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ABSTRACT 

Carbon dioxide (CO2) and nitrous oxide (N2O) concentrations in the atmosphere have 

greatly increased in recent times. Intensive agricultural practices, combustion of fossil fuels, 

deforestation, and wetland drainage have been linked to increased greenhouse gases (GHG) 

levels. Although scientists are not unanimous in their belief that the increases in GHG is a cause 

behind recent global temperature rise, there is evidence that increases in GHG might directly 

increase global temperatures and unpredictable weather occurrences. Since human activity may 

be partially behind the rise in GHG emissions, it follows that changes in agricultural 

management might reduce the rate of GHG increases or even mitigate existing increases. 

Agricultural management practices proposed to mitigate GHG emissions in agricultural soils 

include conservation tillage, diversified cropping systems, and crop residue management. The 

objective of this study was to determine the impacts of high-residue no-till systems in a diverse 

rotation using seven cropping systems in which winter wheat (Triticum aestivum L.) was 

included or not included. The study was imposed on existing rotations present at the 

Conservation Cropping Systems Project (CCSP) farm near Forman, ND. The CCSP site was 

established in 2001 under no-till production and managed by the Wild Rice Soil Conservation 

District. Analysis of 2006 and 2010 soil organic carbon (SOC) data showed no significant 

difference between winter wheat rotation treatments and rotation treatments without winter 

wheat. Analysis of 2012 SOC data resulted in greater SOC in the corn (Zea mays L.)-soybean 

(Glycine max L.) rotation and lower SOC in the spring wheat (Triticum aestivum L.)-winter 

wheat (Triticum aestivum L.)-cover crop-soybean rotation. Some rotations had greater SOC than 

others, but the differences were not related to whether or not winter wheat was included in the 

rotations. Analysis of residue showed a greater C:N ratio and greater potential N requirement for 
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the subsequent crop in fresh residue compared to aged residue. The COMET-VR model used to 

estimate SOC levels overestimated SOC in greater diversified rotations and underestimated SOC 

in lower diversified rotations. No-till production and crop residue retention can increase SOC 

levels, improve soil quality, and increase SOC sequestration in cropping systems.   
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GENERAL INTRODUCTION  

Many climatologists have predicted significant global warming over the next decades 

because of increased atmospheric CO2 and other trace gases (Fischer et al, 1994). Anthropogenic 

enrichment of atmospheric GHGs may be affecting the balance between incoming solar radiation 

and outgoing infrared radiation within the Earth’s atmosphere and is perceived to have increased 

global surface temperatures (Wang et al., 2010). Carbon dioxide concentrations within earth’s 

atmosphere have increased from 280 to 378 parts per million by volume (ppmv) between the 

years 1750 and 2007 and have been projected to increase at the rate of 1.5 parts per million by 

volume (ppmv) per year (Wang et al., 2010). Nitrous oxide (N2O) and methane (CH4) 

atmospheric concentrations have increased, respectively, from 270 to 314 parts per billion by 

volume (ppbv) and 700 to 1745 parts per billion by volume (ppbv) during the same time. Most of 

these GHG increases are attributed to fossil fuel combustion and modified land use practices 

(IPCC, 1996).  

As temperature continues to rise and precipitation becomes more variable and 

unpredictable, climate change is projected to impact our general environment (Kotir, 2011). A 

rise of 2ºC in the atmosphere has been predicted to cause increased frequency and intensity of 

floods and storms, water resource shortages, food shortages, and greater depth of seasonal 

permafrost thaw (Beddington et al., 2012). 

The climate of Sub-Saharan Africa has already shown significant variability in average 

temperatures, amount of rainfall, and frequency and intensity of extreme weathers such as floods 

and droughts (Kotir, 2011). Climate change may lead to reduced crop yield due to shortening of 

crop growing seasons, decrease in plant available water due to higher evapo-transpiration rates, 

and poor vernalization of cereal crops in temperate regions (Parry et al., 1999; Parry et al., 2005). 
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Vernalization is important because it reduces the risks of winter crops entering the very cold 

sensitive reproductive development stage, thereby reducing the danger of low temperature 

damage (Fowler et al., 1996). Lack of vernalization can result in low flower bud initiation that 

can subsequently lead to yield reductions in winter wheat in temperate regions (Parry et al., 

1999). A rise in temperature may also increase the range of many agricultural pests and their 

ability to overwinter and attack spring crops (Schmidhuber and Tubiello, 2007). 

Climate change may affect agriculture in developed and developing countries in different 

ways (Parry and Rosenzwig, 1994). Global climate model (GCM) simulations have predicted 

positive changes in crop yields in middle and high latitudes where many developed countries are 

located and negative changes in crop yields in low latitudes where many developing countries 

are located (Parry and Rosenzweig, 1994; Tubiello et al., 2000; Parry et al., 2005; Kotir, 2011). 

Climate change may also increase dependency of developing countries on imports from 

developed countries and will decrease food security in Sub-Saharan Africa and perhaps South 

Asia (Schmidhuber and Tubiello, 2007).  

It is estimated that agricultural practices may be responsible for about 20% of all GHG 

emissions (Follett et al., 2005; Wang et al., 2010). About 60% of pre-settlement soil organic 

carbon (SOC) in temperate regions and 75% of SOC in tropical regions have been decomposed 

or eroded away by plow-based tillage, thereby emitting about 23% of present GHGs into the 

atmosphere (IPCC, 1996; Lal, 2004a). Depending upon management practices, agriculture can 

either emit CO2 or sequester CO2. Lal and Kimble (1997) noted that changing prairies, 

grasslands, forests, and woodlands into agricultural lands has increased C effluxes from soil to 

the atmosphere. Tillage increases soil organic matter (SOM) oxidation by exposing a greater soil 

surface area to oxygen and increasing SOM-soil microbe contact (Lal and Kimble, 1997; Warren 
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Wilson College, 2012). Tillage disturbs soil biology through disruption of soil structure, rate and 

capacity of supplying water and nutrients to crops, and long-term soil productivity and economic 

profitability (Lal, 1991). Agricultural practices have led to the depletion of SOC through 

deforestation and biomass burning, wetland drainage, removal of crop residues, and the use of 

summer fallow (Krull et al., 2012). According to Sherrod et al. (2003), summer fallow interrupts 

the balance between mineralization and immobilization processes and subsequently increases 

soil moisture and temperature conditions that enhance SOC oxidation.  

Higher soil temperatures may increase the rate of mineralization of SOM, which may 

decrease the integrity of soil structure, subsequently decreasing plant available water, and 

inhibiting nutrient cycling (Bhati and Tarnocai, 2009). Soil OM generally decreases as 

temperature increases due to increased microbial activity (Parr et al., 1990). Depletion of SOM 

reduces long-term soil fertility and crop productivity, increases soil crusting and compaction, 

increases soil susceptibility to wind and water erosion, decreases soil aggregation and aggregate 

stability, reduces plant nutrients, and reduces soil microbial activity (Allison, 1973; Lal and 

Kimble, 1997). Therefore, GHG concentrations have become a major concern to global citizens, 

government policy makers, and many scientists because of their possible link to rapid climate 

change and subsequent impacts on food production and agricultural sustainability.  

Agronomic Management of Winter Wheat to Improve Yields and Soil Quality 

Winter wheat (Triticum aestivum L.) is a native of southwest Asia and is part of the 

Poaceae family of grasses (Kumar et al., 2012). Winter wheat is seeded in mid-September 

through early December and harvested from mid-June and early July. It is a fast growing crop 

that has the ability to suppress annual weeds through its rapid spring soil coverage and possible 

allelopathic effects (Kumar et al., 2012). Hard red (HR) winter wheat is more winter-hardy than 
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soft red (SR) winter wheat (Singer et al., 2005), making it a better option for growers in North 

Dakota. Field experiments in North Dakota have also noted that HR winter wheat usually 

produces higher yields compared to HR spring wheat (Triticum aestivum L.) (Entz and Fowler, 

1991).  

Winter wheat is grown throughout the US Great Plains due to its ability to capture moisture 

during the late fall, winter and early spring seasons. In much of the Great Plains, moisture is less 

during mid and late summer. However, winter wheat can increase its water use efficiency (WUE) 

by reducing the time for evaporative soil water loss and maximally utilizing the water during 

snowmelt in the early spring. More extensive and deeper root development as well as higher 

transpirational leaf area in the early season also improves greater early season water use 

efficiency. Earlier spring growth of winter crops is an important contributing factor to the higher 

productivity of winter wheat compared to other crops grown in the spring and summer (Entz and 

Fowler, 1991). 

 Winter wheat provides benefits to growers that include higher and more consistent yields, 

reduced cost of production, increased profitability, greater soil moisture recharge, reduced soil 

erosion, improved water quality, improved soil structure, diversity to crop rotation, and wildlife 

habitat (Ducks Unlimited, 2012). “Including winter wheat in crop rotations with summer crops 

improves control of problem summer annual and perennial weeds, reduces the incidence of 

residue-borne fungal diseases, and is an excellent source of residue cover for reduced tillage 

systems” (Staggenborge et al., 2003). To achieve these benefits, management of pests and 

diseases and timely application of fungicides, herbicides, and fertilizers is essential for increasing 

winter wheat productivity.  
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In no-till production, winter wheat should be seeded directly into standing stubble (Ducks 

Unlimited, 2012; Nleya, 2012). Consideration should be given to whether the previous crop 

residue height is sufficient to catch snow to protect winter wheat from extreme cold 

temperatures. Standing stubble should have the ability to trap about 51 mm (2 in) of snow to 

ensure winter wheat survival during the winter season (Ducks Unlimited, 2005). Singer et al. 

(2005) found that snow-covered fields tended to increase winter wheat survival in Iowa.  

Another important management strategy of winter wheat is application of N and P 

fertilizers as well as selection of appropriate varieties. Nitrogen application to winter wheat is 

important not only for yield but to achieve adequate protein content. Research in North Dakota 

and Montana has indicated that 30 kg N/ha (0.04 lb. N/bu) is needed to achieve 12% protein in 

winter wheat (Ducks Unlimited, 2012). In southern Alberta, researchers found fall application of 

control released urea (CRU) and side-banded urea in mid-September more effective in increasing 

grain yields, protein content, and N uptake than seed-placed urea in a no-till winter wheat 

production (McKenzie et al., 2008).  

Winter wheat gradually releases its immobilized N to the subsequent crop after residue 

decomposition (Kumar et al., 2012). Their study reported that winter wheat makes residual N 

available for the succeeding crop during the growing season although more N fertilizer is usually 

applied to subsequent crop after the wheat. In no-till production, observing and predicting the 

impacts of crop residue on nutrient availability over both short-and long-terms is a nutrient 

management challenge (Schoenau and Campbell, 1996). Nitrogen returned to the cropping 

systems through crop residues from previous years of cropping systems should be accounted for 

because it replenishes SOM reservoirs (Grant et al., 2002). Therefore, N management can be 
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complicated by the influence of the previous crop residue and residual soil-NO3-N on N 

availability to the following wheat crop.  

Winter wheat that immediately follows summer crops such as soybean (Glycine max L.) 

and grain sorghum (Sorghum bicolor L.) needed different management strategies for each 

previous crop to maximize yields (Staggenborg et al., 2003). Wheat following grain sorghum 

required about 21 kg N/ha more N fertilizer to increase yields than wheat following soybean in 

Kansas (Staggenborg et al., 2003). Greater N requirement for wheat that succeeded grain 

sorghum was attributed to the greater residue produced by grain sorghum with low N content 

(Staggenborg et al., 2003). Their study recommended that an additional 24 kg N/ha should be 

applied when winter wheat follows grain sorghum compared with N rates when winter wheat 

follows soybean. Phosphorus helps winter wheat survive winter by promoting early root growth 

and fall tillering (Ransom et al., 2012). Selection of winter wheat varieties that have performed 

well over many years at different experimental locations nearby crop fields can also increase 

winter wheat survival and yields (Ransom and McMullen, 2008; Ransom et al., 2012). 

Characteristics to consider when selecting a winter wheat variety include winter hardiness, yield 

potential, protein content, maturity, test weight, disease and insect resistance, coleoptile length, 

lodging resistance, baking quality, and yield stability (Nleya, 2012).  

Application of fungicides to control winter wheat diseases is important to maximize yields. 

Research trials conducted from 2001 to 2004 at NDSU found most consistently high winter 

wheat yields with split application of fungicides (Ducks Unlimited, 2005; Ransom and 

McMullen, 2008). Application of foliar fungicides was also an important management practice 

for wheat seed growers in regions where foliar diseases affected overall grain yields (Kelley, 

2001). Fungicides were most beneficial where wheat had a relatively high productive potential.  
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Management of Cover Crop Residue to Improve Soil Quality 

Management of cover crop residue prior to planting the subsequent crop can be an 

important component of the crop production management system (Kuo and Jellum, 2002). Wheat 

stubble is more effective in protecting the soil surface when standing than when laying on the 

soil surface (Allison, 1973). It is a good residue source that provides soil and environmental 

quality benefits when left on the soil surface in no-till cropland (Kumar et al., 2012). Winter 

wheat usually produces about 4.4 to 11 Mg/ha of residue of dry biomass (Kumar et al., 2012). Its 

residue contains about 44% C and 0.45% N and, therefore, has a C:N ratio of approximately 98:1 

(C:N = 44/.045 = 98:1) (Kumar et al., 2012). They reported that winter wheat returns about 363 

to 998 kg (800 to 2,200 lb.) of C and about 11 to 26 kg N/ha (9 to 23 lb. N/ac).   

Winter wheat provides a more favorable soil surface cover and has the ability to anchor 

previous corn and soybean residues, increase water infiltration, and reduce both rill and inter-rill 

erosion (Singer et al., 2005). Therefore, residue stability is important for soil erosion 

management and long-term nutrient supply. Winter cover crops, including winter wheat, reduce 

the potential for NO3-N leaching through absorbing and storing N in the plant tissue during late 

winter and early spring, thereby absorbing spring soil water and reducing water percolation 

(Weinert et al., 2002). The incorporation of the residual NO3-N into the plant tissues helps 

reduce N leaching and denitrification. Cover crops contribute to sustainable crop production by 

increasing SOC, improving soil structure and aggregate stability, conserving soil water, and 

reducing runoff and soil erosion (Frye and Blevins, 1989).   

Additional cover crops commonly grown in North Dakota are forage radish (Raphanus 

sativus L.) and field pea (Pisum sativum L.). Forage radish roots contain about 80% water and, 

therefore, degrade more easily than many cover crops (Hoffbeck et al., 2008). Forage radish is 
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partly grown in parts of the US to reduce soil compaction and increase residue decomposition 

although its role in alleviating compaction in North Dakota is minimal due to the shrink-swell 

characteristics of native smectitic clay dominated soils in the state. Forage radish helps alleviate 

soil compaction through penetrating dense soil layers and producing channels that increase water 

infiltration rate, improve soil aeration, and allow deeper root penetration when the soil is dry. 

The process of root penetration into the compacted soil layers to create channels is sometimes 

called “biological drilling” (Hoffbeck et al., 2008). Their study also found that radishes increased 

microbial activity and degradation of excess wheat residue which makes seedbeds warmer and 

drier in the spring for corn planting.  
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REVIEW OF LITERATURE 

Effects of Agricultural Production on Greenhouse Gas (GHG) Emissions and Soil 
Quality 

Climate change is defined as long-term changes in temperature, precipitation, wind, and 

other elements of the Earth’s climate system (Follett, 2001). In recent times, interest in climate 

change has increased across the globe. A major concern is the increasing level of atmospheric 

GHGs (IPCC, 2001) that many scientists believe are contributing to climate change. About 80 

ppmv CO2 concentration in the earth’s atmosphere was released from agricultural activities prior 

to industrialization (Desjardins et al., 2002). Intensive agricultural practices and unsustainable 

land uses have increased atmospheric CO2 concentration and rapid degradation of soil and water 

resources since then. Mechanical preparation of the seedbed is a predominant agricultural 

operation that exacerbates soil degradative processes and intensifies the rates of SOC 

mineralization and decomposition (Kimble and Lal, 1997).  

Agriculture has been implicated in greenhouse gas emissions and global climate change 

because numerous studies have indicated that it is a principal contributing source of emissions 

and accumulation of GHGs in the earth’s atmosphere (Paustian et al., 1997a). Their studies have 

indicated that past anthropogenic CO2 emissions have contributed about 50 Pg SOC in the 

atmosphere through SOC mineralization in tilled soils. Agriculture accounts for 20% of the 

annual increase in all human-induced greenhouse emissions (Follett et al., 2005).  

Increased use of fossil fuel for energy production and land use changes for agriculture 

production have also increased the concentrations of greenhouse gases in the earth’s atmosphere 

(Watson et al., 1996). Intensive agricultural practices have resulted in the loss of 50% of the 

original SOC in the first 25 years of cultivation (Matson et al., 1997). Most soils already 

converted to agricultural lands have lost 30-50% (11-18 tons SOC per acre) of the original SOC 
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level (Cihacek and Ulmer, 1995). As cultivation intensifies, initial SOC levels drop until some 

improved conservation management practices are adopted and implemented (Fig. 1).  

 
Figure 1. Changes in the long-term storage and release of soil carbon as CO2 as a result of 
agricultural practices (Janzen et al; 1998; obtained from Follett, 2001). 
 

Agriculture activities have also increased the C mineralization by bringing SOC into direct 

contact with microbes and exposing SOC to oxygen (Lal and Kimble, 1997). Soil OC 

mineralization rates are about 2% per year in temperate climates and 5% over per year in tropical 

climates (Woomer et al., 1994). In general, SOM levels decrease as temperature increases due to 

increased microbial mineralization rates and length of mineralization rates during a year (Parr el 

al., 1990).  

Effects of Conservation Cropping Systems on SOC 

Cropping systems are defined as crop rotations and associated agricultural management 

operations that make the crop rotations possible (Wang et al., 2010). An ideal cropping system 

should produce and return enough organic C to the soil to at least maintain SOC levels. Intensive 

cropping systems and reduced tillage is required to reduce SOC losses in the Northern Great 
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Plains soils (Cihacek and Ulmer, 1995; Halvorson et al., 2002). Cropping systems that reduce 

tillage and increase soil surface residue tend to increase SOC in agricultural soils. Soil OC 

sequestration can also be augmented in agricultural lands by adding sufficient plant residue 

biomass (Follett, 2001).  

No-till systems are variants of conservation tillage practices that minimize soil disturbance, 

increase soil surface residue, reduce erosion, and increase SOC (Franzluebbers, 2011). 

Agricultural soils under conservation tillage, especially no-till production, can also increase SOC 

necessary to increase food production and agricultural sustainability (Wang et al., 2010). 

Adoption of no-till and continuous cropping systems has the potential to reduce CO2 loss from 

croplands through capturing and storing SOM (Bell et al., 2003). Reduced tillage increases SOC 

because it decreases the mixing and aeration of crop residues and promotes the stabilization of 

aggregates in the soil surface. No-till management, use of cover crops, diverse crop rotations, 

and appropriate fertilizer and manure applications can help capture CO2 and store SOC 

(Desjardins et al., 2002). Soil OC levels can be expected to increase beginning from 5 to 10 years 

of start date and reach a higher SOC steady state in 15 to 20 years using no-till production (Liu et 

al., 2006).  

Nitrogen rate experiments conducted in North Dakota from 1971 through 2009 suggested 

that spring wheat in no-till systems required less N fertilizer compared to conventional tillage 

(Franzen et al., 2011). Spring wheat under conventional tillage required a 146 kg N/ha (130 lb. 

N/ac) to attain a 2.7 Mg/ha yield, while no-till system required less than a 90 kg N/ha (80 lb. 

N/ac) to achieve the same yield. The study also reported that no-till systems in eastern and 

western North Dakota required about 56 kg N/ha (50 lb. N/ac) less to produce similar yield and 

protein content compared to conventional tillage systems.  
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Effects of Crop Rotation on Soil Quality and SOC Sequestration 

Crop rotation can be defined as a cropping system in which one or more crops are 

alternated in the cropping system over a period of time on the same piece of land (West and Post, 

2002). They reported that crop rotation complexity can be increased through: (i) a change from 

monoculture to continuous rotation cropping system, (ii) a change from a crop fallow system to a 

continuous cropping rotation system, and (iii) increase in the number of crops used in the 

rotation cropping systems.  

Crop rotation can influence soil health by improving soil aggregate, maximizing crop 

efficient use of soil water and nutrients, providing a better weed control, and reducing insects 

and diseases lifecycles (Carter et al., 2003). Inclusion of legumes into corn cropping systems 

resulted in higher corn yields, N cost savings, SOC sequestration, and GHG emission reductions 

(Meyer-Aurich et al., 2006). Crop rotation systems efficiently reduced long-term yield variation 

better than monoculture systems and increased total soil C and N concentrations (Varvel, 2000; 

Kelley et al., 2003). 

Crop rotations which maximize soil C inputs and maintain a large quantity of labile C are 

essential for creating sustainable cropping systems (Overstreet and Dejong-hughes, 2009). 

Intensification of cropping systems and reduction of fallow frequency can improve total crop 

production over years, increase C inputs, and increase SOC (Campbell et al., 2001). Campbell et 

al. (1999) found higher SOC levels in a wheat-lentil rotation than in wheat monoculture. The 

difference in SOC levels was attributed to more efficient conversion of plant residue C to SOC in 

the wheat-lentil rotation system compared with the wheat monoculture system. Sawyer et al. 

(2006) reported that lower rates of N fertilizer were required for a corn crop when corn followed 

soybean than when corn followed corn (Sawyer et al., 2006). The US Corn Belt states (Iowa, 
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Minnesota, Nebraska, and Illinois) have reduced their N recommendation rates when the 

preceding crop is soybean. Including legumes in a crop rotation not only reduced chemical 

fertilizer N inputs but also reduced the use of fossil fuel required to make N provided by legumes 

(Campbell et al., 2001).  

Greater residue biomass and SOC sequestration level were found in crop rotations in which 

legumes and non-legumes were alternated (Meyer-Aurich et al., 2006; Wang et al., 2010). Total 

dry weight and N content of crop biomass produced per a unit area was greater when legumes 

and non-legumes were planted in a mixture than when each crop was planted alone (Allison, 

1973; Carter et al., 2003). A 15 year study that alternated corn and soybean observed larger total 

biomass in the corn-soybean rotation than corn or soybean in monoculture (Drinkwater et al., 

1998).  

Use of Soil Quality Indicators for Soil Management 

Indicators are metrics which show desirable or undesirable changes in land, water, and 

vegetation management that may have happened or may happen in the future (Dalal et al., 2003). 

Effects of agriculture on soil quality and soil productivity can be observed through changes in 

soil quality indicators. Soil quality indicators can be monitored through field observation, field 

sampling, remote sensing, survey, and gathering of existing information to determine changes in 

the various ecosystems (Walker and Reuter, 1996). Soil quality indicators are important soil 

evaluation tools for: 1) maintaining and enhancing the soil conditions; 2) evaluating soil 

management practices and techniques; 3) relating soil quality to the quality of other resources 

(e.g., surface-and groundwater quality); 4) collecting the necessary information to determine 

trend of changes; 5) determining trends in soil health; and 6) guiding land manager’s decisions 

(USDA-NRCS, 1996).  
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General Review of Crop Residues 

One management practice that has been proposed to increase SOC storage is the use of 

crop residues (Lal, 2011). Crop residue was defined as a biomass that has been left in the 

farmland after grains and other economical components have been removed (Lal, 2011). 

Biomass has been defined as a “wide range of plant and animal-based products including grass, 

short rotation trees or woody/herbaceous perennials, animal waste, by-products of food 

processing and timber industry, agricultural processing and crop residue” (Lal, 2005).   

The areal extent of major crops produced in the United States are in order of corn > wheat 

> soybean (Blanco-Canqui and Lal, 2009). The quantity of corn, rice, sorghum, wheat, millet, 

barley, and rye in the USA and in the world in 2001 was about 0.5 ×109 Mg/yr (Mg = 1000 kg) 

and about 4×109 Mg/yr (Mg = 1000 kg), respectively, (Lal, 2005). The average of this crop 

residue contains about 0.8% N (8 g N/kg), 0.1% P (1 g P/kg), and 1.3% K (13 g K/kg) (Lal, 

2011). Crop residue is about 40% to 45% of the total aboveground crop biomass on a dry weight 

basis (Lal, 1997; Lal, 2011).  

Small-grain cereals provide the most important crop residues for soil and water 

conservation and soil surface management (Lal, 1997). Small-grain residues always have a high 

straw: grain ratio, low oxidation potential, and high C:N ratio. The high-residue property of 

cereal grains makes them an ideal resource for soil cover and SOC sequestration over a long 

period of time. Crop residue nutrient concentration is determined by the season, management, 

time of crop harvest, and location (Wortman et al., 2008).  

Quantity of residue biomass is influenced by soil quality, eco-regional properties, cropping 

systems, soil and crop management practices, and climatic conditions (Lal et al., 1998). 

Transformation of residue into SOM is influenced by type, quantity, quality, and management of 
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residue (Franzluebbers, 2009). Temperature and precipitation have an important effect on 

residue-derived SOC because different amounts of residues are required for warm and cool 

regions to achieve a significant level of SOC sequestration (Blanco-Canqui and Lal, 2009). Thus, 

warmer climates require more residue cover than cooler climates.  

Age of crop residue also influences soil moisture and temperature. Fresh residue which is 

denser than aged residue provides more soil surface insulation and, thereby, reduces evaporation 

and temperature (Sauer et al., 1996). They noted that fresh residue provided a greater soil cover 

and soil surface reflectance due to more leaves than the aged residue.  

Effects of Crop Residue on Soil and Water Conservation 

Crop residue mulch is an important component of soil surface management because residue 

improves soil and water conservation, maintains SOM, and augments soil microbial activities 

(Lal, 1991). Residue-covered no-till systems help increase aggregate stability and maintain the 

continuity of soil pores which, therefore, increases infiltration rates and mitigates soil erosion 

(USDA, 1996). Reduced tillage systems in conjunction with surface residue retention can 

increase soil water by increasing infiltration rate and reducing the runoff (Van Donk, 2010; Wall 

and Thierfelder, 2012). Leaving more standing crop residue captures more snow and anchors it 

where it falls during the winter, thereby storing more soil water when the snow melts.  

An increase in SOC due to residue retention has been associated with increased water 

infiltration rate, reduced evaporation rate, improved soil internal drainage, developed extensive 

and deeper root systems, and increased yields (Allison, 1973). Residue degradation in winter 

enhances the partially weathered residue capacity to store more water than fresh residues 

(Wilhelm et al., 2004). Crop residue left on the soil surface in Kansas was important for soil and 
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water conservation during the non-growing season and the next growing season (Klocke et al., 

2009). 

Effects of Crop Residue on Crop Yields 

Crop residue conserves water and soil moisture for crop growth and yield increase. Power 

et al. (1986) observed an increase in corn and soybean yields in fields where residues were 

retained on the soil surface compared to the corn and soybean fields where residues were 

removed. A strong relationship was found between crop yields and increased SOC from an 

increased root biomass and quantity of residues produced and returned to the soil (Reilly and 

Fuglie, 1998).  

Research conducted in the West African Sahel reported the greatest millet grain and straw 

yields, increased water and fertilizer use efficiency, and increased SOC under residue retained 

conditions (Yamoah et al., 2002). Wilhelm et al. (1986) found an increase in grain and residue 

yields from residue additions under a corn-soybean rotation. The increase in grain and residue 

yields in both corn and soybean was attributed to water conservation from residue retention on 

the soil surface.  

Effects of Crop Residue on Soil Physical Properties 

Plant residue retention and tillage management practices affect soil physical properties that 

are important for capturing water, conserving soil, and increasing infiltration (Shaver, 2010). 

Bulk density is a parameter that is always affected by tillage (Aparicio and Costa, 2007). No-till 

production increases surface residue which, in turn, influences bulk density (Shaver, 2010). A 

10-year study reported bulk densities of 1.51 Mg/m3, 1.47 Mg/m3, 1.44 Mg/m3, 1.48 Mg/m3 for 

0, 50, 100, and 150% quantities of residues applied to the soil surface, respectively, (Power et al., 

1998). Analysis of effects of residue management on soil porosity reported porosities of 43.5 %, 
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44.2%, and 45.7% for harvested residue, normal residue cover, and for double residue cover 

treatments, respectively, (Karlen et al., 1994). The increase in soil porosity was attributed to 

plant residue production and its retention on the soil surface.  

A 10-year study under residue no-till system showed higher macro-aggregate stability in a 

double residue retained treatment compared to normal-and removed-residue treatments (Karlen 

el al., 1994). Increase in soil aggregation is important due to its positive effects on bulk density, 

porosity, and water infiltration and use efficiency (Carter, 2002; Shaver, 2010). Well-aggregated 

soils are very productive because they allow seed placement, seedling growth, nutrient uptake, 

and water absorption (Blanco-Canqui and Lal, 2009). Soil aggregation conserves and protects 

SOM and allows the preserved SOM to act as a pool for plant nutrients and energy (Carter, 

2002). Aggregate SOM serves as an indicator of soil permeability and erodibility because it 

regulates air and water infiltration rates as well as soil stability (Feller and Beare, 1997).  

Effects of Crop Residue Removal 

Removal of crop residues reduces C input and nutrient cycling, increases surface sealing 

and crusting, reduces soil aggregation, decreases food and habitat for soil microorganisms, and 

reduces soil quality (Blanco-Canqui and Lal, 2009). Residue removal can increase soil erosion 

and runoff and increase soil crusting and compaction. Removal, burning, and soil-incorporation 

of crop residues can increase erosion, deplete soil fertility, pollute surface water sources and 

contaminate groundwater resources (Lal, 1997). A study reported that removal of crop residues 

removes potential soil cations such as Ca, Mg, and K which subsequently reduces soil pH 

(Wortmann et al., 2008; Blanco-Canqui and Lal, 2009). Removing 907 kg (1 ton) of corn residue 

is equivalent to removing cations containing about 16 kg (35 lb.) of agricultural limestone 
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equivalent. Residue removal may increase N, P, and K deficiencies as well as remove other 

essential nutrients important to crop production (Blanco-Canqui and Lal, 2009).   

Description of COMET-VR 

CarbOn Management Evaluation Tool-Voluntary Reporting (COMET-VR) has been 

proposed for use by farmers and ranchers to quantify and report SOC sequestration and GHG 

emissions on their farmlands. The model was developed by the Natural Resources Conservation 

Service (NRCS) of USDA in collaboration with researchers at the Natural Resources Ecology 

Laboratory (NREL) at Colorado State University (NRCS, 2003-2004). The COMET-VR is a 

decision-making tool that can be used by agricultural producers, agro-foresters, land managers, 

soil scientists, and other agricultural interests. It provides a web interface to a database that 

contains land use data and determines in real time the annual SOC changes using a dynamic 

CENTURY model. It is available at http://www.cometvr.colostate.edu. The model also helps 

producers and ranchers to voluntarily report their land management changes under section 

1605(b) of the 1992 Energy Policy Act. The 1605(b) section of the Energy Policy Act created a 

voluntary reporting program for GHG emissions and reductions. Under the 1605(b) section, there 

is a registry that allows the users or producers to voluntarily report SOC sequestration and GHGs 

emissions reductions annually. Under the program, users or producers are allowed to enter their 

location information, SOC storage, fertilizer application, emissions information, and fuel usage. 

This information is available at climate change website: 

http://soils.usda.gov/survey/global_climate_change.html.  

The model provides farmers with an opportunity to experiment using different management 

options to determine what management changes may reduce GHG emissions. Farmers who adopt 

management operations that capture and store C in the soils are able to sell the stored SOC to 
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intermediary buyers who seek to offset GHG emissions (American Society of Agronomy, 2007). 

Farmers are also required to document and provide verification that their management practices 

have increased SOC stocks on their farms. The COMET-VR model has the following features 

that are available at (ftp://ftp-

fc.sc.egov.usda.gov/AIR/AAQTF/200809201009/200909_DesMoines_IA/AAQTF_200909_Pau

stian.pdf) (Paustian, 2009).  

• Web-based, easy to use 

• Incorporates effects of different soils types, climatic conditions, and land use history 

• Allows for wide range of management choices 

• Uses state-of-the-art science 

• Quantifies uncertainty 

• Fast response time 1-2 seconds 

Each run in the model is based on users’ inputs for a unique parcel that is located in their 

entity (field) or sub-entity (sub-field). A parcel was defined as an “area of land that has uniform 

soils and common historical and present day drainage, crop rotations, and grazing or tillage 

management” (COMET-VR, 2012). Users input data for the COMET-VR execution process are: 

parcel location and size; soil characteristics; past and present crop rotations and tillage or 

rangeland practices. Users choose menu options and select inputs based on the regional 

characteristics.  

Users are required to keep records of their individual parcel estimates and add these 

estimates to make entity or sub-entity level estimates. To log into the COMET-VR system, users 

can access the model at http://www.cometvr.colostate.edu, and then execute seven general steps. 

These steps include state selection, county selection, parcel (farm) selection, soil selection, 
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rotation selection, tillage selection, and fuel and fertilizer selection as explained by Yellajosula 

(2010). 

CSRA Data Gathering Process 

The Carbon Sequestration Rural Appraisal (CSRA) contains a series of data sheets that 

detail historical land-uses and dominant management practices such as drainage, irrigation, crop 

rotations, tillage and fertilization, and grazing over time. The input data in CSRA was used for 

land management and cropping system histories in 20 regions in the United States. Examples of 

such areas where a team of NRCS experts worked to input the required information into the 

CSRA were Indiana, Iowa, and Nebraska (Yellajosula, 2010). The data sheets were put together 

by experts in each Land Resource Region (LRR). Consequently, the model focuses on the US 

Corn Belt cropping systems. 

To gather the data, individual Land Resource Region (LRR) maps that described the 

specific land cover such as irrigated and non-irrigated agricultural lands and the area in each 

category were developed. More data information was collected at the county levels to address 

management decisions that were important for crop production. This information included 

irrigated or non-irrigated crop rotations, fallowing periods, fertilizer rates and timing, tillage 

events and timing, crop yields, grassland type, fire frequency, fertilizer rates and timing, and 

grazing intensity and duration. Where necessary, CSRA data was compared with other published 

data for their validity. Experts collected data from 1890 to the present time. Additional data was 

obtained from tillage practices that included moldboard plow to the current conservation 

management practices. Any information related to manure use and inorganic fertilizer 

applications were obtained from local farmers. The collected information was entered into a GIS 

system.  
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Finally, based on the specific information that was obtained from each area, maps were 

created for those locations. The results were organized and reported in a way that would make 

the voluntary reporting convenient for potential users to report their individual GHG emissions 

and SOC sequestration rates in their fields to the U.S. DOE. The compiled data collection is 

available at http://www.cometvr.colostate.edu/about/. To accomplish the data entry, a data for 

each parcel of the land was entered into the CSRA, which had land use and main management 

practices such as drainage, irrigation, crop rotation, tillage and fertilizer application, and grazing 

information.  

Interaction of COMET-VR Web Interface and CENTURY Run Controller 

The web interface has the ability to collect the user’s information and build the needed 

history details from the SQL database (Fig. 2). The collected information is then sent by the IIS 

WEB server through an APACHE WEB server to the CENTURY Run Controller.  

 
Figure 2. Diagrammatic view of interaction of COMET-VR model and CENTURY model for 
estimating SOC fluxes. 
 
The controller develops each user’s unique history and calls the CENTURY executable to 

calculate the C fluxes and estimates the associated uncertainty. Based on the management 
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information a user provides, C numbers and uncertainty estimates are returned to the COMET 

database where the web interface extracts the appropriate fuel C and returns the user’s results in 

the form of two tables (USDA-NRCS, 2012)  ( Fig. 2). This process usually takes about 2 to 4 

seconds to create a fully personalized report of SOC changes and associated uncertainty values.  

Reporting SOC Storage and N2O Fluxes 

Users run the COMET-VR to generate and estimate the parcel level information of soil C 

and N fluxes and keep their own records. When the input data in the COMET-VR is submitted, 

the web interface will run the CENTURY model to produce SOC estimates and provide results 

to the user through a web browser. The result summarizes input data and provides an estimate of 

SOC fluxes for the parcel and associated percent uncertainty. The uncertainty represents a range 

around the estimate that is defined by ± the percentage of the value within which the true value is 

95% likely to fall. Soil OC flux rates are determined on long-term soil dynamics.  

Parcel SOC estimates can remain valid for a period of ten years. This means that users may 

use the same SOC and N2O information for a parcel for up to ten years if the cropping rotation or 

tillage system has not changed over the past report period. But when changes happen in rotation 

systems or tillage management practices on the same parcel, a new query of the COMET-VR 

must be initiated. Under new tillage or rotation changes, all input data will remain the same but 

entries for the Report Period rotation and tillage practices will change.  

If no-till practices are stopped and intensive or reduced tillage system is adopted, the bulk 

of C that was previously stored in soils under appropriate management systems will be assumed 

to have been re-emitted to the atmosphere. Under this condition, changing from no-till 

management to intensive or reduced tillage will lead to SOC losses that are similar to the sum of 

all reported SOC sequestration for that period. When this condition occurs, users will not be 
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required again to use the COMET-VR to estimate SOC losses. However, they will be required to 

refer to their own previous records to estimate SOC losses.   

Description of CENTURY MODEL 

The CENTURY model is used in the background in the COMET-VR to estimate SOC 

fluxes under different soil management practices, crops, and climatic conditions. CENTURY is a 

multi-purpose ecosystem tool that was developed through the collaborative efforts of Colorado 

State University and the USDA-ARS to determine the SOC changes in the Great Plains 

grasslands (Parton et al., 1987). The CENTURY model had been used to estimate and establish 

the long-term dynamics of C, N, S, and P on the monthly basis. It has also been effective in 

providing reliable measurements of SOC changes in the depth of 0-20 cm in the topsoil (Smith et 

al., 1997). It was also developed to simulate long term C, N, P, and S changes in grassland 

ecosystems (Parton et al., 1987).  

The model is comprised of three SOM pools such as active, slow, and passive with 

different potential decomposition rates. An active organic fraction represents organic matter that 

is still undergoing a decomposition process while both slow and passive organic fractions 

represent extensively decomposed and recalcitrant organic fractions, respectively. The active 

fraction (SOM1C(2)) represents soil microorganisms and microbial products and has a turnover 

time of months to a few years, depending on the climatic conditions and soil texture. Slow pool 

(SOM2C) represents a resistant plant material that has been derived from the structural pool and 

soil-stabilized microbial products that have been derived from the active and surface microbe 

pools (Cole et al., 1993). The turnover time of the slow SOM pool is 20 to 50 years.  
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Figure 3. Diagram of major organic C state variable and C flows in CENTURY (COMET-VR, 
2011) (adapted from CENTURY, version 4.0, manual). 
 

The passive SOM pool is comprised of physically and chemically stabilized SOM and is 

very resistant to decomposition. The passive SOM pool has a turnover time of 400 to 2000 years.  

Cole et al. (1993) reported that proportions of the decomposition products that that enter the 

passive pool from the slow and active pools increase with increasing clay content. Although the 

CENTURY model cannot be substituted for a direct estimation of SOC under different 

management systems, it allows incorporation of various factors which control decomposition 

processes on SOM changes. 

Description of Revised Universal Soil Loss Equation-Version 2 (RUSLE2) Model 

Removal of the topsoil has been shown to have many deleterious consequences on soil 

productivity and environmental quality (Obalum et al., 2012). Soil erosion is a process by which 

soil particles are displaced by forces of wind and water. It occurs when soil particles are 

separated from the entire soil mass and transported somewhere else as sediments or dust. Erosion 
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can be a fast or gradual process that reduces soil productivity in such a way that reduction may 

not be noticed until agricultural land is no longer economically suitable for crop production 

(National Soil Erosion-Soil Productivity Research Planning Committee, 1981; Nyakatawa et al., 

2001; Obalum et al., 2012). However, catastrophic erosions from torrential rainfall or dust 

storms are easily noticed.  

Quantifying and predicting soil loss under different cropping systems and crop 

management systems require statistical tool (Huggins, 2013). Producers and land managers can 

use soil erosion prediction models to address their long-term land management planning under 

natural and agricultural conditions (Angima et al., 2003). A model that has been widely accepted 

and used within USA to predict erosion rates and sediment yields is the revised universal soil 

loss equation (RUSLE2). The RUSEL2 model was collaboratively developed by Agricultural 

Research Service (ARS), Natural Resources Conservation Service (NRCS), and the Biosystems 

Engineering and Environmental Science Department of the University of Tennessee (RUSLE2, 

2013). 

RUSLE2 is a new mathematical model that uses equations in a computer program to 

estimate erosion rates. It uses a modern and powerful user interface rather than the text-based 

interface that RUSLE1 uses. RUSLE2 has improved computational procedures and, therefore, 

provides useful output that can be used for conservation planning. RUSLE2 estimates soil loss, 

sediment yield, and sediment characteristics from rill and inter-rill erosion caused by rainfall and 

runoff. It evaluates potential erosion rates at specific sites, guides management decisions and 

conservation planning, inventories erosion rates over large geographical areas, and estimates 

sediment production on upland areas that might become sediment yields in watersheds. RUSLE2 

is also a land use independent model. It estimates erosion on cropland, pastureland, rangeland, 
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disturbed forestland, construction sites, mined land, reclaimed land, landfills, military lands, and 

in other mineral soils exposed to raindrop impact and surface runoff (RUSLE2, 2013). RUSLE2 

works best in croplands. However, it is not a precise estimator of soil loss or residue cover.   

Major Factors Used in RUSLE2 

Parameters used in RUSLE2 to compute erosion include climate (erosivity, rainfall, and 

temperature), soil erodibility, topography, cover-management, and support management 

practices. RUSLE2 factors are represented by equation: A = RKLSCP. Where: A = predicted 

long-term average of annual sheet and rill soil loss from a defined slope (Nyakatawa et al., 

2001); R = rainfall and runoff erosivity factor; K = soil erodibility factor; L = slope length factor; 

S = slope steepness factor; C = cover-management factor; and P = supporting practices factor.  

Climate affects erosion through the amount of rainfall and rainfall intensity and 

temperature. RUSLE2 “predicts a linear increase in sheet and rill erosion with increasing rainfall 

erosivity, which reflects the influences of both rainfall depth and rainfall intensity” (Dabney et 

al, 2012). Soil loss is high in Mississippi due to intense rainfall and low in Nevada due to its 

desert-like climate (RUSLE2, 2013). About 60% of the annual erosivity (R) happens in North 

Dakota during June and July, when intensively-cultivated row crops are vulnerable to water and 

wind erosion due to low soil surface cover (RUSLE2, 2013). Increasing temperature and rainfall 

can increase residue oxidation and surface roughness degradation, thereby making soil 

vulnerable to soil attacking forces and runoff (Dabney et al, 2012). In RUSLE2, climate input 

values are used to describe weather at each location, county, and crop management zone.  

Soil type has a major influence on the soil erosion. Some soil types are more erodible than 

other soils. Soil texture and structure determine the erodibility (K) of each soil. A soil that has a 

high content of clay and sand is less erodible than a soil that has high silt. High clay soils tend to 
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be more resistant to detachment and, therefore, have low K values. High sand soils tend to have 

low K values due to their high infiltration rates. High silt soils tend to have greater K values due 

to their higher detachment rate. The K parameter represents the combined effect of soil 

detachment, potential soil surface runoff, and the transportation of the eroded soil from the soil 

mass (RUSLE2, 2013). Soil characteristics are assigned by soil components and map unit. 

RUSLE2 uses values for clay, sand, and silt fractions to determine the distribution of the 

sediment particle classes at the point of the detachment. Applicable soils in RUSLE2 include 

medium texture (best), fine texture (moderate), coarse texture (acceptable), and organic texture 

(not acceptable) (RUSLE2, 2013).  

Topography affects soil erosion through slope steepness and slope length. Generally, 

topography describes overland flow slope length and slope length for eroding parts of hillslope, 

steepness, and hillslope shape. Applicable topographical slope lengths include 15 to 91 m (50 to 

300 ft.) (best), 15 and 91 to 183 m (50 and 300 to 600 ft.) (moderate), 183 to 305 m (600 to 1000 

ft.) (acceptable), and greater than 305 m (1000 ft.) (not acceptable) (RUSLE2, 2013). Applicable 

slope steepness includes 3 to 20% (best), 0 to 3% and 20 to 35% (moderate), 35 to 100% 

(acceptable), and greater than 100% (not acceptable).   

Land use is the most important factor that influences soil erosion. Management practices 

that minimize soil erosion include vegetative cover, crop rotations, conservation tillage, residue 

retention, applied mulch, contouring, strip cropping, terraces and diversions, impoundments, and 

tile drainage. No-till and mulch-till practice affect the cover-management factor by reducing soil 

degradation, reducing runoff, and increasing infiltration and SOM, which subsequently reduces 

soil loss (Nyakatawa et al., 2001). Vegetation is also an important resisting force because it 
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intercepts rainfall, restrains soil movement, increases infiltration, reduces runoff, and improves 

soil structure and aggregation (Huggins, 2013).  

Calculating Soil Loss Using RUSLE2 

RUSLE2 uses climate, soil, topography, land uses, supporting practices, and site-specific 

conditions to calculate soil losses (RUSLE2, 2013).  RUSLE2 incorporates rainfall erosivity (R), 

soil erodibility (K), and topography, and land use management that are associated with soil loss 

by water (Nyakatawa et al., 2001). A user can select a name of a location under a menu list in the 

RUSLE2 for each of the land specific factors to determine soil loss. When RUSLE2 is executed, 

a user chooses a name from the menu list for each of input parameters, and then RUSLE2 

extracts the data that is associated with these names from its database (RUSLE2, 20013).   

A user may change values of particular parameters from those stored in the RUSLE2 

database to represent land use-specific conditions related to topography, yield, rock cover, and 

type and quantity of  manure and mulch applied (RUSLE2, 2013). RUSLE2 works like a 

spreadsheet because it quickly updates its calculations in a cell as a user changes values for 

particular variables. When using the RUSLE2, a user may change values for specific variables if 

the values in the RUSLE2 database are not pertinent for the field conditions where RUSLE2 will 

be applied. RUSLE2 opening screen provides a user with two options whenever its program is 

operated (RUSLE2, 2013). The first option is to choose either a profile or worksheet to perform 

soil loss calculations. The second option is to choose a template. Templates are used to control 

the appearance of the RUSLE2 interface to determine the complexity of the field conditions to be 

analyzed (USDA-NRCS, 2013). The RUSLE2 profile view is used to determine a single 

calculation of soil loss for one hillslope in one field. Climate, soil, cover-management, 

supporting practices, and topography of a specific overland flow path describe a particular 
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hillslope profile. This is a template that a user can use to build a rotation management system 

(RUSLE2, 2013). A user that uses the profile view is able to save rotations created in the local 

(c) crop management zone (CMZ) file folder and use it in the future to save entry time.  

The RUSLE2 worksheet view is used to guide conservation planning by calculating soil 

loss for alternative conservation practices for a uniform hillslope profile for a specific site, soil, 

climate, and topography. The worksheet component provides a convenient way to compare 

alternative management practices. It is an important tool to compute several soil loss alternatives 

for one hillslope or one field (RUSLE2, 2013). The RUSLE2 plan view is a template that is used 

to compute soil erosion on multiple fields for conservation planning.  

Soil Conditioning Index (SCI) and Soil Tillage Intensity Rating (STIR) 

Within the RUSLE2 model, the SCI and STIR are used to predict SOC conditions and to 

determine soil disturbance rating, respectively, under cropland management systems. The SCI is 

used to predict the effects of cropping systems on SOC conditions (Warren Wilson College, 

2012; NRCS, 2013). The SCI can also be used to plan and design conservation crop rotations and 

residue management when low SOC, poor soil tilth, surface crusting, and soil erosion are 

observed (USDA-NRCS, 2002; NRCS, 2013). Input parameters for the SCI include SOM, field 

operations, and erosion (Franzluebbers et al., 2011). The SCI uses equation (SCI = [organic 

matter (OM) × (0.4)] + [field operation (FO) × (0.4)] + [erosion (ER) × (0.2)] to predict 

qualitative changes in SOC in the soil depth of 10 cm based on the combined effects of SOM, 

field operations, and soil erosion (Zobeck et al., 2007).  

The SCI assumes that intensive tillage operations decrease SOC by enhancing oxidation 

and maintaining plant residues increase SOC levels (Zobeck et al., 2007). The SCI is also used to 

determine the eligibility of cropland for the Conservation Security Program (CSP) (USDA-
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NRCS, 2013). Any cropland must have a greater value than 0.00 in order to qualify for the CSP 

program because positive SCI values are indicators of high-residue conditions and appropriate 

conservation management practices. SCI and STIR are also used to calculate enhancement 

payment component of Conservation Security Program (CSP) (USDA-NRCS, 2013). The SCI 

reports a qualitative value between -1 and +1 that represents the change that is expected to occur 

over time in SOC level due to management practices (Warren Wilson College, 2012). Field-level 

SCI can be improved by growing high-residue crops and cover crops, limiting number of tillage 

operations, minimizing wind and water erosion on the field, and applying manure and mulch to 

the field (USDA-NRCS, 2013).   

Soil tillage intensity rating (STIR) uses operational speed of tillage equipment, tillage type, 

depth of tillage operation, and percent of the soil surface disturbed area to calculate a tillage 

intensity rating (USDA-NRCS, 2008a; USDA-NRCS, 2011b). STIR is a numerical value and is 

calculated using RUSLE2 (USDA-NRCS, 2011b). This study reported that no-till operations 

require a STIR value of 15 or less. Reduction in intensive tillage practice and adoption of no-till 

systems can greatly improve STIR ratings (USDA-NRCS, 2011b). Use of soil conserving crops 

such as alfalfa and grass in the cropping systems can reduce STIR values (USDA-NRCS, 2008a; 

USDA-NRCS, 2011b). Low STIR values help reduce sheet and rill erosion, increase SOM, 

reduce SOM decomposition, reduce SOC emission to the atmosphere, improve soil consolidation 

conditions, and improve infiltration rates (USDA-NRCS, 2008a; USDA-NRCS, 2011b). 

Description of Conservation Cropping Systems Project (CCSP) Study Site 

The Conservation Cropping Systems Project site is a demonstration farm established in 

2001 and managed by the Wild Rice Soil Conservation District with a board of directors that 

serves from Soil Conservation Districts in Ransom, Richland, and Dickey Counties in North 
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Dakota and Marshall and Day Counties in South Dakota. This site is located in a 130-acre (53 

ha) parcel of farmland about two miles (3.2 km) South of Forman, ND, on the west side of 

Highway 32 (longitude, 97° 38' 38̋̋  and latitude, 46° 05' 05). The area has average annual air 

temperature of 42 °F (5.56 °C) average annual precipitation of 19 inches (483 mm). The CCSP 

research site receives its funding from governmental, corporate, and private stakeholders. The 

Wild Rice Soil Conservation District (2013) is the main cooperating agency that provides office 

space and facilitates and administers the project. Other cooperating agencies included Natural 

Resources Conservation Services (NRCS), North Dakota State University (NDSU), and South 

Dakota State University (SDSU).  

The soils at the CCSP site are described as Aastad (fine-loamy, mixed, superactive, frigid 

Pachic Argiudolls) and Forman (fine-loamy, mixed, superactive, frigid Calcic Argiudolls) soil 

series. The Forman soil series consists of very deep, well-drained, moderate and slow permeable 

soil that was formed from calcareous till. The description of the Forman series is available at 

https://soilseries.sc.egov.usda.gov/OSD_Docs//F/FORMAN.html. Forman is found on moraines 

and till plains with slopes that range from 0 to 30 percent. Horizontal flow of surface water is 

low to very high depending on a slope. A typical pedon of a Forman clay loam found in 

cultivated fields in Sargent County, North Dakota, has mollic (AP and A), argillic (Bt), and 

calcic (Bk) horizons.  

The Aastad soil series is comprised of very deep, moderately well drained soils that were 

formed from calcareous till on moraines and till plains. The description of the Aastad series is 

available at https://soilseries.sc.egov.usda.gov/OSD_Docs/A/AASTAD.html. Horizontal flow of 

surface water on the soil surface is low to medium depending on a slope. Slopes range from 0 to 

6 percent. The parent material of the Aastad soil is calcareous till. A typical pedon at the site is 



 

 

an Aastad clay loam. It has a mollic epipedon (Ap and A horizons), argillic horizon (Bt), and 

calcic horizon (Bk).  

 Treatments within the CCSP farm consist of crop rotations in a three

randomized complete block design under 

site was designed so that the first replication 

replication in the center of the area

At the CCSP site, different crops 

under a no-till management system but with allowance for strip tillage, shank tillage, 

tillage systems. Each crop rotation has every crop represente

make up the rotation. Each plot size is 67 m by 18 m (220 ft. by 60 ft.)

planted in the rotation sequence on each of the plots in succeeding years of the rotation. 

shows a diagrammatic view of different crops during the growing season at the site. 

impacts of the crops within each rotation are cumulative over the time since the inception of the 

study site. This makes the CCSP site unique in that it 

(>5years) sites available for research in North Dakota and Northern Great Plains region. 

Figure 4. Diagrammatic view of no
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mollic epipedon (Ap and A horizons), argillic horizon (Bt), and 

Treatments within the CCSP farm consist of crop rotations in a three-replicated 

randomized complete block design under a high-residue no-till management system

that the first replication is located on the east side of the area,

of the area, and the third replication is found on the west side 

the CCSP site, different crops are planted in 16 rotations with two to six years of duration 

management system but with allowance for strip tillage, shank tillage, 

Each crop rotation has every crop represented each year on individual plots that 

rotation. Each plot size is 67 m by 18 m (220 ft. by 60 ft.). The crops are then 

planted in the rotation sequence on each of the plots in succeeding years of the rotation. 

shows a diagrammatic view of different crops during the growing season at the site. 

impacts of the crops within each rotation are cumulative over the time since the inception of the 

study site. This makes the CCSP site unique in that it is one of relative few such long

(>5years) sites available for research in North Dakota and Northern Great Plains region. 

Diagrammatic view of no-till crop rotation at the CCSP site for 2009 (Cooper, 2009).

mollic epipedon (Ap and A horizons), argillic horizon (Bt), and 

replicated 

system. The study 

is located on the east side of the area, the second 

on the west side of the area. 

s of duration 

management system but with allowance for strip tillage, shank tillage, or disk drill 

d each year on individual plots that 

The crops are then 

planted in the rotation sequence on each of the plots in succeeding years of the rotation. Figure 4 

shows a diagrammatic view of different crops during the growing season at the site. Thus, the 

impacts of the crops within each rotation are cumulative over the time since the inception of the 

is one of relative few such long-term 

(>5years) sites available for research in North Dakota and Northern Great Plains region.  

 
(Cooper, 2009). 
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All rotations are designed to evaluate their impacts on environmental quality, soil structure 

and aggregation, water retention, SOC content, and increase in crop yields. The cropping 

treatments used in this study are shown in Table 1. Treatments were divided into rotations 

containing winter wheat and rotations containing no winter wheat. All crops grown in each crop 

rotation produce and return cumulative residue biomass and residue C and N to that crop rotation 

over the time.  

                Table 1. Rotation treatments and crop rotation sequences. 
Rotation 

Treatments Crop Rotation Sequences† 

A SW-WW-C-S 

D SW-C-S 
E SW-S 

F C-S 
I SW-WW-F-C-C-S 

KH WW-CC-C-S 
N SW-WW-A-A-C-S 

                 †SW-WW-C-S = spring wheat-winter wheat-corn-soybean; SW-C-S = spring  wheat-
corn-soybean; SW-S = spring wheat-soybean; C-S = corn-soybean; SW-WW-F-C-C-S 
= spring wheat-winter wheat-flax-corn-corn-soybean; WW-CC-C-S = winter wheat-
cover crop-corn-soybean; SW-WW-A-A-C-S = spring wheat-winter wheat-alfalfa-
alfalfa-corn-soybean.  

 
Crops grown in low-diversity systems such as C-S and SW-S rotations are more frequently 

planted than crops grown in high-diversity systems such as SW-WW-F-C-C-S and SW-WW-A-

A-C-S rotations. Each crop is annually planted in each plot and replicated three times in each 

rotation. Crops grown include hard red winter wheat (Triticum aestivum L.), hard red spring 

wheat (Triticum aestivum L.), corn (Zea mays L.), soybean (Glycine max L.), alfalfa (Medicago 

Sativa L.), flax (Linum usitatissimum L.), pea (Pisum sativum L.), and radish (Raphanus sativus 

L.). These crops are annually alternated as parts of treatments in different plots in the seven 

rotations (Table 1). In 2008, traditional and non-traditional cover crops were introduced into the 
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CCSP crop rotation system. Cover crops were principally introduced to help cycle and stabilize 

nutrients, manage soil salinity, and improve soil health.  

Objectives 

The objectives of this study were to: 1) determine the effects of diversified crop rotations 

and crop residue retention on SOC levels; 2) determine the amount of residue biomass, residue C 

and N, and supplemental N fertilizer requirements in aboveground aged and fresh residues; and 

3) estimate SOC and GHG (CO2 and N2O) emissions and soil losses using the COMET-VR 

model and RUSLE2 model, respectively. 
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PAPER 1. EVALUATION OF CROP ROTATIONS AND RESIDUE RETENTION 

IN A NO-TILL SYSTEM ON SOC CHANGE  

ABSTRACT 

The current trajectory of an increase in greenhouse gas (GHG) emissions may be 

decreased through SOC sequestration. Soil OC is widely used as a measure of soil quality due to 

its impact on soil biological, chemical, and physical properties. This study was conducted to 

evaluate differences in the amount of SOC stored in no-till production between crop rotations 

that included winter wheat (Triticum aestivum L.) and those without winter wheat (Triticum 

aestivum L.) at the Conservation Cropping Systems Project (CCSP) site, Sargent County, North 

Dakota. Winter wheat was included in the SW-WW-C-S, SW-WW-F-C-C-C, WW-CC-C-C, and 

SW-WW-A-A-C-S rotations and not included in the SW-C-S, SW-S, and C-S rotations. Soil OC 

and bulk densities at the depths of 0-15 cm and 15-30 cm were determined within rotation 

treatments. Soil cores were sampled during three years (2006, 2010, and 2012). In 2006, soil 

samples were taken from the C-S and SW-WW-F-C-C-S rotations. In 2010, soil cores were 

collected from the SW-WW-C-S, SW-C-S, SW-S, WW-CC-C-S, and SW-WW-A-A-C-S 

rotations. In 2012, soil samples were again collected from all rotations sampled in 2006 and 

2010. The 2012 SOC data was compared to the baseline SOC data of 2006 and the 2010 

sampling. From the 2006 and 2010 samplings, analysis of SOC showed no significant difference 

between rotation treatments. Analysis of 2012 SOC showed that the C-S rotation had greater 

SOC level than the WW-CC-C-S rotation probably due to greater frequency of corn production 

in the rotation. Analysis of 2012 SOC also showed that the WW-CC-C-S rotation had lower SOC 

level than the C-S rotation. The WW-CC-C-S rotation produced lower SOC level perhaps due to 

low-residue crops such as forage radish (Raphanus sativus L.), field pea (Pisum sativum L.), and 
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soybean (Glycine max L.) in the rotation. Rotations in which winter wheat was included 

appeared to have a neutral effect on SOC. No-till management and crop residue retention has the 

potential to increase SOC levels and improve soil quality over the long-term in cropping 

systems.  

INTRODUCTION 

Conservation Management Practices Increase SOC and Improve Soil Quality 

Crop residue management, improved rotations, N fertilization, and conservation tillage 

can increase SOC levels and improve soil quality in agricultural soils. Soil OC is important to 

agricultural production because it influences soil physical, biological, and chemical properties 

(Chan, 2008). No-till systems have been shown to increase SOC in the topsoil (A horizon) by 

about 40% (Grandy and Snapp, 2011). Wood et al. (1990) reported greater SOC concentration 

near soil surface in no-till due to large amount of plant residue produced and maintained on the 

soil surface. Conservation management practices also promote SOC sequestration by increasing 

C inputs and minimizing C outputs (Sherrod et al., 2003; Franzluebbers, 2011). The soil C and N 

stored in a corn-corn-soybean-wheat rotation was greater than that stored in a continuous corn 

system in Michigan, resulting in an associated improvement in soil quality (Sanchez et al., 2004). 

Halvorson et al. (1999) reported that SOC sequestration can be increased by no-till 

production with adequate N fertilization. Soil OC sequestration can be improved through 

returning crop residue as a surface mulch, practicing no-till and mulch farming systems, growing 

seasonal cover crops during the non-growing season, and rotating different crops (Lal, 2004; 

Wang et al., 2010). The amount of SOC that can be restored and maintained depends on the 

cropping systems, soil types and climatic conditions, and initial SOC levels of the site (Chan, 

2008).  
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Restoration and maintenance of SOC can be attained through frequent addition of crop 

residues and application of deficient mineral nutrients (Millar et al., 1958). Soil OC consists of 

diverse organic materials, including living organisms, slightly changed plant and animal organic 

residues, partially decomposed plant and animal tissues, and substantially altered plant and 

animal remains that are more or less resistant to further decomposition (Magdoff, 1992). Soil OC 

has been called the most crucial soil attribute in improving and maintaining soil quality resources 

(USDA, 1996).  

Soil OC is a common metric in evaluating long-term agricultural studies and is a good 

indicator of soil quality and sustainable agronomic production due to its influence on soil 

biological, chemical, and physical attributes (Reeves, 1997). Soil OC measurement is also used 

to assess the retention or loss of SOC in soil. Soil quality has been defined as “the capacity or 

capability of a soil to produce safe and nutritious crops in a sustained management over the long-

term and to enhance human and animal health without impairing the natural resource base or 

adversely affecting the environment” (Parr et al., 2012).  

Soil quality is therefore an important component to agricultural productivity and 

environmental quality (Reeves, 1997). Soil quality is partially dependent on SOC content due to 

its effects on soil aggregation, soil biological activity, nutrient cycling, permeability and water 

retention. Implementing methods for increasing and maintaining SOC is linked to improving soil 

quality and attaining sustainable agriculture (Lal and Kimble, 1997).  

Soil C and N are indicators of soil quality (Kuo and Jellum, 2002). Soil quality indicators 

are used to evaluate sustainability of land uses and soil management practices (Shukla et al., 

2006). Indicators should be easy to measure, able to determine change in soil function within 
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experimental unity, accessible to and useable by farmers, and should represent soil physical, 

biological, and/or chemical properties (Kinyangi, 2007).  

Objectives 

The objectives of this study were to: 1) determine effects of different crop rotation 

systems on SOC levels in no-till production; 2) compare the rate of SOC change under rotations 

with winter wheat and those without winter wheat; and 3) evaluate the effects of winter wheat 

rotations on soil quality. 

MATERIALS AND METHODS 

This study was imposed within ongoing treatments within a study initiated in 2006 at the 

CCSP site (Augustin, 2009). The study was a randomized complete block design with three 

replications. Each rotation and each crop within each rotation were replicated three times. The 

same crops in each rotation were rotated over three sampling years (2006, 2010, and 2012) at the 

CCSP site (Table 2). Each crop in each rotation was planted each year. Crops in low-diversity 

systems such as C-S and SW-S rotations were more frequently planted than crops in high-

diversity systems such as SW-WW-C-S and WW-CC-C-S rotations (Table 2).  

Crops grown in each rotation contributed to total SOC by producing and returning 

residue biomass to that rotation for each of the three sampling years (2006, 2010, and 2012) 

under no-till production. But high residue yielding crops such as corn (Zea mays L.) and wheat 

(Triticum aesticum L.) had probably produced and returned greater residue biomass to cropping 

systems compared to low residue yielding crops such as soybean (Glycine max L.), field pea 

(Pisum sativum L.), forage radish (Raphanus sativus L.), alfalfa hay (Medicago sativa L.), and 

flax (Linum usitatissimum L.). 
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Soil samplings were conducted on the SW-WW-C-S, SW-C-S, SW-S, C-S, SW-WW-F-

C-C-S, WW-CC-C-S, and SW-WW-A-A-C-S rotations during three individual years (2006, 

2010, and 2012) (Table 2). All sampling locations were geo-referenced with a handheld Garmin 

76 Global Positioning Satellite (GPS) receiver unit at the initial sampling years (2006 and 2010). 

Sampling locations in each plot where soil cores were to be taken were first identified by latitude 

and longitude so that this information could be consistently related to past and future samplings. 

In 2006, the first sampling was conducted to establish baseline SOC levels and bulk 

densities in the C-S rotation without winter wheat and the SW-WW-F-C-C-S rotation with 

winter wheat (Table 2). Crops grown in each of these two rotations contributed to SOC by 

producing and returning cumulative residue biomass to that rotation for the period of five years 

(2001-2006). The 2006 sampling was conducted using steel tube 30 cm long with an acetate 

liner. Before soil cores were sampled, loose surface plant residue was removed from each 

sampling area where each individual core was to be taken.  

             Table 2. Crop rotation treatments, first (baseline) sampling year  
             and second sampling year. 

Crop Rotation 
Treatments† 

First (baseline) 
Sampling Year 

Second Sampling 
Year 

SW-WW-C-S 2010 2012 
SW-C-S 2010 2012 
SW-S 2010 2012 
C-S 2006 2012 

SW-WW-F-C-C-S 2006 2012 
WW-CC-C-S 2010 2012 

SW-WW-A-A-C-S 2010 2012 
†SW-WW-C-S = spring wheat-winter wheat-corn-soybean; SW-C-S =  
spring wheat-corn-soybean; SW-S = spring wheat-soybean; C-S = corn- 
soybean; SW-WW-F-C-C-S = spring wheat-winter wheat-flax-corn-corn- 
soybean; WW-CC-C-S = winter wheat-cover crop-corn-soybean;   
SW-WW-A-A-C-S = spring wheat-winter wheat-alfalfa-alfalfa-corn-soybean. 

 
The sampled cores were taken within a five-meter radius of the geo-referenced point to 

characterize each sampling location (Cihacek et al., 2010). Seven soil cores were sampled from 
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each of twenty six (26) plots. Each plot was measured 67 m by 18 m (220 ft. by 60 ft.). Soil 

samples were collected at the depth intervals of 0-15 cm and 15-30 cm. All of the cores were 

sampled to a depth of 30 cm because SOM is mostly concentrated in the top 30 cm of the soil 

which is the most dynamic area relative to plant root and biological activity (Cihacek et al., 

2010).  

Before the sampled cores were processed, they were removed from the liners and divided 

into depth intervals of 0-15 cm and 15-30 cm depth intervals. Each tube that contained a sample 

was capped and kept in a cold storage before the samples were processed and analyzed for SOC 

content and bulk densities (Augustin, 2009). Bulk densities were determined for all cores in each 

plot to calculate SOC values for the seven crop rotations. All SOC values were averaged across 

all crops within a rotation to determine average SOC in each rotation treatment to indicate long-

term rotation effects on SOC.  

In 2010, another baseline sampling was conducted on the SW-WW-C-S, SW-C-S, SW-S, 

WW-CC-C-S, and SW-WW-A-A-C-S rotations for the same purpose (Table 2). Crops grown in 

each rotation contributed to SOC by producing and returning cumulative residue biomass to that 

rotation for the period of nine years (2001-2010). Seven soil cores were again obtained from 

each plot within the same area near the geo-referenced point similar to 2006 sampling.  

However, at this sampling and subsequent sampling, seven soil cores were collected 

using hand probe (diameter = 1.9 cm) with a slotted steel sampling tube without a liner and 

separated into 0-15 and 15-30 cm intervals as described by Cihacek et al. (2010). All the cores 

were kept in coolers during the sampling time until delivered to the laboratory. The cores 

collected within each plot were combined in separate plastic bags by depth. The combined soil 

cores were weighed prior to determining bulk densities. In 2012, all rotation treatments sampled 
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in 2006 and 2010 were sampled to determine SOC levels and bulk densities at the previously 

geo-referenced locations. Crops grown in each rotation contributed to SOC by producing and 

returning cumulative residue biomass to that rotation for the period of eleven years (2001-2012). 

Seven soil cores were again sampled in each plot using the same procedure as for the sampling 

2010. The 2012 SOC was to be compared with the baseline SOC data sampled in 2006 and 2010.  

For the determination of bulk densities, soil cores from 0-15 cm and 15-30 cm depth 

interval were separately hand-crushed. Soil bulk density was determined by a version of the core 

method of Blake and Hartge (1986) as proposed by Cihacek et al. (2010). The weights of can, 

lid, and moist soil samples were measured and recorded for soil moisture determination and bulk 

densities. About 30-50 grams of hand-crushed, properly mixed, field-moist soil subsamples were 

collected in pre-weighed steel or aluminum moisture cans with a sealing lid to determine soil 

water moisture (Cihacek et al., 2010). After the initial weighing, the subsamples were placed in a 

drying oven for a period of two days (48 hours) at 105̊ C (221̊F). The subsamples and cans were 

then removed from the drying oven and placed into a desiccator that contained a drying agent to 

prevent moisture accumulation while cooling. After the dried subsamples were cooled, the lids 

were placed on the cans and can weights were again measured and recorded. The remaining 

subsamples were air-dried and crushed to pass a 2-mm sieve. A 10-12 g subsample of soil was 

milled to pass 100-mesh screen for soil C analysis (Cihacek and Jacobson, 2007). 

A Skalar PrimacsSC TOC Analyzer was used to determine the total organic carbon (TOC) 

content for soil analysis for each of the three sampling years. The Skalar instrument was also 

used to determine inorganic carbon (IC) by measuring the CO2 evolved by addition of a 20% 

H3PO4 solution to the soil. To determine soil organic (OC), IC was subtracted from TOC (OC = 

TOC – IC). Prior to adjusting for bulk densities of the soil, the C data was reported in percent. 
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The C percentages were first converted to decimal point by dividing the C masses by 100. The 

SOC for each depth within each plot was computed by bulk density × 15.2 cm × C mass. This 

allows the use of the data to convert C masses to Mg/ha/depth by using a multiplier of 10. All the 

calculated values were at least carried to three places after the decimal point as recommended 

(Cihacek et al., 2010). The 2006 and 2010 C mass levels were used as a baseline to determine 

SOC changes when compared to the 2012 C mass levels. However, it is important to note that 

pre-project (baseline) SOC was not available from the pre-CCSP conventional system although 

that data would have been extremely useful in evaluation of the long-term system changes 

(Olson, 2013).  

Statistical Analysis 

The rotations within the CCSP site were arranged in a three-replicate randomized 

complete block design with the seven rotation treatments. The SAS GLM procedure and least 

significant differences (LSD) (SAS Institute, 2002-2010) at P ≤ 0.05 were used to analyze SOC 

data for 2006, 2010, and 2012. For each sampling year, SOC data was analyzed separately to 

evaluate differences between the seven crop rotations (Tables 3 and 4). Changes in SOC and 

annual SOC values were also analyzed for the baseline and final sampling years (Table 5). The 

SOC value in each rotation represented the total SOC resulting from the accumulated residue C 

produced and returned to each rotation by all crops in that rotation for each of the three sampling 

years (2006, 2010, 2012) under no-till production at the CCSP site. Treatment means reported 

(Tables 3, 4, and 5). 

RESULTS AND DISCUSSIONS 

There were no significant differences in baseline SOC data between the seven rotations in 

2006 and 2010 (Table 3). Lack of significant difference was in part attributed to relatively 
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similar soil texture, drainage, and climatic conditions between treatments. Another possible 

explanation for low variation in SOC between treatments was that the rate of SOC accumulation 

was low due to low variability in climatic conditions. Lack of significant difference between the 

rotation treatments could also be attributed to decrease in the rate of SOC accumulation. 

Previous studies suggest that SOC starts to increase from 5 to 10 years after no-till 

initiation and stabilizes from 15 to 20 years under no-till production systems (Liu et al., 2006). 

Therefore, the rate of SOC accretion might have already been reduced because seven crop 

rotations had been under no-till production for eleven years (2001-2012) at the CCSP site. Soil 

OC can also increase and stabilize at different times under no-till management systems in 

different locations.  

Table 3. Crop rotation treatments, initial sampling year and baseline SOC. 
Crop Rotation 
Treatments† Initial Sampling Year Baseline SOC 

  ---kg/m2--- 
SW-WW-C-S 2010 7.63a‡ 

SW-C-S 2010 8.07a 
SW-S 2010 7.86a 
C-S 2006 8.09a 

SW-WW-F-C-C-S 2006 7.27a 
WW-CC-C-S 2010 7.90a 

SW-WW-A-A-C-S 2010 8.03a 
                  †SW-WW-C-S = spring wheat-winter wheat-corn-soybean; SW-C-S = spring  

wheat-corn-soybean; SW-S = spring wheat-soybean; C-S = corn-soybean;  
SW-WW-F-C-C-S = spring wheat-winter wheat-flax-corn-corn-soybean;  
WW-CC-C-S = winter wheat-cover crop-corn-soybean; SW-WW-A-A-C-S =  
spring wheat-winter wheat-alfalfa-alfalfa-corn-soybean. 
‡Means with the same letter are not significantly different at p ≤ 0.05. 

Additional factors (soil texture and mineralogy, climate, management efficacy, and 

residue amount) can determine the time required for SOC to increase and stabilize under a no-till 

regime at a given location. Therefore, time of SOC increase and stabilization can vary from each 

no-till management to another depending on each location site-specific conditions. 
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Analysis of SOC data for the final sampling year 2012 is shown in Table 4. The C-S 

rotation (9.47 kg/m2) was significantly greater than the WW-CC-C-S rotation (8.41 kg/m2). The 

C-S rotation and all of the other rotations contained similar SOC and were not significantly 

different. The C-S rotation had greater SOC compared to the WW-CC-C-S rotation likely due to 

more frequent production of corn and its associated greater residue biomass compared to the 

more diversified WW-CC-C-S rotation. Tables 6 and 7 (Paper 2) show greater amount of residue 

biomass and residue C in the C-S rotation compared to residue biomass and residue C in other 

rotations which showed that greater frequent production of corn has a greater potential to 

increase SOC in cropping systems.  

         Table 4. Crop rotation treatments, final sampling year and final SOC. 

Crop Rotation Treatments† 
Final Sampling 

Year Final SOC 
  ---kg/m2--- 

SW-WW-C-S 2012 8.64ab‡ 
SW-C-S 2012 9.35ab 
SW-S 2012 8.64ab 
C-S 2012 9.47a 

SW-WW-F-C-C-S 2012 8.70ab 
WW-CC-C-S 2012 8.41b 

SW-WW-A-A-C-S 2012 8.98ab 
                  †SW-WW-C-S = spring wheat-winter wheat-corn-soybean; SW-C-S = spring 
                   wheat-corn-soybean; SW-S = spring wheat-soybean; C-S = corn-soybean;  
                  SW-WW F-C-C-S = spring wheat-winter wheat-flax-corn-corn-soybean;  
                  WW-CC-C-S = winter wheat-cover crop-corn-soybean; SW-WW-A-A-C-S =  
                  spring wheat-winter wheat-alfalfa-alfalfa-corn-soybean. 
                  ‡Means with the same letter are not significantly different at p ≤ 0.05.   

The COMET-VR model (Paper 3, Table 12) also predicted greater SOC levels in the 

corn-soybean simulations than other simulations for the other six cropping systems. A corn crop 

has been shown to produce and return greater than 40% of above-ground residue C to the soil 

surface compared to a soybean crop (Huggins et al., 1998). 
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High-residue producing crops such as corn and wheat have also been shown to produce 

greater SOM levels and have a greater potential for C and N sequestration than low-residue 

yielding crops such as alfalfa hay and soybean (Wright and Hons, 2005). Drinkwater et al. 

(1998) also reported the greatest amount of total residue produced and returned to the soil 

surface under a 15-year rotation study using corn-soybean rotation system over other rotations. 

Therefore, greater SOC level in the C-S rotation was likely due to corn residue biomass being 

produced and returned in greater quantity and frequency to the system. Corn residue dry matter 

also had lower lignin content (56 g/kg) compared to soybean residue dry matter (119 g/kg) and 

wheat residue dry matter (141g/kg) (Sylvia et al., 2005). Because of its resistance to 

decomposition, lower lignin content in corn residue may have also contributed to greater SOC 

level in the C-S rotation. 

Lower SOC in the WW-CC-C-S rotation was related to cover crops such as field pea 

(Pisum sativum L.) and forage radish (Raphanus sativus L.) that probably produced and returned 

low residue C to the system over the years under no-till management. Planting cover crops often 

has the same negative effects on SOC levels as planting green manure crops due to additional 

soil disturbance and increased SOC mineralization due to cover crop seeding (Allison, 1973). 

Therefore, lower SOC level in the WW-CC-C-S rotation might be attributed to increased SOC 

oxidation due to more frequent seeding of cover crops (pea and radish) into wheat stubble in this 

system. Field pea, forage radish, and soybean residue C may also have mineralized more rapidly 

due to lower C:N ratio and greater N content as evidenced by crop residue C:N ratios and C and 

N contents in the Table 8 (Paper 2). These qualities likely contributed to lower SOC level in the 

WW-CC-C-S rotation compared to the C-S rotation. Corn and soybean residues also were each 

being produced 25% of the time in the WW-CC-C-S rotation which decreased cumulative 
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residue C in the system. It has been reported that winter wheat produces greater residue biomass 

per a unit of grain yield compared to spring wheat (Black and Bauer, 1983), indicating that 

winter wheat is a high residue crop. In comparison, corn residue was being produced 50% of the 

time in the C-S rotation while winter wheat residue was being produced 25% of the time in the 

WW-CC-C-S rotation. Therefore, lower production of winter wheat residue biomass in the WW-

CC-C-S rotation reduced residue C in the system compared to greater production of corn residue 

biomass in the C-S rotation which increased residue C in the system. 

Lower SOC levels in the WW-CC-C-S rotation do not necessarily discredit the 

agronomic and environmental value of cover crops. Cover crops scavenge residual soil NO3-N, a 

process that captures and retains nutrients in their tissues for subsequent crop use. Cover crops 

use excess moisture during their growing period. Use of residual soil NO3-N and excess moisture 

by cover crops has a positive impact on environment because it reduces the potential losses of N 

(N2O and NO3-N) to the environment. Cover crops also reduce soil salinity by reducing 

evaporation rate from the soil surface and using excess water that otherwise would contribute to 

shallower water tables in these soils and similar soils. If legume crops are grown in long-term 

rotations, they can provide additional N to subsequent crops. Forage radish deep roots also can 

reduce soil compaction in non-smectitic soils through “biological drilling” and produce root 

channels that aid water infiltration. 

The 2006 and 2010 SOC values were subtracted from 2012 SOC values and divided by 

the years between samplings to determine differences between two sampling periods (Table 5). 

The WW-CC-C-S rotation (0.51 kg/m2) had lower total SOC than other rotations due to low-

residue crops such as forage radish, field pea, and soybean and additional soil surface 

disturbance. Table 5 also shows the SOC change over time periods between initial (baseline) and 
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final sampling. The WW-CC-C-S rotation had lower SOC level than other rotations although the 

increase in SOC per year was similar to the C-S and SW-WW-F-C-C-S rotations. The annual 

change in SOC was similar in the C-S, SW-WW-F-C-C-S, and WW-CC-C-S rotations because 

SOC in the C-S and SW-WW-F-C-C-S rotations was divided by six (6) years while SOC in the 

WW-CC-C-S rotation was divided by two (2) years.  

                     Table 5. Crop rotation treatments, sampling year and annual change in SOC.  

Crop Rotation 
Treatments† 

Sampling 
Year 

Change in 
Total SOC 

Annual 
Change in 

SOC 
  ---kg/m2--- ---kg/m2--- 

SW-WW-C-S 2012 - 2010 1.00a‡ 0.50a 
SW-C-S 2012 - 2010 1.28a 0.64a 
SW-S 2012 - 2010 0.79a 0.40a 
C-S 2012 - 2006 1.38a 0.23b 

SW-WW-F-C-C-S 2012 - 2006 1.44a 0.24b 
WW-CC-C-S 2012 - 2010 0.51b 0.26b 

SW-WW-A-A-C-S 2012 - 2010 0.95a 0.48a 
                    †SW-WW-C-S = spring wheat-winter wheat-corn-soybean; SW-C-S =  
                    Spring wheat-corn-soybean; SW-S = spring wheat-soybean;  
                    C-S = corn-soybean; SW-WW-F-C-C-S = spring wheat-winter wheat-flax- 
                    corn-corn-soybean; WW-CC-C-S = winter wheat-cover crop-corn-soybean;  
                    SW-WW-A-A-C-S = spring wheat-winter wheat-alfalfa-alfalfa-corn-soybean. 

              ‡Means with the same letter are not significantly different at p ≤ 0.05. 
 

The lower annual changes for the C-S and SW-WW-F-C-C-S rotations may have been 

due to an integration of SOC changes over a longer period of time (6 years) than the other 

rotations. The lower annual change in SOC levels could also reflect the effect of varying annual 

weather variation over a greater time period due to the fact that some seasons are wetter or dryer 

than others. 

SUMMARY AND CONCLUSIONS 

Restoration and maintenance of SOC can be achieved by increasing intensification and 

diversification of cropping systems as well as increasing the frequency of producing high residue 
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crops and retaining greater residue biomass on soil surface. Analysis of the 2006 and 2010 SOC 

data showed no significant differences between the seven rotations. Lack of significant 

differences was attributable to relatively similar abiotic conditions. The CCSP site had relatively 

uniform soils, common historical and present day drainage, and a long-term no-till management 

system although slopes and erosion potential in the WW-CC-C-S rotation was greater than other 

rotations. Soil OC changes under conservation tillage systems occur slowly over time. Since the 

CCSP site had been in a continuous no-till management for eleven years, the SOC increase might 

have been reduced due to a maturing SOC equilibrium. 

The C-S rotation had greater SOC for 2012 SOC compared to the WW-CC-C-S rotation. 

Greater SOC level in the C-S rotation was related to greater production of corn residue C in the 

rotation since the plots were established. More frequent cropping of corn in the C-S rotation was 

a probable reason why there was a greater SOC level in the system. Therefore, the C-S rotation 

has a greater potential to increase SOC in the Northern Great Plains. Analyses showed that 

rotations containing winter wheat appeared to have a neutral impact on SOC levels. Separating 

out the impact of winter wheat on SOC in the rotations in which it was included was difficult 

because winter wheat was being alternated with other crops in high diversity crop rotations. This 

made it difficult to compare the impacts of corn and winter wheat on SOC in the rotations in 

which corn and winter wheat were included such as C-S, SW-WW-C-S, SW-WW-F-C-C-S, and 

SW-WW-A-A-C-S rotations. Winter wheat is a high residue crop and also produces greater 

residue biomass per a unit of grain yield than spring wheat. This study suggests that cropping 

systems such as winter wheat-soybean and corn-soybean rotations can make a valid comparison 

between corn and winter wheat. The winter wheat-soybean rotation can also be compared with 

the spring wheat-soybean rotation in this study.  
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The study showed that SOC levels are not only influenced by intensity and diversity of 

cropping systems but also by the amount of residue biomass produced and returned by each crop 

to each system. Therefore, greater frequent production of high-residue crops and greater residue 

retention in the cropping systems has a greater potential to increase SOC levels. Low-residue 

crops such as cover crops (forage radish and field pea) and soybean may not increase SOC 

sequestration due to low residue production and increased soil erosion associated with low soil 

surface cover. The annual change in SOC was lower SOC level in the C-S rotation compared to 

the SW-WW-C-S, SW-C-S, and SW-WW-A-A-C-S rotations. The SOC in the C-S rotation was 

lower because the SOC in this rotation was divided by six years while the SOC in other rotations 

was divided by two years. 

Furthermore, although there was no pre-CCSP conventional tillage (baseline) SOC 

obtained prior to establishment of no-till management, SOC over the three sampling periods 

showed an increasing trend in SOC levels. The 2006/2010 SOC levels were slightly lower than 

the 2012 SOC levels at the CCSP site. The C-S rotation showed 8.09 kg/m2 for 2006 SOC and 

9.47 kg/m2 for 2012 SOC data. No-till cropping systems in the Northern Great Plains of the U.S 

have the potential to increase SOC levels and improve soil quality under a broad mix of crops 

and crop rotations including those with winter wheat. Because winter wheat produces greater 

residue biomass than spring wheat, it remains an essential crop for increasing residue production 

and soil surface cover in the Northern Great Plains region. 

Recommendation for Future Research Trials 

• Conventional tillage (baseline) SOC data was not taken at the Conservation Cropping 

Systems Project (CCSP) site prior to the establishment of the no-till system in 2001. The 

impacts of the no-till production systems on SOC sequestration and GHG emissions 
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reductions can only be determined by comparing conventional tillage SOC data to 

conservation tillage SOC data. It has been reported that pre-project (baseline) SOC data 

under conventional or other agricultural management systems should be determined and 

compared with post-treatment SOC level under conservation systems in order to 

accurately evaluate the rate of SOC trends (Olson, 2013).  
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PAPER 2. EVALUATION OF THE CONTRIBUTION OF AGED AND FRESH 

RESIDUES IN A NO-TILL SYSTEM TO SOIL QUALITY AND 

NUTRIENT CYCLING  

ABSTRACT 

Conservation crop residue management can increase SOC storage and increase nutrient 

cycling and availability. Crop residue retention tends to improve soil quality, increase water 

availability, reduce soil erosion, provide habitat for soil microbes, improve soil physical 

properties, and may increase crop yields. However, it is challenging to accurately predict the 

amount of nutrients released from previous crop residues over short-and long-terms. This study 

was conducted to evaluate the amount of residue biomass, residue C:N ratio, residue C and N, 

and residue N fertilizer deficit (supplemental N fertilizer requirement) from crop residue 

decomposition in no-till production at the Conservation Cropping Systems Project (CCSP) site, 

North Dakota. Aboveground aged and fresh residues were collected in spring 2011 and fall 2012, 

respectively. Aged residue was the residue from grain harvested from the fall 2010 crops and 

sampled in the spring 2011. Fresh residue was collected immediately after the fall 2012 crop was 

harvested. Crop residues can result in N immobilization due to N assimilation by 

microorganisms decomposing high C residues. Because supplemental N is required by most non-

legume crops, the objective of this study was to estimate the amount of N required by subsequent 

crops in a high residue environment. Statistical analysis of both aged and fresh residue showed 

slightly greater residue dry matter weight in aged residue than fresh residue. Analysis of aged 

and fresh residue C:N ratio showed wider C:N ratios in fresh residue than the aged residue. Both 

aged and fresh residue also showed wider C:N ratio in the corn (Zea mays L.)-soybean (Glycine 

max L.) rotation and narrower C:N ratio in the spring wheat (Triticum aestivum L.)-winter wheat 
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(Triticum aestivum L.)-alfalfa (Medicago sativa L.)-alfalfa-corn (Zea mays L.)-soybean (Glycine 

max L.). Fresh crop residues sampled in the 2012 fall showed narrower C:N ratios for legume 

and green manure crops than non-legume crops. Analysis of potential supplemental N fertilizer 

requirements showed greater potential N requirement for the fresh residue than the aged residue. 

Crop residue retention under no-till production has the potential to improve nutrient cycling and 

soil quality and protect soil surface from wind and water erosion.   

INTRODUCTION 

Crop Residue Retention Increases SOC and Improves Nutrient Cycling 

Recent shifts in climate patterns have encouraged scientists and governments to seek 

management strategies to reduce GHG emissions and increase SOC sequestration as well as 

nutrient cycling and availability in agricultural lands. Conserving residue management under no-

till production has been proposed as a strategy to increase SOC sequestration, improve soil 

fertility and nutrient cycling, and improve soil quality. The increase in atmospheric CO2 might 

also be reduced by sequestering CO2 with terrestrial vegetation, retaining SOC, and converting 

the atmospheric C to plant biomass and SOM (Wang et al., 2010). 

Residue retention and improved rotations under reduced tillage can increase SOM and 

crop productivity (Havlin et al., 1990). Intensified and diversified cropping systems can increase 

the amount of residue biomass returned to the soil surface which can subsequently increase SOC 

and improve soil quality (Grant et al., 2002). Intensified cropping systems under no-till 

production have a potential to increase SOC and improve the environment (Halvorson et al., 

1999; Halvorson et al., 2002). Their studies found greater SOC under no-till system than 

minimum and conventional tillage systems due to reduced tillage intensity. 
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Production of greater quantities of plant residues by intensifying cropping systems under 

no-till regimes can increase SOC and soil organic nitrogen (SON) levels in the soil surface 

(Ortega et al., 2002). Wright and Hons (2004) reported the greatest SOC and SON storage under 

intensified no-till system. Residue retention under reduced tillage regimes can also conserve soil 

moisture and subsequently increase crop production (Schlegel et al., 2005). Cover crops can also 

increase sustainable crop production by increasing SOM, improving the long-term soil N status, 

improving soil structure, conserving soil water, and reducing soil surface runoff and erosion 

(Frye and Blevins, 1989). Sustainable agriculture is important because its achievement maintains 

environmental quality while increasing per capita crop production, increases crop production on 

agriculturally suitable soils while restoring the productivity of degraded croplands and reduces 

agrochemical inputs while augmenting grower profit margin (Lal, 1991). 

Greater residue retention and slower decomposition rates observed in the reduced tillage 

systems tend to promote soil fertility by promoting the slow release of readily mineralizable 

organic forms of nutrients and generally increasing the nutrient reserve of soils (Schoenau and 

Campbell, 1996). However, high residue conditions may increase N requirements in intensified 

cropping systems by reducing N-mineralization contributed during shorter non-growing periods 

and increasing N immobilization and urea volatilization due to surface residue and surface-

applied urea-containing fertilizer (Schlegel et al., 2005). Nitrogen immobilization may be more 

important factor in N management than loss of N under residue-retained conditions (Allison, 

1973). It has also been reported that net N-mineralization will release inorganic N from crop 

residue if the amount of residue N is greater than the amount of N required by decomposing 

microbes (Cabrera et al., 2005). These conditions require a better understanding and prediction 

of N-mineralization rate under residue-covered tillage regimes.  
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Most crop residues have a high C:N ratio which leads to residue-N immobilization. 

Decomposition rate of residue is often linked to C:N ratio in crop residues (Allison, 1973; Havlin 

et al., 2005). A C:N ratio lower than 25:1 tends to result in a rapid oxidation of C and 

mineralization release of N, whereas a C:N ratio greater than 25:1 may require supplemental N to 

compensate for the residue N immobilization during residue decomposition. Crop residues that 

have similar C:N ratios may mineralize different quantities of mineral N due to differences in 

more or less recalcitrant organic compounds in other residues that are not reflected in the C:N 

ratios (Cabrera et al., 2005). 

Objectives 

The objectives of this study were to: 1) determine residue dry matter weights in both aged 

and fresh residues; 2) determine C and N returns in both aged and fresh residue within each of 

the seven cropping systems; 3) estimate the availability of N for subsequent crops within each 

cropping system; and 4) estimate the potential effects of the residue C and N contents on 

subsequent crop nutrient requirements.  

MATERIALS AND METHODS 

This study was structured as a randomized complete block design with three replications. 

Aboveground residue biomass was collected within each of the seven crop rotation treatments: 

spring wheat-winter wheat-corn-soybean, spring wheat-corn-soybean, spring wheat-soybean, 

corn-soybean, spring wheat-winter wheat-flax-corn-corn-soybean, winter wheat-cover crop-corn-

soybean, and spring wheat-winter wheat-alfalfa-alfalfa-corn-soybean. These were the same 

rotation treatments where soil samples for the determination of SOC were taken. The seven 

rotation treatments had different sequences of high-N requiring crops such as corn (Zea mays L.) 

and wheat (Triticum aestivum L.) and low-N requiring crops such as alfalfa (Medicago sativa 
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L.), field pea (Pisum sativum L.), and soybean (Glycine max L.) in their respective rotations. 

Crops in low-diversity systems such as C-S and SW-S rotations were more frequently planted 

than crops in high-diversity systems such as SW-WW-C-S and WW-CC-C-S rotations.  

Crops within each rotation treatment produced and returned residue biomass to that 

rotation although high residue yielding crops such as corn and wheat appeared to have produced 

and returned greater residue to that rotation than low residue yielding crops such as soybean, 

field pea, and flax (Linum usitatissimum L.). The quantity of residue in each rotation was a 

cumulative residue produced and returned to each rotation by all crops grown in that rotation 

since 2001 under no-till management. Fresh crop residues collected from winter wheat, spring 

wheat, corn, soybean, alfalfa, flax, field pea, and forage radish (Raphanus sativus L.) were 

sampled to determine residue C:N ratio and C and N contents for each crop prior to the crop 

contribution to the total residue in the plot. These residues were used for comparison with values 

obtained from the cumulative residues in each rotation treatment.  

Aboveground aged and fresh residues were collected in the spring 2011 and fall 2012. 

The 2011 spring residue sample was designated ‘aged residue’ because it was residue from crops 

harvested in 2010 and overwintered into 2011. The samples designated ‘fresh residue’ were 

collected in the fall of 2011 and 2012 and were immediately collected after the crops were 

harvested. The fresh residue sample in fall 2011 was affected by a hail and wind storm in July 

that may have impacted the quantity and quality of the residue, especially corn residue. Due to 

much lower fresh residue dry matter weight from fall 2011 sampling than the aged residue dry 

matter weight in the fall 2011sampling, fresh residue was resampled in fall 2012 and fall 2011 

fresh residue data was not used in this study.  
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A total of 78 plots were sampled during each sampling season. The main plot size for 

each plot was 67 m by 18 m (220 ft. by 60 ft.) (Area = 0.12 ha). Before sampling the residue, 

weights of three large buckets were first determined and recorded using a scale calibrated in 

kilograms. Three randomly-selected areas were defined using a 0.9 m by 0.9 m (3 ft. by 3ft.) 

steel quadrant frame in each plot within each plot where soil samples for the analysis of SOC 

were taken. Within each sampling area, all residues on the soil surface were collected in order to 

capture the crop residue variability. Any observed crop residue variability was likely caused by 

residue distribution during crop harvest. The surface residue was first raked, and then clipped at 

the soil surface. Loose and raked surface crop residues were collected and placed in the three 

buckets. When the buckets were filled with residue, the buckets were again weighed. Then, three 

handful residue subsamples were grabbed from each of the three buckets and placed in separate 

paper bags for laboratory analysis. All the residue sample bags were marked with a plot number 

and rotation treatment. The remaining residues in the three buckets were returned to the original 

plot areas from which they were harvested. 

In the laboratory, moist residue subsamples were immediately weighed and then oven-

dried at 60 °C. Next, residue samples were separated from soil particles that might have been 

included in the residues before they were analyzed for C and N contents. After the soil particles 

were removed from plant residues, the three residue subsamples in three separate bags from each 

plot were combined in one larger paper bag marked with a plot number and rotation treatment. 

The combined samples were again oven-dried at 60 °C to remove adsorbed moisture and then 

shredded using a garden shredder made by a Craftsman® Chipper Shredder to homogenize the 

residue from each plot. The shredded samples were again oven-dried at 60 °C before they were 

ground using a Wiley mill to pass a 2-mm screen. Three-50 mg ground subsamples from each 
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plot were weighed, placed in foil sheets and rolled into pellets for the C and N analysis. An 

Elementar VarioMax® CNS analyzer (Elementar AnalySensyteme GmbH, 2010) was used to 

determine C and N on the pellets using high temperature combustion. 

Determination of Residue Dry Matter Weight, C:N Ratio, and Fertilizer N Deficits 

The results from the laboratory analysis were used to determine residue dry matter 

weights, residue N deficits (supplemental N requirements), C: N ratios, and C and N 

concentrations in both aged and fresh residue. Residue dry matter weights were determined for 

the seven crop rotation treatments previously described. Percent residue moisture was 

determined to calculate residue dry matter weight (DMW) and C and N contents. Percent residue 

moisture (% H2O) was computed by subtracting oven-dry residue weight from wet residue 

weight and divided by the wet residue weight. The percent residue moisture was subtracted from 

1 to obtain the residue dry matter weight. The mass of residue in an oven-dry basis was 

computed by multiplying residue dry matter weight by the residue sample dry matter weight. The 

mass of residue was computed by dividing the mass of residue on an oven dry basis by the area 

(0.84 m2 = 9 ft2) of quadrant frame. Residue dry matter weight was multiplied by 10 to convert 

into megagrams per hectare (Mg/ha) (1Mg = 1000 kg; 1 ha = 10,000 m2). Carbon and N 

concentrations were computed by multiplying residue dry matter weight by the C and N contents 

in each residue sample.  

 “The term immobilized nitrogen, if strictly defined, refers to the nitrogen that is 

assimilated by the microorganisms that decompose organic matters that are added to soil or 

formed in it” (Allison, 1973). Presence of substantial quantities of crop residues that have N 

content less than 1.5 to 1.7% N (C:N ratio of 30:1 to 25:1) will generally reduce yields of most 

non-leguminous crops if a supplemental N fertilizer is not added to the soil to meet the needs of 
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the microbes and crops (Allison, 1973; Havlin et al., 2005). Therefore, the literature recommends 

that the quantity of supplemental N needed to compensate for N to be potentially immobilized 

should be determined by multiplying the residue dry matter weight by the difference between 

1.7% N and the residue N content. 

Havlin et al. (2005) noted that both residue N content and inorganic soil N are used by 

microorganisms during the residue breakdown when high C:N ratio residues are added to the 

soil. About 65% of residue C was liberated as CO2 during the decomposition process while 35% 

was incorporated into microbial biomass (Havlin et al., 2005). Microbial decomposition of fresh 

plant material usually converts 60% or more of the C into CO2 and only 5 to 25% of the C is 

incorporated into microbial biomass (Allison, 1973). Thus, the amount of N to be potentially 

assimilated in both aged and fresh residue was computed using the 1.7% N (Allison, 1973) and 

35% C (Havlin et al., 2005) values. The amount of supplemental N was determined by 

multiplying the residue dry matter weight by the amount of residue C to obtain the mass of C per 

hectare. The mass of C per hectare was multiplied by 35% C (approximate amount of C 

incorporated into microbial cells) (Havlin et al., 2005) to obtain the amount of C consumed by 

microbes decomposing the residue. The amount of N required by the microorganisms was 

computed by dividing the amount of residue C used by microorganisms decomposing residue by 

a microbial C:N ratio (8:1) (Havlin et al., 2005). 

The amount of N in plant residues was also used to estimate the amount of supplemental 

N fertilizer required in compensation for the residue N depleting effects due to microbial N 

immobilization. The amount of N in residue was computed by multiplying the residue dry matter 

weight per hectare by the difference of residue N content and 1.7% N (Allison, 1973). After the 

residue N was calculated, residue N fertilizer deficit (supplemental N fertilizer) was computed by 
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subtracting the amount of N required by microbes from the amount of N in the residue. The 

value obtained from this calculation was the amount that would be, in theory, required by a 

subsequent crop in order to meet its fertilizer N requirements. These estimated supplemental N 

fertilizer rates were considered as N fertilizer amounts that farmers and producers would need to 

apply to subsequent crops in crop production systems. 

Actual C:N ratios for fresh crop residues sampled in fall 2012 were also determined to 

evaluate the C:N ratios for eight individual crops including alfalfa, corn, flax, pea, radish, 

soybean, spring wheat, and winter wheat cropped at the CCSP site. These C:N ratios were to be 

compared with the accumulated residue for the aged and fresh residues collected from the seven 

rotations in the spring 2011 and fall 2012, respectively. These fresh residues were carefully 

selected to avoid collecting old residue from previous crops. The residue C and N content 

percent (%) values were multiplied by 10 to convert them into gram per kilogram (g/kg) and then 

the C:N ratios were computed by dividing the residue C values (g C/kg) by residue N values (g 

N/kg). 

Statistical Analysis 

The SAS GLM program and least significant differences (LSD) (SAS Institute, 2002-

2010) at P ≤ 0.05 were used to analyze residue dry matter weights (residue biomass), residue 

C:N ratios, residue N fertilizer deficits (supplemental N fertilizer requirements), and residue C 

and N contents for aged and fresh residues (Tables 6-7). The statistical analysis was done to 

determine if there were significant differences in the amount of residue dry matter weight, C:N 

ratios, residue N deficit (supplemental N requirement), and residue C and N for each of the seven 

crop rotations. The residue dry matter weight, C:N ratio, C and N contents, and N fertilizer 

deficit data reported in each of the seven rotations represented the grand total produced and 
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returned to each rotation by all crops in that rotation over a time period. Individual plot data are 

found in Tables A3 and A4. Results reported as means in Tables 6 and 7. The C:N ratios and 

residue C and N contents for fresh crop residues are reported in Table 8.  

RESULTS AND DISCUSSIONS 

The analysis of aged residue dry matter weight (residue biomass) is shown in Table 6. 

Total residue dry matter weight was significantly greater in the C-S rotation compared to the 

SW-WW-F-C-C-S, WW-CC-C-S, and SW-WW-A-A-C-S rotations. There was greater total 

residue biomass in the C-S rotation because corn residue was being produced and returned in 

greater amount and frequency to the rotation. Winter wheat and spring wheat generally produce 

lower amount of residue than corn. This was the reason why the C-S rotation had greater residue 

biomass compared to the SW-WW-F-C-C-S, WW-CC-C-S, and SW-WW-A-A-C-S rotations 

that had winter wheat and spring wheat.  

    Table 6. Crop rotation treatments, residue weight, residue C and N, residue C:N ratio and 
residue N fertilizer deficit for the spring 2011 aged residue sampling. 

Crop Rotation 
Treatments† 

Residue 
Weight Residue C  Residue N  

Residue C:N 
Ratio§ 

Residue N 
Fertilizer 
Deficit 

 --kg/ha-- --kg C/ha-- --kg N/ha-- -------- --kg N/ha-- 
SW-WW-C-S 10080ab‡ 4230ab 85.3b 49.4b 99.7a 

SW-C-S 9080ab 3799ab 77.7b 49.4b 88.5ab 
SW-S 8895ab 3660ab 54.8bc 36.1c 105a 
C-S 11768a 5018a 124a 66.6a 95.1a 

SW-WW-F-C-C-S 8359b 3443b 80.6b 54.9b 70.1bc 
WW-CC-C-S 7405bc 3145b 68.4b 55.7b 69.2bc 

SW-WW-A-A-C-S 4232c 1782c 22.3c 35.7c 55.7c 
   †SW-WW-C-S = spring wheat-winter wheat-corn-soybean; SW-C-S = spring  wheat-corn-   

soybean; SW-S = spring wheat-soybean; C-S = corn-soybean; SW-WW-F-C-C-S = spring 
wheat-winter wheat-flax-corn-corn-soybean; WW-CC-C-S = winter wheat-cover crop-corn-
soybean; SW-WW-A-A-C-S = spring wheat-winter wheat-alfalfa-alfalfa-corn-soybean. 

    ‡Means with the same letter are not significantly different at p ≤ 0.05. 
   §C:N = carbon:nitrogen ratio. 



 

78 
 

The total amount of residue that corn and soybean produced and returned to the SW-

WW-F-C-C-S, WW-CC-C-S, and SW-WW-A-A-C-S rotations was also lower than the total 

amount of residue that corn and soybean produced and returned to the C-S rotation. The 

difference in amount of residue being produced and returned to each of the four rotations was 

related to the frequency of planting corn, soybean, or wheat in each rotation. The main reason for 

lower total residue biomass in the SW-WW-F-C-C-S rotation was that flax residue was being 

produced and returned in lower amount and frequency to the rotation. Low frequent production 

of corn, soybean, and wheat residue in the SW-WW-F-C-C-S rotation also reduced the total 

amount of residue in the rotation. 

The WW-CC-C-S rotation had lower total residue biomass due to the production of low-

residue crops such as field pea, forage radish, and soybean which reduced the total amount of 

residue in the rotation. The amount of corn and wheat residue being produced in the WW-CC-C-

S rotation was also low due to low frequent production of these crops in the system. The total 

residue biomass in the SW-WW-A-A-C-S rotation was lowest due to the production of low 

residue-crops such as two alfalfa crops and soybean in the rotation. Alfalfa residue was also 

being removed as hay which contributed to lower total residue biomass in the SW-WW-A-A-C-S 

rotation compared to the C-S rotation where no residue was removed. 

Table 6 also shows analysis of residue C and N contents for the aged residue. Total 

residue C and N contents were significantly greater in the C-S rotation compared to the SW-

WW-F-C-C-S, WW-CC-C-S, and SW-WW-A-A-C-S rotations. Total residue C and N contents 

in the SW-WW-A-A-C-S rotation were significantly lower than other rotations, except the SW-S 

rotation. Greater total residue C and N contents in the C-S rotation were attributed to greater 

cumulative residue biomass collected from the rotation due to greater frequency of corn 
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production in the system. Higher residue C and N contents in the C-S rotation were also 

attributed to greater cumulative corn residue C and N being produced and returned 50% of the 

time to the soil surface in the rotation. Soybean residue with relatively greater C and N (Table 8) 

than other crops was also being produced and returned 50% of the time to the C-S rotation which 

contributed to the total residue C and N in the rotation. However, the SW-WW-C-S, SW-C-S, 

and SW-S rotations had lower total residue N in the systems compared to the total residue N the 

C-S rotation. Greater residue N content in the C-S rotation was attributed to slightly greater 

cumulative residue biomass collected in the system compared to the SW-WW-C-S, SW-C-S, and 

SW-S rotations although residue dry matter weight showed no significant difference in the four 

systems (Table 6). 

There were lower total residue C and N contents in the SW-WW-F-C-C-S rotation 

because lower total residue biomass was being produced and returned to the rotation due to 

lower frequency of corn production in the rotation. Although high residue crops such as corn and 

wheat were each present in the rotation two-thirds (67%) of the time, wheat biomass production 

is generally lower than corn. Flax residue which is high in C and low in N was also being 

produced in lower amount and frequency in the SW-WW-F-C-C-S rotation which contributed to 

lower total residue C and N contents in the rotation. Although flax showed greater residue C than 

other crop residues (Table 8), lower frequent production of flax in the SW-WW-F-C-C-S rotation 

resulted in lower cumulative residue C in the system. Lower residue C and N contents in the 

WW-CC-C-S rotation were due to the production of low-residue crops such as forage radish, 

field pea, and soybean in the system. Corn and soybean residue was also being produced in lower 

amount and frequency in the WW-CC-C-S which reduced total residue C and N contents in the 

system compared to the C-S rotation where greater corn and soybean residue was being produced 
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in greater quantity and frequency. Lower residue C and N contents in the SW-WW-A-A-C-S 

rotation were attributable to lower total residue biomass collected in the rotation due to low-

residue yielding crops such as two alfalfa crops and soybean. The removal of cumulative crop 

residue during haying of the alfalfa also influenced the total residue C and N in the SW-WW-A-

A-C-S rotation. Leaching of soluble residue C and N in alfalfa and soybean N-rich residue 

during the spring 2011 snowmelt and precipitation might have also contributed to lower total 

residue C and N in the SW-WW-A-A-C-S rotation. Greater total residue C content also 

corresponded with greater total residue N content in aged residue (Table 6). Rotations that 

showed greater total residue C also showed greater total residue N while rotations that showed 

lower total residue C also showed lower total residue N. As evidenced by residue biomass in 

Table 6, greater total residue C and N contents also were related to the total residue collected in 

each rotation (Table 6). 

Aged residue C:N ratios are also shown in Table 6. Total residue C:N ratio was 

significantly wider in the C-S rotation compared to the SW-S and SW-WW-A-A-C-S rotations. 

The wider total C:N ratio in the C-S rotation was attributed to low-N corn residue being 

produced and returned 50% of the time to the rotation which increased the C:N ratio in the 

rotation. The wider C:N ratio in the C-S rotation was also due to greater residue biomass 

collected from the rotation compared to the SW-WW-F-C-C-S, WW-CC-C-S, and SW-WW-A-

A-C-S rotations where lower residue biomass was collected. Lower C:N ratio in the SW-WW-A-

A-C-S rotation was attributed to alfalfa and soybean high-N residue being produced in the 

rotation as well as lower total residue biomass in proportion to greater residue N collected in the 

rotation. Lower total C:N ratio in the SW-S rotation was due to soybean N-rich residue being 

produced and returned 50% of the time to the rotation and with spring wheat biomass being 
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generally lower relative to corn residue in the C-S rotation. Therefore, the SW-S and SW-WW-

A-A-C-S rotations had lower C:N ratios due to relatively higher legume N-rich residues in the 

rotations. The C:N ratio also tends to decrease as crop residue decomposes due to conservation 

of N and evolution of C as CO2 (Brady, 1974). Leaching of soluble residue C has also been 

shown to decrease a C:N ratio of aged plant material compared to fresh plant material (M. 

Russelle, 2012, personal communication). This was probably the reason why the aged residue 

C:N ratios (Table 6) were slightly lower than the fresh residue C:N ratios (Table 7). 

Furthermore, although actual winter wheat residue had greater C:N ratio (101:1) than 

actual corn residue C:N ratio (73:1) (Table 8), the SW-WW-C-S, SW-WW-F-C-C-S, WW-CC-

C-S, and SW-WW-A-A-C-S rotations with winter wheat had lower total C:N ratios in the 

rotations compared to the C-S rotation without winter wheat (Table 6). Winter wheat aged 

residue was presumed to have been physically and biologically degraded over the spring season, 

thereby reducing soluble residue C before sampled in the spring 2011. But cornstalk residue may 

not have been physically weathered and biologically degraded by the same environmental 

conditions over the winter and spring seasons possibly due to the chemical composition of corn 

residue C. The fact that wheat was harvested in July and August while corn was harvested in 

October also allowed wheat residue to weather before corn residue although both corn and wheat 

were harvested in the fall 2010 and residues overwintered into the spring 2011. 

Winter wheat contribution to the rotations with winter wheat might have also been 

masked because residue C:N ratios were computed from combined crop residue samples across 

all plots within rotation treatments. Winter wheat was also less frequently cropped in the 

rotations in which it was included than corn in the C-S rotation. These conditions made it 

difficult to accurately determine winter wheat contribution to the rotations in which it was 



 

82 
 

included and further research is necessary to elucidate the differences in residue contribution by 

corn and winter wheat in cropping systems. 

Also, the aged residue C:N ratios for the seven rotations (Table 6) were greater than the 

C:N ratios of 25:1 to 30:1 required for residue N mineralization reported by Allison (1973). 

Legume crop residue C:N ratios and non-legume crop residue C:N ratios (Table 8) were lower 

and slightly greater, respectively, than the aged residue C:N ratios (Table 6) which showed that 

combined residues across the plots within the rotation treatments influenced the aged residue 

C:N ratios (Table 6). Wide C:N ratios (Table 6) have a greater potential to increase N 

immobilization due to low residue N. Therefore, application of supplemental N fertilizer to 

subsequent crops would be required to reduce N immobilization by microorganisms 

decomposing high C residues. 

The analysis of aged residue N fertilizer deficits (supplemental N fertilizer requirements) 

is shown in Table 6. Supplemental N fertilizer would be the amount of inorganic N fertilizer 

required by a subsequent crop as well as microorganisms decomposing high C residue. 

Supplemental N fertilizer need was significantly greater in the SW-WW-C-S, SW-S, and C-S 

rotations compared to the SW-WW-F-C-C-S, WW-CC-C-S, and SW-WW-A-A-C-S rotations. 

The SW-WW-C-S, SW-S, and C-S rotations required greater supplemental N fertilizer because 

corn and wheat residue with corresponding low N content was being produced and returned to 

the rotations. Corn and wheat residue with corresponding low N content may have been 

produced and returned 75% of the time to the SW-WW-C-S rotation which increased the need 

for supplemental N fertilizer in the rotation. Spring wheat residue with corresponding low N 

content was being produced and returned 50% of the time to the SW-S rotation which also 

increased the need for supplemental N fertilizer in the rotation. The C-S rotation required greater 
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supplemental N fertilizer because greater corn residue with low N content was being produced 

and returned 50% of the time to the rotation. There was less supplemental N fertilizer needed in 

the SW-WW-F-C-C-S, WW-CC-C-S, and SW-WW-A-A-C-S rotations because lower residue 

biomass was produced in each of these rotations. The SW-WW-A-A-C-S rotation also required 

less total supplemental N fertilizer because alfalfa and soybean N-rich residue was being 

produced and returned to the rotation. As evidenced by residue biomass (Table 6), rotations with 

greater residue biomass required more supplemental N fertilizer for a subsequent crop compared 

to rotations with lower residue biomass. Therefore, there was lower supplemental N fertilizer 

required in the SW-WW-A-A-C-S rotation due to lower total residue biomass with greater total 

N collected in the rotation. 

The analysis of fresh residue dry matter weight (residue biomass) is shown in Table 7. 

Total residue biomass was significantly greater in the SW-C-S and C-S rotations and lower in the 

SW-WW-A-A-C-S rotation. Greater total residue biomass in the SW-C-S rotation was due to 

corn and wheat residue being produced and returned in greater quantity and frequency to the 

rotation. Soybean residue also was being produced and returned 33% of the time to the SW-C-S 

rotation which contributed to the greater total residue biomass in the system. The C-S rotation 

had greater total residue biomass because corn residue was being produced and returned in 

greater amount and frequency to the rotation. Soybean residue also produced and returned 50% 

of the time to the C-S rotation which contributed to the total residue biomass in the system. 

Therefore, greater frequency of corn, soybean, and wheat production in the SW-C-S and C-S 

rotations increased total residue biomass in the systems. There was lower residue biomass in the 

SW-WW-A-A-C-S rotation because lower total residue biomass was collected in the rotation due 

to the removal of the accumulated crop residue and alfalfa biomass by haying compared to 
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rotations where greater residue quantity was collected. Corn, soybean, and wheat residue also 

was being produced and returned in lower amount and frequency to the SW-WW-A-A-C-S 

rotation which resulted in the lower residue biomass in the system. 

Analysis of fresh residue C and N contents is shown in Table 7. Total residue C and N 

contents were significantly greater in the SW-C-S and C-S rotations compared to the SW-S and 

SW-WW-A-A-C-S rotations. Greater residue C and N contents in the SW-C-S and C-S rotations 

were due to greater total residue biomass with corresponding greater total residue C produced in 

the two rotations. Corn and soybean residue were each produced and returned 50% of the time to 

the C-S rotation which influenced residue C and N in the rotation. Corn and soybean residue 

were also each produced and returned 33% of the time to the SW-C-S rotation which also likely 

influenced residue C and N in the rotation. Therefore, greater residue C and N contents in the 

SW-C-S and C-S rotations were due to greater frequency of corn, wheat, and soybean production 

in each of these rotations. 

Table 7. Crop rotation treatments, residue weight, residue C and N, residue C:N ratio and 
residue N fertilizer deficit for the fall 2012 fresh residue sampling. 

Crop Rotation 
Treatments† 

Residue 
Weight Residue C  Residue N  

Residue 
C:N ratio§ 

Residue N 
Fertilizer 
Deficit 

 --kg/ha-- --kg C/ha-- --kg N/ha-- -------- --kg N/ha-- 
SW-WW-C-S 9053ab‡ 3937ab 86.6ab 61.2ab 85.6abc 

SW-C-S 10354a 4488a 98.2a 58.4ab 98.1a 
SW-S 7243ab 3184b 68.0bc 58.6ab 71.3bc 
C-S 10278a 4503a 103a 64.4a 93.3ab 

SW-WW-F-C-C-S 8949ab 3890ab 85.2ab 61.6a 85.0abc 
WW-CC-C-S 8801ab 3861ab 92.5ab 67.0a 76.4abc 

SW-WW-A-A-C-S 6850b 2837b 56.4c 45.6b 67.7c 
         †SW-WW-C-S = spring wheat-winter wheat-corn-soybean; SW-C-S = spring  wheat-corn-     

soybean; SW-S = spring wheat-soybean; C-S = corn-soybean; SW-WW-F-C-C-S = spring 
wheat-winter wheat-flax-corn-corn-soybean; WW-CC-C-S = winter wheat-cover crop-
corn-soybean; SW-WW-A-A-C-S = spring wheat-winter wheat-alfalfa-alfalfa-corn-
soybean. 

             ‡Means with the same letter are not significantly different at p ≤ 0.05. 
         §C:N = carbon:nitrogen ratio. 
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The SW-WW-A-A-C-S rotation had lower total residue C and N contents than other 

rotations, except the SW-S rotation. This was likely due to low residue yielding crops such as the 

two alfalfa crops and soybean in the rotation. Alfalfa was also being removed as hay and thereby 

reduced residue C and N input into the rotation. The amount of residue C and N produced and 

returned to the SW-WW-A-A-C-S rotation by corn and wheat was also lower than the amount of 

residue C and N produced and returned to the SW-C-S and C-S rotations by corn and wheat over 

the same period of time. Difference in the amount of residue C and N produced and returned to 

each of these systems was related to the frequency of producing each crop in each system. 

Also, greater total residue C content corresponded with greater total residue N content in 

fresh residue (Table 7). Rotations that had greater total residue C showed greater total residue N 

while rotations that had lower total residue C showed lower total residue N. As evidenced by 

total residue biomass in each rotation in Table 7, greater total residue C and N contents were also 

related to the quantity of total residue collected in each rotation (Table 7). 

Fresh residue C:N ratios are shown in Table 7. Residue C:N ratios were significantly 

greater in the C-S, SW-WW-FX-C-C-S, and WW-CC-C-S rotations compared to the SW-WW-

A-A-C-S rotation. Greater C:N ratios in the C-S, SW-WW-FX-C-C-S, and WW-CC-C-S 

rotations were due to greater total residue production with corresponding greater total residue C 

in each of the rotations. There was a wider C:N ratio in the C-S rotation due to the production of 

greater corn residue C in proportion to lower N in the rotation. Winter wheat residue C:N ratio 

(101:1) (Table 8) may have increased the total C:N ratios in the SW-WW-FX-C-C-S and WW-

CC-C-S rotations. There was a narrower C:N ratio in the SW-WW-A-A-C-S rotation due to 

alfalfa and soybean N-rich residue in the rotation. Lower amount of residue biomass with greater 

residue N was also collected in the SW-WW-A-A-C-S rotation which reduced the C:N ratio in 
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the system. Table 8 also shows narrower C:N ratios for legume crops and wider C:N ratios for 

non-legume crops, indicating that legume crops have a greater potential to influence crop residue 

C:N ratio compared to non-legume crops. 

Also, the fresh residue C:N ratios for the seven rotations (Table 7) were much greater 

than the C: N ratios of 25:1 to 30:1 required for residue N mineralization reported by Allison 

(1973). Legume crop residue C:N ratios and non-legume crop residue C:N ratios (Table 8) were 

lower and slightly greater, respectively, than the fresh residue C:N ratios (Table 7) which showed 

that cumulative residue across the plots within the rotation treatments influenced the fresh 

residue C:N ratios (Table 7). These wide C:N ratios (Table 7) are likely to increase residue N 

immobilization due to low N. Supplemental N fertilizer would likely be required by subsequent 

crops to reduce a potential N tie-up due to microorganisms decomposing high C residue. 

The analysis of fresh residue N fertilizer deficit (supplemental N fertilizer requirement) is 

shown in Table 7. The supplemental N fertilizer was significantly greater in the SW-C-S rotation 

compared to the SW-WW-A-A-C-S rotation. As evidenced by residue biomass in the SW-C-S 

rotation (Table 7), greater supplemental N fertilizer requirement for the SW-C-S rotation was 

due to greater total residue quantity produced in the rotation. The SW-WW-A-A-C-S rotation 

required lower supplemental N fertilizer because alfalfa and soybean N-rich residue was being 

produced and returned to the rotation. Also, as evidenced by residue biomass in each rotation 

(Table 7), rotations with greater residue biomass required greater supplemental N fertilizer 

compared to rotations with lower residue biomass. This was the reason why the SW-WW-A-A-

C-S rotation which had lower residue biomass required lower supplemental N fertilizer than the 

rotations which had greater residue biomass.  
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The actual C:N ratios and residue C and N concentrations for fresh crop residues are 

shown in Table 8. These C:N ratios were wider for non-legume crops such as corn, flax, spring 

wheat, and winter wheat and narrower for legume crops such as alfalfa, pea, soybean, as well as 

forage radish, which was due to legume crops and radish having greater N contents than non-

legume crops. Winter wheat residue showed the greatest C:N ratio (101:1) similar to a C:N ratio 

(98:1) reported by Kumar et al. (2012). Greatest winter wheat residue C:N ratio was due to 

lowest residue N in proportion to residue C. Among legume crop residues (Table 8), soybean 

residue showed the greatest C:N ratio (53:1) similar to a C:N ratio (54:1) reported by Smith and 

Sharpley (1990). The greatest soybean residue C:N ratio (53:1) was due to the fact that its 

residue was sampled when dry (Table 8) compared with fresh plant material for pea, radish, and 

partially green alfalfa residue at sampling. 

Pea residue (18:1) and radish residue (8:1) had much lower C:N ratios compared to other 

fresh crop residues due to greater residue N in proportion to residue C. Pea and radish were in a 

vegetative green stage when sampled and as cover crops, pea and radish were not yet killed by 

frost at sampling.  

   Table 8. Crop residues, scientific names, residue N, residue C and residue C: N ratios for the 
fresh crop residues for the fall 2012 sampling. 

Crop 
Residues Scientific Names Residue N Residue C 

Residue 
C:N 

Ratios§ 
  --g N/kg-- --g C/kg-- -------- 

Alfalfa Medicago sativa L. 21.8 446 21.0 
Corn Zea mays L. 5.90 429 73.0 
Flax Linum usitatissimum L. 6.10 472 77.0 
Pea Pisum sativum L. 24.7 442 18.0 

Radish Raphanus sativus L. 44.2 364 8.00 
Soybean Glycine max L. 8.40 443 53.0 

Spring wheat Triticum aestivum L. 5.60 425 76.0 
Winter wheat Triticum aestivum L. 4.40 444 101 

     §C:N = carbon:nitrogen ratio. 
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This was why pea and radish residues had much lower C:N ratios because green organic 

materials most often contain greater N than dry plant materials. These C:N ratios also show the 

potential of each crop residue to mineralize or immobilize N. Legume crops had greater residue 

C and N contents than non-legume crops as evidenced by residue C and N (Table 8). These 

residue C and N contents show the amount of residue C and N each crop can produce and 

ultimately return to cropping systems. Nitrogen contents in each crop residue can determine 

whether residue N will result in N mineralization or N immobilization. 

Residue N has been reported to mineralize in the order of alfalfa > peanut > soybean > 

oat ≥ sorghum > wheat > corn (Smith and Sharpley, 1990). Therefore, high-N legume residue 

has the potential to increase N mineralization and N availability for subsequent crops compared 

to low-N non-legume residue. Greater N contents in legume crop residues show the importance 

of alternating high N-use crops such as corn and wheat with low N-use crops such as alfalfa, pea, 

and soybean. Including legume crops in cropping systems can reduce supplemental N fertilizer 

required by non-legume crops. Growers can also gain greater economic benefits by reducing the 

amount of supplemental N fertilizer that can be applied to non-legume crops. Reduction of 

supplemental N fertilizer that can be applied to non-legume crops can also reduce environmental 

problems often associated with greater fertilizer N application in cropping systems that do not 

include legume crops.  

SUMMARY AND CONCLUSIONS 

Aboveground crop residue was evaluated to determine the quantity of residue biomass 

produced and returned to each rotation treatment and impact of residue retention on nutrient 

cycling in the northern Great Plains. Aged and fresh residue biomass was greater in the C-S 

rotation. The main reason for greater residue biomass in the C-S rotation was that greater 
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cumulative corn residue was being produced in this rotation. Aged and fresh residue biomass 

was lower in the SW-WW-A-A-C-S rotation due to lower production of corn and wheat in the 

rotation. Low-residue producing crops such as alfalfa and soybean which were being produced in 

the SW-WW-A-A-C-S rotation also contributed to the lower total residue biomass in the system.  

The C:N ratios are generally used to predict the rate of residue N mineralization-

immobilization and decomposition. Residue C:N ratios are also important in ensuring that there 

is sufficient N available to meet fertilizer N requirements of subsequent crops. There was lower 

C:N ratio in the aged residue than fresh residue due to greater residue C in fresh residue 

compared to the aged residue. The aged and fresh residue C:N ratios were greater than a C:N 

ratio of 25:1 to 30:1 which showed that supplemental N fertilizer would likely be required by 

subsequent crops to reduce residue N immobilization. Legume crops and forage radish had lower 

C:N ratios than non-legume crops which showed that legumes can increase residue N 

mineralization and non-legumes can promote residue N immobilization. Legume crops can also 

increase N availability for subsequent crops due to increased N mineralization. Lower C:N ratios 

for legumes and forage radish were related to legumes having greater N content in proportion to 

greater residue C content. Winter wheat residue had the greatest C:N ratio (101:1) compared to 

other crop residues due to its greater C relative to lower N. Radish residue had the lowest C:N 

ratio (8:1) compared to other fresh crop residues due to its greater N content and also due to the 

fact it was still in a green vegetative stage when sampled compared to other crop residues 

sampled when dry.  

The C-S rotation had greater total C and N contents for aged and fresh residue because 

corn residue was being produced and returned in greater quantity to the rotation. The main 

reason for greater total residue C and N in the C-S rotation was that greater total residue C and N 



 

90 
 

was being produced and returned to the rotation by corn. Soybean residue also was being 

produced 50% of the time in the C-S rotation which contributed to greater total residue biomass 

in the system. The SW-WW-A-A-C-S rotation had lower total residue C and N contents for the 

aged and fresh residues because corn and wheat residue was being produced and returned in 

lower amount and frequency to the rotation. Lower total residue C and N in the SW-WW-A-A-

C-S rotation was also due to lower total residue biomass collected in the rotation compared to 

other rotations where greater total residue biomass was collected. In comparison, corn residue 

was produced and returned in greater amount to the C-S rotations while corn residue was 

produced and returned in lower amount to the SW-WW-A-A-C-S rotation. Residue C and N 

contents in cropping systems are not only increased by intensification and diversification of 

crops but also by frequency of planting each crop in cropping systems. Planting high residue 

producing crops such as corn and wheat more frequently can increase residue C and N on the soil 

surface than planting corn and wheat less frequently. This was the reason why the C-S rotation 

which had greater frequency of corn production in the system contained greater residue C and N 

compared to the rotations which had lower frequency of corn and wheat production in the 

systems. The actual residue C and N contents for legume and non-legume crops showed the 

amount of C and N each crop can produce and return to cropping systems. Residue C and N 

contents show that legume crop residues can increase N mineralization and N availability for 

subsequent crops than non-legume crop residues, indicating that non-legume crop residues may 

require additional N fertilizer to reduce residue N tie-up by microorganisms decomposing high C 

residues. 

The residue N fertilizer deficits were potential supplemental N fertilizer requirements 

required by subsequent crops to reduce residue N immobilization due to microorganisms 
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decomposing high C residue. Supplemental N fertilizer requirements were slightly greater for 

fresh residue than aged residue. Aged residue required lower supplemental N fertilizer probably 

due to leaching of soluble residue C and N during the 2011 spring snowmelt and precipitation. 

Lower supplemental N fertilizer requirement for the aged residue was also due to lower total 

residue biomass collected from the aged residue in the spring 2011 which was due to partial 

decomposition of the residues between harvest and crop seeding the following spring compared 

to greater total residue biomass collected from the fresh residue in the fall 2012. The amount of 

residue biomass in each of the seven rotations also corresponded with the mount of supplemental 

N fertilizer required by subsequent crops to reduce residue N immobilization in each system. 

Rotations that had greater residue biomass required greater supplemental N fertilizer for the 

systems while rotations that had lower residue biomass required lower supplemental N fertilizer 

for the systems. This shows that high residue biomass can increase supplemental N fertilizer 

requirement for subsequent crops and microorganisms decomposing high C residue under no-till 

management systems.  

Recommendations for Future Research Trials                                                                                                                                                                                                                                 

Sustainable management of cropping systems is required to balance nutrient removal 

with nutrient replenishment and mitigate SOC emissions in the Northern Great Plains. The 

estimated supplemental N requirements are the estimated N fertilizer amounts intended to offset 

the residue N immobilization due to microbes decomposing high C residues. These estimated N 

fertilizer amounts should be applied to subsequent crops as recommended by Allison (1973). 

The intent of the recommendations is to provide information that will be important for 

determining N fertilizer requirements and adjusting fertilizer application rates for different crops 

in cropping systems. Different locations have different climatic conditions and soil types. 
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Therefore, use of these sources and estimated supplemental fertilizer amounts should be based on 

site-specific climatic conditions, soil types, and SOM levels. The economic value of all these 

recommendations should be determined in future studies to help determine “return to N” 

fertilizer based on grain income as recommended by Franzen et al. (2011). Specific areas in 

using residue information in the future include: 

• A study already conducted in North Dakota showed that spring wheat and durum wheat 

(Triticum durum Desf.) required 50 kg N/ha less fertilizer under long-term no-till systems 

than conventional systems (Franzen et al., 2011). That study indicated that residue 

information can potentially be used to modify fertilizer N recommendations to account 

for N mineralized from the previous crop residue. The intent of that study was to provide 

spring wheat and durum growers in North Dakota with fertilizer N recommendations they 

could use in their nutrient management, N adjustment, and timing of N application in 

long-term no-till (> 5 years) wheat production. A fertilizer N recommendation guide in 

Montana suggests that fertilizer N rate should be decreased by 45 kg N/ha (40 lb. N/ac) 

where the previous crop was alfalfa (Dinkins and Jones, 2007). A recent study conducted 

in Montana reported that urea-based and anhydrous ammonia fertilizers should be 

incorporated under high residue conditions to minimize a conversion of urea to NH4
+ and 

subsequent NH3 volatilization (Jones et al., 2013). Another study conducted in Wisconsin 

reported that 34 kg N/ha (30 lb. N/ac) should be added to corn where at least 50% of the 

soil surface was covered by previous corn residue (Bundy, 1998). This additional 

fertilizer N would be mainly required to compensate for low annual amount of 

mineralized N from SOM and N-immobilized in surface residues under high corn residue 

conditions. This amount would not be required if the previous crop was either soybean or 
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forage legume. But 34 kg N/ha can probably be halved for corn that may be planted in 

100% residue-covered surface similar to the CCSP site. Reduction of 34 kg N/ha under 

100% residue treatments would be necessary because high residue amount increases 

residual soil NO3-N for the next crops. “High levels of residual inorganic N in the root 

profile contribute a major portion of the total plant N and should be taken into account 

when formulating fertilizer N recommendations for improving N use efficiency” (Sowers 

et al., 1994). Therefore, residual soil NO3-N tests are also recommended for future 

determination of fertilizer N. Using such studies in conjunction with site-specific 

conditions will be important when evaluating future use of these estimated N fertilizer 

amounts.  

• The amount of fertilizer N required by corn is almost always greater than the amount of 

fertilizer N required by other crops. Therefore, additional experiments should be 

established to determine the amount of fertilizer N required by high-N consuming crops 

such as corn and wheat and low-N requiring crops such as alfalfa, pea, and soybean. 

Different plots will need to be established. Sizes of sub-plots can be designed to fit into 

the current sizes of plots at the CCSP site with different rates of the supplemental N 

fertilizer being applied to different sub-plots to determine the exact amount each crop 

will need to attain its yield potential goal and protein content. For example, 0 kg N/ha, 50 

kg N/ha, 100 kg N/ha, and 150 kg N/ha, and 200 kg N/ha of N fertilizer amounts should 

be applied to different plots with the same crop to determine the yield potential and grain 

protein content and relative to the residue N content. These N fertilizer rates should be 

split-applied to crops to enhance seed germination, reduce in-season N deficiencies, and 

reduce crop growth variability, with greater in-season N to achieve both grain yield and 
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protein content (Jones and Olson-Rutz, 2012). Spring N application to crops is also 

important because it increases N uptake efficiency and reduces N (N2O and NO3-N) 

losses to the environment compared to fall N application. This work will need to be 

conducted on long-term no-till trials in order to make valid assumptions and conclusions. 

A drawback to conducting this research is lack of long-term research sites that would 

allow research to continue for more than five years. A five-year study under no-till 

management can provide a valid evaluation of its impacts on SOC sequestration, soil 

health, and nutrient cycling, especially with regard to N.  

• It has been reported that residue left on the soil surface may increase NH3 volatilization 

(De Ruijter et al., 2010). Low-N residue such as corn and wheat residues may not result 

in NH3 volatilization under high residue cropping systems. However, high-N residue such 

as alfalfa and soybean residues may increase NH3 volatilization if not incorporated in the 

soil. Therefore, incorporating high-N residue can reduce NH3 volatilization and increase 

NH4
+ availability for subsequent crops (De Ruijter et al., 2010). Incorporating N-rich 

residue can also reduce supplemental N fertilizer required by subsequent crops due to 

increased N availability in the soil. One way to experimentally conduct this would be to 

compare two plots where N-rich residue would be surface-applied in one plot and N-rich 

residue would be soil-incorporated in another plot. This would likely defeat the purpose 

of no-till management but a comparison still should be made to advance science.  

• Fertilizer N management and recommendations have traditionally relied on soil tests, 

protein content, and potential yield goals. It has been reported that soil test and previous 

year grain yield variation techniques cannot predict the nutrient availability of mobile 

nutrients such as N fertilizer during the reproductive growth of winter wheat and similar 
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crops (Stone et al., 1996). A study has also reported that fertilizer N application to wheat 

during reproductive growth will increase the potential for the crop to increase its grain 

yield and protein content (Jones and Olson-Rutz, 2012). “The highest recovery of added 

fertilizer N in the crop is obtained when a readily available form of nitrogen is applied 

directly to the growing crop, and in such amounts that it will be assimilated promptly” 

(Allison, 1973). A study has also shown that N uptake by crops is often low at the 

beginning of the growing season, high during vegetative stage, and rapidly reduce as 

crops reach their maturity (Millar et al., 2010). Therefore, new technologies should be 

used for detecting mid-season N deficiencies and recommending N fertilizer during crop 

growing seasons. Chlorophyll meter and normalized difference vegetation index (NDVI) 

have recently been used to asses a mid-season N stress (Stone et al., 1996; Schlegel et al., 

2005). These technologies can be used to apply and manage the estimated supplemental 

N fertilizer rates for the future research trials. Although these new technologies require 

specialized equipment (Schlegel et al., 2005), they are important for evaluating in-season 

N stress and recommending N fertilizer for growing crops. These technologies can help 

growers and scientists to detect N stress in some parts of field, determine timing of N 

application, adjust N fertilizer rate, improve the N use efficiency (NUE), increase yield 

and residue biomass, and eliminate overestimation of N fertilizer. Implementing these 

techniques as well as synchronizing N application with plant N demand can increase N 

use efficiency and reduce N (N2O and NO3-N) losses to the environment. 
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PAPER 3. EVALUATION OF SOIL C SEQUESTRATION, GREENHOUSE GAS 

EMISSIONS, AND SOIL LOSS IN A NO-TILL SYSTEM USING THE 

VOLUNTARY REPORTING TOOL COMET-VR AND RUSLE2. 

ABSTRACT 

Models have been used to estimate SOC levels, GHG emissions, and soil losses under 

agricultural management practices in the United States and the world. The CarbOn Management 

Evaluation Tool-Voluntary Reporting (COMET-VR) and Revised Universal Soil Loss Equation 

version 2 (RUSLE2) models were used to estimate SOC levels and soil losses under the seven 

crop rotations, respectively. The Soil Conditioning Index (SCI) and Soil Tillage Intensity Rating 

(STIR) programs in the RUSLE2 model were used to predict the impacts of the seven rotations 

on SOC conditions and soil disturbance ratings, respectively. The SW-WW-C-S, SW-WW-F-C-

C-S, WW-CC-C-S, and SW-WW-A-A-C-S rotations with winter wheat and SW-C-S, SW-S, and 

C-S rotations without winter wheat were evaluated using these models. The COMET-VR model 

predicted slightly greater SOC levels and GHG emissions in high-intensity rotations with winter 

wheat compared to low-intensity rotations without winter wheat. The model estimated lower 

SOC levels in the rotations such as SW-S and C-S compared with the rotations such as SW-WW-

F-C-C-S and SW-WW-A-A-C-S. A comparison of ten-year projected model-based and field-

based SOC levels showed that the model estimated lower SOC levels in the seven rotations than 

the actual SOC levels. The RUSLE2 model estimated lower soil losses for 3% slope and greater 

soil losses for 6% slope as expected with a correlation of r = 1.00. The SW-WW-C-S, SW-WW-

F-C-C-S, and SW-WW-A-A-C-S rotations had lower soil losses than the SW-C-S, SW-S, and C-

S rotations for 3% and 6% slopes, respectively. The WW-CC-C-S rotation had greater soil losses 

compared to other six rotations due to lower residue cover in the system. The SCI and STIR 
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predicted positive SOC conditions and low soil disturbance ratings, respectively. Low soil losses, 

positive SCI values, and low STIR values reflected the positive impact of crop residue retention 

and crop rotation under no-till management at the CCSP site.  

INTRODUCTION 

Use of Models to Estimate GHG Emissions, SOC Storage, and Soil Losses 

Increased global demand for food to meet the growing human population has increased 

soil surface disturbance, fossil fuel consumption, biomass burning, and GHG emissions (Follet et 

al., 2005). The GHGs associated with the climate change include carbon dioxide (CO2) and 

nitrous oxide (N2O) (Bracmort, 2010). As gases are released into the atmosphere, they trap heat 

within the atmosphere and increase the air temperature which may consequently lead to the 

greenhouse effects (USDA-NRCS, 2007). The N2O may contribute to the global climate change 

(Yung et al., 1976) and destruction of the stratosphere layer (Crutzen, 1981). 

No-till systems have been linked to increased N2O emissions due to greater NH4
+ and 

NO3
- on the soil surface compared to conventional tillage systems (Mackenzie et al., 1998). 

Staley et al. (1990) reported high N2O emissions under residue no-till system due to greater 

mineralizable SOC on the soil surface. The N2O emissions are influenced by soil temperature, 

volumetric soil water content, precipitation, and air temperature (Omonode et al., 2010). Higher 

N denitrification and N2O emissions have been reported under high residue conditions system 

due to greater soil moisture, SOC, and microbial populations on the soil surface (Doran, 1980; 

Aulakh et al., 1984). 

Corn and soybean have been observed to be responsible for the greatest N2O emissions in 

the USA (Del Grosso et al., 2005). Fall N application has been associated with greater N2O 

emissions than spring N application due to increased wetness during the fall season snowmelt 
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and precipitation (Novoa and Tejeda, 2006). Higher N2O emissions have been reported from 

corn systems due to greater N application to corn under no-till systems (Mackenzie et al., 1997; 

Mackenzie et al., 1998). However, a study by Grandy et al. (2006) reported increased SOC and 

improved soil physical structure and no increased N2O emissions under no-till regime. They also 

reported that increased SOC storage can offset N2O emissions under no-till management 

systems. 

The Natural Resources Conservation Services (NRCS) focuses its efforts on global 

climate change by: 1) quantifying the effects of conservation practices on GHG emissions and 

SOC sequestration; 2) refining incentives in conservation programs to address the impacts of 

climate change on agriculture; 3) developing and encouraging use of conservation practices that 

reduce GHG emissions; and 4) enhancing opportunities to increase farm profitability on the 

emerging voluntary emission trading markets (USDA-NRCS, 2011a). Conservation agricultural 

practices have a potential to reduce atmospheric concentrations of GHGs by storing SOC, 

reducing GHG emissions, improving N fertilizer use, and reducing fossil fuel combustion. 

Proposed management practices will help producers save money and time while 

improving their environment around them and their community livelihoods. The COMET-VR 

model was developed to help producers, farmers, and scientists estimate and report stored SOC 

and GHG emission reductions under exiting agricultural conditions and conservation 

management practices. The model allows users to quantify their SOC changes and provides them 

with the ability to determine the effect of their production practices on SOC levels and CO2 and 

N2O emissions (USDA-NRCS, 2012). As part of NRCS policy, producers who can use the 

model can be given a one-time incentive of $500 under the NRCS Conservation Security 

Program (CSP) (USDA-NRCS, 2012).   
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Soil erosion reduces soil productivity when clay and sodium-saturated subsoil is exposed 

and subsequently reduces infiltration, increases surface runoff, and accelerates erosion on down 

slope soils (National Soil Erosion-Soil Productivity Research Planning Committee, 1981). The 

RUSLE2 model was developed to help farmers, scientists, and land managers to estimate soil 

losses under conditions related to cropping systems, management strategies, and erosion control 

practices (Angima et al., 2003). The Soil Conditioning Index (SCI) and Soil Tillage Intensity 

Rating (STIR) programs in the RUSLE2 model were developed to predict the effects of cropping 

systems on SOC conditions (Warren Wilson College, 2012) and tillage disturbance rating 

(USDA-NRCS, 2008a, 2011b), respectively. 

Objectives 

The objectives of this study were to determine the ability of: 1) COMET-VR model to 

estimate SOC and CO2 and N2O emissions under no-till management; 2) RUSLE2 model to 

quantitatively predict soil losses in no-till production; and 3) SCI and STIR programs to predict 

SOC conditions and calculate soil disturbance ratings, respectively.  

MATERIALS AND METHODS 

COMET-VR Modeling Procedure 

The COMET-VR model was originally developed for the US Corn Belt region and 

therefore did not have cropping systems in the northern Great Plains. The COMET-VR was used 

to evaluate SOC storage and GHG emissions under rotations with winter wheat (Triticum 

aestivum L.) and rotations without winter wheat. The SOC values and GHG emissions reported 

in each rotation were values accumulated over eleven years under no-till management at the 

CCSP site.  

Rotations with winter wheat were: 
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• Spring wheat-winter wheat-corn-soybean (SW-WW-C-S) 

• Spring wheat-winter wheat-flax-corn-corn-soybean (SW-WW-F-C-C-S) 

• Winter wheat-cover crop-corn-soybean (WW-CC-C-S) 

• Spring wheat-winter wheat-alfalfa-alfalfa-corn-soybean (SW-WW-A-A-C-S) 

Rotations without winter wheat were: 

• Spring wheat-corn-soybean (SW-C-S) 

• Spring wheat-soybean (SW-S) 

• Corn-soybean (C-S) 

All simulations were based on the number of crops in each cropping rotation (Tables 9-

15). Crops in each rotation were split into two-crop simulations each. Crop rotations that had 

more crops had more simulations than crop rotations that had fewer crops. Crops were split 

because the COMET-VR model had limited number of rotations and, therefore, did not reflect all 

possible combinations of crop rotations at the CCSP site. Different rates of N fertilizer for 

different crops were entered into the COMET-VR screen, based on the information obtained 

from the CCSP site. 

Different rates of N fertilizer entered for individual crops or combination of crops may 

have influenced the COMET-VR outputs, especially N2O values. The outputs were reported as 

soil and biomass SOC, soil and biomass CO2 emission equivalents, percent uncertainty, annual 

N2O emissions, and N2O-based CO2 emission equivalents. The COMET-VR converted a 

megagram (Mg) soil and biomass SOC into soil and biomass CO2 emission equivalents using 

3.667 Mg of CO2 per Mg of SOC. Annual N2O emissions were converted into N2O-based CO2 

emission equivalents using the global warming potential (GWP) value of 310.  
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The model-based outputs were computed on a yearly basis (Mg/yr). The simulated values 

for all simulations were summed for each rotation. The total simulated values were multiplied by 

10 years to present SOC sequestration levels and GHG emissions over the next decade for each 

of the seven crop rotations. The simulated values were also divided by 10 hectares (the area of 

the CCSP site) for comparison with the field-based SOC values on a per hectare basis. The 

COMET-VR was able to determine an uncertainty value for the SOC and CO2 emission 

equivalents. The uncertainty value (±19) for SOC and CO2 emission equivalents was consistent 

for all simulations for the seven crop rotations. 

The uncertainty value showed that modeled SOC estimates could vary by +19 to -19% of 

the simulated value. But the model was unable to determine the uncertainty value for the annual 

N2O and N2O-based CO2 emission equivalents. This was partly attributed to lack of sufficient 

field data based on the location, soil type, and the management information that was provided on 

the COMET-VR data entry screens for the CCSP site. Simulations that had continuous corn, 

continuous winter wheat, corn-winter wheat, corn-soybean, and continuous soybean had greater 

stored SOC levels and N2O emissions than simulations that had continuous corn-spring wheat, 

continuous spring wheat, soybean-spring wheat, soybean-winter wheat, spring wheat-barley, and 

pulse-winter wheat. 

RUSLE2, SCI, and STIR Modeling Procedure 

RUSLE2 1.26.6.4 was used to compute soil losses under the winter wheat rotations and 

control rotations previously described. The Soil Conditioning Index (SCI) and Soil Tillage 

Intensity Rating (STIR) programs in RUSLEL2 were used to predict the effects of the rotations 

on SOC conditions and soil disturbance ratings, respectively. The RUSLE2 model was first 

programmed using relevant information in North Dakota.  
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Information included precipitation, temperature, soil, topography, land use, cover 

management, and supporting practices for all counties in North Dakota. After RUSLE2 1.26.6.4 

was downloaded, a profile was created under profile worksheet. Location, topography, soil, 

cover management, and supporting practices were included in the profile. The profile was also 

used to store the built-base management sequences. When the profile was used, seven steps were 

executed to determine soil losses, sediment yields, SOC conditions, and soil disturbance ratings.  

Step 1: Choose Location to Set Climate  

Sargent County was the location where the CCSP site at Forman was located.  

Therefore, it was selected in the list of all counties in North Dakota.  

Step 2: Choose Soil Type  

Aa Aastad clay loam/Aastad clay loam 90% was selected in the soil screen under Sargent 

County because it was the dominant soil type at the CCSP farm. Clay loam was chosen because 

it was a dominant soil texture in the C-S and SW- WW-F-C-C-S rotations sampled in 2006 

(Augustin, 2009).  

Step 3: Set Slope Topography 

Default slope steepness and slope length were changed in the topography screen. Slope 

length of 67 m (220 ft.) and slope steepness of 3% and 6% were used to compute soil loss 

estimates in (Fig.5). Both slopes were used because the slope of majority of plots ranged from 

3% to 6% at the CCSP site. These slopes were also used to evaluate the impacts of different 

slopes on soil erosion rates and SOC conditions as determined by RUSLE2 and SCI, 

respectively. Each rotation was run for both 3% and 6% slopes and slope length of 67 m (220 

ft.). For example, the C-S rotation was first run for 3% slope and 67 m (220 ft.) slope length (Fig. 
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5). The C-S rotation was again run for 6% slope and 67 m (220 ft.) slope length in (Fig. 6). The 

same procedure was used to compute soil loss estimates for other six crop rotations.  

 
Figure 5. Diagram of the RUSLE2 profile for the C-S rotation (3% slope). 
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Figure 6. Diagram of the RUSLE2 profile for the C-S rotation (6% slope). 

Step 4a: Select Base Management  
 

There were three major crop management zones (CMZ 01, CMZ 02, and CMZ 03) 

available in the RUSLE2 1.26.6.4 profile screen for North Dakota. Sargent County in North 

Dakota was included under crop management zone (CMZ 01). In the base management screen, a 
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single year/single crop template was selected under CMZ 01. Under the single year/single crop 

template, each crop was selected from the crop menu list to build base management sequences. 

Step 4b: Modify Management Sequence if Desired 

Each crop management sequence was modified and built to fit each crop rotation in the 

RUSLE2 profile screen. Under the single year/single crop template in CMZ01, each crop was 

“clicked” twice to provide different management options such as plow-based, fallow, and no-till. 

No-till operation was selected for all crops to build all management sequences. Under the 

management screen, there were plus (+) and minus (-) signs. To add a crop to the base 

management sequence, a plus (+) sign button was clicked. To delete a crop from the base 

management sequence, a minus (-) sign button was clicked. 

For the WW-CC-C-S rotation, pea was substituted for cover crop since this was the cover 

crop used in the site (Fig. 7). For the SW-WW-A-A-C-S rotation, alfalfa was not included in the 

CMZ 01data pool. Therefore, alfalfa under forage rotation under multi-year rotation templates in 

CMZ 03 was selected to build the base management for the SW-WW-A-A-C-S rotation.  

Step 4c: Adjust Management Input if Desired 

Yields were adjusted for the built-management sequences by clicking the “open” button 

in the “adjust yield” screen (Fig. 7). Default yields were replaced with the actual CCSP site 

yields between 2006 and 2010 (Cooper, 2006, 2007, 2008, 2009, and 2010). The five-year yields 

for seven crops (alfalfa, corn, flax, pea, soybean, spring wheat, and winter wheat) were averaged 

for inclusion in the model. 

The average yields were: Alfalfa (6.9 Mg/ha= 3.1 tons/acre), corn (10017 kg/ha = 159 

bu/acre), flax (1134 kg/ha = 18 bu/acre), pea (1890 kg/ha = 30 bu/acre), soybean (2709 kg/ha = 

43 bu/acre), spring wheat (3906 kg/ha = 62 bu/acre), and winter wheat (4536 kg/ha = 72 
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bu/acre), respectively. The average yields were substituted for the default yields to calculate soil 

loss, SCI, and STIR.  

Step 4d: Apply Rotation Builder Management Sequence 
 

The input information was sent to the erosion calculator by clicking “apply” button in the 

profile screen. The input information was used to calculate the outputs such as soil loss, SCI, and 

STIR. 

 

 
Figure 7. Diagram of the RUSLE2 profile for the WW-CC-C-S rotation (3% slope). 
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Step 5: Set Supporting Practices 

Supporting practices included contouring, strips/barriers, diversions/terraces, and 

subsurface drainage. Row up-and-down hill was selected for the contouring and “none” was 

selected for the strips/barriers, diversions/terraces, and subsurface drainage (Figs. 5-8). Row up-

and-down hill was considered as the most common contouring practice in the northern Great 

Plains. “None” was selected for other supporting practices because CCSP site did not have such 

supporting practices. The long, narrow nature of the plots at the CCSP site precludes deliberate 

contour seeding operations.  

Step 6: Check the SCI and STIR Values 

The SCI and STIR values were checked by clicking the “yellow” button in the SCI screen 

(Figs. 5-7). Figure 8 shows organic matter (OM), field operation (FO), and erosion (ER) that SCI 

used to qualitatively predict the consequences of the built base management sequences on SOC 

conditions. Figure 8 also shows SCI and STIR outputs for the SW-WW-C-S rotation.   

 
Figure 8. Diagrammatic view of the modeled SCI and STIR values. 
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Step 7: Print Report 
 

Under the file menu, “print report” was clicked to print the computed results. Under the 

“print report” menu list, “NRCS profile with SCI STIR fuel useportrait 0806. pro.dot” was 

clicked to print the results into the Microsoft word document. The “print report” provided a 

summary of input information and output values for soil loss, sediment delivery, SCI, and STIR.  

RESULTS AND DISCUSSION 
 

COMET-VR Data 

The SW-WW-C-S rotation was split into four crop pair simulations (Table 9). The C-

WW (0.19 Mg/ha/yr) and C-S (0.16 Mg/ha/yr) simulations had greater SOC values than the SW-

WW (0.05 Mg/ha/yr) and S-WW (0.03 Mg/ha/yr) simulations. The model may have assumed 

greater residue biomass input into the C-WW and C-S simulations which resulted in greater SOC 

values in the systems. The uncertainty (±19%) and N2O emission (0.002 Mg/ha/yr) values were 

consistent for all the simulations in the SW-WW-C-S rotation.  

             Table 9. COMET-VR estimated SOC, CO2 flux equivalents, N2O and N2O-based  
CO2 for individual simulations of crop pairs as well as their aggregated projections 

             for the next ten-year period for the SW-WW-C-S rotation.  

Simulations† 

Soil & 
Biomass 

SOC 

Soil & 
Biomass CO2 

Flux 
Equivalents 

Annual N2O 
Emissions 

N2O-based 
CO2 Flux 

Equivalents 

SW-WW 

-Mg/ha/yr- 
 

0.05 

-Mg/ha/yr- 
 

-0.17 

-Mg/ha/yr- 
 

0.002 

-Mg/ha/yr- 
 

0.50 
C-WW 0.19 -0.70 0.002 0.61 

C-S 0.16 -0.57 0.002 0.62 
S-WW 0.03 -0.13 0.002 0.50 
Total 0.43 -1.57 0.008 2.23 

10-Year Total 4.3 -15.7 0.080 22.3 
†SW=spring wheat; WW=winter wheat; C=corn; and S=soybean; SW-WW-C-S  

            = spring wheat-winter wheat-corn-soybean.  
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The SW-C-S rotation was split into three crop pair simulations (Table 10). The C-S (0.16 

Mg/ha/yr) simulation had greater SOC value than the C-SW (0.09 Mg/ha/yr) and C-SW (0.09 

Mg/ha/yr) simulations. Greater SOC value was partially attributed to greater residue biomass 

input into the C-S rotation which contributed to higher SOC in the system. The N2O emission 

(0.002 Mg/ha/yr) and uncertainty (±19%) values were consistent for all simulations in the SW-C-

S rotation.  

            Table 10. COMET-VR estimated SOC, CO2
 flux equivalents, N2O and N2O-based 

 CO2 for individual simulation of crop pairs as well as their aggregated projections  
for the next ten-year period for the SW-C-S rotation.    

Simulations† 

Soil & 
Biomass 

SOC 

Soil & 
Biomass 
CO2 Flux 

Equivalents 
Annual N2O 
Emissions 

N2O-based 
CO2 Flux 

Equivalents 
 -Mg/ha/yr- -Mg/ha/yr- -Mg/ha/yr- -Mg/ha/yr- 

 
C-SW 0.09 -0.31 0.002 0.62 
C-S 0.16 -0.60 0.002 0.62 

C-SW 0.09 -0.31 0.002 0.62 
Total 0.34 -1.22 0.006 1.86 

10-Year Total 3.40 -12.2 0.060 18.6 
                    †C=corn; WW=winter wheat; S=soybean; SW-C-S = spring wheat-corn-soybean. 
               

In the SW-S rotation, winter wheat was substituted for spring wheat because spring 

wheat-soybean sequence was not in the model crop rotations (Table 11). Therefore, the SW-S 

sequence was simulated as the S-WW simulation. The S-WW simulation had SOC value (0.03 

Mg/ha/yr) similar to other sequences that had S-WW simulations. The N2O emission (0.002 

Mg/ha/yr) and uncertainty (±19%) values were consistent and similar to other simulations in 

other rotations. 

The C-S rotation was in the COMET-VR cropping rotations (Table 12). Therefore, the C-

S rotation was simulated as the C-S system. The C-S simulation had SOC level (0.16 Mg/ha/yr) 

similar to other simulations that had C-S simulations in other rotations. The N2O emission (0.002 
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Mg/ha/yr) and uncertainty (±19%) values were consistent and similar to other simulations in 

other crop rotations.  

               Table 11. COMET-VR estimated SOC, CO2 flux equivalents, N2O and  
N2O-based CO2 for individual simulation of crop pairs as well as their 

              aggregated projections for the next ten-year period for the SW-S rotation.    

Simulation† 

Soil & 
Biomass 

SOC 

Soil & 
Biomass 
CO2 Flux 

Equivalents 

Annual 
N2O 

Emissions 

N2O-based 
CO2 Flux 

Equivalents 
 -Mg/ha/yr- -Mg/ha/yr- -Mg/ha/yr- -Mg/ha/yr- 

S-WW 0.03 -0.13 0.002 0.50 
Total 0.03 -0.13 0.002 0.50 

10-year Total 0.30 -1.30 0.020 5.00 
†S=soybean; WW=winter wheat; SW-S = spring wheat-soybean; CO2 =  
 
 
Table 12. COMET-VR estimated SOC, CO2 flux equivalents, N2O and  
N2O-based CO2 for individual simulation of crop pairs as well as their total  
projections for the next ten-year period for the C-S rotation.  

Simulation† 

Soil & 
Biomass 

SOC 

Soil & 
Biomass 
CO2 Flux 

Equivalents 

Annual 
N2O 

Emissions 

N2O-based 
CO2 Flux 

Equivalents 
C-S -Mg/ha/yr- 

0.16 
-Mg/ha/yr- 

-0.60 
-Mg/ha/yr- 

0.002 
-Mg/ha/yr- 

0.62 
Total 0.16 -0.60 0.002 0.62 

10-Year Total 1.6 -6.0 0.020 6.20 
†C=corn; S = soybean; C-S = corn-soybean. 
 

The SW-WW-F-C-C-S rotation was split into six crop pair simulations (Table 13). Flax 

was not in the COMET-VR crops. Thus, barley was used as the only proxy crop that represented 

a lower residue producing crop. This may not truly represent the very low residue production of 

flax but barley was the closest in the library of COMET-VR crops. Therefore, the SW-B 

sequence was substituted for the WW-F simulation because flax was not in the COMET-VR crop 

rotations. The C-WW (0.19 Mg/ha/yr), continuous corn (0.30 Mg/ha/yr), and C-S (0.16 

Mg/ha/yr) simulations had greater SOC values than the SW-WW (0.05 Mg/ha/yr), SW-B (0.08 
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Mg/ha/yr), and S-WW (0.03 Mg/ha/yr) simulations. The N2O emission (0.002 Mg/ha/yr) and 

uncertainty (±19%) values were consistent and similar to other simulations in other rotations. 

  Table 13. COMET-VR estimated SOC, CO2 flux equivalents, N2O and N2O- 
  based CO2 for individual simulations of crop pairs as well as their aggregated 
projections for the ten-year period for the SW-WW-F-C-C-S rotation.    

Simulations† 

Soil & 
Biomass 

SOC  

Soil & 
Biomass 
CO2 Flux 

Equivalents 

Annual 
N2O 

Emissions 

N2O-based 
CO2 Flux 

Equivalents 
 -Mg/ha/yr- -Mg/ha/yr- -Mg/ha/yr- -Mg/ha/yr- 

SW-WW 0.05 -0.17 0.002 0.50 
SW-B 0.08 -0.29 0.002 0.45 
C-WW 0.19 -0.70 0.002 0.61 
Cont. C 0. 30 -0.98 0.002 0.78 

C-S 0.16 -0.60 0.002 0.62 
S-WW 0.03 -0.13 0.002 0.50 
Total 0.78 -2.87 0.012 3.46 

10-Year total 7.80 -28.7 0.12 34.6 
                 †SW=spring wheat; b=barley; Cont. C= continuous corn; WW=winter wheat;  

 S=soybean; SW-WW-F-C-C-S = spring wheat-winter wheat-flax-corn-corn- 
           Soybean. 

 
The WW-CC-C-S rotation was split into four crop pair simulations (Table 14). Cover 

crop option was not in the COMET-VR crop rotations.  

      Table 14. COMET-VR estimated SOC, CO2 flux equivalents, N2O and N2O-based CO2 
for individual simulations of crop pairs as well as their aggregated projections 
 for the next ten-year period for the WW-CC-C-S rotation.  

Simulations† 

Soil & 
Biomass 

SOC 

Soil & 
Biomass CO2 

Flux 
Equivalents 

Annual N2O 
Emissions 

N2O-based 
CO2 Flux 

Equivalents 
 -Mg/ha/yr- -Mg//ha/yr- -Mg/ha/yr- -Mg/ha/yr- 

P-WW 0.06 -0.21 0.001 0.42 
C-WW 0.19 -0.70 0.002 0.61 

C-S 0.16 -0.60 0.002 0.62 
S-WW 0.03 -0.10 0.002 0.50 
Total 0.44 -1.61 0.007 2.15 

10-Year total 4.40 -16.1 0.070 21.5 
†P = pulse; C = corn; S = soybean; WW = winter wheat; WW-CC-C-S = winter wheat-
cover crop-corn-soybean. 
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Therefore, pulse was substituted for cover crop in the P-WW simulation since it was most 

similar to the pea and radish cover crops. The C-S (0.16 Mg/ha/yr) and C-WW (0.19 Mg/ha/yr) 

simulations showed greater SOC value than the P-WW (0.06 Mg/ha/yr) and S-WW (0.03 

Mg/ha/yr) simulations. Greater SOC value in the C-S and C-WW simulations was associated 

with high residue crops such as corn and wheat in the systems. The N2O emission (0.002 

Mg/ha/yr) and uncertainty (±19%) values were consistent for all the simulations in the WW-CC-

C-S rotation. 

The SW-WW-A-A-C-S rotation was split into six crop pair simulations (Table 15). The 

SW-B sequence was used because the SW-WW sequence was not in the COMET-VR crop 

rotations. The P-WW sequence was substituted for the WW-A simulation because alfalfa was not 

in the COMET-VR crops and crop rotations. Pulse represented a low residue producing legume 

crop; therefore, it was substituted for alfalfa.  

               Table 15. COMET-VR estimated SOC, CO2 flux equivalents, N2O and N2O-based 
CO2 for individual simulations of crop pairs as well as their aggregated projections  
for the next ten year period for the SW-WW-A-A-C-S rotation.   

Simulations† 

Soil & 
Biomass 

SOC 

Soil & 
Biomass 
CO2 Flux 

Equivalents 
Annual N2O 
Emissions 

N2O-based 
CO2 Flux 

Equivalents 
 -Mg/ha/yr- -Mg/ha/yr- -Mg/ha/yr- -Mg//ha/yr- 

     SW-B 0.08 -0.29 0.002 0.50 
P-WW 0.06 -0.21 0.001 0.42 
Cont. S 0.12 -0.03 0.002 0.51 

C-S 0.16 -0.57 0.002 0.62 
C-S 0.16 -0.60 0.002 0.62 

S-WW 0.03 -0.13 0.002 0.50 
Total 0.61 -1.83 0.011 3.17 

10-Year total 6.10 -18.3 0.11 31.7 
                        †C = corn; P = pulse; WW = winter wheat; Cont. S = continuous soybean;  

 SW = spring wheat; B = barley; SW-WW-A-A-C-S = spring wheat-winter  
 wheat-alfalfa-alfalfa-corn-soybean. 
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Continuous soybean was substituted for continuous alfalfa in the continuous S simulation 

because alfalfa was not in the COMET-VR crops and crop rotations. Soybean was also 

substituted for alfalfa because both crops are legumes and low residue producing crops. This, 

again, illustrates the limitation of the COMET-VR library of crops in attempting to use this 

model for a wide range of cropping systems. The C-S simulation (0.16 Mg/ha/yr) had greater 

SOC value than the SW-B (0.08 Mg/ha/yr), P-WW (0.06 Mg/ha/yr), and S-WW (0.03 Mg/ha/yr) 

simulations. The model may have assumed greater residue C input to the C-S simulation due to 

greater residue biomass produced by corn which resulted in higher SOC in the system. 

All the simulations had similar N2O emission values (0.002 Mg/ha/yr), except for the P-

WW (0.001 Mg/ha/yr) simulation (Table 15). Pulse crops such as pea and soybean generally 

require lower supplemental N fertilizer compared to corn and wheat. Therefore, the model may 

have assumed a lower N input into the P-WW simulation, which resulted in a lower N2O value in 

the system compared to the other simulations that did not have pulse crops. The uncertainty 

(±19%) value was consistent for all the simulations. 

Simulation of individual crops or combinations of crops showed greater soil and biomass 

CO2 flux equivalents (positive SOC storage) for the continuous corn, corn-soybean, corn-spring 

wheat, and corn-winter wheat simulations than the spring wheat-winter wheat, soybean-winter 

wheat, spring wheat-barley, pulse-winter wheat, and continuous soybean simulations (Tables 9-

15). These crop simulations mimicked actual cropping rotations and also represented stored SOC 

or CO2 removed from the atmosphere. Negative CO2 flux equivalents showed CO2 removed 

from the atmosphere and stored as SOC (Table 9-15). Negative CO2 emission equivalents have 

been estimated using the COMET-VR model to predict the potential of conservation 
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management practices to store SOC and reduce GHG emissions (Rosenzweig et al., 2010). 

Therefore, negative CO2 emission equivalents represented positive SOC storage. 

The continuous corn simulation (-0.98 Mg/ha/yr) had the greatest negative CO2 emissions 

(positive SOC storage) (Table 13). The corn-winter wheat simulation (-0.70 Mg/ha/yr) and corn-

soybean simulation (-0.60 Mg/ha/yr) had the second and third greatest negative CO2 emissions 

(positive SOC storage), respectively, (Tables 12-14). The COMET-VR model may have assumed 

greater residue biomass input into these simulations which increased SOC in the systems. 

Therefore, higher simulated SOC levels in the systems were attributed to greater residue C as 

evidenced by the amount of residue dry matter weight (Table 6 and 7) (Paper 2). 

The continuous soybean simulation (-0.03 Mg/ha/yr) (a proxy for the alfalfa-alfalfa 

treatment) had the lowest negative CO2 emission (positive SOC storage) (Table 15). Low-residue 

yielding crops such as alfalfa and soybean generally produce lower residue biomass compared to 

high-residue yielding crops such as corn and wheat. Therefore, the COMET-VR model may have 

assumed lower residue C input into the soybean simulation which resulted in lower SOC in the 

system. 

The N2O is a product of nitrification (NH3 or NH4
+ oxidation) and denitrification (NO3-N 

reduction). Denitrification is a microbial process that reduces soil NO3-N or NO2 to NO, N2O, 

and N2 by denitrifying bacteria under anaerobic conditions (Xu et al., 1998). Positive N2O 

emissions and CO2-based N2O emission equivalents represented N released as N2O to the 

atmosphere (Table 9-15). The N2O emissions were multiplied by 310 to determine how much 

CO2 equivalents would be required to produce a similar warming effect. Therefore, the N2O 

emissions and CO2-based N2O emission equivalents represented approximate N released as N2O 

to the atmosphere from the seven rotations.  
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The continuous corn simulation (0.78 Mg CO2e/ha/yr) had the greatest N2O emission 

equivalents while the corn-soybean simulation (0.61 Mg CO2e/ha/yr) and corn-winter wheat 

simulation (0.61 Mg CO2e/ha/yr) had the second greatest N2O emission equivalents (Table 13-

14). The COMET-VR model estimated greater N2O emissions for the continuous corn simulation 

because greater amount of N fertilizer was entered into the model screen for the system. Greater 

N2O emissions in the corn-soybean and corn-winter systems were also related to higher amount 

of N fertilizer entered into the model screen for these systems. Greater N2O emissions from corn 

systems have been associated with greater fertilizer N application to corn (Mackenzie et al., 

1997). The N2O emissions from different crop systems were attributed to different fertilizer N 

rates applied to corn (170 kg N/ha), winter wheat (83 kg N/ha), and soybean (0 kg N/ha) as well 

as residue C in each crop system (Drury et al., 2008). The N2O emission of 1.32 kg N2O/ha was 

reported when corn, soybean, and winter wheat were not planted in rotation compared to 1.03 kg 

N2O/ha when these crops were planted in rotation (Drury et al., 2008). Greater N2O emissions 

have been reported in the continuous corn followed by the corn-soybean and corn-soybean-

alfalfa rotations (MacKenzie et al., 1998). This shows that crop rotations can reduce N2O 

emissions due to low requirement of mineral N compared to monoculture systems that may 

require high N fertilizer rates. Crop rotation systems can also reduce residual soil NO3-N 

accumulation and excess soil moisture due to frequent crop production. 

The continuous soybean simulation (0.51 Mg CO2e/ha/yr) had the lowest N2O emissions 

compared with other crop simulations (Table 15). The COMET-VR model simulated lower N2O 

emissions for the continuous soybean because lower amount of N fertilizer was entered into the 

model screen for the system. Lower N2O emissions also have been reported in soybean plots 

compared to the continuous corn, corn-soybean rotation, and corn-soybean-alfalfa systems 
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(Mackenzie et al., 1998). The N2O emissions have been directly associated with the quantity of 

residue C, N fertilizer, soil NO3-N, and mineralized SOC in the cropping systems. This was the 

reason why the COMET-VR model simulated greater N2O emissions for high-N consuming 

crops such as corn and wheat systems and lower N2O emissions for low-N consuming crops such 

as soybean system. 

Management practices such as fertilizer N (timing, type, application method, and rate), 

crop type, crop rotation, tillage, and residue management influence N2O emissions from 

cropping systems (Parkin and Kaspar, 2006; Drury et al., 2008). Judicious management practices 

and appropriate N fertilizer use can minimize N2O emissions. Nitrogen uptake is generally low at 

the beginning of the growing season, more rapid during growing stage, and rapidly reduces as 

crops reach their maturity (Millar et al., 2010). Applying fertilizer N to high-N requiring crops at 

their rapid growing stage can increase N use efficiency and reduce soil NO3-N and N2O losses to 

the environment. Previous crop residue N and residual soil NO3-N from the previous year should 

also be accounted for in order to avoid N over-fertilization. 

Use of N inhibitors (nitrapyrin, dicyandamide, and agrotain) (Havlin et al., 2005), 

controlled-release N fertilizers (Jones et al., 2013), and low-N consuming corn and wheat 

varieties with high yielding potential can increase N use efficiency and reduce N2O emissions 

and NH3 volatilization. Planting soybean after corn can reduce N2O emissions because soybean 

most often requires low or no supplemental N fertilizer. Direct field measurements of N2O 

emissions should be determined in plots cropped with different crops during different months 

and seasons using gas flux chambers. Crops, residue types, months, seasons (fall, spring, and 

summer) that produce greater N2O emissions may be determined under cropping systems using 

gas flux chambers. 
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The model-based and actual SOC levels were also reported for each of the seven crop 

rotations (Table 16). Greater diversified rotations containing winter wheat had greater SOC 

levels than lower diversified rotations containing no winter wheat. The WW-CC-C-S (4.40 

Mg/ha), SW-WW-F-C-C-S (7.80 Mg/ha), SW-WW-C-S (4.30 Mg/ha), SW-WW-A-A-C-S (6.10 

Mg/ha), and SW-C-S (3.40 Mg/ha) rotations had greater modeled SOC than the C-S (1.60 

Mg/ha) and SW-S (0.30 Mg/ha) rotations. The COMET-VR model may have assumed greater 

residue C input into high-diversity systems which increased SOC in the systems. Greater 

simulations in the rotations containing winter wheat also resulted in higher SOC in the systems. 

The modeled SOC values were compared to the annual SOC values obtained from actual 

field sampling and extended for a ten-year period similar to the extended period for the COMET-

VR (Table 16).  

              Table 16. Crop rotation treatments, COMET-VR SOC, actual lab SOC and ∆SOC  
 projected for a ten-year period.   

Crop Rotation 
Treatments† 

COMET-VR 
SOC 

Actual Lab 
SOC 

 

(Actual minus 
COMET) 
∆SOC 

 -Mg/ha- -Mg/ha- -Mg/ha- 
SW-WW-C-S 4.30 50.0 45.7 

SW-C-S 3.40 64.0 60.6 
SW-S 0.30 40.0 39.7 
C-S 1.60 23.0 21.4 

SW-WW-F-C-C-S 7.80 24.0 16.2 
WW-CC-C-S 4.40 26.0 21.6 

SW-WW-A-A-C-S 6.10 48.0 41.9 
              †SW-WW-C-S = spring wheat-winter wheat-corn-soybean; SW-C-S = spring   

wheat-corn- soybean; SW-S = spring wheat-soybean; C-S = corn-soybean;  
SW-WW-F-C-C-S = spring wheat-winter wheat-flax-corn-corn-soybean;  
WW-CC-C-S = winter wheat-cover crop-corn-soybean; SW-WW-A-A-C-S =  
spring wheat-winter wheat-alfalfa-alfalfa-corn-soybean.  
 

The model-based SOC levels were lower than the actual SOC levels, which showed the 

model underestimated SOC in the seven rotations. Underestimation of actual SOC levels was due 

to the fact that the model did not contain most of crops and crop rotations grown at the CCSP 
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site, since the COMET-VR was developed for the Corn Belt region. Another explanation for 

lower modeled SOC values was that the model did not account for diverse crop rotations and 

residue retention to build SOC under no-till management at the CCSP site. This shows that the 

COMET-VR model has a limited capability to accurately account for the contribution of no-till 

management practices to SOC. 

Ten-year projection of simulated negative CO2 emissions (positive SOC storage) showed 

greater total positive SOC levels in the SW-WW-F-C-C-S (-28.7 Mg/ha) and SW-WW-A-A-C-S 

(-18.3 Mg/ha) and lower SOC in the SW-S (-1.30 Mg/ha) and C-S (-0.60 Mg/ha) rotations (Table 

17). The model might have assumed a greater residue production in rotations containing winter 

wheat compared with rotations containing no winter wheat. Therefore, greater SOC levels in 

rotations containing winter wheat were attributed to greater crop diversity which increased 

residue production in the systems. The SW-WW-F-C-C-S (-28.7 Mg/ha/yr) rotation also had a 

greater positive SOC level than the SW-WW-CS (-15.7 Mg/ha/yr), WW-CC-C-S (-16.1 

Mg/ha/yr), and SW-WW-A-A-C-S (-18.3 Mg/ha/yr) rotations. Greater SOC level in the SW-

WW-FX-C-C-S was perhaps due to a greater production of corn and wheat residue biomass 

which resulted in higher SOC in the system. 

The N2O-based CO2 equivalents (CO2e emissions) also showed greater emissions in the 

SW-WW-F-C-C-S (34.6 Mg/ha) and SW-WW-A-A-C-S (31.7 Mg/ha) rotations compared to the 

SW-S (5.00 Mg/ha) and C-S (6.20 Mg/ha) rotations (Table 17). Greater N2O emissions from the 

SW-WW-F-C-C-S and SW-WW-A-A-C-S rotations were due to greater number of simulations 

due to greater crop diversity in the systems compared to the SW-S and C-S rotations. Because 

denitrifying bacteria often require N and mineralizable SOC for N2O emissions, greater corn and 
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wheat residue C and fertilizer N input into the SW-WW-FX-C-C-S and SW-WW-A-A-C-S 

rotations might have increased N2O emissions from the systems. 

Table 17. Crop rotation treatments, COMET-VR SOC, soil & biomass CO2 flux equivalents, 
annual N2O emissions and N2O-based CO2 based equivalents projected for a ten-year period. 

Crop Rotation 
Treatments† 

COMET-VR 
SOC 

Soil & 
Biomass CO2 

Flux 
Equivalent 

N2O 
Emission 

N2O-based 
CO2 Flux 
Equivalent 

N2O 
Losses 

 -Mg/ha- -Mg/ha- -Mg/ha- -Mg/ha- -Mg/ha- 

SW-WW-C-S 4.30 -15.7 0.08 22.3 0.05 
SW-C-S 3.40 -12.2 0.06 18.6 0.04 
SW-S 0.30 -1.30 0.02 5.00 0.01 
C-S 1.60 -6.00 0.02 6.20 0.01 

SW-WW-F-C-C-S 7.80 -28.7 0.12 34.6 0.08 
WW-CC-C-S 4.40 -16.1 0.07 21.5 0.04 

SW-WW-A-A-C-S 6.10 -18.3 0.11 31.7 0.07 
Total 10.5 -98.3 0.48 140 0.31 

†SW-WW-C-S = spring wheat-winter wheat-corn-soybean; SW-C-S = spring wheat-corn- 
soybean; SW-S = spring wheat-soybean; C-S = corn-soybean; SW-WW-F-C-C-S = spring 
wheat-winter wheat-flax-corn-corn-soybean; WW-CC-C-S = winter wheat-cover crop-corn-
soybean; SW-WW-A-A-C-S = spring wheat-winter wheat-alfalfa-alfalfa-corn-soybean.  
 

Also, the total positive SOC level (-98.3 Mg CO2e/ha) (Table 17) at the CCSP site (area = 

10 ha) in Sargent County, North Dakota was compared with the total simulated SOC level in ten 

counties of Hudson Valley (area = 176, 042 ha), New York. The total SOC under 

conservation/no-till and rotation grazing in Hudson Valley was reported as -3.51 Mg CO2e/ha/yr 

(Rosenzweig et al., 2010). But for comparison with this data, -3.51 Mg CO2e/ha/yr was 

multiplied by 10 years to obtain 35.1 Mg CO2e/ha. Difference showed 47% greater positive SOC 

level (-63.2 Mg CO2e/ha) in Sargent County than in Hudson Valley region. High-residue no-till 

management might have increased SOC level at the CCSP site compared with Hudson Valley 

region. Additional factors other than conservation tillage systems might have contributed to this 

difference in SOC levels between two locations. For example, the entire area (area = 176, 042 

ha) of Hudson Valley was not under conservation tillage and rotational grazing systems while the 
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entire area (area = 10 ha) was continuously no-tilled at the CCSP site. These two locations may 

also have different climates that may have influenced SOC levels in each cropping system in 

each location.  

Furthermore, the total positive SOC level (-98.3 Mg CO2e/ha) was subtracted from the 

total N2O-based CO2 (140 Mg CO2e/ha) to determine a warming potential of N2O (Table 17). 

Difference (140 – 98.3) showed that N2O emission equivalent was greater by 41.7 Mg CO2e/ha 

than SOC storage at the CCSP site. Greater N2O emissions may have been due to greater residue 

C, mineralizable SOC, residual NO3-N, and moisture content under no-till management at the 

CCSP site. This excess amount of N2O (41.7 Mg CO2e/ha) can be reduced by adopting N 

fertilizer and N2O emission reduction protocol recommended by Millar et al. (2010). This stored 

SOC (-98.3 Mg CO2e/ha) could also be remitted to the atmosphere if no-till management at the 

CCSP site is changed to conventional tillage in the future. 

Table 17 shows ten-year projection of simulated N released as N2O emissions from the 

seven cropping systems. The SW-WW-F-C-C-S (0.08 Mg N2O/ha), SW-WW-A-A-C-S (0.07 

Mg N2O/ha), SW-WW-C-S (0.05 Mg N2O/ha), and WW-CC-C-S (0.04 Mg N2O/ha) rotations 

had greater N2O emissions compared with the SW-S (0.01 Mg N2O/ha) and C-S (0.01 Mg 

N2O/ha) rotations. The model may have assumed that greater crop diversity increased residual 

soil NO3-N and mineralizable SOC and that lower crop diversity reduced soil NO3-N and 

mineralizable SOC in the cropping systems. Therefore, greater N2O emissions in some rotations 

were likely due to more simulations and greater crop diversity in the systems while lower N2O 

emissions in some rotations were likely due to fewer simulations and lower crop diversity in the 

systems. Greater N2O emissions from greater diverse cropping rotations were also attributed to 

greater N fertilizer values entered to the COMET-VR model during the simulation. This was 
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another likely reason why greater diverse cropping rotations such as SW-WW-F-C-C-S, SW-

WW-A-A-C-S, and SW-WW-C-S rotations had greater N2O emissions compared to lower 

diverse cropping rotations such as SW-S and C-S rotations. 

RUSLE2 Data 

Table 18 shows the RUSLE2 modeled soil losses for the seven crop rotations. The SW-

WW-C-S, SW-WW-F-C-C-S, and SW-WW-A-A-C-S rotations containing winter wheat resulted 

in slightly lower soil losses than the SW-C-S, SW-S, and C-S rotations containing no winter 

wheat for 3% and 6% slopes. Winter wheat has been reported to produce greater residue biomass 

per unit of grain yield compared with spring wheat, thereby providing greater soil surface 

protection against wind and water erosion than spring wheat residue (Black and Bauer, 1983). It 

has been reported that winter wheat provides a better soil surface cover and has the ability to 

anchor corn and soybean residues, increase water infiltration, and reduce rill and inter-rill 

erosion (Singer et al., 2005). It has also been reported that wheat residue is more effective in 

protecting soil surface and reducing soil erosion than cornstalks or sorghum residue (Allison, 

1973). Wheat stubble is more effective in reducing surface runoff and soil erosion because it 

stands straight on the soil surface while corn and sorghum residue lies flat on the soil surface. 

Orientation and type of crop residue has an important impact in reducing or increasing surface 

runoff and soil erosion in the field. The RUSLE2 model may have also assumed that greater crop 

diversity in rotations containing winter wheat produced larger residue biomass which increased 

soil surface protection against wind and water erosive forces compared to lower crop diversity in 

rotations containing no winter wheat. Therefore, lower soil losses for the SW-WW-C-S, SW-

WW-F-C-C-S, and SW-WW-A-A-C-S rotations were probably due to greater wheat residue in 

the systems compared with the SW-C-S, SW-S, and C-S rotations that had lower or no wheat 
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residue in the systems. Although corn residue was produced in greater quantity and frequency in 

the C-S rotation, this system resulted in greater soil losses probably due to the fact that corn 

residue laid flat on the soil surface. This showed the importance of crop residue orientation in the 

field.  

         Table 18. Crop rotation treatments, Slope 1(3%) and Slope 2 (6%) soil losses, and SCI  
and STIR values as determined by RUSLE2.  

       
    

†SW-WW-C-S = spring wheat-winter wheat-corn-soybean; SW-C-S = spring  wheat-corn- 
soybean; SW-S = spring wheat-soybean; C-S = corn-soybean; SW-WW-F-C-C-S = spring 
wheat-winter wheat-flax-corn-corn-soybean; WW-CC-C-S = winter wheat-cover crop-corn-
soybean; SW-WW-A-A-C-S = spring wheat-winter wheat-alfalfa-alfalfa-corn-soybean. 

    ‡SCI=Soil Conditioning Index; §STIR=Soil Tillage Intensity Rating.  
 

Similarly, OM in form of surface-retained residue has also been reported to be more 

effective in preventing soil erosion compared to soil-incorporated residue and highly 

decomposed SOM that has been made part of soil (Allison, 1973). Nyakatawa et al. (2001) 

reported three to five times higher soil losses under conventional system than no-till and mulch-

till systems. Plant roots and residues reduce soil erosion by improving soil structure, increasing 

water infiltration, and increasing soil aggregation under no-till regimes. High residue no-till 

management, improved soil structure, and increased infiltration rate contributed to low soil 

losses for the seven crop rotations at the CCSP site. Reduced soil losses can reduce SOC 

mineralization and CO2 evolution. Greater production of winter wheat residue has the potential 

Crop Rotation 
Treatments† 

Slope 1 
(3%) 

Slope 2 
(6%) SCI‡ STIR§ 

 --kg/ha/yr-- --kg/ha/yr-- ------ ------ 
SW-WW-C-S 67.0 112 1.50 3.40 

SW-C-S 112 179 1.20 3.13 
SW-S 157 267 1.10 3.40 
C-S 135 247 1.00 2.59 

SW-WW-F-C-C-S 90.0 157 1.30 3.40 
WW-CC-C-S 202 359 0.95 2.72 

SW-WW-A-A-C-S 45.0 90.0 1.50 2.59 
Average 112 202 1.22 3.03 
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to reduce wind and water erosion, increase water infiltration, improve soil structure and 

aggregation, and reduce SOC losses. Lower soil losses in the rotations containing winter wheat 

can also increase nutrients retention and reduce contamination of surface water sources 

associated with surface runoff and sediment loadings. 

The WW-CC-C-S rotation had greater soil losses than other rotations for 3% slope (202 

kg/ha/yr) and 6% slope (359 kg/ha/yr) (Table 18). The RUSLE2 model may have assumed low 

residue input into the rotation. Greater soil losses were attributed to low residue surface cover 

due to low residue producing crops such as field pea and soybean in the rotation. Greater soil 

losses in the WW-CC-C-S rotation were perhaps the reason why the SOC level (8.41 kg/m2) was 

lower in the system (Table 4, Paper 1). However, actual effects of cover crops might not have 

been treated well within the RUSLE2 model because “cover crop” was simulated as a pea for the 

WW-CC-C-S rotation. This shows that limitations in the RUSLE2 model might have 

overestimated soil losses in the WW-CC-C-S rotation. 

Statistical analysis showed a high correlation (r = 1.00) of soil loss for 3% and 6% slopes. 

It has been reported that soil erosion increases as the slope of field increases (Allison, 1973). 

This was likely the reason why the RUSLE2 model estimated lower soil losses for 3% slope 

compared to 6% slope. This analysis showed that slope steepness has an important effect in 

reducing or increasing soil erosion rate and SOC losses. 

Table 18 also shows the Soil Conditioning Index (SCI) and the Soil Tillage Intensity 

Rating (STIR) values. The SCI values represented the effects of crop rotations on SOC 

conditions. Generally, positive SCI value predicts the potential of cropping systems to build SOC 

levels. The SW-WW-C-S (1.50), SW-WW-F-C-C-S (1.30), and SW-WW-A-A-C-S (1.50) 

rotations containing winter wheat had slightly greater positive SCI values than the SW-C-S 
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(1.20), SW-S) (1.10), and C-S (1.00) rotations containing no winter wheat. The most likely 

explanation for greater positive SCI values in the rotations containing winter wheat was greater 

crop diversity compared to lower crop diversity in the rotations no containing winter wheat. The 

SCI model may have assumed a greater production of residue biomass in the rotations containing 

winter wheat which resulted in greater positive SCI values in the systems. The WW-CC-C-S 

rotation (0.95) had a lower positive SCI value than other rotations. This was likely due to low 

production of residue biomass by low residue pea and soybean crops which might have 

decreased the potential of the system to build SOC. Another explanation for lower positive SCI 

values in the WW-CC-C-S rotation was that field pea was substituted for cover crops in 

RUSEL2 model. Therefore, the model might not have accounted for the contribution of cover 

crops to increase SOC in the system. Overall, positive SCI values showed the potential of the 

seven rotations to increase SOC levels over the time. Positive SCI values are also indicators of 

high-residue conditions and judicious conservation management practices at the CCSP site. 

The simulated STIR values for the seven rotations are also shown in Table 18. The C-S 

(2.59) and SW-WW-A-A-C-S (2.59) rotations had a lower STIR value than other rotations. It has 

been reported that STIR values can be lowered by using soil conserving crops such as alfalfa and 

grass (USDA-NRCS, 2008a; USDA-NRCS 2011b). Therefore, lower STIR value (2.59) in the 

SW-WW-A-A-C-S rotation was attributed to two continuous years of alfalfa crop in the rotation. 

A STIR value would have been expected to be greater in the WW-CC-C-S rotation due to 

additional soil surface disturbance from cover crop seeding into wheat stubble. But because pea 

was substituted for cover crops in the RUSLE2 model, the STIR program did not reflect the 

effects of cover crops in the system. This was the reason why the WW-CC-C-S rotation had a 
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lower STIR value than other rotations, with the exception of the C-S and SW-WW-A-A-C-S 

rotations. 

Also, the average STIR value (3.03) for the seven rotations was much lower than the 

STIR value (26.0) reported in Allen County, Ohio, under the corn-soybean rotation in which 

corn was mulch-tilled and soybean was no-tilled (USDA-NRCS, 2004). The C-S rotation, which 

was similar to C-S rotation in Allen County, also showed much lower STIR value (2.59) than the 

STIR value (26.0) reported in Allen County, Ohio. This shows that no-till operation contributed 

to low STIR values at the CCSP site compared with the STIR value under mulch-tilled and no-

till corn-soybean systems at Allen County, Ohio. But differences in STIR values for these two 

locations (Sargent County, North Dakota and Allen County, Ohio) might have been influenced 

by different climatic conditions at the two different locations that have different amounts of 

rainfall as well as frequency and intensity of rainfall. Additional factors (soil texture and 

mineralogy, depth of tillage, percent of soil surface area disturbed, residue amount, and types of 

machinery) might have also contributed to differences in STIR values in two locations. Overall, 

the STIR values for the seven rotations were much lower than the STIR value (15 or less) 

recommended for no-till operations (USDA-NRCS, 2008a; USDA-NRCS, 2011b). Low STIR 

values can reduce sheet and rill erosion, increase SOC/SOM, reduce SOC oxidation, reduce SOC 

emissions to the atmosphere, and improve infiltration rate as reported by USDA-NRCS (2008a) 

and USDA-NRCS (2011b).  

SUMMARY AND CONCLUSIONS 

The COMET-VR simulations had greater SOC levels in continuous corn, continuous 

winter wheat, corn-winter wheat, corn-soybean, and continuous soybean. The model may have 

assumed greater surface residue input into these systems which increased SOC levels in the 



 

129 
 

systems. Crop simulations with greater SOC levels may be appropriate for SOC sequestration. 

The continuous spring wheat, soybean-spring wheat, soybean-winter wheat, corn-spring wheat, 

spring wheat-barley, and pulse-winter wheat simulations had much lower SOC levels. These 

crops or crop combinations may not be suitable for SOC sequestration due to low production of 

residue biomass. The COMET-VR model estimated greater SOC levels for the SW-WW-C-S, 

SW-WW-F-C-C-S, WW-CC-C-S, and SW-WW-A-A-C-S rotations than the SW-C-S, SW-S, 

and C-S rotations. This was attributed to more simulations in the rotations containing winter 

wheat than the rotations containing no winter wheat. A comparison of the COMET-VR 

simulated SOC levels and actual SOC levels showed that the model underestimated SOC in the 

seven rotations. This shows that mode should be improved so that it accounts for the impacts of 

conservation management practices on SOC in cropping systems. 

The RUSLE2 model associated soil losses with different slopes, with 3% slope resulting 

in lower soil losses than 6% slope. Soil losses were strongly correlated (r = 1.00) for 3% and 6% 

slopes. The SW-WW-C-S, SW-WW-F-C-C-S, and SW-WW-A-A-C-S rotations had lower soil 

losses than the SW-C-S, SW-S, and C-S rotations for 3% and 6% slopes. The RUSLE2 model 

assumed greater wheat residue production in rotations with winter wheat which provided greater 

soil surface cover and subsequently reduced soil losses. However, the WW-CC-C-S rotation had 

slightly greater soil losses than other rotations for 3% and 6% slopes due to low-residue yielding 

crops such as pea and soybean in the rotation. The model also did not account for the effects of 

cover crops in the rotation because pea was substituted for cover crops in the RUSLE2 model 

which might have overestimated soil losses in the system. 

Overall, the RUSLE2 modeled results showed that slope steepness was an important 

factor in increasing or decreasing soil losses under the seven rotations. High residue no-till 
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management, improved soil aggregation and tilth, increased infiltration rate, and low soil 

disturbance contributed to low soil losses for 3% and 6% slopes at the CCSP site. Low soil losses 

showed low impairment of water quality in surrounding water resources due to reduced surface 

runoff. Low soil losses also indicated low SOC mineralization and low SOC losses due to 

reduced erosion rate on the soil surface. 

The SCI associated high-residue no-till production with positive SCI values. Generally, 

positive SCI value shows increasing SOC trends and negative index rating shows decreasing 

SOC trends. The SCI values were positive for the seven crop rotations, indicating that the 

rotations had a greater potential to increase SOC levels. The SW-WW-C-S, SW-WW-F-C-C-S, 

and SW-WW-A-A-C-S rotations had slightly greater SCI values than the SW-C-S, SW-S, and C-

S rotations. Greater SCI values were due to greater cropping diversity in rotations with winter 

wheat compared to lower cropping diversity in rotations without winter wheat. Although the 

main purpose of the SCI was to predict the effects of the seven crop rotations on the SOC 

conditions, the SCI values were not related to field-based SOC values. Because SCI did not 

determine bulk density, infiltration rate, pH, soil biota, and nutrient level, these parameters 

should be separately determined to evaluate overall condition of soil quality, fertility, and 

productivity. 

The modeled STIR values were much lower than the recommended STIR value (15 or 

less) for the no-till operations. Low STIR values were due to low soil disturbance on the soil 

surface due to no-till management at the CCSP site. Low STIR values reflected efficacious soil 

management practices. Low STIR values were also indicators of improved soil quality, increased 

SOC content, reduced SOC oxidation, improved soil structure and tilth, and increased infiltration 

rate.  
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Although low STIR values reflected no-till management conditions, they did not relate to 

SOC levels for 2006/2010 and 2012 in each rotation. It was also difficult to relate the number of 

crops and rate of soil surface disturbance in each crop rotation to the STIR values. For example, 

the SW-S rotation had slightly greater STIR value than the SW-C-S, WW-CC-C-S, and SW-

WW-A-A-C-S rotations. However, as a soil-conserving crop, two alfalfa crops in the SW-WW-

A-A-C-S rotation contributed to lower STIR value compared with the rotations in which alfalfa 

was not included. 

Recommendations for Future Research Trials 

• Because the U.S Government may require farmers to use the COMET-VR model 

for estimating and reporting their SOC storage or GHG emissions under their 

agricultural management practices, it is important that the model be greatly 

improved to allow farmers and scientists to use it in a more friendly manner. Lack 

of other regions’ crops and cropping rotations in the COMET-VR model library can 

pose a major challenge to the government to encourage farmers to use the model. 

The model was originally developed for the Corn Belt region. This has omitted 

majority of crops and cropping rotations in other regions in the United States. For 

example, most crops and crop management sequences at the Conservation Cropping 

Systems project (CCSP) site were not found in the model. Although the NRCS has 

announced that it will give a $500 to each of the first time users of the model, lack 

of crops and crop rotations can be a disincentive to farmers whom the government 

may require to use this model. Therefore, inclusion of crops and crop rotations can 

make the model more applicable to all regions in U.S.A.  
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• Another issue with the model is that it has not been widely used since it was 

developed. Therefore, there is a limited information out there for potential users to 

reference. Lack of already modeled information makes it difficult for scientists, 

farmers, and land resources managers to benchmark their modeled results. This 

issue is again attributable to the fact that the information in the model library is very 

limited and, therefore, does not reflect the diversity of crops and cropping systems 

in other regions in the United States. Thus, the model needs improvement by 

including crops and rotation sequences in other regions. When the model is 

improved and validated for the general use in the United States, the government 

should also employ extension scientists who are familiar with the model to train 

farmers how to use the model and how to report their SOC storage and GHG 

emissions under their farming practices. This information should also be published 

and made accessible to other farmers who may be required by the government to 

use the model. Sharing this information can help farmers and scientists justify their 

findings.  

• The RUSLE2 model was originally developed for high-rainfall regions in U.S 

because these regions tend to experience high soil erosion rate (T. Alme, personal 

communication). This may make the model underestimate soil losses in low-rainfall 

regions. Therefore, the model capability should be improved to accurately estimate 

soil losses in both low-rainfall and high-rainfall regions in U.S.A.  

• Future research should determine pre-treatment (baseline) soil losses under 

conventional systems and compare them to soil losses under no-till systems. This 

comparison method would be the only way to show that high residue no-till regimes 
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can reduce soil losses compared to conventional systems. The SCI and STIR 

programs incorporated in RUSLE2 should also be improved so that their simulated 

values reflect a number of crops in each rotation as well as cropping complexity and 

diversity in each system. The SCI program developed to predict SOC conditions in 

cropping systems should have the capability to reflect the amount of SOC level in 

in SCI values in each crop rotation. The STIR program developed to determine soil 

surface disturbance rating should also have the capability to relate STIR values to 

crop rotation diversity and number of tillage practices in each cropping system. If 

done in this way, the SCI and STIR values will account for the reality under 

different cropping systems.  
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GENERAL SUMMARY AND CONCLUSIONS 

This study evaluated the impact of winter wheat on SOC levels under high residue no-till 

cropping systems as part of SOC sequestration monitoring program in the Northern Great Plains. 

It determined the contribution of long-term no-till production to SOC sequestration and soil 

quality. Data obtained from this study are important for the management of winter wheat and 

other crops. The impact of winter wheat on SOC was evaluated by field-based analysis (Paper 1). 

Aboveground aged and fresh residues were analyzed to determine residue biomass, residue C:N 

ratios, residue C and N contents, and supplemental N fertilizer requirements (Paper 2). The 

COMET-VR and RUSLE2 models were used to estimate SOC and GHG (CO2 and N2O) 

emissions and predict soil losses, respectively, (Paper 3). The Soil Conditioning Index (SCI) and 

Soil Tillage Intensity Rating (STIR) in the RUSLE2 model were used to predict SOC conditions 

and soil surface disturbance ratings, respectively, (Paper 3). 

Baseline soil samples were taken in 2006 and 2010 to monitor SOC trends at the CCSP 

site. The SW-WW-FX-C-C-S rotation containing winter wheat and the C-S rotation containing 

no winter wheat were sampled in 2006 to establish initial SOC levels. The SW-WW-C-S, SW-

WW-CC-S, and SW-WW-A-A-C-S rotations containing winter wheat and the SW-C-S and SW-

S rotations containing no winter wheat were sampled in 2010 for the same purpose. In 2012, the 

last sampling was conducted on all rotations sampled in 2006 and 2010 to continue monitor SOC 

trends. 

The analysis of the 2006 and 2010 SOC data showed no significant difference between 

the rotations probably due to relatively similar climatic conditions and soil mineralogy. Analysis 

of the 2012 SOC data showed a greater SOC level in the C-S rotation than the SW-WW-CC-S 

rotation. Greater SOC in the C-S rotation was associated with a greater cumulative residue 
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biomass produced and returned to the system by corn. Corn was more frequently cropped in the 

C-S rotation than other crops in the rotations containing winter wheat. Soybean residue with high 

residue C content was also produced and returned in greater quantity and frequency to the C-S 

rotation. Therefore, greater frequent production of corn and soybean residue C contributed to 

greater SOC in the C-S rotation. Analyses showed that restoration and maintenance of SOC can 

be achieved by greater frequent production of high-residue crops such as corn and winter wheat. 

Although rotations that contained winter wheat had a neutral impact on SOC and SOC levels in 

these rotations were not significantly greater than SOC level in the C-S rotation, these rotations 

have benefits such as increased profitability and reduced N-denitrification associated with 

reduced wetness during fall and spring seasons. The rotations containing winter wheat can also 

increase N and water use efficiency due to earlier growth. 

The WW-CC-C-S rotation had lower SOC than other rotations for the 2012 SOC data 

analysis. Lower SOC level in the WW-CC-C-S rotation was attributable to low residue-crops 

such as cover crops (field pea and radish) which produced low residue biomass in the system. 

Production of corn and soybean residue was lower in the SW-WW-CC-S rotations compared to 

production of corn and soybean residue in the C-S rotation. Production of winter wheat and 

spring wheat residue was also lower in the SW-WW-CC-S rotation than production of corn 

residue in the C-S rotation. Therefore, lower production of corn, spring wheat, winter wheat 

residue in the WW-CC-C-S rotation contributed to lower SOC in the rotation. This shows 

restoration and maintenance of SOC cannot only be increased by greater crop intensity and 

diversity but can also be increased by greater production of high residue crops such as corn and 

wheat in no-till cropping systems. Also, as evidenced by low SOC in the WW-CC-C-S rotation, 

low residue crops such as alfalfa, soybean, and cover crops (pea and radish) may not be suitable 
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for SOC sequestration. But cover crops have the agronomic and environmental benefits such as 

increasing nutrient supplying power of soil, reducing N (N2O and NO3-N) losses to the 

environment, and capturing and retaining residual inorganic N in their tissues for subsequent 

crop use. 

Residue samples were collected in the spring 2011 and fall 2012. Aged residue was 

sampled in the spring 2011 and fresh residue was sampled in the fall 2012. These residue 

samples were evaluated to determine residue biomass, C:N ratios, C and N contents, and 

supplemental N fertilizer requirements. Aged residue biomass was greater in the C-S rotation and 

lower in the SW-WW-A-A-C-S rotation. Fresh residue biomass was greater in the C-S rotation 

and lower in the SW-WW-A-A-C-S rotation. The main reason for greater residue biomass in the 

C-S rotation was greater frequent production of corn residue in the system. Production of 

soybean residue was greater in the C-S rotation which contributed to greater total residue 

biomass in the system. Low residue crops such as two alfalfa crops and soybean in the SW-WW-

A-A-C-S rotation contributed to low residue input into the system. Production of corn and wheat 

residue was also low in the SW-WW-A-A-C-S rotation which decreased residue biomass in the 

system. 

Aged residue C and N contents were greater in the C-S rotation and lower in the SW-

WW-A-A-C-S rotation. Greater residue C and N concentrations in the C-S rotation were 

associated with greater residue biomass produced in the system due to greater frequent 

production of corn. There was lower residue C and N concentrations in the SW-WW-A-A-C-S 

rotation due to lower residue biomass produced by low residue crops such as two alfalfa crops 

and soybean in the system. Analysis showed that greater residue biomass added greater residue C 

and N to the systems while lower residue biomass added lower residue C and N to the systems. 
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Therefore, crop rotations that had greater residue biomass added greater residue C and N to the 

systems compared with the rotations that had lower residue biomass. This was the likely reason 

why the SW-WW-A-A-C-S rotation that had lower residue biomass resulted in proportionally 

lower residue C and N contents in the system. Fresh residue C and N concentrations were greater 

in the SW-C-S and C-S rotations and lower in the SW-S and SW-WW-A-A-C-S rotations. The 

main reason for greater residue C and N concentrations in the SW-C-S and C-S rotations was 

greater production of residue biomass in the systems by corn and wheat. Soybean residue was 

also produced in greater quantity which increased residue C and N in the systems. The main 

explanation for lower residue C and N contents in the SW-S and SW-WW-A-A-C-S rotations 

was lower production of residue biomass in the systems by soybean and wheat. Corn residue was 

also produced in much lower quantity in the SW-WW-A-A-C-S rotation which reduced residue 

C and N in the system. 

Analyses of aged and fresh residue C:N ratios showed greater C:N ratio in the C-S 

rotation and lower C:N ratio in the SW-WW-A-A-C-S rotation. Greater C:N ratio in the C-S 

rotation was attributed to greater corn residue with corresponding lower N content in the system. 

The main reason for the lower C:N ratio in the SW-WW-A-A-C-S rotation was production of 

alfalfa and soybean residue with corresponding greater N content in the system. The amount of 

residue biomass produced in each system also influenced the C:N ratio in that system. This was 

the likely reason why the C-S rotation that had greater residue biomass resulted in wider C:N 

ratio. The fresh crop residues sampled in the 2012 fall showed narrower C:N ratios for legume 

crops and wider C:N ratios for non-legume crops. Winter wheat had the greatest C:N ratio and 

pea and radish had the lowest C:N ratios. Analyses of fresh residue C:N ratios showed that 
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legumes can increase residue N mineralization and non-legumes can promote residue N 

immobilization. 

Supplement N fertilizer requirements were evaluated for each of the seven rotations to 

determine the amount of additional N fertilizer that can be applied to subsequent crops to reduce 

residue N depletion associated with microorganisms decomposing high C residues. The SW-

WW-C-S and SW-S rotations had greater total supplemental N fertilizer requirements for the 

aged residue while the SW-C-S and C-S rotations had greater total supplemental N fertilizer 

requirements for the fresh residue. These rotations required a greater amount of supplemental N 

fertilizer due to greater C:N ratios and residue biomass in the systems. The SW-WW-A-A-C-S 

rotation required a lower amount of supplemental N fertilizer for both aged and fresh residue 

because lower residue biomass with greater N content was produced in the system. Lower 

supplemental N fertilizer requirement in the SW-WW-A-A-C-S rotation was also attributed to 

high-N residue produced by two alfalfa crops and soybean in the system. 

The COMET-VR model estimated greater SOC levels in rotations containing winter 

wheat and lower SOC levels in rotations containing no winter wheat. The main reason for greater 

SOC levels in the SW-WW-C-S, SW-WW-F-C-C-S, WW-CC-C-S, and SW-WW-A-A-C-S 

rotations was that these systems had more simulations compared with the SW-S and C-S 

rotations.  However, the modeled SOC values were lower when compared with the field-based 

SOC values which showed the COMET-VR model underestimated the actual SOC in high-

residue no-till management. This drawback in the model shows the model capability should be 

improved and validated to accurately simulate SOC levels in no-till cropping systems. 

The RUSLE2 model estimated lower soil losses for the SW-WW-C-S, SW-WW-F-C-C-

S, and SW-WW-A-A-C-S rotations containing winter wheat and greater soil losses for the SW-
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C-S, SW-S, and C-S rotations containing no winter wheat for 3% and 6% slopes. The likely 

reason for lower soil losses in the rotations containing winter wheat was production of winter 

wheat residue in the systems. Winter wheat generally produces greater residue than spring wheat 

and therefore provides greater soil surface protection against wind and water erosion than spring 

wheat residue. Wheat residue also stands straight on the soil surface which provides a better 

protection against wind and water erosive forces in cropping systems. These conditions 

contributed to lower soil losses in the rotations that contained winter wheat than rotations that 

did not contain winter wheat or had spring wheat in the systems. The RUSLE2 model also may 

have associated greater crop diversity in the rotations that contained winter wheat with greater 

surface cover which decreased soil losses. Lower soil losses in the rotations with winter wheat 

showed that these systems can increase nutrient retention and reduce surface runoff. Lower soil 

losses can also reduce SOC mineralization and increase SOC retention. The WW-CC-C-S 

rotation had greater soil losses than other rotations for 3% and 6% slopes due to low residue 

crops such as field pea and soybean in the rotation. However, the fact that field pea was 

substituted for cover crops in the WW-CC-C-S rotation might have overestimated soil losses in 

the system. 

The Soil Conditioning Index and Soil Tillage Intensity Rating in RUSLE2 predicted 

positive SOC conditions and low soil disturbance ratings, respectively. Positive SCI values were 

attributed to increased SOC associated with greater residue production and retention in no-till 

cropping systems. Positive SCI values showed the potential of the seven crop rotations to 

increase SOC at the CCSP site. Low STIR values were attributed to less soil surface disturbance 

which reflected the efficacy of actual soil management practices in no-till cropping systems at 

the CCSP site. These low STIR values showed the potential of the seven crop rotations to reduce 
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sheet and rill erosion, increase SOC/SOM, reduce SOC mineralization, reduce SOC emissions, 

and improve infiltration rate and aggregation. 

Conclusions from this study show that greater crop diversity does not necessarily lead to 

greater SOC and residue biomass in cropping systems. The SW-WW-F-C-C-S and SW-WW-A-

A-C-S rotations did not result in greater SOC and residue biomass in the systems than the SW-C-

S and C-S rotations. This shows that SOC and residue biomass cannot only be increased by 

increasing a number of crops but can also be increased by producing high residue crops such as 

corn and wheat in greater quantity and frequency in the cropping systems. A comparison of 

rotations that contained winter wheat and rotations that contained no winter wheat was difficult 

because SOC and residue biomass data were cumulative across all plots within the seven rotation 

treatments. It was also difficult to compare SOC and residue biomass in low diversity system 

such as C-S rotation with SOC and residue biomass in high diversity system such as SW-WW-F-

C-C-S rotation. No valid comparison could be made between the two systems because corn and 

soybean residues were each produced in greater quantity and frequency in the C-S rotation 

compared to the SW-WW-F-C-C-S rotation in which corn, soybean, and wheat residues were 

each produced in lower quantity and frequency. 

Future research trials should consider the impacts of high-diversity cropping systems on 

the individual crops. Crops that require a specific observation such as winter wheat in this study 

should be cropped in low-diversity rotations as winter wheat-soybean or winter wheat-alfalfa in 

order to accurately assess its contribution to SOC sequestration and residue biomass production. 

If cropped in this way, it may be easier to make a valid comparison between winter wheat system 

such as winter wheat-soybean rotation and corn system such as corn-soybean rotation.  
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APPENDIX A 

Table A1. Plot, crop treatment, treatment replication, latitude, longitude, depth, bulk density and 
SOC values for 2006 and 2010. 

Plot  
Crop 

Treatment 
Treatment 

Repl. 
Latitude 

(N) 
Longitude 

(W) Depth 
Bulk 

Density 

2006 and  
2010 
SOC  

     -cm- -g/cm3-    -kg/m2- 
 

18 
 

A 
 
1 

 
46º 05’. 042” 

 
097º 38’. 095” 

 
0-30 

 
1.43 

 
8.37 

19 A 1 46º 05’.032” 097º 38’ .109” 0-30 1.35 8.72 
20 A 1 46º 05’.026” 097º 38’.085” 0-30 1.27 8.83 
21 A 1 46º 05’ .019” 097º 38’ .074” 0-30 1.26 8.67 
91 A 2 46º 05’ .181” 097º 38’ .290” 0-30 1.39 8.89 
92 A 2 46º 05’ .170” 097º 38’ .270” 0-30 1.26 7.91 
93 A 2 46º 05’ .162” 097º 38’ .273” 0-30 1.29 8.16 
94 A 2 46º 05’ .153” 097º 38’ .274” 0-30 1.26 5.99 
188 A 3 46º 05’ .065” 097º 38’ .540” 0-30 1.29 7.40 
189 A 3 46º 05’ .058” 097º 38’ .541” 0-30 1.30 6.14 
190 A 3 46º 05’ .058” 097º 38’ .539” 0-30 1.30 8.07 
191 A 3 46º 05’ .045” 097º 38’ .541” 0-30 1.15 4.45 
39 D 1 46º 05’ .053” 097º 38’ .145” 0-30 1.34 8.16 
40 D 1 46º 05’ .061” 097º 38’ .146” 0-30 1.30 8.95 
41 D 1 46° 05’ .071” 097º 38’ .144” 0-30 1.30 9.33 
83 D 2 46° 05’ .262” 097º 38’ .281” 0-30 1.27 10.3 
127 D 2 46º 05’ .265” 097º 38’ .379” 0-30 1.15 6.24 
164 D 2 46º 05’ .150” 097º 38’ .452” 0-30 1.25 5.85 
200 D 3 46º 04’ .950” 097º 38’ .512” 0-30 1.17 8.98 
201 D 3 46º 04’ .937” 097º 38’ .535” 0-30 1.24 7.97 
225 D 3 46º 04’ .960” 097º 38’ .591” 0-30 1.35 6.91 
48 E 1 46º 04’ .984” 097º 38’ .156” 0-30 1.31 8.08 
49 E 1 46º 04’ .972” 097º 38’ .157” 0-30 1.27 8.44 
60 E 2 46º 05’ .171” 097º 38’ .221” 0-30 1.28 7.91 
61 E 2 46º 05’ .161” 097º 38’ .200” 0-30 1.34 8.66 
214 E 3 46º 05’ .065” 097º 38’ .564” 0-30 1.20 6.26 
215 E 3 46º 05’ .055” 097º 38’ .564” 0-30 1.30 7.78 
50 F 1 46º 04’ .975” 097º 38’ .169” 0-30 1.34 8.67 
59 F 1 46º 05’ .045” 097º 38’ .541” 0-30 1.17 10.7 
62 F 2 46º 05’ .179" 097º 38’ .215” 0-30 1.21 10.0 
79 F 2 46º 05’.152" 097º 38’ .208” 0-30 1.11 6.50 
158 F 3 46º 05’ .205" 097º 38’ .449” 0-30 1.31 4.72 
159 F 3 46º 05’ .213" 097 38 .457” 0-30 1.30 7.87 
52 I 1 46º 05’ .249" 097º 38’ .221” 0-30 1.23 7.98 
53 I 1 46º 05’ .243" 097º 38’ .218” 0-30 1.14 8.09 
54 I 1 46º 05’ .212” 097º 38’ .219” 0-30 1.16 6.78 
55 I 1 46º 05’ .224” 097º 38’ .218” 0-30 1.22 6.83 
56 I 1 46º 05’ .212” 097º 38’ .219” 0-30 1.14 6.05 
57 I 1 46º 05’ .224” 097º 38’ .218” 0-30 1.16 7.47 
118 I 2 46º 05’ .135” 097º 38’ .336” 0-30 1.13 8.46 
119 I 2 46º 05’ .083” 097º 38’ .340” 0-30 1.16 8.26 
120 I 2 46º 05’ .212” 097º 38’ .219” 0-30 1.28 7.27 
121 I 2 46º 05’ .125” 097º 38’ .332” 0-30 1.11 6.83 
122 I 2 46º 05’ .093” 097º 38’ .330” 0-30 1.14 7.28 
123 I 2 46º 05’ .106” 097º 38’ .332” 0-30 1.25 8.46 
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Plot           
Crop 
Treatment 

Treatment 
Repl. 

Latitude 
(N) 

Longitude 
(N) Depth 

Bulk 
Density 

2006 and  
2010 
SOC 

     -cm- -g/cm3- -kg/m2- 
204 I 3 46º 05’ .167” 097º 38’ .569” 0-30 1.15 6.91 
205 I 3 46º 05’ .138” 097º 38’ .567” 0-30 1.21 7.87 
206 I 3 46º 05’ .145” 097º 38’ .573” 0-30 1.22 5.54 
207 I 3 46º 05’ .159” 097º 38’ .571” 0-30 1.17 6.72 
208 I 3 46º 05’ .138” 097º 38’ .567” 0-30 1.28 7.06 
42 KH 1 46º 05’ .044” 097º 38’ .145” 0-30 1.36 8.26 
72 KH 1 46º 05’ .053” 097º 38’ .210” 0-30 1.31 10.9 
73 KH 1 46º 05’ .045” 097º 38’ .219” 0-30 1.31 6.07 
136 KH 2 46º 05’ .175” 097º 38’ .389” 0-30 1.32 7.80 
137 KH 2 46º 05’ .163” 097º 38’ .389” 0-30 1.12 6.80 
138 KH 2 46º 05’ .154” 097º 38’ .384” 0-30 1.14 10.3 
178 KH 3 46º 05’ .166” 097º 38’ .535” 0-30 1.39 5.84 
179 KH 3 46º 05’ .156” 097º 38’ .534” 0-30 1.26 7.50 
180 KH 3 46º 05’ .147” 097º 38’ .534” 0-30 1.17 7.80 
32 N 1 46º 05’ .135” 097◦ 38’ .167” 0-30 1.21 8.27 
33 N 1 46º 05’ .133” 097º 38’ .166” 0-30 1.26 8.54 
34 N 1 46º 05’ .119” 097º 38’ .157” 0-30 1.23 9.07 
35 N 1 46º 05’ .112” 097º 38’ .144” 0-30 1.14 6.50 
58 N 1 46º 05’ .191” 097º 38’ .960” 0-30 1.39 10.7 
80 N 1 46º 04’ .975” 097º 38’ .210” 0-30 1.24 8.56 
167 N 2 46º 05’ .125” 097º 38’ .443” 0-30 1.22 5.22 
168 N 2 46º 05’ .114” 097º 38’ .458” 0-30 1.30 9.11 
169 N 2 46º 05’ .106” 097º 38’ .460” 0-30 1.29 6.87 
170 N 2 46º 05’ .097” 097º 38’ .448” 0-30 1.21 6.83 
171 N 2 46º 05’ .089” 097º 38’ .452” 0-30 1.26 6.62 
172 N 2 46º 05’ .078” 097º 38’ .458” 0-30 1.22 8.92 
216 N 3 46º 05’ .045” 097º 38’ .568” 0-30 1.27 9.44 
217 N 3 46º 05’ .037” 097° 38’ .570” 0-30 1.26 10.5 
218 N 3 46º 05’ .028” 097° 38’ .572” 0-30 1.25 7.77 
219 N 3 46º 05’ .017” 097° 38’ .576” 0-30 1.06 6.35 
220 N 3 46º 05’ .009” 097° 38’ .580” 0-30 1.07 6.63 
221 N 3 46º 05’ .000” 097° 38’ .577” 0-30 1.17 8.60 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table A1. Plot, crop treatment, treatment replication, latitude, longitude, depth, bulk density 
and SOC values for 2006 and 2010 (continued). 
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Table A2. Plot, crop treatment, treatment replication, latitude, longitude, depth, bulk density and 
SOC values for 2012.  

Plot  
Crop 

Treatment 
Treatment 

Repl. 
Latitude 

(N) 
Longitude 

(W) Depth 
Bulk 

Density  
2012 
SOC  

     -cm- -g/cm3- -kg/m2- 
 

18 
 

A 
 
1 

 
46º 05’.042” 

 
097º 38’. 095” 

 
0-30 1.18 9.51 

19 A 1 46º 05’.032” 097º 38’ .109” 0-30 1.29 8.80 
20 A 1 46º 05’.026” 097º 38’.085” 0-30 1.20 10.1 
21 A 1 46º 05’.019” 097º 38’.074” 0-30 1.30 9.07 
91 A 2 46º 05’.181” 097º 38’.290” 0-30 1.170 9.06 
92 A 2 46º 05’.170” 097º 38’.270” 0-30 1.12 8.45 
93 A 2 46º 05’.162” 097º 38’.273” 0-30 1.15 5.20 
94 A 2 46º 05’.153” 097º 38’.274” 0-30 1.25 9.72 
188 A 3 46º 05’.065” 097º 38’.540” 0-30 1.24 8.36 
189 A 3 46º 05’.058” 097º 38’.541” 0-30 1.09 7.92 
190 A 3 46º 05’.058” 097º 38’.539” 0-30 1.28 8.56 
191 A 3 46º 05’.045” 097º 38’.541” 0-30 1.14 8.89 
39 D 1 46º 05’ .053” 097º 38’ .145” 0-30 1.20 9.63 
40 D 1 46º 05’ .061” 097º 38’ .146” 0-30 1.25 9.81 
41 D 1 46° 05’ .071” 097º 38’ .144” 0-30 1.23 9.47 
83 D 2 46° 05’ .262” 097º 38’ .281” 0-30 1.14 9.48 
127 D 2 46º 05’ .265” 097º 38’ .379” 0-30 1.31 9.41 
164 D 2 46º 05’ .150” 097º 38’ .452” 0-30 1.17 10.0 
200 D 3 46º 04’ .950” 097º 38’ .512” 0-30 1.13 8.63 
201 D 3 46º 04’ .937” 097º 38’ .535” 0-30 1.21 8.62 
225 D 3 46º 04’ .960” 097º 38’ .591” 0-30 1.17 9.13 
48 E 1 46º 04’ .984” 097º 38’ .156” 0-30 1.16 5.11 
49 E 1 46º 04’ .972” 097º 38’ .157” 0-30 1.20 10.3 
60 E 2 46º 05’ .171” 097º 38’ .221” 0-30 1.08 8.25 
61 E 2 46º 05’ .161” 097º 38’ .200” 0-30 1.19 8.55 
214 E 3 46º 05’ .065” 097º 38’ .564” 0-30 1.24 9.75 
215 E 3 46º 05’ .055” 097º 38’ .564” 0-30 1.28 9.90 
50 F 1 46º 04’ .975” 097º 38’ .169” 0-30 1.17 9.95 
59 F 1 46º 05’ .045” 097º 38’ .541” 0-30 1.34 10.4 
62 F 2 46º 05’ .179" 097º 38’ .215” 0-30 1.21 9.30 
79 F 2 46º 05’.152" 097º 38’ .208” 0-30 1.07 8.09 
158 F 3 46º 05’ .205" 097º 38’ .449” 0-30 1.07 9.66 
159 F 3 46º 05’ .213" 097 38 .457” 0-30 1.30 9.45 
52 I 1 46º 05’ .249" 097º 38’ .221” 0-30 1.31 9.68 
53 I 1 46º 05’ .243" 097º 38’ .218” 0-30 1.23 9.38 
54 I 1 46º 05’ .212” 097º 38’ .219” 0-30 1.22 8.84 
55 I 1 46º 05’ .224” 097º 38’ .218” 0-30 1.13 9.07 
56 I 1 46º 05’ .212” 097º 38’ .219” 0-30 1.11 7.98 
57 I 1 46º 05’ .224” 097º 38’ .218” 0-30 1.11 9.38 
118 I 2 46º 05’ .135” 097º 38’ .336” 0-30 1.22 7.86 
119 I 2 46º 05’ .083” 097º 38’ .340” 0-30 1.14 4.22 
120 I 2 46º 05’ .212” 097º 38’ .219” 0-30 0.99 9.31 
121 I 2 46º 05’ .125” 097º 38’ .332” 0-30 1.16 8.98 
122 I 2 46º 05’ .093” 097º 38’ .330” 0-30 1.14 9.33 
123 I 2 46º 05’ .106” 097º 38’ .332” 0-30 1.15 8.16 
203 I 3 46º 05’ .176” 097º 38’ .573” 0-30 1.17 9.03 
204 I 3 46º 05’ .167” 097º 38’ .569” 0-30 1.16 9.18 
205 I 3 46º 05’ .138” 097º 38’ .567” 0-30 1.28 9.70 
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Plot  

 
Crop 

Treatment  

 
Treatment 

Repl. 

 
Latitude 

(N) 

 
Longitude 

(W)   Depth 
Bulk 

Density 
2012 
SOC 

     -cm- -g/cm3- -kg/m2- 
207 I 3 46º 05’ .159” 097º 38’ .571” 0-30 1.23 7.05 
208 I 3 46º 05’ .138” 097º 38’ .567” 0-30 1.28 10.3 
42 KH 1 46º 05’ .044” 097º 38’ .145” 0-30 1.17 9.52 
72 KH 1 46º 05’ .053” 097º 38’ .210” 0-30 1.11 7.76 
73 KH 1 46º 05’ .045” 097º 38’ .219” 0-30 1.22 8.70 
136 KH 2 46º 05’ .175” 097º 38’ .389” 0-30 1.19 8.00 
137 KH 2 46º 05’ .163” 097º 38’ .389” 0-30 1.15 8.48 
138 KH 2 46º 05’ .154” 097º 38’ .384” 0-30 1.05 8.19 
178 KH 3 46º 05’ .166” 097º 38’ .535” 0-30 1.28 9.26 
179 KH 3 46º 05’ .156” 097º 38’ .534” 0-30 1.13 7.86 
180 KH 3 46º 05’ .147” 097º 38’ .534” 0-30 1.15 7.98 
32 N 1 46º 05’ .135” 097◦ 38’ .167” 0-30 1.10 10.3 
33 N 1 46º 05’ .133” 097º 38’ .166” 0-30 1.15 10.0 
34 N 1 46º 05’ .119” 097º 38’ .157” 0-30 1.18 10.3 
35 N 1 46º 05’ .112” 097º 38’ .144” 0-30 1.44 10.2 
58 N 1 46º 05’ .191” 097º 38’ .960” 0-30 1.15 9.14 
80 N 1 46º 04’ .975” 097º 38’ .210” 0-30 1.10 8.62 
167 N 2 46º 05’ .125” 097º 38’ .443” 0-30 1.31 8.44 
168 N 2 46º 05’ .114” 097º 38’ .458” 0-30 1.15 8.26 
169 N 2 46º 05’ .106” 097º 38’ .460” 0-30 1.12 7.26 
170 N 2 46º 05’ .097” 097º 38’ .448” 0-30 1.21 8.04 
171 N 2 46º 05’ .089” 097º 38’ .452” 0-30 1.16 8.00 
172 N 2 46º 05’ .078” 097º 38’ .458” 0-30 1.20 8.54 
216 N 3 46º 05’ .045” 097º 38’ .568” 0-30 1.20 9.94 
217 N 3 46º 05’ .037” 097° 38’ .570” 0-30 1.24 9.36 
218 N 3 46º 05’ .028” 097° 38’ .572” 0-30 1.09 8.71 
219 N 3 46º 05’ .017” 097° 38’ .576” 0-30 1.10 8.73 
220 N 3 46º 05’ .009” 097° 38’ .580” 0-30 1.38 10.2 
221 N 3 46º 05’ .000” 097° 38’ .577” 0-30 0.94 7.61 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table A2. Plot, crop treatment, treatment replication, latitude, longitude and depth, bulk 
density and SOC values for 2012 (continued).  
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Table A3. Plot number, Plot replication, residue dry matter weight, residue C, residue C used by 
microbes, N in residue, N deficit in residue and residue C:N ratio for the aged residue spring 
2010. 

Plot 
Number 

2010 
Spring 
Aged 

Residue 
Treatment 

Plot
Repl 

Residue 
Dry 

matter 
Weight 

Residue 
C 

Residue 
C used 

by 
microbes 

Residue N 
needed by 
microbes 

Residue 
N 

Residue-N 
Deficit 

C:N 
Ratio 

   -Mg/ha- -kg C/ha- -kg C/ha- -kg N/ha -kg N/ha- -kg N/ha- ---- 
 

18 A 1 11.9 5014 1755 219 1001 -119 48.6 
19 A 1 8.37 3464 1213 152 41.8 -110 35.3 
20 A 1 7.15 3036 1063 133 52.6 -80.3 45.6 
21 A 1 14.0 6095 2133 267 147 -119 69.3 
91 A 2 10.0 4271 1495 187 105 -81.9 65.5 
92 A 2 8.23 3441 1204 151 81.5 -69.0 58.5 
93 A 2 11.4 4433 1551 194 91.5 -102 45.5 
94 A 2 3.01 1283 449 56.1 21.6 -34.6 43.3 
188 A 3 13.3 5425 1899 237 113 -125 51.2 
189 A 3 20.4 8767 3070 384 191 -192 58.3 
190 A 3 9.16 3713 1299 162 57.4 -105 38.3 
191 A 3 4.23 1819 637 79.6 20.8 -58.8 33.7 
39 D 1 9.38 4037 1413 177 97.2 -79.4 59.6 
40 D 1 6.19 2630 920 115 48.1 -67.0 44.7 
41 D 1 5.60 2604 911 114 37.6 -76.3 41.4 
83 D 2 7.38 2876 1007 126 65.5 -60.3 46.1 
127 D 2 15.3 6428 2250 281 151 -130 59.9 
164 D 2 9.22 3588 1256 157 53.2 -104 33.9 
200 D 3 10.4 4293 1502 188 76.2 -112 45.6 
201 D 3 7.01 2989 1046 131 61.6 -69.2 53.2 
225 D 3 10.9 4749 1662 208 109 -99.0 60.3 
48 E 1 5.07 2097 734 91.7 -0.22 -91.9 23.1 
49 E 1 7.01 3000 1050 131 44.6 -86.6 38.3 
60 E 2 11.2 4655 1629 204 87.4 -116 43.4 
61 E 2 8.22 3393 1188 148 48.4 -100 36.3 
214 E 3 9.48 3631 1271 159 56.4 -102 33.6 
215 E 3 12.4 5186 1815 91.8 91.8 -135 42.0 
50 F 1 6.57 2890 1011 67.6 67.6 -58.9 62.6 
59 F 1 7.86 3236 1133 88.9 88.9 -52.7 74.3 
62 F 2 19.3 8039 2814 352 202 -149 68.1 
79 F 2 9.21 3979 1393 174 99.2 -74.8 65.9 
158 F 3 17.4 7499 2625 328 188 -140 69.1 
159 F 3 10.3 4465 1563 195 101 -94.3 59.6 
52 I 1 8.70 3691 1292 161 80.4 -81.0 50.8 
53 I 1 3.85 1586 555 69.4 27.2 -42.2 37.7 
54 I 1 7.22 3017 1056 132 70.2 -61.8 59.7 
55 I 1 11.2 4585 1605 201 122 -78.9 72.1 
56 I 1 14.1 5730 2006 251 163 -87.2 76.5 
57 I 1 5.40 2238 783 97.9 48.3 -49.6 51.3 
118 I 2 7.09 2828 990 124 63.1 -60.7 54.1 
119 I 2 4.23 1702 596 74.5 28.6 -45.9 40.4 

    120 I 2 6.16 2207 772 96.5 60.2 -36.3 52.4 
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Plot 
Number 

2010 
Spring 
Aged 

Residue 
Treatment 

Plot
Repl 

Residue 
Dry 

matter 
Weight 

Residue 
C 

Residue 
C used 

by 
microbes 

Residue N 
needed by 
microbes 

Residue 
N 

Residue-N 
Deficit 

C:N 
Ratio 

   -Mg/ha- -kg C/ha- -kg C/ha- -kg N/ha -kg N/ha- -kg N/ha- ---- 
122 I 2 17.0 7177 2512 314 184 -130 64.2 
123 I 2 9.00 3771 1320 165 60.8 -104 41.4 
203 I 3 8.31 3574 1251 156 82.5 -73.9 60.5 
204 I 3 1.85 796 279 34.8 13.6 -21.2 42.0 
205 I 3 7.09 3016 1055 132 69.9 -62.0 62.3 
206 I 3 11.1 4719 1652 206 113 -93.8 61.1 
207 I 3 11.1 4507 1578 197 96.0 -101 49.8 
208 I 3 7.13 2945 1031 129 55.3 -73.6 43.3 
42 KH 1 7.35 3162 1107 138 62.0 -76.3 50.7 
72 KH 1 3.37 1427 500 62.4 30.4 -32.1 50.1 
73 KH 1 6.24 2700 945 118 76.7 -41.5 95.3 
136 KH 2 3.91 1680 588 73.5 29.1 -44.4 43.9 
137 KH 2 12.2 5199 1820 227 121 -107 58.8 
138 KH 2 7.48 3076 1076 135 62.0 -72.6 45.2 
178 KH 3 7.11 3132 1096 137 71.0 -66.0 62.2 
179 KH 3 10.45 4311 1509 189 94.2 -94.3 49.6 
180 KH 3 8.58 3617 1266 158 69.5 -88.8 45.3 
32 N 1 4.74 2012 704 88.0 25.2 -62.9 33.8 
33 N 1 9.06 3765 1318 165 72.7 -92.0 48.0 
34 N 1 1.63 682 239 29.8 0.88 -30.0 24.6 
35 N 1 1.63 682 239 29.8 0.88 -29.0 24.6 
58 N 1 5.40 2208 773 96.6 39.7 -56.9 41.4 
80 N 1 1.09 483 169 21.1 8.14 -13.0 47.1 
167 N 2 1.52 647 227 28.3 8.74 -19.6 38.7 
168 N 2 1.74 750 262 32.8 10.38 -22.4 40.9 
169 N 2 6.72 2909 1018 127 8.24 -119 25.8 
170 N 2 8.39 3604 1261 158 81.3 -76.4 57.4 
171 N 2 3.48 1509 528 66.0 1.66 -64.3 26.5 
172 N 2 3.48 1509 528 66.0 1.66 -64.3 26.5 
216 N 3 3.07 1286 450 56.3 18.9 -37.4 37.6 
217 N 3 4.46 1913 669 83.7 23.6 -60.0 36.8 
218 N 3 8.17 3264 1143 143 57.0 -84.9 39.5 
219 N 3 5.81 2418 846 106 40.3 -65.4 43.3 
220 N 3 2.90 1219 427 53.3 0.44 -52.9 25.1 
221 N 3 2.90 1219 427 53.3 0.44 -52.9 25.1 

 
 
 
 
 
 
 
 
 

Table A3. Plot number, Plot replication, residue dry matter weight, residue C, residue C used 
by microbes, N in residue, N deficit in residue and residue C:N ratio for the aged residue spring 
2010 (continued). 
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Table A4. Plot number, plot replication, residue dry matter weight, residue C, residue C used by 
microbes, N in residue, N deficit in residue and residue C:N ratio for the fresh residue fall 2012. 

Plot 
Number 

2012 Fall 
Fresh 

Residue 
Treatment 

Plot 
Repl 

Residue 
Dry 

Matter 
Weight  

Residue 
C   

Residue C 
used by 

microbes  

Residue 
N needed 

by 
microbes 

Residue 
N   

Residue-
N deficit  

C:N 
Ratio 

   -Mg/ha- -kg C/ha- -kg C/ha- -kg N/ha- -kg N/ha- -kg N/ha- ---- 

18 A 1 10.9 4841 1694 212 113 -98.3 68.5 

19 A 1 6.65 2946 1031 129 73.0 -55.9 73.5 

20 A 1 9.86 4451 1558 195 104 -91.2 69.4 

21 A 1 4.13 1831 641 80.1 365 -43.6 54.4 

91 A 2 7.65 3340 1169 146 77.6 -68.5 63.8 

92 A 2 8.04 2802 981 123 37.9 -84.6 42.8 

93 A 2 8.00 3621 1267 158 80.9 -77.6 66.4 

94 A 2 10.1 4480 1568 196 98.6 -97.4 61.8 

188 A 3 14.3 6139 2149 269 144 -124 62.4 

189 A 3 7.80 3445 1205 151 72.6 -78.1 57.5 

190 A 3 7.40 3262 1142 143 67.3 -75.5 55.1 

191 A 3 13.9 6083 2129 266 134 -132 59.4 

39 D 1 7.76 3389 1186 148 80.1 -68.2 65.4 

40 D 1 10.0 4260 1491 186 95.3 -91.1 57.2 

41 D 1 13.6 5833 2042 255 126 -130 56.1 

83 D 2 13.8 5995 2098 262 137 -125 62.0 

127 D 2 10.6 4520 1582 198 89.7 -108 50.4 

164 D 2 7.14 3016 1056 132 59.2 -72.7 48.6 

200 D 3 8.51 3706 1297 162 82.1 -80.0 59.2 

201 D 3 13.5 5949 2082 260 126 -134 58.1 

225 D 3 8.39 3724 1303 163 88.6 -74.3 68.9 

48 E 1 10.8 4806 1682 210 104 -106 59.1 

49 E 1 7.03 3104 1087 136 63.9 -71.9 55.8 

60 E 2 5.00 2207 772 96.5 48.2 -48.3 60.9 

61 E 2 7.04 3079 1078 135 73.4 -61.3 66.4 

214 E 3 7.31 3192 1117 140 55.1 -84.5 46.1 

215 E 3 6.26 2717 951 119 63.4 -55.4 63.3 

50 F 1 6.78 3002 1051 131 70.8 -60.5 67.7 

59 F 1 14.0 6155 2154 269 160 -111 78.0 

62 F 2 9.13 4085 1430 179 96.0 -82.7 69.1 

79 F 2 11.4 4910 1719 215 99.4 -115 51.5 

158 F 3 8.75 3934 1377 172 84.9 -87.2 61.6 

159 F 3 11.5 4934 1727 216 112 -104 58.5 

52 I 1 11.4 4966 1738 217 115 -102 63.6 

53 I 1 6.73 3150 1103 138 65.2 -72.6 64.0 
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Plot 
Number 

2012 Fall 
Fresh 

Residue 
Treatment 

Plot 
Repl 

Residue 
Dry 

Matter 
Weight  

         
Residue 

C   

Residue C 
used by 

microbes  

Residue 
N needed 

by 
microbes 

Residue 
N   

Residue-
N deficit  

C:N 
Ratio 

   -Mg/ha- -kg C/ha- -kg C/ha- -kg N/ha- -kg N/ha- -kg N/ha- ---- 

55 I 1     8.86 3885 1360 170 86.8 -83.1 60.9 

56 I 1     6.53 2925 1023 128 72 -56 74.8 

57 I 1 8.21 3626 1269 159 96.3 -62.4 83.8 

118 I 2 6.61 2448 857 107 30.6 -76.5 45.8 

119 I 2 6.51 3032 1061 133 63 -69.7 63.7 

120 I 2 10.9 4638 1623 203 86.8 -116 46.7 

121 I 2 6.1 2623 918 115 65.8 -49 69.3 

122 I 2 10.1 4233 1481 185 107 -78.4 64.7 

123 I 2 8.79 3833 1341 168 69.9 -97.7 48.2 

203 I 3 11.1 4824 1688 211 105 -106 58.3 

204 I 3 5.21 2426 849 106 52.3 -53.9 66.8 

205 I 3 7.39 3182 1114 139 74.3 -64.9 62.1 

206 I 3 10.2 4450 1575 197 107 -89.6 67.6 

207 I 3 9.82 4233 1482 185 97.3 -87.9 60.8 

208 I 3 11.3 4930 1726 216 92.8 -123 50 

42 KH 1 8.45 3517 1231 154 83.5 -70.4 58.4 

72 KH 1 11.4 4975 1741 218 132 -86 80.2 

73 KH 1 7.68 3438 1203 150 68.6 -81.8 55.4 

136 KH 2 11.4 5058 1770 221 128 -93.6 76.9 

137 KH 2 5.84 2538 888 111 55.9 -55.1 58.6 

138 KH 2 7.79 3334 1167 16 73.6 -72.3 56.6 

178 KH 3 13.5 5995 2098 262 158 -104 84.5 

179 KH 3 5.31 2408 843 105 57 -48.3 71.9 

180 KH 3 7.89 3484 1219 152 76.4 -76 60.4 

32 N 1 7.44 3206 1122 140 54.6 -85.7 44.6 

33 N 1 6.86 3035 1062 133 55.7 -77 49.9 

34 N 1 8.27 3668 1284 160 82.7 -77.8 63.4 

35 N 1 9.46 4127 1444 181 79.2 -101 50.6 

58 N 1 3.25 1422 498 62.2 23.6 -38.6 18 

80 N 1 4.66 2077 727 90.9 22.6 -68.3 20.4 

167 N 2 1.53 631 221 27.6 13.7 -13.9 51.5 

168 N 2 2.79 1173 411 51.3 18 -33.3 44.3 

169 N 2 14.4 6230 2181 273 142 -131 60.4 

170 N 2 7.17 3096 1084 135 71.1 -64.3 60.9 

171 N 2 6.24 2787 975 122 62.3 -59.6 63.5 

172 N 2 13.2 5826 2039 255 118 -137 55 

Table A4. Plot number, plot replication, residue dry matter weight, residue C, residue C used 
by microbes, N in residue, N deficit in residue and residue C:N ratio for the fresh residue fall 
2012 (continued). 
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Plot 
Number 

2012 Fall 
Fresh 

Residue 
Treatment 

Plot 
Repl 

Residue 
Dry 

Matter 
Weight  

Residue 
C   

Residue C 
used by 

microbes  

Residue 
N needed 

by 
microbes 

Residue 
N   

Residue-
N deficit  

C:N 
Ratio 

   -Mg/ha- -kg C/ha- -kg C/ha- -kg N/ha- -kg N/ha- -kg N/ha- ---- 

218 N 3 9.82 4277 1497 187 87.3 -99.8 53.7 

219 N 3 8.34 3643 1275 159 78.5 -80.8 57.7 

220 N 3 3.56 1232 431 53.9 15.4 -38.5 43.8 

221 N 3 10.7 2159 756 94.5 57 -37.5 45.3 

 

 

Table A5. Fuel estimated values used in the COMET-VR.  
Source of Fuel Colorado State University fuel estimates 

No-till planter 
 ---L/ha--- 

                                                     3.27 
Grain drill 3.27 
Combine, small grains 9.35 
combine , beans 10.3 
combine, corn 15.0 
Cutterbar 3.27 
Rake, single 2.34 
Baler 4.21 
Sprayer 
 
Total 

0.94 
 

52.0 
 

 
Table A6. CCSP N fertilizer values used in the COMET-VR modeling. 

Nitrogen Fertilizer 
Source CCSP N Fertilizer Rates 

Crops 
Barley 

---kg/ha--- 
250 

Corn 200 
Continuous corn 220 
Dry pea (pulse) 80 
Flax 56 
Soybean 12 
Spring Wheat 250 
Winter Wheat 230 
 

Table A4. Plot number, plot replication, residue dry matter weight, residue C, residue C used 
by microbes, N in residue, N deficit in residue and residue C:N ratio for the fresh residue fall 
2012 (continued). 
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Table A7. Example of COMET-VR CENTURY online C Storage Report-2007 for the no-till 
production system at the CCSP site. 

COMET-VR 2 Century Online C Storage report-2013 United States Department of Agriculture 
(USDA)  

Session ID: 820450096 CCSP 

1. Parcel Description: 

Name: Parcel1, Sargent County, North Dakota; 

Size: 10 Hectares; 

Type: Agriculture; 

LRR: F; 

MLRA: 055B; 

Soil: clay loam; 

Hydric: N; 

2. Parcel Management History: 

Historic: Upland Cropland, non-irrigated; 

1970’s to 1990’s: Continuous winter wheat, non-irrigated, intensive tillage; 

Base (last decade Mgmt): Corn-winter wheat, non-irrigated, no-tillage system; 

Report Period (next decade): Corn-winter wheat, non-irrigated, no-tillage system; 

3. Carbon and Biomass Storage report: 

A). Baseline:  

Total tonnes C storage per year for the parcel 1: 1.92, percent uncertainty: 19; 

Total tonnes net CO2 equivalent flux per year for the parcel 1: -7.04; 

B). Projection: 

Total tonnes C storage per year for the parcel 1: 1.92, uncertainty: 19; 

Total tonnes net CO2 equivalent flux per year for the parcel 1: -7.04; 

4. Important Comments: 

For SOC storage, a positive value shows SOC sequestration and a negative value shows 
a soil carbon loss; 

For SOC flux, a positive value shows an emission of GHG to the atmosphere and a 
negative value indicates a removal of GHG from the atmosphere; 

One tonne of C is equivalent to 3.667 tonnes of CO2; 
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5. Direct and Indirect Nutrient Emission Report: 

A). Baseline: 

Total direct and indirect kg N/yer for the parcel 1: 19.8; percent uncertainty: 
Undetermined; 

Total direct and indirect tonnes net CO2 equivalent flux per year for the parcel: 6.13; 

B). Projection: 

Total direct and indirect kg N/yer for the parcel 1: 19.8; percent uncertainty: 
Undetermined; 

Total direct and indirect tonnes net CO2 equivalent flux per year for the parcel: 6.13; 

There was no N2O projection warning message; 

The N2O flux is converted to into tonnes of CO2 using the global warming potential 
(GWP) of 310 

 

 

 

Table A8. CCSP crop yield values for seven crops used in RUSLE2 version 1.26.6.4.† 

Years Alfalfa Corn Flax Pea Soybean 
Spring 
wheat 

Winter 
wheat 

      -yr- -ton/ac- -Bu/ac- -bu/ac- -bu/ac- -Bu/ac- -bu/ac- -bu/ac- 
2006 0 191 9 30 51 62 62 
2007 3.5 149 14 30 46 54 73 
2008 3.0 135 24 30 28 70 85 
2009 5.0 167 28 30 45 65 65 
2010 4.0 154 15 30 44 58 77 

Average 3.1 159 18 30 43 62 72 

†Based on actual annual average yields. 

 

 

 

 

 

 

Table A7. Example of COMET-VR CENTURY online C Storage Report-2007 for the no-till 
production system at the CCSP site (continued). 
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Table A9. Crop Rotation: Inputs and results (outputs) from RUSLE 2 version 1.26.6.4 profile 
erosion calculation record for soil losses for 3% slope and a 220 foot (68 m) long. 

File:  Profiles\Sargent County Work 

Access Group:  R2_NRCS_Fld_Office 

Inputs:  

Location Name Soil Type 
Slope length 

 

slope 
steepness 
(%) 

 
North 

Dakota\Sargent 
County 

Aa Aastad clay loam\Aastad 
clay loam  90% 

220 3.0 

Crops Management 
         Crop Yields 

--bu/ac-- 

Spring 
Wheat 

Spring wheat-winter wheat-corn-soybean 
62.0 

Winter 
wheat 

Spring wheat-winter wheat-corn-soybean 
72.0 

Corn Spring wheat-winter wheat-corn-soybean 159 

Soybean Spring wheat-winter wheat-corn-soybean 43.0 

Contouring 
Strips/barrie
rs 

Diversion/te
rrace, 
sediment 
basin 

Subsurface drainage 

rows up-and-
down hill 

--none-- --none-- --none-- 

 

 

Soil Loss Ouputs: 

T value 
Soil loss erod. 

portion 
Detachment on 

slope 
Soil loss for 
cons. plan 

Sediment 
delivery 

Net C factor Net K factor 

-ton/ac/yr- 

5.00 

-ton/ac/yr- 

0.03 

-ton/ac/yr- 

0.03 

-ton/ac/yr- 

0.03 

-ton/ac/yr- 

0.03 

-ton/ac/yr- 

0.01 

-ton/ac/yr- 

0.22 
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SCI and STIR Outputs: 

Soil conditioning index (SCI)† 

 

Avg. annual slope 
STIR  

--unitless— 

1.50 

--unitless- 

3.40 

†The SCI is the Soil Conditioning Index rating. If the calculated index is a negative value, 
soil organic matter levels are predicted to decline under that production system. If the 
index is a positive value, soil organic matter levels are predicted to increase under that 
system.  

The STIR value is the Soil Tillage Intensity Rating. It utilizes the speed, depth, surface 
disturbance percent and tillage type parameters to calculate a tillage intensity rating for the 
system used in growing a crop or a rotation.  STIR ratings tend to show the differences in the 
degree of soil disturbance between systems. The kind, severity and number of ground disturbing 
passes are evaluated for the entire cropping rotation as shown in the management description. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A9. Crop Rotation: Inputs and results (outputs) from RUSLE 2 version 1.26.6.4 profile 
erosion calculation record for soil losses for 3% slope and a 220 foot long (continued). 
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APPENDIX B 

Abbreviation                                                                            Definition 

CC                                                                                                                      Cover Crop 

CEC                                                                                                   Cation exchange capacity 

CCSP                                                                           Conservation Cropping Systems Project 

CMZ                                                                                                    Crop Management Zone 

COMET-VR                         CarbOn Management Evaluation Tool for Voluntary Reporting   

CRM                                                                                                Crop Residue Management  

CSRA                                                                             Carbon Sequestration Rural Appraisal  

CSP                                                                                           Conservation Security Program 

CTIC                                                                          Conservation Tillage Information Center 

MLRA                                                                                             Major Land Resource Area 

EIA                                                                                    Energy Information Administration 

ASSCII                                           American Standard Code for Information and Interchange 

SOM1C (1)                                                                             C in surface microbe pool (g/m2) 

C:N                                                                                                 Carbon and Nitrogen Ratio 

DOE                                                                                                       Department of Energy 

ER                                                                                                                                Erosion 

FO                                                                                                                   Field Operation 

OC                                                                                                                  Organic Carbon 

OM                                                                                                                  Organic Matter 

POM                                                                                              Particulate Organic Matter 

TOC                                                                                                      Total Organic Carbon 

IC                                                                                                                 Inorganic Carbon 

O                                                                                                                              Oxygen 
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H                                                                                                                               Hydrogen  

N                                                                                                                                Nitrogen 

P                                                                                                                           Phosphorous 

K                                                                                                                              Potassium 

S                                                                                                                                    Sulfur 

C                                                                                                                                  Carbon 

%C                                                                                                                    Percent Carbon 

CH4                                                                                                                                Methane 

CO2                                                                                                                   Carbon dioxide 

%H2O                           %H2O (sample moisture) = (Wet weight - Dry Weight)/Wet Weight 

GCM                                                                                                   Global Climate Models 

LSD                                                                                              Least Significant Difference 

GWP                                                                                               Global Warming Potential  

GHG                                                                                                               Greenhouse Gas 

GIS                                                                                     Geographical Information System 

IPCC                                                                  Intergovernmental Panel on Climate Change 

LRR                                                                                                      Land Resource Region  

DMW                                                                                                         Dry Matter Weight 

N/A                                                                                                                    Not Available 

N                                                                                                                                Nitrogen 

%N                                                                                                                 Percent Nitrogen 

N2O                                                                                                                    Nitrous Oxide 

NRCS                                                                      Natural Resources Conservation Services 

ND                                                                                                                       North Dakota 

NDSU                                                                                       North Dakota State University 



 

160 
 

CT                                                                                                            Conventional Tillage  

NT                                                                                                                                 No-Till 

A                                                                                                                                     Alfalfa  

C                                                                                                                                        Corn 

F                                                                                                                                         Flax 

P                                                                                                                                        Pulse 

P                                                                                                                                          Pea 

SB                                                                                                                                Soybean 

A = RKLSCP                                                                                              Soil Loss Equation 

A                                        Predicted long-term Average of annual sheet and rill erosion loss 

R                                                                                     Rainfall and Runoff Erosivity Factor 

K                                                                                                           Soil Erodibility Factor 

L                                                                                                               Slope Length Factor 

S                                                                                                           Slope Steepness Factor 

C                                                                                                     Cover Management Factor 

P                                                                                                     Supporting Practice Factor 

RUSLE2                                                       Revised Universal Soil Loss Equation Version 2 

SCI                                                                                                    Soil Conditioning Index 

SOC                                                                                                        Soil Organic Carbon 

SOM                                                                                                        Soil Organic Matter 

SW                                                                                                                     Spring Wheat 

HRWW                                                                                              Hard Red Winter Wheat 

SRWW                                                                                               Soft Red Winter Wheat 

STIR                                                                                           Soil Tillage Intensity Rating 

 



 

161 
 

USDA                                                                     United States Department of Agriculture 
 
WW                                                                                                                   Winter Wheat 
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APPENDIX C 

Abbreviation                                                           Unit 

Ac                                                                            Acre 

Bu                                                                            Bushel 

bu/ac                                                                        Bushel per acre 

Ton                                                                          Tonne 

Ton/ac/yr                                                                 Tonne Per acre per year 

Ton/ac                                                                      Tonne Per acre 

Pg                                                                             Picrogram 

Gt                                                                             Gigatonne 

Tg                                                                             Teragram 

ppbv                                                                         Parts Per billion by volume 

ppmv                                                                        Parts Per million by volume 

ft2                                                                             Square feet 

Ft                                                                              Feet 

kg                                                                            Kilogram 

kg/m2                                                                      Kilogram per Square meter 

g                                                                               Gram 

g/m2                                                                         Gram per Square Meter 

Ha                                                                            Hectare 

Lbs                                                                           Pounds 

m                                                                              Meter 

cm                                                                            Centimeter 

m2                                                                                                                  Square Meter 

m-2                                                                            Per square Meter 
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Abbreviation                                                              Unit         

m-3                                                                            Per Cubic Meter 

Mg                                                                           Megagram 

Mg/ha                                                                       Megagram Per Hectare 

Mg/ha/yr                                                                  Megagram Per Hectare Per year 

Mt                                                                            Metric Tonne 

 


