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ABSTRACT 

Image compression is a type of data compression applied to images. The objective of 

image compression is to reduce the cost for storage or transmission. Image compression is 

associated with removing redundant information of image data. Image storage is required for 

several purposes like document, medical images, etc. In this paper, an edge preserving image 

compression algorithm based on an unsupervised competitive neural network called weighted 

centroid neural network (WCNN), is implemented and compared to the other algorithms. The 

WCNN algorithm allots more representative vectors from the edges of the image than the interior 

of the image thus helping in better edge preservation of the reconstructed image. After 

experimenting with the cluster count it is evident that with the increase in the number of cluster 

the quality of the picture is improved, which is the expected behavior as more clusters leads to 

more representational vectors. 
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INTRODUCTION 

A digital image is an ordered array of pixels conveying visual information for human or 

machine analysis. Due to the advent of mobile phones and other multimedia image capturing 

devices together with the effect of social media, the number of images captured for personal 

viewing has increased exponentially. Apart from a that huge number of images are captured for 

commercial and research purposes. Images captured for medical diagnosis and satellite images 

are examples for the later type. The revolution in Artificial Intelligence and Computer Vision 

fields has made cameras and images an integral part of many applications. Despite the 

advancement in memory and communication technologies, the storage and transmission of such 

huge amount of data is still a challenge, and image compression algorithms ensures efficient 

storage and faster transmission. The original image pixel array consumes a huge amount of data. 

By applying a compression algorithm, a smaller sized (compressed) image is obtained. Thus, this 

smaller sized image can be stored in less space or transmitted faster. The stored/received smaller 

image is then reconstructed using an associated decompression algorithm (Figure 1). 

Lossless compression is a class of data compression algorithms that allow the original 

data to be perfectly reconstructed from the compressed data. By contrast, lossy compression 

permits reconstruction only of an approximation of the original data, though this usually 

improves the compression rates and therefore reduces the file sizes. 
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Figure 1. Compression/Decompression Process. 

 

Basically, there are two types of image compression schemes. Lossy compression and 

lossless compression. In a lossless compression scheme both the input and reconstructed images 

are exactly the same. But in lossy compression they are different, though the difference is not 

easily perceivable. Lossless compression schemes can achieve only a limited amount of 

compression; hence they are rarely used. Critical medical images or satellite images obtained 

using expensive cameras are compressed using lossless techniques. Most general-purpose image 

compressions use lossy schemes. There is a trade-off between the amount of compression 

achieved and the reconstructed image quality while using lossy compression methods. There are 

many different types of lossy compression algorithms. All of them make use of the redundancy 

present in the data. In addition to the statistical redundancy image compression algorithms 

exploit the spatial redundancies of the image data. Smooth regions in images have similar pixel 

values and human eyes cannot perceive slight changes in the image pixel values. These two 

properties are exploited to achieve lossy compression. Some lossy compression algorithms are 

based on predictive methods. But a majority of lossy compression algorithms are based on image 
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transforms. In transform-based methods (Figure 2) the image is transformed from the spatial 

domain to the transform domain. That is the image is represented by transform domain 

coefficients instead of spatial domain pixels. The transform domain coefficients have a simple 

representation and are used to identify significant and insignificant coefficients. Coefficients 

whose loss will not affect the visual perception of the image are removed by a simple 

thresholding operation, thus, compression is achieved. Further compression in the coefficients 

can be achieved by applying lossless data compression methods. The Discrete Cosine Transform 

(DCT) and Discrete Wavelet Transform (DWT) are the most commonly used techniques for 

image compression [1,2]. DCT is used in the JPEG compression algorithm and DWT is used in 

the JPEG2000 algorithm 

  

Figure 2. Transform Based Image Compression. 

 

In the proposed implementation, the compression is based on the Vector quantization 

algorithm [3]. Quantization, in general, maps a set of infinite values to a finite set of values. 

There are two major types of quantization techniques they are scalar quantization and vector 

quantization. In scalar quantization algorithms, a scalar value is mapped from an infinite set to a 



 

4 

finite set. Likewise, in vector quantization a vector is mapped from an infinite set to a finite set 

of vectors. Vector quantization gives better compression performance than scalar quantization. 

But the computational burden and memory resources required for a vector quantizer is greater 

than the resources required by a scalar quantizer. While using vector quantization algorithms for 

image compression the image is divided into blocks and each image block forms a vector. Thus, 

while applying vector quantization to an image the input to the quantizer is a vector of particular 

length. But the values of the vector can be anything as it depends upon the image. Thus, the input 

vectors can have an infinite number of possible values. 

There is a need for image compression due to various factors like full size images cannot 

be viewed or are not supported so the compressed images are used, saving memory as the size of 

the compressed image is less than the actual size of the image. In this project, we have taken 

several images, in which original images were converted into compressed images using the 

various compressing methods and then decompressed. A comparison of the output has been done 

for different cluster count and achieving interesting results that are correlated to the cluster 

count. 
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RELATED WORK 

There are many ways that were proposed to tackle the idea of better edge preservation 

during the reconstruction of images in the past [3,4]. The idea to have a better edge preservation 

is based on a simple concept of classifying vectors from two regions, edge and non-edge, and by 

allocating more representational vectors to the edge region.  

The approach of classifying the training vectors into edge and non-edge types and a 

separate codebook, called the sub codebook for the vectors of each class to the classified vector 

quantizer (CVQ) has been introduced [5]. To achieve an optimal distortion different classes of 

edges/shades are assigned by using the criterion of the equal average MSE distortion measure in 

CVQ. 

One more concept on the idea of reducing the edge degradation during reconstruction of 

an image is proposed by introducing the concept called adaptive self-organization map (ASOM) 

[6]. In this approach, the variance of image block is used as an activity measure, possibility of 

edge presence. The measured activity of a block is, then, used as a weighting factor of the block, 

which is finally used as a learning gain of the block data for Kohonen’s self-organization map 

(SOM) [7]. It is simple and effective in reducing edge degradation in VQ. 

In images, edges contain significant information about the information an image is 

conveying and the human eye understands the major information of an image by its edges. These 

factors make it important to preserve the edges during image compression. Edge preserving 

image compression algorithm based on an unsupervised competitive neural network, called 

weighted centroid neural network (WCNN), is implemented in this paper. The proposed WCNN 

calculates the probability density function of the edge strength from the image data and utilizes it 

to assign the number of code vectors. In WCNN the algorithm as compared to the other 
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algorithms allots more representative vectors from the edges of the image than the interior of the 

image thus helping in better edge preservation in reconstructed image. After experimenting with 

the number of clusters it was evident that with increase in number of cluster the quality of the 

picture was improved which is the expected behavior as more clusters leads to more 

representational vectors. 
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APPROACH 

Vector quantization (VQ) is a coding technique that has been widely used in signal 

coding applications given its attractive features [8].  

Favorable circumstances of VQ are applications that require a low bit rate for 

transmission of the fact that VQ can use high compression ratios with relatively small block sizes 

while this is troublesome in other compression strategies, for example, change coding. Alongside 

the high compression proportion of VQ, another preferred standpoint utilizing VQ is that the 

decoder is moderately easy to actualize. At the point when connected to image compression, this 

property of VQ is particularly vital in different decoder cases, for example, computerized TV 

flag transmission, video conferencing, or transmission of remote sensing pictures from satellites. 

Late advance in multimedia frameworks makes picture compression with VQ considerably more 

attractive. 

The problem with early picture coding strategies that utilize VQ are that at low bit rates 

for the most part experience ill effects of edge corruption since edges cannot be replicated well 

by a small-sized codebook [9]– [10]. Only a little segment of codes in a codebook will be 

allocated to the edge information in those early picture coding calculations with ordinary 

mutilation measures, for example, the mean squared error (MSE) since that edges have just little 

populaces in a picture. Since, the edges incorporate the most critical information of data of a 

picture, their corruption ought to be more irritating to the human eyes than the debasements in 

the non-edge part of a picture. In this sense, the MSE is not a good measure to the extent that 

edge coding is concerned. 

The CNN (centroid neural network) finds the centroid of data in relating clusters at every 

introduction of the information vector [11,12]. Rather than computing the centroids of the 
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grouped information for each datum introduction, the CNN algorithm refreshes their weights just 

when the status of the yield neuron for the exhibiting information has changed: that is, the 

weights of the winner neuron in the present epoch for the information change just when the 

winner neuron did not win the information in the past introduction and the weights of the winner 

neuron in the past epoch for the information change just when the neuron does not win the 

information in the present epoch. We call the former one a "winner neuron" and the latter one a 

"loser neuron." 

When CNN is compared with the conventional competitive learning algorithm, the CNN 

creates equivalent outcomes with less computational effort. That is, CNN requires neither a 

predetermined schedule for learning pick up nor an aggregate number of cycles for clustering 

and it converges stably to suboptimal solutions while conventional algorithms may give unstable 

results depending on the initial learning gain and the total number of iterations.  

Since a definitive judge of the nature of recreated pictures are human onlookers and there 

are no target measures which intently reflect the execution of the human watcher [13], the 

optimality conditions for picture coding is elusive. However, the WCNN described in this 

section can be an approach for edge preserving image compression [14]. In this paper, the author 

proposed a new unsupervised competitive neural network, called weighted centroid neural 

network (WCNN), to reduce edge degradation significantly in image while minimizing the 

computational complexity. 

WCNN deals with vector quantization codebook generation using a weight centroid 

neural network. The algorithm takes two variables as inputs “dataVectors”, which is the image 

data vectors and “nClusters”, which is the cluster count, which indicates the codebook size and 

determines the compression ratio, and the output is the codebook. In a vector quantization based 
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compression scheme, an optimal codebook is the one that gives minimum distortion in the 

reconstructed image. In the WCNN algorithm, the optimality condition is changed, and the 

optimal codebook is the one that gives minimum distortion in the edge regions of the 

reconstructed image. This minimum distortion is incorporated in the WCNN algorithm in the 

following way. The centroid calculation of each cluster in WCNN is weighted, the weights will 

be updated in such a way that the eventual codebook will introduce minimum distortion in the 

reconstructed image. Updating the weights procedure utilizes the probability density function of 

edge information from the training data. Thus, the resulting codebook generally preserves edges 

in the reconstructed images. The algorithm proceeds as follows: 

1. Find the centroid of the data vectors (by calculating the mean of the data vectors).  

2. Initialize a neural network with 2 neurons. Choose the initial weights of the neurons 

around the centroid value. The weight matrix is declared for the maximum number of neurons, 

but only the first two neurons are initialized. A neuron is specified by the row index of the 

weight matrix and its weight values are the column elements. 

3. Start the training for the zeroth epoch.  

4. Present the first data vector to the neural network.  

5. Find the winning neuron by calculating the distance between the data vector and the 

neuron weights. Update its weights.  

6. If this is not the zeroth epoch find the loser neuron and update its weights.  

7. Accumulate the distance values for the winning neurons.  

8. Repeat steps 5 to 7 for all other data vectors.  

9. If this is not the zeroth epoch and if there is no loser neuron, proceed to the next step, 

otherwise repeat steps 4 to 8; after incrementing the epoch count by 1.  
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10. If the number of neurons is less than the required cluster count, add a new neuron by 

splitting the most erroneous existing neuron and repeat steps 4 to 9. 

WCNN does not requires a predetermined schedule for the learning gain or a total 

number of iterations. We wanted to extend the work beyond implementation of the algorithm to 

see the impact of the input parameters on the image compression process. The input parameters 

in the WCNN algorithm are cluster count and the number of data vectors. 

WCNN is used to generate the codebooks. The codebooks are the major components in 

vector quantization based compression. In VQ based compression techniques, the selection of 

block size plays an important role. A smaller block size will increase the codebook generation 

time and reduce the compression ratio. But on the positive side it will improve the reconstructed 

image quality. In the same way, larger block sizes will reduce codebook generation time and 

increase compression but at the cost of poor reconstructed image quality. So, the best solution is 

to select an optimal block size that gives good compression with an acceptable amount of loss in 

the reconstructed image. The paper explains the concept that 3*3 and 5*5 images produce 

similar results that are produced with 4*4 image, but the computational complexity increases as 

we increase the block size so the paper considers 4*4 as the default block size, which strikes the 

balance between the computational complexity and the compression results. 

The other parameter this algorithm considers is cluster count. A bigger codebook will 

give many representative vectors; hence the quality of the reconstructed image will be high. But 

on the other hand, the codebook generation process will take more time and the compression 

ratio will get reduced. When we increase the cluster count, the size of the codebook increases as 

it will accommodate more representative vectors and that is observed in the results with increase 

in measures like PSNR, bits per pixel, and SSIM. The algorithm is coded using MATLAB. A set 
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of six training images are used for generating the codebook using WCNN. The training images 

are given in Figure 3. 

 

Figure 3. Training Images. 

 

The codebooks are generated by the WCNN algorithm for 16, 32, 64, 128 and 256 

clusters as shown in Figures 4-6. 
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Figure 4. Codebook with Number of Clusters 16 and 32. 

 

 

Figure 5. Codebook with Number of Clusters 64 and 128. 

 

 

Figure 6. Codebook with Number of Clusters 256. 

 

The six training images are partitioned into 4x4 blocks. Thus, each block gives a data 

vector of length 16. A total of 84992 data vectors are obtained from the six images. The 

compression achieved by the vector quantization using a sized codebook is always the same, 

irrespective of the image size. The compression ratio that can be achieved by the five codebooks 

described above are given in Table 1. 
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Table 1. Codebook Size and bpp. 

Codebook Size Bit Rate 

16 0.25bpp 

32 0.3125bpp 

64 0.375bpp 

128 0.4375bpp 

256 0.5bpp 

 

Here the measure used for measuring the compression efficiency is in bits per pixel 

(bpp), which indicates the number of bits required to code a single pixel of the image. For 

example, when the codebook size is 16, the bitrate is 0.25 bpp. That is a pixel can be coded using 

one fourth of a bit or alternatively the information about four pixels can be stored using a single 

pixel. The lower the bitrate value, the higher the compression is. As described previously in a 

lossy compression scheme, there is always a trade-off between the compression performance and 

the reconstructed image quality. Hence a set of test images is compressed and decompressed 

using vector quantization with the generated codebooks. The test images are different from the 

training images. The reconstruction image quality is studied in terms of peak signal to noise ratio 

(PSNR) [15] and structural similarity index measure (SSIM) [16]. 

The two test images being used are the Lena and Airplane images (shown in Figure 7).  

 

Figure 7. Test Images. 
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The Peak Signal to Noise Ratio (PSNR) metric compares the original and reconstructed 

image. It is the ratio of the energy of the maximum pixel to the mean square error between the 

original and reconstructed images. So, when the difference between the original image and the 

reconstructed image is less, then the PSNR will be high. Hence a high PSNR value indicates 

reconstructed image quality is high and vice versa. PSNR in decibels is given by the following 

formula PSNR in db = 10 log (P2/ MSE), where P is the maximum pixel value and MSE is the 

mean square error between the original and reconstructed images. In addition to better 

reconstruction image quality, the proposed algorithm also preserves the edge information in the 

original image. This is validated by using the structural similarity index measure (SSIM). SSIM 

metric is based on user perception. It measures the changes in image information and structures 

by comparing different blocks of images. Generally, an Image is split it to windows of size 8X8 

and the luminance, contrast and structure information are compared over different windows. 

SSIM takes values between -1 to 1. A SSIM value of 1 indicates both the images are identical. 

  



 

15 

RESULTS AND DISCUSSION 

We have generated various codebooks with different cluster count using the WCNN 

algorithm to observe the impact of the cluster count on the overall image clarity during the 

reconstruction of the image that is decompressed. 

The proposed algorithm is applied to the test and training images and the results are as 

follows. Here the properties of images used are they should have no discrete pixels and there 

should be no over lapping blocks. As we know the desirable condition for image compression is 

where we have a high compression ratio and a high PSNR. If we include Structural Similarity 

Index as our measure for the image compression, then the desired output should be a high value 

of SSIM which represents the similarity of the reconstructed image compared to the original 

image. We know that low bits per pixel leads to high compression ratio. So, the ideal condition is 

a low bpp which means a high CR (compression ratio). 

In this experiment if we observe with the increase in cluster count as we go along from 

16 to 256 we can observe the improvement in PSNR and SSIM because as we know more 

clusters means they will accommodate more representative vectors so during the image 

reconstruction there will be better matching of the vectors, thus the better image is reconstructed. 

Figure 8 is the original camera image, Figure 14 is the is the original bird image, Figure 

20 is the original airplane image, Figure 26 is the original couple image that are used to create 

the codebook. 

In cameraman images, Figure 9, the image reconstructed with the codebook of 256 

clusters the PSNR and SSIM values are 79.42 and 0.89, respectively, in Figure 10, reconstructed 

with the codebook of 128 clusters the PSNR and SSIM values are 78.06 and 0.83, respectively, 

in Figure 11, the image reconstructed with the codebook of 64 clusters the PSNR and SSIM 
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values are 75.83 and 0.83, respectively, in Figure 12, reconstructed with the codebook of 32 

clusters the PSNR and SSIM values are 75.46 and 0.79, respectively, in Figure 13, reconstructed 

with the codebook of 16 clusters the PSNR and SSIM values are 73.69 and 0.70, respectively. It 

is evident that cluster count impact PSNR and SSIM. 

In bird images, Figure 15, the image reconstructed with the codebook of 256 clusters the 

PSNR and SSIM values are 86.17 and 0.91, respectively, in Figure 16, reconstructed with the 

codebook of 128 clusters the PSNR and SSIM values are 83.84 and 0.87, respectively, in Figure 

17, the image reconstructed with the codebook of 64 clusters the PSNR and SSIM values are 

83.85 and 0.86, respectively, in Figure 18, reconstructed with the codebook of 32 clusters the 

PSNR and SSIM values are 82.38 and 0.85, respectively, in Figure 19, reconstructed with the 

codebook of 16 clusters the PSNR and SSIM values are 80.94 and 0.83, respectively. It is 

evident that cluster count impact PSNR and SSIM. 

In airplane images, Figure 21, the image reconstructed with the codebook of 256 clusters 

the PSNR and SSIM values are 80.55 and 0.93 , respectively, in Figure 22, reconstructed with 

the codebook of 128 clusters the PSNR and SSIM values are 78.59 and 0.82, respectively, in 

Figure 23, the image reconstructed with the codebook of 64 clusters the PSNR and SSIM values 

are 76.22 and 0.85, respectively, in Figure 24, reconstructed with the codebook of 32 clusters the 

PSNR and SSIM values are 76.03 and 0.83, respectively, in Figure 25, reconstructed with the 

codebook of 16 clusters the PSNR and SSIM values are 75.75 and 0.82, respectively. It is 

evident that cluster count impact PSNR and SSIM. 

In couple images, Figure 27, the image reconstructed with the codebook of 256 clusters 

the PSNR and SSIM values are 79.87 and 0.87, respectively, in Figure 28, reconstructed with the 

codebook of 128 clusters the PSNR and SSIM values are 79.04 and 0.83, respectively, in Figure 
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29, the image reconstructed with the codebook of 64 clusters the PSNR and SSIM values are 

78.87 and 0.82, respectively, in Figure 30, reconstructed with the codebook of 32 clusters the 

PSNR and SSIM values are 78.54 and 0.80, respectively, in Figure 32, reconstructed with the 

codebook of 16 clusters the PSNR and SSIM values are 77.66 and 0.75, respectively. It is 

evident that cluster count impact PSNR and SSIM. 

If we observe the trend of PSNR and SSIM in Figure 32 and Figure 33 respectively, we 

can say there is a linear relation between the cluster count and the values of PSNR and SSIM 

with a few exceptions depending on the nature of the image. 

From the above observations, we can say that there has been a constant improvement in 

the quality of the reconstructed image. 

Another way we can see the effect of the cluster count apart from the improvement in 

PSNR and SSIM is that with the increase in cluster count the size of the corresponding codebook 

generated also increases.  

But the increasing cluster count adds to the computational complexity demanding more 

resources during the computation and with increasing cluster count the codebook size increases, 

so the optimum cluster count cannot be generalized since it depends on the nature of the image 

and their application. 

The main spirit of WCNN is not having a better PSNR ratio since, there are other 

algorithms like SOM and ASOM which provide better PSNR ratios but where WCNN stands out 

is its reconstruction of image with minimal edge degradation when compared to other 

algorithms.  
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Figure 8. Cameraman Original Image. 

 

 

Figure 9. Cameraman Decompressed with 256 Clusters. 
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Figure 10. Cameraman Decompressed with 128 Clusters. 

 

 

Figure 11. Cameraman Decompressed with 64 Clusters. 
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Figure 12. Cameraman Decompressed with 32 Clusters. 

 

 

Figure 13. Cameraman Decompressed with 16 Clusters. 
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Figure 14. Bird Original Image. 

 

 

Figure 15. Bird Decompressed with 256 Clusters. 
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Figure 16. Bird Decompressed with 128 Clusters. 

 

 

Figure 17. Bird Decompressed with 64 Clusters. 
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Figure 18. Bird Decompressed with 32 Clusters. 

 

 

Figure 19. Bird Decompressed with 16 Clusters. 
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Figure 20. Airplane Original Image. 

 

 

Figure 21. Airplane Decompressed with 256 Clusters. 
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Figure 22. Airplane Decompressed with 128 Clusters. 

 

 

Figure 23. Airplane Decompressed with 64 Clusters. 
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Figure 24. Airplane Decompressed with 32 Clusters. 

 

 

Figure 25. Airplane Decompressed with 16 Clusters. 
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Figure 26. Couple Original Image. 

 

 

Figure 27. Couple Decompressed with 256 Clusters. 
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Figure 28. Couple Decompressed with 128 Clusters. 

 

 

Figure 29. Couple Decompressed with 64 Clusters. 
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Figure 30. Couple Decompressed with 32 Clusters. 

 

 

Figure 31. Couple Decompressed with 16 Clusters. 
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Figure 32. Comparison of PSNR Values for Different Codebook Sizes. 

 

 

Figure 33. Comparison of SSIM Values for Different Codebook Sizes. 
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The PSNR and SSIM values for all the test and training images are presented in Figure 32 

and Figure 33, respectively. 

From the above figures, it is apparent that the quality of the reconstructed image 

improves with the increase in codebook size that is an increase in the cluster count in each 

codebook. 
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CONCLUSION AND FUTURE WORK 

In this paper, a review of different methods of picture compression was done. The image 

compression can be lossy and lossless in nature. The advance made in the field of image 

information pressure in the past two decades is vast. Different quantization strategies, entropy 

coding and numerical change are presented for image compression. The thought behind each 

new strategy is the better execution contrast compared to past techniques. Image compression 

utilized at various pictures like medicinal pictures, common pictures, simulated pictures and 

satellite pictures, etc. fundamentally data compression is most relevant when we have to transmit 

or store a colossal measure of information since the idea of pictures are changing from two-

dimensional pictures to three-dimensional pictures. The present information pressure techniques 

may be far from a definitive breaking point. Fascinating issues like getting precise models of 

pictures, ideal portrayals of such models, and quickly figuring such ideal portrayals are the great 

difficulties confronting the information compression group. Picture coding considering models 

of human observation, adaptability, heartiness, blunder flexibility, and 36 multifaceted nature are 

a couple of the many difficulties in picture coding to be completely settled and may influence 

image data compression execution in the years to come.  

In this paper, a neural-network algorithm for edge preserving image compression was 

implemented. A simulated neural network is utilized for picture compression. Pictures were 

given as the input to the system, and different compressed pictures were created, contingent upon 

the variety of neural network parameters and the cluster count.  

The WCNN algorithm allots more representative vectors from the edges of the image 

than the interior of the image thus helping in better edge preservation of the reconstructed image. 

After experimenting with the cluster count it is evident that with the increase in the number of 
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cluster the quality of the picture is improved, which is the expected behavior as more clusters 

leads to more representational vectors. The increase in codebook sizes with the increase in the 

cluster count reiterate the fact that there is an increase in representational vectors which results in 

improved image quality. 

The future work could be reached out to the arrangement of uses to cover much more 

regions of image and video processing, even for the captcha age. 
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