
TOWARDS TEST FOCUS SELECTION FOR INTEGRATION TESTING

USING SOFTWARE METRICS

A Dissertation

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Shadi Elaiyan Bani Ta’an

In Partial Fulfillment of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

Major Department:

Computer Science

April 2013

Fargo, North Dakota

 North Dakota State University
 Graduate School

 Title

TOWARDS TEST FOCUS SELECTION FOR INTEGRATION

TESTING USING SOFTWARE METRICS

 By

Shadi Elaiyan Bani Ta’an

The Supervisory Committee certifies that this disquisition complies

with North Dakota State University’s regulations and meets the

accepted standards for the degree of

DOCTOR OF PHILOSOPHY

SUPERVISORY COMMITTEE:

Dr. Kenneth Magel

Chair

Dr. Kendal Nygard

Dr. Jim Coykendall

Dr. Jun Kong

Dr. Gursimran Walia

Approved:

4/4/2013

Dr. Brian Slator

Date

Department Chair

ABSTRACT

Object-oriented software systems contain a large number of modules which make the

unit testing, integration testing, and system testing very difficult and challenging. While the

aim of the unit testing is to show that individual modules are working properly and the aim

of the system testing is to determine whether the whole system meets its specifications, the

aim of integration testing is to uncover errors in the interactions between system modules.

Correct functioning of object-oriented software depends upon the successful integration

of classes. While individual classes may function correctly, several faults can arise when

these classes are integrated together. However, it is generally impossible to test all the

connections between modules because of time and cost constraints. Thus, it is important to

focus the testing on the connections presumed to be more error-prone.

The general goal of this research is to let testers know where in a software system to

focus when they perform integration testing to save time and resources. In this work, we

propose a new approach to predict and rank error-prone connections in object-oriented

systems. We define method level metrics that can be used for test focus selection in

integration testing. In addition, we build a tool which calculates the metrics automatically.

We performed experiments on several Java applications taken from different domains. Both

error seeding technique and mutation testing were used for evaluation. The experimental

results showed that our approach is very effective for selecting the test focus in integration

testing.

iii

ACKNOWLEDGMENTS

I sincerely thank Allah, my God, the Most Gracious, the Most Merciful for enlightening

my mind, making me understand, giving me confidence to pursue my doctoral studies at

North Dakota State University, and surrounding me by wonderful friends and family. I

would like to take this opportunity to thank them.

I would like to express my sincere thanks, gratitude and deep appreciation for Dr.

Kenneth Magel, my major advisor, for his excellent guidance, caring, assistance in every

step I went through and providing me with an excellent atmosphere for doing research.

He is a real mentor, always available, and very inspirational. Throughout my studies, he

provided encouragement, sound advice, good teaching, and lots of good ideas. I would

like to thank Dr. Kendall Nygard, my co-advisor, for his continuous support and insightful

suggestions.

I would like to thank the members of my dissertation committee, Dr. James Coykendall,

Dr. Jun Kong, and Dr. Gurisimran Walia for generously offering their precious time,

valuable suggestions, and good will throughout my doctoral tenure.

I cannot forget to mention my wonderful colleagues and friends; they not only gave

me a lot of support but also made my long journey much more pleasant. Thanks to Ibrahim

Aljarah, Qasem Obeidat, Mohammad Okour, Raed Seetan, and Talal Almeelbi. Special

thanks to my wonderful friend, Mamdouh Alenezi, for providing encouragement, caring

and great company.

My special and deepest appreciations go out to my family members to whom I owe

so much. I thank my beloved parents for their love, prayers, and unconditional support not

iv

only throughout my doctoral program but also throughout my entire life. You are wonderful

parents and I could never, ever have finished this dissertation without you.

Shadi Bani Ta’an

December 2012

v

TABLE OF CONTENTS

ABSTRACT . iii

ACKNOWLEDGMENTS . iv

LIST OF TABLES . vii

LIST OF FIGURES . viii

CHAPTER 1. INTRODUCTION . 1

CHAPTER 2. LITERATURE REVIEW . 8

CHAPTER 3. THE PROPOSED APPROACH . 30

CHAPTER 4. EXPERIMENTAL EVALUATION . 48

CHAPTER 5. CONCLUSION AND FUTURE WORK . 76

REFERENCES . 80

APPENDIX. SMIT SOURCE CODE . 86

vi

LIST OF TABLES

Table Page

1. The number of test cases needed to test class pairs. 40

2. The number of test cases needed to test method pairs. 41

3. A summary of the selected applications. 48

4. Error seeding results of the PureMVC application. 60

5. Mutation testing results of the PureMVC application. 61

6. Error seeding results of the Cinema application. 61

7. Mutation testing results of the Cinema application. 61

8. Error seeding results of the ApacheCLI application. 62

9. Mutation testing results of the ApacheCLI application. 62

10. Error seeding results of the Pacman application. 63

11. Error seeding results of the ApacheValidator application. 63

12. Error seeding results of the Monopoly application. 63

13. Mutation testing results of the Monopoly application. 64

14. Number of test cases created for each application. 66

15. The percentage of savings. 69

16. The results of comparing the proposed approach with the baseline approach. 69

vii

LIST OF FIGURES

Figure Page

1. The dependency relationship between component A and component B. 8

2. The ”V” model of software testing. 11

3. An example of coverage criteria. 13

4. An example of top-down strategy. 19

5. An example of bottom-up strategy. 20

6. An example of big-bang strategy. 20

7. An overview of the proposed approach. 30

8. Toy system. 32

9. Dependencies of the toy system. 33

10. Simple Java example that contains two classes MO and RO. 42

11. The coupling dependency graph for the Java example. 43

12. An example of complex input parameter. 43

13. An example of maximum nesting depth. 43

14. An example of computing the ICM metric (ICMm1m2 = 2). 44

15. An example of computing the OCM metric (OCMm1m2 = 1). 44

16. Our testing approach. 44

17. High level description of SMIT tool. 45

18. The dependencies for completeTrade method in the Monopoly application. . 46

19. Run SMIT from command line. 46

viii

20. A screen capture for SMIT output. 46

21. A screen capture for part of the final Report output for PureMVC. 47

22. A toy example of classes and the dependencies between methods. 47

23. Class-pairs for the toy system and their weights. 47

24. The class diagram of Monopoly. 50

25. The class diagram of PureMVC. 51

26. The class diagram of Cinema. 52

27. The class diagram of the ApacheCLI. 53

28. The class diagram of Pacman. 54

29. Part of the class diagram of ApacheValidator. 55

30. The class diagram of JTopas. 56

31. Mutation Operators for Inter-Class Testing. 60

32. Error detection rate for the selected applications. 65

ix

CHAPTER 1. INTRODUCTION

1.1. Background

Software is a fundamental component in many of the devices and the systems that are

available in modern life. It is used to control many critical functions of different machines

such as spaceships, aircrafts, and pacemakers. All of these machines are running software

systems that overly optimistic users assume will never fail. Software failure can cause

serious problems such as loss of human life. In addition, software failure can have a

major impact on economics. For example, software errors cost the United States economy

around 60 billion dollars annually according to a study conducted by the National Institute

of Standards and Technology [64]. Therefore, creating a reliable software system and

increasing the confidence of the correctness of a software system are very important. Even

though there are many methods that can be used to provide assurance that the software

is of high quality and reliability, software testing is the primary method which is used to

evaluate software under development.

Software testing is the process of executing a program or system with the intent of

finding errors [49]. Software testing is very costly. It requires approximately 50% of

software development cost [49]. Much software contains large number of errors. One

reason these errors persist through the software development life cycle is the restriction of

testing resources. These resources are restricted by many factors such as time (e.g., the

software should be delivered in specific time) and cost (e.g., testing the whole software

system requires a large team). Thus, if testing effort can be focused on the parts of a

software system where errors are most likely to occur, then the available resources can be

used more effectively, and the produced software system will be more reliable at lower

cost.

Object-oriented software is a burgeoning form of software. Object-oriented software

systems contain large number of modules which make the unit testing, integration testing,

1

and system testing very difficult and challenging. While the aim of the unit testing is

to show that the individual modules are correct and the aim of the system testing is to

determine whether the whole system meets its specifications, the aim of integration testing

is to test that the interactions between system modules are correct. Correct functioning

of object-oriented software depends upon the successful integration of classes. While

individual classes may function correctly, several new faults can arise when these classes

are integrated together. However, it is usually impossible to test all the connections between

classes. Therefore, it is important to focus the testing on the connections presumed to be

more error-prone.

Errors that happen when integrating two components can be very costly. An example

of one public failure that happened because of disagreement of assumptions was the Mars

Climate Orbiter. In September 1999, the communication with the spacecraft was lost as

the spacecraft went into orbital insertion due to a misunderstanding in the units of measure

used by two modules created by different software groups. One module computed data in

English units of pound-seconds and forwarded the data to a module that expected data in

metric units of Newtonseconds. The Mars Climate Orbiter went out of radio contact when

the spacecraft passed behind Mars 49 seconds earlier than expected, and communication

was never reestablished. This is a very typical integration error, but the error costs millions

of dollars [62].

The goal of this research is to reduce the cost and the time required for integration

testing by ranking the connections between modules and then the test cases are targeted

to test the highly ranked connections. We are aiming to provide testers with an accurate

assessment of which connections are most likely to contain errors, so they can regulate the

testing efforts to target these connections. Our assumption is that using a small number

of test cases to test the highly ranked error-prone connections will detect the maximum

number of integration errors. This work presents an approach to select the test focus in

2

integration testing. It uses method-level software metrics to specify and rank the error-

prone connections between modules of systems under test.

1.2. Motivation

Integration testing is a very important process in software testing. Software testing

cannot be effective without performing integration testing. Around 40% of software errors

are discovered during integration testing [67]. The complexity of integration testing in-

creases as the number of interactions increases. A full integration testing of a large system

may take long time to complete. Integration testing of large software systems consumes

time and resources. Applying the same testing effort to all connections of a system is not

a good approach. An effective approach to reduce time and cost of integration testing is to

focus the testing effort on parts of the program that are more likely to contain errors.

The goal of test focus selection is to select the parts of the system that have to be

tested more widely. The test focus selection is important because of time and budget

constraints. The assumption is that the integration testing process should focus on the

parts of the system that are more error-prone. Several approaches to predict error-prone

components have been proposed by researchers [7, 14, 24]. Though, these approaches

focus only on individual modules. For that reason, they can be used for unit testing but

they cannot be used for integration testing because integration testing tests the connections

between modules. Thus, predicting error-prone connections is necessary for test focus

selection in integration testing. As a result, new approaches for test focus selection in

integration testing are needed. In this work, we present a new approach to predict and rank

error-prone connections in object-oriented systems. We give a weight for each connection

using method level metrics. Then we predict the number of test cases needed to test each

connection. The general goal of this research is to tell testers where in a software system

to focus when they perform integration testing to save time and resources.

3

1.3. Terminology

This section presents a number of terms that are important in software testing and

that will be used in this work. We use definitions of software error, software fault, soft-

ware failure, test case, metric, integration testing, and object-oriented language from IEEE

standard 610.12-1990 [57].

• Software fault: An incorrect step, process, or data definition in a computer program

that can happen at any stage during the software development life cycle. Usually, the

terms ”error” and ”bug” are used to express this meaning. Faults in software system

may cause the system to fail in performing as required.

• Software error: The difference between a computed, observed, or measured value or

condition and the correct value.

• Software failure: The inability of a system or component to perform its required

functions within specified performance requirements.

• Test case: A set of test inputs, execution conditions, and expected results developed

for a particular objective, such as to exercise a particular program path or to verify

compliance with a specific requirement.

• Metric: A quantitative measure of the degree to which a system, component, or

process possesses a given attribute.

• Object-oriented language: A programming language that allows the user to express

a program in terms of objects and messages between those objects such as C++ and

Java.

• Integration testing: Testing in which software components, hardware components, or

both are combined and tested to evaluate the interaction between them.

4

1.4. Problem Statement and Objectives

This dissertation addresses one main problem: How to reduce cost and time required

for integration testing while keeping its effectiveness in revealing errors. We want to test

our hypothesis that the degree of dependency between methods is a good indicator of

the number of integration errors in the interaction between methods. We assume that a

developer usually makes more mistakes if two methods have strong dependencies. We

also assume that developer makes more mistakes if methods are complex. Therefore,

we give a weight for each connection based on both the degree of dependency and the

internal complexity of the methods. In our work, we define method level dependency

metrics to measure the degree of dependency between methods. We are just interested in

computing dependencies between methods that belong to different classes. Dependencies

between methods in the same class may be needed in unit testing but they are not needed

in integration testing.

The objective of this work is to develop a new approach for integration testing that

reduces cost and time of integration testing through reducing the number of test cases

needed while still detecting at least 80% of integration errors. The number of test cases

can be reduced by focusing the testing on the error-prone connections. We want to write

test cases that cover small number of connections while these test cases uncover most of

the integration errors. Integration testing can never recompense for inadequate unit testing.

In our approach, we assume that all of the classes have gone through adequate unit testing.

1.5. Contributions

This dissertation makes the following contributions:

1. Define method-level object-oriented metrics. We define metrics that can be used

for test focus selection in integration testing. Our metrics are defined and selected

according to the following two assumptions: 1) the degree of dependencies between

the two methods that have an interaction are strongly correlated with the number of

5

integration errors between the methods; 2) the internal complexity of the two method

that have an interaction are strongly correlated with the number of integration errors

in the interaction between them. We define four method level dependency metrics

and three method level internal complexity metrics. We also define metrics on both

method-pair and class-pair levels.

2. Build a tool to calculate the metrics automatically. We develop a tool using the R

language to compute the metrics automatically from both the source code and the

byte code. The tool produces four files in CSV format: 1) method level metrics file,

which shows the metrics values for each method in the system under test; 2) method-

pair level metrics file, which shows the metrics values for each method-pair such that

(m1 and m2) is a method-pair if method m1 calls method m2 or vice verse; 3) class-

pair level file, which shows the metrics values for each class-pair such that (c1 and

c2) is a class-pair if any method in class c1 calls any method in class c2 or vice verse.

3. Propose an approach to reduce cost and time of integration testing. We use a combi-

nation of object-oriented metrics to give a weight for each method-pair connection.

Then, we predict the number of test cases needed to test each connection. The

objective is to reduce the number of test cases needed to a large degree while still

detecting at least 80% of integration errors.

4. Conduct an experimental study on several Java applications taken from different

domains. In order to evaluate the proposed approach, we use both error seeding

and mutation analysis techniques.

1.6. Dissertation Outline

The rest of the dissertation is organized as follows: Chapter 2 starts by introducing

some areas that are related to the dissertation and then it discusses related work. Chapter

3 describes the proposed approach. The chapter starts by defining a representation for a

6

software system. Then, it explains the steps of the proposed approach. After that, a section

presents the tool that we developed for implementing the proposed approach. The chapter

ends with a toy example to explain the proposed approach. The experimental evaluation

and discussion are presented in Chapter 4. Chapter 5 concludes the dissertation and talks

about future directions.

7

CHAPTER 2. LITERATURE REVIEW

2.1. Background

This research is related to software dependencies, coupling, software testing, and

integration testing. This section introduces background material of these areas.

2.1.1. Software Dependencies

A dependency is a relationship between two components where changes to one may

have an impact that will require changes to the other [70]. For example, Figure 1 shows

a relationship between two components A and B. We say that component A depends on

component B. We also say that A has outbound dependency and B has inbound depen-

dency. A component is a dependent to another component if it has outbound dependency

on that component. A component is a dependee to another component if it has inbound

dependency from that component. In Figure 1, component A is a dependent and component

B is a dependee.

Figure 1: The dependency relationship between component A and component B.

In general, there are two main types of dependencies according to the dependency

extraction method namely static and dynamic. Static dependencies are extracted from

binary files while dynamic dependencies are extracted during run-time. In our work, we

extract the static dependencies.

Software metrics are quantitative measures of some properties of a part of software.

They are widely used to control the software development and to assess the quality of

software products. Coupling and cohesion are most likely the best known metrics that are

used to measure dependencies. Coupling is used to measure the dependencies between

8

different modules, while cohesion is used to measure the dependencies inside a single

module. Modules are considered highly coupled when there are many connections between

them. A connection is a reference from one module to another. Low coupling and high

cohesion are required to produce a good software system. In this work, we investigate the

use of coupling measures for test focus selection. One reason to use coupling is that high

coupling between two modules increases the connections between them and increases the

chance that a fault in one module affect the other module. Another reason is that faults are

found during integration testing exactly where couplings typically occur [33].

2.1.2. Coupling

Coupling is one of the measures that is used for measuring the performance of soft-

ware at different phases such as design phase. Coupling is defined as the degree to which

each program module depends on the other modules. Low coupling is desired among the

modules of an object-oriented application and it is a sign for a good design. High coupling

may lower the understandability and the maintainability of a software system [33]. There

are twelve ordered coupling levels that are used to assess the complexity of software system

design. It has been found that twelve levels of coupling are not required for testing [33].

For testing, four unordered types are needed. These four coupling types were used to define

coupling-based testing criteria for integration testing. The four types are defined between

pairs of units (A and B) as follows [33].

• Call coupling refers to calls between units (unit A calls unit B or unit B calls unit A)

and there are no parameters, common variable references, or common references to

external media between the two units.

• Parameter coupling refers to all parameter passing.

• Shared data coupling refers to procedures that both refer to the same data objects.

9

• External device coupling refers to procedures that both access the same external

medium.

2.1.3. Software Testing

Software testing is any activity aimed at evaluating an attribute or capability of a

program or system and determining that it meets its required results [30]. The testing

process is divided into several levels to enhance the quality of software testing. Software

testing activities have been categorized into levels. The levels of testing have a hierarchical

structure that builds up from the bottom to the top where higher levels of testing assume

successful completion of the lower levels of testing. Figure 2 shows the ”V” model of

software testing. The levels of testing are described below:

• Unit testing: A unit is the smallest piece of a software system. A unit is presented as

a function or a procedure in a procedural programming language while it is presented

as a method or a class in an object-oriented programming language. Individual units

are tested independently. Unit testing tries to find if the implementation of the unit

satisfies the functional specification. The goal is to identify faults related to logic

and implementation in each unit. If these faults are not detected, they may cause

system failure when running the system. This type of testing is usually performed by

the developers because it requires deep understanding of the functional specification

of the system under test. The developer usually writes test cases to test the system

after he/she finishes the implementation. Unit testing is the lowest testing level. It

is required to be done before integration testing which is required to be done before

system testing and acceptance testing.

• Integration testing: Integration testing assumes that each unit of the system is already

passes through unit testing. At this level, different units are integrated together

to form a working subsystem. Even though units are working individually, they

10

may not work properly when they interact with each other. Therefore, the goal of

integration testing is to ensure that the interactions between system units are correct

and no faults are introduced by the interactions. As in unit testing, integration testing

is usually performed by system developers. Software testing cannot be effective

without performing integration testing. Around 40% of software errors are detected

during integration testing [67].

• System testing: The software system is tested as a whole. It is designed to decide

whether the system meets its specification. System testing is usually performed on

a system test machine while it simulates the end user environment. There are many

types of testing that should be considered when writing test cases to test the system.

Some of these categories are facility testing, volume testing, stress testing, usability

testing, and security testing [49].

• Acceptance testing: The software system is tested to assess it with respect to require-

ments i.e. to be sure that the user is satisfied with the system. Acceptance testing

depends completely on users and therefore it is usually performed by the users in an

environment which is similar to the deployment environment.

DEVELOPMENT TESTING

Requirements

High-level Design

Detailed Design

Coding

System

Integration

Unit

Acceptance

Figure 2: The ”V” model of software testing.

11

It is noteworthy to mention that some researchers use other variations of these levels

in object-oriented software testing. Intra-method testing is used when tests are created for

individual methods. Inter-method testing is used when pairs of methods in the same class

are tested together. Intra-class testing is used when tests are created for a single class and

inter-class testing is used when more than one class is tested at the same time [4].

An important testing level that spans through the testing phase is regression testing.

Regression testing is performed when the system is modified either by adding new compo-

nents during testing or by fixing errors. Regression testing seeks to uncover new software

errors in a system after changes, such as enhancements, have been made to it.

2.1.4. Test Coverage

Test coverage tries to answer questions about when to stop testing or what is the the

amount of testing which is enough for a program. Coverage analysis is used to assure the

quality of the test cases to test a program. Code coverage defines the degree to which the

source code of a program has been exercised by the set of test cases. Many coverage criteria

have been used in the last fifty decades. Some common coverage criteria include:

• Statement coverage: Statement coverage is the basic form of code coverage. A

statement is covered if it is executed. It is also known as line coverage or basic-block

coverage.

• Branch coverage: It ensures that every branch in the source code is executed at least

once by the set of test cases. It is also known as decision coverage.

• Condition/Multiple conditions coverage: Condition coverage requires that each con-

dition be evaluated as true and false at least once by the test cases. Multiple con-

ditions coverage requires that all true-false combinations of simple conditions be

exercised at least once by the set of test cases.

12

Figure 3 shows an example of achieving these coverage criteria. Statement coverage

is achieved by executing only test case (a), branch coverage is achieved by executing test

cases (a) and (b), while condition coverage is achieved by executing test cases (b) and (c).

if (x < y and z == 2) {

 w++;

}

h = 7;

Test cases

(a) x < y, z == 2

(b) x < y, z != 2

(c) x >= y, z == 2

Figure 3: An example of coverage criteria.

2.1.5. Software Testing Techniques

In software testing, there are three categories of testing techniques based on the

source of tests: specifications-based, program-based, and fault-based testing [53]. In this

section, we present these main testing techniques.

• Specification Based Testing: The goal of specification-based testing techniques is to

test the software functionality according to the appropriate requirements [36]. Tests

are derived from software specifications and requirements. It uses descriptions of

software containing specifications, requirements, and designs to derive test cases. It

is called black-box testing because the tests are derived without examining the source

code. Next, we present briefly two specification based techniques: equivalence

partitioning and boundary value analysis.

– Equivalence partitioning: Equivalence partitioning (EP) is a technique that di-

vides the input data of software into partitions of data. Then, test cases can be

derived from these partitions. The idea is to test all the domains of software

instead of selecting part of the domains. Also, similar input domain can be

13

tested once. So, the result of testing any value from a partition is considered to

be representative of the whole partition. As a result, this technique reduces the

total number of test cases that should be developed. One of the main advantages

of this approach is time reduction due to the smaller number of developed test

cases.

– Boundary value analysis: Boundary value analysis (BVA) is a special case of

the equivalence partitioning technique where values that lie at the edge of an

equivalence partition are called boundary values. The idea is that developers

usually make errors near the boundaries of input domains, i.e., errors which

exceed the boundary by one (if a condition is written as x ≤ 100 where it

should be x < 100). In the previous example, a value of 100 is valid where it

should be invalid.

• Program based testing: In program-based testing, tests are derived from the source

code of software. It is also called white-box testing because tests are derived from

the internal structure of software. The aim is to identify input data which covers

the structure of software. Different code coverage measures are used to measure the

degree to which the source code of a program has been tested. There are two main

types of code coverage criteria namely data-flow coverage and control-flow coverage.

Both data-flow and control-flow testing use control flow graphs as test models which

give an abstract representation of the code. Control-flow testing techniques use a

directed control flow graph which represents code segments and their sequencing in

a program. Each node in the graph represents a code segment. An edge between two

nodes represents a conditional transfer of control between the two nodes.

The goal of data-flow testing techniques is to ensure that data dependencies are

correct. It examines how values of data affect the execution of programs e.g., data

values are not available when they are required. Test cases are derived from both

14

flow graph and data dependency analysis. Data-flow testing selects paths to be tested

based on the operations of the program. A def is a data definition (i.e., data creation,

initialization, and assignment). A use is a data use (i.e., data used in computation). A

definition clear (def-clear) path p with respect to a variable y is a path where y is not

defined in the intermediate nodes. Data-flow testing tracks the definition and use of

a variable (def-use pair), in which abnormal actions could happen, during program

execution. Some data flow coverage criteria are described below:

– All definitions (all-defs) criterion: It requires that for each definition of a vari-

able, the set of paths executed by the test set contains a def-clear path from the

definition to at least one use of the variable.

– All uses criterion: It requires that for each definition of a variable, and for each

use of the variable reachable from the definition, there is def-clear path from

the definition to the use node.

– All definition-use-paths criterion: Require that for each definition of a variable,

and for each use of the variable reachable from the definition, all def-clear paths

from the definition to the use node must be covered.

• Fault-based testing: Fault-based testing assumed that ”a program can only be incor-

rect in a limited fashion specified by associating alternate expressions with program

expressions [48]”. Alternative versions of a program is generated by seeding faults

to these programs. Then test cases are generated which try to distinguish between

the program and the faulty versions. The effectiveness of a test case in finding real

faults are measured by the number of seeded errors detected. The assumption is that

seeded bugs are representative of real bugs. Two common fault-based techniques are

mutation testing and error seeding techniques.

15

– Mutation testing: Mutation testing is used to measure the quality of testing

by investigating whether test cases can uncover faults in the program. The

assumption of mutation testing is that if test cases can reveal simple errors, it

can also reveal more complex errors [20, 5]. Previous work found that mutation

testing is a reliable way of assessing the fault-finding effectiveness of test cases

and the generated mutants are similar to real faults [6]. Artificial faults are

inserted into programs by creating many versions of the program; each version

contains one simple fault. For a program, P, the mutation testing system creates

many versions of P and inserts a simple fault in each version, these versions

(P1, P2, · · · , Pk) are called mutants. Then, test cases are executed on the mu-

tants to make it fail. If the test case uncover the fault in mutant P1, we say

that the mutant is killed which means that the fault that produced the mutant is

distinguished by the test case. If the test case does not distinguish the mutant

from the program, we say that the mutant is still alive. According to [20], a

mutant may be live for one of the two reasons:

1. the test case is not adequate to distinguish the mutant from the original

program.

2. the error which is inserted to the mutant is not an error and the program

and its mutant are the same.

The mutants are created using mutation operators. There are three types of

mutation operators namely statement level mutation, method level mutation

and class level mutation operators. Statement level mutation operators pro-

duce a mutation by inserting a single syntactic change to a program statement.

Statement level mutation operators are mainly used in unit testing. Method

level mutation operators are classified into two types namely intra-method and

inter-method [52]. Intra-method level faults happen when the functionality of a

16

method is not as expected. Traditional mutation operators are used to create

the mutants. Method level mutation operators are used in both unit testing

and integration testing. Inter-method level faults occur on the connections

between methods pairs. Interface mutation is applicable to this level. Class

level mutation operators are also classified into two levels namely intra-class

and inter-class. Intra-class testing is performed to check the functionality of the

class. Inter-class testing [27] is performed to check the interactions between

methods which belong to different classes. This level of testing is necessary

when integrating many classes together to form a working subsystem. Kim et

al. [34] defined thirteen class mutation operators to test object oriented features.

The operators are extended by Chevalley [17] who added three operators. Ma

et al. [42] identified six groups of inter-class mutation operators for Java. The

first four groups are based on the features of object oriented languages. The

fifth group of mutation operators includes features that are specific to Java, and

the last group are based on common programming mistakes in object oriented

languages.

– Seeding techniques: Many faulty versions of a program are created by inserting

artificial faults into a program. A fault is considered detected if a test case

makes it to fail. The seeding approach depends on the assumption that if a

known number of seeded errors are inserted and then the number of detected

seeded errors is measured, the detection rate of seeded errors could be used to

predict the number of real errors. The number of real errors can be computed

using the following formula [55]:

s

S
=

n

N
→ N =

nS

s
(1)

17

where

S: the number of seeded faults

N : the number of original faults in the code

s: the number of seeded faults detected

n: the number of original faults detected

The formula assumed that the seeded faults are representative of the real faults

in terms of severity and occurrence likelihood. In our work, we use error

seeding to evaluate our approach. A third party inserted integration errors

according to the categorization of integration faults [38].

2.1.6. Integration Testing

Integration testing is one of the main testing activities for object-oriented systems.

Nowadays, object-oriented systems are very large and complex. It contains huge number

of modules and components and their interactions. Therefore, the interactions between

modules should be tested carefully to discover integration errors before the system is

delivered. The following section introduces the traditional integration strategies.

• Integration strategies: The traditional integration testing strategies are usually catego-

rized into top-down, bottom-up, big-bang, threads, and critical modules integration.

– Top-down integration: The top-down integration strategy is the one in which

the integration begins with the module in the highest level, i.e., it starts with

the module that is not used by any other module in the system. The other

modules are then added progressively to the system. In this way, there is

no need for drivers (it simulates the functionality of high level modules), but

stubs are needed which mimic functionality of lower level modules. The actual

components replace stubs when lower level code becomes available. One of the

main advantages of this approach is that it provides early working module of

18

the system and therefore design errors can be found and corrected at early stage.

Figure 4 shows an example of applying this approach. The top-down approach

starts by testing the main class, then it tests the integration of the main class

with the classes C1, C2, and C3. Then it tests the integration of all classes.

Main

C2C1 C3

C4 C5 C6
Test Main, C1, C2,

C3, C4, C5, and C6

Test

Main

Test Main, C1,

C2, and C3

Figure 4: An example of top-down strategy.

– Bottom-up integration: The bottom-up integration strategy is the one in which

the integration begins with the lower modules (terminal modules), i.e., it starts

with the modules that do not use any other module in the system, and continues

by incrementally adding modules that are using already tested modules. This is

done repeatedly until all modules are included in the testing. In this way, there

is no need for stubs, but drivers are needed. These drivers are replaced with

the actual modules when code for other modules gets ready. Figure 5 shows an

example of applying this approach. It starts by testing the classes at the lower

level (C4, C5, and C6), then it adds the classes in the above level incrementally

until all the classes being integrated.

– Sandwich integration: The sandwich integration strategy combines top-down

strategy with bottom-up strategy. The system is divided into three layers: 1) A

target layer in the middle; 2) A layer above the target; and 3) A layer below the

19

Main

C2C1 C3

C4 C5 C6

Test Main, C1, C2,

C3, C4, C5, and C6

Test

C4
Test C4, C5,

and C1

Test

C5

Test

C6

Test

C2

Test C3

and C6

Figure 5: An example of bottom-up strategy.

target. The layers often selected in a way to minimize the number of stubs and

drivers needed.

– Big-bang integration: To avoid the construction of drivers and stubs it is possi-

ble to follow the big-bang integration order, where all modules are integrated at

once. One of the main disadvantages of this approach is that the identification

and the removal of faults are much more difficult when dealing with the entire

system instead of subsystems. Also, integration testing can only begin when all

modules are ready. Figure 6 shows an example of applying this approach.

Main

C2C1 C3

C4 C5 C6

Test Main, C1, C2,

C3, C4, C5, and C6

Test

Main
Test

C1
Test

C2

Test

C3

Test

C4

Test

C5
Test

C6

Figure 6: An example of big-bang strategy.

– Threads integration: A thread is a part of many modules which together present

a program feature. Integration starts by integrating one thread, then another,

until all the modules are integrated.

20

– Critical modules integration: In the critical modules integration strategy, units

are merged according to their criticality level, i.e., most riskiest or complex

modules are integrated first. In this approach, risk assessment is necessary as a

first step.

Top-down and bottom-up approaches can be used for relatively small systems. A

combinations of thread and critical modules integration testing are usually preferred

for larger systems. In our work, we are not following any of these strategies. The

closest one to our strategy is the critical modules integration. Critical modules

integration starts with the most critical modules while our strategy starts with the

connections that are more error prone.

It is very important to understand the different types of integration errors. This will

help in the subsequent steps such as error seeding. The following section gives a

classification for integration errors.

• Integration errors: When integrating software systems, several errors may occur. Le-

ung and White [38] provide categorization of integration errors [53]. The categories

are:

– Interpretation errors: Interpretation errors occur when the dependent module

misunderstand either the functionality the dependee module provides or the way

the dependee module provides the functionality. Interpretation errors can be

categorized as follows.

∗ Wrong function errors: A wrong function error occurs when the function-

ality provided by the dependee module is not the required functionality by

the dependent module.

∗ Extra function errors: An extra function error happens when the dependee

module contains functionality that is not required by the dependent.

21

∗ Missing function errors: A missing function error occurs when there are

some inputs from the dependent module to the dependee module which are

outside the domain of the dependee module.

– Miscoded call errors: Miscoded call errors happen when an invocation state-

ment is placed in a wrong position in the dependent module. Miscoded call

errors can result in three possible errors:

∗ Extra call instruction: It occurs when the invocation statement is placed on

a path that should not contain such invocation.

∗ Wrong call instruction placement: It happens when the invocation state-

ment is placed in a wrong position on the right path.

∗ Missing instruction: It happens when the invocation statement is missing.

– Interface errors: Interface errors occur when the defined interface between two

modules is violated.

– Global errors: A global error occurs when a global variable is used in a wrong

way.

2.2. Related Work

This section presents a literature review for coupling metrics, error-proneness pre-

diction, software dependencies, integration testing approaches, and cost reduction testing

techniques. The section is organized as follows. In section 2.2.1, we present a review

of existing coupling measures. In section 2.2.2, we present some work related to fault-

proneness prediction. Section 2.2.4 presents some major integration testing approaches and

Section 2.2.5 presents some related work that aims to reduce the cost of software testing.

2.2.1. Coupling Metrics

Coupling between objects (CBO) and response for a class (RFC) were introduced

by Chidamber and Kemerer [18]. According to CBO, two classes are coupled when

22

methods in one class use methods or fields defined by the other class. RFC is defined as set

of methods that can be potentially executed in response to a message received by an object

of that class. In other words, RFC counts the number of methods invoked by a class. Li

and Henry [40] defined coupling through message passing and coupling through abstract

data type. Message passing coupling (MPC) counts the number of messages sent out

from a class. Data abstraction coupling (DAC) is a count of the number of fields in a class

having another class as its type, whereas DAC ′ counts the number of classes used as types

of fields (e.g., if class c1 has five fields of type class c2, DAC(c1)=5 and DAC ′(c1)=1).

Afferent coupling (Ca) and efferent coupling (Ce), that use the term category (a set of

classes that achieve some common goal), were identified by Martin [45]. Ca is the number

of classes outside the category that depend upon classes within the category, while Ce is the

number of classes inside the category that depend upon classes outside the categories. Lee

et al. [37] defined information flow-based coupling (ICP). ICP is a coupling measure

that takes polymorphism into consideration. ICP counts the number of methods from a

class invoked in another class, weighted by the number of parameters. Two alternative

versions, IH−ICP and NIH−ICP , count invocations of inherited methods and classes

not related through inheritance, respectively. All of these existing coupling metrics are

defined for classes. Our work is different from previous research in that it provides a way

to capture and analyze the strength of coupling among methods. Our coupling metrics

define the coupling at three levels; method level, method-pair level, and class-pair level.

2.2.2. Fault-proneness Prediction

Class fault-proneness can be defined as the number of faults detected in a class.

There is much research on building fault-proneness prediction models using different sets

of metrics in object-oriented systems [8, 14, 15, 24]. The metrics are used as independent

variables and fault-proneness is the dependent variable. In [8], the authors identified and

used polymorphism measures to predict fault-prone classes. Their results showed that their

23

polymorphism measures can be used at early phases of the product life cycle as good

predictors of its quality. The results also showed that some of the polymorphism measures

may help in ranking and selecting software artifacts according to their level of risk given

the amount of coupling due to polymorphism. Briand et al. [14] empirically investigated

the relationships between object-oriented design measures and fault-proneness at the class

level. They defined fault-proneness as the probability of detecting a fault in a class. They

considered a total of 28 coupling measures, 10 cohesion measures, and 11 inheritance

measures as the independent variables. Their results showed that coupling induced by

method invocations, the rate of change in a class due to specialization, and the depth of

a class in its inheritance hierarchy are strongly related to the fault-proneness in a class.

Their results also showed that using some of the coupling and inheritance measures can be

used to build accurate models which can be used to predict in which classes most of the

faults actually lie. Predict fault-prone classes can be used in the unit testing process such

that the testers can focus the testing on the faulty classes. On the other hand, identifying

fault-prone classes cannot be used effectively in integration testing process because we do

not know what the fault-prone connections are. Therefore, we need to identify error-prone

connections between methods in order to focus the testing on them.

Zimmermann and Nagappan [72] proposed the use of network analysis on depen-

dency graphs such as closeness measure to identify program parts which are more likely

to contain errors. They investigated the correlation between dependencies and defects for

binaries in Windows Server 2003. Their experimental results show that network analysis

measures can detect 60% of binaries that are considered more critical by developers. They

mentioned in their paper that most complexity metrics focus on single components and do

not take into consideration the interactions between elements. In our work, we take the

interactions between methods in our consideration.

24

Borner and Paech [10] presented an approach to select the test focus in the integration

testing process. They identified the correlations between dependency properties and the

number of errors in both the dependent and the independent files in the previous versions

of a software system. They used information about the number of errors in dependent

and independent files to identify the dependencies that have a higher probability to contain

errors. One disadvantage of their method is that it is not applicable for systems that do not

have previous versions.

2.2.3. Software Dependencies

Program dependencies is useful for many software engineering activities such as

software maintenance [56], software testing [35], debugging [54], and code optimization

and parallelization [25].

Sinha and Harrold [61] defined control dependencies in terms of control-flow graphs,

paths in graphs, and the post-dominance relation. In addition, they presented two ap-

proaches for computing inter-procedural control dependencies: one approach computes

precise inter-procedural control dependencies but it is extremely expensive; the second

approach achieved a conservative estimate of those dependencies.

Schröter et al. [59] showed that design data such as import dependencies can be

used to predict post-release failures. Their experimental study on ECLIPSE showed that

90% of the 5% most failure-prone components, as predicted by their model from design

data, produce failures later. Orso et al. [54] presented two approaches for classifying data

dependencies in programs that use pointers. The first approach categorizes a data depen-

dence based on the type of definition, the type of use, and the types of paths between the

definition and the use. Their technique classifies definitions and uses into three types and it

classifies paths between definitions and uses into six types. The second approach classifies

data dependencies based on their spans. It measures the extent of a data dependence in a

program.

25

Nagappan and Ball [50] used software dependencies and churn metrics to predict

post-release failures. In addition, they investigated the relationship between software de-

pendencies and churn measures and their capability of assessing failure-proneness prob-

abilities at statistically significant levels. Their experiments on Windows Server 2003

showed that there is an increase in the code churn measures with an increase in software

dependency ratios. Their results also indicated that software dependencies and churn

measures can be used significantly to predict the post-release failures and failure-proneness

of the binaries. Zimmermann and Nagappan [73] used dependencies to predict post-release

defects. The dependencies include call dependencies, data dependencies, and Windows

specific dependencies. Their results on Windows Server 2003 showed that the dependency

information can assess the defect-proneness of a system.

2.2.4. Integration Testing Approaches

There are many approaches for integration testing using UML diagrams [1] [26] [3].

An integration testing technique using design descriptions of software component inter-

actions are produced by Abdurazik and offutt [1]. They used formal design descriptions

that are taken from collaboration diagrams. They developed static technique that allows

test engineers to find problems related to misunderstandings of the part of the detailed

designers and programmers. They also developed a dynamic technique that allows test

data to be created to assure reliability aspects of the implementation-level objects and

interactions among them. An integration testing method using finite state machines is

defined by Gallagher et al. [27]. They represented data flow and control flow graphs for

the system in a relational database. They derived DU-pairs (define-use) and DU-paths that

are used as the source of testing. Software classes are modeled as finite state machines and

data flows are defined on the finite state machines. An approach for integration testing that

uses information from both UML collaboration diagrams and state charts are described in

[3] defined. They used collaboration diagrams and state charts to generate a model.

26

One important problem in integration testing of object oriented software is to deter-

mine the order in which classes are integrated and tested, which is called class integration

test order (CITO) problem. When integrating and testing a class that depends on other

classes that have not been developed, stubs should be created to simulate these classes.

Creating these stubs are very costly and error-prone. A number of methods are proposed in

literature to derive an integration and test order to minimize the cost of creating stubs [13].

Some of these approaches aimed to minimizing the number of stubs [29] [16] [31], while

other approaches aimed to minimizing the overall stub complexity [2] [9] [69]. Briand et

al. [11] presented an approach to devise optimal integration test orders in object-oriented

systems. The aim is to minimize the complexity of stubbing during integration testing.

Their approach combined use of coupling metrics and genetic algorithms. They used

coupling measurements to assess the complexity of stubs and they used genetic algorithms

to minimize complex cost functions. In [2], the authors presented an approach to solve

the problem of class integration and test order. They added edge weights to represent the

cost of creating stubs, and they added node weights which are derived from couplings

metrics between the integrated and stubbed classes. They proved that their method reduces

the the cost of stubbing. Borner and Paech [9] proposed an approach to determine an

optimal integration testing order that considers the test focus and the simulation effort.

They selected three heuristic approaches to select test focus and the simulation effort.

Their results show that simulated annealing and genetic algorithms can be used to derive

integration test orders.

2.2.5. Cost Reduction Testing Techniques

In previous studies, a number of techniques have been proposed to reduce the cost

of testing which include test prioritization [22] [23], test selection [28] [12], and test

minimization [58] [63]. Test prioritization aims to rank test cases so that test cases that are

more effective according to such criteria will be executed first to maximize fault detection.

27

Test selection aims to identify test cases that are not needed to run on the new version of

the software. Test minimization aims to remove redundant test cases based on some criteria

in order to reduce the number of tests to run.

Elbaum et al. [22] identified a metric, APFDC , for calculating fault detection rate

of prioritized test cases. They also presented some prioritizing test cases techniques using

their metric and based on the effects of varying test case cost and fault severity. Briand et al.

[12] presented a test selection technique for regression testing based on change analysis in

object-oriented designs. They assumed that software designs are represented using Unified

Modeling Language (UML). They classified regression test cases into three categories:

reusable (it does not need to be rerun to ensure regression testing is safe), retestable (it

needs to be rerun for the regression testing to be safe), and obsolete (it cannot be executed

on the new version of the system as it is invalid in that context). Their results showed that

design changes can have a complex impact on regression test selection and that automation

can help avoid human errors. Rothermel et al. [58] compared the costs and benefits of

minimizing test suites of different sizes for many programs. Their results showed that the

fault detection capabilities of test suites can be severely compromised by minimization.

A test suite minimization approach using greedy heuristic algorithm is presented by Tal-

lam and Gupta [63]. They explored the concept analysis framework to develop a better

heuristic for test suite minimization. They developed a hierarchical clustering based on the

relationship between test cases and testing requirements. Their approach is divided into

four phases: (1) apply object reductions; (2) apply attribute reductions; (3)select a test case

using owner reduction; and (4) build reduced test suite from the remaining test cases using

a greedy heuristic method. Their empirical results showed that their test suite minimization

technique can produce a reduction in the size of test suite which is the same size or even

smaller than those which had been produced by the traditional greedy approach.

28

Our approach does not belong to any of these categories because test suites are

not available in our case while test prioritization, test selection, and test minimization

techniques depend on the availability of test suites. Therefore, our approach can lead to

more reduction in time and cost because we ask the developer to write small number of

test cases while the other techniques ask the developer to write a complete set of test cases,

then these techniques try to select part of the test cases or remove some of them later.

29

CHAPTER 3. THE PROPOSED APPROACH

In this section, we discuss the proposed approach. Figure 7 provides an overview of

the proposed approach. Our approach is divided into five steps. First of all, the dependency

extractor extracts the dependencies from the compiled Java code. The result of this step

is an XML file that contains the dependencies at method and class levels. After that,

metrics extractor extracts the metrics using both the source code and the dependencies. The

output of this step is the metrics at different levels of granularity which includes method

level metrics, method-pair metrics, and class-pair metrics. Then, the connections between

methods are ranked according to a weight which is calculated using combination of metrics

defined in the previous step. The rank of the connections indicates which connections

should be focused on during the testing process. Next, test focus selector selects the error-

prone connections as a test focus and predicts the number of test cases needed to test each

connection based on the weights of the connections produced in the previous step and given

the initial number of test cases needed. The last step is to generate test cases manually to

test the required application. The following sections explain these steps in detail.

Dependency

Extractor

Metrics

Extractor

Connections

Ranker

Test Focus

Selector

Generate Test

Cases

Source files Source files

Class files Class files

All dependencies

MetricsMetrics

Figure 7: An overview of the proposed approach.

30

3.1. System Representation

We first define a representation for a software system.

A software system S is an object-oriented system. S has a set of classes C =

{c1, c2, · · · , cn}. The number of classes in the system is n = |C|. A class has a set of

methods. For each class c ∈ C,M(c) = {m1,m2, · · · ,mt} are the set of methods in c,

where t = |M(c)| is the number of methods in a class c. The set of all methods in the

system S is denoted by M(S).

3.2. Dependency Extractor

The dependency extractor step extracts dependencies from Java class files. It detects

three levels of dependencies: 1) class to class; 2) feature to class; and 3) feature to feature.

The term feature indicates class attributes, constructors, or methods. We use the Depen-

dency Finder tool [66] to extract the dependencies. The Dependency finder tool is widely

used to compute dependencies in the literature [19, 41, 60, 68, 21]. Dependency Finder

is also free and open source. We create the dependencies for three Java systems manually

and then we compare it with the output created by the Dependency Finder tool. Both sets

of data provided consistent results. Dependency Finder uses particular classes to parse

.class files. It also includes tools that looking at the contents of these files. For example,

ClassReader is used to put the class in a .class file in human-readable form. With the -xml

switch, it outputs the structure to an XML file. Dependency Finder creates dependency

graphs based on the information available in Java class files. A dependency graph contains

nodes for software systems connected together using two types of relationships namely

composition and dependency. Packages contain classes and classes contain features. These

kinds of relationships are called composition relationships. A feature node is connected

to its class through a composition and a class is connected to its package through a com-

position. In our work, we do not consider composition relationships. The second type of

relationships is dependency. A class depends on other classes, a feature depends on other

31

features, and a feature depends on other classes. In our work, we consider dependency

relationships on feature level. Figure 8 shows a toy system that has four classes and Figure

9 shows the dependencies extracted by the dependency finder tool. As we can see in Figure

9, ClassA.example() method depends on ClassB class, ClassB.getName() method, and

ClassB.x attribute. ClassB class depends on ParentClass class and ParentClass depends

on Interface class.

Figure 8: Toy system.

3.3. Metrics Extractor

The aim of this step is to identify set of metrics and to extract those metrics automat-

ically from both the dependencies produced in the previous step and the Java source code.

This section describes the software metrics that we use in our work. We define the metrics

on method, method-pair, and class-pair.

32

Figure 9: Dependencies of the toy system.

3.3.1. Method Level Metrics

We define metrics on individual methods within a class. For method mi in class

ci, most of these metrics calculate the number of classes, methods, and fields that have a

dependency with method mi. Figure 10 shows a simple Java example that will be used

to explain the method level metrics. The Java example contains two classes: MO class

and RO class. MO class contains two methods: getMin method and getMax method.

GetMin method returns the minimum value of any three numbers while getMax method

returns the maximum value of any three numbers. RO class contains the main method.

The main method creates an object from MO class. Figure 11 shows the coupling depen-

dency graph for the Java fragment of code. In Figure 11, the RO.main() method depends

on MO.magicNumber attribute, MO.getMin method, MO.getMax method, and MO.MO

constructor. In Figure 10, RO.main method calls the implicit constructor for MO class.

33

The metrics that are defined on individual methods within a class are as follows.

1. Inbound Method Dependencies (IMD): Methods in other classes that depend on

method mi. For example, IMD(MO.getMax()) = 1.

2. Outbound Method Dependencies (OMD): Methods in other classes that method mi

depends on. For example, OMD(RO.main()) = 3.

3. Outbound Field Dependencies (OFD): Fields in other classes that method mi de-

pends on. For example, OFD(RO.main()) = 1.

4. Outbound Class Dependencies (OCD): Classes that method mi depends on. For

example, OCD(RO.main()) = 1.

5. Local Variables (LV AR): Number of local variables use by method mi.

6. NOCMP : Number of complex input parameters in method mi. The input parameter

is complex if it is not a primitive type. For example, in Figure 12, we pass classA as

a parameter to method1.

7. Maximum Nesting Depth (MND): The maximum depth of nesting in method mi.

This metric represents the maximum nesting level of control constructs (if, for, while,

and switch) in the method. We use Understand tool 1 to compute this metric. For

example, in Figure 13, MND(methodA) = 3

3.3.2. Method Pair Metrics

We define the following metrics on the method pair (mi, mj) where mi is a dependent

and mj is a dependee, mi ∈ ci, mj ∈ cj where ci 6= cj .

1http://www.scitools.com/

34

1. Inbound Common Method Dependencies (ICMmimj): Number of common meth-

ods that depend on both mi and mj . In Figure 14, ICMm1m2 = 2 (m3 and m4

depend on both m1 and m2).

2. Outbound Common Method Dependencies (OCMmimj): Number of common meth-

ods that both mi and mj depends on. In Figure 15, OCMm1m2 = 1 (Both m1 and

m2 depend on m3.

3.4. Connections Ranker

In this step, We use combination of metrics defined in the previous step to rank the

connections between methods. The combination of metrics will be used to examine several

hypothesis regarding the correlation between these metrics and error discovery rate. The

rank of the connections specifies the connections that should be focused on during the

testing process.

For method-pair (mi,mj), the weight for the connection between mi and mj is calcu-

lated as follows:

weight(mi,mj) = (weight(mi) +weight(mj))× (ICMmimj +OCMmimj + 1) (2)

where weight(mi) is calculated as follows:

weight(mi|ck, cl) =
ICmi

× (IMDmi +OMDmi +OFDmi)
2

∑

y∈M(ck,cl)
ICy × (IMDy +OMDy +OFDy)2

(3)

where M(ck, cl) is the set of methods in both class ck and class cl. ICmi
is the internal

complexity of method mi. It can be measured as follows:

ICmi
= MNDmi +NOCMPmi + LV ARmi (4)

35

3.5. Test Focus Selector

The Test focus selector step predicts the number of test cases needed to test each

connection based on the weights of the connections produced in the previous step and

given the initial minimum number of test cases needed. We would like to start with a small

initial number of test cases. In our work, we assume the initial number of test cases needed

to test a system S to be 0.10% of the number of interactions. After that, the number of

test cases can be adjusted depending on the error discovery rate. For example, if the initial

number of test cases to test a system was 50 and the error discovery rate was 60%, then

we generate and run 0.10% more test cases in each iteration until we reach 80% of error

discovery rate. The method-pair weight is computed using the equation in the previous

section. The class-pair weight is computed as the summation of all method-pair weights

that belong to the two classes. If the class-pair weight is zero, we specify one test case to

test the class-pair connection. Figure 16 explains the testing process used in our approach.

We start by creating w test cases where w is the initial number of test cases given by the

approach. We then run the test cases against the seeded versions of the applications and

we compute the error discovery rate. We stop if we achieve 80% error discovery rate.

Otherwise, we create more test cases (10% of the interactions in each iteration) until the

80% is achieved.

3.6. Generate Test Cases

In this step, test cases is created manually to test the required application. For

evaluating the testing process, both error seeding technique [47, 51] and mutation testing

are used. The test case generation step compares the original program with the seeded

program. If the test cases are enable to differentiate between the original program and the

seeded program, the seeded program is said to be killed; otherwise, it is still alive.

36

3.7. Tool Implementation

We build a Software Metrics for Integration Testing (SMIT) tool to calculate the

metrics automatically. SMIT computes the dependency and complexity metrics at three

levels of granularity:

• Method level

• Method-pair level

• Class-pair level

The tool is developed using R language version 2.15.0 [65]. Binary versions of this

language are available for several platforms including Windows, Unix and MacOS. It is

not only free but also an open source. R provides a wide variety of statistical and graphical

techniques. It includes an effective data handling and storage facilities, a suite of operators

to perform calculations on matrices, a large collection of tools for data analysis. R also

provides powerful functions to deal with regular expressions. R can be extended very easily

by the use of packages. There are many packages that are available from the R distribution

and from the CRAN family of Internet sites.

Figure 17 shows a high level description of SMIT tool. SMIT tool uses the Depen-

dency Finder tool to extract dependencies from compiled Java code. SMIT directly invokes

the Dependency Finder tool in the source code. The input for this step is the directory that

contains the compiled files (.class files). SMIT tool starts by saving the names of the

”.class” files in the working directory. The output of this step is a file in XML format

which contains all of the dependencies. Figure 18 shows an example of the dependencies

for a method in the Monopoly application. It shows both the inbound and the outbound

dependencies for the method. The Dependency Finder tool also computes some software

metrics such as number of parameters for the method (PARAM), number of code lines in

the method (SLOC), and number of local variables use by the method (LVAR).

37

Then, SMIT extracts all of the call graphs and saves the results in Call-Graphs Matrix

(CGM). We only consider calls between methods that belong to different classes. The

CGM matrix is a square binary t × t matrix, where t represents the number of methods in

the system. The matrix indicates the direct method invocation interactions. The value of

CGM[i,j] is defined as follows:

CGM [i, j] =











1 if the ith method invokes the jth method

0 otherwise

Where 1 ≤ i ≤ t and 1 ≤ j ≤ t. Rows of CGM matrix represent the callers

(dependents) where columns represent the callees (dependees). We exclude calls between

methods in the same class.

After extracting all of the call graphs, SMIT computes the method level metrics

namely NOCMP, IMD, OMD, and OFD. The NOCMP metric represents the number of

complex input parameters in a method where input parameter is considered complex if

it is not a primitive type (e.g., if it is of type class, array, or hashmap). Then, SMIT

computes method-pair metrics and computes a weight for each connection as discussed

in the connections ranker Section. After that, SMIT computes a weight for each class-pair.

A class-pair weight is computed as the summation of all method-pair weights that belong

to the two classes. Finally, SMIT predicts the number of test cases needed to test each

connection as explained in the test focus selector Section.

SMIT implementation program contains the following functions:

• classFiles(): It returns a list that contains the names of all class files (the files that

have the extension “.class”) in the working directory.

• extractDep(): This function extracts all of the dependencies for the system under test

using the DependencyFinder and it stores the the output in an XML file.

38

• callGraphs(): It extracts the call graphs for all methods in the system and it stores the

results in a matrix.

• inboundMethodCalls(mi): It returns all methods that depend on method mi.

• outboundMethodCalls(mi): It returns all methods that method mi depends on.

• outboundFeildDependencies(mi): It returns all fields that method mi depends on.

• lvarMetric(): It calculates the number of local variables used by a method.

• nocmpMetric(): It calculates the number of complex input parameters in a method.

• mndMetric(): It calculates the value of the MND metric for a method .

• icmMetric(): It calculates the value of the ICM metric for a method-pair.

• ocmMetric(): It calculates the value of the OCM metric for a method-pair.

• outboundMDep(): This function extracts the outbound method dependencies for a

method.

• inboundMDep(): This function extracts the inbound method dependencies for a method.

• weightmi(): This function calculates the weight for a method.

• weightmimj(): This function calculates the weight for a method-pair.

• classPairMetrics(): It computes the values of all class-pair metrics.

SMIT is provided with a command-line interface (CLI). Figure 19 shows an example

of running SMIT from the command line. It invokes the Rscript command which is

followed by the name of the program to be run (D:/javaSystems/smit.R) and then followed

by an argument that specifies the working directory.

39

The outputs of our tool are four files in CSV format, method level metrics file,

method-pair level metrics file, class-pair level metrics file and a final report file. Figure

20 shows the output of SMIT and Figure 21 shows a screen capture for part of the final

report for the PureMVC application.

3.8. Toy Example

This section illustrates the proposed approach using a simple toy example. Figure 22

shows three classes and the dependencies between methods that belong to different classes.

For example, a directed arrow between m1 and m5 means that method m1 depends on

method m5. SMIT tool starts by computing the method-level metrics automatically from

both source code and byte code. Then, SMIT determines the method-pair interactions

such that the two methods should belong to different classes (i.e., we are not interested in

dependencies between methods in the same class). SMIT also calculates the method-pair

metrics. After that, the weight for each method pair is computed using Equation (2) and

the weight for each method is calculated using Equation (3). Figure 22 shows the weight

of each connection using toy numbers. For example, weight(m2,m6) = 0.81. SMIT

computes the the initial number of test cases which equals to 10% × No. of connections in

the system.

For the toy example in Figure 22, we assume that the initial number of test cases

is equal to 6. SMIT then computes the weight for each class pair as shown in Figure 23.

The class-pair weight is computed as the summation of all method-pair weights that belong

to the two classes. In Figure 22, weight(Class1, Class2) = 1.1 which equals to the

summation of the weights of the three method-pair (m1−m5, m2−m6, and m3−m7).

Table 1: The number of test cases needed to test class pairs.

Class-pair Weight Normalized Weight # of test cases

Class1 , Class2 1.1 0.453 0.453× 6 = ‖2.718‖ = 3
Class1 , Class3 0.41 0.169 0.169× 6 = ‖1.014‖ = 1
Class2 , Class3 0.92 0.379 0.379× 6 = ‖2.274‖ = 2

40

After that, SMIT computes the initial number of test cases needed to test each class-

pair as shown in Table 1. For example, the predicted number of test cases needed to test

class pair (class 1, class 2) is equal 3 and it is computed by multiplying the normalized

weight of the class-pair by the initial number of test cases and rounding the result to the

nearest integer. Finally, SMIT computes the initial number of test cases needed to test

each method-pair as shown in Table 2. For example, the predicted number of test cases

needed to test the method pair (m2, m6) is equal 2 and it is computed by multiplying the

normalized weight of the method-pair (0.736) by the initial number of test cases needed to

test the class-pair (3) and rounding the result to the nearest integer.

Table 2: The number of test cases needed to test method pairs.

Method-pair Weight Normalized Weight # of test cases

m1,m5 0.07 0.063 0.063× 3 = ‖0.189‖ = 0
m2,m6 0.81 0.736 0.736× 3 = ‖2.208‖ = 2
m3,m7 0.22 0.2 0.2× 3 = ‖0.6‖ = 1
m4,m10 0.41 0.41 1
m8,m11 0.73 0.793 0.793× 2 = ‖1.586‖ = 2
m9,m12 0.19 0.206 0.206× 2 = ‖0.412‖ = 0

41

public class MO

{

 public int magicNumber = 5000;

 public double getMin(double x, double y, double z)

 {

 double minimum = x;

 if (y < minimum)

 minimum = y;

 if (z < minimum)

 minimum = z;

 return minimum;

 } // end method getMin

 public double getMax(double x, double y, double z)

 {

 double maximum = x;

 if (y > maximum)

 maximum = y;

 if (z > maximum)

 maximum = z;

 return maximum;

 } // end method getMax

} // end class MO

public class RO

{

 public double a = 5;

 public double b = 3;

 public double c = 1;

 public void main()

 {

 MO mywork = new MO();

 double w1 = mywork.getMin(a, b, c);

 double w2 = mywork.getMax(a, b, c);

 int m = mywork.magicNumber;

 System.out.println(m);

 } // end main

} // end class RO

Figure 10: Simple Java example that contains two classes MO and RO.

42

RO.main()

MO.magicNumber

MO.getMin() MO.getMax()

MO.MO()

Figure 11: The coupling dependency graph for the Java example.

class classA

{

 int number;

 string name;

} // end class

public void method1(classA w)

 {

 w.number = 300;

 w.name = "Mark";

 } // end method

Figure 12: An example of complex input parameter.

 public void methodA()

 {

 if (...)

if (...)

for (...)

for (...)

for (...)

 } // end method

Figure 13: An example of maximum nesting depth.

43

Figure 14: An example of computing the ICM metric (ICMm1m2 = 2).

Figure 15: An example of computing the OCM metric (OCMm1m2 = 1).

Start

Create w test cases

Execute test cases

80% of errors have

been discovered?

Stop

Create test cases

YES

NO

Figure 16: Our testing approach.

44

Source code Source code
Class files Class files

compile

Dependency

Finder tool

invoke

parse

CGM Matrix

extract call graphs

LVAR metric

Start

End

Understand

tool

MND metrics

Method-level

metrics

Class-pairs

weights

Connections

weights

Method-level

dependencies

Method-pair

metrics

All dependencies

Final Report

extract

Figure 17: High level description of SMIT tool.

45

Figure 18: The dependencies for completeTrade method in the Monopoly application.

Figure 19: Run SMIT from command line.

Figure 20: A screen capture for SMIT output.

46

Figure 21: A screen capture for part of the final Report output for PureMVC.

Class 1

m1

m2

m3m4

Class 2

m5

m6

m7

m8

m9

Class 3

m10 m11 m12

0.07

0.81

0.22

0.41

0.73

0.19

Figure 22: A toy example of classes and the dependencies between methods.

Class 1 Class 21.1

Class 1 Class 30.41

Class 2 Class 30.92

Figure 23: Class-pairs for the toy system and their weights.

47

CHAPTER 4. EXPERIMENTAL EVALUATION

In order to evaluate the proposed approach, we select open-source applications im-

plemented in Java. Table 3 shows a summary of the selected applications. The selected

applications vary in size and domain and can be downloaded freely from the Internet. In

this chapter, we:

• describe the Java systems that we use in our evaluation

• present the results of the proposed approach

• discuss the results

Table 3: A summary of the selected applications.

Project # classes # methods Source

Monopoly 57 336 http://realsearchgroup.com/rose/

PureMVC 22 139 http://puremvc.org/

Cinema 10 106 http://alarcos.esi.uclm.es

ApacheCli 20 207 http://commons.apache.org/cli/

Pacman 25 208 http://code.google.com/p/stq-jpacman/

ApacheValidator 59 660 http://commons.apache.org/validator/

JTopas 63 753 http://sir.unl.edu

4.1. Selected Systems under Test

We select seven application in order to evaluate the proposed approach. We choose

these seven application to represent lots of domains. The two games applications (Monopoly

and Pacman) represent applications where systems have to interact a lot to satisfy the

logic rules of the underlying strategy of the game logic. The libraries and frameworks are

commonly used in Java where we usually strive for reusability in dependent applications.

We choose three libraries (ApacheCLI, ApacheValidator, and JTopas) to represent this

perspective. Since Java web-applications are widely used nowadays, we choose PureMVC

which implements the famous web design pattern Model-View-Controller (MVC). We

48

choose one business information system application (Cinema). A brief description of the

applications appears below.

4.1.1. Monopoly System

The Monopoly application presents a Monopoly-like computer game. Monopoly

provides many features that appear in the Monopoly board game. Many players play in

turns. A player moves based on the dice roll (two dices). When the user reaches the end

of the board, he/she cycles around. The system implements many rules of the Monopoly

game. For example, when a player passes or lands on the GO cell, the bank gives the player

200 dollars. Figure 24 shows the class diagram of the Monopoly system.

4.1.2. PureMVC

PureMVC is a light weight framework for creating applications based on the classic

Model, View and Controller concept. There are two versions of the PureMVC framework:

Standard and MultiCore. We use the standard Version that provides a methodology for

separating the coding interests according to the MVC concept. The application layers

are represented by three Singletons (a design pattern that limits the instantiation of a

class to one object). The MVC Singletons manage Proxies, Mediators and Commands.

Another Singleton, the Faade, provides a single interface for communications through the

application. Figure 25 shows the class diagram of the PureMVC system.

4.1.3. Cinema Management System

The Cinema application is an information management system. It is a movie theater

system that manages tickets booking, seats assignments, movie times, and movie locations.

This system is general enough to handle different types of theater halls such as VIP hall

and regular hall. Figure 26 shows the class diagram of the Cinema system.

49

 ::edu.ncsu.monopoly

MockTradeDialog

<<interface>>

RespondDialog

MockRespondDialog

<<interface>>

TradeDialog
GameBoardUtility

SimpleGameBoard
GameBoardRailRoad

GameBoardFull

GameBoardJail GoCell

GameBoardFreeParking

GoToJailCell CardCell

Cell

FreeParkingCell RailRoadCell

MockGUI

<<interface>>

MonopolyGUI

GameMaster

GameBoard

GameBoardCCLoseMoney

GameBoardCCMovePlayer

GameBoardCCGainMoney

GameBoardCCJail

GameBoard14

JailCard

Card

MoneyCard

MovePlayerCard

TradeDeal

Die

Player

PropertyCell

JailCell

UtilityCell

 ::edu.ncsu.monopoly.gui

<<interface>>

::<<Unknown>>::RespondDialog

::<<Unknown>>::JDialog

UtilDiceRoll

<<interface>>

CellInfoFormatter

RRCellInfoFormatter

CCCellInfoFormatter
GoCellInfoFormatterGotoJailCellInfoFormatter

FreeParkingCellInfoFormatter

TestDiceRollDialogBuyHouseDialog

MainInfoFormatter

GameBoardUtil

GUITradeDialog

GUIRespondDialog

<<interface>>

::<<Unknown>>::TradeDialog

::<<Unknown>>::JPanel

GUICell InfoPanel

MainWindow

PlayerPanel

::<<Unknown>>::JFrame

<<interface>>

::<<Unknown>>::MonopolyGUI

JailCellInfoFormatter

UtilCellInfoFormatter

ChanceCellInfoFormatter
PropertyCellInfoFormatter

Figure 24: The class diagram of Monopoly.

50

 ::org.puremvc.java.patterns.mediator

::org.puremvc.java.patterns.observer::Notifier

Mediator

<<interface>>

::org.puremvc.java.interfaces::IMediator

<<interface>>

::org.puremvc.java.interfaces::INotifier

 ::org.puremvc.java.patterns.observer

<<interface>>

::org.puremvc.java.interfaces::IObserver

<<interface>>

::org.puremvc.java.interfaces::IFunction

Observer

Notifier

::org.puremvc.java.patterns.facade::Facade<<interface>>

::org.puremvc.java.interfaces::INotification

Notification

 ::org.puremvc.java.core

<<interface>>

::org.puremvc.java.interfaces::IController

Controller

<<interface>>

::org.puremvc.java.interfaces::IView

View

<<interface>>

::org.puremvc.java.interfaces::IModel

Model

 ::org.puremvc.java.interfaces

<<interface>>

ICommand

<<interface>>

INotifier

<<interface>>

IModel
<<interface>>

IView

<<interface>>

IProxy
<<interface>>

IFacade

<<interface>>

IMediator

<<interface>>

IController
<<interface>>

INotification

<<interface>>

IFunction
<<interface>>

IObserver

 ::org.puremvc.java.patterns.command

::org.puremvc.java.patterns.observer::Notifier

MacroCommand SimpleCommand

<<interface>>

::org.puremvc.java.interfaces::ICommand

 ::org.puremvc.java.patterns.proxy

::org.puremvc.java.patterns.observer::Notifier

<<interface>>

::org.puremvc.java.interfaces::IProxy

Proxy

 ::org.puremvc.java.patterns.facade

::org.puremvc.java.core::Controller <<interface>>

::org.puremvc.java.interfaces::IFacade
::org.puremvc.java.core::View ::org.puremvc.java.core::Model

Facade

Figure 25: The class diagram of PureMVC.

51

 ::dominio

AsientoCineSala

Sala_infantilSala_vip

Sesion

 ::dominio.exceptions

::<<Unknown>>::Exception

HoraException
SNException

FueradeloslimitesException
DniException

Figure 26: The class diagram of Cinema.

4.1.4. ApacheCli

The ApacheCli is a library that provides an API for parsing command line options

passed to programs. The library also can print help messages describing the available

options for a command line tool. For example, a boolean option is represented on a

command line by the presence of the option, i.e. the option value is true if the option

is found, otherwise the value is false. Figure 27 shows the class diagram of the ApacheCli

library.

4.1.5. Pacman System

The Pacman application simulates the arcade Pacman game. In this game, the player

controls Pac-Man through a maze, eating the dots. Pac-Man is taken to the next stage

when all dots are eaten. The Pacman system contains two packages namely controller and

model. An example of a class in this system is the Board class. The Board class maintains

52

 ::org.apache.commons.cli

Option CommandLineHelpFormatter.OptionComparatorOptionValidatorHelpFormatter

<<interface>>

::<<Unknown>>::Comparator

<<interface>>

::<<Unknown>>::Cloneable

<<interface>>

CommandLineParser

UnrecognizedOptionException BasicParserTypeHandler

Util OptionBuilder PatternOptionBuilder

PosixParser

Parser GnuParser

ParseException AlreadySelectedException

::<<Unknown>>::Exception
MissingArgumentException

<<interface>>

::<<Unknown>>::Serializable

Options OptionGroup

MissingOptionException

Figure 27: The class diagram of the ApacheCLI.

a rectangular board of cells where guests can move around on the board, and keep track of

their position on the board. Figure 28 shows the class diagram of the Pacman system.

4.1.6. ApacheValidator

A major problem when receiving electronic data is verifying the integrity of the data.

This task becomes more complicated because different sets of validation rules need to be

applied to the same set of data. The ApacheValidator library tries to address this issue and

speed development and maintenance of validation rules. The ApacheValidator is a library

which provides validation for JavaBeans based on an XML file. This library also provides

standard validation routines and functions. It also provides reusable ”primitive” validation

methods. Figure 29 shows part of the class diagram of the ApacheValidator library.

4.1.7. JTopas

JTopas is used for parsing of arbitrary text data. These data can come from differ-

ent sources such as HTML, XML or RTF stream, source code of various programming

languages. JTopas classes provides many characteristics such as pattern matching and

whitespace handling. Figure 30 shows the class diagram of the JTopas library.

53

 ::jpacman.controller

Animator

BoardViewer

<<interface>>

::<<Unknown>>::Observer

AbstractMonsterController

<<interface>>

::<<Unknown>>::ActionListener

<<interface>>

IMonsterController

Pacman

RandomMonsterMover

::<<Unknown>>::JFrame

PacmanUI

<<interface>>

::<<Unknown>>::KeyListener

ImageFactory ::<<Unknown>>::JPanel

 ::jpacman.model

Game

GameLoader

Player

Monster

::<<Unknown>>::Exception

GameLoadException

::<<Unknown>>::Observable

Engine

Move

MonsterMove

PlayerMove

Board Cell Guest

Food

Wall

MovingGuest

Figure 28: The class diagram of Pacman.

54

 ::org.apache.commons.validator

ISBNValidator NameBean

EmailValidator DateValidator

::<<Unknown>>::AbstractObjectCreationFactory

FormSetFactory

::<<Unknown>>::Exception

ValidatorException

Validator

<<interface>>

CreditCardType

CreditCardValidator.Visa
CreditCardValidator.Discover

CreditCardValidator.Mastercard

CreditCardValidator.Amex

Arg

<<interface>>

::<<Unknown>>::Serializable

<<interface>>

::<<Unknown>>::Cloneable

Var

Msg ValidatorResults Form

ValidatorAction

UrlValidator

GenericValidator

CreditCardValidator

GenericTypeValidator

ValidatorResult

Field

ValidatorResult.ResultStatusFormSetValidatorResources

 ::org.apache.commons.validator.routines

IntegerValidator

ShortValidator

ISBNValidator

RegexValidator

CodeValidator

DomainValidator

CreditCardValidator

UrlValidator

BigDecimalValidator

PercentValidator

AbstractNumberValidator

DoubleValidator

FloatValidator

BigIntegerValidatorLongValidator

ByteValidator

<<interface>>

::<<Unknown>>::Serializable

AbstractFormatValidator

EmailValidator

InetAddressValidator

AbstractCalendarValidator

CurrencyValidator

DateValidator

CalendarValidator

TimeValidator

Figure 29: Part of the class diagram of ApacheValidator.

55

 ::org.puremvc.java.patterns.mediator

::org.puremvc.java.patterns.observer::Notifier

Mediator

<<interface>>

::org.puremvc.java.interfaces::IMediator

<<interface>>

::org.puremvc.java.interfaces::INotifier

 ::org.puremvc.java.patterns.observer

<<interface>>

::org.puremvc.java.interfaces::IObserver

<<interface>>

::org.puremvc.java.interfaces::IFunction

Observer

Notifier

::org.puremvc.java.patterns.facade::Facade<<interface>>

::org.puremvc.java.interfaces::INotification

Notification

 ::org.puremvc.java.core

<<interface>>

::org.puremvc.java.interfaces::IController

Controller

<<interface>>

::org.puremvc.java.interfaces::IView

View

<<interface>>

::org.puremvc.java.interfaces::IModel

Model

 ::org.puremvc.java.interfaces

<<interface>>

ICommand

<<interface>>

INotifier

<<interface>>

IModel
<<interface>>

IView

<<interface>>

IProxy
<<interface>>

IFacade

<<interface>>

IMediator

<<interface>>

IController
<<interface>>

INotification

<<interface>>

IFunction
<<interface>>

IObserver

 ::org.puremvc.java.patterns.command

::org.puremvc.java.patterns.observer::Notifier

MacroCommand SimpleCommand

<<interface>>

::org.puremvc.java.interfaces::ICommand

 ::org.puremvc.java.patterns.proxy

::org.puremvc.java.patterns.observer::Notifier

<<interface>>

::org.puremvc.java.interfaces::IProxy

Proxy

 ::org.puremvc.java.patterns.facade

::org.puremvc.java.core::Controller <<interface>>

::org.puremvc.java.interfaces::IFacade
::org.puremvc.java.core::View ::org.puremvc.java.core::Model

Facade

Figure 30: The class diagram of JTopas.

56

4.2. JUnit Testing Framework

As mentioned in Chapter 3, SMIT tool predicts the number of test cases needed to test

each connection. We develop the test cases needed to test each system using JUnit testing

framework1. The JUnit framework is an open-source testing framework. JUnit is usually

used for developing unit tests where each single method is tested in isolation. In integration

testing, objects interact with each other in order to perform a task. Moreover, Objects in

medium and large size applications are very complex and they depend on external objects

to perform their tasks. For example, a method may need to access a database to perform

some tasks. Therefore, methods should be tested together and external objects should be

available in some way to simplify the testing process. A common technique for developing

integration test cases using JUnit is to create mock objects (mocks) that are used only

during running the test cases. A mock object, which is presented by Tim Mackinnon et al.

[44], is used to mimic a real-world object during testing.

Mocks are used to replace complex objects (e.g., databases, files, and internet con-

nection) that are needed by a method under test. One mock object is created for each real

object. Then, we can call a mock object in the test case. Mocks do not implement any

business logic and they are just dump objects driven by the tests. In other words, they are

empty skeletons that provide a mechanism to simulate the behavior of the faked class [4].

For example, in the Monopoly application, a mock object (mockGUI) is created

to simulate the Graphical User Interface (GUI) of the game. For each test suite that

needs to interact with the GUI, we provide the mock in the setup method of that test

suite (gameMaster.setGUI(new MockGUI())). Then, an object of that mock is created

inside the method in which the interaction with the GUI is needed (MonopolyGUI gui

= gameMaster.getGUI()).

1http://www.junit.org/

57

4.3. Experiments

In order to evaluate the proposed approach, we use both error seeding and mutation

analysis techniques. Section 4.3.1 presents the evaluation using error seeding and Section

4.3.4 presents the evaluation using mutation testing.

4.3.1. Error Seeding Testing

We gave error seeders a list that contains the most common integration errors as

categorized by Leung and White [38] and discussed by Orso [53]. We asked the error

seeders to inject different types of integration errors based on both the given integration

errors category and their experience. In order to get accurate results, applications are given

to three different third parties for error seeding and all results are included. The error

seeders have been asked to do the seeding independently to make the process as credible as

possible. Two types of error seeding experiments are used as follows:

• A number of seeded (faulty) programs are created for each application. Each seeded

program contains one error [32, 39]. Then, test cases are running against both the

original program and the seeded one. We say that the test cases detect the error if

they distinguish between the original program and the seeded one. Six Java appli-

cations are seeded by third party namely Monopoly, PureMVC, Cinema, ApacheCli,

Pacman, and ApacheValidator. In our work, error seeders are programmers with at

least three years of programming experience in Java.

• A combination of errors are injected into one version of the program to see the

effect of combining seeded errors in one faulty program on the effectiveness of our

proposed approach. This approach contains two variations as follows:

– Three faulty programs are created for each application by third party. The

programs are Pacman and Cinema. Each seeded program contains five errors.

58

– One faulty program is created for both PureMVC and JTopas. All integration

errors are injected in one faulty version. The number of injected faults is 15.

We run the minimum number of test cases for each system on both the original source

code of the system and the faulty versions of the system under test. We know the number of

inserted errors by the third party but we donot know the location of these errors. We check

that all test cases pass when they run against the original source code to make sure that the

test case detects the injected error when it fails while running against the faulty version.

4.3.2. Mutation Testing

We also applied mutation testing in order to further investigate the effectiveness

of our proposed approach. Previous work found that mutation testing is a reliable way

of assessing the fault-finding effectiveness of test cases and the generated mutants are

similar to real faults [5, 6]. We choose inter-class level mutation operators. Inter-class

level testing is usually applied when two or more classes are tested together to find inte-

gration faults [43]. Table 31 shows the mutation operator that we use in our work [43].

The set contains 24 mutation operators. Each mutation operator is related to one of the

six groups namely access control, inheritance, polymorphism, overloading, Java-specific

features, and common programming mistakes. The first four groups are common to all

object-oriented programming languages. Java-specific features group is exclusive for Java

programming language while the last group depends on common programming mistakes

in object-oriented languages. Mutants are usually created using an automated mutation

system. In our work, mutation operators are automatically generated using muJava tool 1.

MuJava tool is widely used to perform mutation analysis [71, 46]. After creating mutation

operators, test cases are running against both the original program and the faulty programs.

We say that the mutant is killed if test cases differentiate the output of the original program

from the mutant programs; otherwise the mutant is still alive.

1http://cs.gmu.edu/ offutt/mujava/

59

Figure 31: Mutation Operators for Inter-Class Testing.

4.3.3. Results of Error Seeding and Mutation

In this Section, we show the results of applying both error seeding and mutation

testing on the selected Java systems. For error seeding, the error detection rate is calculated

by dividing the number of detected seeded errors by the total number of seeded errors. For

mutation testing, the mutation score is calculated by dividing the number of killed mutants

by the total number of mutants.

Table 4: Error seeding results of the PureMVC application.

Source # of seeded errors Detected Not Detected Error detection rate

Third party A 19 16 3 84.21%

Third party B 10 8 2 80.00%

Third party C 15 13 2 86.67%

Table 4 shows the results of applying error seeding on the PureMVC application. For

the PureMVC application, 19 integration errors are inserted by third-party A and 16 of them

60

are detected. 10 integration errors are inserted by third-party B and 8 of them are detected.

15 integration errors are inserted by third-party C and 13 of them are detected. Table 5

shows the results of applying mutation testing on the PureMVC application. The number

of injected mutants is 51 and all of them are killed. Table 6 shows the results of applying

error seeding on the Cinema application. For the Cinema application, 20 integration errors

are inserted by third-party A and 17 of them are detected. 15 integration errors are inserted

by third-party B and C and 12 of them are detected. Table 7 shows the results of applying

mutation testing on the Cinema application. The number of injected mutants is 116 and all

of them are killed.

Table 5: Mutation testing results of the PureMVC application.

Application Class Live Killed Total Mutation score

PureMVC

Facade 0 10 10 100.00%
Mediator 0 5 5 100.00%
Notification 0 19 19 100.00%
Notifier 0 11 11 100.00%
Proxy 0 6 6 100.00%

Total 0 51 51 100.00%

Table 6: Error seeding results of the Cinema application.

Source # of seeded errors Detected Not Detected Error detection rate

Third party A 20 17 3 85.00%

Third party B 15 12 3 80.00%

Third party C 15 12 3 80.00%

Table 7: Mutation testing results of the Cinema application.

Application Class Live Killed Total Mutation score

Cinema

Asiento 0 6 6 100.00%
Cine 0 94 94 100.00%
Sesion 0 16 16 100.00%

Total 0 116 116 100.00%

61

Table 8 shows the results of applying error seeding on the ApacheCLI application.

For the ApacheCli application, 22 integration errors are inserted by third-party A and 19 of

them are detected. 15 integration errors are inserted by third-party B and 13 of them are

detected. 15 integration errors are inserted by third-party C and 12 of them are detected.

The number of injected mutants is 313 and all of them are killed.

Table 8: Error seeding results of the ApacheCLI application.

Source # of seeded errors Detected Not Detected Error detection rate

Third party A 22 19 3 86.36%

Third party B 15 13 2 86.67%

Third party C 15 12 3 80.00%

Table 10 shows the results of applying error seeding on the Pacman application. For

the Pacman application, 22 integration errors are inserted by third-part A and 18 of them

are detected. 15 integration errors are inserted by third-part B and 12 of them are detected.

15 integration errors are inserted by third-part C and 13 of them are detected.

Table 9: Mutation testing results of the ApacheCLI application.

Application Class Live Killed Total Mutation score

ApacheCLI

CommandLine 0 37 37 100.00%
AlreadySelectedException 0 7 7 100.00%
HelpFormatter 0 124 124 100.00%
MissingArgumentException 0 6 6 100.00%
MissingOptionException 0 1 1 100.00%
Option 0 40 40 100.00%
OptionBuilder 0 25 25 100.00%
OptionGroup 0 39 39 100.00%
Options 0 27 27 100.00%
ParseException 0 1 1 100.00%
PosixParser 0 4 4 100.00%
TypeHandler 0 1 1 100.00%
UnrecognizedPotionException 0 1 1 100.00%

Total 0 313 313 100.00%

62

Table 10: Error seeding results of the Pacman application.

Source # of seeded errors Detected Not Detected Error detection rate

Third party A 22 18 4 81.82%

Third party B 15 12 3 80.00%

Third party C 15 13 2 86.67%

Table 11: Error seeding results of the ApacheValidator application.

Source # of seeded errors Detected Not Detected Error detection rate

Third party A 24 21 3 87.50%

Third party B 15 13 2 86.67%

Third party C 15 13 2 86.67%

Table 11 shows the results of applying error seeding on the ApacheValidator applica-

tion. For the ApacheValidator application, 24 integration errors are inserted by third-party

A and 21 of them are detected in the first iteration. 15 integration errors are inserted by

third-party B and 8 of them are detected in the first iteration. Therefore, a second iteration

is performed to achieve at least 80% error detection rate. 13 errors out of 15 are detected in

the second iteration.

Table 12: Error seeding results of the Monopoly application.

Source # of seeded errors Detected Not Detected Error detection rate

Third party A 21 19 2 90.48%

Third party B 15 13 2 86.67%

Third party C 15 14 1 93.33%

Table 12 shows the results of applying error seeding on the Monopoly application.

For the Monopoly application, 21 integration errors are inserted by the third-party A and

19 of them are detected. 15 integration errors are inserted by the third-party B and 13 of

them are detected. 15 integration errors are inserted by the third-party C and 14 of them

are detected. Table 13 shows the results of applying mutation testing on the Monopoly

application. The number of injected mutants is 888 and all of them are killed.

63

We choose the JTopas application from Software-artifact Infrastructure Repository

(SIR) at University of Nebraska-lincoln 1. The JTopas application contains 63 classes,

753 methods, and 461 connections. We consider version 3 of the application where 16

seeded errors are available. We run SMIT tool on the JTopas application. SMIT suggests

writing 112 test cases. We develop the test cases using JUnit framework and we run the

test cases against the faulty version of the application. For the Jtpoas application,13 errors

are detected out of 16. The error detection rate is 81.25%.

Table 13: Mutation testing results of the Monopoly application.

Application Class Live Killed Total Mutation score

Monopoly

CardCell 0 1 1 100.00%

FreeParkingCell 0 1 1 100.00%

GameBoard 0 9 9 100.00%

GameBoard14 0 131 131 100.00%

GameBoardCCGainMoney 0 21 21 100.00%

GameBoardCCJail 0 21 21 100.00%

GameBoardCCLoseMoney 0 21 21 100.00%

GameBoardCCMovePlayer 0 21 21 100.00%

GameBoardFreeParking 0 1 1 100.00%

GameBoardFull 0 241 241 100.00%

GameBoardJail 0 51 51 100.00%

GameBoardRailRoad 0 41 41 100.00%

GameBoardUtility 0 41 41 100.00%

GameMaster 0 177 177 100.00%

GoToJailCell 0 1 1 100.00%

JailCard 0 2 2 100.00%

JailCell 0 2 2 100.00%

MockTradeDialog 0 2 2 100.00%

MoneyCard 0 6 6 100.00%

MovePlayerCard 0 3 3 100.00%

CellInfoFormatterTest 0 24 24 100.00%

PropertyCell 0 10 10 100.00%

RailRoadCell 0 4 4 100.00%

SimpleGameBoard 0 51 51 100.00%

TradeDeal 0 3 3 100.00%

UtilityCell 0 2 2 100.00%

Total 0 888 888 100.00%

1http://sir.unl.edu

64

It is worth pointing out that all of the selected systems achieve a detection rate higher

than 80% after the first iteration except for the ApacheValidator application seeded by third-

party B which achieves a detection rate higher than 80% after the second iteration.

Figure 32 shows the error detection rate for the applications under test where A

represents the programs seeded by third party A, B represents the programs seeded by

third party B, and C represents the programs seeded by third party C. Table 14 shows

the number of test cases developed to test each system. It also shows the percentage of

connections that are covered by the developed test cases. For example, in the Monopoly

application, we write 45 test cases to test 45 connections out of 449 connections and we

only cover 10.02% of the connections while detecting 90.48% of integration errors. The

Monopoly application achieves the highest reduction of the number of tested connections

(10.02%) while the PureMVC application achieves the lowest reduction (44.44%). For the

ApacheValidator, 72 test cases are developed for the first iteration. The error detection rate

for the system seeded by third-party B is 53.33%. Thus, a second iteration is performed by

adding 11 more test cases as recommended by SMIT.

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

A

B

C

Figure 32: Error detection rate for the selected applications.

65

Table 14: Number of test cases created for each application.

Project # of connections # of test cases Covered connections

Monopoly 449 45 10.02%

PureMVC 54 24 44.44%

Cinema 97 15 15.46%

ApcheCli 196 43 21.93%

Pacman 176 46 26.13%

ApacheValidator 275 72 26.18%

JTpoas 461 112 24.30%

4.3.4. Comparison with Related Work

Several approaches are found in the literature for defect prediction. These approaches

predict the probability that a file will have at least one error. Other approaches predict the

exact number of errors that may be found in a file where a file contains many classes. Most

of these approaches use complexity metrics as independent variables to predict the faulty

files. Zimmerman and Nagappan [72] mentioned that a main disadvantage of most com-

plexity metrics is that they only work on single files and they do not take the interactions

between different files in their considerations. On the same hand, these approaches can be

used for reducing the cost of unit testing by focusing the testing process on faulty files.

These approaches cannot be used for integration testing because they do not predict the

important interactions between files. In our work, we predict error-prone interactions and

we predict the number of test cases needed to test each one. A similar approach to ours is a

research by Borner and Paech [10]. In their work they presented an approach to select the

test focus in the integration test process. They identified correlations between dependency

properties and the number of errors in both the dependent and the independent files in the

previous versions of the system under test. They divided the test focus into four groups:

1) Not Test Focus, 2) Test Focus Dependent file, 3) Test Focus Independent File, and 4)

Test Focus Both Files. A dependency is assigned to the first group if it does not have any

error-prone property where a property is error prone if it correlates with the number of

66

errors in the dependent or independent file. A dependency is assigned to the second group

if it has at least one property that correlates with the number of errors in the dependent file.

A dependency is assigned to the third group if it has at least one property that correlates

with the number of errors in the independent file while a dependency is assigned to the last

group if it has at least one property that correlates with the number of errors in both files.

The main differences between our approach and Borner and Paech approach are:

• Their approach just works for systems that have previous versions while our approach

does not need previous versions of the system under test.

• Their approach predicts the error-prone dependencies while our approach not only

predicts the error-prone dependencies but also predicts the number of test cases

needed to test each dependency. In addition, we rank dependencies by giving a

weight for each dependency in which a dependency with a higher weight is assigned

more test cases than a dependency with a lower weight.

• They identify the correlations between the dependency properties and the number of

errors in the dependent and the independent file. In our work, we do not identify the

correlations between our metrics and the number of errors in files because we are

working on the method level and information about number of errors at the method

level is not available. In our view, identifying the correlations with the number of

errors in files is not an accurate measure because errors belong to different classes

inside the file and we cannot tell in which class the errors reside.

Previous integration testing approaches assume that all classes are not yet developed

when testing is started. Therefore, stubs and drivers are needed to simulate the function-

alities of the classes that are not been developed yet. The focus of these approaches is

to minimize the cost of testing by minimizing the number of stubs [16] or by minimizing

the overall stub complexity [2]. They achieve cost reduction by devising integration test

67

orders. In our work, we assume that all classes of the system under test are available when

the testing process is performed. Therefore, stubs and drivers are not needed in our case.

In addition, our focus is to reduce cost of integration testing by using small number of test

cases while detecting at least 80% of integration errors.

4.3.5. Comparison with the Base Line Approach

In this section, we are going to compare our proposed approach with a base line

approach. In our work, a base line approach is an approach in which all method-pair

connections should be tested. We assume that every connection needs only one test case.

We also assume that the base line approach will achieve 100% error detection rate because

writing integration test cases for all of the connections can be very time consuming. We

conduct two comparisons with the baseline approach. The first comparison is performed

by measuring the savings that can be obtained by our proposed approach. We measure the

percentage of test cases reduction using the following formula [58]:

Savings =
|T | − |Tsmit|

|T |
∗ 100 (5)

Where T is the number of test cases in the base line approach and Tsmit is the number

of test cases given by SMIT. The formula assumes that all test cases have uniform costs.

Table 15 measures the percentage of savings. It is clear from Table 15 that the minimum

percentage of savings is obtained for the PureMVC application (55.56) while the maximum

percentage of savings is obtained for the Monopoly application (89.98).

The second comparison is performed by computing a score which takes both error

detection rate and number of developed test cases in consideration. The score is computed

as follows:

Score =
Error detection rate

Number of test cases
(6)

68

Table 15: The percentage of savings.

Application Savings

Monopoly 89.98

PureMVC 55.56

Cinema 84.54

ApacheCli 78.06

Pacman 73.86

ApaValidator 73.81

JTopas 75.70

Table 16 shows the results of comparing our approach with the base line approach.

The results indicate that our proposed approach achieves a higher score than the base line

approach for all of the selected applications. We conclude that the proposed approach

outperforms the baseline approach for all of the applications.

Table 16: The results of comparing the proposed approach with the baseline approach.

Application
Our Approach The baseline Approach

of test cases Detection score Score # of test cases Detection score Score

Monopoly 45 90.48% 2.01 449 100.00% 0.22

PureMVC 24 84.21% 3.51 54 100.00% 1.85

Cinema 15 85.00% 5.67 97 100.00% 1.03

ApacheCli 43 86.36% 2.01 196 100.00% 0.51

Pacman 46 80.00% 1.74 176 100.00% 0.57

ApacheValidator 72 87.50% 1.22 275 100.00% 0.36

JTopas 112 81.25% 0.73 461 100.00% 0.22

4.4. Discussion

As mentioned in the previous Section, we use both error seeding and mutation testing

techniques in order to evaluate the effectiveness of the proposed approach. We will start by

discussing the results of applying error seeding technique by three different third-parties

on six Java applications and JTpoas application which is seeded by SIR.

4.4.1. Applications Seeded by Third-party A

For the Monopoly system, 21 integration errors are seeded by a third party and 19

of them are detected by our developed test cases (45 test cases). The seeded errors are

69

distributed as follows: 9 wrong function errors are injected and 8 of them are detected, 3

extra function errors are injected and all of them are detected, 7 missing instructions are

injected and all of them are detected, 2 extra call instructions are injected and one of them

is detected using the developed test cases. The Monopoly system contains 57 classes and

449 connections where only 10.02% of the connections are covered by the developed test

cases while achieving 90.48% error detection rate. The results indicate that most of the

integration errors are exist in the top ranked 10% of the connections. This also proves

that our approach can predict effectively the important connections. In other words, the

connections that have higher weights are more important than the connections that have

lower weights.

For the PureMVC framework, 19 integration errors are injected, 16 of them are

detected by the developed test cases (24 test cases). The seeded errors are distributed as

follows: 8 wrong function errors are injected and 7 of them are detected, 2 extra function

errors are injected and one of them is detected, 8 missing instructions are injected and

7 of them are detected, 1 extra call instruction is injected and it is detected using the

developed test cases. PureMVC contains 22 classes and 54 connections where 44.44%

of the connections are covered by the developed test cases while achieving 84.21% error

detection rate. The results indicate that the PureMVC framework gives little reduction

of the number of covered connections (it covers 44.44% of the connections). One reason

that PureMVC covers more than 40% of the connections is that the number of connections

between classes is small (it contains 22 classes and 54 connections). Therefore, if we cover

only 10% of the connections, most of the class-pair connections will not be tested. Also,

in our approach, we specify at least one test case to test class-pair connections. Therefore,

we write test cases that cover most of the connections if the classes have few connections

between them. For the Cinema system, 20 integration errors are injected, 17 of them are

detected by the developed test cases (15 test cases). The seeded errors are distributed as

70

follows: 8 wrong function errors are injected and 7 of them are detected, 3 extra function

errors are injected and all of them are detected, 6 missing instructions are injected and 5 of

them are detected, 3 extra call instruction are injected and two of them are detected using

the developed test cases. The Cinema system contains 10 classes and 97 connections where

only 15.46% of the connections are covered by the developed test cases while achieving

85.00% error detection rate. The results indicate that 85% of errors exist in the top 15% of

connections. The Cinema system achieves the second highest reduction after the Monopoly

system.

For ApacheCLI, 22 integration errors are injected, 19 of them are detected by the

developed test cases (43 test cases). The seeded errors are distributed as follows: 7 wrong

function errors are injected and 6 of them are detected, 3 extra function errors are injected

and two of them are detected, 8 missing instructions are injected and 7 of them are detected,

4 extra call instruction are injected and all of them are detected using the developed test

cases. ApacheCLI contains 20 classes and 196 connections where 21.93% of the connec-

tions are covered by the developed test cases while achieving 86.36% error detection rate.

The results indicate that 86.36% of errors exist in the top 22% of connections.

For Pacman, 22 integration errors are injected, 18 of them are detected by the devel-

oped test cases (46 test cases). The seeded errors are distributed as follows: 8 wrong func-

tion errors are injected and 6 of them are detected, 2 extra function errors are injected and

one of them are detected, 7 missing instructions are injected and all of them are detected,

5 extra call instruction are injected and 4 of them are detected using the developed test

cases. Pacman contains 25 classes and 176 connections where 26.13% of the connections

are covered by the developed test cases while achieving 81.82% error detection rate in the

first iteration of the proposed approach. The approach starts with an initial number of test

cases that equals to 18 (10% of the connections). Then, the approach adds one test case to

cover the class-pair connections that have not been covered in the 10% of connections (i.e.,

71

the approach assigns at least one test case to cover each class-pair connection). The results

indicate that 81.82% of errors exist in the top 27% of connections. The Pacman system

achieves the lowest error detection rate.

For ApacheValidator, 24 integration errors are injected, 21 of them are detected by

the developed test cases (72 test cases). The seeded errors are distributed as follows: 11

wrong function errors are injected and all of them are detected, 4 extra function errors are

injected and two of them are detected, 5 missing instructions are injected and all of them are

detected, 4 extra call instruction are injected and 3 of them are detected using the developed

test cases. ApacheValidator contains 59 classes and 275 connections where 26.18% of the

connections are covered by the developed test cases while achieving 87.50% error detection

rate. The ApacheValidator library is the largest system in terms of the number of classes in

our experimental study and it’s detection rate exceeds 80% in the first iteration.

4.4.2. Applications Seeded by Third-party B

For the Monopoly system, 15 integration errors are seeded by a third party and 13 of

them are detected by our developed test cases. The seeded errors are distributed as follows:

10 interpretation errors are injected and 9 of them are detected, 5 miscoded call errors are

injected and 4 of them are detected. For PureMVC, 10 integration errors are seeded by a

third party and 8 of them are detected by our developed test cases. The seeded errors are

distributed as follows: 6 interpretation errors are injected and all of them are detected, 4

miscoded call errors are injected and 2 of them are detected. For Cinema, 15 integration

errors are seeded by a third party and 12 of them are detected by our developed test cases.

The seeded errors are distributed as follows: 6 interpretation errors are injected and 5 of

them are detected, 4 miscoded call errors are injected and all of them are detected, and 5

interface errors and 3 of them are detected. For ApacheCLI, 15 integration errors are seeded

by a third party and 13 of them are detected by our developed test cases. The seeded errors

are distributed as follows: 7 interpretation errors are injected and 5 of them are detected,

72

6 miscoded call errors are injected and all of them are detected, and 2 interface errors and

1 of them is detected. For Pacman, 15 integration errors are seeded by a third party and

12 of them are detected by our developed test cases. The seeded errors are distributed as

follows: 6 interpretation errors are injected and 4 of them are detected, 4 miscoded call

errors are injected and all of them are detected, and 5 interface errors and 4 of them are

detected. For ApacheValidator, 15 integration errors are seeded by a third party and 13 of

them are detected by our developed test cases. The seeded errors are distributed as follows:

9 interpretation errors are injected and 8 of them are detected, 2 miscoded call errors are

injected and 1 of them is detected, and 4 interface errors and 4 of them are detected.

4.4.3. Applications Seeded by Third-party C

For the Monopoly system, 15 integration errors are seeded by a third party and 14 of

them are detected by our developed test cases. The seeded errors are distributed as follows:

2 interpretation errors are injected and all of them are detected, 8 miscoded call errors are

injected and 7 of them are detected, and 5 interface errors and all of them are detected. For

PureMVC, 15 integration errors are seeded by a third party and 13 of them are detected

by our developed test cases. The seeded errors are distributed as follows: 1 interpretation

error is injected and it is detected, 13 miscoded call errors are injected and 12 of them are

detected, and 1 interface errors and it is not detected. For Cinema, 15 integration errors

are seeded by a third party and 12 of them are detected by our developed test cases. The

seeded errors are distributed as follows: 3 interpretation errors are injected and 1 of them

is detected, 8 miscoded call errors are injected and all of them are detected, and 4 interface

errors and 3 of them are detected.

For ApacheCLI, 15 integration errors are seeded by a third party and 12 of them

are detected by our developed test cases. The seeded errors are distributed as follows: 7

interpretation errors are injected and 6 of them are detected, 6 miscoded call errors are

injected and 4 of them are detected, and 2 interface errors and all of them are detected.

73

For Pacman, 15 integration errors are seeded by a third party and 13 of them are detected

by our developed test cases. The seeded errors are distributed as follows: 7 interpretation

errors are injected and all of them are detected, 4 miscoded call errors are injected and 3 of

them are detected, and 3 interface errors and 2 of them is detected. For ApacheValidator, 15

integration errors are seeded by a third party and 13 of them are detected by our developed

test cases. The seeded errors are distributed as follows: 5 interpretation errors are injected

and all of them are detected, 7 miscoded call errors are injected and 5 of them are detected,

and 3 interface errors and all of them are detected.

We also conduct an experiment where combination of errors are injected into one

version of the program to see the effect of combining seeded errors in one faulty program

on the effectiveness of our proposed approach. We select JTopas which contains 461

connections. The number of seeded errors is 16. For the Jtpoas application,13 errors are

detected out of 16. The error detection rate is 81.25% and we cover only 24.30% of the

connections. The results of JTopas indicates two main findings: 1) The effectiveness of the

proposed approach since we use another source of seeding errors other than the third party;

and 2) The proposed approach works well even when we combine all of the errors in one

version of the source code.

4.4.4. Mutation Testing

The second approach that we use to evaluate our approach is mutation testing. We

make the following observations based on the experimental results of mutation testing:

• For Monopoly, 888 inter-class mutations are injected and all of them are killed by

the developed test cases.

• For Cinema, 116 inter-class mutations are injected and all of them are killed by the

developed test cases.

• For ApacheCLI, 313 mutations are injected and all of them are killed.

74

• For PureMVC, 51 inter-class mutations are injected and all of them are killed by the

developed test cases.

The effectiveness of the proposed approach is confirmed by using error seeding and

mutation testing. The results of error seeding show that the developed test cases based on

SMIT detect at least 80% of integration errors. The mutation testing is performed using

mutation operators. The mutation operators focus on the integration aspects of Java to

support inter-class level testing [42]. The results of using mutation testing show that all of

the mutants are killed which serve as another evidence of the effectiveness of our proposed

approach. Therefore, our approach is effective in detecting most of the integration errors

by testing the highly ranked connections. The experimental results show that the highly

ranked connections contain most of the integration errors. It also shows SMIT reduces the

number of test cases needed for integration testing.

4.4.5. Threats to Validity

There are many reasons which limit the generality of the results of the proposed

approach. First, all of the considered systems are Java systems. Second, all of the selected

systems are open-source systems that may not represent all domains. Third, the selected

systems are not representative in terms of the number and sizes of classes. Therefore, large-

scale assessment is needed taking into account software systems from diverse domains,

implemented in different programming languages and environments in order to get more

general results.

75

CHAPTER 5. CONCLUSION AND FUTURE WORK

In this work, we proposed an approach to select the test focus in integration testing.

The goal is to reduce cost and time of integration testing through testing part of the con-

nections while still detecting at least 80% of integration errors. Our proposed approach is

divided into five steps. The first step is to extract the dependencies from the compiled Java

code. The dependencies will be used to extract the dependency metrics. The second step is

to extract the metrics automatically using both the source code and the dependencies from

the previous step. The output of this step is the metrics at different levels of granularity

which include method level metrics, method-pair metrics, and class-pair metrics. The third

step is to calculate a weight for each method-pair connection using combination of metrics

defined in the previous step. The fourth step is to predict the number of test cases needed to

test each method-pair connection based on the weights of the connections produced in the

previous step given the initial minimum number of test cases. The number of test cases can

be increased depending on the error discovery rate. The last step is to generate test cases

manually to test the designated application.

Some of the metrics used in this work are defined and selected to cover different

types of dependencies. We defined three method level dependency metrics namely Inbound

Method Dependencies (IMD), Outbound Method Dependencies (OMD), and Outbound

Field Dependencies (OFD). We defined two method-pair level dependency metrics namely

Inbound Common Method Dependencies (ICM) and Outbound Common Method Depen-

dencies (OCM). The other metrics are selected to cover the internal complexity of a method.

In our work, the internal complexity represented by three metrics namely Local Variables

(LVAR), Number of complex input parameters (NOCMP), and Maximum Nesting Depth

(MND).

We built SMIT tool using R language to calculate the metrics automatically and to

implement the proposed approach. The outputs of SMIT are four files in CSV format,

76

method metrics, method-pair metrics, class-pair, and a final report. The final report speci-

fies the number of test cases needed to test each connection.

We conducted experiments on several Java systems taken from different domains

which include two games systems, three Java libraries, one business application, and one

web application. To assess the effectiveness of our proposed approach, we used both error

seeding and mutation testing as follows:

• Manual integration errors were injected into the source code of the applications by

three third-parties to make sure that we get accurate results and solid conclusions.

• Automatic inter-class mutants were inserted into the source code by MuJava tool.

The effectiveness of the developed test cases based on SMIT recommendation was

evaluated using the following measures:

• Detection rate: The number of detected seeded errors divided by the number of all

seeded errors.

• Mutation score: The number of killed mutants divided by the number of all mutants.

• Savings: The percentage of test cases reduction.

• Score: The error detection rate divided by the number of developed test cases.

• Covered connections: The number of connections that we developed test cases for

divided by the number of all connections.

Our experimental evaluation using error seeding technique shows that the developed

test cases achieved error detection rate higher than or equal to 80.00% for all selected

systems in the first iteration except the ApacheValidator system which achieved an error

detection rate higher than 80% after the second iteration. Moreover, the results showed

77

that the PureMVC framework gave the lowest reduction of the number of covered con-

nections (44.44%) while the Monopoly system achieved the highest reduction (it covered

only 10.02% of the connections). Therefore, the experimental results showed that our

proposed approach is effective in selecting the test focus in integration testing. The small

number of developed test cases detected at least 80.00% of integration errors in all selected

applications. The proposed approach reduced the number of test cases needed by covering

only part of the connections. In addition, the results showed that at least 80% of integration

errors typically exist in the highly ranked connections, i.e., the highly ranked connections

have a higher probability to contain integration errors. Our experimental evaluation using

mutation testing shows that the developed test cases based on the proposed approach kill all

of the inter-class mutants which give another evidence on the effectiveness of our proposed

approach.

We compared our approach with the baseline approach. The comparison was per-

formed by calculating both the percentage of test cases reduction and the error detection

rate divided by the number of developed test cases. The results indicated that the proposed

approach outperformed the baseline approach for all applications. Therefore, our goal of

reducing time and cost of integration testing is achieved. One significant advantage of our

proposed approach is that almost all steps of our approach can be performed automatically.

In future, we want to select the test focus for integration testing using both method

level metrics and integration errors history of previous versions of the system under test.

Information about errors history can be obtained using bug tracking systems. All of the

dependency metrics for source code can be extracted automatically using SMIT tool. We

are planning to use previous versions of the system under test to identify the metrics that

correlate with the number of integration errors in the source code. The method level metrics

that have a high correlation with the number of integration errors will be used to select the

test focus of the new version of the system.

78

We are also planning to use our method level metrics to select the test focus for

unit testing. Our goal is to give a weight for each method in the system under test using

combination of dependency metrics and internal complexity metrics, and then we focus the

testing process on the highly ranked methods, i.e., methods that have higher weights. We

also want to predict the number of test cases needed to test each method in the system.

Future directions also include using textual coupling as another source of depen-

dencies. Textual coupling can be computed using the similarity between method-pairs.

Each method can be represented as a document and then information retrieval techniques

can be used to compute similarities between methods. We would like to investigate the

effect of using hybrid dependency metrics (our previous dependency metrics and the textual

coupling) on error detection rate.

In our work, we defined dependencies on method level. A finer grain level of depen-

dencies may improve the results. Therefore, we want to investigate the effect of defining

dependencies on statement level on the error detection rate. We are also planning to

define dependency metrics on the feature level. Different functionalities of a system can

be implemented as features. A feature contains many methods scattered over a system.

Feature level dependency metrics can be used to measure impact analysis where some

changes made to one feature usually have accidental results for other features resulting in

incorrect system behavior.

79

REFERENCES

[1] Aynur Abdurazik and Jeff Offutt, Using uml collaboration diagrams for static

checking and test generation, Proceedings of the 3rd international conference on The

unified modeling language: advancing the standard (Berlin, Heidelberg), UML’00,

Springer-Verlag, 2000, pp. 383–395.

[2] Aynur Abdurazik and Jeff Offutt, Using coupling-based weights for the class

integration and test order problem, vol. 52, Oxford University Press, August 2009,

pp. 557–570.

[3] Shaukat Ali, Lionel Briand, Muhammad Jaffar-ur Rehman, Hajra Asghar,

Muhammad Zohaib Iqbal, and Aamer Nadeem, A state-based approach to integration

testing based on uml models, Inf. Softw. Technol. 49 (2007), 1087–1106.

[4] Paul Ammann and Jeff Offutt, Introduction to software testing, Cambridge University

Press, 2008.

[5] James Andrews, Lionel Briand, and Yvan Labiche, Is mutation an appropriate tool

for testing experiments?[software testing], Software Engineering, 2005. ICSE 2005.

Proceedings. 27th International Conference on, IEEE, 2005, pp. 402–411.

[6] James Andrews, Lionel Briand, Yvan Labiche, and Akbar Siami Namin, Using

mutation analysis for assessing and comparing testing coverage criteria, Software

Engineering, IEEE Transactions on 32 (2006), no. 8, 608–624.

[7] Victor Basili, Lionel Briand, and Walcelio Melo, A validation of object-oriented

design metrics as quality indicators, IEEE Trans. Softw. Eng. 22 (1996), 751–761.

[8] Saı̈da Benlarbi and Walcelio Melo, Polymorphism measures for early risk prediction,

Proceedings of the 21st international conference on Software engineering (New York,

NY, USA), ICSE ’99, ACM, 1999, pp. 334–344.

[9] Lars Borner and Barbara Paech, Integration test order strategies to consider test

focus and simulation effort, Proceedings of the 2009 First International Conference

on Advances in System Testing and Validation Lifecycle (Washington, DC, USA),

VALID ’09, IEEE Computer Society, 2009, pp. 80–85.

[10] Lars Borner and Barbara Paech, Using dependency information to select the test focus

in the integration testing process, Proceedings of the 2009 Testing: Academic and

Industrial Conference - Practice and Research Techniques (Washington, DC, USA),

TAIC-PART ’09, IEEE Computer Society, 2009, pp. 135–143.

[11] Lionel Briand, Jie Feng, and Yvan Labiche, Using genetic algorithms and coupling

measures to devise optimal integration test orders, Proceedings of the 14th

international conference on Software engineering and knowledge engineering (New

York, NY, USA), SEKE ’02, ACM, 2002, pp. 43–50.

80

[12] Lionel Briand, Yvan Labiche, and Siyuan He, Automating regression test selection

based on uml designs, Inf. Softw. Technol. 51 (2009), 16–30.

[13] Lionel Briand, Yvan Labiche, and Yihong Wang, Revisiting strategies for ordering

class integration testing in the presence of dependency cycles, Proceedings of the

12th International Symposium on Software Reliability Engineering (Washington, DC,

USA), ISSRE ’01, IEEE Computer Society, 2001.

[14] Lionel Briand, Jürgen Wüst, John Daly, and Victor Porter, Exploring the relationship

between design measures and software quality in object-oriented systems, J. Syst.

Softw. 51 (2000), 245–273.

[15] Lionel Briand, Jürgen Wüst, and Hakim Lounis, Replicated case studies

for investigating quality factors in object-oriented designs, Empirical Software

Engineering: An International Journal 6 (2001), 11–58.

[16] Lionel C Briand, Yvan Labiche, and Yihong Wang, An investigation of graph-based

class integration test order strategies, Software Engineering, IEEE Transactions on

29 (2003), no. 7, 594–607.

[17] Philippe Chevalley, Applying mutation analysis for object-oriented programs using a

reflective approach, Proceedings of the Eighth Asia-Pacific on Software Engineering

Conference (Washington, DC, USA), APSEC ’01, IEEE Computer Society, 2001,

pp. 267–.

[18] Shyam Chidamber and Chris Kemerer, A metrics suite for object oriented design,

IEEE Transactions on Software Engineering 20 (1994), 476–493.

[19] Peter Clarke, Djuradj Babich, Tariq King, and BM Golam Kibria, Analyzing clusters

of class characteristics in oo applications, J. Syst. Softw. 81 (2008), 2269–2286.

[20] Richard DeMillo, Richard Lipton, and Frederick Sayward, Hints on test data

selection: Help for the practicing programmer, Computer 11 (1978), 34–41.

[21] Jens Dietrich, Catherine McCartin, Ewan Tempero, and Syed Ali Shah, On

the existence of high-impact refactoring opportunities in programs, Australasian

Computer Science Conference (ACSC 2012) (Melbourne, Australia) (M. Reynolds

and B Thomas, eds.), CRPIT, vol. 122, ACS, 2012, pp. 37–48.

[22] Sebastian Elbaum, Alexey Malishevsky, and Gregg Rothermel, Incorporating varying

test costs and fault severities into test case prioritization, ICSE, 2001, pp. 329–338.

[23] Sebastian Elbaum, Alexey Malishevsky, and Gregg Rothermel, Test case

prioritization: A family of empirical studies, Software Engineering, IEEE

Transactions on 28 (2002), no. 2, 159–182.

81

[24] Khaled El Emam, Walcélio Melo, and Javam Machado, The prediction of faulty

classes using object-oriented design metrics, Journal of Systems and Software 56

(2001), 63–75.

[25] Jeanne Ferrante, Karl Ottenstein, and Joe Warren, The program dependence graph

and its use in optimization, ACM Transactions on Programming Languages and

Systems (TOPLAS) 9 (1987), no. 3, 319–349.

[26] Falk Fraikin and Thomas Leonhardt, Seditec ” testing based on sequence diagrams,

Proceedings of the 17th IEEE international conference on Automated software

engineering (Washington, DC, USA), ASE ’02, IEEE Computer Society, 2002,

pp. 261–.

[27] Leonard Gallagher, Jeff Offutt, and Anthony Cincotta, Integration testing of object-

oriented components using finite state machines: Research articles, Softw. Test. Verif.

Reliab. 16 (2006), 215–266.

[28] Todd Graves, Mary Jean Harrold, Jung-Min Kim, Adam Porter, and Gregg Rothermel,

An empirical study of regression test selection techniques, (1998), 188–197.

[29] Vu Le Hanh, Kamel Akif, Yves Le Traon, and Jean-Marc Jézéquel, Selecting

an efficient oo integration testing strategy: An experimental comparison of actual

strategies, Proceedings of the 15th European Conference on Object-Oriented

Programming (London, UK, UK), ECOOP ’01, Springer-Verlag, 2001, pp. 381–401.

[30] Bill Hetzel, The complete guide to software testing, 2nd ed., QED Information

Sciences, Inc., Wellesley, MA, USA, 1988.

[31] Rattikorn Hewett, Phongphun Kijsanayothin, and Darunee Smavatkul, Test order

generation for efficient object-oriented class integration testing., SEKE, Knowledge

Systems Institute Graduate School, 2008, pp. 703–708.

[32] Monica Hutchins, Herb Foster, Tarak Goradia, and Thomas Ostrand, Experiments

of the effectiveness of dataflow- and controlflow-based test adequacy criteria,

Proceedings of the 16th international conference on Software engineering, ICSE ’94,

IEEE Computer Society Press, 1994, pp. 191–200.

[33] Zhenyi Jin and Jefferson Offutt, Coupling-based criteria for integration testing,

Software Testing Verification and Reliability 8 (1998), no. 3, 133–154.

[34] Sunwoo Kim, John A Clark, and John A McDermid, Class mutation: Mutation testing

for object-oriented programs, Proc. Net. ObjectDays, Citeseer, 2000, pp. 9–12.

[35] Bogdan Korel, The program dependence graph in static program testing, Inf. Process.

Lett. 24 (1987), 103–108.

[36] Gilbert Thomas Laycock and Gilbert Thomas Laycock, The theory and practice of

specification based software testing, Tech. report, Sheffield University, 1993.

82

[37] YS Lee, BS Liang, SF Wu, and FJ Wang, Measuring the coupling and cohesion of an

object-oriented program based on information flow, Proc. International Conference

on Software Quality, Maribor, Slovenia, 1995, pp. 81–90.

[38] Hareton KN Leung and Lee White, A study of integration testing and software

regression at the integration level, Software Maintenance, 1990., Proceedings.,

Conference on, IEEE, 1990, pp. 290–301.

[39] Nan Li, Upsorn Praphamontripong, and Jeff Offutt, An experimental comparison

of four unit test criteria: Mutation, edge-pair, all-uses and prime path coverage,

Software Testing, Verification and Validation Workshops, 2009. ICSTW’09.

International Conference on, IEEE, 2009, pp. 220–229.

[40] Wei Li and Sallie Henry, Object-oriented metrics that predict maintainability, Journal

of systems and software 23 (1993), no. 2, 111–122.

[41] Rdiger Lincke, Jonas Lundberg, and Welf Lwe, Comparing software metrics tools.,

ISSTA (Barbara G. Ryder and Andreas Zeller, eds.), ACM, 2008, pp. 131–142.

[42] Yu-Seung Ma, Yong-Rae Kwon, and Jeff Offutt, Inter-class mutation operators

for java, Proceedings of the 13th International Symposium on Software Reliability

Engineering (Washington, DC, USA), ISSRE ’02, IEEE Computer Society, 2002,

pp. 352–360.

[43] Yu-Seung Ma, Jeff Offutt, and Yong Rae Kwon, Mujava: an automated class

mutation system: Research articles, Softw. Test. Verif. Reliab. 15 (2005), 97–133.

[44] Tim Mackinnon, Steve Freeman, and Philip Craig, Extreme programming examined,

(2001), 287–301.

[45] Robert Martin, Oo design quality metrics - an analysis of dependencies, Workshop

Pragmatic and Theoretical Directions in Object-Oriented Software Metrics, 1994.

[46] Ammar Masood, Rafae Bhatti, Arif Ghafoor, and Aditya P. Mathur, Scalable and

effective test generation for role-based access control systems, IEEE Trans. Softw.

Eng. 35 (2009), 654–668.

[47] HD Mills, On the statistical validation of computer programs, IBM Federal Syst. Div.,

Tech. Rep (1972), 72–6015.

[48] Larry Morell, A theory of fault-based testing, Software Engineering, IEEE

Transactions on 16 (1990), no. 8, 844–857.

[49] Glenford Myers, Corey Sandler, and Tom Badgett, The art of software testing, Wiley,

2011.

83

[50] Nachiappan Nagappan and Thomas Ball, Using software dependencies and churn

metrics to predict field failures: An empirical case study, Proceedings of the First

International Symposium on Empirical Software Engineering and Measurement

(Washington, DC, USA), ESEM ’07, IEEE Computer Society, 2007, pp. 364–373.

[51] Jefferson Offutt and Huffman Hayes, A semantic model of program faults, ACM

SIGSOFT Software Engineering Notes, vol. 21, ACM, 1996, pp. 195–200.

[52] Jefferson Offutt, Roy Pargas, Scott Fichter, and Prashant Khambekar, Mutation

testing of software using a mimd computer, in 1992 International Conference on

Parallel Processing, Citeseer, 1992.

[53] Alessandro Orso, Integration testing of object-oriented software, Ph.D. thesis,

Politecnico di Milano, Milan, Italy, february 1999.

[54] Alessandro Orso, Saurabh Sinha, and Mary Jean Harrold, Classifying data

dependences in the presence of pointers for program comprehension, testing, and

debugging, ACM Trans. Softw. Eng. Methodol. 13 (2004), 199–239.

[55] Shari Lawrence Pfleeger, Software engineering: Theory and practice, 2nd ed.,

Prentice Hall PTR, Upper Saddle River, NJ, USA, 2001.

[56] Andy Podgurski and Lori A. Clarke, A formal model of program dependences

and its implications for software testing, debugging, and maintenance, Software

Engineering, IEEE Transactions on 16 (1990), no. 9, 965–979.

[57] Jane Radatz, Anne Geraci, and Freny Katki, Ieee standard glossary of software

engineering terminology, vol. 610121990, 1990.

[58] Gregg Rothermel, Mary Jean Harrold, Jeffery Ostrin, and Christie Hong, An empirical

study of the effects of minimization on the fault detection capabilities of test suites, In

Proceedings of the International Conference on Software Maintenance, 1998, pp. 34–

43.

[59] Adrian Schröter, Thomas Zimmermann, and Andreas Zeller, Predicting component

failures at design time, Proceedings of the 2006 ACM/IEEE international symposium

on Empirical software engineering, ISESE ’06, ACM, 2006, pp. 18–27.

[60] Alexander Serebrenik, Serguei Roubtsov, and Mark van den Brand, Dn-

based architecture assessment of java open source software systems, Program

Comprehension, 2009. ICPC’09. IEEE 17th International Conference on, IEEE, 2009,

pp. 198–207.

[61] Saurabh Sinha, Mary Jean Harrold, and Gregg Rothermel, Interprocedural control

dependence, ACM Trans. Softw. Eng. Methodol. 10 (2001), 209–254.

84

[62] Arthur G Stephenson, Daniel R Mulville, Frank H Bauer, Greg A Dukeman, Peter

Norvig, LS LaPiana, PJ Rutledge, D Folta, and R Sackheim, Mars climate orbiter

mishap investigation board phase i report, 44 pp, NASA, Washington, DC (1999).

[63] Sriraman Tallam and Neelam Gupta, A concept analysis inspired greedy algorithm for

test suite minimization, ACM SIGSOFT Software Engineering Notes, vol. 31, ACM,

2005, pp. 35–42.

[64] Gregory Tassey, The economic impacts of inadequate infrastructure for software

testing, Tech. report, 2002.

[65] RDevelopment Core Team, R: A language and environment for statistical computing.

vienna, austria: R foundation for statistical computing; 2008, 2011.

[66] Jean Tessier, Dependency finder, URL http://depfind. sourceforge. net/. Zugriffsdatum

4 (2010).

[67] Nancy J Wahl, An overview of regression testing, ACM SIGSOFT Software

Engineering Notes 24 (1999), no. 1, 69–73.

[68] Wei Wang, Xuan Ding, Chunping Li, and Hui Wang, A Novel Evaluation Method for

Defect Prediction in Software Systems, International Conference on Computational

Intelligence and Software Engineering (Wuhan, China), 2010, pp. 1–5.

[69] Zhengshan Wang, Bixin Li, Lulu Wang, Meng Wang, and Xufang Gong,

Using coupling measure technique and random iterative algorithm for inter-

class integration test order problem, Proceedings of the 2010 IEEE 34th Annual

Computer Software and Applications Conference Workshops (Washington, DC,

USA), COMPSACW ’10, IEEE Computer Society, 2010, pp. 329–334.

[70] Norman Wilde, Understanding program dependencies, Citeseer, 1990.

[71] Bo Yu, Liang Kong, Yufeng Zhang, and Hong Zhu, Testing java components based

on algebraic specifications, Proceedings of the 2008 International Conference on

Software Testing, Verification, and Validation (Washington, DC, USA), ICST ’08,

IEEE Computer Society, 2008, pp. 190–199.

[72] Thomas Zimmermann and Nachiappan Nagappan, Predicting defects using network

analysis on dependency graphs, Proceedings of the 30th international conference on

Software engineering (New York, NY, USA), ICSE ’08, ACM, 2008, pp. 531–540.

[73] Thomas Zimmermann and Nachiappan Nagappan, Predicting defects with program

dependencies (short paper), Proceedings of the Third International Symposium on

Empirical Software Engineering and Measurement, October 2009.

85

APPENDIX. SMIT SOURCE CODE

###

############## Author : Shad i Bani Ta ’ an #####################

##################### 2012 #############################

! / u s r / b i n / env R s c r i p t

a r g s <− commandArgs (TRUE)

d i r e c t o r y = a r g s [1]

se twd (”D : / SMIT−newEquat ion ”)

s o u r c e (” A l l f u n c t i o n s . R”)

d i = l i s t . d i r s (d i r e c t o r y)

f i l e s = c l a s s F i l e s (d i) # I t s a v e s t h e names o f t h e ” . c l a s s ” f i l e s .

c l a s s F i l e s = f u n c t i o n (d i){

c f i l e s = l i s t ()

c f i l e s o = l i s t ()

f o r (dd i n 1 : l e n g t h (d i)) {

package1 = l i s t . f i l e s (p a t h = d i [dd] , p a t t e r n = ” . c l a s s ” ,

a l l . f i l e s = FALSE , f u l l . names = TRUE, r e c u r s i v e = FALSE ,

i g n o r e . c a s e = FALSE , i n c l u d e . d i r s = FALSE)

c f i l e s = append (c f i l e s , package1) # . c l a s s f i l e s

c f i l e s o = append (c f i l e s o , package2)

} # end f o r

r e t u r n (c f i l e s)

} # end f u n c t i o n

e x t r a c t D e p # i n v o k e s t h e dependency f i n d e r t o o l

e x t r a c t D e p = f u n c t i o n () {

p a t h o f t h e Dependency F i n d e r

dep f = ”C : / DependencyFinder −1.2.1− b e t a 4 / b i n ”

o u t p u t f = ” met ”

86

x = ””

f o r (i i n 1 : l e n g t h (c f i l e s)) {

x c o n t a i n s a l l o f t h e . c l a s s f i l e s

x = p a s t e (x , ” ” , c f i l e s [[i]] , sep = ” ”)

}

#The f o l l o w i n g command e x t r a c t s a l l d e p e n d e n c i e s from

t h e compi l ed f i l e s and save t h e o u t p u t i n xml

command1= p a s t e (depf , ” / D e p e n d e n c y E x t r a c t o r−xml ” , x , ” −o u t ” ,

d i r e c t o r y , ” / d e p e n d e n c i e s / a l l d e p e n d e n c i e s . xml ” , sep =””)

eee = p a s t e (d i r e c t o r y , ” / d e p e n d e n c i e s ” , sep =””)

d i r . c r e a t e (eee) # s ave t h e XML o u t p u t i n t h i s f o l d e r

sys tem (command1)

}

command2 = p a s t e (depf , ” / OOMetrics −csv ” , x , ” −methods −o u t ” ,

d i r e c t o r y , ” / d e p e n d e n c i e s / ” , o u t p u t f , sep =””)

sys tem (command2)

methodD = p a s t e (d i r e c t o r y , ” / d e p e n d e n c i e s / ” , o u t p u t f ,

” methods . csv ” , sep =””)

metT = r e a d . csv (methodD , h e a d e r = TRUE, sep = ” , ” ,

b l a n k . l i n e s . s k i p = TRUE)

newM = metT [3 : dim (metT) [1] ,] # t h e d a t a s t a r t s from row3

cc11 = l i s t ()

bbc = s t r s p l i t (a s . c h a r a c t e r (newM [1 , 1]) , ” \ \ . ”)

i f (l e n g t h (bbc [[1]]) > 3){

f o r (h i n 1 : dim (newM) [1]) { # i t e r a t e ov e r methods

o = newM[h , 1]

oo = s t r s p l i t (a s . c h a r a c t e r (o) , ” \ \ (”) [[1]] [1]

bb = s t r s p l i t (oo , ” \ \ . ”)

t h e c = bb [[1]] [1]

87

f o r (hh i n 3 : l e n g t h (bb [[1]]) −1){

t h e c = p a s t e (thec , ” . ” , bb [[1]] [hh] , sep =””)

}# end f o r hh

cc11 = append (cc11 , t h e c)

} # end f o r h

cc11 = u n iq ue (cc11)

} # end i f

############

myM = l v a r M e t r i c (newM)

l v a r M e t r i c = f u n c t i o n (newM){

myM = newM[, c (1 , 6)] # methodName , Loca l V a r i a b l e s

r e t u r n (myM)

}

rn = as . m a t r i x (newM [, 1])

row . names (newM) = rn

mmm = m a t r i x (0 , l e n g t h (rn) , l e n g t h (rn)) # CGM M at r ix

row . names (mmm) = rn

colnames (mmm) = rn

C L i s t = l i s t () # s ave c l a s s e s names i n C L i s t

f o r (s s i n 1 : l e n g t h (c f i l e s)) {

#m1 c a l l s omethod and t h e y a r e i n d i f f e r e n t c l a s s e s

C L i s t = append (CLis t , s t r s p l i t (c f i l e s [[s s]] , ” \ \ . ”) [[1]] [1])

}

E x t r a c t C a l l Graphs

We on ly c o n s i d e r c a l l s be tween methods i n d i f f e r e n t c l a s s e s

n1 = p a s t e (d i r e c t o r y , ” / d e p e n d e n c i e s / method ” , sep =””)

c r e a t e f o l d e r t o save d e p e n d e n c i e s f o r each method

d i r . c r e a t e (n1)

f o r (j i n 1 : l e n g t h (rn)) {

m1 = rn [j] # example

88

i f (s u b s t r (m1 , n c h a r (m1) , n c h a r (m1)) != ”) ”) {

n e x t

}

m2 = s t r s p l i t (m1 , ” \ \ (”) [[1]] [1]

command3 = p a s t e (depf , ” / DependencyRepor t e r −xml −o u t ” ,

d i r e c t o r y , ” / d e p e n d e n c i e s / method /M−” ,m2 , ” . xml − f 2 f ” ,

d i r e c t o r y , ” / d e p e n d e n c i e s / a l l d e p e n d e n c i e s . xml

−f e a t u r e −scope−i n c l u d e s / ” , m2 , ” / ” , sep =””)

sys tem (command3)

} # end f o r j

mmm = c a l l G r a p h s (rn)

c a l l G r a p h s = f u n c t i o n (rn){

f o r (i i n 1 : l e n g t h (rn)) {

m1 = rn [i]

m o r i g i n a l 1 = rn [i]

i f (s u b s t r (m1 , n c h a r (m1) , n c h a r (m1)) != ”) ”) {

n e x t

}

m2 = s t r s p l i t (m1 , ” \ \ (”) [[1]] [1]

name = p a s t e (d i r e c t o r y , ” / d e p e n d e n c i e s / method /M−” ,

m2 , ” . xml ” , sep =””)

aaa1 = s t r s p l i t (m1 , ” \ \ (”) [[1]]

ana11 = gsub (” . ” , ” : ” , aaa1 [2] , f i x e d =TRUE)

m1 = p a s t e (aaa1 [1] , ” (” , ana11 , sep =””)

moutbound = r e a d L i n e s (name)

ou = ””

oumm = ””

ou = grep (”< outbound ” , moutbound , v a l u e =TRUE)

oumm = grep (”) ” , ou , v a l u e =TRUE)

i f (l e n g t h (oumm) > 0) {

89

f o r (j i n 1 : l e n g t h (oumm)) { # a l l ou tbound d e p e n d e n c i e s

t e x = oumm[j]

p1 = s t r s p l i t (t ex ,” >”)

omethod = s t r s p l i t (p1 [[1]] [2] , ” < ”) [[1]] [1]

i f (omethod %i n% rn){

s t r c = s t r s p l i t (omethod , ” \ \ . ”)

c lassName = s t r s p l i t (omethod , ” \ \ . ”) [[1]] [l e n g t h (s t r c [[1]]) −1]

s t r c m = s t r s p l i t (m1 , ” \ \ . ”)

c lassName2 = s t r s p l i t (m1 , ” \ \ . ”) [[1]] [l e n g t h (s t r c m [[1]]) −1]

i f (c lassName != className2) {

mmm[m o r i g i n a l 1 , omethod] = 1

} # end i f

} # end i f

} # end f o r j

} # end i f

} # end f o r i

r e t u r n (mmm)

}

#Read t h e Maximim n e s t i n g d e p t h m e t r i c

msd = p a s t e (d i r e c t o r y , ” / MaximumNesting . csv ” , sep =””)

msdM = r e a d . csv (msd , h e a d e r = TRUE, sep = ” , ” ,

b l a n k . l i n e s . s k i p = TRUE)

C a l c u l a t e Method− l e v e l m e t r i c s

fn = p a s t e (d i r e c t o r y , ” / d e p e n d e n c i e s / MethodLeve lMet r i c sF . csv ”

, sep =””)

f i l e . remove (fn)

c a t (f i l e =fn , ” ” , ”LVAR” , ”NOCMP” , ”MND” , ”IMD” , ”OMD” , ”OFD” ,

”OCD” , sep = ” , ” , ”\ n ” , append=TRUE)

f o r (i i n 1 : dim (rn) [1]) {

method i = rn [i]

methodpp = rn [i]

90

i f (s u b s t r (methodi , n c h a r (method i) , n c h a r (method i)) != ”) ”)

{

n e x t

}

i f (l e n g t h (cc11) > 0){

c f i l e = cc11

}

NOCMP = nocmpMetr ic (methodi , c f i l e)

method i = s t r s p l i t (methodi , ” \ \ (”) [[1]] [1]

imc = inboundMethodCa l l s (method i)

omc = ou tboundMethodCa l l s (method i)

o f c = o u t b o u n d F e i l d D e p e n d e n c i e s (method i)

IMD = l e n g t h (imc)

OMD = l e n g t h (omc)

OFD = l e n g t h (o f c)

cc = l i s t ()

i f (l e n g t h (omc) > 0) {

f o r (i i i n 1 : l e n g t h (omc)) {

p = s t r s p l i t (omc [[i i]] , ” \ \ . ”)

cc = append (cc , p [[1]] [1])

}

}

OCD = l e n g t h (u n i que (cc))

l e = l e n g t h (which (msdM [, 2] == method i))

NDepth = mndMetric (method i)

methodpp = gsub (” , ” , ” ; ” , methodpp , f i x e d =TRUE)

aaa = s t r s p l i t (methodpp , ” \ \ (”) [[1]]

ana = gsub (” . ” , ” : ” , aaa [2] , f i x e d =TRUE)

newmethod = p a s t e (aaa [1] , ” (” , ana , sep =””)

c a t (f i l e =fn , newmethod , a s . c h a r a c t e r (myM[i , 2]) ,

NOCMP, NDepth , IMD,OMD, OFD,OCD, sep = ” , ” ,

”\n ” , append=TRUE)

91

} # end f o r i

mndMetric = f u n c t i o n (method i){

NDepth = msdM[which (msdM[, 2] = = methodi) , 3]

r e t u r n (NDepth)

}

No . o f methods i n t h e a p p l i c a t i o n

nom = dim (r e a d . csv (fn , h e a d e r = TRUE, sep = ” , ” ,

b l a n k . l i n e s . s k i p = TRUE)) [1]

E x t r a c t Method P a i r M e t r i c s

mmCalls = which (mmm[,] == 1 , a r r . i n d = TRUE)

name = p a s t e (d i r e c t o r y , ” / d e p e n d e n c i e s / m e t h o d P a i r M e t r i c s

. c sv ” , sep =””)

name1 = p a s t e (d i r e c t o r y ,

” / d e p e n d e n c i e s / methodPairMetricsNONZERO . csv ” , sep =””)

f i l e . remove (name)

f i l e . remove (name1)

c a t (f i l e = name , ” C a l l e r ” , ” C a l l e e ” , ”OCM” , ”ICM” ,

” Weight (mi) ” , ” Weight (mj) ” , ” Weight (mimj) ” ,

” c a l l e r c l a s s ” , ” c a l l e e c l a s s ” , ” c l a s s −p a i r ” ,

sep = ” , ” , ”\ n ” , append=TRUE)

c a t (f i l e = name1 , ” C a l l e r ” , ” C a l l e e ” , ”OCM” , ”ICM” ,

sep = ” , ” , ”\ n ” , append=TRUE)

c p l = l i s t () # c o n t a i n s t h e c l a s s −p a i r s

f o r (y i n 1 : dim (mmCalls) [1]) {

me11 = rn [mmCalls [y ,] [1]]

aaa = s t r s p l i t (me11 , ” \ \ (”) [[1]]

ana = gsub (” . ” , ” : ” , aaa [2] , f i x e d =TRUE)

me11 = p a s t e (aaa [1] , ” (” , ana , sep =””)

me1 = s t r s p l i t (me11 , ” \ \ (”) [[1]] [1]

me22 = rn [mmCalls [y ,] [2]]

aaa1 = s t r s p l i t (me22 , ” \ \ (”) [[1]]

92

ana1 = gsub (” . ” , ” : ” , aaa1 [2] , f i x e d =TRUE)

me22 = p a s t e (aaa1 [1] , ” (” , ana1 , sep =””)

me2 = s t r s p l i t (me22 , ” \ \ (”) [[1]] [1]

OCM1 = ou tboundMethodCa l l s (me1)

ICM1 = inboundMethodCa l l s (me1)

OCM2 = ou tboundMethodCa l l s (me2)

ICM2 = inboundMethodCa l l s (me2)

OCM = OcmMetric (OCM1,OCM2)

ICM = icmMet r i c (ICM1 , ICM2)

me11 = gsub (” , ” , ” ; ” , me11 , f i x e d =TRUE)

me22 = gsub (” , ” , ” ; ” , me22 , f i x e d =TRUE)

#CALCULATE THE WEIGHT OF EACH CONNECTION

m l m e t r i c s = r e a d . csv (fn , h e a d e r = TRUE,

sep = ” , ” , b l a n k . l i n e s . s k i p = TRUE)

row . names (m l m e t r i c s) = m l m e t r i c s [, 1]

I C c a l l e r = m l m e t r i c s [me11 , 2] +

m l m e t r i c s [me11 , 3] + m l m e t r i c s [me11 , 4]

I C c a l l e e = m l m e t r i c s [me22 , 2] +

m l m e t r i c s [me22 , 3] + m l m e t r i c s [me22 , 4]

w C a l l e r = I C c a l l e r ∗ ((m l m e t r i c s [me11 , 5]

+ m l m e t r i c s [me11 , 6] +

m l m e t r i c s [me11 , 7]) ˆ 2) # n u m e r a t o r

wCal lee = I C c a l l e e ∗ ((m l m e t r i c s [me22 , 5]

+ m l m e t r i c s [me22 , 6] +

m l m e t r i c s [me22 , 7]) ˆ 2) # n u m e r a t o r

c .m = as . m a t r i x (m l m e t r i c s [, 1])

nom = dim (as . m a t r i x (c .m)) [1] # No . o f methods

cmM = m a t r i x (0 , nom , 2)

f o r (p i n 1 : nom){

n e s t = l e n g t h (s t r s p l i t (a s . c h a r a c t e r (c .m[p]) , ” \ \ . ”) [[1]])

cmM[p , 1] = s t r s p l i t (a s . c h a r a c t e r (c .m[p]) , ” \ \ . ”) [[1]] [n e s t −1]

93

cmM[p , 2] = c .m[p] # method name

}

l o a n = l e n g t h (s t r s p l i t (me11 , ” \ \ . ”) [[1]])

l o a n 1 = l e n g t h (s t r s p l i t (me22 , ” \ \ . ”) [[1]])

methods i n t h e c a l l e r c l a s s

m i c a l l e r = as . m a t r i x (cmM[which (cmM[, 1] ==

s t r s p l i t (me11 , ” \ \ . ”) [[1]] [loan −1]) , 2])

methods i n t h e c a l l e r c l a s s

m i c a l l e e = as . m a t r i x (cmM[which (cmM[, 1] ==

s t r s p l i t (me22 , ” \ \ . ”) [[1]] [loan1 −1]) , 2])

sum = 0

f o r (k i n 1 : dim (m i c a l l e r) [1]) {

mi = m i c a l l e r [k]

weigh tmi = (m l m e t r i c s [mi , 2] + m l m e t r i c s [mi , 3]

+ m l m e t r i c s [mi , 4]) ∗ ((m l m e t r i c s [mi , 5] +

m l m e t r i c s [mi , 6] + m l m e t r i c s [mi , 7]) ˆ 2)

sum = sum + weightmi

}

sum2 = 0

f o r (kk i n 1 : dim (m i c a l l e e) [1]) {

me = m i c a l l e e [kk]

weightme = (m l m e t r i c s [me , 2] + m l m e t r i c s [me , 3]

+ m l m e t r i c s [me , 4]) ∗

((m l m e t r i c s [me , 5] + m l m e t r i c s [me , 6] +

m l m e t r i c s [me , 7]) ˆ 2)

sum2 = sum2 + weightme

}

sumAll = sum + sum2

i f (sumAll == 0){

w e i g h t m i A l l = 0

w e i g h t m j A l l = 0

} e l s e {

94

w e i g h t m i A l l = w C a l l e r / sumAll

w e i g h t m j A l l = wCal lee / sumAll

}

weightmimj = (w e i g h t m i A l l + w e i g h t m j A l l) ∗ (ICM + OCM + 1)

c a l l e r c = s t r s p l i t (me11 , ” \ \ . ”) [[1]] [loan −1]

c a l l e e c = s t r s p l i t (me22 , ” \ \ . ”) [[1]] [loan1 −1]

i f (c a l l e r c != c a l l e e c) {

c a t (f i l e = name , me11 , me22 ,OCM, ICM , weigh tmiAl l ,

we igh tmjAl l , weightmimj , c a l l e r c , c a l l e e c , sep = ” , ” ,

”\n ” , append=TRUE)

}

i f (OCM > 0 | | ICM > 0){

c a t (f i l e = name1 , me11 , me22 ,OCM, ICM , sep = ” , ” ,

”\n ” , append=TRUE)

}

}

C l a s s P a i r

cpmname = p a s t e (d i r e c t o r y , ” / d e p e n d e n c i e s /

c l a s s P a i r M e t r i c s . c sv ” , sep =””)

f i l e . remove (cpmname)

c a t (f i l e =cpmname , ” Class−C l a s s ” , ” w e igh t ” ,

sep = ” , ” , ”\ n ” , append=TRUE)

mpm = r e a d . csv (name) # r e a d method p a i r m e t r i c s

t w o c l a s s e s = m a t r i x (0 , dim (mpm) [1] , 3) # s av e c l a s s p a i r s

f o r (w i n 1 : dim (mpm) [1]) { #

c i n d x = l e n g t h (s t r s p l i t (a s . c h a r a c t e r (mpm[w, 1]) ,

” \ \ . ”) [[1]]) − 1

t w o c l a s s e s [w, 1] = s t r s p l i t (a s . c h a r a c t e r (mpm[w, 1]) ,

” \ \ . ”) [[1]] [c i n d x]

95

c i nd x1 = l e n g t h (s t r s p l i t (a s . c h a r a c t e r (mpm[w, 2]) ,

” \ \ . ”) [[1]]) − 1

t w o c l a s s e s [w, 2] = s t r s p l i t (a s . c h a r a c t e r (mpm[w, 2]) ,

” \ \ . ”) [[1]] [c in d x 1]

i f (t w o c l a s s e s [w, 1] < t w o c l a s s e s [w, 2]) {

t w o c l a s s e s [w, 3] = p a s t e (t w o c l a s s e s [w, 1] ,

t w o c l a s s e s [w, 2] , sep =”−”)

} e l s e

{

t w o c l a s s e s [w, 3] = p a s t e (t w o c l a s s e s [w, 2] ,

t w o c l a s s e s [w, 1] , sep =”−”)

}

} # end f o r w

cps = un iq u e (t w o c l a s s e s [, 3])

cpma = m a t r i x (0 , l e n g t h (cps) , 4)

f o r (yy i n 1 : l e n g t h (cps)) {

c c C a l l s = which (t w o c l a s s e s [, 3] == cps [yy] , a r r . i n d = TRUE)

c c s s = sum (mpm[c c C a l l s , 7]) # f i n d s t h e summation of w e i g h t s

c a t (f i l e =cpmname , cps [yy] , cc s s , sep = ” , ” , ”\ n ” , append=TRUE)

cpma [yy , 1] = cps [yy]

cpma [yy , 2] = c c s s

}

10% of i n t e r a c t i o n s

nom11 = round ((dim (mpm) [1] ∗ 0 . 1 0) , d i g i t s = 0)

cpma [, 3] = as . numer ic (cpma [, 2]) /

sum (as . numer ic (cpma [, 2])) # n o r m a l i z e d c l a s s −p a i r w e i gh t

cpma [, 4] = round ((a s . numer ic (cpma [, 3]) ∗ nom11) , d i g i t s = 0)

we a s s i g n one t e s t c a s e f o r t h e c l a s s p a i r t h a t a s s i g n e d z e r o

t e s t c a s e s t o e n s u r e t h a t a t l e a s t one t e s t c a s e i s a s s i g n e d

t o t e s t c l a s s p a i r c o n n e c t i o n s

cpma [which (cpma [, 4] = = 0 , a r r . i n d = TRUE) , 4] = 1

ddd = c (” c l a s s −p a i r ” , ” w e i g h t ” , ” Norm . we i gh t ” , ”No . o f t e s t c a s e s ”)

96

w r i t e . t a b l e (a s . d a t a . f rame (cpma) , f i l e =cpmname , c o l . names=ddd ,

sep = ” , ” , row . names=FALSE)

m p t e s t c = m a t r i x (0 , dim (mpm) [1] , 5)

m p t e s t c = mpm[, c (1 , 2 , 7)]

f o r (g i n 1 : dim (cpma) [1]) {

q = cpma [g]

m p t e s t c [which (t w o c l a s s e s [, 3] = = q) , 4] = mpm[which (t w o c l a s s e s [, 3]

==q) , 7] / sum (mpm[which (t w o c l a s s e s [, 3] ==q) , 7])

m p t e s t c [which (t w o c l a s s e s [, 3] = = q) , 5] = round ((a s . numer ic (cpma [

which (cpma [, 1] = = q) , 4])) ∗ m p t e s t c [which (t w o c l a s s e s [, 3] = = q) , 4]

, d i g i t s =0)

n o c a s e s = (a s . numer ic (cpma [which (cpma [, 1] = = q) , 4]))

i f (n o c a s e s < 3){

m p t e s t c [which (m p t e s t c [, 4] == max (m p t e s t c [which (t w o c l a s s e s

[, 3] = = q) , 4])) , 5] = 1

}

} # end f o r

dd = c (” Dependent ” , ” Dependee ” , ” Weight ” , ” Norm . w e ig h t ” ,

”No . o f t e s t c a s e s ”)

f i n a l = p a s t e (d i r e c t o r y , ” / d e p e n d e n c i e s / F i n a l R e p o r t . c sv ” ,

sep =””)

f i l e . remove (f i n a l)

w r i t e . t a b l e (a s . d a t a . f rame (m p t e s t c) , f i l e = f i n a l , c o l . names=dd ,

sep = ” , ” , row . names=FALSE)

ou tboundMethodCa l l s = f u n c t i o n (m){

m1 = m

m e t h o d s L i s t = l i s t ()

name = p a s t e (d i r e c t o r y , ” / d e p e n d e n c i e s / method /M−” ,m1 ,

” . xml ” , sep =””)

moutbound = r e a d L i n e s (name)

ou = ””

97

oumm = ””

we j u s t t a k e t h e outbound d e p e n d e n c i e s

ou = grep (”< outbound ” , moutbound , v a l u e =TRUE)

oumm = grep (”) ” , ou , v a l u e =TRUE)

i f (l e n g t h (oumm) > 0) {

f o r (j i n 1 : l e n g t h (oumm)) { # a l l ou tbound d e p e n d e n c i e s

t e x = oumm[j]

p1 = s t r s p l i t (t ex ,” >”)

omethod = s t r s p l i t (p1 [[1]] [2] , ” < ”) [[1]] [1] #m1 c a l l s omethod

we want t o e x c l u d e c a l l s be tween methods i n t h e same c l a s s

c lassName = s t r s p l i t (omethod , ” \ \ . ”) [[1]] [1]

c lassName2 = s t r s p l i t (m1 , ” \ \ . ”) [[1]] [1]

t h e methods be l o n g t o d i f f e r e n t c l a s s e s

i f (c lassName != className2) {

m e t h o d s L i s t = append (m e t h o d s L i s t , omethod)

} # end i f

} # end f o r j

} # end i f

r e t u r n (m e t h o d s L i s t)

} # end f u n c t i o n

inboundMethodCa l l s = f u n c t i o n (m){

m1 = m

m e t h o d s L i s t = l i s t ()

name = p a s t e (d i r e c t o r y , ” / d e p e n d e n c i e s / method /M−” ,m1 ,

” . xml ” , sep =””)

moutbound = r e a d L i n e s (name)

ou = ””

oumm = ””

ou = grep (”< inbound ” , moutbound , v a l u e =TRUE)

oumm = grep (”) ” , ou , v a l u e =TRUE)

i f (l e n g t h (oumm) > 0) {

98

f o r (j i n 1 : l e n g t h (oumm)) { # a l l ou tbound d e p e n d e n c i e s

t e x = oumm[j]

p1 = s t r s p l i t (t ex ,” >”)

omethod = s t r s p l i t (p1 [[1]] [2] , ” < ”) [[1]] [1] #m1 c a l l s omethod

we want t o e x c l u d e c a l l s be tween methods i n t h e same c l a s s

c lassName = s t r s p l i t (omethod , ” \ \ . ”) [[1]] [1]

c lassName2 = s t r s p l i t (m1 , ” \ \ . ”) [[1]] [1]

t h e methods be l o n g t o d i f f e r e n t c l a s s e s

i f (c lassName != className2) {

m e t h o d s L i s t = append (m e t h o d s L i s t , omethod)

} # end i f

} # end f o r j

} # end i f

r e t u r n (m e t h o d s L i s t)

} # end f u n c t i o n

o u t b o u n d F e i l d D e p e n d e n c i e s = f u n c t i o n (m){

m1 = m

f i e l d s L i s t = l i s t ()

name = p a s t e (d i r e c t o r y , ” / d e p e n d e n c i e s / method /M−” ,m1 ,

” . xml ” , sep =””)

moutbound = r e a d L i n e s (name)

ou = ””

oumm = ””

we j u s t t a k e t h e outbound d e p e n d e n c i e s

ou = grep (”< outbound ” , moutbound , v a l u e =TRUE)

I n d i c e s f o r t h e method d e p e n d e n c i e s

oumm = grep (”) ” , ou , v a l u e =FALSE)

oo = as . m a t r i x (ou)

oumm = oo[−oumm , 1]

i f (l e n g t h (oumm) > 0) {

f o r (j i n 1 : l e n g t h (oumm)) { # a l l ou tbound d e p e n d e n c i e s

99

t e x = oumm[j]

p1 = s t r s p l i t (t ex ,” >”)

o f i e l d = s t r s p l i t (p1 [[1]] [2] , ” < ”) [[1]] [1] #m1 c a l l s omethod

we want t o e x c l u d e c a l l s be tween methods i n t h e same c l a s s

c lassName = s t r s p l i t (o f i e l d , ” \ \ . ”) [[1]] [1]

c lassName2 = s t r s p l i t (m1 , ” \ \ . ”) [[1]] [1]

i f (c lassName != className2) {

f i e l d s L i s t = append (f i e l d s L i s t , o f i e l d)

} # end i f

} # end f o r j

} # end i f

r e t u r n (f i e l d s L i s t)

} # end f u n c t i o n

i cmMet r i c = f u n c t i o n (ICM1 , ICM2){

ICM = l e n g t h (i n t e r s e c t (ICM1 , ICM2))

r e t u r n (ICM)

}

OcmMetric = f u n c t i o n (OCM1,OCM2){

OCM = l e n g t h (i n t e r s e c t (OCM1,OCM2))

r e t u r n (OCM)

}

Computer No . o f complex p a r a m e t e r s

nocmpMetr ic = f u n c t i o n (m, c l){

NOCMP = 0

m = s t r s p l i t (m, ” \ \ (”)

p a r a = s u b s t r (m[[1]] [2] , 1 , (n c h a r (m[[1]] [2]) − 1))

p = s t r s p l i t (pa ra , ” , ”)

i f (l e n g t h (p [[1]]) > 0) {

f o r (ww i n 1 : l e n g t h (p [[1]])) {

pa = p [[1]] [ww]

pa = gsub (” ” , ” ” , pa , f i x e d =TRUE)

100

i f (pa %i n% c l) {

NOCMP = NOCMP + 1

}

} # end f o r

} # end i f

r e t u r n (NOCMP)

} # end f u n c t i o n

101

