.0469 0.3778 0.4060 0.9413 -0.0962 
Used 1 0.2437 0.4131 -0.0638 -0.8132 0.0558 -0.7393 
Used 1 -1.1173 0.8325 0.7144 0.5417 0.7503 0.1179 
Used 1 -0.3468 -0.8003 0.2188 0.4706 0.7287 0.3447 
Used 1 -0.1071 0.6815 0.3495 0.1504 0.7429 0.0777 
Used 1 -0.9418 -0.9567 1.1353 0.5782 0.9345 0.1291 
Used 1 N/R* N/R* N/R* 0.0654 0.7908 -0.0260 
Used 1 -0.5624 0.8306 0.4416 -0.9198 0.1405 -0.4916 
Used 1 0.9005 0.3347 0.8936 0.3920 0.8951 0.0420 
Used 1 0.9582 -0.6457 -0.5761 -1.1795 0.5404 0.0563 
Used 1 0.0753 -0.0164 -0.3464 0.3005 0.7914 -0.1504 
Used 1 -1.1748 0.7808 -0.3333 0.2446 0.7056 0.2622 
Used 1 -0.8550 -0.3250 0.3465 0.2556 0.5897 -0.0246 
Available 2 1.1146 0.0877 0.0531 -0.7624 -0.1009 -0.3549 
Available 2 1.0555 0.1558 0.0554 0.2997 -1.0660 -0.4294 
Available 2 1.0518 0.0750 0.0089 -0.8607 0.1302 -0.8501 
Available 2 0.8268 0.2026 -0.0537 -0.5523 -0.0240 -0.8138 
Available 2 1.0123 0.0749 -0.0047 -1.3993 1.8633 -0.6303 
Available 2 1.0224 0.1492 0.0235 -0.3996 -0.7816 -0.0496 
Available 2 0.8501 0.0158 -0.0092 -0.1797 -0.9152 0.0455 
Available 2 0.8023 0.0754 0.0112 0.5117 -1.1417 -0.3455 
Available 2 0.8341 0.1481 0.0192 -0.0647 -0.8173 -0.3702 
Available 2 0.7883 -0.0120 0.0310 0.4347 -0.9886 -0.2288 
Available 2 0.8461 -0.0362 -0.1150 0.1842 -0.7532 -0.5323 
Available 2 1.0084 0.1806 0.0581 -0.0688 -0.8485 -0.5891 
Available 2 0.9440 0.1738 0.0156 -0.8517 0.0221 -1.0931 
Available 2 1.0730 0.0736 0.0720 0.3572 -1.3177 -0.3292 
Available 2 0.8068 0.0545 0.0835 0.3035 -0.9347 0.0563 
Available 2 1.0739 0.0802 0.0457 -1.0551 0.5853 1.1511 
Available 2 0.8324 0.0780 0.0758 0.2365 -0.7408 -0.2505 
Used 2 0.7631 -0.1048 0.0497 -1.0548 -0.0685 0.2611 
Used 2 1.1021 0.0896 0.0765 -0.5276 -0.2014 -0.3325 
Used 2 1.1039 0.1489 0.0626 -0.3872 -0.0622 -0.9266 
Used 2 1.0846 0.0824 0.0484 -0.4266 -0.0390 -0.9697 
Used 2 1.0081 0.0510 0.0161 -1.2283 0.0647 0.2929 
Used 2 0.9088 0.0388 -0.0063 0.5804 -1.1200 -0.2559 
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Used v 
Available Year 

Insect Axis 
1 

Insect Axis 
2 

Insect Axis 
3 

Veg Axis 
1 

Veg Axis 
2 

Veg 
Axis 3 

Used 2 0.6481 -0.0492 0.0076 0.6246 -0.9985 -0.2630 
Used 2 0.8368 0.0974 0.0046 0.4180 -0.8834 -0.4361 
Used 2 0.6364 0.0694 0.0064 0.3518 -0.8345 -0.3136 
Used 2 0.8844 0.0288 0.0768 0.0237 -0.8417 -0.1915 
Used 2 0.9121 0.0069 0.0001 0.1508 -0.8483 -0.2891 
Used 2 0.8591 0.0034 0.0578 0.2482 -0.9462 -0.1997 
Used 2 0.5650 0.0480 0.0040 -1.2957 -0.1966 0.3749 
Used 2 0.9102 -0.0144 0.0737 -0.7830 -1.1083 0.1384 
Used 2 0.4413 -0.2911 -0.2479 -0.7524 -0.0239 -0.6038 
Used 2 1.0780 0.0859 -0.0091 -0.9686 -0.0442 -0.7992 
Used 2 1.0255 0.0646 0.0485 -0.8607 -0.0444 -0.5703 
Available 3 1.0490 0.2353 -0.0025 -1.3650 -0.1657 0.6797 
Available 3 N/R* N/R* N/R* -0.8323 0.0506 -0.6804 
Available 3 1.1312 0.1196 -0.0043 -0.4676 0.4618 -1.2580 
Available 3 0.1128 0.3648 0.2858 -0.0099 0.7974 -0.1460 
Available 3 -0.5348 -0.0780 0.3518 -0.4423 0.1383 -0.6197 
Available 3 N/R* N/R* N/R* 0.6668 0.9681 0.0761 
Available 3 N/R* N/R* N/R* -1.0599 0.0127 -0.1909 
Used 3 N/R* N/R* N/R* -0.7228 0.1061 -0.5480 
Used 3 1.1933 0.1237 0.0545 -0.0833 0.4951 -0.1667 
Used 3 N/R* N/R* N/R* -1.2721 -0.1236 0.2706 
Used 3 N/R* N/R* N/R* 0.2416 0.4571 0.3285 
Used 3 0.4604 0.0504 -0.0110 -0.0576 0.4429 -0.1803 
Used 3 0.2479 0.1158 0.2667 -0.4542 0.1683 -0.5159 
Used 3 1.1932 0.1237 0.0545 -0.6938 0.3005 0.3073 
Available 4 -0.9993 0.0788 0.2720 0.4613 0.5275 0.1279 
Available 4 -0.7838 -0.1870 -0.3618 -0.9071 0.1432 -0.9568 
Available 4 -1.1989 -0.4960 -0.0084 -0.0738 0.3243 -0.1699 
Available 4 0.4381 0.0004 -0.0576 0.1393 0.3569 -0.0360 
Available 4 0.9000 0.1829 -0.0335 -0.0124 0.1495 -0.4633 
Available 4 0.9071 0.0257 0.0660 0.0748 0.3433 -0.2384 
Available 4 1.0628 0.0783 -0.0014 -1.0803 0.0806 -0.1783 
Available 4 1.0135 0.0677 0.0702 -1.2445 -0.0765 -0.0473 
Available 4 -0.3582 0.1433 -0.1343 0.6500 0.2429 0.0872 
Available 4 0.9694 0.0716 -0.0975 0.3396 0.1168 0.0663 
Available 4 0.6253 0.0083 0.1864 0.1809 0.2073 -0.2331 
Available 4 0.7075 0.0746 -0.0293 0.8405 0.3536 0.0148 
Available 4 1.0279 0.0867 -0.0437 0.7910 0.3267 -0.0187 
Available 4 1.0812 0.0859 -0.0052 -0.6655 0.4058 -0.4397 
Available 4 0.9329 0.0566 0.0160 0.5499 0.2991 -0.0222 
Available 4 0.8383 -0.0129 0.1419 0.4733 0.3687 -0.2544 
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Used v 
Available Year 

Insect Axis 
1 

Insect Axis 
2 

Insect Axis 
3 

Veg Axis 
1 

Veg Axis 
2 

Veg 
Axis 3 

Available 4 0.2636 -0.0598 -0.0659 0.4183 0.0861 0.2549 
Available 4 0.6187 -0.136 0.2257 0.8476 0.1883 -0.1339 
Available 4 N/R* N/R* N/R* 0.6184 0.3953 -0.0979 
Used 4 -0.7684 -0.6915 -0.1091 -0.1291 0.4986 0.3811 
Used 4 -0.7417 -0.3479 -0.4594 -0.9415 0.1667 -0.5831 
Used 4 -1.0513 -0.2636 0.0749 0.5398 0.3926 -0.0548 
Used 4 0.1799 0.0141 0.0269 0.1361 0.4165 -0.3187 
Used 4 0.7442 0.0189 0.0145 -0.1785 0.3991 -0.0281 
Used 4 1.0063 0.1497 0.0089 -0.1782 -0.0988 -0.7154 
Used 4 1.0255 0.0632 0.0176 -1.0034 0.1288 -0.6607 
Used 4 1.1149 0.0848 0.0576 -1.0737 0.0800 -0.4723 
Used 4 -0.0454 -0.0318 -0.0740 0.7739 0.3977 -0.0535 
Used 4 0.9420 0.1113 0.0521 0.7147 0.4742 0.0248 
Used 4 0.8556 0.0212 0.0686 0.7115 0.2717 0.0027 
Used 4 0.8385 0.0058 0.0218 0.0961 0.2356 -0.2418 
Used 4 1.1933 0.1237 0.0545 0.2995 0.2984 -0.2561 
Used 4 0.8143 0.1200 0.0332 0.3376 0.5170 0.1226 
Used 4 0.7913 0.0869 -0.0504 0.7210 0.3288 0.0132 
Used 4 1.0149 0.0644 0.0279 0.2089 0.3766 -0.0309 
Used 4 0.2517 -0.3284 0.4248 0.7519 0.3976 -0.0653 
Used 4 0.8586 0.1843 -0.3267 0.3107 0.3863 -0.3779 
Used 4 N/R* N/R* N/R* 0.3824 0.2803 -0.3293 
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APPENDIX E: CORRELATION SCORES OF PLANT SPECIES FROM NON-METRIC 
MULTI-DIMENSIONAL SCALING ANALYSIS FROM THE CLEMENT  AND FITCH 

STUDY AREAS NEAR HETTINGER, ND, IN 2008-2011 
 

Axis 1 2 3 Axis 1 2 3 

r r r  r r r 
Achillea 
millefolium -0.38 0.02 -0.10 

Hordeum 
jubatum -0.17 0.12 0.15 

Agropyron 
cristatum -0.07 -0.25 0.64 

Hordeum 
vulgare 0.02 -0.01 0.05 

Ambrosia 
artemisiifolia -0.15 0.05 -0.03 Juncus balticus -0.04 -0.11 -0.07 
Ambrosia 
psilostachya -0.09 0.01 -0.07 

Koeleria 
macrantha 

 
-0.05 

 
-0.12 

 
0.19 

Anemone 
patens -0.04 -0.04 0.13 

Lactuca 
oblongifolia 

 
-0.20 

 
-0.10 

 
0.18 

Antennaria 
neglecta 0.08 -0.10 -0.03 Lactuca serriola -0.15 0.01 -0.03 
Antennaria 
parvifolia 0.06 0.09 -0.01 Lactuca tatarica -0.08 -0.05 0.10 
Artemisia 
campestris -0.14 -0.01 0.01 

Lepidium 
densiflorum 

 
0.00 

 
-0.08 

 
0.01 

Artemisia 
dracunculus -0.01 -0.09 -0.05 Liatrus punctata -0.17 -0.06 0.20 
Artemisia 
frigid -0.19 -0.06 0.28 

Lomatium 
foeniculaceum -0.10 -0.01 0.01 

Artemisia 
ludoviciana -0.35 -0.05 0.08 

Lygodesmia 
juncea 0.01 -0.13 0.16 

Asclepias 
speciosa -0.11 0.01 -0.11 Medicago sativa 0.66 -0.23 -0.17 
Asclepias 
syriaca -0.10 -0.01 -0.05 

Melilotus 
officinalis 0.19 0.13 0.15 

Aster 
ericoides -0.10 -0.03 0.04 Nassella viridula -0.16 -0.06 0.10 
Aster  
spp. -0.11 0.08 0.03 Opuntia fragilis -0.13 -0.04 0.04 
Astragulus 
spp. 

 
-0.12 

 
-0.08 

 
-0.11 

Opuntia 
polyacantha -0.01 -0.06 0.19 

Bouteloua 
dactyloides 

 
0.03 -0.08 -0.05 

Panicum 
virgatum 0.06 0.02 0.12 

Bouteloua 
gracilis -0.09 -0.10 0.22 

Pascopyrum 
smithii -0.29 -0.06 0.15 

Brassicaceae 
spp. -0.08 -0.04 0.01 

Penstemon 
glaber 0.04 0.04 0.04 
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Axis 1 2 3 Axis 1 2 3 
r r r  r r r 

Bromus 
inermis 

 
-0.51 

 
0.03 

 
-0.64 

Plantago 
patagonica 

 
-0.06 

 
-0.14 

 
0.17 

Bromus 
japonicas -0.02 0.07 -0.13 

Poa  
pratensis -0.68 -0.11 0.16 

Bromus 
tectorum 0.01 0.02 -0.03 

Potentilla 
fruticosa -0.09 0.00 -0.07 

Buchloe 
dactyloides -0.07 -0.01 0.04 

Psoralea 
argophylla -0.13 -0.14 0.28 

Calamovilfa 
longifolia -0.08 -0.12 -0.01 

Psoralea 
esculenta -0.09 -0.01 0.11 

Carex  
Filifolia -0.07 -0.16 0.36 

Ratibida 
columnifera -0.07 -0.05 0.18 

Carex 
heliophila -0.10 -0.03 -0.07 Rosa arkansana 

 
-0.07 

 
-0.08 

 
-0.09 

Carex 
praegracilis -0.10 0.07 0.08 

Rumex  
crispus -0.12 

 
0.06 

 
0.07 

Chenopodium 
album -0.17 -0.04 -0.01 

Rumex 
occidentalis -0.10 0.01 -0.08 

Chrysopsis 
villosa 0.03 0.05 0.07 

Salsola  
iberica 0.07 -0.06 0.01 

Cirsium 
arvense 0.03 0.08 0.05 

Salsola  
tragus 0.05 -0.04 -0.04 

Cirsium 
flodmanii -0.13 0.02 -0.03 

Schizachyrium 
scoparium 0.05 -0.04 0.07 

Cirsium 
undulatum -0.14 -0.02 -0.04 

Senecio  
spp. -0.04 -0.05 0.15 

Collomia 
linearis -0.17 -0.11 0.04 

Solidago 
missouriensis 0.01 0.02 -0.07 

Convolvulus 
arvensis 0.14 -0.29 -0.13 Solidago mollis -0.09 -0.07 0.01 
Conyza 
Canadensis 0.07 0.05 0.01 

Solidago  
rigida -0.17 -0.03 0.05 

Dalea 
purpurea -0.02 -0.07 0.16 Sonchus arvensis -0.13 -0.07 -0.03 
Descurainia 
pinnata 

 
0.04 

 
0.04 

 
0.02 

Son  
ole -0.12 0.03 -0.13 

Descurainia 
Sophia 

 
0.07 

 
-0.09 

 
-0.10 

Spartina 
pectinata -0.15 0.07 -0.05 

Distichlis 
spicata -0.08 

 
0.01 -0.09 

Sphaeralcea 
coccinea -0.16 -0.13 0.36 

Dyssodia 
papposa -0.11 -0.01 -0.01 

Sporobolus 
airoides -0.08 0.02 -0.12 
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Axis 1 2 3 Axis 1 2 3 
r r r  r r r 

Echinacea 
angustifolia 0.06 0.04 0.01 

Sta  
ten -0.03 0.05 0.06 

Elytrigia 
repens -0.09 -0.03 -0.07 

Stipa  
comata -0.11 -0.03 0.12 

Elymus 
trachycaulus -0.21 0.16 0.26 

Sym  
eri -0.04 0.03 -0.09 

Erigeron 
strigosus 0.08 0.06 0.01 

Taraxacum 
officinale -0.07 -0.16 0.07 

Erysimum 
asperum 0.04 0.03 0.05 

Thinopyrum 
intermedium 0.53 0.73 0.05 

Euphorbia 
esula -0.09 0.04 -0.02 Thlapsi arvense 

 
-0.13 

 
-0.03 

 
-0.01 

Gaura 
coccinea -0.13 -0.01 0.08 

Tragopogon 
dubius 

 
0.15 

 
-0.05 

 
-0.04 

Glycyrrhiza 
lepidota -0.25 0.01 -0.08 

 
Unknown 1 

 
0.04 -0.08 -0.04 

Grindelia 
squarrosa -0.10 0.04 0.03 

 
Unknown 2 -0.08 0.02 0.02 

Hedeoma 
hispida -0.01 -0.05 -0.03 

 
Unknown 3 -0.09 0.03 0.04 

Helianthus 
annuus -0.07 -0.03 -0.03 Vicia americana -0.14 -0.05 0.05 
Helianthus 
maximiliani -0.17 0.01 -0.06 

Zea  
mays -0.04 -0.12 0.11 

Hesperostipa 
comate -0.08 -0.11 0.26 

    

Heterotheca 
villosa -0.10 -0.05 0.03 
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APPENDIX F: FITCH NON-GRAZED TRANSECT AXIS SCORES F OR INSECT 
ORDER AND PLANT SPECIES NMS ANALYSIS 

* N/R = not recorded 

Used v 
Available Year Insect Axis 1 

Insect Axis 
2 

Insect Axis 
3 

Veg Axis 
1 

Veg 
Axis 2 

Veg 
Axis 3 

Available 1 -0.2845 -0.1164 -0.3879 0.9011 -0.2748 -0.4858 
Available 1 -0.3388 -0.0406 -0.5309 -1.0601 0.0595 -0.6471 
Available 1 -0.8698 -0.5553 -0.2534 0.5694 -0.4559 0.6230 
Available 1 -0.2867 0.8071 -0.4823 -0.0900 0.3583 -0.0658 
Available 1 0.5469 -0.2283 -0.4832 -1.2958 -0.2196 0.3121 
Available 1 -0.9698 1.8089 0.5364 0.6337 0.2287 -0.2800 
Available 1 -0.9047 -0.8586 0.0196 -1.1573 -0.0636 -0.4901 
Available 1 -0.6400 -0.5556 0.1189 -1.0249 0.0588 -0.8236 
Used 1 -1.2140 0.5611 -0.1817 0.9337 -0.5959 0.7141 
Used 1 -0.3539 0.2961 -0.2732 -1.3105 -0.3065 0.4378 
Used 1 -1.3547 -0.2365 -0.3364 0.0810 0.3010 -0.4422 
Used 1 -0.9699 1.8084 0.5378 -0.8813 0.2524 -0.9434 
Used 1 0.3909 -0.8788 0.0765 -0.3890 0.4895 -0.1814 
Used 1 -0.6754 -0.1328 0.7949 0.4378 1.0145 0.1333 
Available 2 0.2704 -0.2384 0.0108 0.2765 -0.7429 -0.4029 
Available 2 0.2515 -0.4452 -0.0745 -0.9060 0.0740 -0.7664 
Available 2 0.0959 0.0903 -0.0392 -1.1754 -0.0760 -0.2860 
Available 2 -1.0763 -1.1339 0.2651 0.2503 -0.4549 -0.4748 
Available 2 0.3341 -0.2856 0.3779 -1.0486 0.0043 -0.6983 
Available 2 -0.8414 -0.7632 0.1530 -0.3348 -0.4703 -0.4315 
Available 2 -1.0537 -0.3101 0.2931 -0.2886 -0.4844 -0.1182 
Available 2 -0.8476 0.2463 0.3597 0.5697 -0.8435 -0.2332 
Available 2 0.0773 -0.1974 0.1969 0.6686 -0.8566 -0.0716 
Available 2 0.0862 -0.1651 0.2815 0.8049 -0.7196 -0.1973 
Used 2 -0.6844 -0.6615 0.4836 -0.2063 -0.7885 -0.0435 
Used 2 0.4373 -0.0678 -0.4606 -0.8959 0.1955 -1.1105 
Used 2 0.3620 0.1753 -0.1213 -0.3241 -0.5096 -0.6617 
Used 2 0.9332 0.0810 -0.0042 -0.9461 -0.4522 -0.8254 
Used 2 -0.4318 -0.2210 -0.2703 0.5045 0.0740 -0.0509 
Used 2 -0.0385 -0.6461 -0.4124 -1.1180 -0.1024 0.0849 
Used 2 -0.1430 -0.3284 -0.5654 -0.2042 -0.3212 -0.8055 
Used 2 N/R* N/R* N/R* -0.2395 0.0240 0.0019 
Available 3 -0.3535 0.3173 0.2303 0.0387 0.0831 0.0545 
Available 3 -0.2864 -0.8422 0.5215 -1.1864 -0.0844 -0.1059 
Available 3 -0.0281 -0.5393 0.2278 -0.1587 0.2974 0.3855 
Available 3 -0.1825 0.3298 -0.2053 0.1150 0.5454 0.0015 
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Used v 
Available Year Insect Axis 1 

Insect Axis 
2 

Insect Axis 
3 

Veg Axis 
1 

Veg 
Axis 2 

Veg 
Axis 3 

Used 3 0.1508 -0.3835 0.4916 0.0607 0.8654 0.1116 
Used 3 -0.1326 -0.3505 0.5138 -1.0085 0.3962 -0.1638 
Used 3 N/R* N/R* N/R* 0.1158 -0.1052 -0.6777 
Used 3 N/R* N/R* N/R* 0.3381 0.5692 0.2303 
Available 4 -0.7202 0.3183 -0.5290 -1.0809 0.0083 -0.4368 
Available 4 -1.0702 1.3384 -0.8817 -0.7681 0.1900 -0.0270 
Available 4 -0.9558 0.5131 -0.9880 -0.2801 -0.1124 -0.8891 
Available 4 -1.0934 -0.2789 -0.6882 0.0823 -0.0838 -0.5364 
Available 4 -0.4002 0.7482 -0.6772 -0.7677 -0.0431 0.0903 
Used 4 0.0584 -0.3200 -1.0104 -1.2071 -0.2527 0.1363 
Used 4 -0.9698 1.8081 0.5388 -0.9070 -0.1268 -0.2651 
Used 4 -0.6134 0.1805 -1.0268 -1.2316 -0.3708 0.1521 
Used 4 -1.0092 -0.1786 -1.1781 -0.3663 -0.1094 -0.3565 
Used 4 -1.1149 -0.1065 -0.8785 0.2379 0.0846 -0.1042 
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APPENDIX G: UNIVARIATE TESTS, UNIT ODDS RATIOS (UOR ) AND 95% 
CONFIDENCE INTERVALS (95% CI) FROM UNIVARIATE LOGIS TIC 

REGRESSIONS COMPARING UTILIZED BROOD LOCATIONS TO A VAILABLE 
LOCATIONS IN GRAZED (SL) AND NON-GRAZED (NG) PERENN IAL 

VEGETATION TREATMENTS (SEASON-LONG GRAZED, HAY PAST URE AND 
IDLE TREATMENTS) ON TWO STUDY SITES (REFERRED TO AS  FITCH AND 

CLEMENT) FROM 2008-2011 IN SOUTHWESTERN ND, USA 

 

Treatment/Covariate x2 P value UOR 95% CI 
Fitch NG 2011 

% Bare Ground Cover 0.0662 0.7969 1.016 0.903-1.143 
VOR 0.8328 0.3615 2.088 0.430-10.148 
Total Insect Biomass 0.0034 0.9532 0.966 0.306-3.052 
% Forb Cover 0.0175 0.8948 1.006 0.924-1.095 
% Grass Cover 0.0214 0.8837 1.005 0.937-1.078 
Litter Depth 1.0904 0.2964 <0.001 <0.001->999.999 
Basal Bare Ground Density 0.1764 0.6745 2.851 0.021-379.080 
Basal Litter Density 0.1932 0.6602 3.001 0.022-403.226 
% Litter Cover 0.0087 0.9257 0.997 0.935-1.063 
Maximum Height Live Vegetation 0.8784 0.3486 0.493 0.112-2.165 
Maximum Height Dead Vegetation 0.6843 0.4081 1.635 0.510-5.245 
Insect Axis 1 Score 0.2617 0.6089 0.389 0.010-14.489 
Insect Axis 2 Score 0.3310 0.5651 1.750 0.260-11.766 
Insect Axis 3 Score 0.0204 0.8864 0.821 0.055-12.218 
Vegetation Axis 1 Score 0.1725 0.6761 1.718 0.136-21.744 
Vegetation Axis 2 Score 1.7501 0.1859 >999.999 0.016->999.999 
Vegetation Axis 3 Score 1.5398 0.2147 0.044 <0.001-6.150 

Fitch NG 2009 
% Bare Ground Cover 1.3478 0.2457 1.157 0.904-1.481 
VOR 0.0010 0.9751 1.018 0.322-3.224 
Total Insect Biomass 0.7998 0.3711 0.597 0.193-1.850 
% Forb Cover 1.0351 0.3090 1.038 0.966-1.117 
% Grass Cover 0.6642 0.4151 0.944 0.822-1.084 
Litter Depth 0.0249 0.8745 0.856 0.124-5.906 
Basal Bare Ground Density 0.0016 0.9685 0.789 <0.001->999.999 
Basal Litter Density 2.1006 0.1472 <0.001 <0.001-91.367 
% Litter Cover 3.0162 0.0824 0.880 0.762-1.017 
Maximum Height Live Vegetation 0.0229 0.8796 0.922 0.324-2.625 
Maximum Height Dead Vegetation 0.4188 0.5176 5.303 0.034-829.944 
Insect Axis 1 Score 0.3054 0.2532 0.331 0.050-2.204 
Insect Axis 2 Score 0.2211 0.6382 0.505 0.029-8.690 
Insect Axis 3 Score 4.3070 0.0380 222.293 1.350->999.999 
Vegetation Axis 1 Score 1.0142 0.3139 2.210 0.472-10.344 
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Treatment/Covariate x2 P value UOR 95% CI 
Vegetation Axis 2 Score 1.7478 0.1861 0.136 0.007-2.619 
Vegetation Axis 3 Score 0.1312 0.7172 1.664 0.106-26.199 

Fitch NG 2008 
% Bare Ground Cover 0.2517 0.6159 0.980 0.904-1.062 
VOR 0.3627 0.5470 1.500 0.401-5.611 
Total Insect Biomass 1.5992 0.2060 1.850 0.713-4.802 
% Forb Cover 0.0751 0.7840 1.010 0.939-1.087 
% Grass Cover 1.5328 0.2157 1.076 0.958-1.207 
Litter Depth 0.9826 0.3216 2.105 0.483-9.171 
Basal Bare Ground Density 0.2219 0.6376 0.417 0.011-15.833 
Basal Litter Density 0.2276 0.6333 2.796 0.041-191.107 
% Litter Cover 0.5300 0.4666 0.973 0.903-1.048 
Maximum Height Live Vegetation 0.0981 0.7541 1.140 0.503-0.7541 
Maximum Height Dead Vegetation 2.6014 0.1068 0.316 0.078-1.282 
Insect Axis 1 Score 0.5960 0.4401 2.336 0.271-20.138 
Insect Axis 2 Score 0.2031 0.6523 0.745 0.207-2.681 
Insect Axis 3 Score 1.5051 0.2199 0.165 0.009-2.930 
Vegetation Axis 1 Score 0.0818 0.7749 0.829 0.228-3.007 
Vegetation Axis 2 Score 1.0059 0.3159 0.230 0.013-4.068 
Vegetation Axis 3 Score 0.4414 0.5064 0.487 0.058-4.075 

Clement NG 2011 
% Bare Ground Cover 0.1091 0.7412 1.013 0.940-1.090 
VOR 0.3634 0.5466 0.737 0.273-1.987 
Total Insect Biomass 0.5251 0.4691 0.864 0.583-1.283 
% Forb Cover 0.0002 0.9874 1.001 0.911-1.100 
% Grass Cover 0.3030 0.5820 0.979 0.908-1.056 
Litter Depth 0.8868 0.3463 0.003 <0.001-625.377 
Basal Bare Ground Density 0.0838 0.7722 1.669 0.052-53.412 
Basal Litter Density 0.0550 0.8146 0.657 0.020-21.927 
% Litter Cover 0.2416 0.6231 1.052 0.858-1.290 
Maximum Height Live Vegetation 0.2421 0.6227 0.866 0.489-1.535 
Maximum Height Dead Vegetation 0.0260 0.8719 0.949 0.503-1.792 
Insect Axis 1 Score 0.0126 0.9106 1.097 0.218-5.514 
Insect Axis 2 Score 1.5019 0.2204 0.140 0.006-3.255 
Insect Axis 3 Score 0.0398 0.8419 1.161 0.267-5.045 
Vegetation Axis 1 Score 0.1606 0.6886 1.720 0.121-24.444 
Vegetation Axis 2 Score 0.0000 1.0000 1.000 0.011-87.612 
Vegetation Axis 3 Score 0.2463 0.6197 1.657 0.226-12.164 

Clement NG 2009 
% Bare Ground Cover 0.8790 0.3485 1.042 0.956-1.135 
VOR 0.6510 0.4198 0.702 0.297-1.659 
Total Insect Biomass 2.1253 0.1449 1.334 0.905-1.966 
% Forb Cover 1.0060 0.3159 0.977 0.933-1.023 



 

131 
 

Treatment/Covariate x2 P value UOR 95% CI 
% Grass Cover 1.0288 0.3104 1.028 0.974-1.086 
Litter Depth 1.0821 0.2982 0.436 0.092-2.081 
Basal Bare Ground Density 0.3173 0.5733 6.523 0.010->999.999 
Basal Litter Density 0.1343 0.7140 4.026 0.002->999.999 
% Litter Cover 0.9484 0.3301 0.952 0.861-1.051 
Maximum Height Live Vegetation 4.2399 0.0395 0.506 0.265-0.968 
Maximum Height Dead Vegetation 1.4604 0.2269 2.519 0.563-11.266 
Insect Axis 1 Score 0.5169 0.4722 1.929 0.322-11.566 
Insect Axis 2 Score 0.9941 0.3187 8.640 0.125-599.112 
Insect Axis 3 Score 2.6603 0.1029 22.812 0.532-977.731 
Vegetation Axis 1 Score 0.3245 0.5689 0.623 0.122-3.172 
Vegetation Axis 2 Score 0.0259 0.8721 1.317 0.046-37.804 
Vegetation Axis 3 Score 1.1893 0.2755 3.183 0.397-25.493 

Clement SL 2008 
% Bare Ground Cover 0.0013 0.9718 1.001 0.933-1.075 
VOR 0.2934 0.5880 1.249 0.559-2.789 
Total Insect Biomass 1.0835 0.2979 0.754 0.443-1.284 
% Forb Cover 0.6430 0.4226 1.032 0.956-1.115 
% Grass Cover 1.1298 0.2878 0.916 0.780-1.077 
Litter Depth 0.6781 0.4102 3.245 0.197-53.468 
Basal Bare Ground Density 0.3308 0.5652 8.470 0.006->999.999 
Basal Litter Density 0.1699 0.6802 0.194 <0.001-470.187 
% Litter Cover 0.0298 0.8629 1.015 0.857-1.203 
Maximum Height Live Vegetation 0.0711 0.7897 1.073 0.64-1.798 
Maximum Height Dead Vegetation 0.0205 0.8861 0.876 0.143-5.367 
Insect Axis 1 Score 3.2693 0.0706 0.132 0.015-1.185 
Insect Axis 2 Score 4.2187 0.0400 36.73 1.179->999.999 
Insect Axis 3 Score 0.4982 0.4803 0.286 0.009-9.220 
Vegetation Axis 1 Score 0.6579 0.4173 0.496 0.091-2.704 
Vegetation Axis 2 Score 0.5046 0.4775 0.498 0.073-3.406 
Vegetation Axis 3 Score 0.3358 0.5623 1.526 0.365-6.380 

Fitch SL 2008 
% Bare Ground Cover 0.0563 0.8125 0.995 0.952-1.039 
VOR 0.2242 0.6359 0.696 0.155-3.119 
Total Insect Biomass 3.9082 0.0481 1.972 1.006-3.865 
% Forb Cover 0.6681 0.4137 1.043 0.943-1.154 
% Grass Cover 0.2178 0.6407 0.980 0.902-1.065 
Litter Depth 0.6706 0.4128 2.584 0.266-25.055 
Basal Bare Ground Density 1.6613 0.1974 0.009 <0.001-11.520 
Basal Litter Density 0.1723 0.6781 0.426 0.008-23.967 
% Litter Cover 0.0383 0.8448 1.006 0.947-1.068 
Maximum Height Live Vegetation 3.1732 0.0749 0.591 0.331-1.054 
Maximum Height Dead Vegetation 1.1377 0.2861 0.434 0.093-2.013 
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Treatment/Covariate x2 P value UOR 95% CI 
Insect Axis 1 Score 2.0771 0.1495 0.481 0.178-1.301 
Insect Axis 2 Score 0.0010 0.9751 1.019 0.312-3.329 
Insect Axis 3 Score 0.0010 0.9751 1.019 0.312-3.329 
Vegetation Axis 1 Score 0.0870 0.7681 0.862 0.321-2.312 
Vegetation Axis 2 Score 1.9088 0.1671 0.284 0.048-1.693 
Vegetation Axis 3 Score 0.0012 0.9723 0.977 0.262-3.642 

Clement SL 2009 
% Bare Ground Cover 0.0183 0.8923 0.995 0.921-1.074 
VOR 2.0364 0.1536 0.513 0.205-1.283 
Total Insect Biomass 0.2897 0.5904 1.104 0.77-1.584 
% Forb Cover 0.0332 0.8554 0.997 0.964-1.030 
% Grass Cover 0.1842 0.6678 0.992 0.956-1.030 
Litter Depth 0.0043 0.9475 0.832 0.004-196.709 
Basal Bare Ground Density 0.2043 0.6513 2.692 0.037-197.244 
Basal Litter Density 0.1880 0.6646 0.427 0.009-19.922 
% Litter Cover 0.6546 0.4185 1.049 0.934-1.177 
Maximum Height Live Vegetation 0.3057 0.5803 0.891 0.591-1.343 
Maximum Height Dead Vegetation 2.0221 0.1550 0.489 0.182-1.311 
Insect Axis 1 Score 0.7330 0.3919 1.960 0.42-9.151 
Insect Axis 2 Score 0.2328 0.6294 1.996 0.120-33.088 
Insect Axis 3 Score 0.1116 0.7383 0.579 0.023-14.284 
Vegetation Axis 1 Score 1.0224 0.3120 2.446 0.432-13.852 
Vegetation Axis 2 Score 0.7185 0.3966 0.246 0.010-6.290 
Vegetation Axis 3 Score 1.6170 0.2035 3.037 0.548-16.822 

Fitch SL 2009 
% Bare Ground Cover 0.5023 0.4785 1.040 0.933-1.159 
VOR 0.0062 0.9374 0.935 0.176-4.975 
Total Insect Biomass 0.0433 0.8333 1.021 0.842-1.238 
% Forb Cover 1.0834 0.2979 0.973 0.924-1.024 
% Grass Cover 0.0475 0.8275 1.006 0.950-1.067 
Litter Depth 0.0668 0.7960 3.264 <0.001->999.999 
Basal Bare Ground Density 2.3906 0.1221 >999.999 0.065->999.999 
Basal Litter Density 1.2262 0.2681 0.011 <0.001-31.400 
% Litter Cover 0.0327 0.8565 0.991 0.9-1.091 
Maximum Height Live Vegetation 2.3339 0.1266 1.687 0.862-3.300 
Maximum Height Dead Vegetation 1.8338 0.1757 0.463 0.152-1.411 
Insect Axis 1 Score 1.4594 0.2270 15.600 0.181->999.999 
Insect Axis 2 Score 4.3759 0.0365 >999.999 2.330->999.999 
Insect Axis 3 Score 0.0780 0.7800 4.825 <0.001->999.999 
Vegetation Axis 1 Score 0.3234 0.5695 1.382 0.453-4.216 
Vegetation Axis 2 Score 0.0099 0.9209 1.055 0.365-3.052 
Vegetation Axis 3 Score 0.0430 0.8358 0.849 0.182-3.972 
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Treatment/Covariate x2 P value UOR 95% CI 
Clement SL 2010 

% Bare Ground Cover 2.8456 0.0916 1.155 0.977-1.367 
VOR 0.0830 0.7732 1.117 0.526-2.373 
Total Insect Biomass 1.0209 0.3123 1.247 0.812-1.915 
% Forb Cover 0.1463 0.7021 1.013 0.947-1.084 
% Grass Cover 0.1291 0.7194 0.989 0.934-1.048 
Litter Depth 0.1409 0.7074 1.363 0.270-6.879 
Basal Bare Ground Density 0.3085 0.5786 0.186 <0.001-70.408 
Basal Litter Density 0.0998 0.7520 2.440 0.010-616.730 
% Litter Cover 1.3759 0.2408 0.900 0.755-1.073 
Maximum Height Live Vegetation 0.0004 0.9843 1.004 0.684-1.474 
Maximum Height Dead Vegetation 0.5560 0.4559 0.446 0.053-3.724 
Insect Axis 1 Score 0.1568 0.6922 0.690 0.11-4.324 
Insect Axis 2 Score 0.0418 0.8380 0.740 0.041-13.251 
Insect Axis 3 Score 2.5594 0.1096 260.921 0.286->999.999 
Vegetation Axis 1 Score 1.0910 0.2960 2.101 0.522-8.456 
Vegetation Axis 2 Score 0.0009 0.9767 0.973 0.153-6.203 
Vegetation Axis 3 Score 0.9580 0.3277 0.428 0.078-2.340 

Fitch SL 2010 
% Bare Ground Cover 0.2364 0.6268 0.969 0.855-1.099 
VOR 0.4655 0.4951 1.564 0.433-5.651 
Total Insect Biomass 0.0001 0.9930 1.002 0.709-1.416 
% Forb Cover 0.6615 0.4160 0.946 0.828-1.081 
% Grass Cover 0.7007 0.4026 1.053 0.933-1.189 
Litter Depth 0.4172 0.5183 7.536 0.016->999.999 
Basal Bare Ground Density 0.1484 0.7001 0.099 <0.001->999.999 
Basal Litter Density 0.1581 0.6910 0.061 <0.001->999.999 
% Litter Cover 0.3716 0.5421 1.058 0.882-1.270 
Maximum Height Live Vegetation 0.0862 0.7691 0.911 0.491-1.692 
Maximum Height Dead Vegetation 0.0001 0.9909 0.996 0.489-2.029 
Insect Axis 1 Score 0.5910 0.4421 0.371 0.03-4.646 
Insect Axis 2 Score 0.4213 0.5163 64.620 <0.001->999.999 
Insect Axis 3 Score 0.4331 0.5105 31.463 0.001->999.999 
Vegetation Axis 1 Score 0.0500 0.8231 0.807 0.123-5.305 
Vegetation Axis 2 Score 0.1211 0.7279 1.803 0.065-49.882 
Vegetation Axis 3 Score 0.7550 0.3849 0.358 0.035-3.632 

Clement SL 2011 
% Bare Ground Cover 0.3752 0.5402 1.037 0.924-1.163 
VOR 1.7992 0.1798 0.359 0.08-1.605 
Total Insect Biomass 1.0093 0.3151 0.831 0.579-1.193 
% Forb Cover 2.5857 0.1078 1.169 0.966-1.415 
% Grass Cover 2.1281 0.1446 0.925 0.833-1.027 
Litter Depth 0.0373 0.8469 0.442 <0.001->999.999 
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Treatment/Covariate x2 P value UOR 95% CI 
Basal Bare Ground Density 0.7162 0.3974 9.041 0.055->999.999 
Basal Litter Density 0.7654 0.3817 0.090 <0.001-19.885 
% Litter Cover 0.0176 0.8943 1.009 0.882-1.154 
Maximum Height Live Vegetation 0.0000 0.9988 1.000 0.558-1.795 
Maximum Height Dead Vegetation 0.1083 0.7421 1.137 0.529-2.444 
Insect Axis 1 Score 0.0657 0.7977 1.313 0.164-10.542 
Insect Axis 2 Score 0.3440 0.5575 0.598 0.107-3.333 
Insect Axis 3 Score 0.2378 0.6258 0.601 0.078-4.644 
Vegetation Axis 1 Score 0.8079 0.3688 2.488 0.341-18.168 
Vegetation Axis 2 Score 0.0531 0.8178 0.649 0.016-25.799 
Vegetation Axis 3 Score 0.0200 0.8874 1.168 0.136-10.008 

Fitch SL 2011 
% Bare Ground Cover 6.7026 0.0096 0.836 0.730-0.957 
VOR 1.4107 0.2349 1.658 0.720-3.822 
Total Insect Biomass 0.6026 0.4376 0.952 0.841-1.078 
% Forb Cover 0.3646 0.5460 1.019 0.959-1.082 
% Grass Cover 0.0160 0.8992 1.004 0.949-1.061 
Litter Depth 1.7282 0.1886 >999.999 <0.001->999.999 
Basal Bare Ground Density 0.0140 0.9058 0.777 0.012-50.732 
Basal Litter Density 0.0103 0.9193 1.241 0.019-80.727 
% Litter Cover 1.0411 0.3076 1.041 0.964-1.123 
Maximum Height Live Vegetation 0.1262 0.7224 1.119 0.603-2.076 
Maximum Height Dead Vegetation 0.0209 0.8851 1.038 0.625-1.725 
Insect Axis 1 Score 0.0525 0.8188 0.898 0.357-2.257 
Insect Axis 2 Score 0.3535 0.5521 2.942 0.084-103.170 
Insect Axis 3 Score 0.0842 0.7717 1.850 0.029-118.034 
Vegetation Axis 1 Score 0.0073 0.9321 0.955 0.330-2.763 
Vegetation Axis 2 Score 1.6873 0.1940 0.048 <0.001-4.679 
Vegetation Axis 3 Score 0.1643 0.6852 1.638 0.151-17.809 
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APPENDIX H: MEANS AND STANDARD DEVIATIONS ( σ) OF UTILIZED AND 
AVAILABLE INSECT BIOMASS COLLECTIONS FROM THE CLEME NT AND 

FITCH NON-GRAZED (NG) AND SEASON-LONG GRAZED (SL) T REATMENTS 
NEAR HETTINGER, ND, IN 2008 – 2011 

  

Total Insect 
Biomass (grams) 

Total Insect 
Biomass (grams) 

Clements mean σ Fitch mean σ 
2008 SL Utilized 3.21 2.65 2008 SL Utilized 0.86 0.77 
2008 SL Available 2.10 0.94 2008 SL Available 3.05 3.75 
2009 SL Utilized 3.63 1.67 2009 SL Utilized 5.52 4.15 
2009 SL Available 4.96 3.14 2009 SL Available 5.77 2.97 
2010 SL Utilized 2.86 3.31 2010 SL Utilized 4.98 5.14 
2010 SL Available 4.15 2.26 2010 SL Available 5.00 4.05 
2011 SL Utilized 5.34 5.73 2011 SL Utilized 6.94 6.59 
2011 SL Available 2.86 1.71 2011 SL Available 5.5 4.41 
2009 NG Utilized 3.19 1.86 2008 NG Utilized 0.92 0.95 
2009 NG Available 4.14 1.87 2008 NG Available 2.83 2.94 
2011 NG Utilized 4.08 2.64 2009 NG Utilized 1.96 1.05 
2011 NG Available 3.32 2.15 2009 NG Available 1.56 0.81 

2011 NG Utilized 1.33 1.18 
2011 NG Available 1.29 1.23 
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APPENDIX I: CORRELATION SCORES OF INSECT ORDERS FRO M NON-METRIC 
MULTI-DIMENSIONAL SCALING ANALYSIS FROM THE CLEMENT  AND FITCH 

STUDY AREAS NEAR HETTINGER, ND, IN 2008 – 2011 
 

Axis 1 2 3 

r r r 
Orthoptera 0.585 0.047 0.031 
Hemiptera -0.223 -0.339 0.281 
Coleoptera -0.343 -0.013 -0.359 
Diptera -0.086 -0.184 -0.256 
Hymenoptera -0.045 -0.186 -0.118 
Araneae -0.097 -0.130 -0.270 
Nueroptera -0.085 -0.166 0.094 
Other -0.191 0.299 0.037 

 


