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ABSTRACT 

 

 In this paper, we try to address this two-class classification problem using global and local 

similarity between compounds. The global similarity measures the overall structural resemblance 

between two compounds. Local similarity is computed based on the occurrences of common 

sub-structures between compounds. We built several classification models based on global and 

local similarity. To improve the classification result, we used an ensemble of those models to 

predict the function compounds in NCI cancer data sets. 

We predict whether a compound can inhibit cancer cell growth or not, obtaining AUC higher 

than 80% for five datasets. We compare our results with other state-of-the-art methods. Our 

classification result is the best in all five datasets. 

Our results show that local similarity is more useful than global similarity in predicting 

compound function. An ensemble method integrating global and local similarity achieves much 

better performance than single predicting models. 
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CHAPTER 1. INTRODUCTION 

Researchers have observed that chemical compounds with similar structures often have 

similar functions. This observation motivated researchers to develop computational methods that 

can predict the function of new chemical compounds by comparing the compound’s structure 

with other compounds whose function is known. The similarity could be measured based on 

global and local information. For methods using the global information, a value between 0 and 1 

is used to show the overall structure similarity between two compounds. The higher the value, 

the more similar they are. 1 means these two compounds are identical. Methods using local 

information compute the similarity between two compounds based on the occurrence of common 

substructures in the compounds. For each substructure, 1 means it occurs in a compound, and 

otherwise. In the comparison of compound structures, many substructures could be considered. 

Thus, similarity measured by local information can be described as a matrix of 0/1. 

We addressed the problem of predicting compound function using a two-class classification 

approach with classification methods, such as SVM, Random Forest, etc. Each combination of 

feature set and classification algorithm will output a prediction, a discriminate value, for a new 

compound. A discriminate value is a real number between 0 and 1. The higher the discriminate 

value, the more likely this new compound may has a certain function. 

We used an ensemble method to integrate the discriminate values output by the single 

classification methods. Our ensemble result is better than previous works. 

1.1. Chemical Compound Similarity 

Scientists try to find the relationship between the chemical and/or 3D structure of a molecule 

and its biological activity, this is structure activity relationships (SAR). To discover SAR, they 

use global structural similarity and maximum common sub-structure, a type of local similarity. 
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When global information is considered, scientists usually use graph kernels and SVM to compare 

the compound structure. When local information is considered, they investigate the occurrence 

pattern of some maximum common sub-graph (MCS) in the compound structure and use 

classification method like SVM to predict function. MCS is widely used in graph mining. Table 

1 is an overview of classification algorithms and the two kinds of information used in chemical 

compound function prediction. 

Table 1. Methods and features 

Methods Local similarities Global similarities 

SVM MCSs Graph kernels 

Random Forest MCSs  

Elasticnet MCSs  

Generalized Linear Model MCSs  

Artificial Neural Network MCSs  

k-Nearest Neighbor MCSs  

Gradient Boosted Regression Trees MCSs  

 

1.2. Applications 

In silico research, in which biological process is simulated or evaluated on a computer, has 

the potential to speedup drug discovery while reducing the need for expensive lab work and 

clinical trials. Using in silico method, researchers can produce and screen drug candidates more 

effectively. For example, researchers using the protein docking algorithm EADock, found 

potential inhibitors to an enzyme associated with cancer activity in 2010 50% of the molecules 

were later shown to be active inhibitors in vitro. 
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The aim of in silico screening is to identify molecules of novel chemical structure that bind 

to the macromolecular target of interest. 

1.3. Graph Kernels 

The kernel of SVM estimates the global similarity of two instances. The kernel function is a 

weighting function used in nonparametric function estimation. It gives the weights of the nearby 

data points in making an estimate. In practice, kernel functions are piecewise continuous, 

bounded, symmetric around zero, concave at zero, real valued, and for convenience often 

integrate to one. They can be probability density functions. They maybe in a range such as [0,1] 

or [0,+∞). 

Kernel functions must be continuous, symmetric, and most preferably should have a positive 

(semi-) definite Gram matrix. Kernels which are said to satisfy the Mercer’s theorem are positive 

semi-definite, meaning their kernel matrices has no non-negative Eigen values. The use of a 

positive definite kernel insures that the optimization problem will be convex and solution will be 

unique. 

A graph kernel is a kernel function that take graphs as input. A graph   is described by a 

finite set of vertices   and a finite set of edges  . We use a labeled undirected graph to 

represents a compound. That means every vertex and edge is labeled. Simplify speaking, every 

vertex is an atom, the vertex label is atom type; every edge is a chemical bond, the edge label is 

chemical bond type. 

We tested many graph kernels, and found Tanimoto kernel and Min/Max Tanimoto kernel 

are the best two kernels. So our introduction of graph kernels will focus on them. 
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Let       be the set of all possible atom-bond labeled paths containing a maximum of   

bonds. Using a depth-first search approach, the binary feature map   for a molecule   and a 

given depth   can be written as: 

                          

Here          is equal to 1 if at least one depth-first search of depth less or equal to   starting 

from one of the atoms of   produces the path     . The counting feature map     is defined 

similarly by using       to count the number of labeled paths of each kind. The difference 

between then is          is 0 or 1,          is the count of paths. 

Let  ,   denote two molecules and   be an integer (  is depth), we can define a 

Tanimoto kernel function          : 

         ∑                 

         

 

This is a dot product. 

Tanimoto kernel: Consider the feature map    and the corresponding kernel   . The 

Tanimoto kernel   
  is defined by: 

  
        

        

                          
 

To simplify, Tanimoto kernel is: 

           

           
 

If      is regarded as the set of features than can be extracted from u using depth-first 

search exploration, then   
  simply computes the ratio between           , i.e. the number 

of elements in the intersection of the two sets      and     , and            , i.e. the 

number of elements in the set corresponding to the union of      and     . 
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Min/Max Tanimoto kernel: let  ,   denote two molecules and   be an integer. Consider 

the feature map      , and the corresponding         .          is the count of paths. The 

Min/Max Tanimoto kernel   
  is defined by: 

  
        

∑                                 

∑                                 
 

To simplify, Min/Max Tanimoto kernel is: 

∑            

∑            
 

This kernel function is closely related to the Tanimoto kernel in at least two different ways. 

First, it is identical to the Tanimoto kernel when applied to binary vectors. Second, in a more 

subtle way, the Min/Max Tanimoto kernel can be viewed as a Tanimoto kernel on a different set 

of binary vectors obtained by transforming the vector of counts. 

The Min/Max Tanimoto kernel takes into account the frequency of different paths in a 

molecule and, like the Tanimoto kernel, its value is always between 0 and 1. Using path counts 

rather than binary indicator variables, the Min/Max Tanimoto kernel produces a more reliable 

way of assessing similarity between molecules of different sizes. 

1.4. Maximum Common Sub-structure 

If some chemical compounds can inhibit the growth of one type of cancer cells, they may 

share one or more molecular sub-structures. If we use graph to represent a compound, these 

common molecular substractures are common sub-graphs. 

From the beginning of this century, many people have used local patterns in mining 

molecular datasets. Maximum common sub-structure (MCS) has been used in almost every 

aspects of graph mining. In the field of biological sciences, MCS have been used in applications 

like finding protein function sites and drug screening. 
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CHAPTER 2. LITERATURE REVIEWS 

 Different methods have been used to classify compounds. Generally speaking, there are two 

main categories: methods that use the global information and those use local similarity. 

2.1. Global Information 

One kind of the methods computes the similarity between compounds using global similarity. 

Gartner et al. introduced many kernels used in Support Vector Machines [Gartner 

2003][Gartner& Flach 2003]. Leslie et al. used Spectrum kernel [Leslie 2002]. Spectrum kernel 

is a string kernel using 1D representations of molecules. Swamidass et al. compared several 

graph kernels using 1D, 2D, and 3D representations of molecules [Swamidass 2005]. 

Researchers usually count the common labeled paths between two graphs to compute the 

similarity. Ralaivola et al. use three graph kernels to predict mutagenicity, toxicity, and 

anti-cancer activity on three publicly available data sets [Ralaivola 2005]. When counting the 

paths, some paths are repeated short paths. This problem is known as totters. Mahe et al. use 

Marginalized graph kernel, add a Morgan index process to remove totters [Mahe 2005]. Mahe et 

al. used pharmacophore kernel for virtual screening [Mahe 2006]. Pharmacophore kernel is a 3D 

graph kernel. Mahe et al. provided both exact computation and fast approximations. Ramon et al. 

invented Subtree graph kernel [Ramon 2003]. Mahe et al. revised Subtree graph kernel [Mahe 

2009]. Wang et al. used graph kernels in chemical compound searching [Wang 2010]. 

2.2. Local Similarity 

Another kind of methods use MCS occurrences as features and use SVM etc. to classify. 

Finding the MCS of two graphs is a NP-hard problem. Ballester et al. used Shape Signature to 

achieve a high speed in searching compounds [Ballester 2007]. Cao et al. used MCS to search 
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and predict compound activity [Cao2008]. Ferreira et al. integrated ChEBI ontology information 

with structure information [Ferreira 2010]. Cao et al. used geometric embedding and locality 

sensitive hashing to accelerate compound searching and clustering. [Cao2010]. Schietgat et al. 

found a MCS of two outer planar graphs to accelerate the MCS finding [Schietgat 2010]. 

Hariharan et al. invented an algorithm to find the MCS of 3 or more graphs [Hariharan 2011]. 

2.3. Use More Information 

Eckert compared many similarity measures and methods [Eckert 2007]. Holliday used 25 

search engine results as similarity measure to improve the chemical compound classification 

[Holliday 2011].  
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CHAPTER 3. MATERIALS AND METHODS 

3.1. NCI Cancer Screens 

The NCI dataset collection has been made publicly available by the National Cancer 

Institute and provides screening results for the ability of thousands of compounds to suppress or 

inhibit the growth of a panel of 60 human tumor cell lines [NCI 2012]. The datasets used here 

correspond to the parameter GI50, the concentration that causes 50% Growth Inhibition. For 

each cell line, approximately 3,500 compounds are provided together with information on their 

ability to inhibit cancer, which defines a two-class classification problem [NCI 2003]. We use 

the datasets of [Ralaivola 2005], which we requested from Dr. Schietgat. 

Schietgat et al. only gave the AUC of 5 screens in their paper [Schietgat 2010]. So we use 

the same 5 screens. 

3.2. Graph Kernels to Measure the Global Similarity 

Dr. Perret et al. open sourced their graph kernel software [Perret 2007]. ChemCpp is an 

open-source software to generate kernel matrixes. It includes several graph kernels, such as: 

marginalized graph kernel (sd2gram kernel), spectrum kernels (Tanimoto kernel, Min/Max 

Tanimoto kernel, Lambda^k kernel), pharmacophore kernels for 3D structure (3D Spectrum 

kernel, 3D binary kernel, 3D Tanimoto kernel), etc. We tested all these kernels and found 

Tanimoto kernel and Min/Max Tanimoto kernel were far better than others. 

Tanimoto kernel and Min/Max Tanimoto kernel can use different depth  . We tested   from 

5 to 11. When   is 10, the results are the best. Ralaivola et al. found 10 is the best   in their 

paper too [Ralaivola 2005]. 

We imported these kernel matrixes into Gist SVM (http://www.chibi.ubc.ca/gist/) to classify 

compounds. 
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3.3. Local Similarity Based on MCSs 

MCSs are widely used in graph mining. There are some open source software can be used in 

MCS finding. We use a software called PMCSFG [Schietgat 2013]. It can find a number of 

MCSs between a randomly selected pair in a graph set. After obtaining the MCSs, we used VF2 

Sub-graph Isomorphism algorithm to find whether a MCS occurred in a full graph. These 

occurrences were used as features. Thus, in local common sub-structure models, all feature 

values are 0 or 1. VF2 algorithm is explained in Figure 1: 

 

Figure 1. VF2 Algorithm 

(From http://stackoverflow.com/questions/8176298/vf2-algorithm-steps-with-example ) 

The two graphs above are V and the drawing on the right top. The VF2 algorithm is 

described in Figure 1, step by step. 

First, let’s use the following notations: XV is the node X in V 
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We want to know if V is sub-graph isomorphic to the graph on the right; in the VF2 

algorithm we will try to match each node in V with a node in right graph. 

Step 1: Match empty subset of V with empty subset of right: it always works 

Step 2: Now we can match 1V with 1right, 2right or 3right. Match 1V witch 1right: it works. 

Step 3: We can match 2V with 2right or 3right. Let’s match 2V with 2right: it works because 

{1V 2V} and {1right 2right} are isomorphic. 

Step 4: Try to match 3V with a node in right, but cannot (It would be possible if there was an 

edge between node 3 and 2 in right, and no edge between 3 and 1). So we go back to Step 2. 

Step 5: Match 2V with 3right. 

Step 6: Cannot find a solution. Go back to step 2. There is no solution in step 2, so go back 

to Step 1. 

Step 7: Match 1V with 2right. 

Step 8: Match 2V with 1right. 

Step 9: Match 3V with 3right. It works. We matched {1V 2V 3V} with {2right 1right 

3right}. If we test all the solution and it never works, V is not a sub-graph of right. 

In this example, V is a sub-graph of right. Actually, these two graphs are isomorphic. 

3.4. Classification Methods 

We used several classification algorithms. 

 Random Forest 

Random forest is an ensemble classifier that consists of many decision trees and outputs the 

class that is the mode of the classes output by individual trees. The algorithm for inducing a 

random forest was developed by Leo Breiman and Adele Cutler, and “Random Forests” is their 

trademark. The term came from random decision forests that was first proposed by Tin Kam Ho 
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of Bell Labs in 1995. The method combines Breiman's “bagging” idea and the random selection 

of features, introduced independently by Ho and Amit and Geman in order to construct a 

collection of decision trees with controlled variation. 

 Gradient Boosted Regression Trees 

Gradient Boosted Regression Trees (GBRT) is a generalization of boosting to arbitrary 

differentiable loss functions. GBRT is an accurate and effective off-the-shelf algorithm that can 

be used for both regression and classification problems. The advantages of GBRT include natural 

handling of data of mixed type (heterogeneous features), predictive power, and robustness to 

outliers in input space (via robust loss functions). The disadvantage of GBRT is scalability. Due 

to the sequential nature of boosting it can hardly be parallelized. 

 Support Vector Machine (SVM) 

The principle of SVM is illuteacted in Figure 2. 

 

Figure 2. Support Vector Machine and Support Vectors 

(From http://kokzard.blogspot.com/2011/10/jfjkdshfkjsldf.html) 

SVMs are supervised learning models with associated learning algorithms that analyze data 

and recognize patterns, used for classification and regression analysis. The basic SVM takes a set 
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of input data and predicts, for each given input, which of two possible classes forms the output, 

making it a non-probabilistic binary linear classifier. Given a set of training examples, each 

marked as belonging to one of two categories, a SVM training algorithm builds a model that 

assigns new examples into one category or the other. A SVM model is a representation of the 

examples as points in space, mapped so that the examples of the separate categories are divided 

by a clear gap that is as wide as possible. New examples are then mapped into that same space 

and predicted to belong to a category based on which side of the gap they fall on. 

 Elasticnet 

The elastic net is a regularized regression method that combines the L1 and L2 penalties of 

the lasso and ridge methods. 

 Generalized Linear Model 

The generalized linear model is a flexible generalization of ordinary linear regression that 

allows for response variables that have other than a normal distribution. The generalized linear 

model generalizes linear regression by allowing the linear model to be related to the response 

variable via a link function and by allowing the magnitude of the variance of each measurement 

to be a function of its predicted value. 

 Artificial Neural Networks (ANN) 

 

Figure 3. Artificial Neural Networks 

(From http://en.wikipedia.org/wiki/Artificial_neural_network) 
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Artificial neural networks are composed of interconnecting artificial neurons (programming 

constructs that mimic the properties of biological neurons). Simple artificial nodes, called 

“neurons”, are connected together to form a network which mimics a biological neural network. 

 k-Nearest Neighbor algorithm (kNN) 

 

Figure 4. k-Nearest Neighbor Algorithm 

(From http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm) 

The k-nearest neighbor algorithm (kNN) is a method for classifying objects based on closest 

training examples in the feature space. kNN is a type of instance-based learning where the 

function is only approximated locally and all computation is deferred until classification. The 

k-nearest neighbor algorithm is amongst the simplest of all machine learning algorithms: an 

object is classified by a majority vote of its neighbors, with the object being assigned to the class 

most common amongst its k nearest neighbors (k is a positive integer). We find 7 is the best k in 

our experiment. 

3.5. Feature Selection 

As we increase the number of MCS, AUC value increases, too. But it takes more and more 

time. Most of the MCSs we found are useless. They include hydrocarbons or/and benzene ring, 

etc. These MCSs appear in almost every organic compound. We use Random Forest to obtaining 

a ranking of the relative importance of the MCSs [Kursa 2010]. Eliminating useless variables 



14 

 

reduced model training time and improved performance. After feature selection, only 300-400 

features in 6,400 are selected. The training time decease drastically, and AUC, F1 score increase 

slightly. It allows us to try more algorithms. 

3.6. Ensemble 

We used an ensemble method to combine the global and local information, and made use of 

multi classification algorithms to get better result. We tested two simplest ensemble methods: 

mean and median. The mean ensemble was better than the best single model in some screens. 

The median ensemble was better than mean ensemble and the best single model in every screen. 

We used MATLAB fitensemble() function. All ensemble methods: AdaBoostM1, LogitBoost, 

GentleBoost, RobustBoost, LPBoost, TotalBoost, RUSBoost, Bag, and Subspace Discriminant, 

were tested. Subspace Discriminant was far better than others. As previous works showed, using 

only a portion of models is better than using all of them. We found the ensemble of 5 models was 

better than that of 9 models. Add more models could not improve the result. Subspace 

Discriminant result was better than median. Every model output a discriminant value for every 

instance in training and testing set. The discriminant value was a real number in [0, 1]. We 

trained fitensemble() function on the discriminant values of all training sets.  

Lastly, we used the weighted liner blending method. This method was used in Netflix prize, 

Heritage Health Prize, and many KDD cup contests. Weighted liner blending gave the best result. 

We used Particle Swarm Optimization (PSO) to find the best weight set. Assume that we have a 

swarm of S particles, the algorithm of PSO proceed as follows: 

 For each particle   = 1, ..., S do: 
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 Initialize the particle's position with a uniformly distributed random vector: 

             , where     and     are the lower and upper boundaries of the 

search-space. 

 Initialize the particle's best known position to its initial position:       

 If            update the swarm's best known position:      

 Initialize the particle's velocity:                

 Until a termination criterion is met (e.g. number of iterations performed, or a solution 

with adequate objective function value is found), repeat: 

 For each particle   = 1, ..., S do: 

 For each dimension   = 1, ..., n do: 

 Update the particle's velocity:  

                   (         )          (       ) 

  is inertia weight,    and    are acceleration constants,        returns 

a random number in [0,1). 

 Update the particle's position:          

 If             do: 

 Update the particle's best known position:       

 If            update the swarm's best known position:      

 Now   holds the best found solution. 

We use the mean of AUC as the     function. One set of model weights are coordination 

of a particle. When PSO find the best  , this set of weights gives the highest mean of AUC. To 

avoid over fitting, we use one set of model weights for all screens. If every screen use its own 

weight set, the AUC will higher. 
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 PSO is running on the discriminant values of all testing sets. To avoid over fitting, we train 

PSO on 3 screens: 786-0 M14 SNB-19. Test the result on other 2 screens: HCT-116 NCI-H522. 

3.7. Environment 

We use 64bits Linux on NDSU CCAST clusters and Computer Science department 

laboratory, utilize the up-to-date Intel Composer XE 2013 for Linux and Intel Math Kernel 

Library SMP. Use -O3 -funroll-loops -march=core2 pthread OpenMP. So the programs can use 

multi cores. We compiled R, R packages, ChemCpp, and our own programs.   



17 

 

 

 

CHAPTER 4. RESULTS 

4.1. Definition of Measures Used 

For a two-class classification problem, the TP FP TN FN is defined as: 

 

Actual class 

(observation) 

Predicted class 

(expectation) 

TP 

(True Positive) 

Correct result 

FP 

(False Positive) 

Unexpected result 

FN 

(False Negative) 

Missing result 

TN 

(True Negative) 

Correct absence of result 

 

The precision, recall, accuracy, F1 are defined as: 

          
  

     
 

       
  

     
 

         
     

           
 

   
 

 
          

 
      

 

In signal detection theory, a Receiver Operating Characteristic (ROC) curve is a graphical 

plot which illustrates the performance of a binary classifier system as its discrimination threshold 
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is varied. It is created by plotting the fraction of true positives out of the positives (True positive 

rate) v.s. the fraction of false positives out of the negatives (False positive rate), at various 

threshold settings. 

 

Figure 5. ROC Curve and AUC 

(From https://ccrma.stanford.edu/workshops/mir2009/references/ROCintro.pdf) 

AUC is Area Under the (ROC) Curve. The AUC of a classifier is equivalent to the 

probability that the classifier will rank a randomly chosen positive instance higher than a 

randomly chosen negative instance. In practice the AUC performs very well and is often used 

when a general measure of predictiveness is desired. 
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4.2. Data Set and Positive/Negative Instance Number 

Ralaivola et al., Schietgat et al., and we use the same NCI data set. We use the same 10-fold 

cross-validation datasets as Schietgat et al.’s. Ralaivola et al. used 80% as training set and 20% 

as testing set. Schietgat et al. and we used 90% as training set and 10% as testing set. 

10-fold cross-validation is a technique for assessing how the results of a statistical analysis 

will generalize to an independent data set. It is mainly used in settings where the goal is 

prediction, and one wants to estimate how accurately a predictive model will perform in practice. 

One round of cross-validation involves partitioning a sample of data into complementary subsets, 

performing the analysis on training set, and validating the analysis on the testing set. To reduce 

variability, 10 rounds of cross-validation are performed using different partitions, and the 

validation results are averaged over the 10 rounds. 

Since Schietgat et al. only provided results for 5 data sets; we choose the same 5 data sets to 

evaluate our methods. Table 2 shows the positive and negative instance numbers in each of the 

10-fold cross-validation datasets. 
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Table 2. Data sets 

+/- 786-0 HCT-116 M14 NCI-H522 SNB-19 

Test0 184/168 205/168 182/174 214/144 184/189 

Test1 184/168 205/168 182/174 214/144 184/189 

Test2 183/168 205/168 182/174 214/144 184/189 

Test3 183/168 205/167 182/174 214/144 184/189 

Test4 183/167 205/167 182/174 214/144 184/189 

Test5 183/167 205/167 181/174 214/143 184/188 

Test6 183/167 205/167 181/173 214/143 184/188 

Test7 183/167 205/167 181/173 214/143 184/188 

Test8 183/167 205/167 181/173 213/143 184/188 

Test9 183/167 204/167 181/173 213/143 184/188 

Total 1832/1674 2049/1674 1815/1736 2138/1435 1840/1885 

 

There is no overlapping between testing sets. In every fold, one testing set is selected; the 

other 9 sets are used as training set. We can get the AUC, F1, and other measures for every fold. 

After 10 folds, we can get the mean of 10 AUC, F1 values and their standard deviation. 

4.3. Single Model Result 

We utilize 5 cancer drug sets: 786-0, HCT-116, M14, NCI-H522, and SNB-19. We use 

different methods to compare compound similarity, and based on these global and local 

similarity to predict compound functions. A single model is an algorithm and using a type of 

features. 
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Min/Max Tanimoto kernel and Tanimoto kernel use SVM as the classification method and 

use global similarity information as their features. 

Other single models use local similarity. We use a 0/1 matrix of 6400 MCSs as local 

similarity features. These single models include: Random Forest, Gradient Boosted Regression 

Trees, SVM (MCSs), Elasticnet, Generalized Linear Model, Artificial Neural Networks, and 

k-Nearest Neighbor. The AUC of all single models are show in Table 3. 
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Table 3. AUC (%) comparison of single models 

(From high to low. Two models using global similarity have gray background; other seven 

models use local similarity) 

Model 786-0 HCT-116 M14 NCI-H522 SNB-19 

Random Forest 80.84 1.94 80.94 2.07 79.56 1.63 79.31 1.60 78.92 1.44 

Gradient Boosted 

Regression Trees 

79.13 2.16 80.50 1.86 77.47 1.94 78.04 3.55 76.65 1.26 

SVM (MCSs) 78.75 2.26 80.12 2.26 77.80 2.01 77.89 2.85 76.52 1.64 

Elasticnet 77.47 1.95 79.42 1.90 76.98 2.11 77.32 4.08 76.00 1.08 

Generalized Linear Model 77.28 2.72 78.66 2.11 75.66 1.98 75.96 2.96 75.52 2.09 

Min/Max Tanimoto kernel 77.04 2.60 77.63 1.51 76.93 2.74 76.55 2.08 74.50 2.81 

Tanimoto kernel 74.57 2.59 72.88 1.45 75.47 2.56 75.08 1.98 73.47 1.48 

Artificial Neural 

Networks 

70.29 2.46 72.02 3.66 69.49 2.07 70.71 4.54 67.81 3.57 

k-Nearest Neighbor 54.53 2.53 54.16 3.36 51.15 3.33 54.40 3.45 53.42 2.63 

 

4.4. Ensemble Result 

We also tried different ensemble methods. The simplest way of ensemble is to use mean and 

median of individual methods as the ensemble result. We used mean and median as baselines to 

compare with other complicate ensemble methods. Random Forest is the best single model. The 

mean of 9 models is as good as Random Forest. The median of 9 models is better than Random 

Forest in every data set. 
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The Subspace Discriminant ensemble of 5 models is far better than median. But after adding 

more models, the Subspace Discriminant ensemble of 5 models is almost the same. Subspace 

Discriminant ensemble use the discriminant values on training sets in every fold as its full data 

set, and make a prediction use the discriminant values on testing sets in every fold. 

Lastly, we use a weighted linear ensemble. Every model is set a weight   .    is a real 

number between -1 and 1, ∑             . 

We define      as the discriminant value of instance   in model  .    is the instance   

ensemble discriminant value of several models. We have: 

   ∑   

        

     

We use PSO to find the best weight set. To avoid over fitting, we use the same weight set for 

all 5 data sets. If every data set use different weight set, the AUC result should be higher. PSO 

use the discriminant values on testing sets in every fold. All ensemble results are show in Table 

4. 
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Table 4. AUC (%) comparison 

(Compare different ensemble methods and the best single model. Mean and median are used as 

baselines) 

Type 786-0 HCT-116 M14 NCI-H522 SNB-19 

Random Forest 80.84 1.94 80.94 2.07 79.56 1.63 79.31 1.60 78.92 1.44 

mean(9 models) 80.93 2.04 81.55 2.33 78.95 1.96 79.71 2.87 78.39 1.40 

median(9 models) 81.45 1.96 82.24 2.02 80.10 2.11 80.75 3.15 79.30 1.36 

Subspace Discriminant (5 

models) 

82.81 2.19 82.99 1.74 81.92 1.95 81.53 2.07 80.30 1.76 

Subspace Discriminant (9 

models) 

82.73 2.20 83.31 1.95 81.67 2.03 81.64 2.67 80.20 1.51 

Weighted liner blending 

1(10 models) 

83.23 2.04 83.49 1.78 82.12 2.05 82.11 2.29 80.88 1.44 

 

Subspace Discriminant ensemble using 5 models includes: (1) Min/Max Tanimoto kernel, (2) 

Tanimoto kernel, (3) sd2gram kernel, (4) Random Forest, and (5) SVM (MCSs). sd2gram is a 

graph kernel. Ensembles using 9 models include 4 more: (6) Generalized Linear Model, (7) 

Elasticnet, (8) k-Nearest Neighbor and (9) Artificial Neural Networks. Ensemble using 10 

models includes 1 more: (10) median of model 1-9. 

Since PSO use the discriminant values on testing sets in every fold and make a prediction 

using testing sets discriminant values; it may introducing bias and causing over fitting. So we use 

the discriminant values on testing sets in 3 data sets as training set, and use other 2 data sets as 

testing set. These 3 training data sets are: 786-0, M14, and SNB-19. We compare the result of 
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two weighted linear blending with another best ensemble method, Subspace Discriminant, in 

Table 5. 

Table 5. AUC (%) comparison of different ensembles on testing set 

Ensemble HCT-116 NCI-H522 

Subspace Discriminant (9 models) 83.31 1.95 81.64 2.67 

Weigh2 (786-0 M14 SNB-19 as training, 10 models) 83.37 1.80 81.98 2.19 

Weight1(10 models) 83.49 1.78 82.11 2.29 

 

The AUC values of Weigh2 are slightly lower than those of using Weight1. But they are still 

better than Subspace Discriminant ensemble. It indicated that our weighted linear ensemble is a 

better ensemble method. 

We compare our best results, Weight1, with that of two previous studies. Ralaivola et al. 

reported their results in 2005 [Ralaivola 2005]. They used Min/Max Tanimoto kernel and 

Tanimoto kernel. Min/Max Tanimoto kernel was better than Tanimoto kernel in every screen. 

Schietgat et al. reported their results on same data sets in 2010[Schietgat 2010].They tried 

different MCS numbers and their best result was using 6400 MCSs. Schietgat et al. used a 

combination of Tanimoto kernel and MCSs. They only used SVM classifier. We only compared 

our results with their best result (Table 6). Our ensemble result was better than theirs in every 

screen. 
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Table 6. AUC (%) comparison of previous works and ours 

Cancer 

2005 Ralaivola et al. Min/Max 

Tanimoto kernel d=10 

2010 Schietgat et al. 6400 

MCSs & Tanimoto kernel 

Zhu et al. 

ensemble 

786-0 79.41 0.89 80.7 83.23 2.04 

HCT-116 80.29 1.18 82.0 83.49 1.78 

M14 79.73 1.91 80.2 82.12 2.05 

NCI-H522 79.50 1.71 80.3 82.11 2.29 

SNB-19 79.40 1.04 79.4 80.88 1.44 

 

Our results use Weight1 linear blending. 

We listed our 2 weight sets of weighted liner blending 1 and weighted liner blending 2 

(Table 7). The same set are used in all data sets. If every data set use its own weight set, the 

result should be better. 
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Table 7.Weight sets of linear blendings 

Model Weight1 Weight2 

Min/Max Tanimoto kernel 0.3398 0.3205 

sd2gram 0.2556 0.2622 

Random Forest 0.1156 0.1381 

SVM (MCSs) 0.0894 0.0623 

Tanimoto kernel 0.0838 0.1583 

median(9 models) 0.0555 -0.0334 

Generalized Linear Model 0.0286 0.0293 

Elasticnet 0.0246 0.0545 

k-Nearest Neighbor 0.0121 0.0117 

Artificial Neural Networks -0.0050 -0.0034 

 

4.5. Training Time Comparison 

Lastly, we compared the training time, AUC, F1 etc. of two Random Forest classifications. 

The first one used all 6400 MCSs features. The second one used only 337 MCS features. We can 

see the second result is a little better and the training time is much shorter. It is because many 

MCSs are useless. They are an atom, a hydrocarbon chain or a benzene ring, etc. They occur in 

almost every compound. Filter out these MCSs improve the result and save a lot of time. So we 

can try more models. The training time and classification results are show in Table 8. 
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Table 8. Training time comparison of Random Forest without feature selection and after it 

model Without feature selection After feature selection 

Feature number 6400 337 

Training time 67:04:25 00:05:14 

AUC (%) 79.65 2.24 80.84 1.94 

F1 (%) 74.27 1.98 75.39 1.67 

Accuracy (%) 72.39 1.82 73.67 1.46 

Precision (%) 76.37 3.38 77.30 3.59 

Recall (%) 72.35 1.47 73.69 1.66 

Feature selection helps us saving a lot of time and makes us can do more experiments. 
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CHAPTER 5. DISCUSSION AND CONCLUSION 

5.1. Discussion 

Combine global information and local similarity, their result outperformed individual graph 

kernels use global similarity. We not only use both global and local information, but also use a 

library of classification models. Our result is better than theirs because they only use SVM. 

5.2. Future Work 

Next thing we need to do is finishing all 60 screen classifications. We’ll add a lot of models. 

We only used the best      in Tanimoto and Min/Max Tanimoto kernel. A smaller   may 

provide more useful information. We may try not use a fixed depth, but a   from 1 to a small 

number. Many graph kernels are not as good as Tanimoto and Min/Max Tanimoto kernel. We’ll 

add these kernels as new models. Many algorithms can be tuned. For example, we only use the 

default parameters of Artificial Neural Network. We may tune these algorithms. There are some 

other classification algorithm, such as Stochastic Gradient Descent, can be add too. Our object is 

using about 100 models, and then selecting a subset of them uses Genetic Algorithm [Bottou 

2004] etc. Lastly, make an ensemble on this subset. 

5.3. Conclusion 

In this paper we described an ensemble of many algorithms. The result is better than 

previous works. These classification algorithms and ensemble can be used in many areas.  
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