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ABSTRACT 

 Wetlands provide a variety of services and functions.  Studies have highlighted the 

importance of wetlands in water purification, groundwater replenishment, flood control, 

sediment and nutrient retention and export, biodiversity, and climate change mitigation and 

adaptation.  Additionally, wetlands are assets to food, fiber, cultural values, recreation, and 

tourism.  These ecosystem services are provided to society free of charge and when eliminated 

can have negative implications.  Therefore, wetland management is important, as wetlands can 

be lost to agriculture and urbanization.  Monitoring wetland condition is a tool to analyze human 

impact on wetlands.  Various types of wetland assessments have been created to measure 

biological condition.  These include vegetative, rapid, functional, and intensive assessments.  

Data collected from assessments can be utilized for further study and analysis in addition to 

measuring condition.  Physical characteristics can be identified that correlate with wetland 

condition, which provide clues to how well a wetland is functioning.   

 Wetlands are important to nutrient cycling and storage.  The levels of nutrients in 

vegetation, soil, and water may vary based on parent material, surrounding land use, hydrology, 

the type of wetland, and types of species present.  Wetlands can filter excess nutrients from 

agricultural and urban runoff to a certain extent.  High nutrient loads can cause eutrophication 

and anoxia and affect the biological community and wetland function.  High levels of nutrients 

and disturbance have been correlated with exotic species invasion and decreased diversity.  

Stable isotopes of nitrogen and carbon have been applied to measure anthropogenic impact, 

nutrient sources, and denitrification levels.   

Four studies were completed during the summers of 2011 and 2012 on wetland 

assessment and nutrient dynamics across the state of North Dakota.  The results indicated the 
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importance of land use regarding wetland condition and nutrient levels.  Wetlands in cropland 

tended to have lower floristic quality and biological condition and higher stable isotope δ15N 

values.  Additionally, levels of phosphorus, nitrogen, and carbon differed by plant type with 

some indication that cattail invasion alters nutrient cycling.  Furthermore, classification and 

regression tree modeling links wetland buffer, soil, and water data to wetland condition.   

  



v 
 

ACKNOWLEDGEMENTS 

 I would like to thank my advisors, Drs. Edward Shawn DeKeyser and Jack Norland for 

their guidance.  They have provided invaluable advice and great amounts of time to aid me in 

completing my dissertation.  I would also like to thank my other committee members: Drs. Tom 

DeSutter and Amanda Nahlik.  I have greatly appreciated their expertise in wetland soils and 

helpful perspectives on my projects.  Dr. Christina Hargiss also needs a special mention – she 

has been an excellent mentor and a pleasure to work with.  Everyone at NDSU has been helpful 

and intuitive and this is part of the reason I have accomplished as much as I have.   

 My Ph.D. project was part of an extremely large collaboration of excellent individuals.  I 

must thank everyone that was involved in the NWCA project.  Specifically, all of the students 

that helped in the field, office, and lab – you saved me countless hours of extra work.  I would 

like to thank the U.S. Environmental Protection Agency, North Dakota Department of Health, 

and North Dakota Water Resources Research Institute for providing funding for my projects.   

 Lastly, I must thank all of my family and friends.  I would like to thank my parents, Don 

and Sharon Meyers, for their unwavering support, faith, and love.  I would like to thank my 

brother, Andrew Meyers, for being awesome in general.  I would like to thank my grandparents, 

Bill and Marilyn Fairman and Don and Berniece Meyers, for their encouragement and guidance.  

I would like to thank Dirk Churchill for always having my back and reassuring me whenever I 

doubted myself.  I would like to thank the rest of my family and friends for always being there to 

lend an ear to listen and a shoulder to lean on.  You have all been an important part of this 

journey.   

 

Lindsey Michele Meyers 



vi 
 

TABLE OF CONTENTS 

ABSTRACT ....................................................................................................................... iii 

ACKNOWLEDGEMENTS .................................................................................................v 

LIST OF TABLES ........................................................................................................... viii 
 
LIST OF FIGURES ........................................................................................................... ix 
 
GENERAL INTRODUCTION ............................................................................................1 
 
PAPER 1. WETLAND PLANT NUTREINT CONTENT, CATTAIL BIOMASS,  

FLORISTIC QUALITY, AND SOIL PHOSPHORUS ...........................................5 
 
PAPER 2. PLANT PHOSPHORUS, NITROGEN, AND CARBON IN WETLANDS  

EXCAVATED FOR SEDIMENT REMOVAL ....................................................23 
 
PAPER 3. RELATIONSHIP BETWEEN THE NATURAL ABUNDANCE OF  

STABLE NITROGEN AND CARBON SOIL ISOTOPES AND  
WETLAND CONDITION.....................................................................................32 

 
PAPER 4. USING CART ANALYSIS TO EVALUATE WETLAND CONDITION .....50 

GENERAL CONCLUSION ..............................................................................................72 

LITERATURE CITED ......................................................................................................74 
 
APPENDIX A.  TABLE OF GPS LOCATION, SUB-ECOREGION, WETLAND  

TYPE, AND LAND USE FOR 2011 STUDY SITES ..........................................88 

APPENDIX B.  COMPREHENSIVE PLANT SPECIES LIST FOR 2011 STUDY 
SITES .....................................................................................................................91 

APPENDIX C.  PLANT CARBON, NITROGEN, AND PHOSPHORUS  
CONTENT FOR THE 2011 WETLAND SITES ................................................103 

 
APPENDIX D.  INDEX OF PLANT COMMUNITY INTEGRITY (IPCI),  

FLORISTIC QUALITY INDEX (FQI), AND NORTH DATKOTA  
RAPID ASSESSMENT (NDRAM) SCORES FOR THE 2011  
WETLAND SITES ..............................................................................................112 

 
APPENDIX E.  HYDROGEOMORPHIC (HGM) MODEL SCORES FOR  

THE 2011 WETLAND SITES ............................................................................114 
 
 



vii 
 

APPENDIX F.  WETLAND LOCATION AND AMOUNT OF SEDIMENT  
REMOVAL FOR THE 2012 SITES....................................................................116 

 
APPENDIX G.  COMPREHENSIVE PLANT SPECIES LIST FOR 2012 STUDY 

SITES ...................................................................................................................117 

APPENDIX H.  PLANT CARBON, NITROGEN, AND PHOSPHORUS  
CONTENT FOR THE 2012 WETLAND SITES ................................................121 

 
APPENDIX I.  INDEX OF PLANT COMMUNITY INTEGRITY (IPCI),  

FLORISTIC QUALITY INDEX (FQI), AND NORTH DATKOTA  
RAPID ASSESSMENT (NDRAM) SCORES FOR THE 2012  
WETLAND SITES ..............................................................................................125 

 
APPENDIX J.  HYDROGEOMORPHIC (HGM) MODEL SCORES FOR THE  

2012 WETLAND SITES .....................................................................................126 
 
 



viii 
 

LIST OF TABLES 

Table Page 

1.  R values and p-values of linear correlations between cattail biomass and soil P for  
the Olsen extraction and WE P at 0-15 and 15-30 cm and plant P at different  
landscape positions and soil P for the Olsen extraction and WE P at 0-15 and  
15-30 cm .......................................................................................................................... 17 

 
2.  Environmental variables used in the CART model of 36 wetland sites across North  

Dakota .............................................................................................................................. 58 
 
3.  Species associated with the end of each NMS axis ............................................................. 62 
 
4.  Mean IPCI and NDRAM scores for the terminal nodes of the FQI and NMS Axis 1  

CART models .................................................................................................................. 65 
 

 

  



ix 
 

LIST OF FIGURES 

Figure Page 

1.  Locations of 55 wetland sites across North Dakota sampled in the summer of 2011 .......... 9 
 
2.  Graphs of mean (a) biomass, (b) plant C:N, (c) plant P, and (d) plant N:P for plant  

type .................................................................................................................................. 14 
 
3.  Graph of mean FQI scores and landscape position ............................................................. 15 
 
4.  Graph of mean (a) FQI scores and (b) plant N:P for surrounding land use ........................ 16 
 
5.  Linear correlations between (a) plant P and FQI and (b) shallow marsh plant P and  

cattail biomass ................................................................................................................. 17 
 
6.  Cattail biomass and soil P for the Olsen extraction and WEP at 0-15 cm .......................... 22 
 
7.  Mean C:N ratios for plant type ........................................................................................... 27 
 
8.  Mean P (kg/ha) for plant type ............................................................................................. 28 
 
9.  Mean biomass (kg/ha) for plant type .................................................................................. 29 
 
10.  Mean plant C:N ratios for landscape position................................................................... 30 
 
11. Location of 51 wetland sites across North Dakota sampled in the summer of 2011 ......... 35 
 
12.  Mean values for soil δ15N for different land uses ............................................................. 41 
 
13.  Mean values for wetland soil δ15N of different hydrogeomorphic (HGM) classes .......... 41 
 
14.  Linear regression for the wetland soil δ15N values (‰) and FQI scores .......................... 42 
 
15.  Linear regression of wetland soil δ15N (‰) and IPCI scores ........................................... 42 
 
16.  Linear regression of wetland soil δ15N (‰) and NDRAM scores ................................... 43 
 
17.  Linear regression of wetland soil δ15N (‰) and average buffer width out of 100 m ....... 43 
 
18.  Mean values for the soil δ13C data for different landscape positions ............................... 44 
 
19.  Mean values for wetland soil δ13C of different hydrogeomorphic (HGM) classes .......... 45 
 
20.  Linear regression of wetland soil δ13C (‰) and soil pH .................................................. 46 
 



x 
 

21.  Location of the 36 wetland sites across North Dakota ..................................................... 53 
 
22.  NMS ordination with Axis 1 and Axis 2 .......................................................................... 61 
 
23.  Classification and regression tree between FQI scores and environmental variables ...... 63 
 
24.  Linear regressions of soil OM (%) and IPCI and NDRAM scores .................................. 63 
 
25.  Average IPCI and NDRAM conditions scores of each category of buffer continuity  

adjoining the AA ............................................................................................................. 64 
 
26.  Classification and regression tree between NMS Axis 1 scores and environmental  

variables .......................................................................................................................... 66 
 
27.  Linear regressions of average buffer width of a 100 m buffer and IPCI and NDRAM 

Scores .............................................................................................................................. 67 
 

 
  



1 
 

GENERAL INTRODUCTION 

 Little is known about the biological condition of the nation’s wetlands.  Therefore, in the 

summer of 2011, the U.S. Environmental Protection Agency (USEPA) conducted the first ever 

nationwide wetland assessment.  The National Wetland Condition Assessment (NWCA) 

collected data for the wetland buffer, hydrology, water quality, plants, soils, algae, and a rapid 

assessment (U.S. Environmental Protection Agency 2011).  The USEPA is implementing the 

NWCA along with other lake and stream assessments in order to understand water quality issues 

and guide proper management of the nation’s water bodies.  The NWCA is intended to identify 

wetland stressors and analyze the ecological integrity of wetlands so that wetland condition can 

be monitored.  The USEPA collaborated with the U.S. Fish and Wildlife Service (USFWS), 

Natural Resource Conservation Service (NRCS), U.S. Department of Agriculture (USDA), and 

many other federal and state agencies, tribal programs, and academic, non-profit, and private 

organizations to complete the NWCA.   

In North Dakota, North Dakota State University (NDSU) took the lead on the NWCA 

project.  In order to provide statistically relevant data for the state, the sample size of 11 wetlands 

was increased to 53 wetlands.  During the summer of 2010, permission to sample wetlands was 

acquired from landowners, and in 2011 the NWCA was completed.  NDSU performed additional 

studies at each wetland in order to evaluate statewide wetland condition and nutrient levels in the 

vegetation and soils.  The additional data collected included three regionally developed wetland 

assessment methods – Index of Plant Community Integrity (IPCI, Hargiss et al. 2008), North 

Dakota Rapid Assessment Method (NDRAM, Hargiss 2009), and Hydrogeomorphic (HGM) 

Model (Gilbert et al. 2006) – and nutrient samples of phosphorus (P) in plants and soils and 

carbon (C) and nitrogen (N) in plants.   
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The IPCI was used to assess wetland condition according to vegetation.  It specifically 

measures vegetative aerial cover and species composition (Hargiss et al. 2008).  Condition is 

then analyzed using nine metrics as outlined in detail by Hargiss et al. (2008).  The NDRAM was 

used to rapidly assess the condition of wetlands based on vegetation, land use, habitat alteration, 

and disturbance/stressors (Hargiss 2009).  The HGM Model, which was developed by the Army 

Corps of Engineers (COE) and NRCS, uses reference standards to assess wetland function 

(Gilbert et al. 2006).  The HGM Model measures landscape, hydrologic, soil, and land use 

attributes in order to determine the extent of wetland alteration.  GPS and GIS information, soil 

measurements, vegetation data, and wetland and catchment basin area assessments were 

measured and analyzed using several Functional Capacity Indices (FCI).   

In addition to overall quality or condition, nutrient storage and cycling is another 

important measure in wetlands.  Freshwater aquatic systems can be greatly affected by nutrient 

runoff from adjacent lands (Cooper 1993).  Additionally, the amount and type of nutrients stored 

in wetlands can affect the overall biological community and functioning of the wetland.  

Wetlands are useful buffers and can be sinks for excess nutrients at low concentrations (Howard-

Williams 1985).  Additionally, nutrient accumulation in wetlands can influence species 

composition and productivity.  It is not certain how C, N, and P are stored in North Dakota 

wetlands.  Others have found that there is a significant increase in P levels in wetland soils 

located around agricultural lands (Reddy and DeLaune 2008).  It is expected that more disturbed 

wetlands will have greater nutrient loadings, which could result in changes to the plant 

community.  This may be especially prevalent in wetlands dominated by cattails (Typha species).  

Therefore, data is needed for accurate measurement of nutrients in wetlands and how they may 

be affected by land use practices.   
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As part of the NWCA, N and C soil isotope data were collected.  The natural abundance 

of soil isotopes have been used to measure natural processes such as nutrient cycling and nutrient 

sources (Peterson and Fry 1987).  They have also been utilized to reflect past land uses and 

levels of human disturbance to ecosystems (Koerner et al. 1999, Elliott and Brush 2006).   Stable 

isotope levels in wetland soils can be used to indicate changes in land use and nutrient inputs, 

and has never been completed before in North Dakota wetlands (Chang et al. 2002, Elliott and 

Brush 2006).  Natural abundance techniques using stable isotopes need to be developed for 

wetland systems.  This study is the first step in applying stable isotope natural abundance 

techniques in Northern Prairie wetlands.   

 In addition to the 2011 data, 18 wetlands were sampled in the summer of 2012 for 

another study.  These wetlands were previously in cropland and had been excavated for sediment 

removal in order to decrease cattail cover.  The same methods used in 2011 minus the NWCA 

were used to sample these wetlands.  Smith (2011) found that sediment removal had reduced 

cattail cover in the shallow marsh and that vegetative composition was similar to native wetlands 

that had not been surrounded by cropland.  Therefore, we wanted to analyze the nutrient content 

of these wetlands.   

 This dissertation has been written in four papers.  Paper 1 analyzes the 2011 nutrient data 

and relates it to cattail biomass, surrounding land use, and floristic quality.  Paper 2 is the 

analysis from the 2012 data in the wetlands with sediment removal.  The results were compared 

with values from Paper 1.  Paper 3 is the synthesis of the soil isotopes; variables such as 

surrounding land use, wetland condition, floristic quality, and soil data from the NWCA were 

used to compare with the soil isotope data.  The large amount of data collected in 2011 from the 

four wetland assessments and nutrient samples was modelled in Paper 4 using Classification and 
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Regression Trees (CART).  The results from the CART models are compared with the IPCI and 

NDRAM results.  The goal of these studies was to collect statewide wetland condition and 

nutrient data that can provide a baseline for future studies.    
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PAPER 1. WETLAND PLANT NUTREINT CONTENT, CATTAIL BIOMASS, 

FLORISTIC QUALITY, AND SOIL PHOSPHORUS  

Introduction 

Nutrient enrichment or limitation can lead to declines in species diversity, exotic 

invasion, and changes in species composition (Tilman and Pacala 1993, Bedford et al. 1999).  

Moderate nutrient levels promote optimal diversity allowing native and rare species to compete 

with invasive and exotic species.  Shifts in nutrient levels in wetlands can cause eutrophication, 

exotic invasion, and declines in species diversity (Bedford et al. 1999).  In wetlands with high 

nutrient input, plant species diversity has severely declined (Verhoeven et al. 1993).   These 

effects are seen in wetlands that are severely impacted by agricultural practices and urban 

development, which are common in the United States (Simmons et al. 1992, Jordan et al. 1997).  

One of the predominant land use practices in the Northern Great Plains is agriculture (Martin and 

Hartman 1987, Wright and Wimberly 2013).  Agricultural practices can increase sediment 

deposition in wetlands, which can transport nutrients, pesticides, and/or other contaminants into 

wetlands.  Long-term sediment deposition can reduce the size or eliminate wetlands.  

Agricultural lands can result in wetland degradation, with wetlands in the poorest condition most 

often associated with cropping (Kantrud and Newton 1996).  Therefore, there is concern about 

declines in species diversity and detrimental alteration of wetlands (Russi et al. 2013).   

Due to worldwide declines in species diversity and habitat loss, ecologists have sought 

ways to measure the quality of natural systems and monitor changes over time.  Wetland 

assessments have been developed regionally and nationwide for these purposes (Kantrud and 

Newton 1996, Hargiss et al. 2008, U.S. Environmental Protection Agency 2011).  Assessment 

using floristic quality follows the premise that disturbance significantly affects the composition 
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of plant communities (Kantrud and Newton 1996, Hargiss et al. 2008).  Floristic quality indexes 

(FQIs) have been used to determine how conservative an area is toward native based on the flora 

present at the wetland and are region-specific (Wilhelm and Ladd 1988, Swink and Wilhelm 

1994, Taft et al. 1997).   

In addition to condition, plants have been used as an indicator of nutrient availability in 

the soil (Koerselman and Meuleman 1996).  Plants may regulate nutrient levels to a certain 

extent, but nutrient inputs into an ecosystem result in increased nutrient levels in vegetation 

(Shaver and Melillo 1984).  Phosphorus (P) and nitrogen (N) nutrient levels in plants can be used 

to indicate if there are nutrient limitations or enrichments in wetlands.  Koerselman and 

Meuleman (1996) and Verhoeven et al. (1996) showed that plant N:P ratios could be used to 

determine the limiting nutrient in wetlands.  Wetlands with plant N:P > 16 were P-limited, < 14 

were N-limited, and between 14 and 16 were co-limited by N and P.  This was expanded upon by 

Bedford et al. (1999) and applied in plants and soils of North American wetlands.  Their 

conclusions showed marshes having significantly lower plant N:P ratios than bogs, fens, and 

swamps.  Furthermore, surface soil N:P ratios were significantly lower in marshes and swamps 

than in bogs and fens, and marshes were the only wetland type to consistently indicate N-

limitation (N:P < 14) in plants and soils.   

Some wetland systems with nutrient enrichment have shown a rise in cattail cover (Maio 

and Sklar 1998, Newman et al. 1998).  For example, anthropogenic disturbance in the Florida 

Everglades, such as increases in nutrient-rich agricultural runoff and agricultural ditching, has 

altered floristic composition and hydrology of this wetland complex (Newman et al. 1998).  

Nutrient enrichment has also led to increased soil phosphorus levels (Newman et al. 1998, 

DeBusk et al. 2001).  Cattails were better adapted to high phosphorus environments and had 
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higher seed output than sawgrass, allowing the shift to a cattail-dominated marsh community 

under disturbed conditions (Miao and Sklar 1998).  Water depth and litter cover also have 

significant effects on cattail spread (Wilcox et al. 2008, Farrer and Goldberg 2009).  Stable, 

moderate flooding promoted cattail expansion around Lake Ontario since cattails could 

outcompete sedges and grasses under these conditions (Wilcox et al. 2008).  Furthermore, Farrer 

and Goldberg (2009) found that cattail litter may create a positive feedback that promotes further 

cattail invasion.  Higher litter depths promoted taller cattails causing increased shading.  These 

changes decreased the abundance and diversity of native plants and promoted cattail invasion.  

Therefore, anthropogenic effects as well as cattail-induced changes in the environment may 

promote cattail invasion and persistence.  In the past few decades, cover of hybrid cattail, Typha 

x glauca Godr., has increased in wetlands in the Northern Great Plains (Galatowitsch et al. 

1999).  The causal pathway of cattail invasion of marshes in the Northern Great Plains has yet to 

be determined.   

This study was conducted to survey wetlands across North Dakota of various types and 

surrounded by several land uses.  This survey provided information on floristic quality; plant 

carbon (C), N and P nutrient levels; and soil P (Psoil) levels in different land use settings, different 

landscape positions within the wetland basin, and for different plant types.  The objectives of this 

study were to 1) compare the biomass of different plant types and FQI scores between 

surrounding land uses and landscape positions; 2) compare plant C:N (C:Nplant), N:P (N:Pplant), 

and P (Pplant) of different plant types, surrounding land use, and landscape position; and 3) 

correlate Pplant with cattail biomass and Psoil.  We predicted that wetlands in cropland would have 

reduced floristic quality and increased nutrient levels (Martin and Hartman 1987, Jordan et al. 

1997).  We also hypothesized that cattails would correlate with high P levels in the plants and 



8 
 

soil (Newman et al. 1998, DeBusk et al. 2001).  The data were intended to provide a baseline for 

wetlands to develop condition indices and inform future studies of nutrient cycling, land use 

changes, and plant community composition in North Dakota wetlands.   

Methods 

Study Sites 

 Fifty-five wetlands were sampled in the summer of 2011 as part of the United States 

Environmental Protection Agency’s (USEPA) National Wetland Condition Assessment (NWCA, 

Figure 1).  Fifty-three of the wetlands were randomly chosen from the Fish and Wildlife 

Services’ Status and Trends Plots and two were selected as reference wetlands.  Reference 

wetlands were selected by the USEPA for the NWCA.  The reference wetlands were intended to 

represent the most native wetlands.  According to the Status and Trends wetland classifications, 

four different wetland types were sampled (Dahl 2011).  Fifty were emergent palustrine 

wetlands, 3 were forested palustrine wetlands, 1 was a scrub shrub palustrine wetland, and 1 was 

a farmed palustrine wetland. 

At each wetland, three landscape positions – shallow marsh, wet meadow, and upland – 

were delineated based on topography and vegetation (Stewart and Kantrud 1971).  The shallow 

marsh and wet meadow zones were located in the wetland.  Shallow marsh zones contain water 

most of the year, and wet meadow zones hold water after spring melt and heavy rainfall events 

(Stewart and Kantrud 1971).  The upland is the area immediately surrounding the wetland edge, 

which is only inundated during periods of unusually high water levels.   For this study, the 

upland was defined as at least a 1 m elevation rise and within 50 m of the wetland edge.  A list of 

all plant species present was recorded by landscape position.  Land use surrounding each wetland 
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was defined as farmed, grazed/hayed, or idle.  A comprehensive plant species list is located in 

Appendix B.   

 

 

Figure 1.  Locations of 55 wetland sites across North Dakota sampled in the summer of 2011.  
The legend indicates the labels of the four main ecoregions in the state: Lake Agassiz Plain, 
Northern Glaciated Plains, Northwestern Glaciated Plains, and Northwestern Great Plains.  For a 
description of the ecoregions see Bryce et al. (1998).  Refer to Appendix A for a list of wetland 
locations.   

 

Vegetation Samples 

Vegetation samples were collected within each landscape position of the wetland.  

Samples were not collected in upland landscape positions that were actively cropped.  At each 

landscape position, five 0.25 m2 quadrats of live vegetation were clipped 2 cm from the soil 

surface and separated by plant type.  The plant types were cool season grasses, warm season 

grasses, grass-likes (sedges, rushes, etc.), forbs and shrubs (current year’s growth), and cattails.  

Cattails included Typha latifolia L., Typha angustifolia L., and Typha x glauca Godr.  Most 

cattails were Typha x glauca Godr.  This resulted in a total of 15 quadrats clipped per wetland.  
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Samples were stored in labelled paper bags.  Several wetlands were sampled per week, so 

samples collected at the beginning of the week were stored in the back of trucks and laid out 

during the day (unless it was raining).  Once all samples were collected for the week, they were 

transported to North Dakota State University (NDSU) and placed in a large drying oven for two 

weeks at 90 °C.  At this time, vegetation was checked for dryness and removed if dry; otherwise 

they were left in the dryer for a few more days.  The dried vegetation was weighed for biomass 

and then ground through a 2 mm screen using a Wiley Mill.  Wet plant weight was not measured.   

Biomass measurements were adjusted according to time of collection, plant type, and if 

the zone had been grazed to represent maximum plant growth.  This was accomplished using 

plant growth curves and visual estimation of grazing severity (Sedivec et al. 2009, Sedivec et al. 

2010).  Based on recommendations by Sedivec et al. (2009) and Sedivec et al. (2010) and 

professional judgment, plant functional groups were adjusted according to time of harvest: cool 

season grasses, sedges and rushes, cattails, and forbs were considered at 70% growth from June 

13th through June 17th, 80% growth from June 20th through June 24th, and 95% growth from June 

27th through June 30th.  Only seven sites had warm season grasses.  The growth adjustments were 

as follows: 60% on June 21st and 90% from July 13th through 20th.   

Nutrient analysis of vegetation samples was completed by the NDSU Soil Testing 

Laboratory from October of 2011 to August of 2012 using standard methods and procedures as 

outlined for the North Central Region (North Central Region-13 1998).  Plant C and N were 

analyzed using an Elementar Vario Macro Cube CNS Analyzer with a thermal conductivity 

detector.  Pplant was analyzed using a nitric acid digestion with peroxide using a block digester 

(Wolf et al. 2003).  For the plant P, N, and C content data refer to Appendix C.   
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Soil Samples 

Soil samples were collected at three locations within each landscape position.  At each 

location, one 500 g soil core was collected at two depths – 0-15 cm and 15-30 cm from the soil 

surface – using a small metal soil corer.  A total of 18 soil cores were collected per wetland (3 

for each depth at each landscape position).  Stepping or kneeling on areas for sample collection 

was avoided to prevent soil compaction around the soil pits.  Samples were stored in coolers on 

ice at the site and kept on ice until return to NDSU.  Upon return, samples were stored field-

moist at 4°C until analyzed for P content.   

 The P analysis on the soil samples was completed by the North Dakota State University 

(NDSU) Soil Testing Laboratory from April to December of 2012 using standard methods and 

procedures as outlined for the North Central Region (North Central Region-13 1998).  Psoil was 

analyzed using two extractions: water soluble extractions (WEP) to test the amount of P in 

solution in the soil and Olsen extractions (bicarbonate extraction) to test the amount of plant 

available P in the soil (Olsen et al. 1954, Self-Davis et al. 2009).  Olsen extractions were 

completed 5 to 8 hours after adding the extracting solution.  WEP samples were acidified with 

two drops of Hydrochloric acid (HCl, pH of 2.0) and frozen one day to two weeks until analysis 

when they were left to thaw at room temperature.  For quality assurance, a duplicate, blank, and 

standard was run every tenth sample.  The final units of measurement were mg/kg and converted 

to ppm.  The detections limits for Olsen P were 0 to 4 ppm and WEP were 0 to 1 ppm.   

Statistical Analysis  

Floristic quality was calculated for each landscape position using the Floristic Quality 

Index (FQI) for the Dakotas and adjacent grasslands (The Northern Great Plains Floristic Quality 

Assessment Panel 2001).  Plant species were assigned a coefficient of conservatism, or c-value, 
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representing the tolerance of the species to disturbance.  Higher c-values were assigned to 

species that were more sensitive to disturbance with a higher fidelity to a specific habitat.  The 

FQI is the average c-value multiplied by the square root of the total number of species and is 

unitless.  For cattails n = 27, shallow marsh grasses and grass-likes n = 38, shallow marsh forbs 

and shrubs n = 21, wet meadow grasses and grass-likes n = 53, wet meadow forbs and shrubs n = 

44, upland grasses and grass-likes n = 48, and upland forbs and shrubs n = 42.   

In total, 27 wetlands contained cattails, 38 wetlands contained shallow marsh grasses and 

grass-likes, 21 wetlands contained shallow marsh forbs and shrubs, 53 wetlands contained wet 

meadow grasses and grass-likes, 44 wetlands contained wet meadow forbs and shrubs, 48 

wetlands contained upland grasses and grass-likes, and 42 wetlands contained upland forbs and 

shrubs for a total of 273 samples for biomass and nutrient analysis.  Multi-Response Permutation 

Procedures (MRPP) were calculated to test between groups for landscape position, land use, and 

plant type using PC-ORD version 6.0 software (McCune and Mefford 2011).  This was 

completed for plant N:Pplant, C:Nplant, Pplant, FQI scores, and Ptotal (plant and Olsen soil P 

combined).  The Bonferroni correction was used to correct for multiple comparisons.  Linear 

regression was used to model correlations between Psoil and Pplant, Pplant and cattail biomass, and 

Psoil and cattail biomass.  Linear regressions were performed for each soil extraction method 

(Olsen and WEP) and depth (0-15 and 15-30 cm).  We defined a p-value of < 0.05 as denoting 

significant differences and a p-value of < 0.10 as denoting marginal differences.  MRPP results 

were reported as means with standard errors.  Linear regressions and graphs were created in in 

MS Excel 2010.  In graphs and in the text, the means are reported with standard error (SE). 
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Results 

Plant Types 

Comparisons among groups plant type from the MRPP analysis showed several key 

differences.  Forbs and shrubs were significantly lower in biomass than cattails and grasses and 

grass-likes regardless of landscape position (Figure 2a).  Mean shallow marsh, wet meadow, and 

upland forbs and shrubs were 546 (±215), 340 (±51.3), and 490 (±67.3) kg/ha, respectively.  

Mean shallow marsh, wet meadow, and upland grasses and grass-likes were 1070 (±136), 1810 

(±181), and 1750 (±198) kg/ha, respectively, and cattails were 2020 (±337) kg/ha.   

Mean C:Nplant was significantly different among plant types (Figure 2b).  The mean 

C:Nplant for wet meadow grasses and grass-likes was higher than all other plant types at 35.3 

(±2.30).  This was significantly higher than cattails and shallow marsh, wet meadow, and upland 

forbs and shrubs (22.0 ±1.77, 16.6 ±1.18, 18.3 ±1.06, and 17.6 ±1.14, respectively).  The shallow 

marsh and upland grasses and grass-likes were 25.7 (±2.57) and 29.5 (±2.21), respectively.  

These were significantly higher than the shallow marsh, wet meadow, and upland forbs and 

shrubs, but not cattails.  Cattails were also significantly higher than the shallow marsh and wet 

meadow forbs and shrubs.   

Mean Pplant was significantly different for certain plant types (Figure 2c).  Cattails were 

significantly greater in Pplant than all other plant types at 3.97 (±0.58) kg/ha.  Wet meadow forbs 

were significantly lower in Pplant than shallow marsh, wet meadow, and upland grasses and grass-

likes (0.83 ±0.18 kg/ha, 1.90 ±0.26 kg/ha, 1.92 ±0.25 kg/ha, and 2.10 ±0.34 kg/ha, respectively).  

Pplant in shallow marsh and upland forbs and shrubs was not significantly different than the wet 

meadow forbs and shrubs or grasses and grass-likes, regardless of landscape position (2.03 ±0.85 

kg/ha and 1.10 ±0.20 kg/ha, for shallow marsh and upland forbs and shrubs, respectively).   
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Figure 2.  Graphs of mean (a) biomass, (b) plant C:N, (c) plant P, and (d) plant N:P for plant 
type.  Bars represent standard errors.  SM = shallow marsh, WM = wet meadow, and UP = 
upland.  For cattails n = 27, shallow marsh grasses and grass-likes n = 38, shallow marsh forbs 
and shrubs n = 21, wet meadow grasses and grass-likes n = 53, wet meadow forbs and shrubs n = 
44, upland grasses and grass-likes n = 48, and upland forbs and shrubs n = 42.  Different letters 
denote significant differences (p < 0.05).   

 

For plant type, N:Pplant was significantly lower in shallow marsh forbs and shrubs than in 

upland grasses and grass-likes (8.54 ±0.72 and 17.0 ±2.40, respectively; Figure 2d).  Cattails, 

shallow marsh and wet meadow grasses and grass-likes, and wet meadow and upland forbs and 

shrubs were not significantly different than any other plant type (10.3 ±1.96, 12.8 ±2.07, 16.2 

±2.82, 12.4 ±1.64, and 14.6 ±1.70, respectively).   Overall, cattails and grasses and grass-likes 
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tended to contain higher biomass and store greater amounts of nutrients than forbs and shrubs for 

all analyses presented in Figure 2.   

Landscape Position 

FQI scores were significantly lower in shallow marsh zones than in wet meadow or low 

prairie zones (11.9 ±0.62, 17.7 ±1.07, and 18.0 ±1.49, respectively; Figure 3).  C:Nplant, Pplant, 

N:Pplant, and Ptotal were not significantly different for landscape position (41.1 ±1.88, 3.97 ±0.42 

kg/ha, 18.6 ±4.04, and 18.5 ±5.04 kg/ha, respectively; data not shown).   

 

 
 

Figure 3.  Graph of mean FQI scores and landscape position.  Bars represent standard errors.  
Different letters denote significant differences (p < 0.05).   

 

Land Use 

Wetlands in cropped systems had a mean FQI score of 14.3 (±1.52) which was 

significantly lower than idle and grazed/hayed wetlands at 25.0 (±2.35) and 27.9 (±2.95), 

respectively (Figure 4a).  C:Nplant, Plant, and Ptotal were not significantly different for land use 

(23.1 ±2.12, 11.2 ±1.42 kg/ha, and 62.5 ±18.7 kg/ha, respectively; data not shown).  N:Pplant was 
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significantly lower in cropped systems (7.83 ±0.58) than idle systems (19.0 ±3.88) and 

marginally lower than grazed/hayed systems (12.2 ±1.53; Figure 4b).   

 

      
Figure 4.  Graph of mean (a) FQI scores and (b) plant N:P for surrounding land use.  Bars 
represent standard errors.   For cropped n = 15, grazed/hayed n = 19, and idle n = 21.  Different 
letters denote significant differences (p < 0.05).  *Grazed/hayed wetlands were marginally 
different from cropped wetlands (p < 0.10). 

 

Regressions 

The linear regression models were either not significant, showed moderate to weak 

correlations, or had high variability.  Increasing Pplant was correlated with decreasing FQI scores 

(R = 0.31, p = 0.020; Figure 5a), and increasing shallow marsh Pplant was significantly correlated 

with cattail biomass (R = 0.40, p = 0.005; Figure 5b).  No correlations were found between Psoil 

and cattail biomass (data not shown).  However, increasing Pplant was correlated with increasing 

Psoil, except for the shallow marsh at 0-15 cm (Table 1).  The WEP at 15-30 cm showed a 

marginal correlation with Pplant.  Overall, Olsen P tended to have higher R values than WEP, 

although these were weak correlations.   
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Figure 5.  Linear correlations between (a) plant P and FQI and (b) shallow marsh plant P and 
cattail biomass.  
 
 
Table 1.  R values and p-values of linear correlations between cattail biomass and soil P for the 
Olsen extraction and WEP at 0-15 and 15-30 cm and plant P at different landscape positions and 
soil P for the Olsen extraction and WEP at 0-15 and 15-30 cm.  Significant p-values (p<0.05) are 
in bold. 
 

Soil P Extraction Plant P Upland 
(kg/ha) 

Plant P Wet Meadow 
(kg/ha) 

Plant P Shallow Marsh 
(kg/ha) 

Olsen (0-15 cm) R = 0.48 
p = 0.000 

R = 0.56 
p = 0.000 

R = 0.17 
p = 0.236 

Olsen (15-30 cm) R = 0.48 
p = 0.001 

R = 0.52 
p = 0.000 

R = 0.33 
p = 0.023 

WEP (0-15 cm) R = 0.40 
p = 0.005 

R = 0.27 
p = 0.049 

R = 0.16 
p = 0.290 

WEP (15-30 cm) R = 0.25 
p = 0.096 

R = 0.56 
p = 0.000 

R = 0.39 
p = 0.007 

 

Discussion 

 Changes in land use can affect plant community composition, which can in turn affect 

nutrient cycling (Hobbie 1992, Verhoeven et al. 1996).  Our results indicate that land use affects 

floristic quality and whether P or N is the limiting nutrient in the wetland.  Our results also show 

that different plant types store different amounts of P, N, and C.  Increasing Pplant is correlated 

with decreasing floristic quality, increasing cattail biomass, and increasing Psoil.  This indicates 
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that floristic quality may be influenced by P levels.  Additionally, when Psoil was combined with 

Pplant, there were no differences in landscape position or land use.  However, the large amount of 

variability in the data due to the variety of wetlands surveyed show there may be other factors to 

consider.   

 Wetlands in severely disturbed landscapes exhibit reduced diversity, function, and quality 

(Novitzki et al. 1997).  This is reflected in our study, where wetlands in cropped systems were 

significantly lower in floristic quality than wetlands in idle or grazed/hayed systems.  Cattails 

and grasses and grass-likes had significantly greater biomass than forbs and shrubs, which 

allowed for more nutrient storage in the aboveground tissues of these plant types.  Although 

there were less plant species in the shallow marsh than wet meadow or low prairie, there were no 

differences in plant nutrient levels.  C:N, N:P, and P in plants showed differences by plant type, 

most likely due to the variation between species of nutrient loss and uptake (Güsewell 2004).  

Similar to our results, Güsewell (2004) found that plant N:P ratios are higher in graminoids than 

in forbs and higher in stress-tolerant species than in ruderals.  However, C:N, N:P, and P in 

plants were not different between landscape positions, indicating that plant uptake of C, N, and P 

was not greater in the wetland than the surrounding upland.   

We found that wetlands in different land use settings exhibited different plant N:P ratios.  

Plant N:P ratios above 16 indicate P-limitation, below 14 indicate N-limitation, and between 14 

and 16 indicate a limitation of both nutrients (Bedford et al. 1999, Güsewell et al. 2003).  

Therefore, wetlands in idle systems were P-limited, and wetlands in cropped or grazed/hayed 

systems were N-limited (idle: 19.0 ±4.04, cropped: 7.83 ±2.09, grazed/hayed: 12.2 ±2.81).  The 

cropped systems had marginally lower plant N:P ratios than the grazed/hayed systems, which 

could indicate a severe N-limitation in cropped systems, affecting fertilization rates for farmers.  
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Historically, prairie landscapes are N-limited and have evolved with grazing and fire (Seastedt et 

al. 1991).  The grazed/hayed wetlands appear to reflect the historical norm of N-limitation with 

moderate amounts of disturbance.  P-limitation can occur in grasslands dominated by graminoids 

and may eventually lead to reduced plant diversity (Hobbs and Huenneke 1992, Güsewell 2004).   

This may be why the idle wetlands were P-limited.  Therefore, leaving prairie areas idle may 

have effects on how nutrients are cycled in wetlands.  Changes from an N- to a P-limited 

environment and subsequent increases in graminoid cover can result in decreased species 

richness (Güsewell 2004).  However, the P-limited idle wetlands in this study were not 

significantly different than the N-limited grazed/hayed wetlands in plant N:P ratios or floristic 

quality.  Based on this data, there is no indication that idle wetlands are significantly altered by 

suppressing grazing.  However, this study was not able to assess specific management practices, 

such as stocking rates of grazers and fire regimes.  Further study into nutrient cycling under 

different anthropogenic impacts (e.g. cropping, grazing, and fire) may reveal other factors that 

could be important for management decisions.    

Increasing Pplant was correlated with decreasing floristic quality, which is contrary to past 

studies that show moderate amounts of nutrients as the ideal level (Tilman and Pacala 1993, 

Bedford et al. 1999).  According to those studies, floristic quality should be highest with 

moderate P levels, although ranges of nutrient levels vary among wetland types.  Since four 

wetland types were sampled in this study, this may be a reason for the high variability reflected 

in the R values.  Bedford et al. (1999) reported means and ranges of percent N and P of wetland 

plants from 215 samples of 65 different studies.  They found P ranged from 0.004 to 0.64% with 

a mean of 0.14%.  Mean P levels in our study were 1.6 times higher than the Bedford et al. 

(1999) paper at 0.23% with a range of 0.048 to 0.72%.  Emery and Perry (1995) analyzed P 
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levels in cattails in 12 central Minnesota wetlands that had undergone minimal disturbance, but 

were dominated by either Typha species and/or Lythrum salicaria L.  Their cattail Pplant values 

were similar to ours, ranging from 5.5 to 17.6 kg/ha, with one wetland containing no cattails.  

Therefore, our cattail Pplant range of 0.08 to 13.7 kg/ha is within their measurements.   

Mean percent plant N levels were 1.9 times higher in our results than in the Bedford et al. 

(1999) paper.  Their percent N ranged from 0.08 to 4.20% with a mean of 1.34%, and our N 

levels had a larger range from 0.76 to 15.5% with a mean of 2.58%.  Overall, percent P and N 

are elevated in our study compared to the Bedford et al. (1999) results.  Thormann and Bayley 

(1997) analyzed percent plant N in six peatlands in Alberta, Canada.  Their percent N ranged 

from 1.2 to 2.8% – a relatively small range.  The large ranges in plant N levels found in this 

study and the Bedford et al. (1999) study may be due to a variety of wetland types and 

surrounding land uses, which were not present in the Thormann and Bayley (1997) study.   

In previous studies, plant nutrient levels were comparable to soil nutrient levels (Shaver 

and Melillo 1984).  We found increasing Pplant was correlated with increasing Psoil in all samples 

except one collected in the wet meadow and upland, but was only correlated with two of the four 

samples collected in the shallow marsh.  However, the 0-15 cm samples in the shallow marsh did 

not correlate with Pplant levels.  This may be due to P removal by cattails (Weng et al. 2006).  

Thus, we found that increasing cattail biomass was correlated with increasing Pplant levels in the 

shallow marsh.   

In order to explore the relationship between cattail biomass and Psoil, a conceptual model 

was created (Figure 6).  In Figure 6, wetlands with high cattail biomass (between 1,000 and 

7,600 kg/ha) and low Psoil (0-10 ppm for Olsen and 0-3 ppm for WEP) were typical of areas that 

were currently or had been heavily disturbed by cropping.  These Psoil levels are similar to Olsen 



21 
 

P measurements in a Typha-choked Minnesota wetland, which were 16 and 6 ppm (Berryman et 

al. 2009).  Cattails are effective at Psoil uptake, so areas containing high cattail biomass would 

likely have low Psoil (Weng et al. 2006).  Additionally, low Psoil was found in many wetlands 

without cattails.  These wetlands tended to be in native, undisturbed areas with high floristic 

quality.  This is characteristic of areas that are not affected by nutrient runoff from agricultural 

lands (Cooper 1993).  A few wetlands in Figure 6 had higher Psoil (>10 ppm for Olsen and >3 

ppm for WEP) and no cattail biomass.  These wetlands tended to be in riparian areas, which may 

naturally have higher Psoil levels, and in very recently disturbed areas, such as wetlands recently 

cropped around.  A few wetlands also had higher Psoil and higher cattail biomass than other 

wetlands.  These wetlands tended to be almost exclusively in cropped systems and may be 

transitioning to a “cattail-choked” state.  The relationship between these variable states could be 

further investigated to explain cattail invasion in wetlands.   

The exact thresholds and mechanisms for transitioning between the different states seen 

in Figure 6 need to be determined.  This knowledge would assist in understanding wetland 

processes on a larger scale and what factors drive changes in wetland plant communities in 

Northern Great Plains.  Our data indicate that nutrient levels, floristic quality, and land use are 

integrative in wetlands.  Dense cattail cover affects nutrient cycling in an ecosystem that is 

already diminishing (Hobbie 1992, Galatowitsch et al. 1999).  Therefore, further studies of the 

mechanism of cattail invasion as well as solutions for managing cattail-invaded wetlands are 

needed.     
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Figure 6.  Cattail biomass and soil P for the Olsen extraction and WEP at 0-15 cm.  Ovals 
represent wetlands with high cattail biomass and low soil P, low cattail biomass and low soil P, 
low cattail biomass and high soil P, and high cattail biomass and high soil P.   
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PAPER 2.  PLANT PHOSPHORUS, NITROGEN, AND CARBON IN WETLANDS 

EXCAVATED FOR SEDIMENT REMOVAL 

 
Introduction  

Invasion of hybrid cattail (Typha x glauca Godr. (pro sp.)) in wetlands has become an 

issue across North America (Galatowisch et al. 1999).  The hybridization of the narrowleaf 

cattail (Typha angustifolia L.) and broadleaf cattail (Typha latifolia L.) has allowed the hybrid 

cattail to spread into disturbed areas with altered water and soil conditions.  Hybrid cattails 

dominate over the parents in a larger variety of habitats, nutrient levels, and water regimes 

(Grace and Wetzel 1981, 1982, Boers and Zedler 2008).  Wetlands that are “cattail-choked” 

exhibit a decline in native species and modify wetland functions such as nutrient cycling (Werner 

and Zedler 2002, Tuchman et al. 2009).   

Sedimentation can occur naturally in wetlands, but agricultural practices increase the rate 

of sedimentation in wetlands, which effect vegetative cover, aquatic invertebrates, wildlife, 

hydrologic functions, and water quality functions (Gleason and Euliss 1998).  This is common in 

the prairie pothole region where agriculture is widespread.  Sedimentation in wetlands due to 

agricultural practices decreases seedling emergence by burying seeds beds (Jurik et al. 1994, 

Wang et al. 1994).  Sedimentation leads to an increase of invasive species, such as hybrid cattail, 

and a decline in species richness (Werner and Zedler 2002).  Over time, sediment accumulation 

can result in decreased water depths allowing for species to colonize on new substrate in areas 

that may have had too deep of water levels in the past.   

Sediment deposition from cultivated areas tends to be higher in nutrients than sediment in 

grassland areas (Martin and Hartman 1987).  Angeloni et al. (2006) found that cattail invasion 

caused higher soluble ammonium (NH4), nitrate (NO3), and phosphate (PO4) levels in sediments 
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and a shift in denitrifying bacterial communities.  Therefore, cattail invasion has the potential to 

affect nutrient removal in wetlands.  Furthermore, cattails have been found to invade areas with 

higher nutrients inputs, especially phosphorus (P) (Maio and Sklar 1998, DeBusk et al. 2001, 

Tuchman et al. 2009). 

Many studies on how cattails spread into wetlands have occurred in the Great Lakes and 

Everglades, but few have been completed in Northern Prairie wetlands (DeBusk et al. 2001, 

Wilcox et al. 2008, Farrer and Goldberg 2009).  Therefore, we wanted to measure nutrient levels 

in Northern Prairie wetlands that had undergone sediment removal as a treatment for cattail 

invasion.  Our goal was to study the carbon (C), nitrogen (N), and P levels of different plant 

types and landscape positions in wetlands that had been excavated for sediment removal.  We 

predicted that cattails would have higher levels of P than other plant types and that the shallow 

marsh would be higher in nutrients than the other landscape positions (refer to Paper 1).   

Methods 

 Eighteen wetlands were sampled in the summer of 2012 in Benson, Wells, and Towner 

counties in North Dakota.  All wetlands had been in cropland in the past and subject to 

sedimentation, and had a seasonal hydrologic classification according to Stewart and Kantrud 

(1971).  These were excavated to remove accumulated sediment.  For a complete list of wetland 

locations and amount of sediment removed refer to Appendix F.  The Benson county sites were 

excavated in 2007, the Wells county sites were excavated in 2003, and the Towner county sites 

were excavated in 2008.  After excavation, the uplands were planted with native seed mixtures.  

Seeding was not performed within the wetlands.   

At each wetland, three landscape positions – shallow marsh, wet meadow, and low prairie 

– were delineated based on topography and vegetation (Stewart and Kantrud 1971).  The shallow 
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marsh and wet meadow zones were located in the wetland.  Shallow marsh zones contain water 

most of the year, and wet meadow zones hold water after spring melt and heavy rainfall events 

(Stewart and Kantrud 1971).  The low prairie is the area immediately surrounding the wetland 

edge, which is only inundated during periods of unusually high water levels.   For this study, the 

low prairie was defined as at least a 1 m elevation rise and within 50 m of the wetland edge.   

At each landscape position, five 0.25 m2 quadrats of live vegetation were clipped 2 cm 

from the soil surface and separated by plant type.  A total of 15 quadrats were clipped per 

wetland.  Vegetation was separated into cattails, grasses and grass-likes (includes sedges, rushes, 

etc.), and forbs and shrubs (current year’s growth).  Cattails included Typha latifolia L., Typha 

angustifolia L., and Typha x glauca Godr.  Samples were stored in labelled paper bags.  Several 

wetlands were sampled per week, so samples collected at the beginning of the week were stored 

in the back of trucks and laid out during the day (unless it was raining).  Once all samples were 

collected for the week, they were transported to North Dakota State University (NDSU) and 

placed in a large drying oven for two weeks at 90 °C.  At this time, vegetation was checked for 

dryness and removed if dry; otherwise they were left in the dryer for a few more days.  The dried 

vegetation was weighed for biomass and then ground through a 2 mm screen using a Wiley Mill.  

Wet plant weight was not measured.   

Nutrient analyses were completed by the NDSU Soil Testing Laboratory from August 

2012 to March 2013 using standard methods and procedures as outlined for the North Central 

Region (North Central Region-13 1998).  Plant C and N were analyzed using an Elementar Vario 

Macro Cube CNS Analyzer with a thermal conductivity detector.  Plant P (Pplant) was analyzed 

using a nitric acid digestion with peroxide using a block digester (Wolf et al. 2003).  For the 

plant P, N, and C content data refer to Appendix C.   
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 In total, 14 wetlands contained cattails, 17 wetlands contained shallow marsh grasses and 

grass-likes, 9 wetlands contained shallow marsh forbs and shrubs, 18 wetlands contained wet 

meadow grasses and grass-likes, 15 wetlands contained wet meadow forbs and shrubs, 18 

wetlands contained upland grasses and grass-likes, and 11 wetlands contained upland forbs and 

shrubs for a total of 102 samples for biomass and nutrient analysis.  Multi-Response Permutation 

Procedures (MRPP) were calculated to test for differences in plant type and landscape position 

using PC-ORD version 6.0 software (McCune and Mefford 2011).  This was completed for plant 

C:N ratios (C:Nplant) and Pplant.  MRPP was also calculated for the biomass of different plant 

types.  The Bonferroni correction was used to correct for multiple comparisons.  A p-value of 

0.05 was considered significant.  Graphs were created in MS Excel 2010.  In graphs and in the 

text, the means are reported with standard error (SE). 

Results 

Plant Types 

 The MRPP results yielded several differences.  C:Nplant were highest in upland grasses 

and grass-likes at 39.5 (±1.45), which was significantly higher than shallow marsh, wet meadow, 

and upland forbs and shrubs (25.1 ±3.42, 21.4 ±1.24, and 25.9 ±1.79, respectively; Figure 7).  

C:Nplant in shallow marsh and wet meadow grasses and grass-likes (29.9 ±2.22 and 35.0 ±1.41, 

respectively) and cattails (36.5 ±2.17) were significantly higher than wet meadow forbs and 

shrubs only.   

Phosphorus was highest in wet meadow grasses and grass-likes (11.3 ±1.26 kg/ha), which 

was significantly greater than shallow marsh and wet meadow forbs and shrubs (2.35 ±0.76 

kg/ha and 1.51 ±0.43 kg/ha, respectively; Figure 8).  Phosphorus in upland grasses and grass-

likes (6.88 ±0.96 kg/ha) was also significantly greater than wet meadow forbs and shrubs.  
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Cattails, shallow marsh grasses and grass-likes, and upland forbs and shrubs did not have 

different P levels compared to other plant types (6.37 ±1.35 kg/ha, 6.11 ±0.97 kg/ha, and 5.59 

±1.74 kg/ha, respectively).   

 

 

Figure 7.  Mean C:N ratios for plant type.  Bars represent standard errors.  SM = shallow marsh, 
WM = wet meadow, and UP = upland.  For cattails n = 14, shallow marsh grasses and grass-likes 
n =17, shallow marsh forbs and shrubs n = 9, wet meadow grasses and grass-likes n = 18, wet 
meadow forbs and shrubs n = 15, upland grasses and grass-likes n = 18, and upland forbs and 
shrubs n = 11.  Different letters denote significant differences (p < 0.05).   
 
 

Biomass was highest in wet meadow grasses and grass-likes (5860 ±433 kg/ha), which 

was significantly higher than all other plant types (Figure 9).  Shallow marsh and upland grasses 

and grass-likes and cattails were significantly higher in biomass than wet meadow forbs and 

shrubs (2740 ±431 kg/ha, 3950 ±442 kg/ha, 3030 ±696 kg/ha, and 468 ±143 kg/ha, respectively).  

Upland grasses and grass-likes were also significantly greater than shallow marsh forbs and 

shrubs (693 ±231 kg/ha).  The biomass of upland forbs and shrubs (2290 ±757 kg/ha) were 

significantly higher than wet meadow grasses and grass-likes.   
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Figure 8.  Mean P (kg/ha) for plant type.  Bars represent standard errors.  SM = shallow marsh, 
WM = wet meadow, and UP = upland.  For cattails n = 14, shallow marsh grasses and grass-likes 
n =17, shallow marsh forbs and shrubs n = 9, wet meadow grasses and grass-likes n = 18, wet 
meadow forbs and shrubs n = 15, upland grasses and grass-likes n = 18, and upland forbs and 
shrubs n = 11.  Different letters denote significant differences (p < 0.05).   
 

Landscape Position 

There were significant differences for landscape position in C:Nplant (Figure 10).  Shallow 

marsh C:Nplant was significantly greater than wet meadow C:Nplant (69.2 ±6.95 and 51.6 ±2.75, 

respectively).  Upland C:Nplant at 55.3 (±3.13) was not different than the shallow marsh or wet 

meadow.  Pplant did not show any significant differences between landscape positions with an 

overall mean of 34.7 kg/ha (±3.97, data not shown).   

Discussion 

 A previous study on these sites showed significantly lower cattail cover and vegetation 

structure compared to sites that did not have sediment removed (Smith 2011).  Smith (2011) also 

found that wetland vegetation in the wetlands with sediment removal tended to have native 

perennial species and invasive weeds present.  This differed from undisturbed wetlands that had 
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never been in cropland, which were dominated by native perennial species.  Wetlands that were 

converted from cropland to prairie, but had never had sediment removed, were dominated by 

cattails and dense cover.  The sediment removal effectively opened up the shallow marsh for new 

species (Jurek et al. 1994).  In our study, cattail biomass was not significantly different from 

grasses and grass-likes and forbs and shrubs in the shallow marsh.  This indicates several plant 

functional groups were present in the shallow marsh as opposed to only cattails.   

 

 

Figure 9.  Mean biomass (kg/ha) for plant type.  Bars represent standard errors.  SM = shallow 
marsh, WM = wet meadow, and UP = upland.  For cattails n = 14, shallow marsh grasses and 
grass-likes n =17, shallow marsh forbs and shrubs n = 9, wet meadow grasses and grass-likes n = 
18, wet meadow forbs and shrubs n = 15, upland grasses and grass-likes n = 18, and upland forbs 
and shrubs n = 11.  Different letters denote significant differences (p < 0.05).   
 

Our results show most of the biomass is contained in the wet meadow grass and grass-

likes in excavated wetlands.  Grasses and grass-likes and cattails also had higher levels of P and 

C:N than forbs and shrubs.  This differs from a statewide study of P, N, and C in wetland plants 

presented in Paper 1, where the highest Pplant levels were in cattails.  However, this study  of 
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excavated wetlands has much higher mean biomass of grasses and grass-likes and cattails 

ranging from 2740 to 5860 kg/ha than compared to  Paper 1 ranging from 1070 to 2020 kg/ha.  

Therefore, P levels in the grasses and grass-likes and cattails ranged from 6.11 to 11.3 kg/ha and 

were much higher than compared to the results of Paper 1 ranging from 1.90 to 3.97 kg/ha.  This 

may be due to high nutrient availability, which could increase plant biomass (Vermeer and 

Berendse 1983).  Furthermore, Mitsch et al. (2012) measured productivity on planted and 

unplanted created wetlands and found that the unplanted wetland had significantly higher 

biomass than the planted wetland, and both wetlands greatly increased in biomass (up to 7,000 

kg/ha) in the first 5 years of creation.  A similar phenomenon may be occurring in the wetlands 

with sediment removal – the openned up canopy due to excavation has allowed for plant 

establishement resulting in high biomass levels.  If high P levels and biomass remain in these 

wetlands, seasonal changes would allow for the Pplant to return to the soil and water, potentially 

creating conditions for cattail reinvasion.   

 

Figure 10.  Mean plant C:N ratios for landscape position.  Bars represent standard errors.  
Different letters denote significant differences (p < 0.05).   
 

The continued presence of cattails in these wetlands as well as surrounding wetlands may 
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et al. 2012) or a reduction in P levels (Newman et al. 1998, DeBusk et al. 2001).  These sites 

need to continue to be monitored to determine if the reduction in cattail cover and increase in 

native perennial species is a long-term or short-term change.  Paper 1 identified four possible 

states for cattails and soil P in wetlands, but the conditions for the existence for these states are 

unknown.  Further study of the conditions leading to specific wetland states are needed to make 

predictions as to how successful sediment excavation is for reducing cattail cover over time.  The 

specific conditions that promote cattail invasion in Northern Prairie wetlands need to be studied 

as well as what management is useful for long-term reduction in cattail invasion.   
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PAPER 3.  RELATIONSHIP BETWEEN THE NATURAL ABUNDANCE OF STABLE 

NITROGEN AND CARBON SOIL ISOTOPES AND CONDITION 

 
Introduction 

 The global nitrogen (N) and carbon (C) cycles have important implications for human 

well-being (Millennium Ecosystem Assessment 2005).  Anthropogenic impacts to wetlands, 

whether through agriculture or urban development, have dramatically altered nutrient cycling 

with increased nutrient loads and new sources (Galloway and Cowling 2002).  Other effects that 

can alter nutrient cycling include shifts in plant communities, disruption of soil/sediment, 

introductions of invasive species, and pollution.  Northern prairie wetlands are important for 

water quality, climate regulation, and habitat, but are threatened by agriculture (Johnston 2013).  

Due to human impact on natural wetland systems, wetland condition assessments have been 

created to measure changes in wetlands (U.S. Environmental Protection Agency 2011).   

Studies have shown that anthropogenic impacts to natural systems have elevated nutrient 

levels, which can be measured using stable isotopes (Elliott and Brush 2006).  N and C both have 

two stable isotopes: 14N, 15N, 12C, and 13C.  The lighter isotope is preferentially used during 

chemical reactions (such as denitrification, respiration, or methanogenesis) creating distinct 

14N/15N and 12C/13C ratios.  Because of these distinct signatures, isotopes can provide valuable 

information on biogeochemical cycling and nutrient sources (Peterson and Fry 1987).  For 

example, soil δ15N values may be an indicator of denitrification, as denitrification results in an 

enrichment of soil δ15N values (Blackmer and Bremner 1977, Billy et al. 2010).  Soil δ13C values 

in terrestrial systems largely reflect the photosynthetic pathway (C3, C4, or CAM) of the 

dominant plant community, while peat in freshwater wetlands usually reflects the δ13C values of 
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C3 plants, around -27‰ (Boutton 1991).  Furthermore, soil δ13C values in wetlands can be 

affected by decomposition, methanogenesis release, and respiration of aquatic plants.   

Historically, the sources of N in wetlands have included biological fixation, mainly from 

plant and bacteria symbiosis, with some from lightening and wildfires (Viousek et al. 2002).  

Under natural conditions, the source of N is atmospheric, which has an isotope value of 0‰ 

(Elliott and Brush 2006).  Thus, δ15N ranges from 0 to +2‰ when derived from biological 

fixation.  N sources from human inputs have distinct δ15N values as well.  Fertilizer ranges from 

-2‰ to +4‰ (Vitòria et al. 2004), atmospheric deposition ranges from -11‰ to +3‰ (Elliott and 

Brush 2006), and manure and human wastewater ranges from +8‰ to +22‰ (Aravena et al. 

1993).  The increased N from human activities has resulted in an increase in δ15N values 

worldwide; urban ecosystems have reported higher δ15N values than natural ecosystems (Elliott 

and Brush 2006).  Elevated δ15N values can remain up to a century or more after human 

disturbance has ceased (Koerner et al. 1999).   

 The anaerobic and carbon-rich environment typical of wetlands promotes denitrification 

and is important in the N cycle.  Sutherland et al. (1993) found that δ15N values and 

denitrification were greater in wetter, depressional areas than in more elevated, drier landscape 

positions.  However, cropped ecosystems exhibited random spatial patterns of δ15N values; thus 

altered denitrification patterns may occur in cropped ecosystems (van Kessel et al. 1994).  

Additionally, soil δ13C values may be highly influenced by topography and plant residues with 

more elevated landscape positions exhibiting higher (less negative) δ13C values than lower 

landscape positions.  Depressional areas tend to accumulate plant residues, so soil δ13C may be 

affected by decomposition.   
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 Changes in land use have affected wetlands and nutrient cycling globally (Millennium 

Ecosystem Assessment 2005, Elliott and Brush 2006).  Natural abundances of stable isotopes 

have been used as an indicator of anthropogenic inputs into ecosystems (Hoffman et al. 2012, Xu 

and Zhang 2012), and elevated nutrient levels have been correlated with high human impact 

(Elliott and Brush 2006).  Therefore, stable isotope levels in wetland soils can be used to indicate 

changes in land use and nutrient inputs into natural systems (Chang et al. 2002, Elliott and Brush 

2006).  The objective of this study was to explore the relationship between the natural abundance 

of N and C stable isotopes associated with wetland soils and wetland condition, using the Index 

of Plant Community Integrity (IPCI) and North Dakota Rapid Assessment Method (NDRAM), in 

Northern Prairie Wetlands.  Specifically, we hypothesized that 1) δ15N and δ13C would correlate 

with wetland condition and plant quality; 2) δ15N isotope values would be higher in wetlands 

located in cropland compared with natural ecosystems (Elliott and Brush 2006); 3) because 

wetland soils typically promote denitrification, δ15N samples collected in the upland would be 

lower than those collected in the wetland, and samples collected in soil pits with hydric soil 

indicators would have higher δ15N values than samples from soil pits without hydric soil 

indicators (Sutherland et al. 1993, Billy et al. 2010); and 4) δ13C samples would be higher (less 

negative) in the upland than in the wetland (van Kessel et al. 1994).   

Methods 

Study Sites 

 This study was conducted in conjunction with the National Wetland Condition 

Assessment (NWCA) during the summer of 2011 across the state of North Dakota (U.S. 

Environmental Protection Agency 2011).  Soils, land use, vegetation, condition, and buffer data 

collected during the NWCA project were used to compare with the isotope data and determine if 
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correlations existed.  Fifty-one wetlands were sampled that were randomly pre-selected from the 

Fish and Wildlife Service’s Status and Trends Plots as an intensification of and to contribute to 

the nationwide NWCA survey (Dahl 2011, Figure 11).  A hydrogeomorphic (HGM) class was 

assigned to each wetland (Brinson 1993, Smith et al. 1995).  Of the 52 wetlands, 32 were closed 

depressions (CD), 5 were open depressions (OD), 5 were upper perennial riverine (UPR), 4 were 

lacustrine fringe (LF), 3 were organic soil flats (OSF), and 2 were topographic slopes (TS).   

 

 
 

Figure 11.  Location of 51 wetland sites across North Dakota sampled in the summer of 2011.  
The legend indicates the labels of the four main ecoregions in the state: Lake Agassiz Plain, 
Northern Glaciated Plains, Northwestern Glaciated Plains, and Northwestern Great Plains.  For a 
description of the ecoregions see Bryce et al. (1998).   
 

Additionally, the IPCI and NDRAM were performed at each wetland as regional-specific 

assessments to evaluate the condition of the wetland (Hargiss et al. 2008, Hargiss 2009).  The 

IPCI was utilized to assess the vegetation, and the NDRAM was used to rapidly assess wetland 

characteristics, such as wetland buffer, hydrology, vegetation, soils, habitat, management, 

wetland potential, and overall condition.  For the NDRAM, we defined surrounding land use as 
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cropped, idle, or grazed/hayed.  Cropped wetlands were cropped through or up to the wetland or 

were surrounded by cropland and had a very narrow (i.e., less than 1000 m) buffer.  Idle 

wetlands did not have an active management practice in or around the wetland.  Wetlands with a 

very large buffer (i.e., more than 1000 m) before cropping began were considered idle.  

Grazed/hayed wetlands were wetlands that were managed with vegetation removal by domestic 

grazing and/or haying.  Fourteen wetlands were cropped, 18 wetlands were idle, and 19 wetlands 

were grazed/hayed.   

National Wetland Condition Assessment 

At each wetland, a full field survey for the NWCA was conducted, which included 

surveying and data collection of the wetland buffer, flora, water chemistry, and soils, among 

other components (see U.S. Environmental Protection Agency 2011 for details).  Due to variable 

sizes in wetlands from hundreds of hectares to a fraction of a hectare, only a specified area was 

sampled.  An assessment area (AA) was set up within each wetland with less than 10% of the 

AA in upland or in water over 1 m deep.  The standard AA was a 0.50 ha circle; otherwise the 

AA was adjusted to fit the shape of the wetland.  The minimum size of the AA was 0.10 ha.  

Average buffer width for a 100 m wide buffer was estimated using aerial photography and visual 

observation at the wetland.  The buffer width in 8 equidistant directions was estimated and 

averaged to provide an average width.  Five vegetation plots were set up at prescribed distances 

within the AA – one in each cardinal direction – and one near the center.  Soil pits were 

excavated immediately outside the southeast corner of the outer four vegetation plots.  Of the 

four soil pits, one was chosen as the “most representative” for the wetland using best 

professional judgment.  The representative pit was sampled for hydric soil indicators, water 

level, soil nitrate (NO3-N), soil pH, and soil isotopes.   
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To collect the soil isotope samples, a standard steel soil probe (2.25 cm diameter) was 

used to core three samples of 10-cm-deep (from the surface) soil in the representative pit and one 

sample of 10-cm-deep soil in the adjacent upland of each wetland.  Thick root mats and rhizomes 

were avoided, as living plant material has different isotope ratios than the expected range for 

soils.  Samples were placed on ice until sent to the U.S. Environmental Protection Agency 

(USEPA) Western Ecology Division (WED) in Corvallis, Oregon for isotopic analysis in the 

ISIRF (Integrated Stable Isotope Research Facility) laboratory.  Soil NO3-N, pH, and OM 

samples were collected from each horizon greater than 5 cm in the representative pit.  Samples 

were stored on ice and analyzed at the NDSU Soil Testing Laboratory in Fargo, North Dakota.  

Samples from the top horizon were used for comparisons with the soil isotope samples.   

Regional Wetland Assessment Methods 

Vegetation was assessed using the IPCI method (Hargiss et al. 2008).  According to the 

Stewart and Kantrud (1971) classification, wetlands were assessed as temporary, seasonal, or 

semi-permanent wetlands.  Temporary wetlands contained low prairie and wet meadow zones; 

seasonal wetlands contained low prairie, wet meadow, and shallow marsh zones; and semi-

permanent wetlands contained low prairie, wet meadow, shallow marsh, and deep marsh zones.  

Vegetation cover was measured within 1 m2 quadrats, and additional species were identified 

between quadrats.  Eight quadrats were completed in the low prairie, 7 in the wet meadow, 5 in 

the shallow marsh, and 5 in the deep marsh, when present.  Using the species recorded, c-values 

were assigned according to The Northern Great Plains Quality Assessment Panel (2001).  

Species with higher c-values are more sensitive to disturbance and have higher fidelity to a 

specific habitat.  Introduced species were not assigned c-values.  Then the Floristic Quality Index 

(FQI) for each wetland was calculated using the average c-value multiplied by the square root of 
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the total number of species (Wilhelm and Ladd 1988).  The FQI and 8 other vegetation 

calculations were used to calculate the IPCI condition score for each wetland (see Hargiss et al. 

(2008) for the specific calculations).   

The NDRAM is used to rapidly assess wetlands (Hargiss 2009).  Wetlands are scored on 

average buffer width, intensity of surrounding land use, soil/substrate disturbance, plant 

community and habitat development, habitat alteration and recovery, management, modifications 

to natural hydrologic regime, potential of wetland to reach reference, invasive species, and 

overall condition (see Hargiss (2009) for the specific calculations).   

Laboratory Analysis 

 Upon arrival to the USEPA WED laboratory, soil samples were stored at 4°C until they 

underwent a 144-hour freeze-drying process in a VirTis Genesis freezer dryer equipped with a 

Wizard 2.0 Data Center.  After removing the wetland soils from the freeze dryer, any large 

debris, roots, and vegetation were separated from the soil matrix using a 2 mm sieve.  On rare 

occasions (4 of the total 108 soil samples), the dried soil samples were too recalcitrant to break 

apart and sieve; therefore, they were coarsely ground using a Wiley Mill before fine grinding.  

The remaining soil matrix of each of the samples, whether sieved or coarsely ground, was finely 

ground in a glass jar using 1-inch stainless steel rods and a roller grinder for 24 hours or until the 

soil reached the consistency of fine flour.  Finely ground soils were stored in tightly-lidded glass 

jars until isotope analysis at ISIRF. 

 Soil isotope analyses for δ15N and δ13C were determined by dry combustion in a Costech 

ECS4010 Elemental Analyzer equipped with a zero-blank autosampler and a Thermo Finnigan 

Delta XP Isotope Ratio Mass Spectrometer (IRMS) with a Conflow 3 interface.  Data are 
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reported as δ15N or δ13C values and expressed relative to atmospheric N2 (for δ15N) or Pee Dee 

Blemnite (PDB; for δ13C) in ‰: 

δ15N or δ13C =  �
𝑅sample
𝑅standard

−  1�1000 

where R is the ratio of 14N to 15N or 12C to 13C atoms of the sample and atmospheric N2 or PDB.  

Measurement precision of the elemental analyzer was 0.11 and 0.8 for δ15N and δ13C, 

respectively. 

Statistical Analysis 

Multi-Response Permutation Procedures (MRPP) were calculated to test differences 

between groups using PC-ORD version 6.0 software (McCune and Mefford 2011).  The 

Bonferroni correction was used to correct for multiple comparisons.  MRPP tested the 

differences between the upland and wetland for the δ15N values.  This was also performed for the 

upland and wetland δ13C values. The rest of the analyses were performed using the wetland 

samples.  MRPP was performed to evaluate differences among land use types: wetlands in 

cropland, idle grasslands, and grazed/hayed grasslands.  MRPP tested δ15N values between 

wetlands with and without hydric soil indicators.   

Linear regressions were performed to test correlations between wetland δ15N and δ13C 

values and FQI scores, IPCI scores, NDRAM scores, soil pH, and average 100 m buffer width.  

Linear regression was also performed on soil δ15N values and soil NO3-N.  Significant 

differences indicate p < 0.05 for all statistical analyses.  Graphs were created in MS Excel 2010 

and different letters indicate significant differences.  In graphs and in the text, the means are 

reported with standard error (SE). 
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Results 

N Isotopes 

 The MRPP analysis showed no differences between the upland and wetland samples for 

the δ15N data (means of 5.33 ±0.75‰ and 5.56 ±0.76‰, respectively, data not shown).  

However, there were significant differences in soil δ15N among differing land uses (Figure 12).  

Wetlands in cropland averaged 6.24 ±1.14‰ and were significantly higher than idle or 

grazed/hayed grasslands (means of 5.03 ±0.84‰ and 5.21 ±0.84‰ for idle and grazed/hayed 

wetlands, respectively).  Wetlands containing one or more hydric soil indicators in the 

representative pit were not significantly different than wetlands with no hydric soil indicators 

(with n=45, without n=6, data not shown).  Soil δ15N values in CD wetlands were 39% lower 

than TS wetlands (means of 5.96 ±1.05‰ and 9.79 ±6.92‰, respectively; p<0.05, Figure 13).  

OD, UPR, LF, and OSF wetlands were not significantly different from each other or CD and TS 

wetland types (means of 4.35 ±1.94‰, 5.05 ±2.26‰, 4.21 ±2.10‰, and 3.16 ±1.83‰, 

respectively).   

The linear regression analysis for the soil δ15N values and FQI scores showed a decrease 

in δ15N as FQI scores increased (R=0.49, p<0.001, Figure 14).  Similarly, decreasing soil δ15N 

values were significantly correlated with increasing IPCI and NDRAM scores (IPCI: R2=0.46, 

p<0.001, Figure 15; NDRAM: R=0.49, p<0.001, Figure 16).  However, soil δ15N values and soil 

NO3-N did not show a significant relationship, nor did soil δ15N values and soil pH (R=0.15, 

p=0.294 and R=0.03, p=0.824 for NO3-N and pH, respectively; data not shown).  Soil δ15N 

values decreased as average 100 m buffer width increased (R=0.33, p=0.019, Figure 17).   
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Figure 12.  Mean values for soil δ15N for different land uses.  For cropland n=14, idle n=18, and 
grazed/hayed n=19.  Different letters denote significant differences, and error bars represent SE.   
 

 

Figure 13.  Mean values for wetland soil δ15N of different hydrogeomorphic (HGM) classes.  For 
depression closed n=32, depression open n=5, riverine upper perennial n=5, lacustrine fringe 
n=4, flats organic soil n=3, and slope topographic n=2.  Different letters denote significant 
differences, and error bars represent SE.   
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Figure 14.  Linear regression for the wetland soil δ15N values (‰) and FQI scores.  Different 
land uses were represented by different symbols.   
 
 
 

 

Figure 15.  Linear regression of wetland soil δ15N (‰) and IPCI scores.  Different land uses were 
represented by different symbols.   
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Figure 16.  Linear regression of wetland soil δ15N (‰) and NDRAM scores.  Different land uses 
were represented by different symbols.   
 

 

 

Figure 17.  Linear regression of wetland soil δ15N (‰) and average buffer width out of 100 m.    
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C Isotopes 

The MRPP analysis for the δ13C data was significantly higher in the wetland compared to 

the upland (means of -20.87 ±2.87‰ and -22.04 ±3.09‰, respectively, Figure 18).  The MRPP 

comparing land use did not show differences for the δ13C data with mean cropland at -21.24 

±3.88‰, idle grassland at -21.46 ±3.58‰, and grazed/hayed grassland at -21.58 ±3.50‰ (data 

not shown).  Soil δ13C values for CD wetlands were significantly lower than OD and UPR 

wetlands by 24% for OD and 22% for UPR wetlands (means of -21.66 ±3.83‰, -16.36 ±7.31‰, 

and -16.84 ±7.53‰, respectively; Figure 19).   

 

 

Figure 18.  Mean values for the soil δ13C data for different landscape positions (upland and 
wetland, both n=51).  Different letters denote significant differences, and error bars represent SE.   
 

Linear regression analysis for the wetland δ13C values and the FQI scores showed a trend 

of increasing δ13C with increasing FQI scores (R=0.26, p=0.068, data not shown).  Soil δ13C 

values and IPCI scores showed a slight increase in δ13C as IPCI scores increased (R=0.30, 

p=0.031, data not shown).  Although this correlation was significant, it was not a strong 

a b -25

-20

-15

-10

-5

0
Shallow Marsh Upland

So
il 

δ13
C

 (‰
) 



45 
 

correlation due to the high amount of variability not explained.  Wetland soil δ13C values and 

NDRAM scores did not show a significant correlation (R=0.20, p=0.148, data not shown).  

Increasing wetland soil δ13C values were significantly correlated with increasing soil pH 

(R=0.65, p<0.001, Figure 20).  Soil δ13C values were not significantly correlated with average 

100 m buffer width (R=0.12, p=0.386, data not shown).   

 

Figure 19.  Mean values for wetland soil δ13C of different hydrogeomorphic (HGM) classes.  For 
depression closed n=32, depression open n=5, riverine upper perennial n=5, lacustrine fringe 
n=4, flats organic soil n=3, and slope topographic n=2.  Different letters denote significant 
differences, and error bars represent SE.   
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hypothesized there would be higher denitrification rates in the wetlands as shown in previous 

studies (Blackmer and Bremner 1977, Billy et al. 2010).  However, wetland δ15N values did not 

differ in the wetland and the upland landscape positions.  This could be due to differences in 

denitrification rates for different plant species (Bachand and Horne 2000) or due to the variety of 

b 

a a 
ab 

ab ab -30

-25

-20

-15

-10

-5

0

D
ep

re
ss

io
n 

cl
os

ed

D
ep

re
ss

io
n 

op
en

Ri
ve

rin
e 

up
pe

r p
er

en
ni

al

La
cu

st
rin

e 
fri

ng
e

Fl
at

s o
rg

an
ic

 so
il

Sl
op

e 
to

po
gr

ap
hi

c

W
et

la
nd

 so
il 

δ13
C

 (‰
) 



46 
 

wetland types and ecological conditions present in this study.  Although upland and wetland 

mean δ15N values were not significantly different, more controlled measurements testing 

denitrification in wetlands may provide more useful results.  Additionally, since wetland δ15N 

samples collected from soil pits with indicators were not different than soil pits without 

indicators, denitrification may not override the differences resulting from different wetland types 

or ecological condition.   

 

 

Figure 20.  Linear regression of wetland soil δ13C (‰) and soil pH.    
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wetland condition and greater human impact (Koerner et al. 1999, Galloway and Cowling 2002, 

Elliott and Brush 2006).   

Wetlands in cropland were enriched in δ15N compared to wetlands in non-cropped 

grasslands (Koerner et al. 1999).  Soil δ15N enrichment is common in ecosystems that have been 

heavily impacted by human and animal wastes (Aravena et al. 1993, Elliott and Brush 2006), 

however, the differences are small in this study (approximately 1‰).  We expected animal waste 

may also increase δ15N values; therefore, it was surprising that δ15N values in grazed/hayed 

wetlands were not significantly higher than idle wetlands.  Soil δ15N levels adjust to changing 

conditions slowly, so the values may be reflective of idle wetlands being disturbed in the past 

(Koerner et al. 1999, Kriszan et al. 2009).  The mean δ15N was above 5‰ for all wetlands, 

indicating multiple sources of N.  This also indicates that all wetlands in this study, even in 

different land uses, may be impacted by human and animal waste to some degree (Aravena et al. 

1993).   

Increasing FQI scores were correlated with decreasing δ15N values, which is related to 

land use and wetland condition.  Floristic quality is significantly lower in wetlands in cropland 

compared to wetlands in idle or grazed/hayed landscapes (refer to Paper 1).  Therefore, land use 

affects floristic quality as well as δ15N values (Elliott and Brush 2006).  Likewise, lower δ15N 

values were indicative of higher wetland condition, higher floristic quality, and more native 

areas.  This was reflected in the regression graphs; grazed/hay wetlands tended to cluster 

separate from the wetlands in cropland and idle wetlands tended to spread throughout.  Similarly, 

larger buffer areas around wetlands are important to wetland condition (Castelle et al. 1994, 

Brown and Vivas 2005).  Smaller buffer areas occurred in wetlands in cropped areas, thus, 

smaller buffer width was correlated with higher δ15N values.   
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C Isotopes 

Soil δ13C isotope values associated with surface soil largely reflect the photosynthetic 

pathway of the dominant plant community; soils in freshwater wetlands usually reflect C3 

vegetation (Boutton 1991, Choi et al. 2001).  The δ13C values for C3 plants range from -32 to -

20‰ with an average of -27‰ and C4 plants range from -17 to -9‰ with an average of -13‰ 

(Boutton 1991).  The vast majority of plant species in this study were C3, and the mean δ13C 

values fall within this range.  Because δ13C values are heavily influenced by vegetative 

composition, the δ13C values may not vary due to land use since the most common crops in 

North Dakota are wheat, sugar beets, and soybeans which are all C3 plants.  Recently, more corn 

is being planted in North Dakota due to high corn prices, which is accelerating wetland losses 

(Johnston 2013).  If cropland cover continues to change to corn, the δ13C values could increase 

since corn has a C4 photosynthetic pathway.   

 Soil δ13C values did not have a significant correlation with FQI or NDRAM scores.  

Increasing δ13C values were slightly correlated with increasing IPCI scores, but with a low R-

value (0.30).  Therefore, our results are inconclusive regarding δ13C values and wetland 

condition.  Since the photosynthetic pathway of the plant community did not differ based on land 

use, the δ13C values did not either (Boutton 1991, Choi et al. 2001, Staddon 2004).  However, 

increasing soil pH was correlated with increasing δ13C values.  Low soil pH can decrease 

methane production under certain conditions (Nazaries et al. 2013), so we would expect δ13C 

values to be lower in acidic soil.  The influence of methanogenesis and δ13C values in prairie 

wetlands needs to be further explored.   
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Conclusion 

 Natural abundance soil isotope values in wetlands need to be explored further.  The 

results of this project will be a baseline for future study of wetland soil isotopes and condition.  

A number of studies have highlighted the usefulness of stable isotope natural abundance values, 

although there is still much to learn about applying stable isotope techniques in wetland 

ecosystems (Bachand and Horne 2000, Bernot et al. 2008, Aelion et al. 2010).  This study is the 

first step in applying stable isotope natural abundance techniques in Northern Prairie wetlands.  

Soil natural abundance δ15N values can be applied to reflect land use, wetland condition, and 

floristic quality.  Therefore, natural abundance isotopes may be useful in wetland assessment, 

tracking denitrification, and studying long-term changes in land use and N sources (Chang et al. 

2002, Elliot and Brush 2006, Billy et al. 2010).  Additionally, δ13C values reflect the plant 

community and can measure past changes in plant communities (Choi et al. 2001).  Further 

studies to develop stable isotopes as indicators of wetland nutrient sources, land use changes, and 

nutrient cycling need to be developed, as the rapid sampling methods and low analysis cost 

makes stable isotopes a prime candidate for use in large-scale studies.   
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PAPER 4.  USING CART ANALYSIS TO EVALUATE WETLAND CONDITION 
 
Introduction  

Vegetation assessment is important for determining wetland condition (Wilhelm and 

Ladd 1988).  Plant communities are affected by a variety of biotic and abiotic components 

including soil type, hydrology, anthropogenic disturbances, and plant-animal interactions.  

Vegetative assessments and floristic quality indexes (FQIs) have been developed across the U.S. 

(Wilhelm and Ladd 1988, Hargiss et al. 2008).  The premise is that floristic quality is 

representative of the condition or quality of an area.  Therefore, certain species are linked to 

natural and native areas and certain species are linked to disturbed and stressed areas.  

Additionally, FQIs are region-specific.  Plant species are assigned a coefficient of conservatism, 

or c-value, based on the tolerance of the species to disturbance in a specific region (Wilhelm and 

Ladd 1988, Swink and Wilhelm 1994, Taft et al. 1997).  Higher c-values are assigned to species 

that are more sensitive to disturbance and, therefore, tend to be found in native, unaltered 

habitats.   

Floristic Quality Indexes (FQIs) can be incorporated into vegetation-based assessments, 

such as the Index of Plant Community Integrity (IPCI, Hargiss et al. 2008).  This assessment is 

based on the level of disturbance at a wetland and multiple measurements of the plant 

community.  This assessment requires a thorough knowledge of plant species.  Other methods of 

assessment include rapid assessments, which are developed for ease of use and minimal sample 

time (Fennessy et al. 2007).  Many metrics of rapid assessment methods are scored based on the 

level of stress to an aspect of the wetland such as alteration of the hydrologic regime through 

ditching or draining, level of soil disturbance, and degree of alteration and development of the 

wetland buffer.  How assessment methods relate to water, soil, and plant chemistry have not been 
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determined.  Thus, relationships between nutrient levels in wetlands and assessment methods 

have yet to be established.   

Classification and regression trees (CART) are a tool for interpreting complex 

environmental data (Breiman et al. 1984, De’ath and Fabricius 2000).  CART is a nonparametric 

method that provides linkages with environmental variables to identify patterns and processes in 

data.  CART can be applied to large data sets, nonlinear relationships, missing values, high-order 

interactions, and numerical and categorical variables.  Linear models can fail to find patterns 

identified by CART.  CART has been applied to wetland studies to identify multiple states of 

succession in Florida everglades (Zweig and Kitchens 2009), to establish biological condition 

relative to human disturbance (Lougheed et al. 2007, Johnston et al. 2009), and predict seasonal 

wetland abundance in northern Minnesota forests (Palik et al. 2003).   

 Our goal was to intensify the NWCA study and establish data for statewide wetland 

assessment by expanding the sample size from 11 to 53 wetlands.  A broad assortment of 

wetland data was collected during the study including soils, land use, vegetation, condition, 

buffer, and stressor data.  Our objective was to model the data collected in order to identify 

distinguishing wetland characteristics.  Thus, we related the vegetation data to environmental 

variables (including wetland location, type, size, hydrology, stressors, surrounding land use, 

water and soil attributes and chemical analyses, and plant nutrients) utilizing CART analysis and 

compared this with wetland condition.  The results of this study will be a baseline for future 

studies of wetland assessment and condition.   
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Methods 

Study Sites 

The National Wetland Condition Assessment (NWCA) was the first ever assessment of 

our nation’s wetlands and was completed in the summer of 2011 by the U.S. Environmental 

Protection Agency (USEPA, U.S. Environmental Protection Agency 2011).  This assessment 

addresses the need for data to evaluate wetland quality.  For the NWCA, a variety of data was 

collected about the wetland buffer, soils, vegetation, algae, water quality, hydrology, and a rapid 

assessment.  As part of this nationwide study, North Dakota added additional sites as an 

intensification of the NWCA and performed three additional regional wetland assessments at 

each site.  Thus, North Dakota was able to perform several statewide wetland studies as well as a 

statewide assessment of wetland condition.   

 During the summer of 2011, the NWCA was completed across North Dakota on 53 

wetlands randomly pre-selected from the Fish and Wildlife Service’s Status and Trends Plots 

(Dahl 2011).  Thirty-six of the wetlands contained water greater than 15 cm deep, allowing for 

water sample collection.  These 36 wetlands were selected for modeling in this study (Figure 21).  

Of the wetlands included in this study, 26 were closed depressions, 3 were open depressions, 3 

were upper perennial riverine, 3 were lacustrine fringe, and 1 was organic soil flats based on 

hydrogeomorphic (HGM) classes (Smith et al. 1995).   

At each wetland, the NWCA methods were performed (see U.S. Environmental 

Protection Agency 2011 for details).  Data was collected for the wetland buffer, flora, water 

chemistry, soils, and a rapid assessment, among other components.  In addition to the NWCA 

field survey, the IPCI, North Dakota Rapid Assessment Method (NDRAM), and 

Hydrogeomorphic (HGM) Model were completed at each wetland (Gilbert et al. 2006, Hargiss et 
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al. 2008, Hargiss 2009).  These regional wetland assessments were performed to provide 

comparisons to the NWCA and data for modeling.  Additional live plant samples were collected 

for nutrient analysis.   

 

Figure 21. Location of the 36 wetland sites across North Dakota.  The legend indicates the labels 
of the four main ecoregions in the state: Lake Agassiz Plain, Northern Glaciated Plains, 
Northwestern Glaciated Plains, and Northwestern Great Plains.  For a description of the 
ecoregions see Bryce et al. (1998).  Refer to Appendix A for a list of wetland locations.   
 
  
National Wetland Condition Assessment 

At each wetland, an assessment area (AA) was set up within the wetland with less than 

10% of the AA in upland or in water over 1 m deep for the NWCA methods (U.S. Environmental 

Protection Agency 2011).  The standard AA was a 0.50 ha circle; otherwise the AA was adjusted 

to fit the shape of the wetland.  The minimum size of the AA was 0.10 ha.  Three buffer plots 

were characterized in each of the four cardinal directions and one buffer plot was located at the 

center of the assessment area for a total of 13 plots.  The first of the outer buffer plots were 

located 5 m from the edge of the assessment area.  The next two were located 45 and 90 m from 
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the first buffer plot.  Each buffer plot was 100 m2 and natural cover, stressors, and alien species 

were recorded for each plot.   

Five 100 m2  (10 m x 10 m) vegetation plots were set up at prescribed distances within 

the AA; one was in each cardinal direction and one was near the center (the center vegetation 

plot was the same as the center buffer plot).  Vegetation was characterized in several ways using 

nested plots (1 m2 and 10 m2 plots were nested in the northeast and southwest corners of the 

large plot).  Percent cover for each vascular plant species in the 100 m2 plot was recorded as well 

as the height class for each species (≤ 0.5 m, 0.5 to 2 m, 2 to 5 m, 5 to 15 m, 15 to 30 m, > 30 m, 

and liana/vine/epiphyte).  The smallest plot a species was found in was recorded.  The percent 

cover of submerged aquatic vegetation; floating aquatic vegetation; and lianas, vines, and 

epiphytes was recorded for each of the 5 large plots.  Cover of non-vascular plants, open water, 

bareground, vegetative litter, and downed dead woody material were also recorded in the 5 large 

plots.  Last, snag, tree counts, and tree cover by species were recorded for the 5 large plots.  

However, the vegetation data from this assessment was not included as environmental variables 

in the CART model since the response variables were based on vegetation data from the IPCI.   

Soil pits were dug immediately outside the southeast corner of the outer four vegetation 

plots.  Soil pits where water was greater than 0.25 m deep were discarded.  One of the soil pits 

was chosen as the most representative for the wetland.  The representative pit was sampled for 

hydric soil indicators, water level, and soil chemistry.  Water levels were measured as positive 

for standing water above soil pit and negative for water depth from the soil surface.  Mercury 

(Hg), nitrate (NO3-N), phosphorus (P), potassium (K), sulfate (SO4-S), zinc (Zn), iron (Fe), 

manganese (Mn), copper (Cu), chlorine (Cl), electrical conductivity (EC), percent organic matter 

(OM), calcium carbonate equivalent (CCE), and particle size analysis (PSA) were analyzed for 
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each horizon in the representative pit at the NDSU Soil Testing Laboratory in Fargo, North 

Dakota.   Data from the first soil horizon greater than 4 cm wide was used for the environmental 

variables.   

Within the AA, water quality samples were collected.  The water clarity was described as 

clear, turbid, stained, or milky.  Surface water dissolved oxygen (DO), pH, and conductivity was 

recorded using a YSI probe.  Water chemistry samples were collected and analyzed by the North 

Dakota Department of Health Laboratory in Bismarck, North Dakota.  Water P, N, ammonia 

(NH3-N), and nitrate-nitrite (NO3-NO2-N) were determined from water samples.    

The wetland buffer, topography, patch complexity, plant community, water quality, 

hydrology alterations, and substrate stressors were rapidly assessed using the U.S.A. Rapid 

Assessment Method (USA-RAM).  Average buffer width for a 100 m wide buffer was estimated 

using aerial photography and visual observation at the wetland.  The buffer width in 8 equidistant 

directions was estimated and averaged to provide an average width.  The percent of the AA 

adjoining buffer area was recorded as either <25%, 26-50%, 51-75%, and >75%.  An overall 

buffer stressor score was calculated by adding up the total number of stressors present in the 

buffer plots.  Similarly, the total number of water quality, hydrology, and substrate stressors were 

each calculated for the AA.   

Regional Wetland Assessment Methods 

Vegetation was assessed using the IPCI (Hargiss et al. 2008).  Each plant species was 

recorded within each wetland zone based on Stewart and Kantrud (1971) using 1 m2 quadrats.  

Eight quadrats were completed in the low prairie zone, seven in the wet meadow zone, five in the 

shallow marsh zone, and five in the deep marsh zone, and additional species were identified 

between quadrats.  Wetland condition was scored using 9 condition metrics on a scale of 0 to 99 
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(see Hargiss et al. (2008) for specific calculations).  The NDRAM was used to rapidly assess the 

buffer, soil, habitat, vegetation, hydrology, overall condition, and potential of the wetland to 

reach reference condition.  The presence or absence of grazing, cropping, or herbicide use in and 

around the wetland was recorded in the NDRAM.  Wetlands were scored on a scale of 0 to 100 

(see Hargiss (2009) for specific calculations).  As part of the HGM Model, the area of the 

wetland and wetland catchment, as well as the percent of catchment in cropland, native cover, 

and urban cover was collected using GPS and GIS information.   

Vegetation Nutrient Levels 

Vegetation samples were collected within each landscape position of the wetland.  

Samples were not collected in low prairie landscape positions that were actively cropped.  At 

each landscape position, five 0.25 m2 quadrats of live vegetation were clipped 2 cm from the soil 

surface and separated by plant type.  The plant types were cool season grasses, warm season 

grasses, grass-likes (sedges, rushes, etc.), forbs and shrubs (current year’s growth), and cattails.  

Cattails included Typha latifolia L., Typha angustifolia L., and Typha x glauca Godr.  Most 

cattails were Typha x glauca Godr.  This resulted in a total of 15 quadrats clipped per wetland.  

Samples were stored in labelled paper bags.  Several wetlands were sampled per week, so 

samples collected at the beginning of the week were stored in the back of trucks and laid out 

during the day (unless it was raining).  Once all samples were collected for the week, they were 

transported to North Dakota State University (NDSU) and placed in a large drying oven for two 

weeks at 90 °C.  At this time, vegetation was checked for dryness and removed if dry; otherwise 

they were left in the dryer for a few more days.  The dried vegetation was weighed for biomass 

and then ground through a 2 mm screen using a Wiley Mill.   
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Biomass measurements were calculated according to dry plant weight; wet weight was 

not measured.  Biomass measurements were adjusted according to time of collection, plant type, 

and if the zone had been grazed to represent maximum plant growth.  This was accomplished 

using plant growth curves and visual estimation of grazing severity (Sedivec et al. 2009, Sedivec 

et al. 2010).  Based on recommendations by Sedivec et al. (2009) and Sedivec et al. (2010) and 

professional judgment, plant functional groups were adjusted according to time of harvest: cool 

season grasses, sedges and rushes, cattails, and forbs were considered at 70% growth from June 

13th through June 17th, 80% growth from June 20th through June 24th, and 95% growth from June 

27th through June 30th.  Only seven sites had warm season grasses.  The growth adjustments were 

as follows: 60% on June 21st and 90% from July 13th through 20th.   

Nutrient analysis of vegetation samples was completed by the NDSU Soil Testing 

Laboratory from October of 2011 to August of 2012 using standard methods and procedures as 

outlined for the North Central Region (North Central Region-13 1998).  Plant C and N were 

analyzed using an Elementar Vario Macro Cube CNS Analyzer with a thermal conductivity 

detector.  Plant P was analyzed using a nitric acid digestion with peroxide using a block digester 

(Wolf et al. 2003).   

Statistical Methods 

 Floristic Quality Index scores were calculated using the plant species list for each 

wetland generated by the IPCI.  C-values from The Northern Great Plains Quality Assessment 

Panel (2001) were assigned to each species.  The FQI score for each wetland was the average c-

value multiplied by the square root of the total number of species (Wilhelm and Ladd 1988).  

Additionally, a data matrix of plant species cover was created using the IPCI species data.  Data 

were arcsine square-root transformed.  Nonmetric multidimensional scaling (NMS) was used 
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with the relative Sørensen distance measure to ordinate plant species data using PC-ORD version 

6.0 software (McCune and Mefford 2011).  The ordination utilized a random starting point, 50 

runs with real data, and 500 runs with randomized data.  The best solution was selected based on 

1) the highest dimensions with a reduction of 5 or more in the stress of real data, 2) a p ≤ 0.05 for 

the Monte Carlo test comparing stress for the real data to a randomized data set, and 3) final 

solutions with stress < 20, number of iterations < 150, and instability < 0.0005.  Species 

proportions were correlated with axis scores (r < -0.40 or r > 0.40 were considered significant 

scores, McCune and Grace 2002).    A graph of the ordination was created in PC-ORD and was 

varimax rotated.   

CART models were constructed using the FQI and NMS Axis 1 scores as the response 

variables (Johnston et al. 2009).  The environmental variables collected from the assessment 

study in Table 2 were used as potential predictor variables for both CART models.  We used 

SAS Enterprise Miner 12.1 to complete the analysis, which has a built in pruning method to 

determine optimal splits (SAS Institute Inc., Cary, NC, USA 2012).  Greater details on using 

CART models for ecological data can be found in De’ath and Fabricius (2000).  Linear 

regressions were calculated to determine if soil OM and average buffer width were correlated 

with the IPCI and NDRAM scores using MS Excel 2010.    

 
Table 2.  Environmental variables used in the CART model of 36 wetland sites across North 
Dakota.   

Parameter Units of 
measure 

Continuous or categorical  
(# categories) Survey 

Latitude decimal degree continuous   NWCA 
Longitude decimal degree continuous   NWCA 
County unitless categorical (23) NWCA 
FWS Status & Trends class unitless categorical (3) NWCA 
Hydrogeomorphic class unitless categorical (5) NWCA 
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Table 2.  Environmental variables used in the CART model of 36 wetland sites across North 
Dakota (continued).   

Parameter Units of 
measure 

Continuous or categorical  
(# categories) Survey 

Wetland catchment  ha continuous   HGM Model 
Percent of catchment in 
cropland  ha continuous   HGM Model 

Percent of catchment in 
native cover ha continuous   HGM Model 

Percent of catchment in 
urban cover ha continuous   HGM Model 

Percent buffer adjacent to 
AA unitless categorical (4) NWCA 

Mean buffer width up to  
100 m m continuous   NWCA 

Buffer stressor score unitless continuous   NWCA 
Water clarity unitless categorical (4) NWCA 
Hydrology stressor score unitless continuous   NWCA 
Number of water quality 
stressors unitless continuous NWCA 

DO  mg/L continuous NWCA 
Water pH unitless continuous NWCA 
Water conductivity  µS/cm continuous NWCA 
Water P  mg/L continuous NWCA 
Water N  mg/L continuous NWCA 
Water NH3-N  mg/L continuous NWCA 
Water NO3-NO2-N  mg/L continuous NWCA 
Plant P  kg/ha continuous Additional data 
Plant N kg/ha continuous Additional data 
Plant C  kg/ha continuous Additional data 
Grazing presence unitless categorical (2) NDRAM 
Cropping presence unitless categorical (2) NDRAM 
Herbicide presence unitless categorical (2) NDRAM 
Substrate stressor score unitless continuous NWCA 
Soil Hg  mg/kg continuous NWCA 
Soil NO3-N ppm continuous NWCA 
Soil P  ppm continuous NWCA 
Soil K  ppm continuous NWCA 
Soil pH unitless continuous NWCA 
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Table 2.  Environmental variables used in the CART model of 36 wetland sites across North 
Dakota (continued).   

Parameter Units of 
measure 

Continuous or categorical  
(# categories) Survey 

Soil EC  mmhos/cm continuous NWCA 
Percent soil OM  unitless continuous NWCA 
Soil SO4-S  ppm continuous NWCA 
Soil Zn  ppm continuous NWCA 
Soil Fe  ppm continuous NWCA 
Soil Mn  ppm continuous NWCA 
Soil Cu  ppm continuous NWCA 
Soil Cl  ppm continuous NWCA 
CCE  unitless continuous NWCA 
Sand PSA unitless continuous NWCA 
Silt PSA unitless continuous NWCA 
Clay PSA unitless continuous NWCA 
Histisol presence unitless categorical (2) NWCA 
Hydrogen sulfide odor in 
soil pit unitless categorical (2) NWCA 

Over 1 cm of muck unitless categorical (2) NWCA 
Depleted below dark surface unitless categorical (2) NWCA 
Thick dark surface unitless categorical (2) NWCA 
Loamy mucky mineral soil unitless categorical (2) NWCA 
Depleted matrix unitless categorical (2) NWCA 
Redox dark surface unitless categorical (2) NWCA 
Water level in soil pit cm continuous NWCA 
  

Results 

 The best solution to the NMS ordination had two dimensions, Axis 1 and Axis 2 (Figure 

22).  Axis 1 explained 55% of the variance in the data and Axis 2 explained 26% variance in the 

data for a total of 81%.  Seventeen plant species were significant to the positive end of Axis 1, 2 

species were significant to the negative end of Axis 1, 1 species was significant to the positive 

end of Axis 2, and 47 species were significant to the negative end of Axis 2 (Table 3).  The 

species at the positive end of Axis 1 tended to be annual and weedy species.  The species 
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significant at the negative end of Axis 1 and the positive end of Axis 2 both were cool season 

grasses.  There were many species significant to the negative end of Axis 2.  Most were native, 

perennial forbs with a few sedges and trees.   

The CART model that used the FQI scores as the response variable had 6 terminal nodes 

and an R2 of 0.767 (Figure 23).  The first split utilized percent soil OM, splitting the data at 

above and below 13.1%.  Wetlands with greater than 13.1% soil OM resulted in a terminal node 

with an average FQI score of 37.1 (the highest of all of the terminal nodes, n=5).  Soil OM was 

significantly positively correlated with IPCI (R2 = 0.25, p = 0.002) and NDRAM (R2 = 0.20, p = 

0.007) assessment scores (Figure 24).   

 

Figure 22.  NMS ordination with Axis 1 and Axis 2.  The percent of variance explained by each 
axis is listed in parenthesis. 
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Table 3.  Species associated with the end of each NMS axis.  Scientific names of plant species 
are according to the USDA Plants Database (USDA, NRCS 2012).  Life-forms: N = native and I 
= introduced.  Origin: P = perennial, A = annual, and B = biennial. 
 
Scientific name Life Origin Scientific name Life Origin 

Axis 1 – positive Axis 2 – negative (cont.) 
Alisma subcordatum N P Carex interior N P 
Anthemis arvensis I A Carex retrorsa N P 
Artemisia biennis I B Carex rosea N P 
Avena fatua I A Carex rostrata N P 
Beckmannia syzigachne N A Carex stipata N P 
Callitriche palustris N P Cicuta maculata N P 
Eleocharis engelmannii N A Cornus sericea N P 
Epilobium ciliatum N P Cyclachaena xanthifolia N A 
Euphorbia glyptosperma N A Elymus hystrix N P 
Gratiola neglecta N A Equisetum arvense N P 
Juncus bufonius N A Fragaria virginiana N P 
Lemna minor N P Fraxinus pennsylvanica N P 
Limosella aquatica N P Galium aparine N A 
Polygonum aviculare N A Heracleum maximum N P 
Rorippa palustris N A Heuchera richardsonii N P 
Typha x glauca I P Lolium perenne I P 
Veronica peregrina N A Maianthemum canadense N P 

Axis 1 – negative Maianthemum stellatum N P 
Calamagrostis stricta N P Osmorhiza claytonii N P 
Poa pratensis I P Platanthera aquilonis N P 

Axis 2 – positive Poa sandbergii N P 
Elymus repens I P Polygonum ramosissimum N A 

Axis 2 – negative Prenanthes alba N P 
Amphicarpaea bracteata N A Quercus macrocarpa N P 
Aquilegia canadensis N P Ranunculus longirostris N P 
Aralia nudicaulis N P Rubus idaeus N P 
Artemisia frigida N P Rudbeckia laciniata N P 
Asarum canadense N P Sagittaria cuneata N P 
Aster ciliolatus N P Salicornia rubra N A 
Atriplex subspicata N A Sisymbrium altissimum I A 
Bassia scoparia I A Solidago gigantea N P 
Bromus japanicus I A Thalictrum venulosum N P 
Calamagrostis canadensis N P Trillium cernuum N P 
Calla palustris N P Triticum aestivum I A 
Carex formosa N P Ulmus americana N P 
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Figure 23.  Classification and regression tree between FQI scores and environmental variables.  
Split nodes are identified by the number in parenthesis followed by the average FQI scores and n 
= number of wetlands.  Terminal nodes are identified by a letter in parenthesis and are followed 
by the average FQI scores and n = number of wetlands.   

 

  

Figure 24.  Linear regressions of soil OM (%) and IPCI and NDRAM scores.  Wetlands in 
terminal node A of the FQI CART model (soil OM > 13.1) are represented by open diamonds.   
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Node 2 of the FQI CART model split the data based on the percent of buffer adjacent to 

the AA into wetlands with >75% adjacent buffer or wetlands with <25%, 26-50%, and 51-75% 

adjacent buffer.  Figure 25 displays the average IPCI and NDRAM condition scores for each 

category of buffer continuity and shows a trend of increasing conditions scores with increasing 

continuity.  Node 3 split the data by soil Cl greater than or less than 7.42 ppm resulting in 2  

terminal nodes.  Wetlands in the node with soil Cl less than 7.42 ppm had an average FQI score 

of 18.7 (n=5), and wetlands in the node with soil Cl greater than 7.42 had an average FQI score 

of 7.86 (the lowest of all terminal nodes, n = 5).  Node 4 was split by water N as above or below 

2.36 ppm.  Water N less than 2.36 ppm resulted in a terminal node with an average FQI score of 

16.9 (n = 7).  Node 5 split wetlands by water pH as above or below 7.40 into 2 terminal nodes.  

The terminal node with water pH less than 7.4 had an average FQI score of 21.0 (n = 6), and the 

terminal node with water pH greater than 7.4 had an average FQI score of 30.1 (n = 8).  Average 

IPCI and NDRAM condition scores for the terminal nodes are listed in Table 4.    

 

 

Figure 25.  Average IPCI and NDRAM conditions scores of each category of buffer continuity 
adjoining the AA.  Error bars represent standard error.   
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Table 4.  Mean IPCI and NDRAM scores for the terminal nodes of the FQI and NMS Axis 1 
CART models.  See Figures 22 and 25 for the CART models.  Standard errors are given in 
parenthesis.   

Terminal node IPCI NDRAM 
FQI – A  79.4 (±4.13) 79.4 (±3.75) 
FQI – B  33.6 (±8.48) 32.6 (±5.35) 
FQI – C  19.6 (±8.47) 33.2 (±10.1) 
FQI – D  21.7 (±6.38) 49.9 (±5.60) 
FQI – E  47.2 (±11.2) 59.5 (±6.04) 
FQI – F  58.4 (±5.39) 70.6 (±4.14) 
NMS – A  23.6 (±8.31) 25.0 (±3.02) 
NMS – B  68.7 (±8.55) 71.0 (±4.83) 
NMS – C 43.4 (±6.99) 59.5 (±7.30) 
NMS – D 28.3 (±7.45) 55.2 (±5.33) 
NMS – E  44.2 (±9.29) 62.7 (±6.73) 

 
 

The CART model that used the NMS Axis 1 scores as the response variable had 5 

terminal nodes and an R2 of 0.678 (Figure 26).  The first split utilized average buffer width, 

splitting the data at above and below 32.5 m.  Wetlands with less than 32.5 m average buffer 

width resulted in a terminal node with an average NMS Axis 1 score of 1.14 (the highest of all 

terminal nodes, n = 7).  Buffer width was slightly positively correlated with IPCI scores – the R2 

value was low and explains very little of the variation in the data (R2 = 0.17, p = 0.012, Figure 

27).  The NDRAM scores also showed a positive correlation with buffer width and had a higher 

R2 score (R2 = 0.55, p < 0.001).  Node 2 of the CART model split the data based on water P into 

wetlands with greater than or less than 0.32 ppm.  Node 3 split the data by soil NO3-N greater 

than or less than 10 ppm resulting in 2 terminal nodes.  Wetlands in the node with soil NO3-N 

less than 10 ppm had an average NMS Axis 1 score of -0.707 (the lowest of all terminal nodes, 

n=9), and wetlands in the node with soil NO3-N greater than 10 had an average NMS Axis 1 

score of -0.260 (n = 8).  Node 4 was split by soil Fe as above or below 57.5 ppm and resulted in 

2 terminal nodes.  Soil Fe less than 57.5 ppm resulted in a terminal node with an average NMS 



66 
 

Axis 1 score of -0.202 (n = 6).  The terminal node with soil Fe greater than 57.5 ppm had an 

average NMS Axis 1 score of 0.279 (n = 6).  Average IPCI and NDRAM condition scores for the 

terminal nodes are listed in Table 4.   

Figure 26.  Classification and regression tree between NMS Axis 1 scores and environmental 
variables.  Split nodes are identified by the number in parenthesis followed by the average NMS 
Axis 1 scores and n = number of wetlands.  Terminal nodes are identified by a letter in 
parenthesis and are followed by the average NMS Axis 1 scores and n = number of wetlands.   

 
Discussion 

 The results of the CART analysis allowed us to identify patterns in the data related to 

wetland floristic quality and condition (Johnston et al. 2009).  The model utilizing the FQI scores 

was slightly more explanatory than the model using the NMS Axis 1 scores (R2 = 0.767 vs. 

0.678), but both explained most of the variability in the data.  Both models relied on physical 

variables related to soils, buffer, and water and dismissed variables related to location, wetland 

type, land use, stressors, plants, and hydric soil indicators.   
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Figure 27.  Linear regressions of average buffer width of a 100 m buffer and IPCI and NDRAM 
scores.  Wetlands in terminal node A of the NMS Axis 1 CART model (average buffer width < 
32.5 m) are represented by open diamonds.   
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grasslands (Cambardella and Elliott 1992).  Therefore, the first split indicates wetlands with 

higher soil OM may also have greater wetland condition and less substrate disturbance.  The next 

split in the model was by the percent of the buffer adjacent to the AA.  Buffer areas that are 

disturbed or invaded tend to have less continuity, soil porosity, and soil OM (DeKeyser et al. 

2009).  Therefore, the continuity of the buffer zone, so that it is free of cropland and roads and 

ditches, greatly affects wetland quality (Castelle et al. 1994).   

The remaining wetlands in the FQI model were split into leaves that tended to have more 

buffer continuity and higher condition and less buffer continuity and lower condition (DeKeyser 
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et al. 2009).  Further splits in the model were determined by soil and water variables.  Soil 

chloride was the last split for wetlands with less buffer continuity.  Chloride salts are very 

soluble and can vary due to soil EC, CEC, and saturation of other salts in the soil (Arndt and 

Richardson 1989).  Additionally, the source of water (precipitation vs. groundwater) and cycling 

of water levels can affect soil salinity.  The wetlands in the high soil Cl leaf tended to be cropped 

around with a seasonal hydrologic classification (Stewart and Kantrud 1971).  At least one 

wetland showed visible salinity effects (noted in the NDRAM).   

For the leaf of wetlands with higher buffer continuity, total N in the water was the next 

split.  Wetlands with high water N were grouped into a terminal node.  These wetlands tended to 

have low to fair condition (mean IPCI = 21.7 and NDRAM = 49.9).  The wetlands were in a 

variety of landscape settings: cropland, grazed rangeland, hayed prairie, and idle areas.  We can 

hypothesize that the condition of these wetlands tended to be low because of present or past 

disturbance and nonpoint pollution of N.  Agricultural drainage water can be high in NO3-N; the 

effectiveness of wetlands to be a sink for N depends on the N load and the capacity of wetlands 

to remove N through denitrification (Crumpton and Goldsborough 1998, Woltemade 2000).  

Plant uptake can also affect N levels, although is not permanently removed from the wetland by 

this process.  Additional nonpoint sources include runoff from pasture and range, urban runoff, 

septic tank leachate, constructions sites, abandoned mines, atmospheric deposition (Carpenter et 

al. 1998).   

The last two terminal nodes of the FQI model were split by acidic and alkaline water pH.  

Wetlands can be naturally acidic or alkaline depending on hydrology and soil parent material or 

pH can be affected by heavy metal discharge from mining or construction activities or acid 

deposition (Sheoran and Sheoran 2006).  However, the pH range for wetlands in this study was 
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6.70 to 8.59 indicating some wetlands may have slight acidification.  Most Northern Prairie 

wetlands are generally calcareous and have alkaline water with a pH level greater than 7.4 

(LaBaugh 1989).   

NMS Axis 1 CART Model 

The first split in the NMS Axis 1 model was the average buffer width of a 100 m buffer.  

Wetlands with an average buffer width less than 32.5 m resulted in a terminal node.  The 

wetlands in this group tended to be cropped within, up to or near the wetland and had a smaller 

seasonal hydrologic classification (Stewart and Kantrud 1971).  Often smaller wetlands are most 

affected by agricultural practices as they are easier to crop through during dry years or crop up to 

during wet years (Stewart and Kantrud 1973, Voldseth et al. 2007).  Cultivation removes the 

native plant community providing ideal habitat for invasive, annual, and weedy species.  Buffer 

areas are important for floristic quality as well as wetland function (DeKeyser et al. 2009, 

Hargiss 2009).  Therefore, buffer characteristics were significant variables in both CART 

models.   

Total water P was the significant variable for the second split in the model.  Agriculture 

and urban activities contribute as nonpoint pollution sources of P (Carpernter et al. 1998).  

Excess levels of P in wetlands can lead to eutrophication and increase species invasion, 

specifically of Typha species (Newman et al. 1998, Tuchman et al. 2009).  Water P in wetlands 

ranged from 0.018 to 4.42 mg/L with a mean of 0.703 mg/L in this study.  One study in North 

Dakota seasonal prairie pothole wetlands have identified water P levels to range from 0.09 to 

2.63 mg/L in native prairie and 0.07 to 3.90 mg/L in cropland (Detenbeck et al. 2002).  

Furthermore, LaBaugh et al. (1987) found a range in water P concentrations of two seasonal and 

two semi-permanent wetlands to be 0 to 3.06 mg/L.  The mean water P for this study is well 
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within ranges of previous studies.  However, the high end of our range is outside the ranges of 

the other studies.  Wetlands in the branch of the CART model with P levels above 0.32 mg/L 

may be impacted by high P levels since condition scores tended to be lower in this branch than 

the other.  The last two splits in the model were soil NO3-N (on the branch with low water P) and 

soil Fe (on the branch with high water P).  The terminal node of the model with low water P and 

low soil NO3-N contained wetlands with the highest condition scores (average IPCI = 68.67 and 

NDRAM = 71.00).  This group of wetlands contained high average buffer width and low nutrient 

levels.   

The other 3 terminal nodes contained wetlands with mid to low condition scores.  High 

soil NO3-N can indicate high inputs of N from agriculture, urban areas, or atmospheric 

deposition exceeding denitrification rates (Carpenter et al. 1998, Woltemade 2000).  Freeland et 

al. (1999) found mean nitrate levels to be similar in the soil surface of North Dakota wetlands 

surrounded by agriculture and grassland.  However, higher subsoil NO3-N levels were found in 

the wet meadow zones of wetlands surrounded by agriculture.  Boundary levels for soil NO3-N 

levels related to wetland condition in Northern Prairie wetlands need to be determined.  The 

terminal nodes D and E containing high and low soil Fe had similar condition scores for the 

NDRAM, but nodes D showed low IPCI scores with an average of 28.33.  This variable may 

have been significant since the presence of Fe in wetlands may indicate groundwater chemistry 

has been unaltered by human activities (Smolders et al. 2010).  If Fe inputs are decreased in 

groundwater-fed wetlands (which is common in agricultural settings), P may be mobilized in the 

system leading to eutrophication.    
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Conclusion 

 The specific environmental variables selected varied between the FQI and NMS models.   

However, both identified buffer, soil, and water data as the significant variables for the models.  

The CART models were able to group wetlands of similar condition.  This demonstrates 

potential applicability of CART models and condition assessment.   The CART models selected 

soil OM and average buffer width as the first splits in the data, and indicated high soil OM as a 

predictor of high wetland condition and small buffer width as a predictor of low wetland 

condition.  Wetland buffers have been linked to wetland condition by many studies (Castelle et 

al. 1994, DeKeyser et al. 2009).  The results of the CART analysis strengthen this conclusion.  

The CART models also identified soil and water characteristics – soil Cl, Fe, and NO3-N and 

water N, P, and pH – that have not previously been considered as predictors of floristic quality or 

wetland condition.  Overall, this study highlighted the different levels of wetland condition 

across North Dakota and identified areas of future study related to wetland condition and 

assessment and soil, water, and buffer data.   
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GENERAL CONCLUSION 

 The studies in this dissertation address important issues in Northern Prairie wetlands – 

wetland condition and nutrient levels.  As humans continue to alter natural landscapes for 

agriculture and urban expansion, wetlands are at risk for degradation and high nutrient loads 

(Millennium Ecosystem Assessment 2005).  These issues are reflected in the results of this 

dissertation.  Wetlands surrounded by cropland had lower floristic quality than wetlands 

surrounded by other land uses.   Additionally, cattails may affect nutrient cycling of phosphorus 

(P), and may be able to invade wetlands that have been disturbed due to agriculture.  Methods to 

mitigate cattail invasion, such as sediment removal, require long-term study.  Linkages between 

nutrient loading, species composition, and surrounding land use need to be determined to provide 

further understanding of wetland processes and aid in proper wetland management.   

 A new tool for measuring nutrients in wetlands – natural abundance of stable isotopes for 

nitrogen (N) and carbon (C) – was investigated in this dissertation and showed some promising 

results.  Soil δ15N values were able to reflect surrounding land use and were significantly 

correlated with floristic quality and wetland condition.  Both soil δ15N and δ13C were able to 

detect differences in wetland type, and soil δ13C was significantly different for landscape 

position.  Stable isotopes may be useful for measurements in land use and wetland condition and 

can potentially measure nutrient processes in wetlands.  Applications for stable isotopes need to 

be further developed for use in Northern Prairie wetlands.   

 The Classification and Regression Tree (CART) models presented in this dissertation 

may guide future research.  Significant variables in the models were able to separate wetlands 

based on biological condition.  In both models, wetland buffer was significant, which is 

consistent with previous studies.  The other significant variables – soil organic matter (OM), soil 
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chloride (Cl), water N, water pH, water P, soil nitrate (NO3-N), and soil iron (Fe) – may be 

important characteristics of wetlands that affect wetland condition, higher trophic levels, or 

wetland processes and warrant further investigation.   

The results of this dissertation are important to guide future studies of wetlands.  As data 

and scoring methods become available for the National Wetland Condition Assessment 

(NWCA), a comparison of wetland condition in the state of North Dakota to national wetland 

condition may be completed with the data collected from these studies.  Additionally, a 

comparison of the NWCA scores with the results of the regional assessment methods – Index of 

Plant Community Integrity (IPCI), North Dakota Rapid Assessment Method (NDRAM), and 

Hydrogeomorphic (HGM) Model – would be possible.  The next NWCA is scheduled for the 

summer of 2016.   
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APPENDIX A.  TABLE OF GPS LOCATION, SUB-ECOREGION, WETLAND TYPE, 

AND LAND USE FOR 2011 STUDY SITES 

Site1 GPS Location of 
Wetland Sub-Ecoregion Wetland Type Land Use 

Reference 
1 

Lat: 48.858 
Long: -100.1277 Turtle Mountains Forested Seasonal Idle 

Reference 
2 

Lat: 48.668477 
Long: -102.403441 

Northern Missouri 
Coteau Semi-Permanent Idle 

5001* Lat: 47.199866 
Long: -98.787754 

End Moraine 
Complex Seasonal Cropped  

5003* Lat: 47.602358 
Long: -100.408356 Missouri Coteau Semi-Permanent Cropped  

5004 Lat: 48.879718 
Long: -100.663489 

Glacial Lake 
Basins Temporary Idle 

5006 Lat: 47.825361 
Long: -98.173759 Glacial Outwash Semi-Permanent Idle 

5007 Lat: 47.244844 
Long: -103.289167 

Little Missouri 
Badlands 

Riparian 
Temporary Grazed/hayed 

5008* Lat: 48.853747 
Long: -101.734305 

Northern Black 
Prairie Seasonal Cropped 

5010* Lat: 46.354189 
Long: -97.468212 

Sand Deltas and 
Beach Ridges Seasonal Cropped 

5011* Lat: 47.184499 
Long: -100.401375 Missouri Coteau Semi-Permanent Idle 

5012* Lat: 48.769736 
Long: -102.644221 

Northern Missouri 
Coteau Semi-Permanent Idle 

5013* Lat: 48.38973 
Long: -99.730017 

End Moraine 
Complex Semi-Permanent Grazed/hayed 

5015* Lat: 46.168993 
Long: -102.465416 Missouri Plateau Riparian Seasonal Cropped 

5016* Lat: 48.798334 
Long: -97.733043 

Sand Deltas and 
Beach Ridges Riparian Seasonal Idle 

5017* Lat: 48.351826 
Long: -98.228343 Drift Plains Seasonal Grazed/hayed 

5018* Lat: 48.955488 
Long: -101.23654 

Northern Black 
Prairie Seasonal Grazed/hayed 

5019* Lat: 47.931093 
Long: -98.221209 Drift Plains Semi-Permanent Idle 

5021 Lat: 46.108727 
Long: -98.896921 Missouri Coteau Semi-Permanent Grazed/hayed 

5023* Lat: 46.915981 
Long: -100.200047 Missouri Coteau Semi-Permanent Idle 
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Site1 GPS Location of 
Wetland Sub-Ecoregion Wetland Type Land Use 

5027 Lat: 46.426751 
Long: -103.089604 Missouri Plateau Seasonal Cropped 

5030* Lat: 48.236622 
Long: -98.262384 Drift Plains Seasonal Idle 

5032* Lat: 48.688003 
Long: -101.220021 

Northern Black 
Prairie Seasonal Grazed/hayed 

5034* Lat: 47.273933 
Long: -97.749742 Drift Plains Seasonal Idle 

5037* Lat: 47.367658 
Long: -100.80623 Missouri Coteau Semi-Permanent Idle 

5040* Lat: 48.817798 
Long: -99.685235 

Northern Black 
Prairie Semi-Permanent Cropped 

5042 Lat: 48.071318 
Long: -100.419674 Drift Plains Seasonal Idle 

5043* Lat: 46.536591 
Long: -99.429962 Missouri Coteau Semi-Permanent Idle 

5046* Lat: 46.917062 
Long: -100.237146 Missouri Coteau Seasonal Grazed/hayed 

5048 Lat: 48.029477 
Long: -101.611066 Missouri Coteau Semi-Permanent Grazed/hayed 

5049* Lat: 46.008085 
Long: -99.087701 Missouri Coteau Semi-Permanent Grazed/hayed 

5052* Lat: 46.118288 
Long: -98.876435 Missouri Coteau Semi-Permanent Idle 

5055* Lat: 48.378733 
Long: -99.737211 

End Moraine 
Complex Semi-Permanent Grazed/hayed 

5056* Lat: 46.589206 
Long: -99.42079 

Collapsed Glacial 
Outwash Semi-Permanent Grazed/hayed 

5059* Lat: 48.475155 
Long: -98.217563 Drift Plains Seasonal Cropped 

5062* Lat: 48.592716 
Long: -102.23213 

Northern Missouri 
Coteau Semi-Permanent Grazed/hayed 

5065* Lat: 47.197185 
Long: -99.924721 Missouri Coteau Semi-Permanent Idle 

5066* Lat: 48.851731 
Long: -101.740764 

Northern Black 
Prairie Seasonal Cropped 

5067 Lat: 46.137029 
Long: -99.34873 Missouri Coteau Semi-Permanent Grazed/hayed 

5068 Lat: 48.78548 
Long: -97.757942 

Sand Deltas and 
Beach Ridges Fen (Temporary) Grazed/hayed 

5069* Lat: 47.131597 
Long: -99.208903 Missouri Coteau Seasonal Grazed/hayed 



90 
 

Site1 GPS Location of 
Wetland Sub-Ecoregion Wetland Type Land Use 

5072* Lat: 48.110772 
Long: -102.209249 

Glaciated Dark 
Brown Prairie Semi-Permanent Grazed/hayed 

5073* Lat: 46.912737 
Long: -100.223631 Missouri Coteau Seasonal Idle 

5075* Lat: 46.565028 
Long: -98.989472 Missouri Coteau Semi-Permanent Idle 

5077 Lat: 46.060652 
Long: -98.099341 Glacial Lake Deltas Seasonal Cropped 

5078* Lat: 48.672473 
Long: -101.207191 

Northern Black 
Prairie Seasonal Cropped 

5079* Lat: 47.466397 
Long: -99.524628 Drift Plains Seasonal Idle 

5082 Lat: 48.797818 
Long: -97.736775 

Sand Deltas and 
Beach Ridges Riparian Seasonal Grazed/hayed 

5083* Lat: 47.822517 
Long: -98.17961 Drift Plains Semi-Permanent Cropped 

5084* Lat: 46.83646 
Long: -99.60636 

Collapsed Glacial 
Outwash Seasonal Grazed/hayed 

5085 Lat: 47.739127 
Long: -100.563759 Missouri Coteau Semi-Permanent Cropped 

5089 Lat: 47.374251 
Long: -100.79192 Missouri Coteau Seasonal Idle 

5091 Lat: 47.621626 
Long: -99.735634 Drift Plains Seasonal Cropped 

5093 Lat: 47.930465 
Long: -98.226496 Drift Plains Semi-Permanent Idle 

5094 Lat: 47.724992 
Long: -100.185961 Drift Plains Seasonal Cropped 

5095 Lat: 48.235145 
Long: -98.269298 Drift Plains Semi-Permanent Grazed/hayed 

1All sites were included in the stable isotope analysis except for Reference 1 and 2, 5006, and 
5010 
*These sites were included in the CART analysis 
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APPENDIX B.  COMPREHENSIVE PLANT SPECIES LIST FOR 2011 STUDY SITES 
 

Scientific Name1 Common Name C-Val2 Life3 Origin4 Indicator5 

Acer negundo Box Elder 1 N P FAC 
Achillea millefolium  Yarrow 3 N P UPL 
Agoseris glauca False Dandelion 8 N P FAC 
Agrimonia striata Striate Agrimony 5 N P FACU 
Agropyron cristatum Crested Wheatgrass * I P UPL 
Agrostis hyemalis Ticklegrass 1 N P FACW 

Agrostis stolonifera Redtop, Creeping 
Bentgrass * I P FACW 

Alisma gramineum Narrowleaf Water 
Plantain 2 N P OBL 

Alisma subcordatum Common Water Plantain 2 N P OBL 
Allium geyeri N/A 10 N P FACU 
Allium stellatum Pink Wild Onion 7 N P UPL 
Alnus incana  Speckled Alder 9 N P FACW 
Alopecurus aequalis Shortawn Foxtail 2 N P OBL 
Amaranthus albus Tumbleweed 0 N A FACU 

Amaranthus retroflexus Rough Pigweed, 
Redroot Amaranth 0 N A FACU 

Ambrosia artemisifolia Common Ragweed, 
Short Ragweed 0 N A FACU 

Ambrosia psilostachya Western Ragweed 2 N P FAC 
Amorpha canescens Lead Plant 9 N P UPL 
Amorpha fruticosa False Indigo 4 N P FACW 
Amphicarpaea bracteata Hog Peanut 8 N A FACU 
Andropogon gerardii Big Bluestem 5 N P FACU 

Anemone canadensis Meadow Anemone, 
Candian Anemone 4 N P FACW 

Anemone cylindrica Candle Anemone 7 N P UPL 

Antennaria microphylla Pink Pussy-toes, 
Littleleaf Pussy-toes 7 N P UPL 

Antennaria neglecta Field Pussy-toes 5 N P UPL 
Anthemis arvensis Corn Chamomile * I A UPL 

Apocynum cannabinum Indian Hemp Dogbane, 
Prairie Dogbane 4 N P FAC 

Aquilegia canadensis Wild Columbine, Red 
Columbine 8 N P FAC 

Arabis hirsuta  Rock Cress, 
Creamflower Rockcress 7 N B UPL 

Arabis holboellii  Rock Cress, Collins' 
Rockcress 5 N B UPL 

Aralia nudicaulis Wild Sarsaparilla 10 N P FACU 
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Scientific Name1 Common Name C-Val2 Life3 Origin4 Indicator5 

Argentina anserina Silverweed 2 N P OBL 

Artemisia absinthium Wormwood, 
Absinthium * I P UPL 

Artemisia biennis Biennial Wormwood * I B FAC 

Artemisia cana Dwarf Sagebrush, Silver 
Sagebrush 7 N P FACU 

Artemisia dracunculus Silky Wormwood, 
Tarragon 4 N P UPL 

Artemisia frigida Prairie Sagewort 4 N P UPL 
Artemisia ludoviciana  White Sage 3 N P UPL 

Asarum canadense Wild Ginger, Canadian 
Wildginger 10 N P UPL 

Asclepias syriaca Common Milkweed 0 N P UPL 
Asclepias verticillata Whorled Milkweed 3 N P UPL 
Aster cilolatus N/A 8 N P FACW 

Astragalus agrestis Field Milk-vetch, Purple 
Milkvetch 6 N P FACU 

Astragalus canadensis Canada Milk-vetch 5 N P FACU 
Astragalus crassicarpus  Ground-plum 7 N P UPL 
Astragalus gracilis Slender Milk-vetch 8 N P UPL 

Athyrium filix-femina  Lady-fern, Subarctic 
Ladyfern 8 N P FAC 

Atriplex subspicata Spearscale, Saline 
Saltbush 2 N A FAC 

Avena fatua Wild Oats * I A UPL 
Avenula hookeri Spike Oat 9 N P UPL 
Bassia scoparia Kochia, Fire-weed * I A FAC 
Beckmannia syzigachne American Sloughgrass 1 N A OBL 
Berteroa incana Hoary False Alyssum * I A UPL 

Betula papyrifera Paper Birch, Canoe 
Birch 8 N P FACU 

Betula pumila  Bog Birch 10 N P OBL 

Bidens frondosa Beggar-ticks, Devil's 
Beggartick 1 N A FACW 

Bidens vulgata Beggar-ticks, Big 
Devil's Beggartick 1 N A FACW 

Botrychium multifidum Leathery Grape-fern 10 N P FAC 
Botrychium virginianum Rattlesnake Fern 7 N P FACU 
Bouteloua gracilis Blue Grama 7 N P UPL 
Bouteloua hirsuta Hairy Grama 7 N P UPL 
Brassica napus Canola * I A UPL 
Brassica rapa Field Mustard * I A UPL 
Bromus inermis Smooth Brome * I P UPL 
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Bromus japanicus Japanese Brome * I A FACU 

Bromus tectorum Downy Brome, 
Cheatgrass * I A UPL 

Calamagrostis canadensis Bluejoint 5 N P FACW+ 
Calamagrostis stricta N/A 5 N P FACW+ 
Calamovilfa longifolia Prairie Sandreed 5 N P UPL 
Calla palustris Wild Calla, Water Arum 10 N P OBL 
Callitriche palustris N/A 7 N P OBL 

Calylophus serrulatus Plains Yellow Primrose, 
yellow subdrops 7 N P UPL 

Calystegia sepium  Hedge Bindweed 0 N P UPL 

Camelina microcarpa 
Small-seeded False 
Flax, Littlepod False 
Flax 

* I A FACU 

Campanula rotundifolia Harebell, Bluebell 
Bellflower 7 N P FAC 

Capsella bursa-pastoris Shepherd's Purse * I A FACU 
Cardamine pensylvanica Bitter Cress 6 N A OBL 
Carex aquatilis  Water Sedge 10 N P OBL 

Carex atherodes Slough Sedge, Wheat 
Sedge 4 N P OBL 

Carex aurea Golden Sedge 8 N P FACW 

Carex brevior Fescue Sedge, 
Shortbeak Sedge 4 N P FACU 

Carex deweyana N/A 10 N P FACU 
Carex disperma N/A 9 N P FACW 
Carex formosa N/A 10 N P FACW 
Carex granularis Meadow Sedge 6 N P FACW 
Carex hallii N/A 10 N P FACW- 
Carex interior Interior Sedge 10 N P OBL 
Carex laeviconica Smoothcone Sedge 6 N P OBL 
Carex obtusata N/A 8 N P FACW 
Carex pellita Woolly Sedge 4 N P OBL 
Carex praegracilis Clustered-field Sedge 5 N P FACW 
Carex prairea N/A 10 N P OBL 
Carex retrorsa N/A 6 N P OBL 
Carex rosea N/A 8 N P FAC 
Carex rostrata N/A 8 N P OBL 
Carex sartwellii N/A 5 N P FACW 
Carex stipata Saw-beak Sedge 7 N P OBL 
Carex tenera N/A 7 N P FACW 
Carex vulpinoidea Fox Sedge 2 N P OBL 
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Cerastium arvense Prairie Chickweed 2 N P FACU 
Ceratophyllum demersum Hornwort, Coontail 4 N P OBL 
Chenopodium album Lamb's Quarters * I A UPL 
Chenopodium glaucum Oak-leaved Goosefoot * I A FACW 
Chenopodium rubrum Alkali Blite 2 N A OBL 

Chorispora tenella Blue Mustard, 
Crossflower * I A UPL 

Cicuta maculata Common Water 
Hemlock 4 N P OBL 

Cirsium arvense Canada Thistle, Field 
Thistle * I P FACU 

Cirsium flodmanii Flodman's Thistle 5 N P FAC 
Cirsium vulgare Bull Thistle * I B UPL 
Comandra umbellata Bastard Toadflax 8 N P UPL 
Conium maculatum Poison Hemlock * I B FAC 
Convolvulus arvensis Field Bindweed * I P UPL 
Conyza canadensis Horseweed 0 N A FACU 
Corallorhiza maculata Spotted Coral-root 8 N P FACU- 
Cornus canadensis Bunchberry 10 N P FAC 
Cornus sericea Redosier Dogwood 5 N P FAC 
Corylus cornuta Beaked Hazelnut 8 N P UPL 

Crataegus chrysocarpa  Northern Hawthorn, Red 
Hawthorn 6 N P FACU 

Crepis runcinata Hawk's-beard 8 N P FAC 
Cyclachaena xanthifolia Marsh Elder 0 N A FACU 
Cynoglossum officinale Hound's Tongue * I B UPL 
Cyperus acuminatus Tapeleaf Flatsedge 2 N A OBL 
Cypripedium parviflorum Yellow Lady's-slipper 10 N P FACW 
Dalea purpurea  Purple Prairie Clover 8 N P UPL 
Deschampsia cespitosa Tufted Hairgrass 9 N P FACW 
Descurainia pinnata  Tansy Mustard 1 N A UPL 
Descurainia sophia Flixweed * I A UPL 
Dichanthelium leibergii Leiberg Dichanthelium 8 N P FACU 
Distichlis spicata Inland Saltgrass 2 N P FACW 

Draba nemorosa Yellow Whitlowort, 
Woodland Draba 1 N A UPL 

Dryopteris carthusiana Spinulose Wood Fern 10 N P FACW 
Dryopteris cristata Crested Shield Fern 10 N P OBL 
Echinacea angustifolia Purple Coneflower 7 N P UPL 
Echinochloa crusgalli Barnyard Grass * I A FACW 
Elaeagnus commutata Silverberry 5 N P FAC 
Eleocharis acicularis Needle Spikesedge 3 N P OBL 
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Eleocharis compressa Flatstem Spikesedge 8 N P FACW 
Eleocharis macrostachya Spike Rush 4 N P OBL 
Eleocharis engelmannii Blunt Spikesedge 2 N A OBL 
Elymus canadensis Canada Wild Rye 3 N P FACU 
Elymus hystrix  Bottlebrush Grass 8 N P UPL 
Elymus repens Quackgrass * I P FAC 
Elymus trachycaulus  Slender Wheatgrass 6 N P FAC- 
Epilobium ciliatum  Willow-herb 3 N P OBL 

Epilobium leptophyllum Narrow-leaved Willow-
herb 6 N P OBL 

Equisetum arvense Field Horsetail 4 N P FAC 
Equisetum fluviatile Water Horsetail 8 N P OBL 
Equisetum laevigatum Smooth Scouring Rush 3 N P FAC 
Erigeron glabellus  N/A 7 N B FACW 
Erigeron philadelphicus Philadelphia Fleabane 2 N B FACW 
Erigeron strigosus Daisy Fleabane 3 N A FACU 
Erysimum asperum Western Wallflower 3 N B UPL 
Erysimum cheiranthoides Wormseed Wallflower * I A FACU 
Erysimum inconspicuum Smallflower Wallflower 7 N P UPL 
Euphorbia esula Leafy Spurge * I P UPL 
Euphorbia glyptosperma Ridge-seeded Spurge 0 N A FACU 
Euphorbia spathulata N/A 5 N A UPL 
Euthamia graminifolia  N/A 6 N P FACW 
Festuca subverticillata Nodding Fescue 10 N P FACU 
Fragaria virginiana Wild Strawberry 4 N P FACU 
Fraxinus pennsylvanica Red Ash, Green Ash 5 N P FAC 
Gaillardia aristata Blanket flower 5 N P UPL 

Galium aparine Catchweed Bedstraw, 
Stickywilly 0 N A FACU 

Galium boreale Northern Bedstraw 4 N P FACU 
Galium trifidum Small Bedstraw 8 N P OBL 
Geum aleppicum Yellow Avens 4 N P FACU 

Geum triflorum Torch Flower, 
Maidenhair 8 N P FACU 

Gleditsia triacanthos Honey Locust 6 N P FACU 
Glyceria grandis Tall Mannagrass 4 N P OBL 
Glyceria striata Fowl Mannagrass 6 N P OBL 
Glycine max Soybean * I P UPL 
Glycyrrhiza lepidota Wild Licorice 2 N P FACU 
Gratiola neglecta Hedge Hyssop 0 N A OBL 
Grindelia squarrosa  Curly-top Gumweed 1 N B UPL 
Hedeoma hispida Rough False Pennyroyal 2 N A UPL 
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Helianthus annuus Common Sunflower 0 N A FACU 
Helianthus maximiliani Maximilian Sunflower 5 N P FACU 
Helianthus nuttallii  Nuttall's Sunflower 8 N P FAC 
Helianthus pauciflorus  Stiff Sunflower 8 N P UPL 
Heliopsis helianthoides  False Sunflower, Ox-eye 5 N P UPL 
Heracleum maximum Cow Parsnip, Eltrot 3 N P FAC 
Hesperostipa comata  Needle-and-thread 6 N P UPL 
Hesperostipa spartea Porcupine-grass 8 N P UPL 
Heuchera richardsonii Alumroot 8 N P FACU 
Hierochloe odorata Sweetgrass 10 N P FACW 
Hippuris vulgaris Mare's Tail 5 N P OBL 
Hordeum jubatum Foxtail Barley 0 N P FACW 
Humulus lupulus Common Hops 3 N P FACU 
Hypoxis hirsuta Yellow Stargrass 8 N P FACW 

Impatiens capensis Spotted Touch-me-not, 
Jewel Weed 4 N A FACW 

Ipomoea purpurea Common Morning-glory * I A FAC 
Iva annua Marsh Elder * I A FAC 
Juncus arcticus  Baltic Rush 5 N P FACW 
Juncus bufonius Toad Rush 1 N A OBL 
Juncus interior Inland Rush 5 N P FACW 
Juncus longistylis N/A 10 N P FACW 
Juncus torreyi Torrey's Rush 2 N P FACW 
Juniperus horizontalis Creeping Juniper 6 N P FACU 
Koeleria macrantha Junegrass 7 N P UPL 
Lactuca serriola Prickly Lettuce * I A FACU 
Lactuca tatarica  Blue Lettuce 1 N P FACU 
Lathyrus venosus Bushy Vetchling 8 N P FACW 
Lemna trisulca Star Duckweed 2 N P OBL 
Lemna turionifera N/A 1 N P OBL 
Leonurus cardiaca Motherwort * I P FACU 
Lepidium densiflorum Peppergrass 0 N A FACU 
Liatris ligulistylis Gay-feather 10 N P FAC 
Liatris punctata Blazing Star 7 N P UPL 
Lilium philadelphicum Wild Lily, Wood Lily 8 N P FAC 
Limosella aquatica Mudwort 2 N P OBL 
Linaria vulgaris Butter-and-eggs * I P UPL 
Linum lewisii  Blue Flax 6 N P UPL 
Linum rigidum  Stiffstem Flax 5 N A UPL 
Lithospermum canescens Hoary Puccoon 7 N P UPL 
Lithospermum incisum Narrow-leaved Puccoon 7 N P UPL 
Lobelia spicata Palespike Lobelia 6 N P FAC 
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Lolium perenne Perennial Ryegrass * I P FACU 
Lotus corniculatus Bird's-foot Trefoil * I P FACU 

Lotus unifoliolatus  Prairie Trefoil, Deer 
Vetch 3 N A UPL 

Lycopus americanus American Bugleweed 4 N P OBL 
Lycopus asper Rough Bugleweed 4 N P OBL 
Lycopus uniflorus One Flower Horehound 8 N P OBL 
Lysimachia hybrida Loosestrife 5 N P OBL 
Lysimachia thyrsiflora Tufted Loosestrife 7 N P OBL 
Maianthemum canadense Wild Lily-of-the-valley 8 N P FACU 

Maianthemum stellatum Spikenard, Starry False 
Lily of the Valley 5 N P FACU 

Malva pusilla Common Mallow * I A UPL 

Matricaria discoidea Pineapple Weed, Disc 
Mayweed * I A UPL 

Medicago lupulina Black Medick * I P FACU 
Medicago sativa Alfalfa * I P UPL 
Melilotus officinalis Sweet Clover * I A UPL 
Mentha arvensis Field Mint 3 N P FACW 

Mertensia lanceolata Wild Forget-me-not, 
Prairie Bluebells 9 N P UPL 

Monarda fistulosa  Wild Bergamot 5 N P UPL 
Muhlenbergia asperifolia Scratchgrass 2 N P FACW 
Muhlenbergia richardsonis Mat Muhly 10 N P FAC 
Myriophyllum sibiricum Shortspike Watermilfoil 3 N P OBL 
Nassella viridula Green Needlegrass 5 N P UPL 
Nepeta cataria Catnip * I P FACU 

Oenothera albicaulis Prairie Evening 
Primrose 5 N A UPL 

Oenothera biennis Common Evening 
Primrose 0 N B FACU 

Oligoneuron rigidum  Rigid Goldenrod, Stiff 
Goldenrod 4 N P FACU- 

Onosmodium bejariense  False Gromwell, 
Western Marbleseed 7 N P UPL 

Orthocarpus luteus Owl Clover 6 N A FACU 
Osmorhiza claytonii Sweet Jarvil, Sweetroot 10 N P FACU 
Oxalis stricta Yellow Wood Sorrel 0 N P FACU 
Oxytropis splendens Showy Locoweed 9 N P FACU 

Packera plattensis Prairie Ragwort, Prairie 
Groundsel 6 N B FACU- 

Panicum virgatum Switchgrass 5 N P FAC 
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Parthenocissus vitacea Woodbine, Thicket 
Creeper 2 N P FACU 

Pascopyrum smithii Western Wheatgrass 4 N P UPL 
Pediomelum argophyllum Silver-leaf Scurf-pea 4 N P UPL 
Pediomelum esculentum Breadroot Scurf-pea 9 N P UPL 
Penstemon gracilis Slender Beardtongue 6 N P FACU 
Phalaris arundinacea Reed Canarygrass 0 N P FACW+ 
Phleum pratense Timothy * I P FACU 
Phragmites australis Common Reed 0 N P FACW 
Physalis virginiana Virginia Ground Cherry 4 N P UPL 
Plantago major Common Plantain * I P FAC 

Plantago patagonica Patagonian Plantain, 
Woolly Plantain 1 N A UPL 

Platanthera aquilonis Northern Green Orchid 9 N P OBL 
Poa compressa Canada Bluegrass * I P FACU 
Poa palustris Fowl Bluegrass 4 N P FACW 
Poa pratensis Kentucky Bluegrass * I P FACU 

Poa secunda Canby's Bluegrass, 
Sandberg’s Bluegrass 8 N P FACU 

Polygala alba White Milkwort 5 N P UPL 
Polygala verticillata Whorled Milkwort 8 N A UPL 
Polygonum amphibium 
var. emersum Swamp Smartweed 0 N P OBL 

Polygonum amphibian 
var.stipulaceum Water Smartweed 6 P N FACW 

Polygonum arenastrum Knotweed 0 N A UPL 
Polygonum aviculare Knotweed 0 N A FACU 

Polygonum convolvulus Wild Buckwheat, Black 
Bindweed * I A FAC 

Polygonum lapathifolium Pale Smartweed, Curly-
top Knotweed 1 N A OBL 

Polygonum ramosissimum Bushy Knotweed 3 N A FACU 
Populus balsamifera Balsam poplar 6 N P FACW 
Populus deltoides  Cottonwood 3 N P FAC 
Populus tremuloides Quaking aspen 4 N P FAC 
Potamogeton gramineus Variable Pondweed 6 N P OBL 
Potamogeton pusillus  Baby Pondweed 2 N P OBL 
Potentilla arguta Tall Cinquefoil 8 N P FACU 
Potentilla concinna N/A 8 N P UPL 
Potentilla norvegica Norwegian Cinquefoil 0 N A FAC 
Prenanthes alba White Rattlesnake-root 10 N P FACU 
Prunus americana Wild Plum 4 N P UPL 
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Prunus virginiana Choke Cherry 4 N P FACU- 
Puccinellia nuttalliana Alkali-grass 4 N P OBL 
Pulsatilla patens  Pasque flower 9 N P UPL 
Quercus macrocarpa Bur Oak 6 N P FACU 
Ranunculus cymbalaria Shore Buttercup 3 N P OBL 

Ranunculus longirostris White Water Crowfoot, 
Longbeak Buttercup 3 N P OBL 

Ranunculus pensylvanicus Bristly Crowfoot, 
Pennsylvania Buttercup 4 N A FACW+ 

Ranunculus sceleratus Cursed Crowfoot, 
Cursed Buttercup 3 N A OBL 

Ratibida columnifera Prairie Coneflower 3 N P UPL 

Rhus aromatica Fragrant Sumac, Polecat 
Bush 7 N P UPL 

Ribes americanum Wild Black Currant 7 N P FACW 
Ribes oxyacanthoides Bristly Gooseberry 5 N P FAC 

Ribes triste Swamp Currant, Red 
Currant 10 N P OBL 

Rorippa palustris  Bog Yellow Cress 2 N A OBL 
Rosa arkansana Prairie Wild Rose 3 N P FACU 
Rosa blanda Smooth Wild Rose 8 N P FACU 
Rosa woodsii Western Wild Rose 5 N P FACU 
Rubus idaeus  Red Raspberry 5 N P UPL 
Rudbeckia hirta Black-eyed Susan 5 N B FACU 
Rudbeckia laciniata Golden Glow 6 N P FACU 
Rumex aquaticus  Western Dock 7 N P OBL 
Rumex crispus Curly Dock * I P FACW 
Rumex maritimus Golden Dock 1 N A FACW 
Rumex orbiculatus Great Water Dock 9 N P OBL 
Sagittaria cuneata Arrowhead 6 N P OBL 
Sagittaria latifolia Arrowhead 6 N P OBL 
Salicornia rubra Saltwort 0 N A OBL 

Salix alba Yellowstem White 
Willow * I P FACW 

Salix amygdaloides Peachleaf Willow 3 N P FACW 
Salix bebbiana Beaked Willow 8 N P FACW 
Salix discolor Pussy Willow 7 N P FACW 
Salix eriocephala Diamond Willow 5 N P FACW 
Salix interior Sandbar Willow 3 N P FACW+ 
Salix lutea Yellow Willow 5 N P FACW 

Salsola tragus Russian Thistle, 
Tumbleweed * I A UPL 
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Sanicula marilandica Black Snakeroot 7 N P FACU 
Schedonorus pratensis Meadow Fescue * I P FAC 
Schizachyrium scoparium Little Bluestem 6 N P UPL 
Schoenoplectus acutus Hard-stem Bulrush 5 N P OBL 
Schoenoplectus fluviatilis River Bulrush 2 N P OBL 

Schoenoplectus maritimus Prairie Bulrush, 
Cosmopolitan Bulrush 4 N P OBL 

Schoenoplectus pungens N/A 4 N P OBL 
Schoenoplectus 
tabernaemontani Soft-stem Bulrush 3 N P OBL 

Scirpus atrovirens Darkgreen Bulrush 5 N P OBL 
Scirpus pallidus N/A 5 N P OBL 
Scolochloa festucacea Sprangletop 6 N P OBL 
Setaria pumila  Yellow Foxtail * I A FACU 

Setaria viridis Green Foxtail, Gren 
Bristlegrass * I A UPL 

Shepherdia argentea Buffaloberry 5 N P UPL 
Shepherdia canadensis Rabbitberry 6 N P FACU 
Silene antirrhina Sleepy Catchfly 3 N A UPL 

Silene noctiflora Night-flowering 
Catchfly, Sticky Cockle * I A UPL 

Sinapis arvensis  Charlock, Wild Mustard * I A UPL 
Sisymbrium altissimum Tumbling Mustard * I A UPL 

Sisyrinchium campestre White-eyed Grass, 
Prairie Blue-Eyed Grass 10 N P UPL 

Sium suave Water Parsnip, Hemlock 3 N P OBL 
Solanum ptycanthum Black Nightshade 0 N A FACU 
Solidago canadensis  Canada Goldenrod 1 N P FACU 

Solidago gigantea Late Goldenrod, Giant 
Goldenrod 4 N P FACW 

Solidago missouriensis Prairie Goldenrod 5 N P UPL 
Solidago mollis Soft Goldenrod 6 N P UPL 
Solidago nemoralis Gray Goldenrod 6 N P UPL 
Sonchus arvensis Field Sow Thistle * I P FAC 
Sonchus oleraceus Common Sow Thistle * I A FACU 
Sparganium eurycarpum Giant Burreed 4 N P OBL 
Spartina gracilis Alkali Cordgrass 6 N P FACW 
Spartina pectinata Prairie Cordgrass 5 N P FACW 

Sphaeralcea coccinea Red False Mallow, 
Scarlet Globemallow 4 N P UPL 

Sphenopholis obtusata Prairie Wedgegrass 7 N A FAC 
Spiraea alba Meadow-sweet 7 N P FACW 
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Sporobolus heterolepis Prairie Dropseed 10 N P UPL 

Stachys pilosa  Hedge-nettle, Marsh 
Betony 3 N P FACW 

Stuckenia pectinata Sago Pondweed 0 N P OBL 
Suaeda calceoliformis Sea Blite 2 N A UPL 
Symphoricarpos 
occidentalis Western Snowberry 3 N P UPL 

Symphyotrichum ciliatum Rayless Aster 0 N A FACW 
Symphyotrichum 
ciliolatum N/A 8 N P FACW 

Symphyotrichum ericoides White Aster 2 N P FACU 
Symphyotrichum falcatum  N/A 4 N P FACU 
Symphyotrichum laeve  Smooth Blue Aster 5 N P UPL 
Symphyotrichum 
lanceolatum ssp. hesperium  Panicled Aster 4 N P OBL 

Symphyotrichum 
lanceolatum ssp. 
lanceolatum  

Panicled Aster 3 N P FACW 

Taraxacum officinale Common Dandelion * I P FACU 

Teucrium canadense  American Germander, 
Wood Sage 3 N P FACW 

Thalictrum dasycarpum Purple Meadow Rue 7 N P FAC 
Thalictrum venulosum Early Meadow Rue 6 N P FACW 
Thinopyrum intermedium Intermediate Wheatgrass * I P UPL 
Thinopyrum ponticum Tall Wheatgrass * I P UPL 
Thlaspi arvense Field Pennycress * I A FACU 
Toxicodendron rydbergii Poison Ivy 3 N P FACU 

Tragopogon dubius Goat's Beard, Yellow 
Salisfy * I B UPL 

Trifolium pratense Red Clover * I P FACU 

Trifolium repens White Clover, Ladino 
Clover * I P FACU 

Triglochin maritima Arrowgrass 5 N P OBL 

Trillium cernuum Nodding Trillium, 
Whip-poor-will Flower 10 N P FAC 

Triticum aestivum Wheat * I A UPL 
Typha angustifolia Narrow-leaved Cattail * I P OBL 
Typha latifolia Broad-leaved Cattail 2 N P OBL 
Typha x glauca Hybrid Cattail * I P OBL 
Ulmus americana American Elm 3 N P FAC 
Ulmus pumila Siberian Elm * I P UPL 
Urtica dioica Stinging Nettle 0 N P FACW 
Utricularia macrorhiza Common Bladderwort 2 N P OBL 
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Verbena bracteata Prostrate Vervain, 
Bigbract Verbena 0 N A FACU 

Verbena stricta Hoary Vervain 2 N P UPL 
Veronica peregrina Purslane Speedwell 0 N A FACW 
Viburnum opulus  Highbush Cranberry 10 N P FAC 
Vicia americana  American Vetch 6 N P UPL 
Viola nephrophylla Northern Bog Violet 8 N P FACW 

Viola nuttallii Nuttall's Violet, Yellow 
Prairie Violet 8 N P UPL 

Viola pedatifida Prairie Violet, Larkspur-
violet 8 N P FACU 

Xanthium strumarium Cocklebur 0 N A FAC 
xElyhordeum macounii N/A 3 N P FAC 
Zea mays Corn * I A UPL 
Zigadenus elegans White Camass 8 N P FACU 
Zizia aptera Meadow Parsnip 8 N P UPL 
Zizia aurea Golden Alexanders 8 N P FAC- 

*C-values not assigned to introduced species. 
1Scientific names of plant species are according to the USDA Plants Database (USDA, NRCS 
2012).   
2C-values (coefficient of conservatism) assigned by The Northern Great Plains Floristic Quality 
Assessment Panel (2001).   
3Life-forms: N = native and I = introduced.  
4Origin: P = perennial, A = annual, and B = biennial. 
5Indicator categories are according to the National List of Plant Species that Occur in Wetlands: 
Northern Plains (Region 4) (Reed 1988).   
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APPENDIX C.  PLANT CARBON, NITROGEN, AND PHOSPHORUS CONTENT AND 

BIOMASS FOR THE 2011 WETLAND SITES 

Site  Landscape Position Plant Type* %N %P %C 
5001 Shallow marsh Forbs & shrubs 2.07 0.45 45.6 
5001 Shallow marsh Cool grasses 1.76 0.20 46.2 
5001 Wet meadow Cool grasses 1.56 0.26 45.4 
5001 Wet meadow Forbs & shrubs 3.10 0.58 43.3 
5003 Shallow marsh Forbs & shrubs 1.74 0.30 41.3 
5003 Shallow marsh Cool grasses 1.76 0.33 41.3 
5003 Shallow marsh Sedges & rushes 1.74 0.24 41.1 
5003 Wet meadow Forbs & shrubs 2.01 0.32 37.8 
5003 Wet meadow Cool grasses 1.57 0.21 41.4 
5004 Wet meadow Forbs & shrubs 1.52 0.24 38.8 
5004 Wet meadow Cool grasses 0.93 0.13 40.3 
5006 Shallow marsh Sedges & rushes 1.87 0.25 38.2 
5006 Shallow marsh Cattails 1.59 0.13 41.0 
5006 Upland Cool grasses 0.96 0.07 41.3 
5006 Upland Forbs & shrubs 1.55 0.15 38.1 
5006 Wet meadow Cool grasses 1.23 0.11 42.9 
5006 Wet meadow Sedges & rushes 2.06 0.32 38.1 
5007 Upland Warm grasses 1.47 0.10 44.3 
5007 Upland Forbs & shrubs 1.62 0.09 41.0 
5007 Upland Cool grasses 1.32 0.07 43.4 
5007 Upland Sedges & rushes 1.70 0.07 42.0 
5007 Wet meadow Cool grasses 1.41 0.10 42.5 
5007 Wet meadow Forbs & shrubs 2.23 0.14 38.4 
5008 Shallow marsh Cattails 1.80 0.36 40.1 
5008 Upland Forbs & shrubs 7.55 0.33 38.5 
5008 Upland Cool grasses 7.61 0.35 37.3 
5008 Wet meadow Forbs & shrubs 4.56 0.72 37.7 
5008 Wet meadow Cattails 5.09 0.64 39.6 
5010 Shallow marsh Cattails 2.10 0.20 44.3 
5010 Shallow marsh Forbs & shrubs 2.53 0.38 39.8 
5010 Shallow marsh Cool grasses 1.25 0.23 44.5 
5010 Upland Forbs & shrubs 1.47 0.25 43.9 
5010 Upland Cool grasses 1.44 0.21 43.3 
5010 Wet meadow Cool grasses 1.90 0.22 44.9 
5010 Wet meadow Forbs & shrubs 1.85 0.24 44.3 
5011 Shallow marsh Cool grasses 1.79 0.21 42.3 
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Site  Landscape Position Plant Type* %N %P %C 
5011 Shallow marsh Sedges & rushes 2.08 0.36 41.1 
5011 Upland Forbs & shrubs 3.28 0.40 40.4 
5011 Upland Cool grasses 1.47 0.17 42.3 
5011 Wet meadow Cool grasses 2.47 0.34 42.6 
5011 Wet meadow Forbs & shrubs 2.65 0.33 41.9 
5012 Shallow marsh Sedges & rushes 2.02 0.35 40.4 
5012 Upland Cool grasses 1.05 0.09 43.9 
5012 Upland Forbs & shrubs 1.59 0.18 40.0 
5012 Wet meadow Cool grasses 2.81 0.23 43.7 
5012 Wet meadow Sedges & rushes 2.42 0.21 43.3 
5013 Shallow marsh Forbs & shrubs 1.72 0.20 41.8 
5013 Shallow marsh Sedges & rushes 1.56 0.15 38.5 
5013 Upland Forbs & shrubs 1.72 0.15 41.3 
5013 Upland Cool grasses 1.05 0.09 41.4 
5013 Wet meadow Forbs & shrubs 1.59 0.28 36.9 
5013 Wet meadow Cool grasses 1.31 0.15 42.7 
5013 Wet meadow Sedges & rushes 1.34 0.13 43.1 
5015 Shallow marsh Cool grasses 1.53 0.15 43.6 
5015 Shallow marsh Forbs & shrubs 2.59 0.47 36.2 
5015 Shallow marsh Sedges & rushes 2.73 0.23 42.9 
5015 Upland Cool grasses 1.39 0.23 40.0 
5015 Upland Forbs & shrubs 2.16 0.48 38.9 
5015 Wet meadow Cool grasses 0.90 0.11 43.6 
5015 Wet meadow Warm grasses 1.43 0.12 43.0 
5016 Shallow marsh Sedges & rushes 1.88 0.26 41.2 
5016 Shallow marsh Forbs & shrubs 2.17 0.35 37.5 
5016 Upland Forbs & shrubs 2.31 0.23 37.6 
5016 Upland Cool grasses 1.89 0.25 39.0 
5016 Upland Sedges & rushes 1.89 0.20 41.4 
5016 Wet meadow Forbs & shrubs 2.05 0.30 37.5 
5016 Wet meadow Sedges & rushes 1.89 0.23 41.8 
5016 Wet meadow Cool grasses 1.92 0.37 39.0 
5017 Shallow marsh Cattails 1.44 0.23 45.0 
5017 Upland Cool grasses 1.06 0.10 42.4 
5017 Wet meadow Cool grasses 1.41 0.20 42.8 
5017 Wet meadow Forbs & shrubs 1.57 0.28 42.3 
5018 Shallow marsh Cool grasses 1.33 0.16 43.0 
5018 Shallow marsh Forbs & shrubs 1.72 0.39 41.5 
5018 Shallow marsh Cattails 1.77 0.38 41.0 
5018 Upland Forbs & shrubs 1.95 0.37 38.7 
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Site  Landscape Position Plant Type* %N %P %C 
5018 Upland Cool grasses 1.16 0.16 41.7 
5018 Wet meadow Forbs & shrubs 1.61 0.28 40.9 
5018 Wet meadow Cool grasses 1.25 0.21 42.6 
5019 Shallow marsh Cool grasses 1.77 0.13 41.9 
5019 Shallow marsh Cattails 2.18 0.12 42.2 
5019 Upland Cool grasses 2.24 0.17 40.0 
5019 Upland Forbs & shrubs 2.22 0.24 38.8 
5019 Wet meadow Forbs & shrubs 1.67 0.27 37.0 
5019 Wet meadow Cool grasses 2.07 0.15 40.0 
5021 Shallow marsh Cattails 2.51 0.24 43.6 
5021 Shallow marsh Forbs & shrubs 3.53 0.22 43.4 
5021 Upland Cool grasses 1.88 0.14 45.3 
5021 Upland Forbs & shrubs 3.58 0.28 46.5 
5021 Wet meadow Cool grasses 1.87 0.17 44.2 
5021 Wet meadow Forbs & shrubs 2.85 0.24 43.7 
5023 Shallow marsh Sedges & rushes 5.98 0.16 40.7 
5023 Upland Cool grasses 2.06 0.07 41.6 
5023 Upland Forbs & shrubs 3.08 0.12 42.1 
5023 Wet meadow Cool grasses 3.28 0.05 40.8 
5023 Wet meadow Forbs & shrubs 3.93 0.12 41.4 
5027 Shallow marsh Cool grasses 1.66 0.19 43.0 
5027 Upland Cool grasses 1.08 0.15 43.0 
5027 Upland Forbs & shrubs 1.42 0.21 44.1 
5027 Wet meadow Cool grasses 1.06 0.17 42.9 
5030 Shallow marsh Cattails 1.13 0.17 44.5 
5030 Upland Cool grasses 1.14 0.07 41.2 
5030 Upland Forbs & shrubs 1.50 0.15 40.7 
5030 Wet meadow Cool grasses 1.04 0.07 41.1 
5030 Wet meadow Forbs & shrubs 1.62 0.16 42.6 
5030 Wet meadow Sedges & rushes 1.30 0.09 40.0 
5032 Shallow marsh Cool grasses 2.54 0.30 42.2 
5032 Shallow marsh Sedges & rushes 2.93 0.41 38.9 
5032 Shallow marsh Forbs & shrubs 2.49 0.20 41.9 
5032 Upland Cool grasses 1.32 0.09 43.0 
5032 Upland Forbs & shrubs 2.09 0.21 42.3 
5032 Wet meadow Cool grasses 2.29 0.22 43.6 
5032 Wet meadow Sedges & rushes 2.17 0.25 41.9 
5034 Shallow marsh Sedges & rushes 3.26 0.38 42.7 
5034 Shallow marsh Cool grasses 2.45 0.26 45.3 
5034 Shallow marsh Forbs & shrubs 2.42 0.32 45.5 
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Site  Landscape Position Plant Type* %N %P %C 
5034 Upland Forbs & shrubs 1.88 0.12 44.0 
5034 Upland Cool grasses 1.52 0.10 43.0 
5034 Wet meadow Sedges & rushes 2.16 0.20 43.7 
5034 Wet meadow Cool grasses 1.78 0.17 44.9 
5034 Wet meadow Forbs & shrubs 2.17 0.21 42.2 
5037 Shallow marsh Cattails 1.82 0.19 40.9 
5037 Upland Forbs & shrubs 2.11 0.17 42.5 
5037 Upland Cool grasses 1.08 0.08 41.2 
5037 Wet meadow Cool grasses 1.17 0.10 41.7 
5037 Wet meadow Forbs & shrubs 1.43 0.12 42.3 
5040 Shallow marsh Cattails 2.18 0.28 42.2 
5040 Shallow marsh Cool grasses 2.02 0.19 43.3 
5040 Shallow marsh Forbs & shrubs 2.48 0.34 36.7 
5040 Upland Cool grasses 3.32 0.21 40.0 
5040 Upland Forbs & shrubs 2.78 0.27 41.8 
5040 Wet meadow Cattails 2.20 0.33 40.2 
5040 Wet meadow Forbs & shrubs 2.47 0.14 41.2 
5040 Wet meadow Cool grasses 1.63 0.16 42.3 
5040 Wet meadow Sedges & rushes 2.35 0.22 43.2 
5042 Shallow marsh Sedges & rushes 3.00 0.10 42.9 
5042 Upland Cool grasses 2.95 0.12 41.3 
5042 Upland Forbs & shrubs 3.34 0.19 40.1 
5042 Wet meadow Cool grasses 2.92 0.10 43.1 
5043 Shallow marsh Sedges & rushes 3.29 0.30 39.8 
5043 Shallow marsh Cool grasses 3.12 0.24 42.8 
5043 Shallow marsh Cattails 2.60 0.19 42.2 
5043 Upland Cool grasses 5.54 0.07 40.6 
5043 Upland Forbs & shrubs 5.72 0.10 40.6 
5043 Wet meadow Forbs & shrubs 3.03 0.13 41.9 
5043 Wet meadow Sedges & rushes 5.47 0.15 37.7 
5043 Wet meadow Cool grasses 2.29 0.08 42.4 
5043 Wet meadow Warm grasses 4.54 0.13 42.4 
5046 Shallow marsh Cool grasses 3.18 0.35 41.3 
5046 Shallow marsh Forbs & shrubs 4.29 0.40 42.8 
5046 Upland Cool grasses 2.12 0.15 41.4 
5046 Upland Forbs & shrubs 3.05 0.20 41.7 
5046 Wet meadow Cool grasses 3.40 0.37 41.6 
5046 Wet meadow Sedges & rushes 2.93 0.25 42.9 
5046 Wet meadow Forbs & shrubs 3.65 0.50 42.7 
5048 Upland Warm grasses 1.90 0.24 43.5 
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Site  Landscape Position Plant Type* %N %P %C 
5048 Upland Cool grasses 1.68 0.19 44.6 
5048 Upland Forbs & shrubs 2.45 0.28 41.7 
5048 Wet meadow Forbs & shrubs 2.36 0.27 41.1 
5048 Wet meadow Cool grasses 2.08 0.18 45.1 
5049 Shallow marsh Sedges & rushes 2.66 0.31 42.9 
5049 Shallow marsh Cattails 2.74 0.34 43.5 
5049 Upland Cool grasses 1.53 0.15 41.7 
5049 Upland Forbs & shrubs 3.30 0.30 41.6 
5049 Wet meadow Cool grasses 1.88 0.16 42.3 
5049 Wet meadow Forbs & shrubs 2.28 0.21 39.8 
5049 Wet meadow Sedges & rushes 1.97 0.15 42.9 
5052 Shallow marsh Forbs & shrubs 2.65 0.27 39.9 
5052 Shallow marsh Sedges & rushes 2.29 0.28 41.7 
5052 Shallow marsh Cool grasses 2.17 0.26 41.7 
5052 Upland Cool grasses 1.43 0.07 41.6 
5052 Upland Forbs & shrubs 2.90 0.15 41.6 
5052 Wet meadow Forbs & shrubs 2.00 0.17 39.0 
5052 Wet meadow Cool grasses 1.47 0.10 41.9 
5052 Wet meadow Sedges & rushes 2.10 0.18 41.7 
5055 Shallow marsh Cattails 1.40 0.11 43.0 
5055 Upland Cool grasses 1.64 0.11 42.0 
5055 Wet meadow Sedges & rushes 1.57 0.09 41.9 
5055 Wet meadow Cool grasses 1.34 0.08 43.4 
5056 Shallow marsh Cool grasses 2.94 0.39 42.8 
5056 Shallow marsh Forbs & shrubs 4.38 0.53 41.2 
5056 Upland Cool grasses 2.69 0.35 41.8 
5056 Upland Forbs & shrubs 4.54 0.50 36.3 
5056 Wet meadow Cool grasses 1.95 0.27 42.1 
5056 Wet meadow Forbs & shrubs 2.81 0.49 39.1 
5059 Shallow marsh Cattails 1.13 0.20 43.3 
5059 Shallow marsh Sedges & rushes 1.45 0.24 41.4 
5059 Shallow marsh Cool grasses 0.76 0.18 41.4 
5059 Wet meadow Cool grasses 0.90 0.17 41.0 
5059 Wet meadow Sedges & rushes 1.64 0.21 40.6 
5059 Wet meadow Forbs & shrubs 1.23 0.27 42.8 
5062 Shallow marsh Cool grasses 6.87 0.19 41.1 
5062 Shallow marsh Sedges & rushes 5.48 0.29 41.4 
5062 Upland Cool grasses 3.56 0.15 40.0 
5062 Upland Forbs & shrubs 4.87 0.24 41.9 
5062 Wet meadow Forbs & shrubs 3.65 0.13 40.8 
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Site  Landscape Position Plant Type* %N %P %C 
5062 Wet meadow Cool grasses 4.32 0.12 39.7 
5065 Shallow marsh Cool grasses 5.16 0.26 39.5 
5065 Upland Forbs & shrubs 11.80 0.20 33.9 
5065 Upland Cool grasses 8.81 0.10 34.9 
5065 Wet meadow Cool grasses 13.22 0.09 33.1 
5065 Wet meadow Forbs & shrubs 12.13 0.17 34.2 
5066 Shallow marsh Forbs & shrubs 4.38 0.57 40.9 
5066 Shallow marsh Cattails 3.52 0.65 40.2 
5066 Shallow marsh Sedges & rushes 3.61 0.67 37.5 
5066 Upland Cool grasses 4.80 0.31 39.1 
5066 Upland Forbs & shrubs 3.82 0.41 37.7 
5066 Wet meadow Cool grasses 3.39 0.48 41.3 
5066 Wet meadow Forbs & shrubs 3.41 0.41 37.5 
5066 Wet meadow Sedges & rushes 4.13 0.46 38.2 
5067 Upland Forbs & shrubs 2.42 0.18 42.5 
5067 Upland Cool grasses 1.65 0.13 42.9 
5067 Upland Warm grasses 2.08 0.19 42.9 
5067 Wet meadow Forbs & shrubs 2.16 0.28 41.0 
5067 Wet meadow Cool grasses 1.96 0.18 42.3 
5067 Wet meadow Sedges & rushes 2.06 0.16 43.5 
5068 Shallow marsh Sedges & rushes 5.39 0.24 39.7 
5068 Shallow marsh Forbs & shrubs 6.60 0.38 43.2 
5068 Shallow marsh Cattails 4.55 0.42 38.5 
5068 Upland Cool grasses 1.89 0.22 41.4 
5068 Upland Forbs & shrubs 6.02 0.36 37.9 
5068 Wet meadow Cool grasses 3.44 0.28 39.6 
5068 Wet meadow Forbs & shrubs 5.14 0.41 39.0 
5068 Wet meadow Sedges & rushes 4.42 0.26 40.6 
5069 Shallow marsh Cattails 1.51 0.24 42.0 
5069 Shallow marsh Sedges & rushes 1.93 0.23 43.8 
5069 Upland Cool grasses 1.29 0.17 41.9 
5069 Upland Forbs & shrubs 2.01 0.29 42.3 
5069 Wet meadow Sedges & rushes 1.84 0.17 43.0 
5069 Wet meadow Forbs & shrubs 1.87 0.25 40.7 
5069 Wet meadow Cool grasses 1.56 0.15 43.1 
5072 Shallow marsh Cool grasses 3.65 0.18 43.1 
5072 Shallow marsh Sedges & rushes 4.61 0.26 42.0 
5072 Upland Cool grasses 4.27 0.07 40.9 
5072 Upland Forbs & shrubs 4.32 0.12 41.7 
5072 Wet meadow Cool grasses 3.23 0.16 43.2 
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Site  Landscape Position Plant Type* %N %P %C 
5073 Shallow marsh Cool grasses 3.52 0.22 42.0 
5073 Shallow marsh Cattails 3.44 0.23 41.7 
5073 Upland Cool grasses 1.52 0.10 41.8 
5073 Upland Forbs & shrubs 2.67 0.18 42.5 
5073 Wet meadow Sedges & rushes 1.89 0.14 42.5 
5073 Wet meadow Forbs & shrubs 3.55 0.11 39.6 
5073 Wet meadow Cool grasses 2.29 0.31 43.9 
5075 Shallow marsh Cool grasses 2.20 0.29 43.2 
5075 Upland Cool grasses 1.55 0.20 42.7 
5075 Upland Forbs & shrubs 3.38 0.31 42.6 
5075 Wet meadow Cool grasses 2.23 0.28 41.6 
5075 Wet meadow Forbs & shrubs 3.05 0.28 36.3 
5077 Shallow marsh Cattails 1.81 0.27 44.1 
5077 Shallow marsh Cool grasses 1.98 0.16 42.7 
5077 Shallow marsh Forbs & shrubs 2.94 0.32 44.2 
5077 Shallow marsh Sedges & rushes 2.19 0.27 42.9 
5077 Wet meadow Cool grasses 1.56 0.24 42.1 
5077 Wet meadow Forbs & shrubs 1.95 0.28 42.4 
5077 Wet meadow Sedges & rushes 1.73 0.20 43.1 
5078 Shallow marsh Cattails 1.96 0.39 41.4 
5078 Shallow marsh Forbs & shrubs 2.52 0.51 35.8 
5078 Shallow marsh Cool grasses 2.03 0.26 42.5 
5078 Upland Forbs & shrubs 1.91 0.21 39.3 
5078 Upland Cool grasses 1.52 0.20 41.9 
5078 Wet meadow Cattails 3.19 0.39 40.3 
5078 Wet meadow Forbs & shrubs 1.89 0.32 42.3 
5079 Shallow marsh Cattails 0.97 0.19 43.1 
5079 Shallow marsh Sedges & rushes 1.88 0.28 39.6 
5079 Upland Cool grasses 1.04 0.12 40.2 
5079 Wet meadow Cool grasses 1.58 0.09 42.8 
5082 Shallow marsh Forbs & shrubs 1.90 0.28 37.2 
5082 Shallow marsh Cool grasses 2.19 0.41 42.8 
5082 Shallow marsh Sedges & rushes 2.15 0.32 41.6 
5082 Upland Sedges & rushes 1.68 0.21 41.5 
5082 Upland Forbs & shrubs 2.44 0.31 40.6 
5082 Upland Cool grasses 1.71 0.25 40.0 
5082 Wet meadow Forbs & shrubs 2.41 0.33 38.7 
5082 Wet meadow Sedges & rushes 1.76 0.29 40.9 
5082 Wet meadow Cool grasses 1.93 0.23 39.9 
5083 Shallow marsh Cattails 1.75 0.28 42.6 
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Site  Landscape Position Plant Type* %N %P %C 
5083 Shallow marsh Cool grasses 1.04 0.13 44.5 
5083 Shallow marsh Sedges & rushes 2.27 0.28 38.8 
5083 Upland Forbs & shrubs 1.54 0.20 43.4 
5083 Upland Cool grasses 1.00 0.10 42.7 
5083 Wet meadow Forbs & shrubs 1.28 0.18 45.1 
5083 Wet meadow Cool grasses 1.04 0.11 43.6 
5084 Shallow marsh Forbs & shrubs 1.56 0.18 41.8 
5084 Shallow marsh Sedges & rushes 1.71 0.16 42.8 
5084 Upland Cool grasses 1.17 0.15 43.2 
5084 Upland Forbs & shrubs 1.90 0.23 42.6 
5084 Upland Sedges & rushes 1.90 0.19 44.2 
5084 Wet meadow Cool grasses 1.68 0.17 43.4 
5084 Wet meadow Forbs & shrubs 1.93 0.21 41.7 
5084 Wet meadow Sedges & rushes 1.78 0.17 43.8 
5085 Shallow marsh Cattails 1.78 0.21 43.2 
5085 Upland Cool grasses 1.64 0.18 41.8 
5085 Wet meadow Cool grasses 1.37 0.14 42.7 
5085 Wet meadow Forbs & shrubs 1.97 0.14 40.7 
5089 Upland Cool grasses 1.20 0.09 42.4 
5089 Upland Forbs & shrubs 1.91 0.16 43.7 
5089 Wet meadow Cool grasses 1.35 0.09 43.6 
5089 Wet meadow Forbs & shrubs 2.13 0.14 42.2 
5091 Shallow marsh Cattails 2.52 0.34 40.4 
5091 Wet meadow Sedges & rushes 3.67 0.26 41.7 
5091 Wet meadow Forbs & shrubs 3.79 0.53 43.5 
5093 Shallow marsh Forbs & shrubs 2.23 0.21 41.7 
5093 Shallow marsh Cool grasses 1.50 0.22 40.8 
5093 Shallow marsh Cattails 1.53 0.18 42.1 
5093 Upland Forbs & shrubs 1.50 0.37 37.8 
5093 Upland Cool grasses 2.14 0.23 41.3 
5093 Wet meadow Forbs & shrubs 1.56 0.17 38.9 
5093 Wet meadow Cool grasses 1.48 0.08 43.9 
5093 Wet meadow Sedges & rushes 1.61 0.09 43.6 
5094 Shallow marsh Forbs & shrubs 1.84 0.36 40.7 
5094 Shallow marsh Sedges & rushes 1.07 0.24 42.0 
5094 Wet meadow Sedges & rushes 2.02 0.21 37.2 
5094 Wet meadow Cool grasses 3.54 0.24 39.3 
5094 Wet meadow Forbs & shrubs 1.96 0.29 40.4 
5095 Shallow marsh Cattails 1.25 0.17 43.9 
5095 Upland Forbs & shrubs 1.46 0.14 44.4 
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Site  Landscape Position Plant Type* %N %P %C 
5095 Upland Cool grasses 1.06 0.06 40.6 
5095 Wet meadow Cool grasses 1.05 0.09 42.3 
5095 Wet meadow Forbs & shrubs 1.83 0.15 40.8 
Reference 1 Shallow marsh Sedges & rushes 13.65 0.21 33.8 
Reference 1 Shallow marsh Cool grasses 15.55 0.14 34.1 
Reference 1 Shallow marsh Cattails 14.79 0.23 33.6 
Reference 1 Upland  Forbs & shrubs 4.22 0.17 43.6 
Reference 1 Upland  Cool grasses 3.17 0.10 42.0 
Reference 1 Wet meadow Sedges & rushes 4.81 0.13 41.8 
Reference 1 Wet meadow Cool grasses 9.60 0.18 39.1 
Reference 1 Wet meadow Forbs & shrubs 6.86 0.33 40.0 
Reference 2 Shallow marsh Warm grasses 1.36 0.12 42.9 
Reference 2 Shallow marsh Sedges & rushes 1.99 0.17 40.8 
Reference 2 Shallow marsh Forbs & shrubs 2.29 0.19 43.2 
Reference 2 Upland Cool grasses 1.12 0.10 43.5 
Reference 2 Upland Forbs & shrubs 1.69 0.08 43.7 
Reference 2 Wet meadow Sedges & rushes 1.57 0.11 42.1 
Reference 2 Wet meadow Cool grasses 1.22 0.07 41.5 
Reference 2 Wet meadow Forbs & shrubs 2.10 0.11 42.6 
*Cool grasses = cool season grasses and Warm grasses = warm season grasses 
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APPENDIX D.  INDEX OF PLANT COMMUNITY INTEGRITY (IPCI), FLORISTIC 

QUALITY INDEX (FQI), AND NORTH DATKOTA RAPID ASSESSMENT (NDRAM) 

SCORES FOR THE 2011 WETLAND SITES 

Wetland* IPCI Score IPCI Condition 
Category FQI Score NDRAM 

Score 

NDRAM 
Condition 
Category 

S5001 58 Fair 18.03 34 Fair Low 
S5008 0 Very Poor 6.84 14 Poor 
S5010 23 Poor 12.03 29 Fair Low 
S5017 19 Very Poor 13.67 39 Fair Low 
S5018 42 Fair 16.44 60 Fair High 
S5027 0 Very Poor 5.46 22 Poor 
S5030 44 Fair 17.24 65 Fair High 
S5032 71 Good 25.77 95 Good 
S5034 55 Fair 20.78 51 Fair Low 
S5042 83 Very Good 30.83 73 Good 
S5046 72 Good 22.36 87 Good 
S5059 27 Poor 14.91 31 Fair Low 
S5066 0 Very Poor 5.00 14 Poor 
S5069 91 Very Good 31.80 88 Good 
S5073 58 Fair 20.86 55 Fair High 
S5077 40 Fair 16.89 16 Poor 
S5078 45 Fair 16.00 25 Poor 
S5079 47 Fair 20.50 66 Fair High 
S5084 91 Very Good 35.01 82 Good 
S5089 54 Fair 20.62 63 Fair High 
S5091 54 Fair 18.96 35 Fair Low 
S5094 24 Poor 11.67 26 Poor 
SRef1 95 Very Good 39.02 95 Good 
SP5003 12 Poor 17.90 28 Fair Low 
SP5006 23 Poor 21.47 61 Fair High 
SP5011 35 Fair 0.49 68 Fair High 
SP5012 70 Good 40.09 65 Fair High 
SP5013 87 Good 44.64 82 Good 
SP5016 77 Good 43.61 81 Good 
SP5019 18 Poor 18.00 57 Fair High 
SP5021 33 Fair 20.65 87 Good 
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Wetland* IPCI Score IPCI Condition 
Category FQI Score NDRAM 

Score 

NDRAM 
Condition 
Category 

SP5023 38 Fair 25.79 62 Fair High 
SP5037 50 Fair 32.79 65 Fair High 
SP5040 30 Poor 25.30 21 Poor 
SP5043 8 Poor 19.06 52 Fair Low 
SP5048 80 Good 34.59 92 Good 
SP5049 52 Fair 28.30 66 Fair High 
SP5052 52 Fair 27.45 59 Fair High 
SP5055 87 Good 40.69 78 Good 
SP5056 4 Poor 19.17 62 Fair High 
SP5062 52 Fair 29.25 75 Fair High 
SP5065 65 Fair 31.04 65 Fair High 
SP5067 75 Good 35.90 91 Good 
SP5072 19 Poor 18.44 46 Fair Low 
SP5075 15 Poor 14.61 48 Fair Low 
SP5082 92 Good 53.44 88 Good 
SP5083 11 Poor 14.90 41 Fair Low 
SP5085 8 Poor 16.73 34 Fair Low 
SP5093 18 Poor 20.01 52 Fair Low 
SP5095 19 Poor 19.37 66 Fair High 
SPRef2 69 Good 31.16 95 Good 
T5004 23 Poor 12.75 28 Fair Low 
T5007 91 Good 36.20 95 Good 
T5015 40 Fair 14.96 41 Fair Low 
T5068 95 Good 19.37 93 Good 

*Wetlands beginning with a S were seasonal, SP were semi-permanent, and T were temporary 
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APPENDIX E.  HYDROGEOMORPHIC (HGM) MODEL SCORES FOR THE 2011 

WETLAND SITES 

Wetland* Water 
Storage 

Groundwater 
Recharge 

Retain 
Particulates 

Remove, 
Convert, and 

Sequester 
Dissolved 
Substances 

Plant 
Community 
Resilience 
and Carbon 

Cycling 

Provide 
Faunal 
Habitat 

Provide 
Faunal 
Habitat 

(Alternate 
Formula) 

S5001 0.94 0.90 0.78 0.77 0.82 0.85 0.86 
S5008 0.94 0.75 0.66 0.68 0.66 0.67 0.73 
S5010 0.86 0.85 0.72 0.69 0.74 0.77 0.79 
S5017 0.64 0.64 0.77 0.61 0.60 0.58 0.60 
S5018 0.89 0.70 0.77 0.90 0.84 0.82 0.74 
S5027 0.93 0.80 0.71 0.74 0.69 0.62 0.67 
S5030 0.97 0.89 0.97 0.97 0.96 0.96 0.94 
S5032 0.96 0.90 0.94 0.95 0.94 0.92 0.86 
S5034 0.84 0.68 0.93 0.83 0.82 0.80 0.77 
S5042 0.76 0.75 0.62 0.91 0.88 0.88 0.79 
S5046 0.97 0.90 0.98 0.97 0.97 0.94 0.94 
S5059 0.92 0.87 0.83 0.83 0.84 0.85 0.76 
S5066 0.96 0.75 0.66 0.66 0.65 0.71 0.77 
S5069 0.97 0.82 0.98 0.98 0.98 0.97 0.95 
S5073 0.83 0.75 0.89 0.80 0.81 0.81 0.82 
S5077 0.90 0.76 0.74 0.69 0.77 0.77 0.83 
S5078 0.94 0.76 0.74 0.74 0.79 0.79 0.83 
S5079 0.89 0.81 0.80 0.93 0.90 0.90 0.82 
S5084 0.97 0.93 0.98 0.98 0.98 0.94 0.89 
S5089 0.97 0.85 0.98 0.98 0.98 0.96 0.91 
S5091 0.92 0.84 0.87 0.85 0.90 0.89 0.95 
S5094 0.91 0.78 0.65 0.67 0.69 0.71 0.76 
SRef1 0.97 0.89 0.98 0.97 0.97 0.94 0.96 

SP5003 0.94 0.83 0.76 0.75 0.79 0.81 0.88 
SP5006 0.97 0.81 0.95 0.96 0.94 0.94 0.92 
SP5011 0.97 0.83 0.98 0.96 0.96 0.97 0.92 
SP5012 0.95 0.85 0.93 0.96 0.96 0.97 0.91 
SP5013 0.86 0.74 0.75 0.94 0.93 0.94 0.93 
SP5016 0.99 0.97 0.92 0.92 0.95 0.92 0.86 
SP5019 0.81 0.68 0.93 0.82 0.83 0.83 0.83 
SP5021 0.97 0.82 0.98 0.98 0.98 0.98 0.94 
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Wetland* Water 
Storage 

Groundwater 
Recharge 

Retain 
Particulates 

Remove, 
Convert, and 

Sequester 
Dissolved 
Substances 

Plant 
Community 
Resilience 
and Carbon 

Cycling 

Provide 
Faunal 
Habitat 

Provide 
Faunal 
Habitat 

(Alternate 
Formula) 

SP5023 0.94 0.80 0.91 0.90 0.92 0.85 0.85 
SP5037 0.97 0.82 0.98 0.98 0.98 0.98 0.93 
SP5040 0.94 0.87 0.78 0.77 0.84 0.87 0.93 
SP5043 0.93 0.88 0.89 0.87 0.91 0.93 0.90 
SP5048 1.00 0.91 0.99 0.99 1.00 1.00 0.95 
SP5049 0.94 0.77 0.98 0.96 0.98 0.94 0.92 
SP5052 0.84 0.74 0.97 0.85 0.87 0.87 0.84 
SP5055 0.91 0.71 0.81 0.95 0.95 0.92 0.94 
SP5056 0.80 0.76 0.92 0.82 0.82 0.82 0.73 
SP5062 0.82 0.75 0.95 0.83 0.85 0.83 0.80 
SP5065 0.81 0.65 0.94 0.82 0.84 0.81 0.81 
SP5067 0.99 0.74 0.99 0.99 0.99 0.94 0.93 
SP5072 0.78 0.76 0.91 0.79 0.81 0.81 0.75 
SP5075 0.97 0.85 0.92 0.93 0.89 0.90 0.83 
SP5082 1.00 0.84 1.00 0.97 0.97 0.97 0.87 
SP5083 0.96 0.79 0.90 0.91 0.90 0.91 0.91 
SP5085 0.95 0.75 0.84 0.84 0.86 0.84 0.91 
SP5093 0.62 0.61 0.53 0.71 0.69 0.70 0.71 
SP5095 0.84 0.67 0.88 0.81 0.80 0.78 0.82 
SPRef2 0.97 0.84 0.98 0.99 0.99 0.97 0.93 
T5004 0.48 0.43 0.69 0.41 0.41 0.39 0.39 
T5007 0.77 0.82 0.53 0.89 0.87 0.87 0.75 
T5015 0.94 0.90 0.75 0.74 0.77 0.78 0.76 
T5068 0.75 0.63 0.36 0.89 0.87 0.84 0.82 

*Wetlands beginning with a S were seasonal, SP were semi-permanent, and T were temporary 
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APPENDIX F.  WETLAND LOCATION AND AMOUNT OF SEDIMENT REMOVAL 

FOR THE 2012 SITES 

Site County Year 
excavated 

Amount of sediment 
removed (cm) 

Latitude Longitude 

Nik1 Towner 2008 25 48.6011111 -99.23583333 
Nik3 Towner 2008 46 48.58805556 -99.2425 
Nik4 Towner 2008 36 48.58777778 -99.23888889 
Nik5 Towner 2008 51 48.58805556 -99.23805556 
Nik6 Towner 2008 25 48.58888889 -99.23777778 
Hoff1 Benson 2007 20 to 30 48.21611111 -99.45611111 
Hoff2 Benson 2007 20 to 30 48.21722222 -99.45166667 
Hoff5 Benson 2007 20 to 30 48.21055556 -99.46666667 
CW47 Wells 2003 20 47.51027778 -99.46055556 
CW48 Wells 2003 30 47.50972222 -99.46194444 
CW57 Wells 2003 40 47.51166667 -99.46527778 
CW58 Wells 2003 13 47.51166667 -99.46583333 
CW61 Wells 2003 20 47.51166667 -99.45916667 
CW62 Wells 2003 10 47.51166667 -99.45944444 
CW63 Wells 2003 36 47.5125 -99.45916667 
CW64 Wells 2003 10 47.51333333 -99.45944444 
CW65 Wells 2003 25 47.51333333 -99.46 
CW66 Wells 2003 41 47.51416667 -99.45916667 
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APPENDIX G.  COMPREHENSIVE PLANT SPECIES LIST FOR 2012 STUDY SITES 

Scientific Name1 Common Name C-Val2 Life3 Origin4 Indicator5 

Agropyron caninum  N/A 6 P N FAC- 
Agropyron elongatum Tall Wheatgrass * P I UPL 
Agropyron repens Quackgrass * P I FAC 
Agropyron smithii Western Wheatgrass 4 P N UPL 

Alisma subcordatum Common Water 
Plantain 2 P N OBL 

Alopecurus aequalis Shortawn Foxtail 2 P N OBL 
Ambrosia psilostachya Western Ragweed 2 P N FAC 
Andropogon gerardii Big Bluestem 5 P N FACU 
Anemone canadensis Meadow Anemone 4 P N FACW 

Apocynum cannabinum Indian Hemp Dogbane, 
Prairie Dogbane 4 P N FAC 

Artemisia absinthium Wormwood * P I UPL 
Artemisia biennis Biennial Wormwood * B I FAC 
Asclepias incarnata Swamp Milkweed 5 P N OBL 
Asclepias syriaca Common Milkweed 0 P N UPL 
Astragalus canadensis Canada Milk-vetch 5 P N FACU 
Atriplex subspicata Spearscale 2 A N FAC 
Beckmannia syzigachne American Sloughgrass 1 A N OBL 
Bouteloua curtipendula Sideoats Grama 5 P N UPL 
Brassica napus Canola * A I UPL 
Bromus inermis  Smooth Brome * P I UPL 
Bromus japanicus Japanese Brome * A I FACU 
Calamovilfa longifolia Prairie Sandreed 5 P N UPL 
Carex atherodes Slough Sedge 4 P N OBL 
Carex lanuginosa Woolly Sedge 4 P N OBL 
Carex sychnocephala N/A 7 P N FACW 
Carex vulpinoidea Fox Sedge 2 P N OBL 

Cicuta maculata Common Water 
Hemlock 4 P N OBL 

Cirsium arvense Canada Thistle, Field 
Thistle * P I FACU 

Cirsium vulgare Bull Thistle * B I UPL 
Convolvulus arvensis Field Bindweed * P I UPL 
Conyza canadensis Horseweed 0 A N FACU 
Dalea purpurea  Purple Prairie Clover 8 P N UPL 
Descurainia sophia Flixweed * A I UPL 
Distichlis spicata  Inland Saltgrass 2 P N FACW 
Echinochloa crusgalli Barnyard Grass * A I FACW 
Eleocharis acicularis Needle Spikesedge 3 P N OBL 



118 
 

Scientific Name1 Common Name C-Val2 Life3 Origin4 Indicator5 

Eleocharis macrostachya Spike Rush 4 P N OBL 
Elymus canadensis Canada Wild Rye 3 P N FACU 
Epilobium ciliatum  Willow-herb 3 P N OBL 
Equisetum laevigatum Smooth Scouring Rush 3 P N FAC 
Erigeron strigosus Daisy Fleabane 3 A N FACU 
Euphorbia esula Leafy Spurge * P I UPL 
Fraxinus pennsylvanica Red Ash, Green Ash 5 P N FAC 
Galium aparine Catchweed Bedstraw 0 A N FACU 
Glyceria grandis Tall Mannagrass 4 P N OBL 
Glycyrrhiza lepidota Wild Licorice 2 P N FACU 
Gratiola neglecta Hedge Hyssop 0 A N OBL 
Helianthus maximilianii Maximilian Sunflower 5 P N FACU 
Helianthus nuttallii  Nuttall's Sunflower 8 P N FAC 
Helianthus pauciflorus Stiff Sunflower 8 P N UPL 
Hordeum jubatum Foxtail Barley 0 P N FACW 
Juncus balticus Baltic Rush 5 P N FACW 
Juncus dudleyi Dudley Rush 4 P N FAC 
Juncus interior Inland Rush 5 P N FACW 
Juncus torreyi Torrey's Rush 2 P N FACW 
Koeleria pyramidata Junegrass 7 P N UPL 
Lactuca oblongifolia Blue Lettuce 1 P N FACU 
Lemna turionifera N/A 1 P N OBL 
Lepidium densiflorum Peppergrass 0 A N FACU 
Lycopus americanus American Bugleweed 4 P N OBL 
Lycopus asper Rough Bugleweed 4 P N OBL 
Lysimachia thyrsiflora Tufted Loosestrife 7 P N OBL 
Medicago lupulina Black Medick * P I FACU 
Medicago sativa Alfalfa * P I UPL 
Melilotus alba White Sweet Clover * A I UPL 
Melilotus officinalis Yellow Sweet Clover * A I FACU- 
Mentha arvensis Field Mint 3 P N FACW 
Monarda fistulosa  Wild Bergamot 5 P N UPL 
Oxalis stricta Yellow Wood Sorrel 0 P N FACU 
Panicum virgatum Switchgrass 5 P N FAC 
Phalaris arundinacea Reed Canarygrass 0 P N FACW+ 
Phleum pratense Timothy * P I FACU 
Phragmites australis Common Reed 0 P N FACW 
Plantago major Common Plantain * P I FAC 
Poa palustris Fowl Bluegrass 4 P N FACW 
Poa pratensis Kentucky Bluegrass * P I FACU 
Polygonum amphibian var. 
emersum Swamp Smartweed 0 P N OBL 
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Scientific Name1 Common Name C-Val2 Life3 Origin4 Indicator5 

Polygonum amphibian 
var.stipulaceum Water Smartweed 6 P N FACW 

Polygonum lapathifolium Pale Smartweed 1 A N OBL 
Populus deltoides  Cottonwood 3 P N FAC 
Potamogeton pectinatus Sago Pondweed 0 P N OBL 
Potamogeton pusillus  Baby Pondweed 2 P N OBL 
Potentilla anserina Silverweed 2 P N OBL 
Potentilla norvegica Norwegian Cinquefoil 0 A N FAC 
Potentilla rivalis Brook Conquefoil 3 A N OBL 
Ranunculus cymbalaria Shore Buttercup 3 P N OBL 
Ratibida columnifera Prairie Coneflower 3 P N UPL 
Rorippa palustris  Bog Yellow Cress 2 A N OBL 
Rudbeckia hirta Black-eyed Susan 5 B N FACU 
Rumex crispus Curly Dock * P I FACW 
Rumex maritimus Golden Dock 1 A N FACW 
Rumex mexicanus Willow-leaved Dock 1 P N FACW 
Sagittaria cuneata Arrowhead 6 P N OBL 
Salix lutea Yellow Willow 5 P N FACW 
Schedonnardus paniculatus Tumblegrass 1 P N FAC 
Schizachyrium scoparium Little Bluestem 6 P N UPL 
Schoenoplectus acutus Hard-stem Bulrush 5 P N OBL 
Schoenoplectus fluviatilis River Bulrush 2 P N OBL 
Schoenoplectus maritimus  Prairie Bulrush 4 P N OBL 
Schoenoplectus pungens N/A 4 P N OBL 
Schoenoplectus 
tabernaemontani Soft-stem Bulrush 3 P N OBL 

Scolochloa festucacea Sprangletop 6 P N OBL 
Silene dichotomo Forked Catchfly * A I UPL 

Silene noctiflora Night-flowering 
Catchfly, Sticky Cockle * A I UPL 

Sium suave Water Parsnip 3 P N OBL 
Solidago canadensis  Canada Goldenrod 1 P N FACU 
Solidago rigida Rigid Goldenrod 4 P N FACU- 
Sonchus arvensis Field Sow Thistle * P I FAC 
Sorghastrum nutans Indian Grass 6 P N FACU 
Spartina pectinata Prairie Cordgrass 5 P N FACW 
Stipa viridula Green Needlegrass 5 P N UPL 
Suaeda depressa Sea Blite 2 A N UPL 
Symphotrichum ciliatum Rayless Aster 0 A N FACW 
Symphotrichum ericoides White Aster 2 P N  FACU 
Symphotrichum falcatus N/A 4 P N FACU 
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Scientific Name1 Common Name C-Val2 Life3 Origin4 Indicator5 

Symphotrichum 
lanceolatum Panicled Aster 3 P N FACW 

Taraxacum officinale Common Dandelion * P I FACU 

Teucrium canadense  American Germander, 
Wood Sage 3 P N FACW 

Thlaspi arvense Field Pennycress * A I FACU 
Typha angustifolia Narrow-leaved Cattail * P I OBL 
Typha latifolia Broad-leaved Cattail 2 P N OBL 
Typha x glauca Hybrid Cattail * P I OBL 
Urtica dioica Stinging Nettle 0 P N FACW 
Verbena bracteata Prostrate Vervain 0 A N FACU 
Verbena stricta Hoary Vervain 2 P N UPL 
Vernonia fasciculata  Ironweed 3 P N FAC 
Veronica peregrina Purslane Speedwell 0 A N FACW 
Vicia americana  American Vetch 3 P N UPL 
Xanthium strumarium Cocklebur 0 A N FAC 
xElyhordeum macounii N/A 3 P N FAC 
Zizia aptera Meadow Parsnip 8 P N UPL 

*C-values not assigned to introduced species. 
1Scientific names of plant species are according to the USDA Plants Database (USDA, NRCS 
2012).   
2C-values (coefficient of conservatism) assigned by The Northern Great Plains Floristic Quality 
Assessment Panel (2001).   
3Life-forms: N = native and I = introduced.  
4Origin: P = perennial, A = annual, and B = biennial. 
5Indicator categories are according to the National List of Plant Species that Occur in Wetlands: 
Northern Plains (Region 4) (Reed 1988).   
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APPENDIX H.  PLANT CARBON, NITROGEN, AND PHOSPHORUS CONTENT FOR 

THE 2012 WETLAND SITES  

Site Landscape Position Plant Type* %N %P %C 
Nik1 Shallow marsh Cattails 1.24 0.17 43.0 
Nik1 Upland Cool grasses 0.97 0.19 41.8 
Nik1 Upland Forbs & shrubs 2.45 0.21 42.5 
Nik1 Wet meadow Cool grasses 1.26 0.20 42.1 
Nik1 Wet meadow Forbs & shrubs 1.71 0.30 40.8 
Nik1 Wet meadow Sedges & rushes 1.58 0.31 42.5 
Nik3 Shallow marsh Cattails 1.17 0.20 42.7 
Nik3 Shallow marsh Cool grasses 1.45 0.29 40.0 
Nik3 Shallow marsh Forbs & shrubs 1.66 0.32 41.4 
Nik3 Shallow marsh Sedges & rushes 1.47 0.24 41.5 
Nik3 Upland Cool grasses 1.08 0.22 41.1 
Nik3 Upland Forbs & shrubs 1.73 0.17 43.0 
Nik3 Wet meadow Cool grasses 1.53 0.24 41.5 
Nik3 Wet meadow Forbs & shrubs 2.64 0.40 35.2 
Nik3 Wet meadow Sedges & rushes 1.71 0.26 41.2 
Nik4 Shallow marsh Cattails 1.03 0.18 42.3 
Nik4 Shallow marsh Cool grasses 4.22 0.45 36.2 
Nik4 Upland Cool grasses 1.13 0.19 41.6 
Nik4 Upland Forbs & shrubs 1.47 0.23 42.3 
Nik4 Wet meadow Cool grasses 0.93 0.22 41.5 
Nik4 Wet meadow Forbs & shrubs 1.19 0.29 37.9 
Nik4 Wet meadow Sedges & rushes 1.35 0.17 42.9 
Nik5 Shallow marsh Cattails 1.49 0.19 43.7 
Nik5 Shallow marsh Sedges & rushes 1.08 0.17 43.0 
Nik5 Upland Cool grasses 1.17 0.18 40.9 
Nik5 Upland Forbs & shrubs 1.82 0.25 41.2 
Nik5 Wet meadow Cool grasses 1.06 0.23 40.9 
Nik5 Wet meadow Forbs & shrubs 1.66 0.37 36.8 
Nik5 Wet meadow Sedges & rushes 1.30 0.19 42.8 
Nik6 Shallow marsh Cattails 0.94 0.13 44.7 
Nik6 Shallow marsh Cool grasses 1.46 0.28 40.7 
Nik6 Shallow marsh Forbs & shrubs 0.95 0.23 44.7 
Nik6 Shallow marsh Sedges & rushes 1.21 0.17 40.6 
Nik6 Upland Cool grasses 1.61 0.24 39.7 
Nik6 Upland Forbs & shrubs 1.46 0.20 42.1 
Nik6 Wet meadow Cool grasses 1.10 0.22 41.2 
Nik6 Wet meadow Forbs & shrubs 1.76 0.38 34.4 
Nik6 Wet meadow Sedges & rushes 1.34 0.25 40.2 
Hoff1 Shallow marsh Cattails 1.11 0.15 44.4 
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Site Landscape Position Plant Type* %N %P %C 
Hoff1 Shallow marsh Cool grasses 1.36 0.29 42.0 
Hoff1 Shallow marsh Forbs & shrubs 1.56 0.39 42.5 
Hoff1 Shallow marsh Sedges & rushes 1.32 0.24 40.6 
Hoff1 Upland Cool grasses 1.37 0.23 42.2 
Hoff1 Upland Forbs & shrubs 1.22 0.36 37.3 
Hoff1 Wet meadow Cattails 1.42 0.09 43.9 
Hoff1 Wet meadow Cool grasses 1.09 0.21 42.0 
Hoff1 Wet meadow Forbs & shrubs 1.70 0.36 39.2 
Hoff2 Shallow marsh Cattails 1.15 0.19 43.7 
Hoff2 Shallow marsh Cool grasses 1.29 0.32 41.3 
Hoff2 Shallow marsh Forbs & shrubs 1.74 0.42 42.8 
Hoff2 Shallow marsh Sedges & rushes 1.07 0.28 31.4 
Hoff2 Upland Cool grasses 0.91 0.24 41.6 
Hoff2 Upland Forbs & shrubs 1.26 0.26 37.0 
Hoff2 Upland Warm grasses 0.87 0.23 42.1 
Hoff2 Wet meadow Cool grasses 0.94 0.17 42.1 
Hoff2 Wet meadow Forbs & shrubs 1.90 0.27 43.4 
Hoff5 Shallow marsh Cattails 0.81 0.14 44.8 
Hoff5 Shallow marsh Cool grasses 1.15 0.32 41.5 
Hoff5 Shallow marsh Forbs & shrubs 1.25 0.37 42.2 
Hoff5 Shallow marsh Sedges & rushes 1.13 0.22 41.1 
Hoff5 Upland Cool grasses 1.05 0.17 41.5 
Hoff5 Upland Forbs & shrubs 1.07 0.22 41.0 
Hoff5 Upland Warm grasses 1.00 0.27 43.0 
Hoff5 Wet meadow Cool grasses 1.28 0.32 39.8 
Hoff5 Wet meadow Forbs & shrubs 1.47 0.38 38.4 
Hoff5 Wet meadow Sedges & rushes 1.25 0.21 41.7 
CW47 Shallow marsh Sedges & rushes 1.54 0.28 40.1 
CW47 Upland Cool grasses 0.84 0.17 40.4 
CW47 Upland Warm grasses 1.65 0.27 42.7 
CW47 Wet meadow Cool grasses 1.22 0.12 43.9 
CW47 Wet meadow Forbs & shrubs 1.83 0.27 42.0 
CW47 Wet meadow Sedges & rushes 1.14 0.21 40.5 
CW47 Wet meadow Warm grasses 2.29 0.23 42.9 
CW48 Shallow marsh Sedges & rushes 1.94 0.43 40.2 
CW48 Upland Cool grasses 1.07 0.23 40.6 
CW48 Upland Forbs & shrubs 1.92 0.28 43.4 
CW48 Wet meadow Cool grasses 1.38 0.17 42.2 
CW48 Wet meadow Forbs & shrubs 1.95 0.26 38.4 
CW57 Shallow marsh Cattails 1.31 0.21 42.5 
CW57 Shallow marsh Sedges & rushes 1.24 0.18 42.1 
CW57 Upland Cool grasses 0.76 0.14 41.7 
CW57 Upland Forbs & shrubs 2.20 0.28 45.3 
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Site Landscape Position Plant Type* %N %P %C 
CW57 Upland Warm grasses 1.68 0.27 42.1 
CW57 Wet meadow Cool grasses 1.08 0.14 44.8 
CW57 Wet meadow Sedges & rushes 1.49 0.29 40.7 
CW58 Shallow marsh Cattails 1.58 0.24 43.7 
CW58 Shallow marsh Sedges & rushes 1.92 0.32 39.3 
CW58 Upland Cool grasses 0.87 0.13 41.4 
CW58 Upland Forbs & shrubs 2.15 0.28 45.2 
CW58 Upland Warm grasses 1.44 0.19 42.7 
CW58 Wet meadow Cool grasses 0.75 0.16 42.6 
CW58 Wet meadow Sedges & rushes 1.34 0.25 41.6 
CW61 Shallow marsh Cool grasses 0.98 0.15 43.6 
CW61 Shallow marsh Forbs & shrubs 1.99 0.26 43.0 
CW61 Shallow marsh Warm grasses 1.72 0.26 42.8 
CW61 Upland Cool grasses 0.87 0.12 42.0 
CW61 Upland Warm grasses 1.49 0.20 41.9 
CW61 Wet meadow Cool grasses 1.04 0.13 42.1 
CW61 Wet meadow Warm grasses 1.44 0.19 42.2 
CW62 Shallow marsh Cool grasses 0.92 0.14 42.5 
CW62 Shallow marsh Forbs & shrubs 2.80 0.33 44.3 
CW62 Shallow marsh Warm grasses 1.34 0.17 43.2 
CW62 Upland Cool grasses 0.79 0.10 41.1 
CW62 Upland Warm grasses 1.11 0.17 42.8 
CW62 Wet meadow Cool grasses 1.17 0.15 43.3 
CW62 Wet meadow Forbs & shrubs 2.15 0.23 44.6 
CW62 Wet meadow Warm grasses 1.59 0.24 43.0 
CW63 Shallow marsh Cattails 1.23 0.30 43.8 
CW63 Shallow marsh Sedges & rushes 1.38 0.32 42.2 
CW63 Upland Cool grasses 1.08 0.10 42.4 
CW63 Upland Warm grasses 1.50 0.16 42.4 
CW63 Wet meadow Cattails 1.13 0.29 43.2 
CW63 Wet meadow Cool grasses 1.18 0.22 42.4 
CW63 Wet meadow Forbs & shrubs 1.99 0.36 40.8 
CW63 Wet meadow Sedges & rushes 1.51 0.21 41.6 
CW64 Shallow marsh Cattails 1.32 0.27 42.7 
CW64 Shallow marsh Cool grasses 1.45 0.21 44.3 
CW64 Shallow marsh Forbs & shrubs 2.65 0.43 38.9 
CW64 Shallow marsh Sedges & rushes 0.72 0.30 23.0 
CW64 Upland Cool grasses 1.00 0.10 41.5 
CW64 Upland Warm grasses 1.30 0.15 43.3 
CW64 Wet meadow Cool grasses 1.10 0.10 44.0 
CW64 Wet meadow Forbs & shrubs 2.02 0.23 38.2 
CW64 Wet meadow Sedges & rushes 1.34 0.12 42.8 
CW65 Shallow marsh Cattails 1.79 0.28 41.2 
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Site Landscape Position Plant Type* %N %P %C 
CW65 Shallow marsh Forbs & shrubs 2.21 0.22 36.6 
CW65 Shallow marsh Sedges & rushes 1.60 0.14 41.7 
CW65 Upland Cool grasses 1.14 0.08 41.7 
CW65 Upland Warm grasses 1.72 0.16 43.3 
CW65 Wet meadow Cool grasses 1.00 0.09 44.1 
CW65 Wet meadow Forbs & shrubs 3.13 0.19 43.4 
CW65 Wet meadow Sedges & rushes 1.34 0.13 43.5 
CW65 Wet meadow Warm grasses 1.56 0.11 38.3 
CW66 Shallow marsh Cattails 1.18 0.12 45.6 
CW66 Shallow marsh Sedges & rushes 1.95 0.10 41.8 
CW66 Upland Cool grasses 0.90 0.12 44.0 
CW66 Wet meadow Cool grasses 1.63 0.15 47.4 
CW66 Wet meadow Sedges & rushes 1.46 0.13 43.2 

*Cool grasses = cool season grasses and Warm grasses = warm season grasses  
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APPENDIX I.  INDEX OF PLANT COMMUNITY INTEGRITY (IPCI), FLORISTIC 

QUALITY INDEX (FQI), AND NORTH DATKOTA RAPID ASSESSMENT 

(NDRAM) SCORES FOR THE 2012 WETLAND SITES 

Wetland IPCI Score IPCI Condition 
Category FQI Score NDRAM 

Score 
NDRAM Condition 

Category 
Nik1 40 Fair 19.50 52 Fair low 
Nik3 43 Fair 20.57 45 Fair low 
Nik4 34 Poor 17.36 45 Fair low 
Nik5 43 Fair 19.39 54 Fair high 
Nik6 30 Poor 17.35 54 Fair high 
Hoff1 70 Good 24.72 52 Fair low 
Hoff2 66 Good 23.37 54 Fair high 
Hoff5 69 Good 26.60 52 Fair low 
CW47  51 Fair 16.52 61 Fair high 
CW48 44 Fair 21.38 61 Fair high 
CW57 49 Fair 21.06 64 Fair high 
CW58 52 Fair 22.98 64 Fair high 
CW61 48 Fair 19.87 60 Fair high 
CW62 41 Fair 19.02 60 Fair high 
CW63 72 Good 24.34 61 Fair high 
CW64  73 Good 24.38 63 Fair high 
CW65 52 Fair 20.59 61 Fair high 
CW66 45 Fair 20.06 63 Fair high 
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APPENDIX J.  HYDROGEOMORPHIC (HGM) MODEL SCORES FOR THE 2012 

WETLAND SITES 

Wetland Water 
Storage 

Groundwater 
Recharge 

Retain 
Particulates 

Remove, 
Convert, and 

Sequester 
Dissolved 
Substances 

Plant 
Community 
Resilience 
and Carbon 

Cycling 

Provide 
Faunal 
Habitat 

Provide 
Faunal 
Habitat 

(Alternate 
Formula) 

Nik1 0.97 0.83 0.94 0.95 0.92 0.91 0.88 
Nik3 0.95 0.75 0.90 0.91 0.89 0.85 0.88 
Nik4 0.91 0.84 0.86 0.88 0.87 0.83 0.85 
Nik5 0.97 0.76 0.94 0.96 0.93 0.90 0.91 
Nik6 0.97 0.79 0.94 0.95 0.92 0.88 0.89 
Hoff1 0.97 0.81 0.98 0.98 0.98 0.94 0.97 
Hoff2 0.97 0.82 0.95 0.96 0.94 0.88 0.93 
Hoff5 0.97 0.86 0.96 0.95 0.93 0.92 0.92 
CW47  0.97 0.86 0.95 0.94 0.92 0.90 0.90 
CW48 0.97 0.80 0.94 0.92 0.89 0.87 0.88 
CW57 0.94 0.77 0.96 0.95 0.95 0.92 0.91 
CW58 0.94 0.79 0.93 0.93 0.91 0.88 0.86 
CW61 0.97 0.80 0.95 0.96 0.94 0.91 0.91 
CW62 0.97 0.82 0.96 0.97 0.95 0.91 0.91 
CW63 0.97 0.75 0.95 0.96 0.94 0.91 0.90 
CW64  0.97 0.80 0.96 0.96 0.95 0.93 0.91 
CW65 0.97 0.78 0.94 0.94 0.91 0.88 0.87 
CW66 0.97 0.84 0.94 0.94 0.91 0.89 0.87 

 


