
SMART GRID OPTIMIZATION USING A CAPACITATED TRANSSHIPMENT PROBLEM SOLVER

A Thesis

Submitted to the Graduate Faculty

Of the

North Dakota State University

Of Agriculture and Applied Science

By

Damian Lampl

In Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Major Department:

Computer Science

July 2013

Fargo, North Dakota

North Dakota State University

Graduate School

Title

SMART GRID OPTIMIZATION USING A CAPACITATED TRANSSHIPMENT

PROBLEM SOLVER

 By

Damian Lampl

 The Supervisory Committee certifies that this disquisition

complies with North Dakota State University’s regulations and

meets the accepted standards for the degree of

 MASTER OF SCIENCE

 SUPERVISORY COMMITTEE:

Dr. Kendall Nygard

 Chair

Dr. William Perrizo

Dr. Brian Slator

Dr. Samee Khan

 Approved:

 7/1/13 Dr. Brian M. Slator

 Date Department Chair

iii

ABSTRACT

A network flow model known as the capacitated transshipment problem, or

CTP, can represent key aspects of a smart grid test network with the goal of

finding minimum cost electric power flows using multiple different cost

performance metrics.

A custom CTP Solver was developed and implemented as an ASP.NET web

application in an effort to study these various minimum cost smart grid

problems and provide their optimal solutions.

The CTP Solver modifies traditional linear programming concepts by

introducing object oriented software development practices, as well as an

insightful innovation for handling bidirectional arcs, which effectively

halves the required disk and memory allocation of fully bidirectional

networks.

As an initial step toward smart grid optimization problem solutions,

the CTP Solver provides a glimpse of how self-healing and possibly other key

components of smart grid architecture might be handled in the future.

iv

TABLE OF CONTENTS

ABSTRACT.. iii

LIST OF TABLES... xi

LIST OF FIGURES... xii

LIST OF APPENDIX FIGURES.. xiv

1. INTRODUCTION... 1

1.1. Background ... 1

1.2. Research Focus ... 1

1.3. Organization ... 2

2. LITERATURE REVIEW.. 3

2.1. Smart Grid ... 3

2.1.1. Overview ... 3

2.1.2. Self-Healing System .. 4

2.1.3. IEEE Test Systems .. 5

2.2. Linear Programming ... 6

2.2.1. Overview ... 6

2.2.2. Simplex Method ... 7

2.2.2.1. General Form ... 8

2.2.2.2. Standard Form .. 8

2.2.3. Big-M Method .. 10

2.2.4. Interior-Point Method ... 11

2.2.5. Duality ... 11

2.2.6. Network Flow Problems ... 12

2.2.6.1. Network Simplex Algorithm 13

2.2.7. Capacitated Transshipment Problem 14

2.2.7.1. Transportation Problem 14

2.2.7.2. Transshipment Nodes ... 15

2.2.7.3. Arc Capacities .. 15

v

2.2.7.4. CTP Standard Form ... 15

2.2.8. Test Networks ... 16

2.2.9. CTP and the Smart Grid .. 17

3. IMPLEMENTATION.. 19

3.1. Design Goals .. 19

3.1.1. User Experience ... 20

3.1.1.1. User Conveniences ... 20

3.1.2. Application Development and Maintenance 21

3.1.2.1. Implementation Goals .. 21

3.2. Implementation Overview ... 22

3.2.1. Simplified Process .. 22

3.2.2. Smart Grid Possibilities .. 23

3.3. Data Structures ... 23

3.3.1. DataSet ... 24

3.3.2. IList ... 24

3.3.3. LINQ .. 25

3.3.4. Node .. 25

3.3.5. Arc ... 28

3.3.6. Algorithm Methods ... 32

3.3.7. Miscellaneous Data Structures 34

3.3.8. XML Input Files ... 35

3.4. Modified Simplex Algorithm .. 36

3.4.1. Step 1: Initialize .. 37

3.4.1.1. Set Root Node ... 37

3.4.1.2. Create Basis Tree ... 38

3.4.1.3. Determine Node Potentials 40

3.4.2. Step 2: Calculate Reduced Costs 40

3.4.2.1. Non-basic Arcs .. 41

3.4.2.2. Bidirectional Arcs .. 41

vi

3.4.2.3. Choose Entering Arc ... 42

3.4.2.4. Enforce Lower Bounds .. 43

3.4.2.5. Optimality .. 43

3.4.3. Step 3: Create Cycle .. 43

3.4.3.1. Add Arcs to Cycle ... 44

3.4.3.2. Calculate Maximum Feasible Flow Change 45

3.4.3.3. Choose Leaving Arc .. 46

3.4.3.4. Update Cycle Flows .. 46

3.4.3.5. Degeneracy .. 47

3.4.4. Step 4: Update Basis .. 47

3.4.5. Step 5: Repeat Steps 2-4 Until Optimal 48

3.5. Output .. 49

3.5.1. Miscellaneous Information 49

3.5.2. Optimal Solution .. 50

3.5.3. Simplex Iterations .. 52

3.5.4. Debugging Log ... 55

3.6. Limitations and Modifications 56

3.6.1. Performance Gains ... 56

3.7. Network Generator ... 57

3.7.1. IEEE Test Files ... 57

3.7.1.1. Formatting Discrepancies 58

3.7.1.1.1. Duplicate Arcs .. 58

3.7.1.1.2. Sequential Node ID Requirement 59

3.7.1.2. Supply and Demand ... 59

3.7.2. Generic Networks .. 60

3.7.2.1. Realistic Networks .. 60

4. RESULTS... 62

4.1. Software Comparisons .. 62

4.1.1. AMPL .. 62

vii

4.1.2. SAS ... 63

4.1.3. CTP Solver .. 63

4.1.3.1. Modeling .. 63

4.1.3.2. Software Installation 64

4.1.3.3. Output .. 64

4.2. Reading the CTP Solver Results 64

4.2.1. Optimal Network ... 65

4.2.2. Simplex Iterations .. 66

4.2.2.1. Nodes ... 66

4.2.2.2. Current Network Values 67

4.2.2.3. Entering and Leaving Arcs 67

4.2.2.4. Basis ... 67

4.2.2.5. Cycle Arcs .. 68

4.2.2.6. Network Cost .. 68

4.2.3. Cycle Debugging Log ... 68

4.2.4. Displayed Results Comparison 68

4.2.4.1. Optimal Display and Diagnostics Comparison 69

4.2.4.2. Optimal Network Comparison 71

4.3. Accuracy Summary .. 75

4.4. Performance Summary ... 75

4.4.1. CTP Solver Output Performance Improvements 76

4.4.1.2. Hiding Simplex Iterations 77

4.4.1.3. Hiding Cycle Debugging Log 77

4.4.1.4. Hiding Cycle Debugging Log and Simplex Iterations 78

4.4.1.5. First Reduced Cost Arc 79

4.5. Testing Environment and Setup 79

4.5.1. Hardware and Software ... 79

4.5.2. Test Network Setup .. 80

4.6. Test Network Results .. 80

viii

4.6.1. IEEE 14-Bus Results: Distance Cost 81

4.6.1.1. Accuracy .. 82

4.6.1.2. Performance ... 82

4.6.2. IEEE 30-Bus Results: Random Cost 83

4.6.2.1. Accuracy .. 83

4.6.2.2. Performance ... 84

4.6.2.3. Performance Graphs .. 84

4.6.3. IEEE 57-Bus Results: Random Cost 85

4.6.3.1. Accuracy .. 85

4.6.3.2. Performance ... 85

4.6.3.3. Performance Graphs .. 86

4.6.4. IEEE 118-Bus Results: Random Cost 86

4.6.4.1. Accuracy .. 87

4.6.4.2. Performance ... 87

4.6.4.3. Performance Graphs .. 88

4.6.5. IEEE 300-Bus Results: Random Cost 88

4.6.5.1. Accuracy .. 88

4.6.5.2. Performance ... 88

4.6.5.3. Performance Graphs .. 89

4.6.6. Custom 400 Node Results: Random Cost 89

4.6.6.1. Accuracy .. 90

4.6.6.2. Performance ... 90

4.6.6.3. Performance Graphs .. 91

4.6.7. Custom 500 Node Results: Random Cost 91

4.6.7.1. Accuracy .. 91

4.6.7.2. Performance ... 91

4.6.7.3. Performance Graphs .. 92

4.7. Results Analysis .. 92

5. CONCLUSION.. 95

ix

5.1. Primary Contributions ... 96

5.1.1. Architecture and Platform 96

5.1.1.1. Web Application ... 96

5.1.1.2. Object-Oriented Architecture and Concepts 97

5.1.1.3. LINQ .. 97

5.1.2. User Experience ... 97

5.1.2.1. Ease of Use ... 98

5.1.2.2. Standardized Data Format 98

5.1.2.3. No New Languages .. 98

5.1.3. Bidirectional Arcs Algorithm Innovation 99

5.2. Future Work and Improvements .. 99

5.2.1. Parallelization ... 99

5.2.2. Visualization .. 100

5.2.3. Optimization ... 100

REFERENCES.. 102

APPENDIX.. 104

A.1. IEEE 14-Bus System Example ... 104

A.1.1. IEEE 14-Bus System: Step 0 104

A.1.2. IEEE 14-Bus System: Step 1 Cycle 105

A.1.3. IEEE 14-Bus System: Step 1 Flows 106

A.1.4. IEEE 14-Bus System: Step 2 Cycle 106

A.1.5. IEEE 14-Bus System: Step 2 Flows 107

A.1.6. IEEE 14-Bus System: Step 3 Cycle 107

A.1.7. IEEE 14-Bus System: Step 3 Flows 108

A.1.8. IEEE 14-Bus System: Step 4 Cycle 108

A.1.9. IEEE 14-Bus System: Step 4 Flows 109

A.1.10. IEEE 14-Bus System: Step 5 Cycle 109

A.1.11. IEEE 14-Bus System: Step 5 Flows 110

A.1.12. IEEE 14-Bus System: Step 6 Cycle 110

x

A.1.13. IEEE 14-Bus System: Step 6 Flows 111

A.1.14. IEEE 14-Bus System: Step 7 Cycle 111

A.1.15. IEEE 14-Bus System: Step 7 Flows 112

A.1.16. IEEE 14-Bus System: Step 8 Cycle 112

A.1.17. IEEE 14-Bus System: Step 8 Flows 113

A.1.18. IEEE 14-Bus System: Step 9 Cycle 113

A.1.19. IEEE 14-Bus System: Step 9 Flows 114

A.1.20. IEEE 14-Bus System: Step 10 Cycle 114

A.1.21. IEEE 14-Bus System: Step 10 Flows 115

A.1.22. IEEE 14-Bus System: Step 11 Cycle 115

A.1.23. IEEE 14-Bus System: Step 11 Flows 116

A.1.24. IEEE 14-Bus System: Step 12 Cycle 116

A.1.25. IEEE 14-Bus System: Step 12 Flows 117

A.1.26. IEEE 14-Bus System: Step 13 Cycle 117

A.1.27. IEEE 14-Bus System: Step 13 Flows 118

A.1.28. IEEE 14-Bus System: Step 14 Cycle 118

A.1.29. IEEE 14-Bus System: Step 14 Flows 119

A.1.30. IEEE 14-Bus System: Step 15 Cycle 119

A.1.31. IEEE 14-Bus System: Step 15 Flows 120

A.1.32. IEEE 14-Bus System: Step 16 Cycle 120

A.1.33. IEEE 14-Bus System: Step 16 Flows (Optimal) 121

xi

LIST OF TABLES

Table Page

3.1: Node Properties... 26

3.2: Node Methods.. 28

3.3: Arc Properties.. 29

3.4: Arc Methods... 31

3.5: Algorithm Methods... 33

4.1: CTP Solver Performance Improvement – Hiding Simplex Iterations........ 77

4.2: CTP Solver Performance Improvement – Hiding Cycle Debugging Log....... 78

4.3: CTP Solver Performance Improvement – Hiding Cycle Debugging Log and

 Simplex Iterations.. 78

4.4: IEEE 14- Bus Performance Results...................................... 82

4.5: IEEE 30-Bus Performance Results....................................... 84

4.6: IEEE 57-Bus Performance Results....................................... 86

4.7: IEEE 118-Bus Performance Results...................................... 87

4.8: IEEE 300-Bus Performance Results...................................... 88

4.9: Custom 400 Node Performance Results................................... 90

4.10: Custom 500 Node Performance Results.................................. 92

xii

LIST OF FIGURES

Figure Page

2.1: Example Smart Grid Visualization. [2].................................. 3

2.2: Dynamic Electrical Power Rerouting. [2]................................ 5

2.3: Linear Programming Model General Form. [6]............................. 8

2.4: Linear Programming Model Standard Form. [6]............................ 9

2.5: Linear Programming Model Simplified Standard Form. [6]................ 10

2.6: Linear Programming Model Vector Standard Form. [6].................... 10

2.7: Primal and Dual Problems. [6]... 12

2.8: CTP Standard Form... 16

2.9: Left – IEEE 14-Bus Test System Diagram. Right – IEEE 14-Bus Test System

 Network Representation.. 17

3.1: CTP Solver (Screenshot, Light CSS).................................... 19

3.2: Initial Basis Tree of IEEE 14-Bus Test System with Arc Flows.......... 38

3.3: IEEE 14-Bus Test System Cycle Iteration 13............................ 44

3.4: IEEE 14-Bus Test System Basis Update 13............................... 48

3.5: CTP Solver Optimal Network Miscellaneous Information (Screenshot, Light

 CSS).. 50

3.6: CTP Solver Optimal Network Arc Information (Screenshot, Light CSS).... 51

3.7: CTP Solver IEEE 14-Bus System Simplex Iteration 13 – Node Details

 (Screenshot, Light CSS)... 53

3.8: CTP Solver IEEE 14-Bus System Simplex Iteration 13 – Full Network

 Results (Screenshot, Light CSS)....................................... 54

3.9: CTP Solver IEEE 14-Bus System Simplex Iteration 13 – Entering/Leaving

 Arcs, Basis, Cycle, and Current Network Cost (Screenshot, Light CSS).. 55

4.1: AMPL Optimal and Diagnostics Display (Screenshot)..................... 69

4.2: SAS Optimal and Diagnostics Display (Screenshot)...................... 70

4.3: CTP Solver Optimal and Diagnostics Display (Screenshot, Light CSS).... 70

4.4: AMPL Optimal Network (Screenshot)..................................... 72

4.5: SAS Optimal Network (Screenshot)...................................... 73

xiii

4.6: CTP Solver Optimal Network (Screenshot, Light CSS).................... 74

4.7: IEEE 14-Bus Performance Graphs.. 83

4.8: IEEE 30-Bus Performance Graphs.. 84

4.9: IEEE 57-Bus Performance Graphs.. 86

4.10: IEEE 118-Bus Performance Graphs...................................... 88

4.11: IEEE 300-Bus Performance Graphs...................................... 89

4.12: Custom 400 Node Performance Graphs................................... 91

4.13: Custom 500 Node Performance Graphs................................... 92

4.14: Overall Average Performance.. 93

xiv

LIST OF APPENDIX FIGURES

Figure Page

A.1: IEEE 14-Bus System Step 0.. 105

A.2: IEEE 14-Bus System Step 1 Cycle...................................... 105

A.3: IEEE 14-Bus System Step 1 Flows...................................... 106

A.4: IEEE 14-Bus System Step 2 Cycle...................................... 106

A.5: IEEE 14-Bus System Step 2 Flows...................................... 107

A.6: IEEE 14-Bus System Step 3 Cycle...................................... 107

A.7: IEEE 14-Bus System Step 3 Flows...................................... 108

A.8: IEEE 14-Bus System Step 4 Cycle...................................... 108

A.9: IEEE 14-Bus System Step 4 Flows...................................... 109

A.10: IEEE 14-Bus System Step 5 Cycle..................................... 109

A.11: IEEE 14-Bus System Step 5 Flows..................................... 110

A.12: IEEE 14-Bus System Step 6 Cycle..................................... 110

A.13: IEEE 14-Bus System Step 6 Flows..................................... 111

A.14: IEEE 14-Bus System Step 7 Cycle..................................... 111

A.15: IEEE 14-Bus System Step 7 Flows..................................... 112

A.16: IEEE 14-Bus System Step 8 Cycle..................................... 112

A.17: IEEE 14-Bus System Step 8 Flows..................................... 113

A.18: IEEE 14-Bus System Step 9 Cycle..................................... 113

A.19: IEEE 14-Bus System Step 9 Flows..................................... 114

A.20: IEEE 14-Bus System Step 10 Cycle.................................... 114

A.21: IEEE 14-Bus System Step 10 Flows.................................... 115

A.22: IEEE 14-Bus System Step 11 Cycle.................................... 115

A.23: IEEE 14-Bus System Step 11 Flows.................................... 116

A.24: IEEE 14-Bus System Step 12 Cycle.................................... 116

A.25: IEEE 14-Bus System Step 12 Flows.................................... 117

A.26: IEEE 14-Bus System Step 13 Cycle.................................... 117

xv

A.27: IEEE 14-Bus System Step 13 Flows.................................... 118

A.28: IEEE 14-Bus System Step 14 Cycle.................................... 118

A.29: IEEE 14-Bus System Step 14 Flows.................................... 119

A.30: IEEE 14-Bus System Step 15 Cycle.................................... 119

A.31: IEEE 14-Bus System Step 15 Flows.................................... 120

A.32: IEEE 14-Bus System Step 16 Cycle.................................... 120

A.33: IEEE 14-Bus System Step 16 Flows (Optimal).......................... 121

1

1. INTRODUCTION

1.1. Background

The creation of an autonomous, self-healing electrical grid is

currently one of the most important challenges facing electrical energy

providers. Such a system, known as the "smart grid", must interweave a

multitude of different systems, both software and hardware, in order to form

a complete solution capable of meeting the requirements outlined by the

United States Department of Energy.

According to the DOE, "It is a colossal task. But it is a task that

must be done." [1]

1.2. Research Focus

This work focuses on a single aspect of those systems: optimal

electrical flow through the smart grid network as determined by a cost

factor. The cost factor can be a different performance metric for various

optimization objectives, including values such as the distance between

generators and customers, electric line repair times, or failure rates.

In order to determine the best solution for multiple, different cost-

related problems associated with the smart grid, the capacitated

transshipment problem, or CTP, was chosen from the mathematical field of

linear programming to model the smart grid network and its values. Using

this model, a custom CTP Solver was developed, allowing users to easily

determine the optimal network flow of a given smart grid network topology.

2

1.3. Organization

Four chapters describe the work performed, beginning with a short

literature review, followed by the custom CTP Solver's implementation,

results, and conclusion.

The literature review chapter focuses on the problem definition,

including an overview of the smart grid, linear programming, and how the

capacitated transshipment problem is applied to the self-healing aspect of

the smart grid.

The implementation chapter focuses on the steps involved with creating

the CTP Solver and the reasons behind its design and implementation

decisions. Each step of its modified simplex algorithm is thoroughly

described as to be easily followed. In addition to the details of the CTP

Solver, a description of the custom network generator used in the creation of

larger-scale networks is also included.

In the results chapter, the CTP Solver's output is explained and its

performance is compared to a couple of existing linear programming software

solutions: AMPL and SAS. The accuracy as far as the minimum cost network

attained for each test network is also compared against AMPL and SAS, but

since they all implement optimal algorithms, the execution time of the

algorithm is a more important comparison factor.

Finally, the conclusion chapter sums up the work and includes

recommendations as well as opportunities for future work and improvements to

the CTP Solver and network generator.

3

2. LITERATURE REVIEW

For a better understanding of the purpose of the CTP Solver and this

work, some background information on the smart grid and linear programming

will be helpful. In particular, the smart grid, the simplex algorithm,

network flow problems, and especially the capacitated transshipment problem

itself will be reviewed in some detail.

2.1. Smart Grid

Figure 2.1: Example Smart Grid Visualization. [2]

2.1.1. Overview

The term "the grid," refers to the electric power grid of the United

States. It is a network consisting of substations, transformers, and

transmission lines used to provide electricity to homes and businesses from

an electric power plant. [2]

The existing electric grid originated in the 1890s and has both grown

and evolved to a network of more than 9,200 electric generating units. These

generators are capable of producing over one million megawatts of generating

4

capacity, made available through more than 300,000 miles of transmission

lines. [2]

While the current grid is considered an engineering marvel [2], it is

beginning to show its age. As our electricity needs and demands increase and

advance, so, too, must the electric grid providing the power.

It follows, then, that "smart grid" refers to using computer-based

remote control and automation in an effort to modernize the utility

electricity delivery systems. [3] Among the many benefits these automated

systems would help improve is the reliability of the electrical grid by

dynamically rerouting power as needed in order to avoid cascading failures.

2.1.2. Self-Healing System

One of the greatest benefits of a fully-functional smart grid is the

concept of self-healing. Current methods of outage detection vary and can be

primitive at best, requiring customers to call the electric provider with

service interruption notifications.

This type of recovery solution is completely reactive, and often times

much too slow to prevent catastrophic failures such as cascading outages.

When a generator fails, a large system is affected and can cause overloading

of other generators. As stations continue to fail, the outage spreads

farther and farther throughout the network.

Self-healing in the smart grid is just one aspect of a larger concept

referred to as "distribution intelligence." It is concerned with the utility

distribution system, or the wires, switches, and transformers that connect

the utility substation to the customers. [2]

Outage detection is another aspect of smart grid distribution

intelligence. The CTP Solver assumes an outage has been detected and

concerns itself with the optimal redistribution of power based on the current

state of the smart grid network.

5

Figure 2.2: Dynamic Electrical Power Rerouting. [2]

2.1.3. IEEE Test Systems

The Institute of Electrical and Electronics Engineers is the world's

largest professional association dedicated to advancing technological

innovation and excellence for the benefit of humanity. [4] The IEEE has

multiple test systems available for the study of electrical grid networks,

generally distinguished by a differing number of busses.

The bus system files used in testing the CTP Solver include:

 14-Bus Test System

 30-Bus Test System

 57-Bus Test System

 118-Bus Test System

 300-Bus Test System

Diagrams and network data files are available on the University of

Washington Electrical Engineering website for each of the IEEE test systems

above. [5]

6

2.2. Linear Programming

2.2.1. Overview

Sometimes referred to as "linear optimization", linear programming can

be defined as the general approach to the modeling and solution of linear

mathematical models. [6, p. 2]

The term "programming" can be a bit misleading since it does not

specifically mean computer programming, which many people might assume at

first glance. In this context, it provides a more general reference to

problem solutions; of course, these solutions could in fact be implemented as

computer programs but that is not a requirement.

Three basic steps are usually followed when formulating a model to

represent a given linear programming problem:

1. Determination of the decision variables

2. Formulating the objective function

3. Formulating the constraints

The decision variables represent measurable aspects of the problem,

such as unit cost. The objective function seeks to optimize the problem and

the constraints are limitation requirements.

With a model in place, the key concept of linear programming is

optimization of the objective function, which can also be thought of in terms

of minimization or maximization. When feasible, the solution to a linear

programming problem will be the best possible result of the objective

function value with respect to any constraints.

Some canonical examples of linear programming problems include the

assignment problem, the traveling salesman problem, and the transportation

problem which is a simplified variation of the capacitated transshipment

problem.

7

There are currently a number of software solutions that focus on

solving linear programming and optimization problems, including AMPL and SAS.

2.2.2. Simplex Method

The simplex method, sometimes referred to as the simplex algorithm, is

an algebraic process for solving linear programming problems. George Bernard

Dantzig is considered the creator of the simplex method, first published in

1947 and detailed in a 1951 Cowles Commission for Research in Economics

conference. [7]

To summarize its concepts, the simplex method mathematically models a

problem so that its solution space can be described in one of three ways:

1. Feasible Solution

2. Infeasible Solution

3. Optimal Solution

An infeasible solution is simply any point that does not satisfy every

constraint and nonnegativity condition of the linear program.

A feasible solution is any point that satisfies every constraint and

nonnegativity condition of the linear program. The set of all feasible

solutions is known as the feasible region; this is the equivalent of the

intersection of all feasible solutions.

If the linear program has a bounded feasible region, meaning the

feasible solution space is fully contained, an optimal solution will be some

point on the feasible region boundary. The simplex method effectively

traverses the boundary in search of these optimal points, also referred to as

extreme points.

8

2.2.2.1. General Form

Once the basic modeling steps are complete and the decision variables,

objective function, and constraints have been determined, the model can be

represented mathematically.

Simply stated, the general form of a linear programming model seeks to

find values for the decision variables that will optimize the objective

function, subject to the problem's constraints.

Mathematically, this can be written as Figure 2.3.

Optimize z = c1x1 + c2x2 + . . . + cnxn

Subject To:

a1,1x1 + a1,2x2 + . . . + a1,nxn {≤, =, ≥} b1

a2,1x1 + a2,2x2 + . . . + a2,nxn {≤, =, ≥} b2

 .

 .

 .

am,1x1 + am,2x2 + . . . + am,nxn {≤, =, ≥} bm

 x1,x2, . . . xn ≥ 0

Where:

z = the objective function value

c = cost of decision variable n

x = decision variable n

a = constraint m,n on decision variable xn

b = sum total value of constraint am,n

Figure 2.3: Linear Programming Model General Form. [6]

To summarize, the objective function minimizes or maximizes the sum

total cost of all decision variables, subject to restrictions defined in

terms of the decision variables. All decision variables must have a value

greater than or equal to zero.

2.2.2.2. Standard Form

Since it is generally easier to solve equations instead of

inequalities, additional variables, commonly referred to as artificial

9

variables, can be introduced into the general form of a linear programming

model, producing the standard form.

These new variables are known as the surplus and slack variables. If a

constraint definition is in the form of a "less-than or equal-to" inequality,

a slack variable is added in order to balance its left- and right-hand sides.

If a constraint is "greater-than or equal-to", a surplus variable is

subtracted.

In other words, a slack variable represents the amount the left side of

a constraint is missing in order to make it a balanced equation, and a

surplus variable represents the amount the left side of a constraint has in

excess over the right side.

For simplicity, the objective function of a linear programming model in

standard form is considered a maximization problem. The slack and surplus

variables can be represented in the objective function as follows in Figure

2.4.

Maximize z = Σcjxj + Σcksk

Where:

z = the objective function value

c = cost of decision variable j or surplus/slack variable k

x = decision variable j

s = slack or surplus variable k

Figure 2.4: Linear Programming Model Standard Form. [6]

In many cases, the sum of the slack and surplus variables is considered

to be zero and are subsequently omitted from the notation, leaving the

following Figure 2.5 as the standard form of a linear program.

10

Maximize z = Σcjxj

Subject To:

Σaijxj = bi; i= 1,..., m

xj ≥ 0; j = 1,..., n

Where:

z = the objective function value

c = cost of decision variable j

x = decision variable j

a = constraint i,j on decision variable j

b = sum total value of constraint aij

Figure 2.5: Linear Programming Model Simplified Standard Form. [6]

The standard form can also be represented using vector and matrix

notation as follows in Figure 2.6.

Maximize z = cx

Subject To:

Ax = b

x ≥ 0

Where:

A = m x n matrix of the coefficients of the constraints

x = n-vector of decision variables

b = m-vector of constraint totals

c = n-vector of decision variable coefficients

Figure 2.6: Linear Programming Model Vector Standard Form. [6]

Formulating the model in terms of vectors and matrices is beneficial

when building computer programs due to the generic array structure of most

high level programming languages. A one-dimensional array is analogous to a

vector, and a two-dimensional array is analogous to a matrix.

2.2.3. Big-M Method

Once the linear programming model has been determined, the simplex

algorithm can be used to iterate through the feasible solutions until it

11

finds the optimal solution. But the simplex algorithm must have a starting

point before it can carry out its iterations.

One way of calculating an initial solution is known as the Big-M

method. In short, the Big-M method introduces artificial variables with

extremely high cost coefficients, essentially guaranteeing they will not be a

part of the final solution so it will only consist of real variables.

As the simplex method iterates through the feasible solutions, the

artificial variables are systematically pushed out of the problem since the

real variables will provide a lower-cost solution.

2.2.4. Interior-Point Method

An alternative approach to the simplex method is the interior-point

method, developed in 1984 by Narendra Karmarkar. [8] Instead of following

the boundary of the feasible region like the simplex method, the interior-

point method constructs a trajectory through the feasible region in order to

find the optimal solution.

The interior-point method is used by the "netflow" procedure in SAS

whereas the "LPSOLVE" AMPL solver is based on the modified simplex algorithm

and the CTP Solver uses a custom version of the simplex method.

This work is not a comparison between the simplex method and interior-

point method, but rather a comparison between the CTP Solver and other

optimization software to determine if it is a viable solution for smart grid

optimization.

2.2.5. Duality

An important concept in linear programming is the correlation between a

problem in standard form, referred to as the primal, and a related problem

known as the dual, as shown in Figure 2.7.

12

Primal Problem Dual Problem

Maximize z = cx

Subject To:

Ax = b

x ≥ 0

Minimize Z = πb

Subject To:

πA ≥ c

π ≥ 0

Where:

A = m x n matrix of the coefficients of the constraints

x = n-vector of decision variables

b = m-vector of constraint totals

c = n-vector of decision variable coefficients

π = m-vector of dual variables

Figure 2.7: Primal and Dual Problems. [6]

Notice that the primal in standard form is a maximization problem of

the objective function while the dual is a minimization problem. The vector

of decision variables in the dual is the same as the vector of right-hand

sides (constraint totals, or b) in the primal, the vector of constraint

totals c in the dual is the same as the vector of decision variable

coefficients in the primal, and the constraint coefficient matrix A in the

dual is the transpose of A in the primal.

From these relationships, it is evident that if the primal problem is

of the order m x n, the dual problem is of the order n x m. Likewise, when

the solution to the primal problem is known, the solution to the dual problem

is also known, and vice versa.

Therefore, if a primal problem has more decision variables than

constraints, it might be faster to solve the dual problem instead of the

primal since the solution to one provides the solution to the other.

2.2.6. Network Flow Problems

In general, a network flow problem is any from a particular class in

which the solution space can be described using nodes and arcs connecting

13

those nodes with unit flow along the arcs transferred from one node to

another.

"One of the keys to developing an efficient algorithm for this class of

linear programming problems is establishing a relationship between the

algebraic and graphical representations of basic solutions. In particular,

one of the most important relationships is the one that exists between basis

matrices and rooted spanning trees." [6, p. 320]

Theorem 9.1: Every rooted spanning tree is a basis [6, p. 320]

Theorem 9.3: Every basis is a rooted spanning tree [6, p. 322]

A basis is defined as a collection of vectors a1, a2,...,ak in an n-

dimensional (real) Euclidean space, denoted by R
n
, where the following

conditions hold:

1. a1,a2,...,ak span R
n
.

2. If any of these vectors is deleted, the remaining collections

of vectors does not span R
n
. [9, pp. 48-49]

Recall the standard form of a linear programming problem can be written

in the same vector notation and an initial basis tree can be calculated using

the Big-M method, allowing the simplex algorithm to be applied to network

flow problems.

2.2.6.1. Network Simplex Algorithm

Once the basis tree of a network flow problem has been established, the

network simplex algorithm can be implemented. Network flow problems are

typically considered minimization problems, although they can be easily

changed into maximization problems by using negative cost values and changing

the sign polarity to positive values once the solution is obtained.

The four basic steps of the network simplex algorithm are:

1. Determine the primal and dual solutions.

2. Check for optimality.

14

3. Determine the departing variable.

4. Pivot and update.

Modified versions of these steps will be detailed in the Implementation

section.

2.2.7. Capacitated Transshipment Problem

The capacitated transshipment problem, or CTP, is an important network

optimization problem [9, p. 513] consisting of four primary elements: supply

nodes, demand nodes, transshipment nodes, and connective arcs.

The basic concept of the CTP is to find a minimum cost path that

connects every node of the network and transfers all units of flow from the

supply nodes to the demand nodes without violating any network arc

capacities.

2.2.7.1. Transportation Problem

The capacitated transshipment problem can be easily understood through

a simplified network flow variation known as the transportation problem [6,

p. 350]. In the transportation problem, unit flow is pushed along the

network arcs from the supply nodes to the demand nodes.

All units of supply in the network must be transferred from the supply

nodes to the demand nodes. This is known as the flow balance constraint and

can be written as Equation 2.1.

Flow Out - Flow In - Supply = 0

Equation 2.1: Flow Balance Constraint.

Due to this constraint, if the total supply of a transportation problem

is not equal to its total demand, the problem is infeasible.

The goal of the transportation problem is to find the basis tree that

minimizes the total cost of the unit flow along the network.

15

2.2.7.2. Transshipment Nodes

The capacitated transshipment problem generalizes the transportation

problem by adding transshipment nodes; or nodes with zero supply or demand.

This means the nodes must still be connected in the basis tree, but all flow

units simply pass through the node.

Transshipment nodes can cause degenerate arcs, or arcs with a unit flow

of zero. These degenerate arcs have the potential to create infinite loops

and so must be handled properly in order to prevent cycling through the same

solutions.

2.2.7.3. Arc Capacities

In addition to transshipment nodes, the capacitated transshipment

problem also adds capacities and lower bound requirements to arcs. Flow

along any given arc must be at least as much as the lower bound and not more

than its capacity. Violating either of these constraints will cause an

infeasible solution.

Arcs with flow equal to their capacity can be considered part of the

solution without taking up space in the basis tree. These arcs are referred

to as non-basic arcs with bounded flow.

2.2.7.4. CTP Standard Form

The capacitated transshipment problem can be described in algebraic

standard form as shown in Figure 2.8.

16

Minimize z = Σcijxij

Subject To:

xji - xij + bi = 0 for all arcs i,j

xij ≥ 0 for all arcs i,j

xij ≤ uij for all arcs i,j

xij ≥ lij for all arcs i,j

Where:

c = arc cost

x = arc flow

u = arc upper bound

l = arc lower bound

b = node supply (negative value for demand

Figure 2.8: CTP Standard Form.

The objective function is to minimize the sum total of all arc unit

flows multiplied by their costs.

Constraint (1) ensures flow balance at every node by making sure total

flow out of a node is the same as the total flow in with respect to the

node's supply and demand requirements. This constraint also ensures that

supply units are distributed from all supply nodes to all demand nodes,

creating a zero net unit flow for the entire network.

Constraint (2) ensures all arcs have a non-negative unit flow.

Constraint (3) ensures no arc capacities or upper bound limits are

violated.

Constraint (4) ensures no arc lower bound requirements are violated.

Formulating the problem in standard form allows the application of the

network simplex algorithm for calculating the optimal solution.

2.2.8. Test Networks

A handful of small example networks were used to test the functionality

and accuracy of the CTP Solver's algorithm, with the most influential problem

coming from the work of Bradley, Brown, and Graves [10].

17

This problem in particular provided an example of non-basic arcs with

flow as well as non-zero lower bounds, helping to ensure the CTP Solver

calculates the correct results through a variety of different potentially

troublesome network characteristics.

2.2.9. CTP and the Smart Grid

Representing the smart grid using a capacitated transshipment problem

model allows multiple different cost and network flow related problems to be

easily solved. One of these problems in particular is the self-healing

aspect of the smart grid.

When a critical failure is detected in the system, the CTP can be used

to find an optimal and inherently feasible redirected path for redistributing

energy throughout the smart grid. By finding the best alternative

distribution path, customer outages can be minimized and rectified almost as

quickly as they occur, when possible.

Figure 2.9 shows the diagram of the IEEE 14-Bus System and its network

representation for use in the CTP Solver.

Figure 2.9: Left – IEEE 14-Bus Test System Diagram. Right – IEEE 14-Bus Test

System Network Representation.

18

The Appendix steps through the flow updates as a high overview example

of the CTP Solver's process, using the IEEE 14-Bus System with distance

between the nodes (generators and substations) as a cost measurement for each

arc (lines connecting generators and substations). Following the iterations

can be beneficial to understanding the general capacitated transshipment

problem solving process.

19

3. IMPLEMENTATION

Figure 3.1: CTP Solver (Screenshot, Light CSS).

3.1. Design Goals

Before getting into the nuts and bolts of the CTP Solver application,

it is important to understand the motivation behind its design and

architectural decisions. Once these design goals have been examined, it will

hopefully be clear as to why certain development choices were implemented.

The design goals of the CTP Solver can be broken down into two primary

categories:

1. User Experience

2. Application Development and Maintenance

20

3.1.1. User Experience

One of the primary factors driving the development decisions was the

desire to make the application as convenient and easy to use as possible for

its end users. Considerations were made for understanding how the

application would generally be used and what information would be beneficial

to make available for display as well as download.

The user experience design goals can be summarized in a handful of

basic conveniences implemented with the user in mind.

3.1.1.1. User Conveniences

 Automated Initial Basis Calculation

▫ User not burdened with calculating an initial basis to feed into

the network topology.

 Bi-directional Arc Capability

▫ Flag allowing flow to travel in either direction along a single

arc.

 Multiple Network Topology Data Formats

▫ HTML Table (display)

▫ Database (import)

▫ XML (import, export)

▫ CSV (export)

 Decimal Values

▫ Enter the information as it exists instead of requiring pre-

calculation transformations into integer data types, etc.

 Configuration Options

▫ Big M Value

▫ Simplex Iterations Limit

21

▫ Show Detailed Simplex Information

▫ Show Cycle Debugging Log

 Help System

 Accessibility

▫ Web Application

3.1.2. Application Development and Maintenance

In addition to the user experience design goals, careful considerations

were made regarding the development and on-going maintenance of the CTP

Solver. The purpose behind the application development and maintenance goals

was to design the application's architecture and code with the developer in

mind.

The application development and maintenance goals can be summarized by

some basic developer-focused concepts.

3.1.2.1. Implementation Goals

 Ease of Use

▫ Simplicity

▫ Self-Documenting Code

▫ Partial Classes

 Universal Applications

▫ Generic Network Concepts

 Calculation Precision

▫ Decimal Data Type

 Maintainability

▫ Object Oriented Concepts

22

3.2. Implementation Overview

The CTP Solver has been implemented as a C# ASP.NET web application,

primarily for accessibility among its users. Many applications are written

as standalone software and are platform dependent, or, in the case of an

environment such as Java, dependent on some other service that must be

installed on the end user's machine.

While dependent on the ASP.NET framework on the host server, as a web

application, the CTP Solver can be made available to any machine or mobile

device connected to the internet, regardless of operating system. This

inherently widens the potential user-base and also minimizes the required

technical capabilities of those who would most benefit from its usage.

At the same level of implementation importance as the usage ubiquity

provided by the web is the ability for the CTP Solver to be as generic as

possible. While it is a vital requirement to be able to handle smart grid

network problems, it is equally imperative that the CTP Solver can process

any capacitated transshipment problem network. This requirement has been met

through basic supply, demand, flow, and cost concepts, among others.

3.2.1. Simplified Process

When a user uploads a custom file or selects a network option from the

dropdown of available choices, the CTP Solver reads the XML file (or

database) and commits the topology to memory. The network can be fully

described through two primary IList data structures: nodes and arcs, each

described in more detail below.

Once the network is in memory, the CTP Solver iterates through its

modified simplex algorithm and displays the final resulting optimal solution

to the user. In addition to some basic computational data such as the

execution time of the entire process, the optimal network is also made

23

available for download in both .CSV and XML format. This allows the user to

easily import the optimal network into other applications.

3.2.2. Smart Grid Possibilities

A benefit of web applications in specific relation to the smart grid is

that an implementation could be set up in such a way that a single CTP Solver

application could calculate optimal solutions for multiple client network

configurations simultaneously. This capability could be of some benefit for

planning systems with budget constraints as well as provide a single source

of maintenance for IT staff.

Since the CTP Solver is able to connect to a database as well as read

XML files, it could be easily integrated with other smart grid systems such

as failure notification solutions, providing automatic optimal electric flow

rerouting based on the supplied network topology of available nodes and arcs.

Since arc capacities are taken into consideration, the cascading failure

dynamic could possibly be avoided by ensuring network flow is feasibly

rerouted.

As the smart grid system grows, more cost performance measures are

likely to be revealed. Since the CTP Solver was built with generic concepts

in mind, it should be able to calculate optimal results for any new network

topology able to be modeled by the capacitated transshipment problem.

These potential smart grid applications and more are made possible by

the CTP Solver's integration of various custom and framework-native data

structures.

3.3. Data Structures

Traditional linear programming techniques implement primitive data

structures for network topology descriptions, such as arrays, or the standard

model formulation for use in specific modeling software such as AMPL.

24

While these methods make sense for application speed and simplicity,

the CTP Solver introduces object oriented practices in order to take

advantage of robust modern programming language capabilities such as LINQ for

the ASP.NET framework while maintaining very comparable speed on current

hardware.

Building the application using object oriented concepts subjectively

allows for easier maintainability since the primary components of the program

are modularized and abstracted. Objects also make network topologies much

easier for developers to conceptualize and reference during the debugging

process than, for example, trying to follow array pointers in order to

determine a cycle of arcs.

3.3.1. DataSet

The DataSet is a native structure to the ASP.NET framework. The

benefit of a DataSet object is that it takes on some properties of a

traditional relational database, including concepts such as rows and columns.

The CTP Solver reads the user-supplied network into a DataSet object.

In doing so, the exact same architecture can be used for reading from either

XML or a traditional database, such as MSSQL or MySQL, eliminating code

redundancy for essentially the same process.

3.3.2. IList

An IList is another native ASP.NET data structure representing a

collection of objects, with the "I" referring to the term, "Iterative",

making it an iterative list. Objects stored in an IList can be "queried"

much like relational databases using syntax similar to standard SQL.

Another benefit of using an IList collection object is that it only

uses as much memory as it needs. Objects can be added and removed from the

25

collection without requiring explicit dimensions. This makes resizing the

structures much more efficient than resizing arrays.

The primary limit of concern with the IList structure is the maximum

number of elements allowed in a single IList object, which is the same limit

as an array. Theoretically the maximum number of elements in an IList is

2,147,483,646, however, a network of that size would most likely benefit from

some kind of partitioning, such as a modified Dantzig-Wolfe decomposition

approach. [11]

Using a small number of these structures, the CTP Solver is able to

intuitively represent the entire network topology and more.

3.3.3. LINQ

The acronym, "LINQ", stands for Language-Integrated Query [12]. First

introduced in Visual Studio 2008, LINQ allows strongly typed object

collections (such as the IList described above) to be queried, providing an

easy system for extracting relevant information from data.

LINQ queries are used generously in the custom Arc class to provide

partial lists for structures such as the basis tree and all non-basic arcs.

3.3.4. Node

A node is a custom object class created to represent each node of the

network. All network nodes are added to an IList for easy access in

calculations.

The properties of each node are described in Table 3.1.

26

Table 3.1: Node Properties.

Property Data Type Description

id integer Providing each node with an unique id allows easy

reference to individual objects as well as makes

database interactions nearly seamless.

The upper bound limit on IList collection objects

is the maximum signed integer value, therefore it

was logical to limit this property to an integer

data type instead of a larger data type, such as

long.

The theoretical maximum number of real nodes in a

network that can be calculated by the CTP Solver

is 2,147,483,646 (one less than the maximum

signed integer value due to the presence of a

single artificial node).

ConnectedArcs IList<Arc> List of all arcs where the node is either the

Head or Tail. This list is used for calculating

net flow entering and leaving the node in order

to enforce flow balance requirements.

Demand decimal The demand of a node represents the number of

units of flow required at that node.

This property is currently unused in the CTP

Solver, although it is included in the node

structure primarily to show it was not overlooked

or mistakenly omitted.

Depth integer The depth of a node represents its level in the

basis tree starting from the root node.

It can also be explained as the number of arcs

between the current node and the root node in the

basis tree.

The node depth is used in traversing the cycle

created by a non-basic arc entering the basis.

Name string The name of the node is included mainly for the

benefit of human readability if the network

topology is printed to screen or if future

functionality includes generating network

diagrams, etc.

The CTP Solver does not use this property for any

purpose in its algorithms other than simply

storing the information.

27

Table 3.1: Node Properties (continued).

Property Data Type Description

NetFlow decimal Defined as the total flow coming into a node,

minus the total flow leaving a node, plus the

node's supply (which will be subtracted when

representing demand since it is then a negative

value).

This property must return zero when calculated

for every node in the network, otherwise a net

flow violation has occurred and the network is

infeasible.

Parent integer The parent of a node is used in the basis tree

structure. It represents the node immediately

connected to and one depth level above the

current node.

A negative parent value represents a reflected

arc in the basis tree structure.

Since it refers to a node id property, it is also

an integer data type.

Potential decimal The potential of a node is the equivalent to a

dual variable in linear programming.

In more simple terms, the node potential is the

cost of the back path in the basis tree from the

current node to the root node.

This value is used in calculating the reduced

cost of non-basic arcs to find the best candidate

arc for entering the basis tree.

Successor integer The successor of a node is also used in the basis

tree structure. It represents the node following

the current node in the preorder thread. Unlike

parent nodes, successor nodes in the preorder

thread are not necessarily directly connected by

an arc.

28

Table 3.1: Node Properties (continued).

Property Data Type Description

Supply decimal The supply of a node represents the number of

units of flow available from that node.

For simplicity in the CTP Solver algorithm, the

supply property also represents the demand of a

given node by reversing its polarity to a

negative sign.

Transshipment nodes are given a supply value of

zero.

The Node class has a single method, shown in Table 3.2.

Table 3.2: Node Methods.

Method Description

GetArcs Returns an IOrderedEnumerable list of arcs where the node is either

the Head or Tail. This method is used to set the value of the

ConnectedArcs property.

3.3.5. Arc

An arc is the second custom object class used to represent connections,

also sometimes referred to as edges or links, between nodes. As with nodes,

all network arcs are added to an IList data structure, allowing a simple

representation of the network connections.

The properties of arc objects are described in Table 3.3.

29

Table 3.3: Arc Properties.

Property Data Type Description

id integer Providing each arc with an unique id allows

easy reference to individual objects as well

as makes database interactions nearly

seamless.

The upper bound limit on IList collection

objects is the maximum signed integer value,

therefore it was logical to limit this

property to an integer data type instead of a

larger data type, such as long.

The theoretical maximum number of real arcs in

a network that can be calculated by the CTP

Solver is (2,147,483,647 - n), where n is the

number of nodes in the network. The reason

the number of nodes are taken into account is

due to the creation of an artificial arc

connecting every real node to the artificial

node during the automated initial basis

calculation.

BasisOrder integer Originally used before the initial basis was

automatically calculated, the basis order

represents the arc's order in the basis tree.

It is still used in the basis iterations and

calculations; non-basic arcs are determined by

a basis order value of zero.

Capacity decimal The capacity is the upper bound limit on units

of flow that can move across the arc at a

given time.

The capacity adheres to the Big M maximum

value limit set by the user in the config

element.

Cost decimal The cost represents the price of moving one

unit of flow across the arc. It is important

to note that the total cost of an arc is

calculated by multiplying the arc cost and

flow together.

The cost adheres to the Big M maximum value

limit set by the user in the config element.

Cpx decimal Cpx is the calculated value of the capacity

minus the flow of a given arc.

30

Table 3.3: Arc Properties (continued).

Property Data Type Description

Flow decimal The flow is the number of units pushed across

the arc from the tail node to the head node.

Its value must fall between the capacity and

lower bound of the arc.

Head integer The head of an arc is the id of its

destination node. It is the stopping point of

a directed arc. Unit flow along the arc

starts at the tail node and moves toward the

head node.

IsArtificial Boolean The IsArtificial flag determines whether or

not the arc is artificial or real. Artificial

arcs are used in the creation of the initial

basis and connect real nodes to the single

artificial node.

If an arc is artificial, it is not allowed to

reenter the basis tree once it has been

removed.

IsBasic Boolean The IsBasic flag determines whether or not the

arc is in the basis tree. It could be

considered somewhat redundant due to the

BasisOrder property, but it is used in some

logic checks and output displays.

IsBidirectional Boolean The IsBidirectional flag determines whether or

not the arc can be considered to have flow

move in either direction: from the tail node

to the head or from the head node to the tail.

Including this flag allows the network size to

be effectively doubled without the need for

duplicating the entire network.

The one caveat is that a bidirectional arc

must have the same properties regardless of

the flow direction; so, for example, a

bidirectional arc could not have a separate

cost for flow moving from the head node to the

tail as it does moving from the tail node to

the head.

31

Table 3.3: Arc Properties (continued).

Property Data Type Description

LowerBound decimal The lower bound is the minimum units of flow

required on the arc.

The CTP Solver is able to enforce lower bounds

when possible, considering those arcs first

and forcing them into the network with as much

flow allowed by theta, or the maximum cycle

flow change.

If an optimal solution is reached with lower

bound violations, a warning message is

displayed to the user.

ReducedCost decimal The reduced cost is a value for determining

which non-basic arc will enter the basis. The

arc with the best reduced cost, meaning the

arc that will lower the overall cost of the

basis by the largest amount, is chosen to

enter the basis.

SameCycleDirection Boolean The same cycle direction flag determines

whether or not the arc follows the same flow

direction as the cycle's entering arc. It is

used in calculating the maximum flow allowed

along the cycle created by adding the entering

arc to the basis.

Tail integer The tail of an arc is the id of its source

node. It is the starting point of a directed

arc. Unit flow along the arc starts at the

tail node and moves toward the head node.

In addition to the properties just described, the arc class has a few

important methods used in the CTP Solver's algorithms, described in Table

3.4.

Table 3.4: Arc Methods.

Method Description

GetArc Uses a LINQ query to return an arc from the provided

head and tail node id's.

32

Table 3.4: Arc Methods (continued).

Method Description

GetBasis Uses a LINQ query to find all basic arcs in the provided

IList object and represents the basis tree structure.

It returns an IOrderedEnumerable list of arcs used in

procedures requiring only the basis tree.

GetChildArcs Uses one of two LINQ queries to return the immediate

basis tree arcs connected to the provided parent node.

Does not select the arc connecting the parent node and

the provided grandparent node.

GetNonBasic Uses a LINQ query to find all non-basic arcs in the

provided IList object. It returns an IOrderedEnumerable

list of arcs used in calculations requiring only non-

basic arcs, such as determining the reduced cost.

Excludes artificial arcs.

GetNonBasicWithFLow Uses a LINQ query to find all non-basic arcs with non-

zero flow (such as upper- or lower-bounded arcs).

Only used for output display purposes.

GetReversePreorder Uses a LINQ query to find the basis tree in reverse

order. While its functionality could have been created

by using a parameterized version of the GetBasis()

method, a separate method helped make the purpose more

clear in the calling procedures.

ResetCycleDirections Sets the value of all arc same cycle direction flags to

true for new cycle calculations.

ResetReducedCosts Sets the value of all arc reduced cost values to zero

for a new reduced cost calculation iteration.

3.3.6. Algorithm Methods

The modified simplex algorithm implemented (described below) is broken

down into a handful of methods as shown in Table 3.5.

33

Table 3.5: Algorithm Methods.

Method Description

GetData Container method for reading the database or XML file

and initializing the list structures and other

variables.

GetRecordCounts Counts the number of nodes and arcs existing in the

network.

GetConfigSettings Reads the configuration options set by the user,

including the Big M value, maximum simplex iterations,

and whether or not to display the detailed information

for each simplex iteration or the cycle iteration

debugging.

DisplayOptimal Builds the optimal solution table and prints the result

to the screen.

DisplayData Builds the tables displayed for each simplex iteration,

including separate tables for node and arc data,

entering and leaving arcs, the basis tree, and cycle

arcs. The current total network cost is also included.

BuildArcTableHeader Allows dynamic output table header creation.

GetNodes Reads the node information from the data and builds the

list of nodes as well as the initial basis.

GetArcs Reads the arc information from the data and builds the

list of arcs.

CalculateSimplex The main calculation loop of the application. Calls

helper methods for calculating the reduced cost,

creating a cycle, and updating the basis for each

simplex iteration.

CalculateReducedCost Loops through non-basic arcs to find the entering arc

for creating a cycle.

CreateCycle Builds the cycle created by adding the entering arc to

the basis, determines the maximum flow change, chooses

and removes the leaving arc from the basis.

TraverseBackpath Determines the basis tree arc of a given node and

depth; helper method used in cycle creation.

34

Table 3.5: Algorithm Methods (continued).

Method Description

UpdateBasis Recursively updates the node preorder values, finds

immediate child nodes at a given basis depth,

determines arc reflection, and node depths.

3.3.7. Miscellaneous Data Structures

In addition to the primary data structures, a small number of helper

and utility classes were created to handle various aspects of the

application.

Three utility classes were used for handling commonly used functions,

user-configurable options, and database interactions.

In addition, all custom class structures were created as partial

classes. Using a partial class allows its methods to be defined in separate

files. It is a common practice to define an entire class in a single file

using the class name as the file name. The benefit of using a partial class

comes from the ability to logically separate categorized methods of a class

for easier maintainability as well as allowing common generic methods to be

automatically generated.

To speed the development of the creation of the node and arc database

interaction methods, a custom object relationship mapping application

(commonly referred to as O/R mapping or ORM) was used to read the node and

arc class structures from a database and automatically generate the code for

their interactions. Some common methods include getting an object or list of

objects from the database, as well as inserting, modifying, and deleting

object records.

Since the node and arc classes were created as partial classes, the

generated database methods could be easily re-generated and stored in

separate files if changes were made to the class properties. This eliminated

35

the need for rewriting any methods or copying and pasting code from the

generated files into a single class file.

3.3.8. XML Input Files

The information required by the CTP Solver to represent the network is

relatively minimal. A user need only supply the following properties for the

nodes:

1. id

2. Name

3. Supply (negative value used for demand)

Again, the name property is simply included for human readability and

could in fact be omitted from the XML document and require a single line to

be commented out in the CTP Solver's code. If memory limitations were to

arise, this would be a good first step in minimizing some overhead.

The required arc properties include:

1. Tail

2. Head

3. Capacity

4. LowerBound

5. Cost

6. BiDirectional

In addition to the node and arc information, the CTP Solver also

requires a configuration element. This element allows the user to set

specific values for Big M and the maximum simplex iterations. Enabling these

two values to be defined by the users provides some customization to the CTP

Solver's capabilities without compromising the application's algorithms with

problems such as infinite loops.

In addition to calculation options, the configuration element also

allows the user to choose whether or not to display full output details for

36

each simplex iteration and/or cycle iteration debugging information. As

shown in the results, disabling this optional information can provide

dramatic performance gains on larger networks.

3.4. Modified Simplex Algorithm

Recall the typical steps in the network simplex algorithm [9, pp. 347-

348] for the capacitated transshipment problem are:

1. Determine Primal and Dual Solutions

2. Check Optimality

3. Add Lower Bounded Arc to Basis

4. Add Upper Bounded Arc to Basis

Since the CTP Solver was written with object oriented concepts in mind,

it deviates from the standard linear programming model and uses a modified

simplex algorithm to find the optimal solution of a given network, described

in the following five steps:

1. Initialize

2. Calculate Reduced Costs

3. Create Cycle

4. Update Basis

5. Repeat Step 2 - Step 4 Until Optimal

In comparison, Step 1 and Step 2 are by and large performing the same

functionality in both the typical algorithm and the CTP Solver's algorithm.

The typical Step 3 and Step 4 are essentially modified versions of the

same step, making slight alterations between the way lower bounded and upper

bounded arcs are handled and entered through a conditional check determined

in Step 2. The CTP Solver effectively combines these two steps into its Step

3 for creating the cycle when either an upper bounded or lower bounded arc is

added to the basis.

37

The typical Step 3 and Step 4 also break down into multiple sub-steps

that include updating the basis tree. This particular process seemed to make

sense as a separate subroutine and can be more easily understood as a

separate step in the algorithm.

Finally, the CTP Solver's Step 5 was included as a separate algorithmic

step for similar reasons as its Step 4, allowing a more simplified

description of the process. As with the basis updating process, this step is

also embedded as part of the typical algorithm's Step 3 and Step 4.

3.4.1. Step 1: Initialize

During initialization, the CTP Solver attempts to read the database or

XML file chosen by the user. If an XML file is chosen, the application

checks to make sure three tables exist in the file: config, node, and arc.

If the expected number of tables are not present in the XML file, the

CTP Solver will stop execution and print an error message to the user.

If the expected number of tables are present in the XML file, the CTP

Solver will read the file and populate the lists of nodes and arcs as well as

overwrite the default configuration variables such as Big M and the number of

allowed simplex iterations.

3.4.1.1. Set Root Node

A root node is simply a starting point for the basis tree (described

next). From the root node, the path to all other nodes in the network can be

traced.

When the CTP Solver reads the node elements from the XML file or

database, it first creates an artificial node as the default root node with

an id value set as the node count. This node is then inserted into the IList

of nodes as the last element so every real node can be referenced with its

38

natural id/number (assuming nodes are ordered numerically starting at 1 in

the original network).

3.4.1.2. Create Basis Tree

A basis tree is essentially a feasible minimal spanning tree, or a

structure where every node is connected by the minimum required number of

arcs and it must be an acyclic directed graph. An example basis tree is

shown in Figure 3.2.

Figure 3.2: Initial Basis Tree of IEEE 14-Bus Test System with Arc Flows.

As a convenience to the user of the application, the CTP Solver

automatically creates an initial basis tree to represent a feasible topology

of the network, thus removing the need for the user to manually calculate an

initial basis and allowing them to focus on and only need knowledge of the

specific network values themselves.

39

Using the generated artificial node as the root, the CTP Solver creates

an artificial arc between every real node and the artificial node, forming

the initial basis. Each artificial arc in the initial basis is given a cost

of the Big M value set by the user in the configuration element, and a flow

equal to the absolute value of the node's supply attribute.

Using the Big M method as opposed to the Two Phase method allows the

actual arc costs to be used in the first step of the initial basis

calculation instead of needing to keep track of the original costs as well as

reassign the cost value for every arc in the network.

In addition to initial cost and flow values, each of the artificial

arcs is also given an id, starting with the integer data type maximum value

and decrementing as needed. This provides a visual differentiation between

real and artificial arcs that is easily distinguished at a glance in the

results tables.

When determining the head and tail nodes of an artificial arc, the real

node's supply value is taken into consideration. If the supply is a positive

value, the node is considered a supply node with the real node set as the

artificial arc's tail and the artificial root node set as the head. If the

supply is a negative value, the node is considered a demand node with the

real node set as the artificial arc's head and the artificial root node set

as the tail. Transshipment nodes are treated in the same manner as supply

nodes.

By directing transshipment nodes toward the root node, the initial

basis tree is considered strongly feasible. As such, degenerate arcs, or

basic arcs with zero unit flow, can be handled without creating an infinite

loop caused by repeatedly iterating through a sequence of degenerate basic

feasible solutions corresponding to the same simplex extreme point. [6, pp.

341-343]

40

3.4.1.3. Determine Node Potentials

In linear programming terms, the node potentials are equivalent to the

dual variables. In algorithmic terms, the node potentials are the summed arc

costs along the path of any node back to the root node in the basis tree.

Since the initial basis tree essentially consists of a single arc

between every real node and the artificial root node, the potential of every

node can simply be set using the Big M value specified by the user in the

network configuration settings.

The Big M value defined in terms of the CTP Solver is just a number

large enough to be considered significantly higher than any existing network

values for cost or capacity. While it must be a large value, it cannot be

too large as to conflict with the limitations of the data types used (i.e.

setting it at the data type's maximum value).

Since the CTP Solver uses the Big M value for artificial arc costs, it

could potentially be multiplied by itself as many times as there are number

of arcs in the network, however unlikely that may be. This means there must

be enough difference between the Big M value and the maximum data type value

allowed to ensure a very large node potential can be accurately represented

and used in the CTP Solver's calculations.

3.4.2. Step 2: Calculate Reduced Costs

The reduced cost is the amount the overall total cost of the network

could potentially be changed if a given non-basic arc were inserted into the

basis. Since the CTP Solver is set up with minimization in mind, the best

reduced cost belongs to the arc that will potentially lower the total network

cost by the greatest amount.

It should be noted that the CTP Solver could be used for maximization

problems by simply using negative cost values. The algorithm will still be

41

minimizing the optimal solution, but the results can simply be changed from

negative to positive values.

3.4.2.1. Non-basic Arcs

By definition, all reduced arc calculations are carried out on non-

basic arcs. These arcs are easily represented in an IList object, allowing

fast traversal of just those arcs instead of the entire network.

The reduced cost of an arc is calculated using Equation 3.1.

Rij = πi - πj - cij

Where:

Rij = Reduced Cost of Arcij

πi = Tail Node Potential

πj = Head Node Potential

cij = Arc Cost

Equation 3.1: Arc Reduced Cost Calculation.

3.4.2.2. Bidirectional Arcs

The CTP Solver handles bidirectional arcs by simply flipping an arc's

head and tail nodes for the reduced cost calculation, shown in Equation 3.2.

R'ij = πj – πi - cij

Where:

R'ij = Bidirectional Reduced Cost of Arcij

πi = Tail Node Potential

πj = Head Node Potential

cij = Arc Cost

Equation 3.2: Bidirectional Arc Reduced Cost Calculation.

If an arc is at its lower bound with no flow, this calculation is done

immediately after the normal reduced cost calculation and the two values are

then compared. If the bidirectional reduced cost is better than the original

reduced cost, the head and tail nodes of the arc are swapped.

42

It is important to reiterate that non-basic upper bounded arcs and

lower bounded arcs with flow cannot be considered bidirectional due to the

fact they are already part of the current solution. Allowing these arcs to

be treated as bidirectional will often cause net flow violations, rendering

the solution infeasible.

By handling bidirectional arcs in this way, the user does not need to

duplicate every instance of an arc when the only difference between them is

the direction of flow. This simple implementation is actually a very

important innovation in directed flow calculations since bidirectional arcs

are usually treated as two separate directed arcs. [13, p. 121] The CTP

Solver is able to consider the two directions differently even though they

are defined only once.

In networks consisting of all bidirectional arcs, the CTP Solver

effectively halves the size of the required data file, saving both hard drive

space and system memory.

3.4.2.3. Choose Entering Arc

The preferred reduced cost value of a non-basic arc could be positive

or negative depending on its bounded flow. If the arc has flow equal to its

lower bound, a positive reduced cost is desired. If the arc has flow equal

to its capacity, a negative reduced cost is desired.

The reduced cost of every non-basic arc is compared to the best

available reduced cost value. When a reduced cost is found to be more

attractive, the best available reduced cost arc is replaced by the current

arc. This process continues until all non-basic arc reduced costs have been

determined and the best available reduced cost arc is chosen.

43

3.4.2.4. Enforce Lower Bounds

In order to accommodate an attempted enforcement of lower bound flow

requirements, any arc with a lower bound value greater than zero with flow

less than the lower bound is given priority. The algorithm will force these

arcs into the basis and attempt to push as much feasible flow onto them as

possible in order to fulfill their lower bound requirements.

With realistic values, this method appears to be sufficient for meeting

lower bound flow requirements. However, if the CTP Solver finishes its

simplex iterations and determines an optimal solution without meeting all

lower bound flow requirements, the application will display a warning message

to the user that a lower bound flow violation occurred.

It should be noted that using the lower bound as an initial flow value

was implemented as a possible solution to lower bound flow enforcement.

Unfortunately, determining an elegant process for guaranteed feasibility was

not achieved since it is not always clear which artificial arcs could be

updated in conjunction with the lower bounded arc in order to maintain flow

balance.

3.4.2.5. Optimality

The CTP Solver assumes optimality until it encounters an attractive

entering arc. If no arcs will lower the total network cost when added to the

basis tree, the solution is optimal.

3.4.3. Step 3: Create Cycle

By definition, the basis tree is a connected graph with no cycles.

This means there is a path between any two nodes, but not a path from any

node to itself. [14, p. 363] When a non-basic arc is added to the basis

44

tree, a cycle is created and an arc must then be removed to preserve the

basis tree's acyclic property.

The process of creating the cycle is the most complex step of the CTP

Solver's algorithm. If it were a simple shortest path problem using the arc

cost as the arc weight, an algorithm such as Dijkstra's [15] could be used to

find an optimal solution. However, the capacitated transshipment problem

includes both bounded arcs and directed flow with supply and demand, making

it a much more complicated problem.

Figure 3.3: IEEE 14-Bus Test System Cycle Iteration 13.

3.4.3.1. Add Arcs to Cycle

Determining the entering arc, or the arc added to the basis tree to

form a cycle, is a relatively simple process. Traversing that cycle is a bit

more complicated.

45

The algorithm used to create the list of only cycle arcs implements a

node depth concept from [10], following the back path from each entering

arc's node to the root node of the basis tree.

Using the node depth allows the two back paths to be traversed in pairs

during the same iteration, starting at the deepest node in the cycle (highest

depth value) and working back up the basis tree until the two back paths meet

at the same parent node, or the root node is reached; either of which

complete the cycle.

The trick to the CTP Solver's algorithm comes from the need for the

head and tail nodes of the entering arc to be handled separately to account

for the correct cycle direction modifier: positive one for an arc with flow

in the same direction as the entering arc, negative one for an arc with flow

in the opposite direction of the entering arc.

By creating a parameterized method for traversing the back path, the

same code can be reused with only a few conditional checks for determining

the arc's cycle direction.

As the node back paths are followed in this manner, the arc connecting

each node and its parent is added to the list of cycle arcs if has not

already been added, thus creating the complete cycle.

3.4.3.2. Calculate Maximum Feasible Flow Change

As each arc is added to the cycle, its maximum feasible flow change is

calculated based on the arc's direction in relation to the cycle created by

the entering arc. This value, represented by the Greek letter theta, is the

largest amount of flow units that could be added or subtracted from a same-

or opposite-cycle direction arc, respectively, without violating the arc's

flow capacity or lower bound requirement.

46

Using the theta value, the CTP Solver's algorithm ensures that each

simplex iteration moves the current basis tree as close to the optimal

solution as is feasibly possible.

For same-cycle direction arcs, the value of theta is simply the

difference between the arc's capacity and its current unit flow. For

opposite-cycle direction arcs, the value of theta is calculated as the

difference between the arc's current unit flow and its lower bound.

3.4.3.3. Choose Leaving Arc

Once an arc's theta value has been determined, it is compared against

the current minimum theta value for the cycle. To maintain feasibility when

an arc is removed from the cycle, the smallest theta value from all the cycle

arcs must be used to ensure no capacity or lower bound violations occur.

The cycle's minimum theta value can only be changed if the current

arc's theta value is strictly less than the cycle's overall minimum, or if

the arc is artificial. These two possible theta updating conditions prevent

infinite cycles due to degeneracy and force artificial arcs out of the basis,

respectively.

3.4.3.4. Update Cycle Flows

Once the leaving arc has been determined, the cycle is iterated a final

time in order to add or remove theta units of flow to its arcs. Using an

arc's direction property, flow is added to same direction cycle arcs and

subtracted from opposite direction cycle arcs.

By following the cycle direction, the solution's feasibility is ensured

since arc limits are not capable of being violated by adding or subtracting

too many flow units.

47

3.4.3.5. Degeneracy

Recall from the initial basis creation that a degenerate arc is one

with a unit flow of zero. Degenerate arcs can cause infinite loops and must

be handled properly to avoid such problematic outcomes. The initial basis is

created to be strongly feasible and the CTP Solver needs to maintain that

status.

Using the node depth method described in the cycle creation, the

lowest, or deepest degenerate arc can be chosen to leave the basis,

preserving a strongly feasible basis. [10]

This is accomplished by the algorithm's tie-breaking conditional check

that occurs when determining the minimum cycle theta value. Since the

algorithm starts at the deepest cycle arc, a simple comparison can be made

between the current theta value and the cycle's minimum value and only change

the value of theta if the former is less than the latter, thus always

choosing the deepest cycle arc.

3.4.4. Step 4: Update Basis

Updating the basis involves a recursive method, or a method that calls

itself, starting from the root node as the top of the basis tree and working

down one node level at a time until all nodes and arcs of the basis have been

updated.

Possible errors could result in the allocation of the system's memory

[16] during the recursive process, however the node and arc structures used

in the method are already stored completely in memory using the IList

structures. So if memory allocation is an issue, it would likely occur

before the recursive process even begins.

A possible optimization, discussed later, would be to update only cycle

nodes and arcs instead of the entire basis tree. But the use of recursion

48

through the full basis tree was chosen here due to its simplification of the

algorithmic process, essentially implementing an easily comprehended depth-

first search [17, p. 85]. The search space for each iteration is the size of

a spanning tree, or one less than the number of nodes in the network [13, p.

236].

During each recursive iteration of the basis update method, the CTP

Solver uses a LINQ query to find all child nodes of the current node. Then

for each child node, the method calls itself to find that node's child nodes.

This process repeats until the entire basis tree has been traversed and the

node potential and depth values have all been updated.

Once the basis tree has been updated, it is ready to be used for the

next simplex iteration unless it is already optimal.

Figure 3.4: IEEE 14-Bus Test System Basis Update 13.

3.4.5. Step 5: Repeat Steps 2-4 Until Optimal

The CTP Solver assumes optimality until the non-basic arc reduced cost

values have been calculated in Step 2. If adding a non-basic arc to the

basis will lower the overall total cost of the network solution, the

49

optimality flag is set to false and the CTP Solver executes another simplex

iteration, continuing through Step 3 and Step 4.

Once the reduced cost calculation step determines there are no non-

basic arcs that should become entering arcs, the process is complete and the

solution is optimal.

3.5. Output

The CTP Solver provides the user with all available information about

the resulting network in addition to the step-by-step simplex iterations and

cycle debugging log. The user is also shown a link to the original network

file and optimal solution available for download in either XML or .CSV

format.

3.5.1. Miscellaneous Information

Various information about the results is displayed to the user before

any other data. First are links to the network files, including the original

network (if the source was an XML file) as well as downloadable .CSV and XML

files of the optimal solution.

After the network file links, the optimal network cost, number of

simplex iterations, node count, basic arc count, non-basic arcs with flow

count, and execution time are all displayed.

Used in conjunction with the optimal network table, the user is able to

quickly understand the results of the CTP Solver and download the information

for analysis or importing into other systems.

A screenshot of the miscellaneous information for the IEEE 14 bus test

system using distance as a cost measure is shown in Figure 3.5.

50

Figure 3.5: CTP Solver Optimal Network Miscellaneous Information (Screenshot,

Light CSS).

3.5.2. Optimal Solution

After the miscellaneous results information, the optimal network table

is displayed on the results page, showing the optimal network topology via

the list of arcs. Since the node information is not required for

reconstructing the optimal network, the list of nodes is omitted.

The table showing the optimal solution includes each arc's id, tail

node, head node, cost, capacity, lower bound, flow, capacity minus flow,

reduced cost, basis order, and whether or not it is a basic arc or an arc

with bounded flow (denoted as "non-basic"). All non-basic arcs without

bounded flow are simply displayed with a hyphen for the basis value.

Artificial arcs are included in the final optimal display table;

however, they are visually separated from the real network arcs and are not

included in the XML or .CSV exports.

A screenshot of the optimal solution for the IEEE 14 bus test system

using distance as a cost measure is shown in Figure 3.6.

51

Figure 3.6: CTP Solver Optimal Network Arc Information (Screenshot, Light

CSS).

52

3.5.3. Simplex Iterations

The information for each individual simplex iteration can be shown if

the user so chooses in the configuration options using the

"showSimplexIterations" attribute.

When shown, every iteration is given a separate expandable block of

information detailing a snapshot of the network. In addition to the same

information displayed for the optimal network list of arcs, each cycle,

entering and leaving arc, and an individual table for the basis tree are

shown.

Showing the data for each simplex iteration can be very useful in

debugging as a way to step through the algorithm's process to follow every

decision made for verification purposes. The first iteration is the network

as it is provided to the CTP Solver, with successive iterations showing the

evolving network as the algorithm progresses.

As an example of the information provided by the CTP Solver,

screenshots of the thirteenth simplex iteration for the IEEE 14 bus test

system using distance as a cost measure are shown in Figures 3.7, 3.8, and

3.9 below.

53

Figure 3.7: CTP Solver IEEE 14-Bus System Simplex Iteration 13 – Node Details

(Screenshot, Light CSS).

54

Figure 3.8: CTP Solver IEEE 14-Bus System Simplex Iteration 13 – Full Network

Results (Screenshot, Light CSS).

55

Figure 3.9: CTP Solver IEEE 14-Bus System Simplex Iteration 13 –

Entering/Leaving Arcs, Basis, Cycle, and Current Network Cost (Screenshot,

Light CSS).

3.5.4. Debugging Log

The debugging log includes the cycle created by each simplex iteration.

As with the simplex iterations, the cycle debugging log can be toggled by the

56

user in the network file's configuration element using the "showDebuggingLog"

attribute.

Each cycle begins with its entering arc and shows each cycle arc's

direction in relation to that entering arc, along with its maximum feasible

flow change.

Just like the simplex iterations, the cycle debugging log can be

valuable information for tracing through the CTP Solver's algorithmic process

for verification.

3.6. Limitations and Modifications

Not all networks are guaranteed to have a feasible solution. The CTP

Solver handles these networks by providing warning messages to the user prior

to the display of the best possible solution the application was able to

obtain.

These warning messages alert the user to infeasibilities such as lower

bound flow violations, artificial arcs unable to be removed from the basis,

and net flow violations on any nodes.

3.6.1. Performance Gains

The CTP Solver displays a lot of information to the user. However,

some users may not be interested in the output generated for every simplex

iteration or the debugging log showing each cycle. With these users in mind,

the debugging and individual simplex iterations can simply be turned off by

setting the respective variables in the configuration element of the network

file.

Since each simplex iteration and cycle traversal generates data

proportional to the network size that must be displayed during every new

iteration, significant gains in execution speed can be achieved by choosing

to not show this information for larger networks.

57

For example, a performance increase greater than an order of magnitude

was observed on a test network with just 30 nodes and 55 arcs by hiding only

the individual simplex iterations. That performance was doubled when the

debugging log was also hidden. Full performance details are available in the

results.

3.7. Network Generator

In order to test multiple networks of varying sizes and values, a

network generator was developed to accelerate the process of creating XML

files for use in the CTP Solver.

The network generator is capable of reading the existing IEEE test

system text files and generating some values such as arc costs, as well as

creating completely random networks with user-defined topology values and

limits.

In addition to exporting XML files for the CTP Solver, the network

generator also exports data files for use in AMPL and SAS. Automating the

creation of these additional files made comparisons between the CTP Solver,

AMPL, and SAS much easier to conduct while also removing any user error

caused by manual editing.

3.7.1. IEEE Test Files

The various IEEE test system files included basic network topology that

was easily read and exported to XML for use in the CTP Solver.

However, some values either required specific calculations based on the

entire system or, in the case of values such as arc costs, information was

not directly included in the standard files.

In some cases, the calculations for the true or exact values was deemed

outside the scope of the CTP Solver's purpose, leading to the generation of

58

estimated or sometimes even completely random values within a user-defined

minimum and maximum range.

In each test system, the process for determining the network values is

clearly described in cases where they were generated or estimated. For all

test systems, the entire set of network values used for testing is provided

in the XML files on the CTP Solver website, allowing easy comparisons against

different methods.

3.7.1.1. Formatting Discrepancies

Despite a recommended standard format, not all of the IEEE test system

files were able to be read by the network generator in the exact same way.

To accommodate the discrepancies and allow easier imports of other currently

unused as well as possible future test networks, a generic network file

information class was created to allow different formatting practices to be

handled in an efficient manner.

Some example settings for individual network files include the start

and stop line index of node IDs, names, and supply values.

3.7.1.1.1. Duplicate Arcs

The CTP Solver requires a single arc connecting any pair of nodes. The

57-, 118-, and 300-bus test system network files all had duplicate arc

listings, causing errors when used by the CTP Solver.

In each instance, an arc was disregarded if it had the same head and

tail nodes (in any combination) as an existing network arc. This means only

the first instance of a given arc was added to the final network topology.

59

3.7.1.1.2. Sequential Node ID Requirement

In order to capitalize on computational advantages provided by IList

objects, the lists of nodes and arcs both require sequential IDs. In the

300-bus test system, the node IDs are not sequential.

To make the data useful in the CTP Solver, the network generator

creates a node ID mapping, allowing the correct nodes to be referenced in the

arc definitions while reordering the node IDs into sequential values.

3.7.1.2. Supply and Demand

The supply values are taken directly from the IEEE test system files

using the Base KV (F) column for the 14-, 30-, and 57-bus systems, and the

Generation MVAR (F) column for the 118- and 300-bus systems. If the column

was a non-zero value, the absolute value of that number was used as the

node's supply. If a node has zero maximum flow in due to no incoming arcs,

it is provided a random supply value based on the user settings.

The total supply for the network is summed and used as available demand

since the supply must equal the demand for the CTP Solver to calculate an

optimal solution.

After the transshipment nodes are removed from the list of demand

nodes, a random value is generated between a user-defined minimum and the

average of the available demand, defined as the available demand divided by

the number of remaining demand nodes. The negative of this value is used as

the node's supply (recall that the CTP Solver represents node demand with a

negative supply value).

The last demand node is given the remaining available demand, ensuring

the total supply equals the total demand for the entire network. If the

value of the final demand node exceeds its maximum total flow in, the network

will be infeasible. However, the capacities of its incoming arcs can simply

60

be adjusted manually, or the entire network can be quickly re-generated with

new random values.

3.7.2. Generic Networks

In addition to reading the standard IEEE test system files, the network

generator was built with pseudorandom generic network generation in mind.

When creating a generic network, the user is able to set a range of

minimum and maximum values for:

1. Node Supply

2. Arc Capacity

3. Arc Lower Bound

4. Arc Cost

In addition, the user can also set values for the total network supply

and a lower bound frequency threshold, defined as an integer value from 1-100

essentially acting as a percentage for approximately how often the user would

like a lower bound value to occur for network arcs.

3.7.2.1. Realistic Networks

According to Wang, et al. [18], realistic smart grid network topologies

share some characteristics with small-world network models; primarily a

sparse connectivity with low average nodal degree that does not scale with

the network size.

With that in mind, the network generator was set up to generate

topologies with no nodal degree greater than seven (although this setting is

customizable by the user). Arcs are created by looping through the nodes,

checking the degree, and randomly connecting up to seven nodes on either side

of the current node. This ensures the neighborhood connectivity

characteristics of the small-world network model.

61

During arc generation, the network generator modifies the algorithm

proposed in [18] by introducing what amounts to a genetic algorithm mutation

[17, p. 128], giving each node a one-percent chance to connect to a node

outside its immediate neighborhood.

Limiting the node degree as well as allowing a small chance for

connections outside of a node's neighborhood in this manner allows the

generated network topologies to be sufficiently realistic for testing

purposes.

62

4. RESULTS

4.1. Software Comparisons

The CTP Solver uses a customized simplex algorithm, implemented in

ASP.NET C#. The results of multiple test networks were compared to two

separate optimization software programs: AMPL and SAS.

4.1.1. AMPL

AMPL is a comprehensive and powerful algebraic modeling language for

linear and nonlinear optimization problems, developed at Bell Laboratories.

[19]

One of the primary benefits of AMPL is its separation between the model

and data files, allowing the user to use the same model on multiple datasets.

The user is expected to learn AMPL's syntax to create their own models for

specific applications.

AMPL also allows the user to choose from many different custom solution

solvers. The solver chosen for the test networks was LPSOLVE, an open source

simplex solver.

The version of AMPL used on the test networks was AMPL Student Version

20100715 (MS VC++ 6.0). The LPSOLVE solver version 4.0.1.0 was used since it

allowed the highest number of variables and constraints with the student

version of AMPL.

Due to these software limitations, however, the IEEE 300-Bus Test

System could not be solved using the student version of AMPL since it had too

many variables and constraints.

63

4.1.2. SAS

SAS is a collection of software solutions used for solving complex

business problems based on three key capabilities: information management,

analytics, and business intelligence. [20]

As with AMPL, SAS is a powerful software tool with the ability to

separate a problem model from its data. SAS also requires its users to learn

its programming language syntax in order to create their own models.

The built-in SAS method used for the test networks was the NETFLOW

procedure. Unlike AMPL's LPSOLVE solver and the CTP Solver, the NETFLOW

procedure uses the interior point algorithm [21] instead of the simplex

algorithm. It also uses the "good path" method described in "Algorithms for

Networking Programming" by J. Kennington and R. V. Helgason. [22]

Version 9.3 of the X64_VSPRO platform version of the SAS software was

used for the test networks.

4.1.3. CTP Solver

Due to the design goals of the CTP Solver's implementation, it is able

to offer some key benefits to its users not provided by AMPL or SAS. Most of

these benefits are directly related to the ease of use design goal of the CTP

Solver, focusing on simplicity for its users.

4.1.3.1. Modeling

While incredibly robust and capable solutions, both AMPL and SAS

require their users to understand how to model their problems in order to

understand and utilize the solutions. This allows many more different kinds

of problems to be solved, but the learning curve may be too steep for most

users due to each software application having its own syntax.

64

Since the CTP Solver abstracts the user from the modeling process, it

can simply be used with properly formatted XML files or a database.

4.1.3.2. Software Installation

The installation process for SAS in particular can be an overwhelming

experience for typical users, requiring both the SAS software as well as Java

runtime dependencies. It includes many different business analytics,

intelligence, and information management solutions, making it an extremely

complex process before even using the software.

AMPL does not require installation, but it does require downloading and

extraction, as well as user knowledge of the program's file structure in

order to find the data and model files.

Since the CTP Solver is a web application, a user simply needs a

browser in order to access and utilize it, making it more accessible than

either AMPL or SAS.

4.1.3.3. Output

Both AMPL and SAS produce simplified results by default, with SAS more

closely resembling the CTP Solver's default table output.

However, the CTP Solver also exports its results to XML and .CSV data

files by default, or directly to the database if the input network is from a

database source. Customized output requires more user effort in both AMPL

and SAS than is required by the CTP Solver.

4.2. Reading the CTP Solver Results

The CTP Solver displays a lot of information to the user, but does so

in an organized manner.

65

4.2.1. Optimal Network

The first results shown are miscellaneous details about the solution,

including the optimal output files in .XML and .CSV format, the minimized

cost of the network, the number of simplex iterations performed, total

network supply and demand, the node count, the arc count, the number of basic

arcs in the solution, the number of non-basic arcs with bounded flow in the

solution, and the execution time.

Displaying this information first allows the user to quickly view the

important details of the optimal solution, including any errors that might

have occurred during the CTP Solver's progress.

After the optimal results summary, the entire solution network is

displayed, including non-basic arcs. Normally the non-basic arc information

could be discarded, but in the event of any errors, having them displayed

could give the user some insights into reasons why the network might be

infeasible and where possible changes could be made in an effort to modify

the network into a feasible topology.

When the network file is read into memory, the arcs are sorted in

increasing head node format. However, if an arc is bidirectional and its

head and tail nodes have been reversed, the result will display out of

sequence.

To make the real arcs of the optimal solution easier to read, the table

header is repeated every twenty rows. The header is not repeated for the

artificial arcs since only one of them is of any importance if the network is

feasible. This also serves the purpose of making it easier to see where the

real network arcs are separated from the artificial arcs.

Most of the information in the results table is self-explanatory,

including the tail node ID (Tail), head node ID (Head), cost, capacity, lower

bound, flow, capacity minus flow, and reduced cost of every arc. The first

66

column under the "Optimal Network" heading is simply the arc ID. The "Order"

of the arc is its order in the basis tree. This column is mostly just useful

for debugging purposes. The "Basis" column denotes basic arcs (basic) and

non-basic arcs with bounded flow (non-basic) to help the user identify all

arcs with flow. Arcs with a value of "-" in the Basis column have a flow of

zero and are not included in the optimal solution network.

4.2.2. Simplex Iterations

Detailed information can be displayed for every simplex iteration the

CTP Solver calculates. This can be helpful in determining the exact process

followed by the algorithm in order to ensure the solver's accuracy and help

debug any errors encountered.

Each iteration is numbered, with the first iteration, zero,

representing the network as it was read from the data file or database.

Individual iterations can be toggled to show/hide the information presented,

allowing the user to quickly access a specific iteration and view its

results.

The information for each iteration is broken down into six tables:

nodes, current network arc values, entering and leaving arcs, basis arcs,

cycle arcs, and network cost.

Because the CTP Solver is displaying so much information, showing each

simplex iteration is not recommended for large networks due to the

significantly larger amount of time needed to write the information to the

page.

4.2.2.1. Nodes

The information for each node at the current iteration is shown,

including values for a node's parent, preorder thread, supply, depth, and

potential.

67

If a node's parent is negative, that means the arc is reflected in the

basis tree. The second-to-last node is the artificial root node,

automatically generated for constructing an initial basis.

The preorder thread can be followed starting with the numeric value in

the final column. That value is the root node of the basis tree. From the

root node, each successive node can be followed using the preorder thread

value until a value of zero is reached, signifying the last node in the basis

tree.

The supply of each node is shown with a negative value denoting demand.

The depth is the node's level in the basis tree, representing the number of

parents in the node's back path to the root node. The potential of a node is

its summed cost along its back path to the root node, with reflected arcs

subtracted from its sum total.

4.2.2.2. Current Network Values

After the information describing the nodes, all network arcs are

displayed, including artificial arcs. This information is the same as shown

in the optimal network table with the best reduced cost, representing the

entering arc, highlighted. If multiple arcs have the same best reduced cost,

the first arc encountered is chosen as the entering arc.

4.2.2.3. Entering and Leaving Arcs

The entering and leaving arc are displayed in a separate table to make

them easier to specifically distinguish from other arcs.

4.2.2.4. Basis

Each arc of the basis is also displayed in a separate table from the

full network, again for the sole purpose of making it easier to follow

without piecing everything together using the full network.

68

4.2.2.5. Cycle Arcs

As with the entering and leaving arcs as well as the basis arcs, the

individual cycle arcs along with their directions are displayed in a separate

table in order to more easily follow.

If an arc's direction is denoted with a plus sign (+), it means the arc

follows the same direction as the entering arc. If its direction is denoted

with a minus sign (-), it means the arc follows the opposite direction as the

entering arc.

4.2.2.6. Network Cost

The total network cost of all basic and non-basic arcs with flow is

shown, calculated as the sum total of each arc's flow units multiplied by its

cost for all arcs with flow.

4.2.3. Cycle Debugging Log

The cycle debugging log shows specific cycle details not displayed in

the cycle arc tables of each simplex iteration, including the updated theta

value (maximum feasible flow change), maximum feasible flow change for each

cycle arc, and the positive or negative theta amount updated for each cycle

arc's flow.

Displaying all of this additional information as well as just the cycle

arcs in the simplex iterations allows the user more information for debugging

and following each step of the algorithm's progress.

4.2.4. Displayed Results Comparison

All three applications used in testing networks display information to

the user in their own way. The primary two aspects of particular interest

are the display of the optimal solution value along with key diagnostics

69

information regarding the solver's performance, and the topology of the

resulting optimal network including flows.

4.2.4.1. Optimal Display and Diagnostics Comparison

Both SAS and the CTP Solver do a relatively good job of providing the

user with important detailed information in an easy manner, while AMPL

requires a bit more effort from the user to find some of the relevant data.

The CTP Solver displays this important information immediately before

the optimal network topology, allowing the user to quickly determine key

aspects of the results. SAS also displays its information in a way that is

easy for the user to access, using its log output window.

But when using AMPL, the user must specifically print diagnostics they

are interested in viewing. This requirement subjectively makes the

diagnostics display in AMPL a bit more cumbersome than SAS or the CTP Solver

since the user must read through the documentation and become familiar with

the relevant variables and how they are used in AMPL.

Figure 4.1: AMPL Optimal and Diagnostics Display (Screenshot).

70

Figure 4.2: SAS Optimal and Diagnostics Display (Screenshot).

Figure 4.3: CTP Solver Optimal and Diagnostics Display (Screenshot, Light

CSS).

71

4.2.4.2. Optimal Network Comparison

In addition to important information about the results, all three

applications also provide a representation of the optimal network with flows

along the arcs.

Here again, SAS and the CTP Solver have a bit of an edge on AMPL in

their simplicity and automatic display of the results to an HTML table. In

AMPL, the user is required to manually display the results of the optimal

network matrix.

However, both AMPL and the CTP Solver display the optimal network in a

logical order, whereas SAS prints the network arcs in an apparent random

order. The CTP Solver orders arcs in increasing head format; for example, it

starts with all arcs directed toward Node 1, then all arcs directed toward

Node 2, and so on. Depending on whether or not the arc was flipped due to

its bidirectional counterpart being the best for the optimal solution, the

head node may be flipped in the display, but they are all shown based on

their original orientation.

The CTP Solver also separates itself from AMPL and SAS with a few key

features, including exporting the resulting network to both XML and CSV for

easy use in other applications and portability among different systems.

One other nice feature of the CTP Solver is the inclusion of repeating

table headers every 20 rows after the artificial arcs, allowing the user to

easily see which information is in each table cell at a glance as opposed to

scrolling all the way back up to the top as required by SAS.

The CTP Solver also differentiates between basic and non-basic arcs

with flow, providing the user with more detailed information when bounded

arcs are included in the solution.

72

Figure 4.4: AMPL Optimal Network (Screenshot).

73

Figure 4.5: SAS Optimal Network (Screenshot).

74

Figure 4.6: CTP Solver Optimal Network (Screenshot, Light CSS).

75

4.3. Accuracy Summary

Accuracy was determined by comparing the resulting optimal network flow

computed by the CTP Solver to the optimal network flow computed separately by

both AMPL and SAS for the same network.

The CTP Solver, AMPL, and SAS each employ optimal algorithms, so it

should be expected that they all obtain the same optimal result for the test

networks. This was the case with the tests performed and since many optimal

solvers currently exist, new contributions should focus on improvements in

the areas of performance and ease of use.

Because ease of use is inherently subjective, the software performance

in terms of speed should be considered the best measure of comparison between

the three solutions.

4.4. Performance Summary

On smaller networks, up to and including the IEEE 118-Bus Test System,

there was little difference between AMPL, SAS, or the CTP Solver. The

computation time was low enough that the measurement precision could be

questioned due to the way processing time is essentially estimated using the

system clock for the CTP Solver.

The true performance comparison came from the larger randomly generated

test networks. Unfortunately the Student License version of AMPL was only

able to test up to the IEEE 118-Bus Test System so it was primarily just a

contest between the CTP Solver and SAS.

Sadly, the CTP Solver was destroyed by SAS on larger networks; it

wasn't even close. Somehow, and very surprisingly, both the AMPL LPSOLVE

solver and the SAS "netflow" procedure were able to maintain a very

consistent execution time throughout all tests, even when the size of the

network increased. The expectation was for the execution time to become

76

progressively higher as the node and arc counts grew, as was the case with

the CTP Solver.

During the implementation of the CTP Solver, the hope was that LINQ

queries would be fast enough to overcome the recursive traversal through the

entire basis tree for each simplex iteration. Unfortunately this likely

contributed to its poor performance on larger sized networks.

While an extremely disappointing outcome, the CTP Solver is not a

wasted effort by any means. Improvements can clearly be made to its modified

simplex process and some of the possibilities are outlined in the conclusion.

Its handling of bidirectional arcs is also an encouraging innovation that

could be utilized in other systems.

If the network size were small enough, the CTP Solver might be a

potential optimal self-healing method for the smart grid. But realistically,

the CTP Solver is simply too slow in its current state to be considered a

viable solution.

Interestingly, a couple of the CTP Solver's performance improvements

had already been implemented before comparing the results to SAS.

4.4.1. CTP Solver Output Performance Improvements

For the larger test network comparisons, displaying each simplex

iteration and cycle traversal was unnecessary bloat. The configuration

allows each of these display options to be shown or hidden, allowing user to

decide whether or not the CTP Solver should output the information.

Choosing to only display the final, optimal network provides

significant speed improvements. For each of the following tests, ten runs

were made for each average solve time along with the final results from the

application comparison runs, providing an approximate general performance

result.

77

4.4.1.2. Hiding Simplex Iterations

The CTP Solver can display the entire network topology at every simplex

iteration, allowing the user to step through the results and follow the

solver's decisions. This can be beneficial when manually calculating

solutions, such as verifying student results for assignments in an academic

course.

However, for large networks, manual solution calculations are simply

infeasible, which is the entire purpose of software such as the CTP Solver.

As such, the output for these individual simplex iterations can be set

to not be displayed, greatly improving the CTP Solver's execution time

performance.

Table 4.1: CTP Solver Performance Improvement – Hiding Simplex Iterations.

Average Solve Time

(seconds)

Display All Hide Simplex Iterations Improvement

IEEE 30-Bus 0.071875 0.00625 11.5x

(1050%)

IEEE 57-Bus 0.290625 0.0234375 12.4x

(1140%)

IEEE 118-Bus 2.529513889 0.168402778 15.02x

(1402%)

4.4.1.3. Hiding Cycle Debugging Log

In the same vein as hiding the simplex iterations, the cycle debugging

log can also be removed from the output display using a configuration

setting.

As with the simplex iterations, it is recommended to not display the

cycle debugging log for large networks as the CTP Solver's execution time is

slightly reduced when not displaying this information. While not a

78

significant improvement as was the case when hiding the simplex iterations,

every bit helps.

Table 4.2: CTP Solver Performance Improvement – Hiding Cycle Debugging Log.

Average Solve Time

(seconds)

Display All Hide Cycle Debugging Log Improvement

IEEE 30-Bus 0.071875 0.059375 1.21x (21%)

IEEE 57-Bus 0.290625 0.28125 1.03x (3%)

IEEE 118-Bus 2.529513889 2.310763889 1.09x (9%)

4.4.1.4. Hiding Cycle Debugging Log and Simplex Iterations

When both the simplex iterations and cycle debugging log are set to not

display, the performance gains are naturally significant.

In the case of the IEEE 118-Bus test, it was noted that the improvement

was slightly less than when only hiding the simplex iterations. This is

likely due to the fact the cycle debugging log results are fairly trivial and

the test runs for the application comparisons were conducted on a different

day than the simplex and cycle debugging improvement tests.

With such small test sample sizes, the machine could have been

influenced different processes running while the tests were conducted.

Despite this minor inconsistency, it should be generally obvious the

approximate improvement is significant enough to warrant hiding both the

simplex iterations and cycle debugging log for the best performance results.

Table 4.3: CTP Solver Performance Improvement – Hiding Cycle Debugging Log

and Simplex Iterations.

Average Solve Time (seconds) Display All Hide All Improvement

IEEE 30-Bus 0.071875 0.00625 11.5x (1050%)

IEEE 57-Bus 0.290625 0.021875 13.29x (1229%)

IEEE 118-Bus 2.529513889 0.16875 14.99x (1399%)

79

4.4.1.5. First Reduced Cost Arc

Another attempt at improving the CTP Solver's performance was altering

the pricing or reduced cost calculations (Step 2). In order to choose the

best candidate arc to enter the basis, this process iterates through every

non-basic arc.

While the calculations are fast on current machines, the number of

comparisons can potentially be decreased by three orders of magnitude in

networks with thousands of arcs.

Unfortunately, however, choosing the first attractive arc also has a

tendency to require more iterations of the entire simplex process. Likely

due to the CTP Solver's traversal of the entire basis tree for each simplex

iteration, it was actually detrimental to the overall performance when the

first candidate arc heuristic was used instead of fully calculating the

optimal arc each iteration.

4.5. Testing Environment and Setup

In order to maintain consistency for each of the three applications

being compared, the test networks were solved on the same machine.

4.5.1. Hardware and Software

All tests were performed on an Intel Core 2 Quad 2.67GHz processor with

4GB DDR2 800 RAM, running on Windows Vista x64. Both AMPL and SAS are

standalone software applications but the CTP Solver requires a web server so

a local virtual directory was created for it using IIS, running the .NET 4.0

framework.

80

4.5.2. Test Network Setup

Each of the IEEE test systems were read by the network generator to

obtain their respective topologies. The actual distances between nodes were

utilized for the IEEE 14-Bus System arc costs whereas all other test networks

used randomly generated cost values.

The Custom 400- and 500-Node test systems were completely generated by

the network generator application with a few changes to the final topologies

in order to ensure feasibility.

4.6. Test Network Results

All three software applications were compared using the IEEE 14-Bus

Test System, IEEE 30-Bus Test System, IEEE 57-Bus Test System, and IEEE 118-

Bus Test System. From there, the Student License version of AMPL was unable

to calculate the results due to variable and constraint limits, so only the

CTP Solver and SAS were used in comparing the IEEE 300-Bus System and the

Custom 400- and 500-Node Systems.

The "LPSOLVE" solver was used in AMPL, and the "netflow" procedure was

used in SAS. As mentioned previously, the AMPL solver implements a modified

simplex algorithm while the SAS procedure uses an interior point method. The

CTP Solver was run with the simplex iterations and cycle debugging log

options turned off.

Since the CTP Solver is a web application, it was tested in Firefox

19.0.2. Despite the fact that each run of a given test file is a separate

HTML POST request and will be executed on demand, the browser was restarted

before each test to ensure no instance caching occurred, which would create

an unfair advantage.

81

In order to keep the tests as similar as possible, the "reset" command

was given to AMPL in order to provide a fresh solution environment, and the

SAS application was closed and restarted before running a given test.

During initial tests, an unexpected discovery was made about the SAS

software. The application was originally not restarted before running

successive tests and its results were noticeably better after its initial

execution.

The results were then recalculated using a fresh instance of the SAS

software for each test since it was clear the application was in some way

storing information from the previous tests to speed up future runs. This

made the SAS results much more consistent and thus more indicative of its

true execution time performance.

The "_total_solve_time" value was used in determining the execution

time for AMPL, the "cpu time" of only the "netflow" procedure was used for

SAS, and the "Solver Execution Time" was used for the CTP Solver results.

Using the "real time" value in SAS for the "netflow" procedure might

have been a closer representation of the CTP Solver's calculation since it

simply uses the elapsed time of the system clock, but its results would have

been fairly similar as far as the overall average results were concerned.

For each network, a series of ten consecutive runs were executed for

each solver and an average of these runs was taken as the solver's general

performance time. While this is admittedly a small sample size, the intent

was to simply make a pedestrian comparison between the three solutions.

4.6.1. IEEE 14-Bus Results: Distance Cost

Overall there is no discernible difference between any of the solvers

from a user's perspective in terms of execution speed. The computations are

essentially instantaneous in all three applications since it is such a small

network.

82

The CTP Solver had the best performance for this network but in a

larger sample size, AMPL could very well have done better.

4.6.1.1. Accuracy

All three applications reached the same objective function value of

34,382.8 in every test. SAS used 21 iterations while AMPL and the CTP Solver

each needed only 15.

4.6.1.2. Performance

The CTP Solver had the best time, followed by AMPL and then SAS. For

some reason, AMPL required two solve statement executions, claiming the

supply and demand values were not equal in the first run and thus failing to

execute before calculating the solution with the second solve command.

An attempt was made to ensure all supply and demand values had the same

number of significant digits after the decimal, but the result was the same.

Since it accurately determines the optimal solution with the second solve

statement (despite identical model and data files), this behavior was

dismissed as a quirk of the LPSOLVE solver.

Table 4.4: IEEE 14- Bus Performance Results.

Solve Time

(seconds)

AMPL (15

iterations)

SAS (21

iterations)

CTP Solver (16

iterations)

Test 1 0.015625 0.18 0.015625

Test 2 0.015625 0.21 0

Test 3 0 0.23 0

Test 4 0 0.25 0

Test 5 0 0.2 0

Test 6 0.015625 0.23 0

Test 7 0 0.21 0

83

Table 4.4: IEEE 14-Bus Performance Results (continued).

Solve Time

(seconds)

AMPL (15

iterations)

SAS (21

iterations)

CTP Solver (16

iterations)

Test 8 0 0.23 0

Test 9 0.015625 0.18 0

Test 10 0 0.18 0

Average 0.00625 0.21 0.0015625

4.6.1.3. Performance Graphs

Figure 4.7: IEEE 14-Bus Performance Graphs.

4.6.2. IEEE 30-Bus Results: Random Cost

The CTP Solver came out on top again in this small network, but just as

with the 14-Bus System, AMPL could have had a better overall performance with

a larger test sample size.

4.6.2.1. Accuracy

All three applications again arrived at the same optimal solution value

23,692.6396. The CTP Solver again had the fewest iterations at 31, with AMPL

and SAS following, requiring 35 and 37 iterations, respectively.

84

4.6.2.2. Performance

Table 4.5: IEEE 30-Bus Performance Results.

Solve Time

(seconds)

AMPL (35

iterations)

SAS (37

iterations)

CTP Solver (31

iterations)

Test 1 0.015625 0.23 0.03125

Test 2 0 0.24 0.015625

Test 3 0.015625 0.25 0

Test 4 0 0.21 0

Test 5 0 0.26 0.015625

Test 6 0.015625 0.2 0

Test 7 0.015625 0.23 0

Test 8 0.015625 0.23 0

Test 9 0.015625 0.21 0

Test 10 0 0.18 0

Average 0.009375 0.224 0.00625

4.6.2.3. Performance Graphs

Figure 4.8: IEEE 30-Bus Performance Graphs.

85

4.6.3. IEEE 57-Bus Results: Random Cost

AMPL chalked up its first win in this network with results calculated

more than two times faster than the CTP Solver. However, the small network

size means the difference in results calculations are still essentially

unnoticeable from the user perspective.

Despite AMPL being the new speed winner, the iteration trend continued

with the same order.

4.6.3.1. Accuracy

Again all three applications determined the optimal solution to be

35508.5215. As with the previous two networks, the CTP Solver had the fewest

iterations (63) with AMPL (80) and SAS (83) following in the same order.

4.6.3.2. Performance

AMPL had the best time with the CTP Solver and SAS following. It is

interesting to note that both AMPL and SAS had faster average times for the

57-Bus System than for the 30-Bus System. Even with such small network

sizes, it should be expected for the applications to increase at least

slightly as the network sizes grow larger.

An odd pattern emerged while running all but the final test between

AMPL and the CTP Solver; each appeared to follow the same sequence of two

values 0.015625 seconds apart. AMPL alternated irregularly between 0 and

0.015625 while the CTP Solver alternated between 0.015625 and 0.03125. The

respective patterns between the larger and smaller values were identical

until the final test.

86

Table 4.6: IEEE 57-Bus Performance Results.

Solve Time

(seconds)

AMPL (80

iterations)

SAS (83

iterations)

CTP Solver (63

iterations)

Test 1 0.015625 0.23 0.03125

Test 2 0.015625 0.25 0.03125

Test 3 0 0.2 0.015625

Test 4 0 0.2 0.015625

Test 5 0.015625 0.25 0.03125

Test 6 0 0.21 0.015625

Test 7 0.015625 0.18 0.03125

Test 8 0 0.2 0.015625

Test 9 0 0.2 0.015625

Test 10 0.015625 0.2 0.015625

Average 0.0078125 0.212 0.021875

4.6.3.3. Performance Graphs

Figure 4.9: IEEE 57-Bus Performance Graphs.

4.6.4. IEEE 118-Bus Results: Random Cost

In its last test, AMPL is victorious with the CTP Solver and SAS

respectively following. The CTP Solver is starting to distance itself

relatively significantly in terms of iterations.

87

4.6.4.1. Accuracy

All three applications arrived at an optimal solution of 561,209.7657.

SAS required 226 iterations, AMPL required 197 iterations, and the CTP Solver

only required 148 iterations.

4.6.4.2. Performance

Once again AMPL was the fastest and had the same performance as its 30-

Bus System test. SAS also remained consistent, albeit as the slowest

application. The CTP Solver was in the middle and is the only application

with a steady increase in execution time in relation to the network size.

Table 4.7: IEEE 118-Bus Performance Results.

Solve Time

(seconds)

AMPL (197

iterations)

SAS (226

iterations)

CTP Solver (148

iterations)

Test 1 0.015625 0.28 0.171875

Test 2 0.015625 0.21 0.171875

Test 3 0.015625 0.2 0.171875

Test 4 0 0.2 0.171875

Test 5 0 0.26 0.171875

Test 6 0.015625 0.25 0.171875

Test 7 0 0.25 0.15625

Test 8 0.015625 0.21 0.171875

Test 9 0 0.18 0.171875

Test 10 0.015625 0.18 0.15625

Average 0.009375 0.222 0.16875

88

4.6.4.3. Performance Graphs

Figure 4.10: IEEE 118-Bus Performance Graphs.

4.6.5. IEEE 300-Bus Results: Random Cost

This was the first test excluding AMPL and also the first network where

the results started indicating separation between applications. SAS was the

clear winner and the difference between its computation time and the CTP

Solver would for the first time be noticeable.

4.6.5.1. Accuracy

Both SAS and the CTP Solver reached an optimal value of 6,348,472.507.

The CTP Solver only required 392 iterations whereas SAS required 629.

4.6.5.2. Performance

Despite needing fewer iterations, the CTP Solver was approximately an

order of magnitude slower than SAS. The CTP Solver is starting a troubling

trend toward exponential growth in its execution time.

Table 4.8: IEEE 300-Bus Performance Results.

Solve Time

(seconds)

SAS (629

iterations)

CTP Solver (392 simplex

iterations)

Test 1 0.21 2.28125

89

Table 4.8: IEEE 300-Bus Performance Results (continued).

Solve Time

(seconds)

SAS (629

iterations)

CTP Solver (392 simplex

iterations)

Test 2 0.22 2.265625

Test 3 0.24 2.28125

Test 4 0.26 2.28125

Test 5 0.2 2.28125

Test 6 0.21 2.28125

Test 7 0.23 2.265625

Test 8 0.23 2.265625

Test 9 0.23 2.25

Test 10 0.2 2.28125

Average 0.223 2.2734375

4.6.5.3. Performance Graphs

Figure 4.11: IEEE 300-Bus Performance Graphs.

4.6.6. Custom 400 Node Results: Random Cost

The results for this network weren't even close in terms of performance

as SAS was significantly faster than the CTP Solver. This was certainly an

unexpected result and one that will hopefully be corrected with some

modifications to the CTP Solver.

90

A silver lining is that the CTP Solver takes nearly half as many

iterations as SAS to calculate the optimal result.

4.6.6.1. Accuracy

The CTP Solver and SAS both had the same optimal solution of

192,195.0485. SAS continues to require many more iterations than the CTP

Solver (942 compared to 521).

4.6.6.2. Performance

The exponential growth trend continues for the CTP Solver while SAS

remains relatively steady in its calculation times.

Table 4.9: Custom 400 Node Performance Results.

Solve Time

(seconds)

SAS (942

iterations)

CTP Solver (521

iterations)

Test 1 0.2 9.75

Test 2 0.18 9.546875

Test 3 0.25 9.75

Test 4 0.23 9.8125

Test 5 0.25 10

Test 6 0.28 9.53125

Test 7 0.2 9.609375

Test 8 0.25 9.859375

Test 9 0.21 9.765625

Test 10 0.26 9.8125

Average 0.231 9.74375

91

4.6.6.3. Performance Graphs

Figure 4.12: Custom 400 Node Performance Graphs.

4.6.7. Custom 500 Node Results: Random Cost

The final test between the CTP Solver and SAS brought about more of the

same results with SAS maintaining very fast times while the CTP Solver

continued its trend toward exponential growth.

4.6.7.1. Accuracy

Both systems calculated an optimal solution of 2,485,906.7415. SAS was

able to maintain its significant speed advantage while taking more than twice

as many iterations as the CTP Solver (1562 for SAS compared to 708 for the

CTP Solver).

4.6.7.2. Performance

Once again SAS remained largely consistent in its execution time while

the CTP Solver took much, much longer. This test shows the CTP Solver would

certainly not be fast enough in its current state to be a viable smart grid

optimization solution.

92

Table 4.10: Custom 500 Node Performance Results.

Solve Time

(seconds)

SAS (1286

iterations)

CTP Solver (708

iterations)

Test 1 0.31 30.125

Test 2 0.28 27.828125

Test 3 0.22 28.125

Test 4 0.23 28.21875

Test 5 0.23 28.140625

Test 6 0.26 29.5

Test 7 0.26 27.96875

Test 8 0.28 28.171875

Test 9 0.24 28.203125

Test 10 0.17 28.09375

Average 0.248 28.4375

4.6.7.3. Performance Graphs

Figure 4.13: Custom 500 Node Performance Graphs.

4.7. Results Analysis

In small network tests, the CTP Solver excelled over SAS and also had

slightly better performance than AMPL. However, the larger the networks

became, the worse the CTP Solver performed.

0.000000

5.000000

10.000000

15.000000

20.000000

25.000000

30.000000

35.000000

1 2 3 4 5 6 7 8 9 10

Ex
e

cu
ti

o
n

 T
im

e
 (

se
co

n
d

s)

Random 500: Performance Tests

SAS
(1562 iterations)

CTP Solver
(708 iterations)

0.00000000

5.00000000

10.00000000

15.00000000

20.00000000

25.00000000

30.00000000

Average Execution Time
(seconds)

SAS 0.24800000

CTP Solver 28.43750000

Ti
m

e
 (s

e
co

n
d

s)

Random 500: Average Performance

93

SAS was able to keep its growth pattern fairly linear as networks with

more nodes and arcs were calculated. Unfortunately the CTP Solver's growth

pattern appears to be exponential. This is likely due to its traversal of

the entire basis tree for each simplex iteration, making the time complexity

approximately O(n
2
) where "n" is the number of nodes in the network.

It was hoped that the use of LINQ queries would compensate, but clearly

the way the algorithms were implemented, that wasn't the case, proving math

trumps faith.

An ongoing effort is attempting to resolve this issue while staying

true to the use of LINQ queries but it might come down to reverting to

traditional linear programming techniques as the best approach.

The following Figure 4.14 shows the average performance results

starting from the IEEE 14-Bus System and progressing through to the Random

500-Node test network. Only SAS and the CTP Solver were graphed due to the

fact AMPL was only tested on the four smallest networks.

The graph clearly shows the exponential growth pattern of the CTP

Solver and the linear nature of SAS.

Figure 4.14: Overall Average Performance.

94

One silver lining in the CTP Solver's performance was its consistency

in requiring the fewest iterations to calculate its results. This leads to

the possibility of it potentially being much, much faster in a parallelized

implementation.

95

5. CONCLUSION

In an attempt to address the problem of smart grid optimization based

on various performance measures potentially related to self-healing

solutions, a custom capacitated transshipment problem solver (or CTP Solver)

was developed using ASP.NET C#.

Through custom objects and an algorithmic process based on the simplex

method, the CTP Solver calculates an optimal solution to a supplied network

file or database and displays the results to the user while also exporting

the optimal network to XML, spreadsheet, and updates the database if used as

the original network source.

The CTP Solver contributes the application of object oriented software

development concepts to the solution of linear programming network flow

problems as well as an innovation in the process of handling bidirectional

arcs. It is also an universally accessible web application as opposed to

traditional standalone software.

However, in its current state, the CTP Solver would not be a viable

solution for smart grid optimization due to its exponentially slow

performance. A self-healing system for the smart gird would need to be as

fast as possible to help prevent cascading failures; the CTP Solver is

currently just not fast enough at solving large network problems, but could

be viable if the solution space was limited to smaller networks.

Even though its speed performance compared to SAS was extremely

disappointing on larger-scale problems, the CTP Solver is still a valuable

tool with plenty of room for improvements. With a better process for basis

updates that still takes advantage of LINQ queries, the CTP Solver might be

capable of reaching performance results similar to SAS and become a crucial

solution to the problem of smart grid self-healing among other network

optimization applications.

96

5.1. Primary Contributions

The CTP Solver's primary contributions can be summarized in three main

areas:

1. Architecture and Platform

2. User Experience

3. Bidirectional Arcs Algorithm Innovation

5.1.1. Architecture and Platform

The architecture and platform contributions of the CTP Solver include:

1. Web Application

2. Object-Oriented Architecture and Concepts

3. LINQ

5.1.1.1. Web Application

Many of the current solutions in the category of optimization

applications are programs that must be installed on a user's machine. This

inherently adds a layer of complexity to the requirements for using the

application. Sometimes, as in the case of SAS, the installation process can

arguably be more time intensive than determining how to actually use the

software.

The CTP Solver breaks this traditional software mold, allowing users to

easily access the solution results of their problems without installing any

software.

As a web application, the CTP Solver is available to any device with an

internet connection. Since the solution processing is done on the server,

the user device does not need to be powerful enough to make the calculations.

97

5.1.1.2. Object-Oriented Architecture and Concepts

By implementing an object-oriented architecture, updates and changes to

the CTP Solver's code are more easily maintained. This allows developers to

quickly determine the areas of the application that need updates and make the

changes in a timely manner.

Using object-oriented design also provides developers with a familiar

structure and easy-to-use code environment. The CTP Solver's code reads

logically with documented methods explaining the processes and reasons behind

the design choices.

5.1.1.3. LINQ

One of the primary unknowns of the CTP Solver's design was whether or

not LINQ would be a beneficial feature to implement.

Since LINQ queries allow coded data structures to function similarly to

a database, using LINQ seemed to be a good choice for handling interactions

with the CTP Solver's data.

While LINQ certainly made writing the code more clear and easy to

follow, the current implementation might not be the best approach in terms of

execution speed. However, with some modifications to the code, it is still

hoped that LINQ can be implemented with acceptable performance. This would

make the CTP Solver a viable solution for smart grid optimization.

5.1.2. User Experience

The user experience contributions of the CTP Solver include:

1. Ease of Use

2. Standardized Data Format

3. No New Languages

98

5.1.2.1. Ease of Use

It was an important design goal for the CTP Solver to be generally

intuitive for its users to work with and it appears to have reached this

goal.

There is very little work required of the user; the most demanding

expectation is formatting the XML file correctly so the CTP Solver can

properly read and calculate the results.

Plenty of information is then displayed to the user in easy-to-read

tables with the added benefit of also being automatically exported to both

XML and .CSV.

5.1.2.2. Standardized Data Format

The main benefit of using XML for network structures and data is that

it is a mature, standard, and widely-used format for transferring and

manipulating data.

As such, XML is almost ubiquitously supported by software and web

protocols, allowing users to utilize their data in multiple applications

without having to alter the information.

5.1.2.3. No New Languages

Since the CTP Solver automates so much of the processes involved with

calculating results, the user does not need to learn a new application-

specific language or syntax.

In the case of AMPL and SAS, the user must learn how to model their own

problem solvers or search through documentation to find the correct methods

and syntax required to use the application. This makes the user's learning

curve much steeper for these programs than for the CTP Solver.

99

The user simply needs to learn how to format the network XML file and

the CTP Solver does the rest.

5.1.3. Bidirectional Arcs Algorithm Innovation

Probably the most exciting innovation the CTP Solver provides is a

different way of handling bidirectional arcs.

Since a capacitated transshipment problem requires directed arcs,

traditionally all arcs are considered separately. This means an arc between

two nodes would normally require two definitions in the network data

structure.

The CTP Solver simply adds a Boolean attribute to every arc, allowing

it to be bidirectional. When it is bidirectional, flow is allowed in both

directions between a node pair.

By handling bidirectional arcs in this manner, the CTP Solver can

effectively halve the network file size and memory requirements of a dataset

containing all bidirectional arcs.

5.2. Future Work and Improvements

Since the CTP Solver is not currently a viable solution for smart grid

self-healing, there are a number of improvements it can likely benefit from

in future modifications to aspects such as parallelization, visualization,

and optimization among others.

5.2.1. Parallelization

One of the areas that could be parallelized is individual reduced cost

arc calculations. These could be divided between the available processors

for faster processing and the best reduced cost from each processor thread

could be compared to find the overall best reduced cost.

100

Another part of the CTP Solver that might be a good candidate for

parallelization is the cycle traversal. The algorithm follows the back path

of both the head and tail node at the same time, starting from the deepest

node. Once the two paths are at the same node depth, the maximum flow

change, or theta, value could be calculated separately on the head and tail

back paths.

The display of the output tables for each simplex iteration could also

be parallelized between available processors, with the cycle and basis arcs

being combined into one processor thread if there are only two processors.

Note: this possibility should not be confused with providing separate

processors different simplex iterations. Each iteration is dependent on the

previous so they must be completed sequentially.

Of course, the simplex iterations can already be hidden by setting the

proper attribute in the configuration settings, greatly reducing the overall

execution time, so parallelization of this part of the CTP Solver might not

be worth the effort.

5.2.2. Visualization

While the optimal network table accurately depicts the resulting

topology, additionally allowing the user to create a visual representation of

the network structures would be ideal.

An interface for manipulating the graphical layout would enable the

user to see an accurate representation of the network, possibly allowing

further insights about the resulting information.

5.2.3. Optimization

The process of updating the basis and network is currently implemented

using a recursive method. It is also stepping through the entire basis tree

as opposed to simply updating the arcs connecting the cycle nodes. By

101

finding a way to change the algorithm to only update the cycle nodes and

arcs, significant performance gains are likely possible for large-scale

networks. However, that might require the use of more traditional linear

programming development techniques in place of LINQ queries.

102

REFERENCES

[1] Litos Strategic Communication, "The Smart Grid: An Introduction,"

[Online]. Available: http://energy.gov/oe/downloads/smart-grid-

introduction-0.

[2] U.S. Department of Energy, "What is the Smart Grid?," [Online].

Available: www.smartgrid.gov/the_smart_grid.

[3] United States Department of Energy, "Smart Grid," [Online]. Available:

http://energy.gov/oe/technology-development/smart-grid.

[4] Institute of Electrical and Electronics Engineers, "About IEEE,"

[Online]. Available: http://www.ieee.org/about/index.html.

[5] University of Washington, "Resources: Power Systems Test Case Archive,"

[Online]. Available: http://www.ee.washington.edu/research/pstca/.

[6] T. M. C. James P. Ignizio, Linear Programming, Englewood Cliffs, New

Jersey: Prentice-Hall, Inc., 1994.

[7] G. Dantzig, "Activity Analysis of Production and Allocation: Proceedings

of a Conference," Cowles Commission for Research in Economics, 1951.

[8] N. Karmarkar, "A New Polynomial-Time Algorithm for Linear Programming,"

Combinatorica, vol. 4, no. 4, pp. 373-395, 1984.

[9] J. J. J. H. D. S. Mokhtar S. Bazaraa, Linear Programming and Network

Flows, Hoboken, New Jersey: John Wilwy & Sons, Inc., 2010.

[10] G. G. B. G. W. G. Gordon H. Bradley, "Design and Implementation of Large

Scale Primal Transshipment Algorithms," Management Science, vol. 24, no.

1, pp. 1-34, 1977.

[11] K. N. Prakash Ranganathan, "A LP Based Large Scale Decomposition and

Optimization in Smart Grid".

[12] Microsoft, "LINQ (Language-Integrated Query)," [Online]. Available:

http://msdn.microsoft.com/en-us/library/vstudio/bb397926.aspx.

[13] S. S. S. R. Ellis Horowitz, Computer Algorithms, Summit, New Jersey:

Silicon Press, 2008.

[14] D. Knuth, The Art of Computer Programming, vol. 1: Fundamental

Algorithms, Westford, Massachusetts: Pearson Education, Inc., 1997.

[15] E. Dijkstra, "A Note on Two Problems in Connexion with Graphs,"

103

Numerische Mathematik, vol. 1, pp. 269-270, 1959.

[16] I. Sommerville, Software Engineering, Boston, Massachusetts: Pearson

Education, Inc., 2011.

[17] P. N. Stuart Russell, Artificial Intelligence: A Modern Approach, Upper

Saddle River, New Jersey: Pearson Education, Inc., 2010.

[18] A. S. R. J. T. Zhifang Wang, "Generating Statistically Correct Random

Toplogies for Testing Smart Grid Communication and Control Networks,"

Smart Grid, IEEE Transactions on, vol. 1, no. 1, pp. 28-39, June 2010.

[19] AMPL, "AMPL: A Modeling Language for Mathematical Programming,"

[Online]. Available: http://www.ampl.com/.

[20] SAS, "About SAS," [Online]. Available:

http://www.sas.com/company/about/index.html.

[21] SAS, "PROC NETFLOW Statement," [Online]. Available:

http://support.sas.com/documentation/cdl/en/ormpug/63352/HTML/default/or

mpug_netflow_sect016.htm.

[22] SAS, "SAS/OR(R) 9.2 User's Guide: Mathematical Programming," [Online].

Available:

http://support.sas.com/documentation/cdl/en/ormpug/59679/HTML/default/vi

ewer.htm#netflow_sect63.htm.

104

APPENDIX

A.1. IEEE 14-Bus System Example

The following is a step-by-step pictorial example of the CTP Solver's

iterative process through the IEEE 14-Bus test system with distance as a cost

measure.

 In each step after the initial Step 0, the iteration's cycle flow

updates are shown in the left diagram and the basis tree updates are shown in

the right diagram. Then the iteration's resulting network arc flows are

shown in the left diagram and the basis tree is shown in the right diagram.

 Nodes are numbered and circled, artificial arcs are blue, real arcs are

black, arc flows are boxed, reflected arcs are denoted in the basis tree with

an asterisk, cycle arcs are bold, cycle nodes are filled black, the cycle

direction is shown in orange, the entering arc is red, decremented arc flows

are filled pink, and incremented arc flows are filled green.

A.1.1. IEEE 14-Bus System: Step 0

Step 0 is the original network provided to the CTP Solver. Recall from

the initialization step of the CTP Solver's process that the initial basis is

created using artificial arcs with flow equal to the supply or demand of the

real node.

The purpose of this step is to give the CTP Solver an initial feasible

basis to start its iterations.

105

Figure A.1: IEEE 14-Bus System Step 0.

A.1.2. IEEE 14-Bus System: Step 1 Cycle

Figure A.2: IEEE 14-Bus System Step 1 Cycle.

106

A.1.3. IEEE 14-Bus System: Step 1 Flows

Figure A.3: IEEE 14-Bus System Step 1 Flows.

A.1.4. IEEE 14-Bus System: Step 2 Cycle

Figure A.4: IEEE 14-Bus System Step 2 Cycle.

107

A.1.5. IEEE 14-Bus System: Step 2 Flows

Figure A.5: IEEE 14-Bus System Step 2 Flows.

A.1.6. IEEE 14-Bus System: Step 3 Cycle

Figure A.6: IEEE 14-Bus System Step 3 Cycle.

108

A.1.7. IEEE 14-Bus System: Step 3 Flows

Figure A.7: IEEE 14-Bus System Step 3 Flows.

A.1.8. IEEE 14-Bus System: Step 4 Cycle

Figure A.8: IEEE 14-Bus System Step 4 Cycle.

109

A.1.9. IEEE 14-Bus System: Step 4 Flows

Figure A.9: IEEE 14-Bus System Step 4 Flows.

A.1.10. IEEE 14-Bus System: Step 5 Cycle

Figure A.10: IEEE 14-Bus System Step 5 Cycle.

110

A.1.11. IEEE 14-Bus System: Step 5 Flows

Figure A.11: IEEE 14-Bus System Step 5 Flows.

A.1.12. IEEE 14-Bus System: Step 6 Cycle

Figure A.12: IEEE 14-Bus System Step 6 Cycle.

111

A.1.13. IEEE 14-Bus System: Step 6 Flows

Figure A.13: IEEE 14-Bus System Step 6 Flows.

A.1.14. IEEE 14-Bus System: Step 7 Cycle

Figure A.14: IEEE 14-Bus System Step 7 Cycle.

112

A.1.15. IEEE 14-Bus System: Step 7 Flows

Figure A.15: IEEE 14-Bus System Step 7 Flows.

A.1.16. IEEE 14-Bus System: Step 8 Cycle

Figure A.16: IEEE 14-Bus System Step 8 Cycle.

113

A.1.17. IEEE 14-Bus System: Step 8 Flows

Figure A.17: IEEE 14-Bus System Step 8 Flows.

A.1.18. IEEE 14-Bus System: Step 9 Cycle

Figure A.18: IEEE 14-Bus System Step 9 Cycle.

114

A.1.19. IEEE 14-Bus System: Step 9 Flows

Figure A.19: IEEE 14-Bus System Step 9 Flows.

A.1.20. IEEE 14-Bus System: Step 10 Cycle

Figure A.20: IEEE 14-Bus System Step 10 Cycle.

115

A.1.21. IEEE 14-Bus System: Step 10 Flows

Figure A.21: IEEE 14-Bus System Step 10 Flows.

A.1.22. IEEE 14-Bus System: Step 11 Cycle

Figure A.22: IEEE 14-Bus System Step 11 Cycle.

116

A.1.23. IEEE 14-Bus System: Step 11 Flows

Figure A.23: IEEE 14-Bus System Step 11 Flows.

A.1.24. IEEE 14-Bus System: Step 12 Cycle

Figure A.24: IEEE 14-Bus System Step 12 Cycle.

117

A.1.25. IEEE 14-Bus System: Step 12 Flows

Figure A.25: IEEE 14-Bus System Step 12 Flows.

A.1.26. IEEE 14-Bus System: Step 13 Cycle

Figure A.26: IEEE 14-Bus System Step 13 Cycle.

118

A.1.27. IEEE 14-Bus System: Step 13 Flows

Figure A.27: IEEE 14-Bus System Step 13 Flows.

A.1.28. IEEE 14-Bus System: Step 14 Cycle

Figure A.28: IEEE 14-Bus System Step 14 Cycle.

119

A.1.29. IEEE 14-Bus System: Step 14 Flows

Figure A.29: IEEE 14-Bus System Step 14 Flows.

A.1.30. IEEE 14-Bus System: Step 15 Cycle

Figure A.30: IEEE 14-Bus System Step 15 Cycle.

120

A.1.31. IEEE 14-Bus System: Step 15 Flows

Figure A.31: IEEE 14-Bus System Step 15 Flows.

A.1.32. IEEE 14-Bus System: Step 16 Cycle

Figure A.32: IEEE 14-Bus System Step 16 Cycle.

121

A.1.33. IEEE 14-Bus System: Step 16 Flows (Optimal)

Figure A.33: IEEE 14-Bus System Step 16 Flows (Optimal).

