
EFFICIENT REGRESSION TESTING FOR WEB APPLICATIONS

USING REUSABLE CONSTRAINT VALUES

A Thesis
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Md Imamul Hossain

In Partial Fulfillment
for the Degree of

MASTER OF SCIENCE

Major Program:
Software Engineering

May 2013

Fargo, North Dakota

North Dakota State University
Graduate School

Title

Efficient Regression Testing for Web Applications
Using Reusable Constraint Values

By

Md Imamul Hossain

The Supervisory Committee certifies that this disquisition complies with
North Dakota State University’s regulations and meets the accepted standards
for the degree of

MASTER OF SCIENCE

SUPERVISORY COMMITTEE:

Dr. Hyunsook Do
Chair

Dr. Saeed Salem

Dr. Mukhlesur Rahman

Approved:

05/07/2013 Dr. Brian M. Slator
Date Department Chair

iii

ABSTRACT

Current web applications offer people easy ways to deploy web sites, and the use of web

applications has grown rapidly over the past decades. Companies that provide web applications

need frequent regression testing because of various security attacks and frequent feature update

demands from users. Typically, such applications require regression testing with a short turn-

around time because they have already been deployed and used in the field. Recent research has

presented an efficient regression testing approach that allows us to focus on the areas of code that

have been changed. But, this approach requires a time consuming process of constraints

resolution. Here, a technique has been presented that identifies reusable constraint values from

the previous version to execute regression test paths for the new version. Also, the empirical

study shows that a significant reuse can be achieved by this technique which reduces the overall

time of regression testing.

iv

ACKNOWLEDGMENTS

I would like to thank the advisory committee members and professors at North

Dakota State University (NDSU), Dr. Hyunsook Do, Dr. Saeed Salem and Dr. Mukhlesur

Rahman for their valuable support and guidance. As my advisory committee chair, Dr. Hyunsook

Do always made time in providing technical expertise and guidance throughout the process. This

would not have been possible without her constant support.

I am also thankful to the National Science Foundation for funding this research.

v

TABLE OF CONTENTS

ABSTRACT……………………………………………………………………………………...iii

ACKNOWLEDGMENTS……………………………………………………………………......iv

LIST OF TABLES………………………………………….……………………………………vii

LIST OF FIGURES……………………………………………………………………………..viii

CHAPTER 1. INTRODUCTION ………………………………………………………...............1

CHAPTER 2. BACKGROUND AND RELATED WORK ……………………………...............3

CHAPTER 3. METHODOLOGY …………………………………………………......................5

3.1. Collecting Reusable Constraint Values …………………………………………..7

3.2. An Example of Reusable Input Variable Identification …………………………11

CHAPTER 4. EMPIRICAL STUDY …………………………………………...........................15

4.1. Objects of Analysis ……………………………………………………………...15

4.2. Variables and Measures …………………………………………………………18

4.3. Experiment Setup ………………………………………………………………..18

4.4. Threats to Validity ………………………………………………………………19

CHAPTER 5. DATA AND ANALYSIS ……………………………………..............................20

5.1. Results for FAQForge …………………………………………………………...22

5.2. Results for osCommerce ………………………………………………………...26

5.3. Results for Mambo ………………………………………………………………28

5.4. Results for Mantis …………………….…………………………………………29

5.5. Results for phpScheduleIt …………………………………………….…………31

CHAPTER 6. DISCUSSION ……………………………………..34

CHAPTER 7. CONCLUSION ……………………………………...37

vi

REFERENCES …………………………………..….……………………………………..……39

vii

LIST OF TABLES

Table Page

1. Three Versions of PHP Sample Program ………….…………………………………….12

2. Test Path …………………………………………………………………………………13

3. Constraints ………………………………………………………………………………13

4. Objects of Analysis ……………………………………………………………………...17

5. Total Number of Paths and Regression Paths …………………………………………...21

6. The Number of Input Values (Total vs.Reusable)…………………………………….....24

7. Input Values Reuse Rates ………………………….………………………………........25

viii

LIST OF FIGURES

Figure Page

1. Overview of PARTE [1] and Constraint Reuse ……….…………………………….…...6

2. Algorithm FindReusableInputValues ……………………………………………….......10

3. Algorithm CheckStatementSimilarity ……………………………………………….......11

4. FAQForge Input Values Comparison …………………………………………………...22

5. FAQForge Reuse Rates ………………………………………………………………….23

6. osCommerce Input Values Comparison ………………………………………………...26

7. osCommerce Reuse Rates …………………………….…………………………………27

8. Mambo Input Values Comparison ………………………………………………………28

9. Mambo Reuse Rates ……...………………………………………………………..........29

10. Mantis Input Values Comparison ……………………………………………………….30

11. Mantis Reuse Rates ……………………………………………………………………...31

12. phpScheduleIt Input Values Comparison ……………………………………………….32

13. phpScheduleIt Reuse Rates ……………………………………………………………...32

1

CHAPTER 1. INTRODUCTION

The use of web applications has grown rapidly over the past decade, and a large number

of companies have relied heavily on web applications for their businesses. Companies that

provide web applications often encounter various security attacks and frequent feature update

demands from users, and when they do, companies need to fix security problems or upgrade the

application with new features. Thus, such applications undergo frequent patch releases which

require frequent regression testing processes that can support a short turn-around time in

releasing patches instead of applying regression testing to the entire product.

Recently, a new regression testing approach PARTE (PHP Analysis and Regression

Testing Engine) [1] was introduced which allows us to focus on the areas of code that have been

changed and to regression test them. In particular, a technique was developed that generates test

cases using program slices and their inputs that require constraint resolution. The experiment

results with five open web applications indicated that the approach is efficient in reducing the

cost of regression testing by reducing the number of test cases to exercise. It was also learned

that resolving input constraints was a time consuming process because many input constraints

required manual resolution even after applying the external constraint resolution tools. Further,

automatic constraint solvers can take a long time to resolve constraints for some inputs (e.g.,

long strings) [2], [3]. If input constraints and their resolved values from the previous version’s

test cases can be identified which are applicable to the current version, greater savings can be

expected.

Here, a technique is proposed that identifies reusable constraint values for regression test

cases (both new test cases and selected test cases from the previous version) to accommodate

further savings with regression testing for web applications that require frequent patches and

2

short regression testing cycles. The technique finds variables where the input value from the

previous version can be reused to execute the regression test path for the new version. By

comparing definitions and uses of a particular variable between the old and new versions of the

object program, it is determined whether the same constraints for the variable can be used. By

doing this, unnecessary effort during regression testing can be avoided: this approach helps us

avoid collecting constraints for the reusable variables as well as reduces the number of numeric

and string inputs that need to be resolved.

To assess the approach, an empirical study has been designed and performed using five

open source web applications. The result shows that a large number of variable constraints can

be reused from the previous version’s test cases, thus it can reduce a significant amount of effort

for resolving constraint values for those variables when a new version of the application is tested.

Further, because the constraints and actual values for variables can be reused across several

versions as long as the defined conditions are satisfied, greater savings over time can be

expected.

The thesis is organized as follows. In Chapter 2, some background as well as related

work relevant to web applications and regression testing have been provided. In Chapter 3, the

overall methodology is described, including a brief description of PARTE and the technical

details about the proposed approach. Chapter 4 presents objects of analysis, variables and

measures, experimental setup and threats to validity. Chapter 5 provides the data and analysis for

the object programs. Chapter 6 discusses the rationale of the results for different version of

object programs, and Chapter 7 presents conclusions and future work.

3

CHAPTER 2. BACKGROUND AND RELATED WORK

To date, researchers have studied various methods for improving the cost-effectiveness of

regression testing, and most of them have focused on reusing the existing test cases (e.g., [9],

[10], [11], [12]). However they are often insufficient to retest code or system behaviors that are

affected by code changes. To address this problem, recently, researchers started working on test

suite augmentation techniques which create new test cases for areas that have been affected by

changes [13], [14], [15], [16], [17], [18] and [33]. Apiwattanapong et al. [13] and Santelices et al.

[14] presented a propagation-based approach which uses program dependence analysis and

symbolic execution to identify areas affected by code changes, and then provides test

requirements for changed software. Xu et al. [15], [16] presented an approach to generate test

cases by utilizing the existing test cases and adapting concolic and genetic test case generation

techniques. Taneja et al. [17] proposed an efficient test generation technique that uses dynamic

symbolic execution, eXpress, by pruning irrelevant paths. Chen, Probert and Ural et al. [18]

proposed a model-based regression test suite generation using dependence analysis. Rubinov and

Wuttke et al. [33] presented a framework for augmenting test suites automatically. Alshahwan

and Harman et al. [32] proposed output diversity increase to make test suite augmentation more

effective. These approaches focused on desktop applications such as C or Java, but the approach

here applies regression testing to web applications, creating different challenges. Further, the

major focus in this thesis is to identify reusable constraint input values by analyzing a variable’s

definition-use information.

In the area of web applications, several researchers proposed various test case generation

approaches. Wassermann et al. [19] and Artzi et al. [20] utilized a concolic approach to generate

test cases for PHP web applications. Other test case generation techniques for web applications

4

used crawlers and spiders to identify and test web application interfaces. For instance, Ricca and

Tonella [21] used a crawler to discover the link structure of web applications and to produce test

case specifications from this structure. Deng et al. [22] used static analysis to extract information

related to URLs and their parameters for web applications, and to generate executable test cases

using the collected information. Halfond et al. [23] presented an approach that uses symbolic

execution to identify precise interfaces for web applications. While this focuses on generating

test cases for the areas affected by code changes and collecting reusable constraint input values,

the aforementioned approaches for web applications did not consider regression testing aspects.

Some work on regression testing for web applications [24], [25] has been done before, but their

focus was different than this work. Dobolyi and Weimer [24] presented an approach that

automatically compares the outputs from similar web applications to reduce the regression

testing effort. Elbaum et al. [25] presented a web application testing technique that utilizes users’

session data considering regression testing contexts.

Another research area that is slightly relevant to our work is constraint resolution. Many

researchers have worked on this area [2], [26], [27], [28], and now, several constraint resolution

tools are available, including Hampi [5] and Choco [6], which have been used in recent work [1].

Although these automatic resolution tools helped resolving many input values (in particular,

numeric values), manual inspection and resolution are required for many of them due to the

complexity of inputs and the time required to resolve them, which motivated this research

(collecting reusable constraint input values). By combining these two approaches (automatic

resolution using constraint solvers and the approach proposed in this thesis), great effort savings

can be expected during regression testing.

5

CHAPTER 3. METHODOLOGY

As presented in the paper [1], PARTE is implemented to generate new regression test

cases by analyzing the impacted areas by changes. To facilitate the approach proposed in this

thesis, PARTE is extended as shown in Figure 1. The dark gray area is the new addition to

PARTE. To provide an overview of the approach, PARTE’s main components are summarized

and then the components related to the constraint resolution reuse are explained.

In Figure 1, the boxes depict the main activities; the ovals depict the inputs and outputs of

the processes; and the double ovals represent the final outcomes of the approach. PARTE has

three main components: (1) Preprocessing - Before the impact analysis is performed on PHP web

applications, a preprocessing step is required to handle dynamic aspects of PHP web applications

and to preserve variable names across versions as PHP compiler, PHC [4] which is used here

does not handle these (see [1] for details). (2) Impact analysis - Based on preprocessed files,

PARTE generates program dependence graphs (PDGs) for two consecutive versions of the PHP

web application, and generates program slices using code change information. (3) Test case

generation - PARTE generates new test cases for the impacted areas of code by using program

slices and considering both string and numeric input values. To resolve input constraint values,

two constraint solvers, Hampi [5] and Choco [6] are used. Note that they are included in the test

case generation box, but they are not part of PARTE. (They are external constraint solvers.)

To apply this approach, existing test paths and executable test cases that have been used

for testing the previous version are used. The database for version v0 at the bottom right corner

of Figure 1 contains these two sets of information. To collect reusable constraints and input

values from the previous version, the following steps are required: (1) First, the test paths for the

new version are generated. To do so, two consecutive versions of PHP files are analyzed to

6

identify program slices by identifying code changes, and then, test paths that are required for the

new version are generated. (2) Two sets of compatible test paths (the previous and current

versions) are compared to collect the same variables that are used in both versions. Then, the

constraints for those variables and the corresponding input values that can be reused for the new

paths are identified by analyzing variable definitions and uses.

These two steps are described in detail in the following subchapters, including an

algorithm and an example that show how the approach works.

Figure 1. Overview of PARTE [1] and Constraint Reuse

7

3.1. Collecting Reusable Constraint Values

Without considering the use of reusable constraint input values, a typical way to generate

executable test cases using PARTE, as follows. Once all necessary preprocessing activities are

done as explained earlier, the path generator creates test paths for the new version using program

slices obtained by analyzing two consecutive versions of the PHP web application. To execute

the test paths, actual input values are needed to assign for the input variables. To do so, the

constraint collector gathers the constraints for these input variables, and then, the constraint

resolution tool generates the input values that satisfy the constraints. (Input values are needed to

resolve manually if the tool cannot resolve them.) However, as it is briefly mentioned in Chapter

1, resolving input constraints takes a lot of time and effort, depending on the number of changes

and the complexity of input constraints. For web applications with small patches, the number of

changes in the new version is often very small, but sometimes, even with small changes, the

impacted areas by changes could be large, thus the number of inputs could be large. To address

this issue, a technique was implemented that collects reusable input constraint values from the

executable test cases of the previous version.

As shown in Figure 1, the proposed technique consists of two processes (right, dark gray

box): variable def/use analyzer and reusable input value identifier. The variable def/use analyzer

reads the test paths for the new version generated by the path generator and the test paths from

test history database for the previous version. Although the figure does not show it, the def/use

analyzer also needs to read the PDG files because the test paths generated by the path generator

do not provide variable information, but PDGs contain definition and use information for

variables. The analyzer finds the information and builds a variable mapping table that contains a

list of block numbers, and definitions and uses of the variables appeared on the test path. The

8

PDGs are constructed based on the basic blocks. The reusable input value identifier reads the

mapping table and executable test cases of the previous version, assigning values to the reusable

variables by extracting input values from the previous version’s executable test cases.

The process explained here is formally shown in the FindReusableInputValues algorithm

(Figure 2). The algorithm takes four inputs: old test path, new test path, old PDG, and new PDG.

Here, old indicates the previous version, and new indicates the current version under test. The

algorithm produces one output: reusable variables with actual values. In line 1, a new map is

declared; the map maps variable names to the list of PDG nodes that contains definitions and

uses of that particular variable for the new path. For each node on the new path, the

corresponding PDG node is loaded from the new PDG, and the block id is found from the path

node (line 3). If the current node has variable with definition and/or uses, the map is updated by

calling UpdateDefUseMap which changes or inserts the variable information (line 4). A map is

also defined for the old path following the same procedure (lines 9 to 14). At this point, all

def/use maps are created for both the old and new versions.

Next, the algorithm finds reusable input values for the variables it found in the previous

step. For each candidate variable in the new def/use map, the corresponding PDG nodes are

extracted. Each PDG node contains actual source code statements, so the algorithm extracts

those statements from the node. If the variable is found in the old def/use map, then the source

code statements are extracted in the same way.

The source code statements between two versions (old and new) are compared using a

CheckStatementSimilarity function (line 19). If the statements match, then the variable is

identified as reusable and added to the reusable variables list (line 21).

9

CheckStatementSimilarity function takes current variable and def/use map of both old

path and new path. The function returns true or false depending on the matching logic. In line 1,

it collects only those statements which contain definition and use of the input variable on the old

path. In line 2, the same information is collected for the new path. After that, all of the statements

in the new path are iterated one by one in line 3. A complete match is calculated for each

statement, by comparing corresponding statement in the old path. This is a character by character

matching and is performed in line 4. If there is a mismatch then the algorithm proceeds to find a

partial match in line 5.

A partial match would occur if the entire statement does not match, but the definition or

use portion of a variable in the statement matches exactly with the old version. For instance, one

statement in the old version is written as “if (a > 3),” and the statement is changed to “if (a > 3 ||

b == 1)” in the new version. Because the new statement contains the use of variable “a” with the

same condition i.e. (a > 3), it is considered to be a partial match and the variable “a” is added to

the reusable variable list.

If both complete and partial match fail, then false is returned in line 6, which means the

variable is not eligible to reuse. Otherwise, the algorithm proceeds with variable dependency

check in line 9. This checks whether the input variable has dependency on any other variable in

the statement. An input variable is detected to have dependency if any definition or use of the

input variable contains other variables rather than just string literals or constants. If a dependency

is detected then the algorithm tries to resolve the dependency in line 10.

10

A dependency is resolved if all of the variables upon which the input variable is

dependent returns true on CheckStatementSimilarity. During this secondary checking, cyclic

dependency is avoided by excluding the path statement where the dependency was detected.

Algorithm FindReusableInputValues

Inputs: oldPath, newPath, oldPdg, newPdg
Outputs: reusable variables

1. newPathDefUseMap -> mapping variable to Def/Use statement
2. for n <- 0, n < newPath.size(), n++ do
3. curBlock <- newPdg.getBlock(newPath.getBlockID(n))
4. if (curBlock.HasDefOrUse())
5. UpdateDefUseMap(curBlock, newPathDefUseMap)
6. end if
7. end for

8. oldPathDefUseMap -> mapping variable to Def/Use statement
9. for n <- 0, n < oldPath.size(), n++ do
10. curBlock <- oldPdg.getBlock(oldPath.getBlockID(n))
11. if (curBlock.HasDefOrUse())
12. UpdateDefUseMap(curBlock, oldPathDefUseMap)
13. end if
14. end for

15. reUsableVars -> list of reusable variables
16. for n <- 0, n < newPathDefUseMap.getVars.size(), n++ do
17. curVar <- newPathDefUseMap.getVars()[n]
18. if (oldPathDefUseMap.getVars().contains(curVar))
19. isSimilar <- CheckStatementSimilarity(curVar, oldPathDefUseMap,

newPathDefUseMap)
20. if (isSimilar)
21. reUsableVars.Add(curVar)
22. end if
23. end if
24. end for
25. return reUsableVars

Figure 2. Algorithm FindReusableInputValues

11

Algorithm CheckStatementSimilarity

Inputs: curVar, oldPathDefUseMap, newPathDefUseMap
Outputs: true/false

1. oldPathStmnts <- oldPathDefUseMap.getStatements(curVar);
2. newPathStmnts <- newPathDefUseMap.getStatements(curVar);
3. for n <- 0, n < newPathStmnts.size(), n++ do
4. if (!CompleteMatch(newPathStmnts[n],oldPathStmnts[n]))
5. if (!PartialMatch(curVar,newPathStmnts[n],oldPathStmnts[n]))
6. return false;
7. end if
8. end if
9. if (HasVarDependency(curVar,newPathStmnts[n]))
10. if (!ResolveVarDependency(curVar,newPathStmnts[n])))
11. return false;
12. end if
13. end if
14. end for
15. return true;

Figure 3. Algorithm CheckStatementSimilarity

3.2. An Example of Reusable Input Variable Identification

In this chapter, it was illustrated how reusable input variables can be identified using an

example. Suppose there are three consecutive versions of a simple PHP program (v0.php,

v1.php, and v2.php) as shown in Table 1.

As the example shows, from version v0 to version v1, statement 5 has been changed ($a

= $a − 1 to $a = $a − 3). For this case, the path that needs to be regression tested is shown in

the third row of Table 2. Executing this path requires constraints for the variables to be gathered

and the actual input values to be resolved. The second column of Table 3 shows the variable

constraints for version v1.

In the tables, information for version v0 was added as a reference. For version v0, there

are more test paths than the one path that appeared in Table 2, but to simplify the explanation

12

with the example, only the path that is relevant to the regression test path for version v1 is

shown. Also, the first column of Table 3 shows the variable constraints for version v0.

In Table 1, from version v1 to version v2, it can be seen that statement 4 has been

changed ($b = 6 to $b = $b −1). This case also requires one test path to be executed as shown in

the fourth row of Table 2. Again, the constraints for the variables on that path are shown in the

third column of Table 3. From the second column of Table 3, it can be seen that the constraints

for variable “a” are unchanged.

Table 1. Three Versions of PHP Sample Program

v0.php (original version) v1.php (modified version) v2.php (modified version)

1. $a = $_POST['input'];
2. $b = $_POST['input2'];
3. if ($a < 12)

{
4. $b = 6;
5. $a = $a-1;

}
else

6. $b = $b+3;
7. if ($a > 7)

{
8. if ($b == 5)
9. echo "a\n";

else
10. $b= 7;

}
11. echo "b\n";
12. echo "done

processing\n";

1. $a = $_POST['input'];
2. $b = $_POST['input2'];
3. if ($a < 12)

{
4. $b = 6;
5. $a = $a-3; //changed

}
else

6. $b = $b+3;
7. if ($a > 7)

{
8. if ($b == 5)
9. echo "a\n";

else
10. $b= 7;

}
11. echo "b\n";
12. echo "done

processing\n";

1. $a = $_POST['input'];
2. $b = $_POST['input2'];
3. if ($a < 12)

{
4. $b = $b-1; //changed
5. $a = $a-3;

}
else

6. $b = $b+3;
7. if ($a > 7)

{
8. if ($b == 5)
9. echo "a\n";

else
10. $b= 7;

}
11. echo "b\n";
12. echo "done

processing\n";

To find the reusable constraints for the variables and their values, it was needed to first

identify variables used in both the old and new test paths.

In this example, the paths for all three versions, v0, v1, and v2, have two variables such

as variable “a” and variable “b.” All definitions of variable “a” are identified and stored in a map

by analyzing the corresponding PDG as explained in the algorithm description. The definitions

13

of variable “a” on the paths for all three versions are statements 1 and 5. Once the definitions of

variable “a” are collected, all uses of variable “a” are identified and stored in the map. In this

case, the uses for variable “a” are statements 3, 5, and 7 for all the three versions.

Next, for variable “a”, all definition-use statements are gathered from the new version’s

PDG and then compared with all the definition-use statements gathered from the old version (v0

with v1 and v1 with v2). In this example, the definition-use statements for variable “a” on the

new regression path for both version pairs are 1, 3, 5, and 7. Now, it can be seen that statement 5

in the old version (v0.php) is different from the new version (v1.php). The constraints for

variable “a” cannot be reused for generating input values for version v1. However, for the next

version pair, v1-v2, the statements that define and use variable “a” are identical, so in this case,

the constraints for variable “a,” including the input value for variable “a” can be reused.

Table 2. Test Path

Version Test Path

v0 {1, 2, 3, 4, 5, 7, 8, 9, 11, 12}

v1 {1, 2, 3, 4, 5, 7, 8, 9, 11, 12}

v2 {1, 2, 3, 4, 5, 7, 8, 10, 11, 12}

Table 3. Constraints

v0 v1 v2

$a < 12
$a − 1 > 7
$b == 5

$a < 12
$a − 3 > 7
$b == 5

$a < 12
$a − 3 > 7

$b − 1 == 5

14

For variable “b,” the definition-use statements on the new regression path are 2, 4, and 8

for the version pair v0-v1. For this version pair, the statements that define and use variable “b”

are identical, thus constraints for variable “b,” including input values for variable “b,” can be

reused for regression test path execution of v1. For the next version pair, v1-v2, the definition-

use statements on the new regression path are 2, 4, 8 and 10. The statements that define and use

variable “b” are not identical for this version pair, constraints for variable “b,” including input

values for variable “b,” cannot be reused for regression test path execution of v2.

15

CHAPTER 4. EMPIRICAL STUDY

The goal of the proposed approach is to reduce the overall effort for generating test cases

by reusing input values. To assess the approach, the following research question was considered.

RQ: Can the approach be efficient in reducing efforts to generate new test cases during

regression testing?

To address the research question, an empirical study is designed and performed. The

following subchapters describe the objects of analysis, independent variables, dependent

variables and measures, study setup and design, and threats to validity, and present data and

analysis.

4.1. Objects of Analysis

Five open source web applications written in PHP are used as objects of analysis for this

study; the applications were obtained from different source code repository such as SourceForge.

The applications are described below.

osCommerce [7] (open source Commerce) is a web based store-management and

shopping cart application. FAQForge [8] is a web application used to create FAQ (frequently

asked questions) documents, manuals, and HOWTOs. Three versions are used for both

osCommerce and FAQForge.

phpScheduleIt [29] is a web application that attempts to solve the problem of scheduling

and managing resource utilization. It provides a permission-based calendar that allows users to

self-register and to reserve resources and tools to manage those reservations. Some typical

applications are scheduling a conference room, equipment, or work shift etc. Four versions of

this object program are used for the experiment.

16

Mambo [30] is a content management system that can be used for everything from simple

websites to complex corporate applications. It is used worldwide to power government portals,

corporate intranets and extranets, ecommerce sites, and nonprofit outreach, school, church, and

community sites. Seven versions of this object program are used for the experiment.

The last application we used is Mantis [31], a web-based bug tracking system. Mantis

supports multiple DBMS, such as the MySQL, MS SQL, and PostgreSQL databases, and works

on multiple platforms. It provides various bug tracking functionalities, including change log

support, source control integration, and time tracking. Due to its complicated functionalities,

Mantis is the largest one among the applications with which the experiment was done. (The latest

version is over 200KLOC.) For this object program, eight versions were used to conduct the

experiment.

All these object programs are real, non-trivial web applications that have been utilized by

a large number of users.

Table 4 shows the list of the objects, their associated “Version,” “Lines of Code,” and

“No. of Files.” The lines of code count in this table include both PHP code and HTML markups.

PDG construction includes HTML markups in the form of PHP echo statement for change

analysis.

17

Table 4. Objects of Analysis

Application Version Lines of Code No. of Files

FAQForge 1.3.0 1806 20

1.3.1 1837 20

1.3.2 1671 18

osCommerce 2.2MS1 53510 302

2.2MS2 68330 506

2.2MS2-060817 78892 502

Mambo 4.5.5 149868 703

4.5.6 150967 719

4.6.1 127309 771

4.6.2 129235 659

4.6.3 130716 654

4.6.4 133420 663

4.6.5 133475 663

Mantis 1.1.6 139124 496

1.1.7 139196 496

1.1.8 139194 496

1.2.0 206150 748

1.2.1 206492 747

1.2.2 207123 746

1.2.3 209104 753

1.2.4 209345 753

phpScheduleIt 1.0.0 35045 90

1.1.0 59753 143

1.2.0 63138 178

1.2.12 72396 192

18

4.2. Variables and Measures

4.2.1. Independent Variables

The empirical study manipulated one independent variable, test input generation

technique. One control technique and one heuristic technique are considered.

The control technique (the original PARTE approach) generates executable test cases

without utilizing reusable input constraint values. This technique serves as an experimental

control. The heuristic technique generates executable test cases utilizing reusable input constraint

values by analyzing program dependence graphs and definitions/uses information for the

reusable variables explained in earlier chapters.

4.2.2. Dependent Variable and Measures

The dependent variable is the number of reusable input values identified by the technique

and the percentage of reusable input values over the total number of input values.

4.3. Experiment Setup

The experiment was setup using a virtual machine on multiple hosts. The collected data is

not associated with time because different virtual machine hosts with different performance

capabilities were used. The operating system for the virtual machine was Ubuntu Linux version

10.10. The server ran Apache as its HTTP server and MySQL as its database backend. PHP

version 5.2.13 and Zend engine v2.2.0 were used.

The tool was written in Java, and the Oracle/Sun JRE and JDK version 6 were used as the

development and execution platforms. PHC version 0.2.0.3 was used to parse the PHP files. Perl

and Bash scripts were used to control the modules and to pass data throughout the tool chain. A

tool chain automation script from PARTE is modified to accommodate the reuse module in the

existing framework.

19

The total number of input values required for the set of new paths and the number of

reusable input values were collected to calculate the percentage of reusable input values. The

percentage of Reuse is calculated over Total.

4.4. Threats to Validity

In this chapter, the internal and external threats to the validity of the study are described.

Also, the approaches that are used to limit the effects of these threats are described.

4.4.1. Internal Validity

The inferences that are made about the efficiency of the approach could have been

affected by the following factors. (1) The methodology is dependent on program dependence

graphs generated in the earlier phase of PARTE. The result is directly related to the proper

generation of the PDGs. To avoid any issue with the PDG generator, the tool has been

thoroughly examined and any existing inconsistencies are removed. (2) Partial matching for

statement values of a particular variable sometimes becomes tricky for complex expression.

However, different scenarios have been handled to avoid any discrepancy with partial matching.

4.4.2. External Validity

Several open source web applications are used for the study, so these programs are not

representative of the applications used in practice. However, this threat is minimized by using

multiple non-trivial sized web applications that have been utilized by many people.

Initially only two object programs were used to conduct empirical analysis. But, to

address this threat more rigorously, additional experiments have been performed by adding three

more in the object program pool.

20

CHAPTER 5. DATA AND ANALYSIS

In this chapter, the results of the study and data analyses are presented considering the

research question. Further implications of the data and results are discussed in Chapter 6. The

research question considers whether the approach can be efficient in reducing efforts to generate

new test cases during regression testing. To answer this question, the results collected with and

without using reusable input values are compared. Three sets of data are gathered: (1) the total

number of input values that are required to execute new test paths, (2) the number of reusable

input values, and (3) the percentage for the number of reusable input values over the number of

all input values.

Before discussing the result of input values, an overview of how many test paths are

required to test modified versions of the applications is provided in Table 5. For the latest

version of FAQForge, a total of 73 test paths are required, and in case of osCommerce, a total of

2409 test paths are required when code changes are not considered. Although, the number of test

paths are significantly reduced by considering only the areas affected by code changes, still a

large number of test paths are required to regression test (e.g., for the version 2.2MS2 of

osCommerce, 1719 paths are needed.)

Table 6 summarizes the data gathered from running my technique on FAQForge and

osCommerce. The table lists, for each application, the “Version Pair” (two versions of the

application analyzed), “Total Input Values” (the total number of input values are required for

executable new test paths), and “Reusable Input Values” (the number of reusable input values).

Table 7 shows the percentage of input values that can be reused over the control technique. The

data is shown in version pair because regression testing starts from the second release of the

application.

21

Table 5. Total Number of Paths and Regression Paths

Application Version
Total Number of

Paths

Regression Paths
(Number of Paths for

Code Changes)
FAQForge 1.3.1 73 5

1.3.2 73 19

osCommerce 2.2MS2 2403 1719

2.2MS2-060817 2409 58

Mambo 4.5.6 1357 65

4.6.1 1388 527

4.6.2 1416 236

4.6.3 1409 92

4.6.4 1444 114

4.6.5 1444 20

Mantis 1.1.7 3482 221

1.1.8 3482 185

1.2.0 4345 2802

1.2.1 4373 166

1.2.2 4389 106

1.2.3 4403 103

1.2.4 4419 199

phpScheduleIt 1.1.0 481 338

1.2.0 518 314

1.2.12 529 154

22

5.1. Results for FAQForge

For the version pair 1.3.0 and 1.3.1 of FAQForge, the total number of required input

variables is 25. Among 25 total input values, 19 input values are reusable. For FAQForge, the

size of the application is relatively small (i.e. 1671 lines of code and 18 files for the latest

version) compared to other object programs of the experiment. The changes between versions

were also very small; therefore the number of input values required for the new paths are

relatively small, and this result is not surprising.

Figure 4. FAQForge Input Values Comparison

By inspecting the files in FAQForge, it is found that only one of the files in version 1.3.1

is changed from version 1.3.0. The changed file is a library file that contained functions included

by the main index file. During path generation, no library files were directly analyzed. Instead,

the path generator analyzed files that the user would execute directly.

For the second pair of FAQForge (versions 1.3.1 and 1.3.2), unlike the first version pair,

this pair had many changes in the source files and produced a high number of paths as well as a

high number of input values. The total numbers of input values was 210, and among those only

0

50

100

150

200

250

1.3.0-1.3.1 1.3.1-1.3.2

N
um

be
r o

f I
np

ut
 V

al
ue

s

Version Pair

FAQForge

Total Input Values Reusable Input Values

23

15 input values were reusable. Manual inspection of the source files revealed that 12 files

changed for this version pair, which explains the higher number of input values than the first

version pair.

Figure 5. FAQForge Reuse Rates

To understand the low number of reusability, differences of the two version of PDG are

reviewed. It is found that most of the changes in the source files are simple output statements that

have no data dependencies. A common example in PHP would be to echo or print static HTML

statements. If the static text changed, the statement was marked as a difference. For these files,

the PHP variables were not affected by changes, and as a result, numbers of reusable variables

were significantly low.

As shown in Table 7, the technique required a relatively small number of test input values

compared to the control technique. The technique was able to reuse input values by 76% and 7%

for versions 1.3.1 and 1.3.2, respectively.

0%
10%
20%
30%
40%
50%
60%
70%
80%

1.3.0-1.3.1 1.3.1-1.3.2

Pe
rc

en
ta

ge

Version Pair

FAQForge

Reuse Rate

24

Table 6. The Number of Input Values (Total vs. Reusable)

Application Version Pair Total Input Values Reusable Input

ValuesFAQForge 1.3.0 & 1.3.1 25 19

1.3.1 & 1.3.2 210 15

osCommerce 2.2MS1 & 2.2MS2 4392 702

2.2MS2 & 2.2MS2-
060817

813 219

Mambo 4.5.5 & 4.5.6 490 294

4.5.6 & 4.6.1 4446 67

4.6.1 & 4.6.2 2075 536

4.6.2 & 4.6.3 1236 250

4.6.3 & 4.6.4 1567 191

4.6.4 & 4.6.5 324 57

Mantis 1.1.6 & 1.1.7 1524 708

1.1.7 & 1.1.8 1238 662

1.1.8 & 1.2.0 20425 195

1.2.0 & 1.2.1 1772 558

1.2.1 & 1.2.2 1042 296

1.2.2 & 1.2.3 890 267

1.2.3 & 1.2.4 2643 263

phpScheduleIt 1.0.0 & 1.1.0 2389 280

1.1.0 & 1.2.0 3877 472

1.2.0 & 1.2.12 2339 861

25

Table 7. Input Values Reuse Rates

Application Version Pair Reuse rate

FAQForge 1.3.0 & 1.3.1 76%

1.3.1 & 1.3.2 7%

osCommerce 2.2MS1 & 2.2MS2 16%

2.2MS2 & 2.2MS2-060817 27%

Mambo 4.5.5 & 4.5.6 60%

4.5.6 & 4.6.1 2%

4.6.1 & 4.6.2 26%

4.6.2 & 4.6.3 20%

4.6.3 & 4.6.4 12%

4.6.4 & 4.6.5 18%

Mantis 1.1.6 & 1.1.7 46%

1.1.7 & 1.1.8 53%

1.1.8 & 1.2.0 1%

1.2.0 & 1.2.1 31%

1.2.1 & 1.2.2 28%

1.2.2 & 1.2.3 30%

1.2.3 & 1.2.4 10%

phpScheduleIt 1.0.0 & 1.1.0 12%

1.1.0 & 1.2.0 12%

1.2.0 & 1.2.12 37%

26

5.2. Results for osCommerce

For osCommerce, the number of source files is large compared to FAQForge. From the

manual inspection of the source for the first pair (versions 2.2MS1 and 2.2MS2), it was found

that 279 of the 506 files had changed. The modified files were in every module of the

application, and the files with the largest differences were the library files that were included in

the executable files.

Figure 6. osCommerce Input Values Comparison

For the first version pair of osCommerce, 4392 input values need to be solved to execute

all the regression test paths. Among these values, 702 were reusable for regression testing the

new version of source code.

For the second version pair (2.2MS2-2.2MS2-060817), the manual inspection showed

that 105 of the 502 files had changed. The number of changed files was smaller than the first

version pair. For this pair, a total of 813 input values needed to be solved to execute all the

regression test paths. Among these values, 219 were reusable for regression testing of the new

version of source code.

0

1000

2000

3000

4000

5000

2.2MS1-2.2MS2 2.2MS2-2.2MS2-060817

N
um

be
r o

f I
np

ut
 V

al
ue

s

Version Pair

osCommerce

Total Input Values Reusable Input Values

27

Considering the number of files that were changed for both versions (279 of 506 for

version 2.2MS2 and 105 of 502 for version 2.2MS2-060817), the number of required input

values was relatively small (4392 for version 2.2MS2 and 813 for version 2.2MS2-060817). The

reason for this is that there were numerous changes in statements that contained no variables.

Similar to the results for FAQForge, the heuristic technique required a relatively small

number of test input values compared to the control technique (Table 7). The technique was able

to reuse input values by 16% and 27% for versions 2.2MS2 and 2.2MS2-060817, respectively.

Figure 7. osCommerce Reuse Rates

The result also indicates an important fact that the heuristic technique of this research is

more efficient than the control technique if applied on two version pairs with few changes

between them. That means, if new version of an object program contains small patch or bug fix

from the previous version, the regression test would benefit more using constraint reuse

technique.

0%

5%

10%

15%

20%

25%

30%

2.2MS1-2.2MS2 2.2MS2-2.2MS2-060817

Pe
rc

en
ta

ge

Version Pair

osCommerce

Reuse Rate

28

5.3. Results for Mambo

The experiment is run on a total of six version pairs and a varying result for different

version pairs of Mambo is found. Among those six version pairs, the version pair 4.5.6 - 4.6.1

contains the most number of changes. The release note of version 4.6.1 also mentions that

version 4.6.1 is a major update with lots of feature changes and bug fixes. The high amount of

changes reduced the reusability significantly for the version pair. Only 2% of the variables are

reusable to the new version.

Figure 8. Mambo Input Values Comparison

Other version pairs also contained a lot of changes from previous version. In fact, none of

the versions can actually be treated as a small patch update or small bug fixes.

The first version pair 4.5.5 & 4.5.6 has the most efficient reusability count with 60% of

the input variable values reusable for the new version. The changes were lower compared to

other version pairs which justifies the high number of reusability.

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

4.5.5-4.5.6 4.5.6-4.6.1 4.6.1-4.6.2 4.6.2-4.6.3 4.6.3-4.6.4 4.6.4-4.6.5

N
um

be
r o

f I
np

ut
 V

al
ue

s

Version Pair

Mambo

Total Input Values Reusable Input Values

29

The rest of the version pairs produced on average 19% reusable input variables which

indicate a good amount of savings for regression test. The results again prove the fact that

version pairs with small patch update or bug fix can gain efficiency by using this heuristic

technique.

Figure 9. Mambo Reuse Rates

5.4. Results for Mantis

The highest number of version pairs is used for Mantis in this experiment. Seven version

pairs of Mantis provided a good picture of benefit from the reusability data. Most of the version

pairs showed significant reusability.

0%

10%

20%

30%

40%

50%

60%

70%

4.5.5-4.5.6 4.5.6-4.6.1 4.6.1-4.6.2 4.6.2-4.6.3 4.6.3-4.6.4 4.6.4-4.6.5

Pe
rc

en
ta

ge

Version Pair

Mambo

Reuse Rate

30

Figure 10. Mantis Input Values Comparison

Version pair 1.1.8 & 1.2.0 showed very low percentage of reusability. Only 1% of the

input variable values were reusable for regression test path generation of version 1.2.0. Analysis

of the source code for the two versions revealed that a large number of files contained changes

from version 1.1.8 to version 1.2.0. Also, the release note of version 1.2.0 mentioned a lot of

feature changes and bug fixes. Version 1.2.0 was a major update for Mantis. This resulted paths

which are a lot different from the previous version as well as low number of reusable variables.

Other version pairs showed on average 33% reusability, which indicates a significant

effort reduction in constraint resolution as well as regression testing. Two of the version pairs

1.1.6 - 1.1.7 and 1.1.7 – 1.1.8 had nearly 50% of the input variables reusable from the previous

version pairs.

0

5000

10000

15000

20000

25000

1.1.6-1.1.7 1.1.7-1.1.8 1.1.8-1.2.0 1.2.0-1.2.1 1.2.1-1.2.2 1.2.2-1.2.3 1.2.3-1.2.4

N
um

be
r o

f I
np

ut
 V

al
ue

s

Version Pair

Mantis

Total Input Values Reusable Input Values

31

Figure 11. Mantis Reuse Rates

The reusability data also revealed similar observation of other object programs. Version

pairs with small patch update or bug fix can gain efficiency by using the heuristic technique.

5.5. Results for phpScheduleIt

Three version pairs are used for phpScheduleIt in this experiment. The results showed

lower reusability for the object program. First two version pairs showed an average 12%

reusability while the last version pair showed a good reusability result of 37%.

0%

10%

20%

30%

40%

50%

60%

1.1.6-1.1.7 1.1.7-1.1.8 1.1.8-1.2.0 1.2.0-1.2.1 1.2.1-1.2.2 1.2.2-1.2.3 1.2.3-1.2.4

Pe
rc

en
ta

ge

Version Pair

Mantis

Reuse Rate

32

Figure 12. phpScheduleIt Input Values Comparison

To investigate the result, the source code of the first two version pairs is reviewed. It is

found that update from 1.0.0 to 1.1.0 and 1.1.0 to 1.2.0 involved large functionality change and

bug fixes. Generated paths for those version pairs were mostly incompatible. As a result, a small

number of variables are found to be eligible for reuse.

Figure 13. phpScheduleIt Reuse Rates

0
500

1000
1500
2000
2500
3000
3500
4000
4500

1.0.0-1.1.0 1.1.0-1.2.0 1.2.0-1.2.12

N
um

be
r o

f I
np

ut
 V

al
ue

s

Version Pair

phpScheduleIt

Total Input Values Reusable Input Values

0%
5%

10%
15%
20%
25%
30%
35%
40%

1.0.0-1.1.0 1.1.0-1.2.0 1.2.0-1.2.12

Pe
rc

en
ta

ge

Version Pair

phpScheduleIt

Reuse Rate

33

The final version pair (1.2.0 – 1.2.12) has good reusability percentage (i.e. 37%). When

the source code for the two versions is reviewed, only a few source code files are found to be

changed. The release note of version 1.2.12 also confirmed that the update from 1.2.0 to 1.2.12

was for minor patching and few bug fixes.

Similar to other object programs, phpScheduleIt indicates the fact that version pairs with

small patch update or bug fix can gain more efficiency by using the heuristic technique.

34

CHAPTER 6. DISCUSSION

The experiment results strongly suggest that input variable value reuse for regression test

cases can save a significant amount of time and effort during regression testing. As observed

from the data analysis, the reuse rates of input values with the approach over the control

technique (original PARTE approach) are significantly high for most of the version pairs of the

applications. For some of the version pairs, the reuse rates were exceptionally high. The first

version pair (1.3.0 - 1.3.1) for FAQForge yielded a 76% reuse rate, and the version pair (4.5.5 -

4.5.6) for Mambo yielded 60%. Also, two version pairs of Mantis (1.1.6 - 1.1.7 and 1.1.7 - 1.1.8)

showed reuse rates of 46% and 53%.

As PARTE requires actual input values to create executable test cases, reusing some of

the input values can reduce regression testing time significantly, and this means a short turn-

around time in releasing patches can be achieved. For instance, in the case of osCommerce, the

number of test paths generated using program slice information was 1719 for version 2.2MS2.

For those test paths, it was learned from previous study [1] that a large number of constraints

were not solvable by automatic resolvers. Instead, many input values had to be resolved

manually, and it was a time consuming process. The approach that facilitates constraint reuse

allowed a significant reduction of efforts during the constraint resolution process.

It was also observed that there is a relationship of reuse rate with the number of changes

in the version pair. For FAQForge, the approach identified more reusable input values from the

first version pair than the second version pair. Manual inspection of the source files for the

versions revealed that there are fewer changes in the first version pair than in the second version

pair. Similarly, for osCommerce, more reusable input values were identified in the second

version pair than the first version pair. It was revealed by inspection that the number of changed

35

files was fewer in the second version pair than the first version pair. The data collected from the

rest of the object programs also showed the similar behavior.

The type of changes between the versions can impact the reuse rate. Experiment results

on Mambo, Mantis and phpScheduleIt demonstrate this impact. Versions 4.5.5 and 4.5.6 of

Mambo has a reuse rate of 60%. A manual review of the change history showed that there were

only minor bug fixes between the two versions. Whereas, versions 4.5.6 and 4.6.1 had significant

code changes that lead to a drop in reuse rate to 2%. In case of Mantis, a total of 149 changes

were found between versions 1.2.0 and 1.1.8. These changes include bug fixes and introduction

of new features. This produced new test paths, and dropped constraint reuse rate to 1%. The

changes between versions 1.1.6 and 1.1.7 were due to 18 bug fixes. No new source code or

resource files were added. Hence the constraint reuse rate was relatively higher at 46%. In

phpScheduleIt, the changes from version 1.2.0 to 1.2.12 were related to language support and

several minor bug fixes. Whereas, among versions 1.0.0, 1.1.0 and 1.2.0 there were new features

along with bug fixes. For example, 1.1.0 introduced support for multiple day reservations and

1.2.0 allows additional resources to be added to an existing reservation.

These observations clearly state the fact that object program versions with fewer changes

or changes introduced in small patches are more beneficial in reducing test case generation costs

than versions with a large number of changes. In general, irrespective of the number of changes

in program source code, reusing constraints reduced the new test case generation effort by a

significant amount.

To our knowledge, this study is the first attempt to investigate the reusability of variable

constraints and their input values. The proposed approach produced promising results and the

36

findings from the study provide an insight about how reusable constraint values can be utilized

during the testing and regression testing process.

37

CHAPTER 7. CONCLUSION

In this thesis, a technique is presented that identifies reusable constraint values for

regression test cases by analyzing definitions and uses of the variables for two consecutive

versions. To evaluate the approach, an experiment was conducted using five open source web

applications (small and large), and the results showed a large number of constraints input values

which can be reused from the previous version’s test cases. Thus it can reduce a significant

amount of effort for resolving constraint values for those variables when new versions of the

application is tested.

Further, the constraints and actual values for variables can be reusable across several

versions as long as the definitions and uses relationships of the variables hold across versions.

This means that greater savings can be expected as the applications evolve over time.

While the approach can reduce the amount of time needed to apply regression testing for

patched web application software, it can also reduce the time and effort as well as improve

testing effectiveness when the major releases are tested because new test cases and other

associated artifacts accumulate over time. Also, by combining the approach with automatic

resolution using constraint solvers (for instance, feeding initial input values to the solvers by

analyzing existing executable test cases), regression testing processes can be accelerated even

faster.

The results of the studies suggest some future work. Five widely used open source web

applications with three or more versions were used to evaluate this approach. While the

experiment results are promising, the approach observed only version pairs and did not observe

the effect of reuse propagation with groups of version pairs. Also, for some object programs the

experiment was run on small number of versions. This means that the experiment results

38

obtained in this study do not sufficiently capture possible benefits and factors related to the long-

term utilization of the technique. Certainly, it is believed that the approach would provide greater

benefits when applied over a long period time. It would be interesting to examine whether certain

variables are more sustainable over several version changes and to investigate plausible reasons

(e.g., certain usage patterns associated with the variables).

Additional studies can be performed that apply the approach to a wider population (e.g.,

larger open source applications and industrial-size applications) with different testing processes

(e.g., constraints imposed by an industry’s regression testing practice).

Further, in this work, existing test cases were utilized to extract reusable variables, their

constraints, and their input values, but the actual existing test cases were not used for testing the

new version of the program (in this context, test case selection). However, by reusing the

existing test cases when we test the modified program, additional savings can be achieved. Thus,

there is a future plan to investigate test case selection approaches that choose test cases that

exercise the modified areas of code to help reduce the cost of generating new tests.

39

REFERENCES

[1] A. Marback, H. Do, and N. Ehresmann, “An effective regression testing approach for php

web applications,” International Conference on Software Testing, Verification and Validation,

Apr. 2012, pp. 221–230.

[2] P. Hooimeijer and W. Weimer, “Solving string constraints lazily,” IEEE and ACM

International Conference on Automated Software Engineering, Sep. 2010, pp. 377–386.

[3] A. Kiezun, P. Guo, K. Jayaraman, and M. Ernst, “Automatic creation of SQL injection and

cross-site scripting attacks,” International Conference on Software Engineering, May 2009, pp.

199–209.

[4] phc, “phc - the open source php compiler,” http://www.phpcompiler.org/.

[5] A. Kiezun, V. Ganesh, P. Guo, P. Hooimeijer, and M. Ernst, “Hampi: a solver for string

constraints,” International Conference on Software Testing and Analysis, Jul. 2009, pp. 105–115.

[6] Choco, “Choco solver website,” http://www.emn.fr/z-info/choco-solver/.

[7] osCommerce, “osCommerce website,” http://www.oscommerce.com/.

[8] FAQforge, “FAQforge website,” http://sourceforge.net/projects/faqforge/.

[9] S. Elbaum, A.G. Malishevsky, and G. Rothermel, “Test case prioritization: A family of

empirical studies,” IEEE Transactions on Software Engineering, Feb. 2002, vol. 28, no. 2, pp.

159–182.

[10] G. Rothermel and M.J. Harrold, “A safe, efficient regression test selection technique,” ACM

Transactions on Software Engineering and Methodology, Apr. 1997, vol. 6, no. 2, pp. 173–210.

[11] A. Walcott, M.L. Soffa, G.M. Kapfhammer, and R.S. Roos, “Time-aware test suite

prioritization,” International Conference on Software Testing and Analysis, Jul. 2006, pp. 1–12.

40

[12] S. Yoo and M. Harman, “Pareto efficient multi-objective test case selection,” International

Conference on Software Testing and Analysis, Jul. 2007, pp. 140–150.

[13] T. Apiwattanapong, R. Santelices, P.K. Chittimalli, A. Orso, and M.J. Harrold, “MATRIX:

Maintenance-oriented testing requirements identifier and examiner,” Academic and Industrial

Conference - Practice And Research Techniques, Aug. 2006, pp. 137–146.

[14] R. Santelices and M.J. Harrold, “Applying aggressive propagation-based strategies for

testing changes,” International Conference on Software Testing, Verification and Validation,

Apr. 2011, pp. 11–20.

[15] Z. Xu, Y. Kim, M. Kim, G. Rothermel, and M. Cohen, “Directed test suite augmentation:

Techniques and tradeoffs,” ACM SIGSOFT Symposium on Foundations of Software Engineering,

Nov. 2010, pp. 257–266.

[16] Z. Xu, Y. Kim, M. Kim, and G. Rothermel, “A hybrid directed test suite augmentation

technique,” International Symposium on Software Reliability Engineering, Nov. 2011, pp. 150–

159.

[17] K. Taneja, T. Xie, N. Tillmann, and J. Halleux, “eXpress: Guided path exploration for

efficient regression test generation,” International Conference on Software Testing and Analysis,

Jul. 2011, pp. 1–11.

[18] Y. Chen, R. Probert, and H. Ural, “Model-based regression test suite generation using

dependence analysis,” International Workshop on Advances in Model-Based Testing, Jul. 2007,

pp. 54–62.

[19] G. Wassermann, D. Yu, A. Chander, D. Dhurjati, H. Inamura, and Z. Su, “Dynamic test

input generation for web applications,” International Symposium on Software Testing and

Analysis, Jul. 2008, pp. 249–260.

41

[20] S. Artzi, J. Dolby, F. Tip, and M. Pistoia, “Practical fault localization for dynamic web

applications,” International Conference on Software Engineering, May. 2010, pp. 265–274.

[21] F. Ricca and P. Tonella, “Analysis and testing of web applications,” International

Conference on Software Engineering, May. 2001, pp. 25–34.

[22] Y. Deng, P. Frankl, and J. Wang, “Testing web database applications,” ACM SIGSOFT

Software Engineering Notes, 2004, vol. 29, no. 5, pp. 1–10.

[23] W. Halfond, S. Anand, and A. Orso, “Precise interface identification to improve testing and

analysis of web applications,” International Conference on Software Testing and Analysis, Jul.

2009, pp. 285–296.

[24] K. Dobolyi and W. Weimer, “Harnessing web-based application similarities to aid in

regression testing,” International Symposium on Software Reliability Engineering, Nov. 2009,

pp. 71–80.

[25] S. Elbaum, S. Karre, and G. Rothermel, “Improving web application testing with user

session data,” International Conference on Software Engineering, May. 2003, pp. 49–59.

[26] N. Klarlund, “Mona Fido: The logic-automaton connection in practice,” Conference on

Computer Science Logic, Aug. 1997, pp. 311–326.

[27] M. Emmi, R. Majumdar, and K. Sen, “Dynamic test input generation for database

applications,” International Symposium on Software Testing and Analysis, Jul. 2007, pp. 151–

162.

[28] G. Wassermann and Z. Su, “Sound and precise analysis of web applications for injection

vulnerabilities,” ACM SIGPLAN conference on Programming language design and

implementation, Jun. 2007, pp. 32–41.

[29] phpScheduleIt, “phpScheduleIt website,” http://www.php.brickhost.com/.

42

[30] Mambo, “Mambo website,” http://www.mamboserver.com/.

[31] Mantis, “Mantis website,” http://www.mantisbt.org/.

[32] N. Alshahwan and M. Harman, “Augmenting test suites effectiveness by increasing output

diversity,” International Conference on Software Engineering, Jun. 2012, pp. 1345–1348.

[33] K. Rubinov and J. Wuttke, “Augmenting test suites automatically,” International

Conference on Software Engineering, Jun. 2012, pp. 1433–1434.

