
A JAVA CLASS ANALYSIS PROGRAM DEVELOPMENT BY ASM LIBRARY

A Paper

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Chengxiang Qiu

In Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Major Program:

Software Engineering

October 2017

Fargo, North Dakota

North Dakota State University

Graduate School

Title
 A JAVA CLASS ANALYSIS PROGRAM DEVELOPMENT BY ASM

LIBRARY

 By

Chengxiang Qiu

 The Supervisory Committee certifies that this disquisition complies with North Dakota State

University’s regulations and meets the accepted standards for the degree of

 MASTER OF SCIENCE

 SUPERVISORY COMMITTEE:

Kenneth Magel

 Chair

Jun Kong

Xuehui Li

 Approved:

 11/14/2017 Kendall Nygard

 Date Department Chair

iii

ABSTRACT

Class analysis is useful technique that can be used in many situations, from the syntaxes

parsing, potential bugs finding, and unused code detecting to reverse engineer coding. In this paper,

I write a small program classasm analysis the java class by calling the methods in ASM library.

Here, the ASM name does not mean anything: it is just a reference to the “_asm_” keyword in C,

which allows some functions to be implemented in assembly language. In Java, the ASM provides

methods to read write and transform such byte arrays by using higher level concepts than bytes,

that mean through the API in the ASM library we can analysis the class without reading the source

code. ASM supply method to attract information from the compiled class file. In the research I use

the simple company classes and the disconf-core-2.6.35.jar as examples, to show the results.

iv

ACKNOWLEDGEMENTS

I would like to thank my supervisor Dr. Kenneth Magel, for his excellent supervision and

incredible encouragement. When I was a sit in student in computer science, he gave me great

support and help, which encouraged me to register the master degree of software engineering.

Without his help and encouragement, I won’t get a chance to switch from my previous biology

experience to computer science, a brand-new area that I really interested in.

I also thank my supervisory committee Dr. Jun Kong and Dr. Xuehui Li for their kindly

support.

v

DEDICATION

I dedicate this paper to my Mom, my wife and my two lovely sons. Without their encouragement

and supporting, it is hard to imagine that I can start a brand-new career.

vi

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iv

DEDICATION .. v

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

LIST OF ABBREVIATIONS .. ix

1. INTRODUCTION .. 1

2. BACKGROUND AND RELATED WORK .. 4

2.1. Background .. 4

2.1.1. Compiled class-file structure ... 4

2.1.2. ASM .. 8

2.2. Related work .. 9

2.2.1. BCEL ... 9

2.2.2. SERP.. 9

2.2.3. JOIE ... 11

3. PROPOSED APPROACH .. 12

4. RESULT AND ANALYSIS ... 14

5. CONCLUSION ... 22

REFERENCES ... 23

APPENDIX A. SOURCE CODE OF JAVA .. 26

APPENDIX B. SOURCE CODE OF MYSQL .. 47

vii

LIST OF TABLES

Table Page

1. Overall structure of a compiled class (* means zero or more) 5

2. A class file consists of a single ClassFile structure . .. 6

3. Class access and property modifiers .. 7

4. Interpretation of FieldType characters . .. 7

viii

LIST OF FIGURES

Figure Page

1. Sequence diagram for the ChangeVersionAdapter. .. 8

2. Class diagram of company class. .. 13

3. Class structure of classasm project. .. 14

4. Class analysis output of Company class. .. 15

5. Class analysis output of disconf-core-2.6.35.jar. .. 16

6. Class analysis output of disconf-core-2.6.35.jar in MySQL. .. 18

7. Query the class analysis output of disconf-core-2.6.35.jar in MySQL. 18

8. Plot of methods’ class, x is the method name, and fill is the class that the method

belongs to. ... 19

9. Plot of methods invoke other methods, x row is method of calling, and the fill is the

method of been called. .. 20

10. Plot of invoked methods’ class, x is the invoked method, and fill is the class that

the method belongs to. .. 21

ix

LIST OF ABBREVIATIONS

JVM..Java virtual machine

BCEL ...Byte Code Engineering Library

JOIE ...Java Object Instrumentation Environment

API ...Application program interface

1

1. INTRODUCTION

In software engineering development process, program analysis, generation and

transformation are necessary and useful. Through the class analysis, potential bugs and unused

code can be detected, furthermore, it is the basis for reverse engineer code, because some

reassembling process can only base on the complied classes. Program generation is used in

compilers such as traditional compilers, stub compilers, skeleton compilers which used for

distributed programing [1]. Program transformation is also very important, which can be used to

optimize or obfuscate programs. Bytecode instrumentation is one of the program transformation

technology which can easily insert or delete code into applications to realize the debugging or

performance improvement, and it can also monitor the code performance [2]. Bytecode

instrumentation technique is one of the most often using program transformation technique, which

is a valuable technique for transparently enhancing virtual execution environments for purposes

such as monitoring or profiling. The advantage of working at the bytecode level is that the source

code is not needed. That means we can altering java semantics via bytecode instrumentation

without known the java source code and only need the compiled classes [3]. Once the bytecode

instrumentation is introduced, every bytecode that is being executed in the JVM will be full

covered [4].

Bytecode instrumentation includes two types, static bytecode instrumentation and dynamic

instrumentation. The main difference between the two types of instrumentation is the static

instrumentation inserts all instrumentation-code before the program starts execution, while

dynamic instrumentation interleaves with the execution of the program which under

instrumentation. The obvious advantage of the static instrumentation is that it uses less runtime

overhead, because all classes are instrumented before the program is executed [3]. Another

2

advantage is static bytecode instrumentation may use any high level bytecode engineering library

such as BCEL, ASM, JOIE. And this will not perturb the measurement processes. While in the

dynamic bytecode instrumentation process, an instrumentation agent will be invoked whenever a

class is loaded and the loaded bytecode need to augment with instrumentation code. Compare with

the static instrumentation, in order to make sure all classes will be instrumented and avoids tedious

bytecode instrumentation before the program execute, this approach introduces extra overhead and

will perturbate measurements due to the runtime instrumentation-process [5-9].

Interposition is a key step in the implementation of dynamic adaptable systems, which can

be used not only to modify the semantics of components, but also to dynamically add and remove

the additional properties such as functional or non-functional properties [6, 10]. Most of the

techniques used to implement dynamically adaptable systems used this kind of interposition. The

interposition requires an interposition object and the object masks are in the same type, so that the

interposition tools can generate interposition code specific to the type of that objects. For example,

to implement a pure Java meta object protocol, we can choose a code generation tool to generate

interposition classes, or choose a code manipulation tool to inline the interposition code directly

in the classes that we want to analysis [11].

Although the code generation and manipulation tools are useful to implement adaptable

systems, there is one problem that produced in the manipulation process must be faced. That is the

source code dependence, because most of code generation and manipulation tools finish this

process depend on the support of the source code, these tools need generate source code and then

dynamically compile this source code [12]. This process would add large overheads to applications

both in time and in size, that means would add the time and space complexity. So, it requires the

tools are as small and fast as possible to do this job. ASM is such kind of tool, it will optimize the

3

performances of an application through optimize the most frequently executed code. Also, ASM

will build a general tool to implement any class manipulation operation. In this paper, I will use

the examples to show how ASM analysis the Java classes [9].

4

2. BACKGROUND AND RELATED WORK

2.1. Background

2.1.1. Compiled class-file structure

In Java, class is program-code-template for creating objects, it contains package and import

section, also includes class attributes, annotations, methods and so on. Java program is made up

by classes and these classes work together, they can realize some functions. If we analysis the

classes based on the source code, we need to walk through the code line by line, check every class.

While the compiled Java class is quite different from the class in the source code, it is produced

by Java compiler from Java source code file (.java files). Compiled class is a file with .class

filename extension, contains Java bytecode that can be executed on the JVM [4]. In the source file

it generally contains more than one class, while a compiled class describes only one class which

contains all information of the source code. A compiled class retains the structural information and

almost all the symbols from the source code. In a compiled class, it contains: a section describing

the modifiers, the name, the super class, the interfaces and the annotation of the class. There are

many sections that describe the modifiers, the name, the type and annotations for each field. Each

method and constructor will be described by an individual section [9, 13].

There are several differences between the source code class and the compiled class. No

matter how many classes there are in the source code, it will be compiled into only one class. In

this compiled class it includes all information, in the following sections: one section for the main

class and the other for the inner class. The main class file contains references to its inner classes,

and inner classes defined inside methods contain a reference to their enclosing method. Although

it contains class, field, method, compiled class does not contain comments, it uses the code

attributes to associate additional information to these elements. All the type names in the compiled

5

class must be fully qualified, because, there is no package and import section in the compiled class.

All the numeric, string and type constants will be stored in a constant pool section in the compiled

class. Table 1 summarizes the overall structure of compiled class.

Table 1. Overall structure of a compiled class (* means zero or more) [9].

Modifiers, name, super class, interfaces

Constant pool: numeric, string and type constants

Source file name (optional)

Enclosing class reference

Annotation*

Attribute*

Inner class* Name

Field*

Modifiers, name, return and parameter types

Annotation*

Attribute*

Method* Modifiers, name, return and parameter types

Annotation*

Attribute*

Compiled code

In the compiled class format, each class file contains the definition of a single class or

interface. Due to the class is generated by a class loader, a class or interface need not have an

external representation literally contained in a file, it will colloquially refer to any valid

representation of a class or interface as being in the compiled class. For example, in Java SE

platform, it has its own set of data types representing compiled class data. The types u1, u2, and

6

u4 represent an unsigned one-, two-, or four-byte quantity, respectively. This format is supported

by interfaces java.io.DataInput and java.io.DataOutput and classes such as

java.io.DataInputStream and java.io.DataOutputStream. And JVM can recognize the class-file

structure in the table 2, the flags in the table 3 and the FieldType in the table 4.

Table 2. A class file consists of a single ClassFile structure [14].

u4 magic;

u2 minor_version;

u2 major_version;

u2 constant_pool_count;

cp_info constant_pool[constant_pool_count-1];

u2 access_flags;

u2 this_class;

u2 super_class;

u2 interfaces_count;

u2 interfaces[interfaces_count];

u2 fields_count;

field_info fields[fields_count];

u2 methods_count;

method_info methods[methods_count];

u2 attributes_count;

attribute_info attributes[attributes_count];

7

Table 3. Class access and property modifiers [14]

Flag Name Value Interpretation

ACC_PUBLIC 0x0001 Declared public; may be accessed from outside its

package.

ACC_FINAL 0x0010 Declared final; no subclasses allowed.

ACC_SUPER 0x0020 Treat superclass methods specially when invoked by

the invokespecial instruction.

ACC_INTERFACE 0x0200 Is an interface, not a class.

ACC_ABSTRACT 0x0400 Declared abstract; must not be instantiated.

ACC_SYNTHETIC 0x1000 Declared synthetic; not present in the source code.

ACC_ANNOTATION 0x2000 Declared as an annotation type.

ACC_ENUM 0x4000 Declared as an enum type.

Table 4. Interpretation of FieldType characters [14].

BaseType

Character

Type Interpretation

B byte signed byte

C char Unicode character code point in the Basic

Multilingual Plane, encoded with UTF-16

D double double-precision floating-point value

F float single-precision floating-point value

I int integer

J long long integer

L ClassName ; reference an instance of class ClassName

S short signed short

Z boolean true or false

[reference one array dimension

As we know, in Java, class file has its special format, it consists of a stream of 8-bit bytes.

That means all 16-bit, 32-bit and 64-bit data are constructed by reading in 2, 4 and 5 consecutive

8-bit bytes, respectively. In the table 2, the types u1, u2 and u4 represent an unsigned one-, two,

and four- byte quantity, respectively. The values of the minor_version and major_version items

8

represent the minor and major version numbers of this class file. Table 3 shows the

ACC_INTERFACE flag rules. By different values attached to the flags, class file can define

different property of the class such as public, final, supper, abstract a class. While, compiled class

file interpretation the field type use only single character, as in the table 4. By single character

such as B, C, D which can represent different data type in the field.

2.1.2. ASM

In Java ASM provides bunches of API to manipulate the compiled class file, there are three

core components: the ClasReader, ClassWriter and the ClassVisitor. The ClassReader class parses

a compiled class given as a byte array, and calls the corresponding visitXxx methods on the

ClassVisitor instance passed as argument to its accept method. It can be seen as an event producer.

The ClassVisitor class delegates all the method calls it receives to another ClassVisitor instance.

It can be seen as an event filter. The ClassWriter class is a subclass of the ClassVisitor abstract

class that builds compiled classes directly in binary form. It produces as output a byte array

containing the compiled class, which can be retrieved with the toByteArray method. It be an event

consumer. Figure 1. shows the sequence diagram of modified class version.

Figure 1. Sequence diagram for the ChangeVersionAdapter [9].

9

2.2. Related work

2.2.1. BCEL

BCEL (Byte Code Engineering Library) is the Java class manipulation tool which intended

to give users a convenient way to analyze, create and manipulate Java class files. A Java class

generally includes the attributes, fields and methods which are represented by objects. These

objects can be loaded from an existing file at static model, that mean we can read the objects from

the file and transformed them if necessary at run-time and then output them into a file. We can

also create classes from scratch at run-time. The BCEL is also important to help as to understand

the JVM and the format of Java .class files. There are three phases of these process, in the first

phase, the class is transformed and represented by byte array, and correspondingly an object model

related to the structure of this class is constructed in memory. In such a structure, at different level

of bytecode instruction, one object is created for each node. In the second phase, the object model

that constructed in previous phase were manipulated. And then in the third phase, this modified

object will be graphed into a new byte array [15]. Through such three phases process, BCEL

successfully solved the serialization and deserialization problems.

The users do not need to see all the serialization and deserialization details can solve the

serialization and deserialization problems, because the BCEL provide the functions to finish this.

And it also solves the symbol table management problems. While it has to explicitly give the

indexes of the constants in the symbol table, and have to manually update these indexes if they

become invalid.

2.2.2. SERP

SERP is an open source framework for manipulating java bytecode by a similar approach

as BCEL [16]. It has lots of advantages:

10

• High-level APIs in the SERP let all normal bytecode are easy to be modified.

• There is a large methods library, which makes it is easy to use it as clean as possible,

for example, overloads its methods to guaranty the type consistence and to make

shortcuts for operations like adding default constructions.

• SERP does not hide any of the power of bytecode manipulation behind a limited

set of high-level functions. Advanced users also can directly access to the low-level

details of the class file and constant pool, the users can switch back and forth

between low-level and high-level operations. SERP maintains complete

consistency of the class structure at all times. In generally, any change to a method

descriptor in the constant pool, often change the return values of all the high-level

APIs that describe that method.

• In order to minimize the size of the class structures, there is a shared constant pool.

SERP let user access to the constant pool directly. SERP’s high-level APIs

completely abstract management of the constant pool. Any time a new constant is

needed, SERP will automatically add it to the pool while ensuring that no duplicates

ever exist.

• Most SERP instruction representations have the ability to change their underlying

low-level opcodes on the fly as the users modify the parameters of the instruction.

Although SERP has lots of advantages, it is not ideally suited to all applications, here are

some disadvantages:

• SERP is not built for speed, it is a quit slow process. It costs a lot of time when the

classes are loaded.

11

• Because SERP tries to keep the full-time consistency between the low and high-

level class structures, it slows down both access and mutates methods.

• SERP's high-level structures for representing class bytecode are very memory-

hungry.

• The SERP toolkit is not thread-safe, for the multiple threads cannot safely make

modifications to the same classes the same time.

• Although there are plans to implement synchronize, as well as plans to allow

operations to modify bytecode based on specified patterns, similar to aspect-

oriented programming. While at the project-level modifications, changes made in

one class in a SERP project are not yet automatically propagated to other classes.

2.2.3. JOIE

JOIE (Java Object Instrumentation Environment) is a framework for safe Java bytecode

transformation. It provides both low-level and high-level functionality to extend or adapt compiled

Java classes. The low-level interface allows manipulating the bytecodes itself whereas the high-

level interface provides methods for inserting new interfaces, fields, methods or whole code splices.

Unfortunately, this tool is not maintenance any more, the last update is 2003 [17, 18].

12

3. PROPOSED APPROACH

The goal of this paper is to analysis the class, more specifically, is to analysis the methods

in the class. Which methods have invoked a method in the class, or a method invokes how many

methods inside or outside of some classes. In this paper, I use the asm bytecode analysis package

to analysis the class. ClassVisitor is an important class of the package. It supply the two

constructors ClassVisitor(int api) and ClassVisitor(int api, ClassVisitor cv) , which with different

parameters, both of them can construct a new ClassVisitor. It also supply with the methods,

AnnotationVisitor and FieldVisitor through which, they can visit the annotation and the field of a

class respectively. MethodVisitor class is another important class; a visitor can visit a Java method.

The methods of this class must be called in the following order: [visitAnnotationDefault]

(visitAnnotation | visitParameterAnnotation | visitAttribute)* [visitCode (visitFrame | visitXInsn

| visitLabel | visitTryCatchBlock | visitLocalVariable | visitLineNumber)* visitMaxs] visitEnd.

In addition, the visitXInsn and visitLabel methods must be called in the sequential order of the

bytecode instructions of the visited code, visitTryCatchBlock must be called before the labels

passed as arguments have been visited, and the visitLocalVariable and visitLineNumber methods

must be called after the labels passed as arguments have been visited [19]. A label represents a

position in the bytecode of a method. Labels are used for jump, goto, and switch instructions, and

for try catch blocks. A label designates the instruction that is just after. The label class combines

with the type class make it easier to manipulate type and method descriptors.

In this paper, I will use three simple test classes: company class, employee class and people

class which includes a few simple test methods to test the code, and the company class diagram

showed in Figure 2.

13

Figure 2. Class diagram of company class.

Show () method in the company class will call the method test () and test0() in the class

People, and also call the method info () in the class Employee. I the result part I will show these

methods invocations analyzed by asm bytecode package. In addition to this simple class test, I also

tested a complex jar file disconf-core-2.6.35.jar which is a Distributed Configuration Management

Platform package [20]. This package is developed by Baidu Company. I will use my program to

analysis the methods invocation in this package. And I also use the MySQL to establish the

database named result, in the database, all the methods analysis result will output into the database.

14

4. RESULT AND ANALYSIS

Figure 3. Class structure of classasm project.

In my project, there are 6 classes as Figure 3, the company.java, employee.java and

people.java are three simple classes used as example to test the code. And ClassUtils.java,

PackageUtil.java and DBConnection.java are function classes that realize the class analysis.

DBConnection.java is to connect to MySQL database.

15

Figure 4. Class analysis output of Company class.

Figure 4 is the output of a demo class analysis by classasm. In the company class, there are

two methods, show () and showEmployee(), the show() method invokes two methods in People

class, which are test() and test0(), and the showEmployee() method invokes one method info() in

Employee class. The output result is consistence with my design and goal.

16

Figure 5. Class analysis output of disconf-core-2.6.35.jar.

17

Figure 5. Class analysis output of disconf-core-2.6.35.jar (continued).

Figure 5 is screenshot of the program output in the NetBeans, it shows the invoking

relationship between the methods and classes of disconf-core-2.6.35.jar.

18

Figure 6. Class analysis output of disconf-core-2.6.35.jar in MySQL.

Figure 7. Query the class analysis output of disconf-core-2.6.35.jar in MySQL.

Figure 6. is the output result of disconf-core-2.6.35.jar in MySQL, based on this result, we

can query any method invocation in this class. Figure 7. is an example of method toString()

invocation. In this class, method toString() has been invoked 8 times, 7 times was invoked by the

method append() from the class java.lang.StringBuilder, and one time was invoked by the method

toString() from the class java.lang.StringBuilder. During the executing of the class

RestfulMgrImpl, 153 times calling has happened, these calling is from 31 independent methods

which belong to 12 differently class (Figure 8). The most call is 28 times from the class

com.baidu.disconf.core.common.path.DisconfWebPathMgr. Figure 9 is the list of the methods

that the 31 methods calling. It shows, there are 52 differently methods has been invoked, among

19

which, the append () is the high frequent called method, it has been called 49 times. These 52

methods come from 33 different classes. 64 times invoked the methods belong to the

java.lang.stringBuilder class (Figure 10).

Figure 8. Plot of methods’ class, x is the method name, and fill is the class that the method

belongs to.

20

Figure 9. Plot of methods invoke other methods, x row is method of calling, and the fill is the

method of been called.

21

Figure 10. Plot of invoked methods’ class, x is the invoked method, and fill is the class that the

method belongs to.

The project classasm make it easy to analysis class. We can load any class source code or

jar package and set the class name as the class that we want to analysis, run the program, we can

get the clearly result of all methods invocation information in that class. The information includes

the methods come from which class, calling which methods and which classes do these invoked

methods belong to.

22

5. CONCLUSION

Although there are bunch of tools that can be used to analysis the Java class either at source

code level or at compiled class level, while these tools only supply with the powerful library to

use, there is no such a software package that can directly analysis the class as we want to show the

methods invocation, and relationship between the methods and the classes these methods belong.

To realize these functions, we need to develop a software. In this paper, we based on the ASM

library, developed a new software package classasm, which can analysis both simple java class

file and complexity jar package. It can output the analyzed result on the console and can output

the results into MySQL database which can be conveniently queried by user. The classasm

successfully realize the class analysis and data persistent into database.

23

REFERENCES

1. Bruneton, E., Lenglet, R., & Coupaye, T. (2002). ASM: a code manipulation tool to

implement adaptable systems. Adaptable and extensible component systems, 30(19).

2. Blasciak, A., & Parets, G. (1993). U.S. Patent No. 5,265,254. Washington, DC: U.S. Patent

and Trademark Office.

3. Binder, W., Hulaas, J., & Moret, P. (2007, September). Advanced Java bytecode

instrumentation. In Proceedings of the 5th international symposium on Principles and practice of

programming in Java (pp. 135-144). ACM.

4. Lindholm, T., Yellin, F., Bracha, G., & Buckley, A. (2014). The Java virtual machine

specification. Pearson Education.

5. Irvine, S. A., Pavlinic, T., Trigg, L., Cleary, J. G., Inglis, S., & Utting, M. (2007,

September). Jumble java byte code to measure the effectiveness of unit tests. In Testing: Academic

and industrial conference practice and research techniques-MUTATION, 2007. TAICPART-

MUTATION 2007 (pp. 169-175). IEEE.

6. Vasseur, A. (2004, March). Dynamic aop and runtime weaving for java-how does

aspectwerkz address it. In DAW: Dynamic Aspects Workshop (Vol. 23).

7. Cohen, G. A., & Kaminsky, D. (1998, June). Automatic Program Transformation with

JOIE. In USENIX annual technical conference (Vol. 98).

8. Kniesel, G., Costanza, P., & Austermann, M. (2001). Jmangler-a framework for load-time

transformation of java class files. In Source Code Analysis and Manipulation, 2001. Proceedings.

First IEEE International Workshop on (pp. 98-108). IEEE.

9. Bruneton, E. (2007). ASM 3.0 A Java bytecode engineering library. URL: http://download.

forge. objectweb. org/asm/asmguide. pdf.

24

10. Müller, A. (2010, September). Bytecode analysis for checking Java access modifiers. In

Work in Progress and Poster Session, 8th Int. Conf. on Principles and Practice of Programming

in Java (PPPJ 2010), Vienna, Austria.

11. Binder, W., Hulaas, J., & Moret, P. (2007, September). Reengineering standard Java

runtime systems through dynamic bytecode instrumentation. In Source Code Analysis and

Manipulation, 2007. SCAM 2007. Seventh IEEE International Working Conference on (pp. 91-

100). IEEE.

12. Dahm, M. (1999). Byte code engineering. In JIT’99 (pp. 267-277). Springer, Berlin,

Heidelberg.

13. Muller, G., Moura, B., Bellard, F., & Consel, C. (1997, June). Harissa: A Flexible and

Efficient Java Environment Mixing Bytecode and Compiled Code. In COOTS (pp. 1-20).

14. Lindholm, T., Yellin, F., Bracha, G., & Buckley, A, Chapter 4. The class file format. (2013,

February 28). Retrieved October 2, 2017, from https://docs.oracle.com.

15. Dahm, M. (2001). Byte Code Engineering Library (BCEL) Description and usage manual.

Freie Universität Berlin, Institut für Informatik, Technischer Report B-17-98.

16. Lee, H. B., & Zorn, B. G. (1997, December). BIT: A Tool for Instrumenting Java

Bytecodes. In USENIX Symposium on Internet technologies and Systems (pp. 73-82).

17. Cohen, G. A., & Kaminsky, D. (1998, June). Automatic Program Transformation with

JOIE. In USENIX annual technical conference (Vol. 98).

18. Duke University, The Java Object Instrumentation Environment. (2003, May 1). Retrieved

October 2, 2017, from https://www.cs.duke.edu.

19. Class, ASM documentation 4.0. (2014, July 4). Retrieved October 2, 2017, from

http://asm.ow2.org

25

20. Liao, Q., Distributed Configuration Management Platform. (December 10, 2016).

Retrieved October 2, 2017, from https://github.com.

26

APPENDIX A. SOURCE CODE OF JAVA

/*

 * This is a class analysis program, in this class it will supply the method to analysis

 * any java class that loaded in .jar form, and will output the detail of methods execution;

 * invoking, as well as the class appending, extending and so on.

 */

package com.qiu.classasm;

/**

 *

 * @author Chengxiang Qiu

 */

import com.google.common.html.HtmlEscapers;

import java.io.IOException;

import java.io.InputStream;

import java.lang.reflect.Method;

import java.lang.reflect.Modifier;

import java.util.Arrays;

import org.objectweb.asm.ClassReader;

import org.objectweb.asm.ClassVisitor;

import org.objectweb.asm.Label;

import org.objectweb.asm.MethodVisitor;

import org.objectweb.asm.Opcodes;

import org.objectweb.asm.Type;

27

public class ClassUtils {

 /**

 * Obtain the the method name and parameter name of the class

 *

 * @param clazz The class name of the methods that belong to

 * @param method The method that get the parameter

 * @return return the parameter list, if there is no parameter, it will

 * return null;

 */

 public static String[] getMethodParameterNamesByAsm4(Class<?> clazz, final Method

method) {

 final Class<?>[] parameterTypes = method.getParameterTypes();

 if (parameterTypes == null || parameterTypes.length == 0) {

 return null;

 }

 final Type[] types = new Type[parameterTypes.length];

 for (int i = 0; i < parameterTypes.length; i++) {

 types[i] = Type.getType(parameterTypes[i]);

 }

 final String[] parameterNames = new String[parameterTypes.length];

 String className = clazz.getName();

 int lastDotIndex = className.lastIndexOf(".");

 className = className.substring(lastDotIndex + 1) + ".class";

28

 InputStream is = clazz.getResourceAsStream(className);

 try {

 ClassReader classReader = new ClassReader(is);

 classReader.accept(new ClassVisitor(Opcodes.ASM4) {

 @Override

 public MethodVisitor visitMethod(int access, String name, String desc, String signature,

 String[] exceptions) {

 // Only execute the methods that required;

 Type[] argumentTypes = Type.getArgumentTypes(desc);

 if (!method.getName().equals(name) || !Arrays.equals(argumentTypes, types)) {

 return null;

 }

 return new MethodVisitor(Opcodes.ASM4) {

 @Override

 public void visitLocalVariable(String name, String desc, String signature, Label

start,

 Label end, int index) {

 // In the static method the first parameter is the mehtod parameter, while in the

non-static method the parameter is "this"

 if (Modifier.isStatic(method.getModifiers())) {

 parameterNames[index] = name;

 } else if (index > 0 && index <= parameterTypes.length) {

 parameterNames[index - 1] = name;

 }

 }

29

 @Override

 public void visitMethodInsn(int opcode, String owner,

 String name, String desc, boolean itf) {

 System.out.println("owner:" + owner + "\t name= " + name);

 super.visitMethodInsn(opcode, owner, name, desc, itf);

 }

 };

 }

 }, 0);

 } catch (IOException e) {

 e.printStackTrace();

 }

 return parameterNames;

 }

 public static void analysisClass(final String jarName, final String clazzName) throws Exception

{

 Class clazz = Class.forName(clazzName);

 String className = clazz.getName();

 int lastDotIndex = className.lastIndexOf(".");

 className = className.substring(lastDotIndex + 1) + ".class";

 InputStream is = clazz.getResourceAsStream(className);

 System.out.println("analysis the class :\n" + clazz.getCanonicalName());

 final String fclassName = clazz.getCanonicalName();//TODO

30

 String sql = "insert into class_analysis (jar_name,class_name,method_name,

invoke_class_name,invoke_method_name) values ";

 final StringBuilder sb = new StringBuilder();

 try {

 ClassReader classReader = new ClassReader(is);

 classReader.accept(new ClassVisitor(Opcodes.ASM4) {

 @Override

 public MethodVisitor visitMethod(int access, String name, String desc, String signature,

 String[] exceptions) {

 // Only execute the methods that required;

 if (name.equals("<init>") || name.equals("<clinit>")) {

 return null;

 }

 //System.out.println("method :"+name+ ", invoke resources lists:");

 final String fmethod = name;//TODO

 return new MethodVisitor(Opcodes.ASM4) {

 @Override

 public void visitMethodInsn(int opcode, String owner,

 String name, String desc, boolean itf) {

 if (!name.equals("<init>")) {

//

 System.out.println("\t"+owner.replace("/", ".")+"."+ name);//TODO

 sb.append("(")

 .append("'").append(jarName).append("'").append(",")

 .append("'").append(fclassName).append("'").append(",")

31

 .append("'").append(fmethod).append("'").append(",")

 .append("'").append(owner.replace("/", ".")).append("'").append(",")

 .append("'").append(name).append("'")

 .append("),");

 }

 super.visitMethodInsn(opcode, owner, name, desc, itf);

 }

 };

 }

 }, 0);

 String tmp = sb.toString();

 if (!"“. equals(tmp)) {

 String finalSql = sql + tmp.substring(0, tmp.length() - 1);

 System.out.println(finalSql);

 DBConnection.getInstance().executeSQL(finalSql);

 }

// System.out.println(sb.toString());

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 public static void main(String [] args) {

32

 Class clazz = null;

 clazz = Company.class;

// clazz = HttpClientUtil.class;

 // clazz = com.baidu.disconf.core.common.restful.impl.RestfulMgrImpl.class;

// clazz = HtmlEscapers.class;

//// clazz = DisconfItemCoreProcessorImpl.class;

// clazz = DisconfCoreMgrImpl.class;

 String className = clazz.getName();

 int lastDotIndex = className.lastIndexOf(".");

 className = className.substring(lastDotIndex + 1) + ".class";

 InputStream is = clazz.getResourceAsStream(className);

 System.out.println("analysis the class :\n" + clazz.getCanonicalName());

 try {

 ClassReader classReader = new ClassReader(is);

 classReader.accept(new ClassVisitor(Opcodes.ASM4) {

 @Override

 public MethodVisitor visitMethod(int access, String name, String desc, String signature,

 String[] exceptions) {

 // Only execute the methods that required;

 if (name.equals("<init>") || name.equals("<clinit>")) {

 return null;

 }

 System.out.println("method :" + name + ", invoke resources lists:");

33

 return new MethodVisitor(Opcodes.ASM4) {

 @Override

 public void visitMethodInsn(int opcode, String owner,

 String name, String desc, boolean itf) {

 if (!name.equals("<init>")) {

 System.out.println("\t" + owner.replace("/", ".") + "." + name);

 }

 super.visitMethodInsn(opcode, owner, name, desc, itf);

 }

 };

 }

 }, 0);

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

/**

 * This class is to connect to de Database of MySQL, visit the database;

 */

package com.qiu.classasm;

34

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.Statement;

public class DBConnection {

 public Connection getConnection(String dbType,String url,String userName,String

password){

 Connection conn = null;

 if(dbType == null || "".equals(dbType)){

 dbType = "mysql";

 }

 try {

 Class.forName("com.mysql.jdbc.Driver").newInstance();

 conn = DriverManager.getConnection(url, userName, password);

 } catch (Exception e) {

 e.printStackTrace();

 }

 return conn;

 }

35

 private static volatile DBConnection dbConnnection;

 private Connection conn;

 private DBConnection(){

 conn = getConnection("mysql",

"jdbc:mysql://127.0.0.1:3306/result?useUnicode=true&characterEncoding=utf-

8&autoReconnect=true&autoReconnectForPools=true&zeroDateTimeBehavior=convertToNull",

"root", "a0308021");

 }

 public void executeSQL(String sql){

 try {

 final Statement stmt = conn.createStatement();

 stmt.execute(sql);

 } catch (Exception e) {

 e.printStackTrace();

 } finally{

 }

 }

 public static DBConnection getInstance(){

 if(null == dbConnnection){

 synchronized (DBConnection.class) {

 if(dbConnnection == null){

 dbConnnection = new DBConnection();

36

 }

 }

 }

 return dbConnnection;

 }

 public static void main(String[] args) {

 Connection conn =new DBConnection().getConnection("mysql",

"jdbc:mysql://192.168.130.62:3306/paytest?useUnicode=true&characterEncoding=utf-

8&autoReconnect=true&autoReconnectForPools=true&zeroDateTimeBehavior=convertToNull",

"root", "a0308021");

 try {

 final Statement stmt = conn.createStatement();

 } catch (Exception e) {

 e.printStackTrace();

 }finally{

 }

 }

}

/*

 * This class supply mehtods to access the package that we want to analysis, and get all the

information

 * that need for the class anaylyis, and then analysis the methods in detail

37

 */

package com.qiu.classasm;

/**

 *

 * @author Chengxiang Qiu

 */

import com.qiu.classasm.ClassUtils;

import java.io.File;

import java.net.URL;

import java.net.URLClassLoader;

import java.util.ArrayList;

import java.util.Enumeration;

import java.util.LinkedList;

import java.util.List;

import java.util.jar.JarEntry;

import java.util.jar.JarFile;

public class PackageUtil {

 public static void main(String[] args) throws Exception {

 String packageName = "com.baidu";

 String jarName = "disconf-core-2.6.35.jar";

 // List<String> classNames = getClassName(packageName);

 List<String> classNames = getClassName(packageName, true);

38

 List<String> nclassNames = new LinkedList<String>();

 if (classNames != null) {

 for (String className : classNames) {

 if(className.contains("$")){

 continue;

 }

 nclassNames.add(className);

// System.out.println(className);

 try{

 ClassUtils.analysisClass(jarName,className);

 }catch(Error e){

 //System.out.println(className);

 }finally{

 }

 }

 }

 System.out.println(nclassNames.size());

 }

 /**

 * Obtain the the method name and parameter name of the class

 * @param packageName

 * @return class name

 */

39

 public static List<String> getClassName(String packageName) {

 return getClassName(packageName, true);

 }

 /**

 * Obtain the the method name and parameter name of the class

 * @param packageName

 * @param childPackage

 * @return class name

 */

 public static List<String> getClassName(String packageName, boolean childPackage) {

 List<String> fileNames = null;

 ClassLoader loader = Thread.currentThread().getContextClassLoader();

 String packagePath = packageName.replace(".", "/");

 URL url = loader.getResource(packagePath);

 if (url != null) {

 String type = url.getProtocol();

 if (type.equals("file")) {

 fileNames = getClassNameByFile(url.getPath(), null,

childPackage);

 } else if (type.equals("jar")) {

 fileNames = getClassNameByJar(url.getPath(), childPackage);

 }

 } else {

 fileNames = getClassNameByJars(((URLClassLoader) loader).getURLs(),

packagePath, childPackage);

40

 }

 return fileNames;

 }

 /**

 * Obtain the the method name and parameter name of the class

 * @param filePath

 * @param className

 * @param childPackage

 * @return class name

 */

 private static List<String> getClassNameByFile(String filePath, List<String> className,

boolean childPackage) {

 List<String> myClassName = new ArrayList<String>();

 File file = new File(filePath);

 File[] childFiles = file.listFiles();

 for (File childFile : childFiles) {

 if (childFile.isDirectory()) {

 if (childPackage) {

 myClassName.addAll(getClassNameByFile(childFile.getPath(), myClassName,

childPackage));

 }

 } else {

 String childFilePath = childFile.getPath();

 if (childFilePath.endsWith(".class")) {

41

 childFilePath =

childFilePath.substring(childFilePath.indexOf("\\classes") + 9, childFilePath.lastIndexOf("."));

 childFilePath = childFilePath.replace("\\", ".");

 myClassName.add(childFilePath);

 }

 }

 }

 return myClassName;

 }

 /**

 * Obtain all class of the package from jar

 * @param jarPath

 * @param childPackage

 * @return class name

 */

 private static List<String> getClassNameByJar(String jarPath, boolean childPackage) {

 List<String> myClassName = new ArrayList<String>();

 String[] jarInfo = jarPath.split("!");

 String jarFilePath = jarInfo[0].substring(jarInfo[0].indexOf("/"));

 String packagePath = jarInfo[1].substring(1);

 try {

 JarFile jarFile = new JarFile(jarFilePath);

 Enumeration<JarEntry> entrys = jarFile.entries();

 while (entrys.hasMoreElements()) {

42

 JarEntry jarEntry = entrys.nextElement();

 String entryName = jarEntry.getName();

 if (entryName.endsWith(".class")) {

 if (childPackage) {

 if (entryName.startsWith(packagePath)) {

 entryName = entryName.replace("/",

".").substring(0, entryName.lastIndexOf("."));

 myClassName.add(entryName);

 }

 } else {

 int index = entryName.lastIndexOf("/");

 String myPackagePath;

 if (index != -1) {

 myPackagePath = entryName.substring(0,

index);

 } else {

 myPackagePath = entryName;

 }

 if (myPackagePath.equals(packagePath)) {

 entryName = entryName.replace("/",

".").substring(0, entryName.lastIndexOf("."));

 myClassName.add(entryName);

 }

 }

 }

 }

43

 } catch (Exception e) {

 e.printStackTrace();

 }

 return myClassName;

 }

 /**

 * Search the package from jar and obtain all classes in the package;

 * @param urls

 * @param packagePath

 * @param childPackage

 * @return class name

 */

 private static List<String> getClassNameByJars(URL[] urls, String packagePath, boolean

childPackage) {

 List<String> myClassName = new ArrayList<String>();

 if (urls != null) {

 for (int i = 0; i < urls.length; i++) {

 URL url = urls[i];

 String urlPath = url.getPath();

 // class folder that not necessary to search

 if (urlPath.endsWith("classes/")) {

 continue;

 }

 String jarPath = urlPath + "!/" + packagePath;

 myClassName.addAll(getClassNameByJar(jarPath, childPackage));

44

 }

 }

 return myClassName;

 }

}

package com.qiu.classasm;

public class People {

 public void test(){

 System.out.println("test");

 test0();

 }

 public void test0(){

 System.out.println("test0");

 StackTraceElement[] stackElements = Thread.currentThread().getStackTrace();

 if (stackElements != null) {

 for (int i = stackElements.length - 1; i >= 0; i--) {

 System.out.print(stackElements[i].getClassName() + "\t");

 System.out.print(stackElements[i].getMethodName() + "\t");

 System.out.print(stackElements[i].getFileName() + "\t");

 System.out.println(stackElements[i].getLineNumber());

 }

 }

45

 System.out.println();

 }

}

package com.qiu.classasm;

public class Employee {

 public void info(){

 }

}

package com.qiu.classasm;

public class Company {

 public void show(){

 People p = new People();

 p.test();

 p.test0();

 this.showEmployee();

 }

 public void showEmployee(){

 Employee e = new Employee();

46

 e.info();

 }

}

47

APPENDIX B. SOURCE CODE OF MYSQL

CREATE database result;

use result;

CREATE TABLE `class_analysis` (

 `id` int(10) unsigned NOT NULL AUTO_INCREMENT,

 `jar_name` varchar(50) NOT NULL,

 `class_name` varchar(255) NOT NULL,

 `method_name` varchar(50) NOT NULL,

 `invoke_class_name` varchar(255) NOT NULL,

 `invoke_method_name` varchar(50) NOT NULL,

 PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

