A Dissertation
Submitted to the Graduate Faculty of the
North Dakota State University
of Agriculture and Applied Science

By
Tonette Pacho Laude

In Partial Fulfillment
for the Degree of
DOCTOR OF PHILOSOPHY

Major Department:
Plant Sciences

May 2013

Fargo, North Dakota

North Dakota State University Graduate School

Title
QUANTITATIVE GENETIC ANALYSIS OF 16 MAIZE POPULATIONS
ADAPTED TO THE NORTHERN U.S. CORN BELT
By
TONETTE PACHO LAUDE

The Supervisory Committee certifies that this disquisition complies with North Dakota State University's regulations and meets the accepted standards for the degree of

DOCTOR OF PHILOSOPHY

SUPERVISORY COMMITTEE:

Marcelo J. Carena
Chair
James J. Hammond
Senay Simsek
Thomas I. Wahl

Approved:
May 24, 2013
Richard D. Horsley
Date
Department Chair

Abstract

Genetic diversity is essential for genome sequencing and a key contributor to increase frequency of favorable alleles for maize improvement. The objectives of this study were to determine the genetic components, assess the genetic diversity, and propose the heterotic grouping of a large sample of short-season maize populations based on multiple traits. Sixteen maize populations were included in a diallel mating design that followed Gardner-Eberhart Analysis (GEAN) II to estimate variety $\left(v_{i}\right)$ and heterosis $\left(h_{i j}\right)$ genetic effects. The general combining ability $\left(g_{i}\right)$ estimates were also determined and used to classify the populations based on their genetic diversity. Data were generated in partially balanced single lattice experiments across North Dakota (ND) locations in 2010, 2011, and 2012. Combined analyses of variance showed significant differences among genotypes. Heterosis effects explained the most among diallel entries sum of squares for grain yield, while v_{i} effects had greater influence on grain quality traits. The g_{i} effects agreed with the genetic effect that had larger contribution to the total among diallel entries sum of squares for various traits. Three groups were formed based on the genetic distances (GD) of the g_{i} estimates. Four heterotic groups were established based on $s_{i j}$ estimates for grain yield. Close correspondence was observed between the groups formed using GD and $s_{i j}$. The heterotic grouping among populations agreed with their genetic background information and heterotic group's specific and general combining ability (HSGCA) estimates. The EARLYGEM 21 populations having exotic background were assigned to a unique heterotic group. The heterotic groups established among these populations will increase breeding efficiency to improve and develop genetically broad-based populations. Inter-population recurrent selection programs can be employed for population crosses with high grain yield and above average grain quality formed by parental populations belonging to different heterotic

groups. Intra-population recurrent selection programs can also be established for the parental populations identified with desirable grain quality traits. These populations will serve as unique germplasm sources of short-season diverse inbred lines to produce the next generation of diverse northern U.S. hybrids. New heterotic patterns have been established as a source of new commercially viable single-cross and population hybrids.

ACKNOWLEDGEMENTS

I would like to extend my sincerest gratitude to the following:
Dr. Marcelo J. Carena, my major professor, for his guidance, encouragement, and support throughout my graduate studies. I am also grateful for the financial assistance he extended to me;

Drs. James J. Hammond, Senay Simsek, and Thomas I. Wahl for serving in my graduate committee. Their pieces of advice, comments, and suggestions are very appreciated. I am very grateful for Dr. Hammond who helped me with my statistical analysis;

Duane Wanner, Santosh Sharma, Junyun Yang, Van Mitchell, Md. Abdullah Al Bari, Naiyuan Dong, Michael Johnson, Luke Anderson, and other hourlies in the NDSU Corn Breeding and Genetics research program for assisting me in the field operations, data gathering, and other research related tasks;

The University of the Philippines Doctoral Studies Fund for awarding me with a threeyear scholarship, enabling me to pursue graduate studies abroad;

Dr. Peter S. Guzman for his advice, encouragement, and support;
My relatives and friends for their support and encouragement;
My best friend, Leilani, for her prayers, advice, support, and encouragement;
My mother, Dr. Rita P. Laude, my siblings (Teri, Tiffy and JP, and Terence), and my niece and nephew (Lauren and Anthony) for their prayers, love, support, and encouragement;

My late father, Telesforo M. Laude, who encouraged me to pursue a field in agriculture, and taught me important values in life. He has been a constant inspiration.

To God Almighty for the spiritual enlightenment, strength, blessings, and divine guidance at all times.

TABLE OF CONTENTS

ABSTRACT iii
ACKNOWLEDGEMENTS v
LIST OF TABLES viii
LIST OF FIGURES ix
LIST OF APPENDIX TABLES x
DISSERTATION ORGANIZATION 1
CHAPTER 1. INTRODUCTION 2
Literature Review 5
Maize 5
Grain quality 7
Genetics of quantitative traits 13
References 22
CHAPTER 2. DIALLEL ANALYSIS AMONG 16 MAIZE POPULATIONS ADAPTED TO THE NORTHERN U.S. CORN BELT 32
Abstract 32
Introduction 33
Materials and Methods 36
Plant materials 36
Development of test materials 37
Experimental design 37
Traits studied 38
Statistical analyses 38
Results and Discussion 40
Summary 53
References 55
CHAPTER 3. GENETIC DIVERSITY AND HETEROTIC GROUPING OF 16 MAIZE POPULATIONS ADAPTED TO THE NORTHERN U.S. CORN BELT 58
Abstract 58
Introduction 59
Materials and Methods 62
Genetic materials 62
Experimental design 62
Traits studied 64
Statistical analyses 65
Results and Discussion 67
Summary 82
References 84
CHAPTER 4. GENERAL CONCLUSIONS 88
APPENDIX A. MAIZE POPULATIONS USED IN THE DIALLEL ANALYSIS 91
References 98
APPENDIX B. ADDITIONAL TABLES 100

LIST OF TABLES

$\underline{\text { Table } \quad \text { Page }}$

1. Genes affecting maize kernel storage compounds composition............................. 11
2. Combined analyses of variance (GEAN II) for 16 adapted maize populations in the northern U.S. Corn Belt, their crosses, and checks for grain yield ($\mathrm{Mg} \mathrm{ha}^{-1}$), and percentage of grain quality traits (starch, HFC, HES, oil, protein, lysine, methionine, and cysteine).41
3. Estimates for variety $\left(v_{i}\right)$, variety heterosis $\left(h_{i}\right)$, average heterosis (\bar{h}), and general
combining ability $\left(g_{i}\right)$ effects from GEAN II and mean, maximum, and minimum
values for grain yield and grain quality traits (starch, HFC, HES, oil, protein,
lysine, methionine, and cysteine) for 16-parent diallel in maize. 46
4. Predicted means (above the diagonal) and specific heterosis (below the diagonal) for grain yield ($\mathrm{Mg} \mathrm{ha}^{-1}$) for all maize population crosses 52
5. Summary of parental populations and population crosses with favorable per se performance and genetic estimates for grain yield and grain quality traits 54
6. Origin and reference for 16 maize populations evaluated in 12 northern U.S. Corn Belt environments 63
7. Eigenvectors of the first five principal components (PC 1, PC 2, PC 3, PC 4, and PC 5) axes for 16 maize populations evaluated in 12 northern U.S. Corn Belt environments 69
8. Dissimilarity matrix of the 16 maize populations constructed based on Euclidean distances of the general combining ability estimates for agronomic and grain quality traits 71
9. Mean grain yield ($\mathrm{Mg} \mathrm{ha}^{-1}$) for the 16 parental populations (diagonal), their crosses (above the diagonal), and percentage of high-parent heterosis (below the diagonal) 76
10. Estimates for specific heterosis (above the diagonal) and heterotic group's specificand general combining ability (below the diagonal) for grain yield ($\mathrm{Mg} \mathrm{ha}^{-1}$) forall maize population crosses7811. Correlation between genetic distance (GD) with mean grain yield of the populationcrosses (F_{1}), high-parent heterosis (HPH), specific heterosis ($s_{i j}$), and heteroticgroup's specific and general combining ability (HSGCA) values79

LIST OF FIGURES

Figure

1. North Dakota maize production based on grain harvested and area planted from 1993 to 2012 (NASS, 2013).
2. U.S. maize utilization from 1993 to 2012 (ERS 2013)... 3
3. Mean performance of parents, crosses, checks, and overall maize entries for (a) grain yield, (b) starch, (c) protein, and (d) oil across locations and years....43
4. Proportion of sum of squares due to variety $\left(v_{i}\right)$ and heterosis $\left(h_{i j}\right)$ effects over the total among diallel entries sum of squares for the agronomic traits [grain yield (GY), grain moisture (MSTR), test weight (TWT), stand, stalk lodging (PSL), root lodging (PRL), dropped ears (PDE), days to silking (DS), days to anthesis (DA), ear height (EH), plant height (PH)], and grain quality traits [protein, oil, starch, lysine (LYS), methionine (MET), cysteine (CYS), high fermentable starch (HFC), and high extractable starch (HES)] across environments in the 16-parent maize population diallel.68
5. Dendrogram of genetic relationships among 16 maize populations adapted to the northern U.S. Corn Belt73
6. Dendrogram of genetic relationships among 16 maize populations adapted to the northern U.S. Corn Belt based on specific heterosis estimates for grain yield.

LIST OF APPENDIX TABLES

Table
A1. Populations used in the 16-parent maize diallel mating design and their
improvement methods and genetic backgrounds.. 97
B1. Combined analyses of variance (GEAN II) for 16 adapted maize populations in the northern U.S. Corn Belt, their crosses, and checks for grain moisture $\left(\mathrm{g} \mathrm{kg}^{-1}\right)$, test weight ($\mathrm{kg} \mathrm{hL}^{-1}$), stand (plants ha ${ }^{-1}$), days to silking, days to anthesis, percentage of stalk lodging, root lodging, and dropped ears, ear and plant heights (cm)100

B2. Grain yield $\left(\mathrm{Mg} \mathrm{ha}^{-1}\right)$ adjusted means of 16 maize populations, 120 crosses, and 8
checks across 11 environments 102
B3. Grain moisture ($\mathrm{g} \mathrm{kg}^{-1}$) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments 106
B4. Test weight $\left(\mathrm{kg} \mathrm{hL}^{-1}\right)$ adjusted means of 16 maize populations, 120 crosses, and 8 checks across 10 environments. 110
B5. Stand (plants ha ${ }^{-1}$) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 12 environments 114
B6. Stalk lodging (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 12 environments. 118
B7. Root lodging (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments 122
B8. Dropped ears (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 8 environments 126
B9. Ear height (cm) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments. 130
B10. Plant height (cm) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments 134
B11. Silking and anthesis dates (days) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 5 environments 138
B12. Protein (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments 142
B13. Oil (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments 146
B14. Starch (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments 150
B15. Lysine (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments 154
B16. Methionine (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments 158
B17. Cysteine (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments 162
B18. High fermentable corn starch (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 8 environments 166
B19. High extractable starch (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 8 environments. 170

DISSERTATION ORGANIZATION

This dissertation is divided into four chapters with two chapters, 2 and 3, each comprising one manuscript. Chapter 1 includes general introduction followed by literature review. The literature review includes a general review on maize production and demand in North Dakota, grain quality traits for genetic improvement, and concepts on genetics of quantitative traits with emphasis on pre-breeding, genetic variance components, heterosis and genetic diversity. Chapter 2 examines the genetic components for grain yield and grain quality traits, and provides a preliminary assessment of useful heterotic groups and patterns from a large sample of maize populations adapted to the northern U.S. Corn Belt. Chapter 3 evaluates the genetic diversity of the 16 maize populations to establish heterotic groups among them. The manuscripts were written in journal form and will be submitted for publication. A chapter on general conclusions follows chapter 3. Appendices to the dissertation containing description of the maize populations used in the diallel analysis, analysis of variance for agronomic traits and individual means for all traits across environments follow the general conclusions.

CHAPTER 1. INTRODUCTION

Maize (Zea mays L.) is the principal source of energy in many feed rations. Earlier efforts in maize genetic improvement have been oriented toward high grain yield instead of grain quality. In North Dakota (ND), there has been a significant increase in maize area planted and harvested for the past 20 years according to USDA (NASS 2013). Fig. 1 shows that the area planted for maize in hectares increased by more than three fold since 1993. Consequently, the grain harvested $\left(\mathrm{Mg} \mathrm{ha}^{-1}\right)$ increased by more than four fold in the same period. Improvement in maize genotypes has played an important role in the increase in production.

Fig. 1. North Dakota maize production based on grain harvested and area planted from 1993 to 2012 (NASS, 2013).

Maize has shown a variety of uses. In U.S., maize is primarily utilized for feed, food, seed, industrial use, alcohol for fuel use, and for the export market. Fig. 2 shows the distribution of maize uses for the last 20 years. Large demands for maize are attributed to feed, food, seed,

Fig. 2. U.S. maize utilization from 1993 to 2012 (ERS 2013).
industrial use, and alcohol for fuel. Alcohol produced from maize is mainly ethanol, which is currently in significant demand. In 2012, the ND Corn Growers Association (NDCGA) and ND Corn Utilization Council (NDCUC) reported that the increase in maize production has allowed ND to become one of the faster growing U.S. ethanol producer and exporter sectors (Wilson 2012). In addition, the growth of the ethanol industry has been accompanied by an increase in its by-products that are utilized as protein and energy sources for livestock. In relation to protein quality, normal maize kernel is deficient in essential amino acids (lysine, tryptophan, methionine) that are required to meet the nutritional requirements of monogastric animals and also humans (Scott et al. 2004; Pollak and Scott 2005). Because of the deficiencies in essential amino acids, maize protein is not properly utilized. Synthetic amino acids or other protein sources are supplemented to compensate for these deficiencies, but with additional cost (Pollak
and Scott 2005). Therefore, improvement of grain quality is necessary to address the growing demand for feed, ethanol, and its by-product uses. Selection of maize genotypes with higher levels of starch, protein, oil, and amino acids is a potential strategy to improve maize grain and protein quality.

The maize breeding program of the North Dakota State University (NDSU) has introduced and adapted several genotypes from exotic germplasm. Choice of germplasm and maximization of its genetic improvement are vital in a breeding program (Hallauer and Carena 2009). The use of genetically diverse germplasm pools provides potential sources to increase frequency of favorable alleles for maize improvement. Knowledge on population structure and genetic effects involved in quantitative traits can be determined using mating designs. The diallel mating design has been effective in evaluating parents for their general and specific combining ability (Sprague and Tatum 1942). A fixed set of populations for diallel analyses can provide estimates of genetic components and basis for preliminary assessment of heterotic patterns. Moreover, genetic parameter estimates for quantitative traits in a set of genotypes were used to group genotypes based on their genetic similarities (Hanson and Casas 1968; Camussi et al. 1985). In addition, information on heterosis examines the genetic divergence between genotypes (Camussi et al. 1985, Betran et al. 2003). This information is useful in classifying genotypes to heterotic groups. This provides ease and efficiency in planning crosses for a breeding program. The objectives of this study were to (1) determine the genetic components for grain yield and grain quality traits from a set of populations; and (2) assess the genetic diversity and heterotic grouping of a large sample of maize populations adapted to the northern U.S. Corn Belt based on grain yield, agronomic traits, and grain quality traits (starch, oil, protein, density, lysine, methionine, and cysteine). This study also determined appropriate breeding strategies for the
improvement of elite maize populations as source of new early maturing inbred lines for the northern U.S. Corn Belt.

Literature Review

Maize

Domestication and genetic improvement

Maize is one of the crops highly influenced by man. Maize can be traced back to its nearest relative teosinte (Galinat 1988; Boyer and Hannah 2001; Hallauer and Carena 2009) in southern Mexico (Matsuoka et al. 2002). Based on the calculated genetic distance between modern maize and Balsas teosinte, domestication may have happened about 9,000 years ago. This finding is consistent with the archaeological record that maize domestication happened more than 6,300 years ago (Smith 2001).

Modern maize has greatly improved since its domestication. Selection and intermating of superior individuals were the key activities in breeding. Early cultivation of maize prompted farmers and breeders to use open-pollinated cultivars, since maize is a cross-pollinated crop (Hallauer 1987). Among the open-pollinated cultivars, the Corn Belt Dents dominated the U.S. maize germplasm. This race was a product of crosses between Southern Dents and Northern Flints. Reports suggest that the cross to create Corn Belt Dents happened when Southern Dents were replanted by early Northern Flints due to poor stands (Hallauer 1987; Goodman and Brown 1988). Later, the first inbred lines were developed using landrace open-pollinated cultivars as germplasm sources (Hallauer and Carena 2009). The introduction of the inbred-hybrid concept by Shull (1908) made a huge impact on maize yields in the U.S. and worldwide. In the 1930s, double-cross hybrids were developed. These replaced the use of open-pollinated cultivars in the
U.S. This phenomenon improved maize productivity in terms of higher grain yield, better crop stand, and more uniform maturity as compared with open-pollinated cultivars. In the 1960s, when pest control methods and production techniques became available, single-cross hybrids were used on a commercial scale (Hallauer 1987; Hallauer and Carena 2009). Since then, singlecross hybrids have been extensively used in the U.S. and in other temperate countries worldwide. However, complex hybrids and improved open-pollinated cultivars are still being used in developing countries due to economic constraints and environmental stresses (Hallauer and Carena 2009).

Maize production and demand in ND

The adaptation of maize plants encompasses a wide range of environments, from tropical to temperate ones. North Dakota is characterized to have short-growing environments. The maize growth and production in ND are specifically influenced by temperature, rainfall, and radiation (Ransom et al. 2004). Despite these challenging climatic conditions, maize production has significantly increased over the years (Fig. 1). Area planted for maize has increased by 362% during the past 20 years. In addition, productivity (grain yield in $\mathrm{Mg} \mathrm{ha}^{-1}$) has increased by 457% in the past 20 years, with an average of $7.38 \mathrm{Mg} \mathrm{ha}^{-1}$ in 2012. The growing interest of ND farmers on maize production is primarily due to the higher profitability of maize over other crops. Ransom et al. (2004) added that the availability of early maturing maize hybrids and more favorable growing environments for maize relative to other cereals also contributed to increase in maize production. At present, the NDSU maize breeding program is the most northern public program in North America (Carena et al. 2009), moving maize north to cooler seasons and west to drier environments. Most of the inbred lines from maize hybrids available to farmers were
developed elsewhere; as a result, industry maize hybrids still have several challenges to adapt to ND environments.

In terms of utilization, majority of maize produced in ND is used for feed and ethanol, with increasing demand in ethanol (Wilson 2012). Fig. 2 shows that feed, food, and ethanol are the major uses of maize in the U.S., and there has been an increasing demand for ethanol in the past 20 years. In addition, as the oil industry is progressing in western ND, more maize is produced for ethanol in the area. Carena (2011) explained that ethanol plants were first established in places where cheap energy sources are available such as coal and oil in western ND. As a consequence to the rapid expansion of the ethanol industry, the production of its byproducts also increased (Klopfenstein et al. 2008). Ethanol by-products such as dried distiller grains with solubles (DDGS) are utilized in the livestock industry as protein and energy sources (Taheripour et al. 2010). Since most of the maize grain produced is used for food, feed, and ethanol, it is necessary to improve grain quality (Scott et al. 2006).

Grain quality

Kernel composition

The maize kernel is basically composed of starch, protein, and oil. Upon its physiological maturity, the grain accumulates 70 to 75% starch, 8 to 10% protein, and 4 to 5% oil (Boyer and Hannah 2001). The primary structures of the kernel are endosperm and embryo. Most of the starch is found on the endosperm, and the embryo contains high amounts of protein and oil. Reports suggested that protein and oil concentrations are negatively correlated with starch (Dado 1999; Scott et al. 2006). The primary carbon source for starch and oil biosynthesis in developing maize kernel is sucrose, and the nitrogen coming from amino acids is used for protein synthesis (Dochlert 1990).

Starch processed from wet-milling of dent maize usually yields 66% starch on a dryweight basis. Other maize types such as waxy and high-amylose maize yield 90% and $60-70 \%$, respectively (White 2001). The basic starch structure consists of two major polymers, the amylose and amylopectin (Liu 2005). Amylose is a linear polymer with anhydroglucose units linked by $\alpha-D-(1 \rightarrow 4)$ bonds and few branching that can occur at carbon 6 position by $\alpha-D-(1 \rightarrow$ 6) glucosidic bonds. On the other hand, amylopectin is a high molecular weight polymer due to anhydroglucose units linked by $\alpha-D-(1 \rightarrow 4)$ bonds with periodic side branches of anhydroglucose units at carbon 6 position by $\alpha-D-(1 \rightarrow 6)$ glucosidic bonds (Nelson and Pan 1995; Fergason 2001; White 2001). Starch synthesis in maize occurs in amyloplasts (Nelson and Pan 1995), and is initiated at the basal endosperm cells during late kernel development. Starch accumulation happens during kernel maturation, which specifically starts at 7 to 10 days after pollination and peaks up at 30 to 35 days after pollination (White 2001). Improvement in starch biosynthesis has a great influence in grain yield, since starch is the principal storage reserve of maize and other cereals. Moreover, starch granule properties also have effects on eating and cooking qualities of maize used for food, and production of industrial polymers (Pollak and Scott 2005; Jeon et al. 2010). On the other hand, fermented starch is converted to ethanol, an important biofuel source. Ethanol from maize can be produced using wet-mill (33\%) or dry-grind (67\%) methods (Bothast and Schlicher 2005; Bothast 2005). Maize hybrids have been developed with high extractable starch (HES) and high fermentable starch content (HFC) for wet-mill and dry-grind ethanol production, respectively (Bothast 2005).

Storage proteins have been classified based on their extraction and solubility. The different classes are albumins (water soluble), globulins (soluble in saline solution), zein or prolamins (soluble in alcohol), and glutenins (alkali soluble) (Shewry et al. 1995; Vasal 2001;

Shewry and Halford 2002). A normal maize endosperm typically has 3\% albumins, 3\% globulins, 60% zein, and 34% glutenins, while protein found in the embryo contains more than 60% albumins and only 5 to 10% zein (Vasal 2001). Zein is the major class of storage protein accumulated in the developing endosperm of maize. However, it is limited in essential amino acids lysine and tryptophan (Larkins et al. 1976; Vasal 2001), which are important amino acids in the diets of monogastric animals. Other limiting essential amino acids in livestock diets are methionine and cysteine. These are usually limiting in legume protein sources (Shewry et al. 1995). The discovery of opaque 2 and floury 2 maize mutants allowed the reduction in zein and increase in non-zein proteins that consequently increased lysine and tryptophan (Mertz et al. 1964; Nelson et al. 1965). Using the traditional backcross method, elite maize genotypes were converted to opaque2. The promotion and commercial acceptance of these genotypes became difficult due to the soft and chalky kernel appearance of opaque2 (Vasal et al. 1984; Vasal 2000). Later, Prasanna et al. (2001) reported that selection for opaque 2 genotypes with modified genetic background was found to be effective in improving the negative attributes of the opaque phenotype. Maize improved for limiting amino acids i.e. lysine and tryptophan is beneficial to livestock industry, since livestock feed can be produced at a lower cost (Pollak and Scott 2005). It is also beneficial to dairy cattle (Dado 1999).

Storage lipids or oil in a normal maize kernel is generally 4% based on seed dry weight (Baud and Lepiniec 2010). On the average, the amount of oil found in the whole kernel is distributed as follows: $>80 \%$ in the embryo, 12% in aleurone, and 5% in endosperm (Lambert 2001). The use of oil is determined by the fatty acid composition (Saoussem et al. 2009). According to Poneleit and Davis (1972), three factors affect the fatty acid distribution and final oil content: 1) the duration of synthesis which vary across maize genotypes. Some inbred lines
accumulated linoleic acid longer than other inbred lines; 2) the time of synthesis. If the fatty acid is accumulated early, it will later be metabolized. Therefore, a decrease in fatty acid content will be observed in later stages of kernel development. Ideally, oil stored in the kernel is later used as energy source for germination, respiration, and other metabolic processes; 3) genotypic variation. Different genotypes vary in time and rate of fatty acid synthesis, affecting the final oil content. Saoussem et al. (2009) also observed genotypic variation among maize kernels with varying amounts of linoleic acid. The Illinois long-term selection for high and low kernel oil and protein concentrations using the Burr's White variety successfully improved grain quality (Wassom et al. 2008). The Illinois High Oil strain (IHO) increased oil concentration from 47 to $193 \mathrm{mg} \mathrm{g}^{-1}$ after 90 cycles of ear-to-row selection, and the Illinois Low Oil strain (ILO) decreased oil concentration to less than $10 \mathrm{mg} \mathrm{g}^{-1}$ after 87 cycles of selection. According to Lambert (2001), high oil maize is utilized for livestock feeds. For the food industry, alteration of maize fatty acid composition provided healthier vegetable oil by selecting for maize genotypes with higher levels of oleic acid and lower levels of saturated fatty acids (Pollak and Scott 2005).

Grain quality improvement

Several maize kernel mutants have been discovered since the early 1900s (Boyer and Hannah 2001). Table 1 provides the list of genes affecting the grain quality of maize and description on their major effects on kernel composition. The long-term selection experiments at the University of Illinois (Wassom et al. 2008) showed successful improvement in oil and protein concentration using the available genetic variation in Burr's White. The IHO strain was allowed to undergo 90 selection cycles to achieve 19.3% oil content. Bletsos and Goulas (1999) used mass selection to improve grain yield and protein concentration for a genetically narrowbased maize population. The experiment was conducted for three cycles, but no measurable

Table 1. Genes affecting maize kernel storage compounds composition ${ }^{\text {a }}$.

Gene	Symbol	Chromosome	Mature kernel phenotype	Major changes in kernel composition ${ }^{\text {b }}$
Carbohydrate				
amylose extender 1	ael	5	tarnished, glassy	increase in amylose and loosely branched polysaccharide
brittle1	bt1	5	collapsed, angular, translucent, brittle	increase in sugar, decrease in starch content
brittle-2	$b t 2$	4	collapsed	increase in sugar, decrease in starch content
dull1	du1	10	tarnished, sometimes shrunken or dented	increase in amylase
miniature seed1	mn1	2	small, slightly defective	none
shrunken1	sh1	9	collapsed with smooth indentation of crown	increase in sugar, decrease in starch content
shrunken-2	sh2	3	collapsed, angular, brittle	increase in sugar, decrease in starch content
shrunken-4	sh4	5	shrunken, floury	increase in sugar, decrease in starch content
soft starch1	h1		soft, opaque	
sugary1	su1	4	wrinkled, translucent	increase in sugar, decrease in starch content
sugary-2	su2	6	glassy, translucent to opaque	increase in sugar, decrease in starch content
waxy1	wxl	9	opaque	$\sim 100 \%$ amylopectin
Protein				
floury1	fl1	2	opaque, soft, floury	general reduction in zein
floury2	$f l 2$	4	opaque, soft	general reduction in zein, altered amino acid content
floury3	fl3	-	opaque, soft	general reduction in zein, and increase in lysine
opaque 1	o1	4	opaque, soft, floury	
opaque2	o2	7	opaque	decrease in the accumulation of 22$\mathrm{kDa} \alpha$-zeins, and altered amino acid content
opaque 5	o5	7	opaque, lighter yellow, not floury	none
opaque 6	o6		crumpled, opaque, floury	general reduction in zein
opaque7	o7	10	opaque, floury	decrease in the accumulation of 22$\mathrm{kDa} \alpha$-zeins, and increase in lysine
defective endospermB30	De-B30	7		general reduction in zein
mucronate1	Mc1		opaque	general reduction in zein, and increase in methionine
Oil				
linoleic acid1	$\ln 1$		normal	lower oleic acid to linoleic acid ratio
${ }^{\text {a }}$ Adapted from Boyer and Hannah (2001) and modifications from Neuffer et al. (1997). ${ }^{\mathrm{b}}$ Information was obtained from Motto et al. (2011), except for linoleic acid1 (Neuffer et al. 1997).				

differences among cycles were observed. More cycles of selection were necessary to observe significant differences. With the advancements in molecular biology, more researchers try to commercially manipulate important genes to improve grain quality by identifying genes that affect composition, development, and structure of the maize kernel focusing on the pathways involved in the biosynthesis of starch, storage proteins, and lipids (Balconi et al. 2007; Motto et al. 2009).

Determination of grain quality

The chemical and physical laboratory analyses to determine grain quality have been routinely used by many laboratories worldwide. However, these analyses are labor intensive and time consuming. Only a limited number of samples can be done in a single run (Montes et al. 2006; Burgers 2009). Breeders require fast, efficient, cost-effective, and non-destructive methods that can handle large number of samples per day. Therefore, an alternative method that can work for breeding purposes is the use of near-infrared spectroscopy (NIRS). This method has been used as early as in the 1960s to determine moisture content from seed extracts. A multivariate calibration approach was used (Hart et al. 1962). In the early 1980s, NIR was first recognized by the American Association of Cereal Chemist (AACC) as an analytical procedure to determine protein content in wheat, as cited by Agelet and Hurburgh (2010). Nowadays, more laboratories are using NIRS due to its accuracy, rapid screening and results, non-destructive nature, and affordability (Burgers 2009; Montes et al. 2006; Berardo et al. 2009). The NIR that passes through a sample can be absorbed, reflected, or transmitted. NIR measurements can be done using transmittance taken at lower wavelengths ($<1,800 \mathrm{~nm}$), and diffuse reflectance measurements at higher wavelengths (1,200 to 2,500 nm) (Agelet and Hurburgh 2010). Moreover, transmittance measurements require fixed pathlength, and reflectance measurements
are more flexible, but are affected by the sample physical characteristics. Whole grain samples of maize can be analyzed using NIRS to predict their moisture, protein, oil, starch, density (Orman and Schumann 1991; Berardo et al. 2009; Montes et al. 2006), and some essential amino acids (Pollak and Scott 2005).

Genetics of quantitative traits

Maize breeding for quantitative traits involves the following phases: pre-breeding, genetic improvement, and development and testing of inbred lines for hybrid use (Hallauer and Carena 2009). Understanding the concepts of pre-breeding, genetic variance components, and genetic diversity and heterosis are necessary to learn more about the germplasm and come up with strategies for genetic improvement.

Pre-breeding

The concept of pre-breeding is gaining more interest to breeders. This allows breeders to increase frequency of favorable alleles from the diverse maize germplasm pools. Pre-breeding involves long-term efforts on germplasm introduction, adaptation, evolution, and improvement for breeding purposes (Hallauer and Carena 2009). Nass and Paterniani (2000) suggested that pre-breeding links germplasm resources and breeding programs. Germplasm used in prebreeding are unadapted materials, which includes exotic, semi-exotic, and even adapted materials not subjected to any type of selection for improvement. Hallauer and Miranda (1988) defined exotics as any germplasm that does not have immediate use unless selected for adaptation in a particular area.

Pre-breeding has been an important concept in the development of single-cross hybrids (Hallauer and Carena 2009). It is useful in generating new base populations and identifying heterotic patterns for hybrid programs (Nass and Pateriani 2000). The use of germplasm
collections allows breeders to create new heterotic patterns between populations for reciprocal recurrent selection, and develop inbred lines and hybrids based on combining ability (Crossa et al. 1990). Moreover, intra-population recurrent selection programs can also be used for populations used for developing superior open-pollinated varieties.

The limited germplasm pool used in the U.S. encouraged the importance of pre-breeding in many breeding programs (Hallauer and Carena 2009). Researchers showed the potential in using exotic germplasm for different breeding goals. RuMing et al. (1998) evaluated the genetic variability in exotic \times adapted maize germplasm for resistance to maize weevil (Sitophilus zeamais). The breeding crosses showed highly significant differences for maize weevil resistance, which were useful in developing maize weevil resistant hybrids or cultivars. Nass and Coors (2003) introgressed Latin American germplasm from the Germplasm Enhancement of Maize (GEM) national program to their adapted silage germplasm. Their results suggest that several GEM breeding crosses showed potential for yield and silage quality improvement. Ng et al. (1997) used 62 exotic lines to evaluate thermal properties of starch. Using differential scanning calorimetry, significant differences among the 62 exotic lines were observed for gelatinization values (i.e. gelatinization onset, range, peak height index, and enthalpy). The existing variation was sufficient enough to be used for further breeding activities. Sharma and Carena (2012) incorporated tropical and temperate elite exotic germplasm to increase the genetic diversity of early maturing maize. They found that exotic incorporations could be useful sources to identify early maturing maize genotypes with better adaptation, yield, drought tolerance, disease resistance, and grain quality.

The NDSU maize breeding program gives strong emphasis on germplasm adaptation to maximize genetic improvement of adapted germplasm, and to develop elite and unique cultivars
(Carena 2011). This breeding program integrates pre-breeding with cultivar development to keep up with the changing climatic patterns and market demands. Maize for ethanol is becoming a popular demand in ND particularly in the western part of the state. Western ND is characterized to have a short-season drought environment. Most of the hybrids available from the industry have been bred elsewhere, and they are late-maturing with below average grain quality, drought and cold tolerance, and rate of dry down (Carena et al. 2009; Carena 2011). Local pre-breeding can provide genetically broad-based cultivars that have adaptive advantages over adverse environments supplementing industry needs for stable cultivars in the northern U.S. Therefore, adapted exotic germplasm can be used to maximize genetic improvement, and provide unique and quality cultivars for ND.

Genetic variance components

Information on genetic variances and heritabilities is essential in all phases of crop improvement (Dudley and Moll 1969). Fisher (1919) first attempted to partition the genetic variance into additive genetic variance, dominance genetic variance and epistatic variance. The total additive genetic variance is described as the sum of the additive genetic variances contributed by individual loci (Dudley and Moll 1969). The additive genetic variance for a single locus can be determined by the gene frequency and average effect of gene substitution. Falconer and Mackay (1996) emphasized that additive genetic variance can also arise from genes with varying levels of dominance or epistasis. The additive variance can also be fixed and used to predict response to selection (Robinson and Comstock 1955). The dominance genetic variance, on the other hand, is the result of within-locus variance after subtracting the additive genetic variance from the total within-locus variance. Unlike additive genetic variance, the dominance genetic variance cannot be fixed because its occurrence, direction and magnitude may be
dependent on the scale used to represent the variable expression of a trait. The epistatic variance may exist when the genotype refers to more than one locus (Falconer and Mackay 1996). This was partitioned into different types based on the possible interactions between additive and dominant genetic variance (Cockerham 1954; Kempthorne 1955). Epistatic variance refers to the non-additive genetic variance among loci, contrary to dominance genetic variance that is due to non-additive genetic variance within a locus (Hallauer and Miranda 1988). Only the additive types of epistasis can be fixed, however it is believed that epistasis plays a role in determining hybrid vigor (Mather and Jinks 1971; Hallauer and Miranda 1988).

Some scientists believe that additive genetic variance is the principal contributor to the total genetic variance in some crops (Robinson and Harvey 1955; Lonnquist 1967; Hallauer 1968; Sprague and Eberhart 1977; Betran and Hallauer 1996; Garay et al. 1996; Lamkey and Edwards 1999; Malik et al. 2004); in flint and dent heterotic groups developed in the 30 years hybrid breeding efforts of the University of Hohenheim (Fischer et al. 2008); in yield among the 18 maize populations (Naspolini Filho et al. 1981); and in the quality protein maize (QPM) inbred lines (Hohls et al. 1996). According to Falconer and Mackay (1996), additive genetic variance is the primary cause of resemblance between relatives, and determinant of the observable genetic properties of populations. In contrast, several researchers suggested that dominance genetic effects were important in the inheritance of yield among six maize inbred lines (Gamble 1962); in BSSS germplasm (Holthaus and Lamkey 1995); and in BSCB1(R)C13 (Wardyn et al. 2007). The increase in dominance genetic effects in BSCB1(R)C13 was speculated to be caused by drift and linkage disequilibrium. The role of epistasis in the expression of quantitative traits, like yield, is not yet conclusive. Eberhart et al. (1966), Chi et al. (1969) and Wright et al. (1971) suggested the minor importance of epistasis to random-mating
populations. However, epistasis showed more influence for quantitative traits like yield (Jinks 1954; Hayman 1957; 1958; Lamkey et al. 1995; Ceballos et al. 1998); in grain yield and its components using 294 recombinant inbred lines from Yuyu22 population (Ma et al. 2007); and in several other quantitative traits in both selected and unselected maize populations (Stuber and Moll 1971). On the other hand, Todorovic et al. (1997) noted the primary importance of dominant and epistatic genetic effects in grain yield of the hybrids studied. Moll et al. (1965), Brncic (1954), and Vetukhiv (1954) suggested that the importance of epistasis becomes more evident with more diverse parents of the crosses.

Estimation of genetic variance components

Appropriate mating and environmental designs are important to estimate the genetic variance components of populations. Diallel analyses have been used to evaluate general and specific combining ability (Sprague and Tatum 1942). The differences of general combining ability (GCA) are attributed to additive variance and additive x additive interactions in the base population, while the differences of specific combining ability (SCA) show the existence of nonadditive genetic variance (Falconer and Mackay 1996). Knowledge of the combining ability of the populations used in a breeding program is important in creating a superior germplasm for developing composite cultivars and their hybrids for direct commercial use, as well as classifying populations into heterotic groups for further improvement.

The two basic approaches of diallel analyses involving homozygous parents are Hayman's (1954) and Griffing's (1956) approaches. The diallel analysis of Hayman (1954) uses a full diallel set consisting of parents, $\mathrm{F}_{1} \mathrm{~S}$ and reciprocals. This approach also follows a fixed model (Model I) in which the parents are considered as the population on which inferences are to be made. Similarly, Kempthorne (1956) used homozygous parents for diallel analysis, and
generated similar results with Hayman's (1954) approach when epistasis is ignored.
Kempthorne's (1956) approach considers a random model (Model II), wherein the parents are assumed to be randomly sampled from a larger population. Griffing's (1956) approach is based on Models I and II, where four methods of diallel analysis are proposed to include: parents, F_{1} 's and reciprocals (Method 1), parents and F_{1} 's only (Method 2), F_{1} 's and reciprocals (Method 3), and F_{1} 's only (Method 4). The choice among the four methods to be used would depend on the type of experimental materials and the breeding objectives.

A model proposed by Gardner and Eberhart (1966) called Gardner-Eberhart Analysis (GEAN) is suitable not only for homozygous parents i.e. inbred lines and pure line cultivars, but also for random mating varieties in Hardy-Weinberg equilibrium. It provides estimates for genetic effects and heterosis. Deviation for the model provides a test for linkage and epistasis. The model aids the breeder in selecting breeding materials, and in designing breeding strategies that will increase the probability of creating better inbred lines or improved cultivars. It can estimate more genetic parameters with additional types of populations. GEAN I requires parents, crosses, and their inbred progenies. It provides information on additive and dominance genetic effects, heterosis and inbreeding depression. The GEAN II is evaluated using parents and their crosses. The variation among all populations is then partitioned into varieties (parents) and midparent heterosis, which is subdivided into average, variety, and specific heterosis. However, additive and dominance genetic effects cannot be estimated separately in GEAN II, since the genetic effects are confounded in the "variety" parameter. For GEAN III, the sources of variation are parents, parents vs. crosses, and crosses (Gardner and Eberhart 1966; Zhang et al. 2005). It provides estimates of variety and GCA effects, the latter of which is estimated similar to Griffing's Method 4, Model 1 (Zhang et al. 2005). In addition, both GEAN II and GEAN III
provide estimates of average heterosis and SCA effects (Gardner and Eberhart 1966; Murray et al. 2003; Zhang et al. 2005).

Several researchers have been successful in the use of GEAN for estimating variety, heterosis, GCA, and SCA effects in variety diallel crosses. Misevic et al. (1989) did a six parent population diallel using GEAN II to determine heterotic patterns among high oil populations and to identify superior high oil populations for use in recurrent selection programs. Variety effects explained most of the among diallel entries sum of squares for oil percentage, grain yield, and moisture. The additive genetic effects seemed to be more important than non-additive in terms of oil percentage due to a low fraction of heterosis effects to the total among diallel entries sum of squares. Araujo and Miranda Filho (2001) observed similar pattern for grain yield. However, Santos et al. (1994) reported greater influence of heterosis effects over variety effects on grain yield using 28-parent diallel. Using GEAN III, Melani and Carena (2005) indicated the predominance of additive gene effects as noted by larger sum of squares observed in GCA than SCA in 10 northern maize populations evaluated for multiple traits. Moreover, Osorno and Carena (2008) studied the genetic relationships among maize populations for grain quality using GEAN III. Their results also revealed the importance of GCA over SCA in most of the traits except for protein and starch contents. Additionally, Jumbo and Carena (2008) also noted larger contribution of GCA compared to SCA effects for most traits evaluated among the diallel entries. They also identified significant maternal and reciprocal effects on ear height. Jampatong et al. (2010) performed a diallel mating design on 10 improved maize populations (incorporated with exotic germplasm) to evaluate their breeding potential for hybrid breeding programs. Highly significant differences due to GCA and SCA effects for yield were observed. Greatest GCA and variety effects were observed on KS23(S)C5 over other populations. Development of crosses
from the population with Suwan1 and its derivatives were recommended for hybrid breeding programs. Diallel studies, therefore, have shown useful information for estimating genetic effects, and for identifying appropriate breeding and selection strategies for future breeding activities.

Heterosis and genetic diversity

Heterosis is the superior performance of offspring compared with their parents. Exploitation of heterosis by breeders contributed to the significant yield increase of crops, especially in maize. Heterotic groups and heterotic patterns generate vital information in hybrid breeding. A heterotic group is defined as a group of related or unrelated genotypes from the same or different populations that display similar combining ability or heterosis when crossed with genotypes from other genetically distinct germplasm groups. Heterotic pattern is based on a cross between known genotypes that expresses high level of heterosis (Melchinger and Gumber 1998; Carena and Hallauer 2001). According to Reif et al. (2005), the performance of a hybrid population increases with the divergence of the parent populations. Hence, when establishing heterotic patterns, the two populations should be composed of genetically distinct germplasm.

Genetic diversity between two populations, on the other hand, refers to the difference in genotypic compositions for the populations. This difference can be brought about by geographical isolation accompanied by favorable genetic drift and selection in different environments. Moll et al. (1962) studied six maize varieties from three geographical regions to determine the relationship of genetic diversity and heterosis in variety crosses. The results of their study indicated that heterosis was greater with increased genetic diversity. However, a later study by Moll et al. (1965) indicated that the direct relationship between heterosis and genetic diversity is only true to a restricted range of genetic divergence. Extremely divergent crosses
resulted in a decrease in heterosis. It was noted that there is an optimum degree of genetic divergence, beyond which crosses may experience incompability such as those caused by cytological irregularities. Similarly, Prasad and Singh (1986) found that higher heterosis for grain yield in maize was observed from crosses with moderate parental diversity than from crosses with extreme parental diversity. Moreover, they emphasized that high per se performance (not only genetic diversity) should also be considered when selecting parents for hybridization.

In maize hybrid breeding, information on the genetic relationship of inbred lines is useful in planning crosses for hybrid and line development, assigning lines to heterotic groups and identifying of inbreds for plant variety protection. Methods used in assessing genetic similarity (or distance) between lines, populations or races, may be based on analysis of pedigree data (Melchinger et al. 1991; Mohammadi and Prasanna 2003), morphological data (Osorno and Carena 2008; Badu-Apraku et al. 2006), genetic parameter estimates (Camussi et al. 1985), heterosis data (Badu-Apraku et al. 2013a; 2013b), biochemical data or molecular marker data (Mohammadi and Prasanna 2003; Melchinger et al. 1991; Betran et al. 2003). The genetic relationships between genotypes can be presented in cluster analysis or principal coordinate analysis. The cluster analysis is commonly used, since it identifies groups that show high internal homogeneity (within groups) and high external heterogeneity (between groups) (Mohammadi and Prasanna 2003). Among the methods for cluster analysis, the UPGMA (Unweighted Paired Group Method using Arithmetic averages) method is the most common, followed by the Ward's minimum variance method (Mohammadi and Prasanna 2003; Padilla et al. 2007; Badu-Apraku et al. 2006). Mohammadi and Prasanna (2003) stated that molecular marker data provide more reliable differentiation of genotypes, since these are less affected by environmental effects. However, when genotypes are to be assigned to heterotic groups, it becomes challenging
(Melchinger and Gumber 1998). Several researchers suggested that field experiments are still needed to validate heterotic relationships among the genotypes that were characterized based on molecular markers (Melchinger and Gumber 1998; Barata and Carena 2006). These experiments are essential in identifying heterotic patterns and/or specific heterotic combinations.

Conventional hybrids are produced from inbred lines through single-cross, three-way cross, or double-cross combinations. Alternatively, heterosis can also be exploited through genetically broad-based germplasm upon hybridization of elite populations to develop population hybrids (Carena 2005; Carena and Wicks 2006). Improved maize germplasm through recurrent selection reduced the mean differences between population hybrids and single-cross hybrids. As a result, population hybrids identified by Carena (2005) were comparable with commercial hybrids for grain yield and agronomic performance. Carena (2007) suggested that extensive testing of population hybrids is an effective approach to further select and improve germplasm resources with high mean performance, useful genetic variability, and excellent combining ability.

References

Agelet LE, Hurburgh CR (2010) A tutorial on near infrared spectroscopy and its calibration. Crit Rev Anal Chem 40:246-260

Araujo PM, Miranda Filho JB (2001) Analysis of diallel cross for the evaluation of maize populations across environments. Crop Breed Appl Biotechnol 1:255-262

Badu-Apraku B, Menkir A, Fakorede MAB, Fontem Lum A, Obeng-Antwi (2006) Multivariate analyses of the genetic diversity of forty-seven Striga resistant tropical early maturing maize inbred lines. Maydica 51:551-559

Badu-Apraku B, Oyekunle M, Akinwale RO, Aderounmu M (2013a) Combining ability and genetic diversity of extra-early white maize inbreds under stress and nonstress environments. Crop Sci 53:9-26

Badu-Apraku B, Oyekunle M, Fakorede MAB, Vroh I, Akinwale RO, Aderounmu M (2013b) Combining ability, heterotic patterns and genetic diversity of extra-early yellow inbreds under contrasting environments. Euphytica. doi:10.1007/s10681-013-0876-4

Balconi C, Hartings H, Lauria M, Pirona R, Rossi V, Motto M (2007) Gene discovery to improve maize grain quality traits. Maydica 52: 357-373

Barata C, Carena MJ (2006) Classification of North Dakota maize inbred lines into heterotic groups based on molecular and testcross data. Euphytica 151:339-349

Baud S, Lepiniec L (2010) Physiological and developmental regulation of seed oil production. Prog Lipid Res 49:235-249

Berardo N, Mazzinelli G, Valoti P, Lagana P, Redaelli R (2009) Characterization of maize germplasm for the chemical composition of the grain. J Agric Food Chem 57:2378-2384

Betran FJ, Hallauer AR (1996) Characterization of interpopulation genetic variability in three hybrid maize populations. J Hered 87:319-328

Betran FJ, Ribaut JM, Beck D, Gonzalez de Leon D (2003) Genetic diversity, specific combining ability, and heterosis in tropical maize under stress and nonstress environments. Crop Sci 43:797-806

Bletsos EA, Goulas CK (1999) Mass selection for improvement of grain yield and protein in a maize population. Crop Sci 39:1302-1305

Bothast RJ (2005) New technologies in biofuel production. Agricultural Outlook Forum, February 24, 2005. http://gisceu.net/PDF/U361.pdf. Accessed 20 April 2013

Bothast RJ, Schlicher MA (2005) Biotechnological processes for conversion of corn into ethanol. Appl Microbiol Biotechnol 67:19-25

Boyer CD, Hannah LC (2001) Kernel mutants of corn. In: Hallauer AR (ed) Specialty corns. CRC Press LLC, Boca Raton, FL, pp 1-32

Brncic D (1954) Heterosis and the integration of the genotype in geographic populations of Drosophila pseudoobscura. Genetics 39:77-88

Burgers AP (2009) Development of rapid methods to determine the quality of corn for ethanol production. MS thesis, Iowa State University

Camussi A, Ottaviano E, Calinski T, Kaczmarek Z (1985) Genetic distances based on quantitative traits. Genetics 111:945-962

Carena MJ (2005) Maize commercial hybrids compared to improved population hybrids for grain yield and agronomic performance. Euphytica 141:201-208

Carena MJ (2007) Maize population hybrids: Successful genetic resources for breeding programs and potential alternatives to single-cross hybrids. Acta Agronomica Hungarica 55:27-36

Carena MJ (2011) Germplasm enhancement for adaptation to climate changes. Crop Breed Appl Biotechnol S1:56-65

Carena MJ, Hallauer AR (2001) Expression of heterosis in Leaming and Midland Corn Belt Dent populations. J Iowa Acad Sci 108:73-78

Carena MJ, Pollak L, Salhuana W, Denuc M (2009) Development of unique and novel lines for early-maturing hybrids: moving GEM germplasm northward and westward. Euphytica 170:87-97

Carena MJ, Wicks ZW (2006) Maize population hybrids: An exploitation of U.S. temperate public genetic diversity in reserve. Maydica 51:201-208

Ceballos H, Pandey S, Narro L, Perez-Velazquez JC (1998) Additive, dominant, and epistatic effects for maize grain yield in acid and non-acid soils. Theor Appl Genet 96:662-668

Chi RK, Eberhart SA, Penny LH (1969) Covariances among relatives in a maize variety (Zea mays L.). Genetics 63:511-520

Cockerham CC (1954) An extension of the concept of partitioning hereditary variance for analysis of covariances among relatives when epistasis is present. Genetics 39:859-882

Crossa J, Taba S, Wellhausen EJ (1990) Heterotic patterns among Mexican races of maize. Crop Sci 30:1182-1190

Dado RG (1999) Nutritional benefits of specialty corn grain hybrids in dairy diets. J Anim Sci 77:197-207

Dochlert DC (1990) Distribution of enzyme activities within the developing maize (Zea mays) kernel in relation to starch, oil and protein accumulation. Physiol Plant 78:560-567

Dudley JW, Moll RH (1969) Interpretation and use of estimates of heritability and genetic variances in plant breeding. Crop Sci 9:257-262

Eberhart SA, Moll RH, Robinson HF, Cockerham CC (1966) Epistatic and other genetic variances in two varieties of maize. Crop Sci 6:275-280

Economic Research Service (2013) Feed grains database. USDA-ERS. http://www.ers.usda.gov /data-products/feed-grains-database/. Accessed 8 February 2013

Falconer DS, Mackay T (1996) Introduction to quantitative genetics, 4th edn. Longman Group Ltd., England

Fergason V (2001) High amylose and waxy corns. In: Hallauer AR (ed) Specialty corns. CRC Press LLC, Boca Raton, FL, pp 63-84

Fischer S, Mohring J, Schon CC, Piepho HP, Klein D, Schipprack W, Utz HF, Melchinger AE, Reif JC (2008) Trends in genetic variance components during 30 years of hybrid maize breeding at the University of Hohenheim. Plant Breed 127:446-451

Fisher RA (1919) The correlation between relatives on the supposition of Mendelian inheritance. Earth Environ Sci Trans R Soc Edinburgh 52:399-433

Galinat WC (1988) The origin of corn. In: Sprague GF, Dudley JW (ed) Corn and corn improvement. ASA, CSSA, and SSSA, Madison, WI, pp 1-32

Gamble EE (1962) Gene effects in corn (Zea mays L.): I. Separation and relative importance of gene effects for yield. Can J Plant Sci 42:339-348

Garay G, Igartua E, Alvarez A (1996) Responses to S1 selection in flint and dent synthetic maize populations. Crop Sci 36:1129-1134

Gardner CO, Eberhart SA (1966) Analysis and interpretation of the variety cross diallel and related populations. Biometrics 22:439-452

Goodman MM, Brown WL (1988) Races of corn. In: Sprague GF, Dudley JW (ed) Corn and corn improvement. ASA, CSSA, and SSSA, Madison, WI, pp 33-80

Griffing B (1956) Concept of general and specific combining ability in relation to diallel crossing systems. Aust J Biol Sci 9:463-493

Hallauer AR (1968) Estimates of genetic variance in Iowa long ear synthetic, Zea mays L. Adv Front Plant Sci 22:147-162

Hallauer AR (1987) Maize. In: Fehr WR (ed) Principles of cultivar development: Crop species. Macmillan Publishing Co., NY, pp 249-294

Hallauer AR, Carena MJ (2009) Maize breeding. In: Carena MJ (ed) Handbook of plant breeding: Cereals. Springer, NY, pp 1-98

Hallauer AR, Miranda J (1988) Quantitative genetics in maize breeding, 2nd edn. Iowa State University Press, Ames, IA

Hanson WD, Casas E (1968) Spatial relationship among eight populations of Zea mays L. utilizing information from a diallel mating design. Biometrics 24:867-880

Hart JR, Norris KH, Golumbic C (1962) Determination of the moisture content of seeds by nearinfrared spectrophotometry of their methanol extracts. Cereal Chem 39:94-99

Hayman BI (1954) The theory and analysis of diallel crosses. Genetics 39:789-809
Hayman BI (1957) Interaction, heterosis and diallel crosses. Genetics 42:336-355
Hayman BI (1958) The separation of epistatic from the additive and dominance variation in generation means. Heredity 12:371-390

Hohls T, Shanalan PE, Clarke GP, Gevers HO (1996) Genetic control of kernel modification found in South African quality protein maize inbreds lines. Euphytica 87:103-109

Holthaus JF, Lamkey KR (1995) Population means and genetic variances in selected and unselected Iowa Stiff Stalk Synthetic maize populations. Crop Sci 35:1581-1589

Jampatong S, Thung-Ngean M, Balla C, Boonrumpun P, Mekarun A, Jompuk C, Kaveeta R (2010) Evaluation of improved maize populations and their diallel crosses for yield. Kasetsart J (Nat Sci) 44:523-528

Jeon JS, Ryoo N, Hahn TR, Walia H, Nakamura Y (2010) Starch biosynthesis in cereal endosperm. Plant Physiol Biochem 48:383-392

Jinks JL (1954) The analysis of continuous variation in a diallel cross of Nicotiana rustica varieties. Genetics 3:767-788

Jumbo MB, Carena MJ (2008) Combining ability, maternal, and reciprocal effects of elite earlymaturing maize population hybrids. Euphytica 162:325-333

Kempthorne O (1955) The theoretical values of correlations between relatives in random mating populations. Genetics 40:153-167

Kempthorne O (1956) The theory of diallel crosses. Genetics 41:451-459
Klopfenstein TJ, Erickson GE, Bremer VR (2008) Use of distillers by-products in the beef cattle feeding industry. J Anim Sci 86:1223-1231

Lambert RJ (2001) High-oil corn hybrids. In: Hallauer AR (ed) Specialty corns. CRC Press LLC, Boca Raton, FL, pp 131-154

Lamkey KR, Edwards JW (1999) Quantitative genetics of heterosis. In: Coors JG, Pandey S (ed) The genetics and exploitation of heterosis in crops. ASA, CSSA, and SSSA, Madison, WI, pp 31-48

Lamkey KR, Schnicker BJ, Melchinger AE (1995) Epistasis in an elite maize hybrid and choice of generation for inbred line development. Crop Sci 35:1272-1281

Larkins BA, Bracker CE, Tsai CY (1976) Storage protein synthesis in maize: Isolation of zeinsynthesizing polyribosomes. Plant Physiol 57:740-745

Liu Q (2005) Understanding starches and their role in foods. In: Cui SW (ed) Food carbohydrates: Chemistry, physical properties, and applications. Taylor \& Francis Group, LLC, Boca Raton, FL, pp 309-356

Lonnquist JH (1967) Genetic variability in maize and indicated procedures for its maximum utilization. Cien Cult 19:135-144

Ma XQ, Tang JH, Teng WT, Yan JB, Meng YJ, Li JS (2007) Epistatic interaction is an important genetic basis of grain yield and its components in maize. Mol Breed 20: 41-51

Malik SI, Malik HN, Minhas NM, Munir M (2004) General and specific combining ability studies in maize diallel crosses. Int J Agric Biol 6: 856-859

Mather K, Jinks JL (1971) Biometrical genetics. The study of continuous variation, 2nd edn. Cornell University Press, Ithaca, NY

Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez GJ, Buckler E, Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci USA 99:6080-6084

Melani MD, Carena MJ (2005) Alternative maize heterotic patterns for the northern Corn Belt. Crop Sci 45:2186-2194

Melchinger AE, Gumber RK (1998) Overview of heterosis and heterotic groups in agronomic crops. In: Lamkey KR, Staub JE (ed) Concepts and breeding of heterosis in crop plants. CSSA Spec Publ 25, CSSA, Madison, WI, pp 29-44

Melchinger AE, Messmer MM, Lee M, Woodman WL, Lamkey KR (1991) Diversity and relationships among U.S. maize inbreds revealed by restriction fragment length polymorphisms. Crop Sci 31:669-678

Mertz ET, Bates LS, Nelson OE (1964) Mutant gene that changes protein composition and increases lysine content of maize endosperm. Science 145:279-280

Misevic D, Maric A, Alexander DE, Dumanovic J, Ratkovic S (1989) Population cross diallel among high oil populations of maize. Crop Sci 29:613-617

Mohammadi SA, Prasanna BM (2003) Analysis of genetic diversity in crop plants - salient statistical tools and considerations. Crop Sci 43:1235-1248

Moll RH, Lonnquist JH, Fortuno JV, Johnson EC (1965) The relationship of heterosis and genetic divergence in maize. Genetics 52:139-144

Moll RH, Salhuana WS, Robinson HF (1962) Heterosis and genetic diversity in variety crosses of maize. Crop Sci. 2:197-198

Montes JM, Utz HF, Schipprack W, Kusterer B, Muminovic J, Paul C, Melchinger AE (2006) Near-infrared spectroscopy on combine harvesters to measure maize grain dry matter content and quality parameters. Plant Breed 125:591-595

Motto M, Balconi C, Hartings H, Lauria M, Rossi V (2009) Improvement of quality- related traits in maize grain: Gene identification and exploitation. Maydica 54:321-342

Motto M, Hartings H, Fracassetti M, Consonni G (2011) Grain quality-related traits in maize: Gene identification and exploitation. Maydica 56:291-314

Murray LW, Ray IM, Dong H, Segovia-Lerma A (2003) Clarification and reevaluation of population-based diallel analyses. Crop Sci 43:1930-1937

Naspolini Filho VI, Gama EEG, Vianna RT, Moro JR (1981) General and specific combining ability for yield in a diallel cross among 18 maize populations (Zea mays L.). Brazil J Genet 4:571-577

Nass LL, Coors JG (2003) Potential of exotic x adapted maize germplasm for silage. Maydica 48:197-206

Nass LL, Paterniani E (2000) Pre-breeding: a link between genetic resources and maize breeding. Scientia Agricola 57:581-587

National Agricultural Statistics Service (2013) Crop state data. USDA-NASS. http://www.nass.usda.gov /Quick_Stats/Lite/result.php. Accessed 8 February 2013

Nelson O, Pan D (1995) Starch synthesis in maize endosperms. Annu Rev Plant Physiol Plant Mol Biol 46:475-496

Nelson OE, Mertz ET, Bates LS (1965) Second mutant gene affecting the amino acid pattern of maize endosperm proteins. Science 150:1469-1470

Neuffer MG, Coe EH, Wessler SR (1997) Mutants of maize. Cold Spring Harbor Lab Press, Plainview, NY

Ng KY, Pollak LM, Duvick SA, White PJ (1997) Thermal properties of starch from 62 exotic maize (Zea mays L.) lines grown in two locations. Cereal Chem 74:837-841

Orman BA, Schumann RA (1991) Comparison of near-infrared spectroscopy calibration methods for the prediction of protein, oil, and starch in maize grain. J Agric Food Chem 39:883-886

Osorno JM, Carena MJ (2008) Creating groups of maize genetic diversity for grain quality: implications for breeding. Maydica 53:131-141

Padilla G, Cartea ME, Ordas A (2007) Comparison of several clustering methods in grouping kale landraces. J Amer Soc Hort Sci 132:387-395

Pollak LM, Scott MP (2005) Breeding for grain quality traits. Maydica 50:247-257
Poneleit CG, Davis DL (1972) Fatty acid composition of oil during maize kernel development. Phytochemistry 11:3421-3426

Prasad SK, Singh TP (1986) Heterosis in relation to genetic divergence in maize (Zea mays L.). Euphytica 35:919-924

Prasanna BM, Vasal SK, Kassahun B, Singh NN (2001) Quality protein maize. Curr Sci 81:1308-1319

Ransom J, Franzen D, Glogoza P, Hellevang K, Hofman V, McMullen M, Zollinger R (2004) Basics of corn production in North Dakota. A-834 (Revised) Ext Serv, North Dakota State University, Fargo

Reif JC, Hallauer AR, Melchinger AE (2005) Heterosis and heterotic patterns in maize. Maydica 50:215-223

Robinson HF, Comstock RE (1955) Analysis of genetic variability in corn with reference to probable effects of selection. Cold Spring Harbor Symp Quant Biol 20:127-136

Robinson HF, Comstock RE, Harvey PH (1955) Genetic variances in open pollinated varieties of corn. Genetics 40:45-60

RuMing LI, Kang MS, Moreno OJ, Pollak LM (1998) Genetic variability in exotic \times adapted maize (Zea mays L.) germplasm for resistance to maize weevil. Plant Genet Resour Newsl 114:22-25

Santos MX, Pacheco CAP, Guimaraes PEO, Gama EEG, Silva AE, Oliveira AC (1994) Diallel among twenty eight varieties of maize. Brazil J Genet 17:277-282

Saoussem H, Sadok B, Habib K, Mayer PM (2009) Fatty acid accumulation in the different fractions of the developing corn kernel. Food Chem 117:432-437

Scott MP, Bhatnagar S, Betran J (2004) Tryptophan and methionine levels in quality protein maize breeding germplasm. Maydica 49:303-311

Scott MP, Edwards JW, Bell CP, Schussler JR, Smith JS (2006) Grain composition and amino acid content in maize cultivars representing 80 years of commercial maize varieties. Maydica 51:417-423

Sharma S, Carena MJ (2012) NDSU EarlyGEM: Incorporating tropical and temperate elite exotic germplasm to increase the genetic diversity of short-season maize. Maydica 57:34-42

Shewry PR, Halford NG (2002) Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot 53:947-958

Shewry PR, Napier JA, Tatham AS (1995) Seed storage proteins: structures and biosynthesis. Plant Cell 7:945-956

Shull GH (1908) The composition of a field of maize. J Hered os-4:296-301
Smith BD (2001) Documenting plant domestication: The consilience of biological and archaeological approaches. Proc Natl Acad Sci USA 98:1324-1326

Sprague GF, Eberhart SA (1977) Corn breeding. In: Sprague GF (ed) Corn and corn improvement. ASA, Madison, WI, pp 305-362

Sprague GF, Tatum LA (1942) General vs. specific combining ability in single crosses of corn. Agron J 34:923-932

Stuber CW, Moll RH (1971) Epistasis in maize (Zea mays L.). II: Comparison of selected with unselected populations. Genetics 67:137-149

Taheripour F, Hertel TW, Tyner WE, Beckman JF, Birur DK (2010) Biofuels and their byproducts: Global economic and environmental implications. Biomass and Bioenergy 34:278289

Todorovic G, Surlan G, Sataric I, Zivanovic T (1997) Genetic effects of heterosis in maize hybrid yields. In: Book of abstracts. The genetics and exploitation of heterosis in crops; An International Symposium. CIMMYT, DF, Mexico

Vasal SK (2000) The quality protein maize story. Food Nutr Bull 21:445-450
Vasal SK (2001) High quality protein corn. In: Hallauer AR (ed) Specialty corns. CRC Press LLC, Boca Raton, FL, pp 85-130

Vasal SK, Villegas E, Tang CY (1984) Recent advances in the development of quality protein maize at the Centro Internacional de Mejoramiento de Maiz y Trigo. In: Cereal grain protein improvement. Int At Energy Agency, Vienna

Vetukhiv M (1954) Integration of the genotype in local populations of three species of Drosophila. Evolution:241-251

Wardyn BM, Edwards JW, Lamkey KR (2007) The genetic structure of a maize population: The role of dominance. Crop Sci 47:467-474

Wassom JJ, Wong JC, Martinez E, King JJ, DeBaene J, Hotchkiss JR, Mikkilineni V, Bohn MO, Rocheford TR (2008) QTL associated with maize kernel oil, protein, and starch concentrations, kernel mass, and grain yield in Illinois High Oil \times B73 backcross-derived lines. Crop Sci 48:243-252

White PJ (2001) Properties of corn starch. In: Hallauer AR (ed) Specialty corns. CRC Press LLC, Boca Raton, FL, pp 33-62

Wilson WW (2012) Northern corn logistics study. In: Annual Report. North Dakota Corn Growers Assoc and North Dakota Corn Utilization Counc, Fargo, pp 13-15

Wright JA, Hallauer AR, Penny LH, Eberhart SA (1971) Estimating genetic variance in maize by use of single and three-way crosses among unselected inbred lines. Crop Sci 11:690-695

Zhang Y, Kang MS, Lamkey KR (2005) DIALLEL-SAS05: A comprehensive program for Griffing's and Gardner-Eberhart analyses. Agron J 97:1097-1106

CHAPTER 2. DIALLEL ANALYSIS AMONG 16 MAIZE POPULATIONS ADAPTED TO THE NORTHERN U.S. CORN BELT

Abstract

Genetically diverse germplasm is needed to increase frequency of favorable alleles of economically important traits in maize improvement. The objectives of this study were to determine the genetic components involved in grain yield and grain quality traits, and provide preliminary assessment of useful heterotic groups and patterns from a large sample of maize populations adapted to the northern U.S. Corn Belt. Sixteen populations were used in diallel mating design following Gardner-Eberhart Analysis (GEAN) II to estimate variety (v_{i}) and heterosis $\left(h_{i j}\right)$ genetic effects for grain yield and grain quality traits. Specific heterosis $\left(s_{i j}\right)$ and predicted means of population crosses for grain yield were used to evaluate the heterotic relationships among the populations. Data for grain yield and grain quality traits were generated in partially balanced single lattice experiments across North Dakota (ND) locations in 2010, 2011, and 2012. Analyses of variance showed significant differences among genotypes. Heterosis effects explained most of the differences among diallel entries for grain yield, while v_{i} effects had greater influence on grain quality traits. NDL, EARLYGEM 21c, NDSCD(FSCS)C2, NDSS, and NDSM(M-FS)C9 were identified as elite populations for grain quality improvement. NDSS x NDBS22(R-T1)C9 and NDBS1011 x EARLYGEM 21c showed high $s_{i j}$ effects for grain yield with good grain quality. NDSS and EARLYGEM 21c represent stiff stalk synthetic (SSS) group, and NDBS1011 fall under non-SSS group. Further studies need to validate the heterotic group of NDBS22(R-T1)C9. Recurrent and pedigree selection programs will be established for selected populations and population crosses to integrate pre-breeding with cultivar development.

Introduction

Pre-breeding allows plant breeders to increase frequency of favorable alleles from genetically diverse germplasm. This concept encompasses germplasm introduction, adaptation, evolution, and improvement for breeding purposes (Hallauer and Carena 2009). The North Dakota State University (NDSU) maize breeding program puts a strong emphasis on germplasm adaptation, germplasm improvement, and development of not only unique cultivars (Carena 2011), but also development of applied breeding methodologies for fast screening of genetically complex traits. Recurrent selection has been one of the most important breeding methodologies used to improve maize populations in order to serve as diverse sources of unique cultivars that meet the growing demands in the northern U.S. Corn Belt. Improved populations from recurrent selection programs are characterized to be heterogeneous and heterozygous in terms of allele frequencies. These make them useful sources to increase the frequency of favorable alleles for developing high yielding cultivars with above average grain quality for the northern U.S. Corn Belt.

Mating designs have been widely used to examine the genetic components of the set of genotypes in terms of the genetic effects involved in quantitative traits. These designs allow screening of large population samples. The diallel analysis for a fixed set of populations can provide estimates for genetic effects and a basis for the preliminary assessment of heterotic groups. The heterotic groups can be assumed based on their combining ability with other populations. Consequently, alternative heterotic patterns among population crosses can also be identified. Gardner and Eberhart (1966) proposed a model to estimate genetic effects from a diallel cross of a fixed set of random-mating populations with arbitrary gene frequencies at all
loci assuming diploid inheritance and no epistasis. The GEAN I is a complete model, which consists of parents, selfed parents, crosses, selfed crosses, and random mated crosses. This analysis gives information on inbreeding depression, heterosis, and additive and dominance genetic effects. A modification of GEAN I was also presented as GEAN II and III, which only include parents and crosses. GEAN II provides estimates for the effects of v_{i} and $h_{i j}$ and its components [average (\bar{h}), variety $\left(h_{i}\right)$, and specific heterosis $\left(s_{i j}\right)$]. Since GEAN II does not include selfing for parents and crosses, additive and dominance genetic effects are confounded in v_{i} effects. GEAN III uses the same set of genotypes as GEAN II, and it provides estimates for general combining ability $\left(g_{i}\right)$ and specific combining ability effects observed in crosses. Estimation of effects for GEAN III is similar to Griffing's method 4, Model I (1956). Relative to GEAN III, the GEAN II provides more information in terms of the number of genetic effects estimated. The overall heterosis is subdivided to \bar{h}, h_{i}, and $s_{i j}$, which provide detailed explanation on the cause of heterosis. These heterosis parameters are attributed to the differences in gene frequencies in parents i and j, and to dominance. As explained by Gardner and Eberhart (1966), the \bar{h} contributed by the parents used in crosses is the difference between the mean performance of all crosses and all parents. The h_{i} is the mean heterosis contributed by parent i in its crosses measured as the deviation from \bar{h}. The $s_{i j}$ is the heterosis observed when parents i and j are mated. Furthermore, genetic effects for GEAN III can be derived from GEAN II. The g_{i} effects are equal to h_{i} and half of the v_{i} effects, and specific combining ability effects are equivalent to $s_{i j}$. Several researchers have used GEAN II for assessing genetic effects for yield (Santos et al. 1994), plant height and earliness (Araujo and Miranda Filho 2001), and oil content (Misevic et al. 1989).

Grain quality is becoming an important concern for maize growers in ND as ethanol plants are planning to pay premiums on high quality maize. In addition to the fact that maize is the primary energy source in many feed rations for livestock, the demand for maize grain has greatly increased due to higher demand for ethanol (Wilson 2012). Ethanol plants have been established in areas where there are cheap energy sources available i.e. coal and oil in western ND (Carena 2011). The growth in the ethanol industry accompanies increased production of dried-distiller grains with solubles, which are utilized by livestock as protein and energy sources (Taheripour et al. 2010; Klopfenstein et al. 2008). Thus, breeding for improved grain quality is desirable to maximize the nutritional and industrial potential of maize, and consequently, provide added value. A normal maize kernel typically has $70-75 \%$ starch, $8-10 \%$ protein, and $4-5 \%$ oil at physiological maturity (Boyer and Hannah 2001). Additionally, the amounts of essential amino acids, lysine, tryptophan, and methionine, are limited in the normal maize kernel (Larkins et al. 1976; Vasal 2001; Pollak and Scott 2005). Lysine, tryptophan, methionine together with cysteine are among the essential amino acids limiting in the diets of monogastric animals (Shewry et al. 1995). Deficiencies in these essential amino acids lead to poor utilization of maize protein.

Pollak and Scott (2005) explained that the deficiencies can be corrected with dietary supplementation using other protein sources or synthetic amino acids, but these supplements require additional cost. Selection of maize genotypes with higher levels of starch, protein, oil, and amino acids is necessary to improve grain and protein quality, at little or no added cost. However, a large and diverse sample of genotypes is needed for initial screening. The genetic diversity available from the populations improved through recurrent selection is a potential source to increase frequency of favorable alleles for grain quality. The objectives of the study were to determine the genetic components for grain yield and grain quality traits, and provide a
preliminary assessment of useful heterotic groups and patterns from a large sample of maize populations adapted to the northern U.S. Corn Belt.

Materials and Methods

Plant materials

The 16 maize populations used in this study have been improved and adapted to ND environmental conditions. Six populations were developed at NDSU [NDBS1011, NDL, NDSS, NDSAB(MER-FS)C15, NDSCD(FS-CS)C2, and NDSM(M-FS)C9]. Even though NDBS1011 was developed at NDSU, the cross was made between two populations of Iowa origin (BS10 and BS11), and was adapted to ND short-seasons. The remaining 10 populations originated from different areas prior to their adaptation and improvement at NDSU. Three populations were from Iowa origin [NDBS11(FR-M)C3, NDBS21(R-T)C9, and NDBS22(R-T1)C9]. One population derived from Ohio, Leaming(S-FS)C6, was adapted to and improved under Iowa conditions prior to adaptation to and improvement under ND conditions. NDBSK(HI-M)C3 was developed at the Nebraska Agricultural Experiment Station and was later improved under Iowa and ND conditions. NDCG(FS)C1 originated from two synthetic populations developed at the University of Guelph, Canada, and later was adapted to and improved under ND. NDSHLC(M-FS)C5 represents a highland tropical maize population from Mexico. This population was adapted to and improved under ND conditions, too. Three populations, EARLYGEM 21a, EARLYGEM 21b, and EARLYGEM 21c, are temperate maize populations created in ND with EarlyGEM lines developed from South American breeding crosses and selected for different traits. These 16 populations were chosen to represent a large part of the diversity present in the NDSU maize
breeding program. Detailed description on the development of each population is presented in Appendix A.

Development of test materials

Each population was increased and intercrossed following the diallel mating design in two breeding nurseries: 1) the 2009 Fargo, ND summer breeding nursery, and 2) the 2010-2011 Salta, Argentina winter breeding nursery. Additional crossing was conducted in the winter nursery because of the 2009 ND cool and wet growing season that led to a small population size to represent each population. Two-paired rows consisting of 30 plants each were grown to obtain seeds for the population cross. The crosses were made by using each male parent to pollinate only one ear shoot. This procedure allowed as many gametes as possible to be represented within the population cross. Used tassels were broken to ensure that these would not be used to cross another ear shoot. The pollinated ears from four rows were harvested, dried, and shelled individually, and balanced bulks were created and kept in cold storage for future experimentation. The procedure was followed for each of the 120 population crosses.

Four rows of 30 plants each were grown to increase the parental populations per se, too. The crossing procedure followed was based on the method described by Melani and Carena (2005). Pollinated ears from the four rows representing each population were harvested, dried, and shelled individually, and balanced bulks were created and kept in cold storage for future experimentation. The procedure was followed for each of the 16 parental populations.

Experimental design

The experiment consisting of 16 parental populations, 120 population crosses and 8 checks (four industry single-cross hybrids and four improved population hybrids) was arranged and randomized in a 12×12 partially balanced lattice design with two replicates across four ND
locations (Larimore, Thompson, Prosper, and Casselton) in 2010, 2011, and 2012. Seeds generated from the 2009 Fargo breeding nursery were used for evaluation in 2010 trials, and seeds from the 2010-2011 Salta breeding nursery were used in 2011 and 2012 trials. Each location by year combination represented one environment; therefore, 12 environments were used to evaluate the experiment. Experimental units consisted of 7 m row plots spaced 0.76 m between rows. Standard cultural management practices for maize trials were followed.

Traits studied

Grain yield data (adjusted to $155 \mathrm{~g} \mathrm{~kg}^{-1}$ grain moisture and expressed in $\mathrm{Mg}_{\mathrm{ha}}{ }^{-1}$) were gathered in all environments except for Casselton in 2011. Plots were machine harvested for all environments. Grain quality traits were determined using 500 g kernel samples from each plot in 11 environments. Concentration of protein, oil, starch, lysine, methionine, and cysteine were measured using a near-infrared spectroscopy (NIRS) grain analyzer (OmegAnalyzer G) to determine quantitatively the relative proportion of each component in maize kernels for all entries. The calibration for OmegAnalyzer G was provided by the Iowa Grain Quality Initiative Lab at the Iowa State University. A second NIRS grain analyzer (FOSS Infratec 1241) was used, in cooperation with Monsanto, to determine extractable starch (HES) and fermentable starch (HFC) in maize kernels for all entries. Data for HES and HFC were obtained from all locations in 2010 and 2012.

Statistical analyses

Analyses of variance (ANOVA) were conducted for all traits within and among environments. Genotypes were considered as fixed effects, and environments and replications were considered as random effects. ANOVA for each environment were performed using SAS version 9.3 PROC MIXED procedure with method=REML (restricted maximum likelihood)
option (SAS Institute Inc. 2010; Littell et al. 2006). Test for homogeneity of error variances was conducted using the $\mathrm{F}_{\text {max }}$ test (Tabachnick and Fidell 2001) before combining data across environments. When the difference in error variances for each trait across environments was less than 10 times of the smallest error variance, then combined analysis for those environments was performed. Least-squares means from each environment were used for combined analyses of variance using PROC GLM procedure from SAS version 9.3 (SAS Institute Inc. 2010). Genetic and environmental effects were partitioned following GEAN II based on the genetic model presented below (Gardner and Eberhart 1966):

$$
Y_{i j}=\mu_{v}+\frac{1}{2}\left(v_{i}+v_{j}\right)+\gamma\left(\bar{h}+h_{i}+h_{j}+s_{i j}\right),
$$

where μ_{v} is the mean of all parental populations, v_{i} is the variety effect, and heterosis $\left(h_{i j}\right)$ effects are partitioned to \bar{h} (average heterosis), h_{i} (variety heterosis), and $s_{i j}$ (specific heterosis). The coefficient, γ, is equal to 0 when $i=j$, and $\gamma=1$ when $i \neq j$. Checks were removed from the data set prior to analysis. Additionally, general combining ability estimate $\left(g_{i}\right)$ defined as the variety effect in crosses was calculated following the formula, $g_{i}=\frac{1}{2} v_{i}+h_{i}$ to determine the performance of parental populations in population crosses (Gardner and Eberhart 1966). The analysis was done using the DIALLEL-SAS05 program developed by Zhang et al. (2005) with modifications to extend the linear matrix for a 16-parent diallel. The Student's t test of significance was used to test the null hypothesis that the estimates for v_{i} and heterosis effects were equal to zero. Predicted population cross mean for grain yield was calculated following the GEAN II model that showed significant sources of variation. Since v_{i}, \bar{h}, h_{i}, and $s_{i j}$ effects were significant sources of variation for grain yield (Table 2), these genetic effects were included in the model to calculate the predicted mean for each population cross. Additionally, other sources of variation due to genotypes (G) and genotype by environment interaction (GxE) such as checks
and 'checks vs. others' and their interactions with environment were also generated. The combined error mean squares were computed by pooling individual environment error mean squares weighted by their corresponding error degrees of freedom.

Results and Discussion

Highly significant differences $(\mathrm{P}<0.01)$ were found in the GxE interaction source of variation for grain yield and grain quality traits (starch, HFC, HES, oil, protein, lysine, methionine, and cysteine) (Table 2). Fig. 3 on the means from each genotypic class (parental populations, population crosses, checks, and overall entries) plotted across location and years for grain yield, starch, oil, and protein showed interaction based on magnitude. The ranks of each genotypic class were similar across traits, but differences in grain yield and starch seem to be more evident across locations and years. For instance, Larimore obtained the highest grain yield in 2011, but had low grain yield in 2010 and 2012 relative to other locations. In general, low grain yield was observed in 2012 due to drought. Similarly, Santos et al. (1994) also found interactions based on magnitude in their diallel study consisting of 28 maize populations. The results were expected since distinct locations, in terms of geographical distance, climate, and soil, were used in the study.

The main effects (genotypes, varieties, heterosis, and checks) had highly significant ($\mathrm{P}<0.01$) differences for all traits (Table 2). The significant differences among genotypes and genotypic classes allow us to discriminate the 16 populations for their genetic effects and performance per se. The mean squares for checks vs. others (parental populations and population crosses) were also highly significant $(\mathrm{P}<0.01)$ for grain yield, starch, HES, oil, protein, methionine, and cysteine, and significant $(\mathrm{P}<0.05)$ for lysine. Our results are in agreement with

Table 2. Combined analyses of variance (GEAN II) for 16 adapted maize populations in the northern U.S. Corn Belt, their crosses, and checks for grain yield $\left(\mathrm{Mg} \mathrm{ha}^{-1}\right)$, and percentage of grain quality traits (starch, HFC, HES, oil, protein, lysine, methionine, and cysteine).

Source of variation	Grain yield		Starch		df	$\begin{gathered} \hline \text { HFC } \\ \hline \text { MS } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { HES } \\ \hline \text { MS } \\ \hline \end{gathered}$	Oil	
	df	MS	Df	MS				df	MS
Environments (E)	10	$163.9^{* *}$	10	$113.1{ }^{\text {** }}$	7	$1719.96{ }^{* *}$	$354.35^{* *}$	10	$9.54 * *$
Genotypes (G)	143	10.6 **	143	3.0 **	143	$1.42{ }^{* *}$	8.12**	143	0.27 **
Variety (v_{i})	15	20.9 **	15	$17.8{ }^{* *}$	15	$9.77^{* *}$	$51.98 * *$	15	1.85**
Heterosis ($h_{i j}$)	120	$4.8{ }^{* *}$	120	$0.2{ }^{* *}$	120	0.46 **	$0.97 * *$	120	$0.05^{* *}$
Average heterosis (\bar{h})	1	281.0************	1	$6.2^{* *}$	1	0.02	$11.49^{* *}$,	0.43***
Variety heterosis (h_{i})	15	2.8**	15	$0.3{ }^{*}$	15	0.20	1.26 **	15	0.07**
Specific heterosis ($s_{i j}$)	104	$2.5{ }^{* *}$	104	$0.2{ }^{*}$	104	$0.50{ }^{* *}$	0.83*************)	104	0.04**
Checks (C)	7	$31.7{ }^{* *}$	7	11.0 **	7	$1.47{ }^{* *}$	$26.51{ }^{* *}$	7	0.65 **
C vs. others	1	353.7**	1	$57.1{ }^{* *}$	1	0.83	82.38**	1	0.79 **
GxE	1422	1.0**	1429	0.2 **	994	0.40 **	0.61 **	1429	0.02**
$v_{i} \mathrm{x}$ E	150	$1.7{ }^{* *}$	150	$0.4^{* *}$	105	$0.43{ }^{*}$	0.92 **	150	0.04**
$h_{i j} \times \mathrm{E}$	1200	0.5	1200	$0.1{ }^{* *}$	840	0.28	0.34	1200	0.01
$\bar{h} \times \mathrm{E}$	10	0.0	10	0.2	7	0.57	$1.37{ }^{* *}$	10	0.02
$h_{i} \mathrm{xE}$	150	0.6	150	0.2 **	105	0.25	0.29	150	0.01
$s_{i j} \times \mathrm{E}$	1040	0.6	1040	$0.1{ }^{*}$	728	0.28	0.33	1040	0.01
CxE	70		70	0.2 ***	49	0.32	$0.69{ }^{* *}$	70	0.02**
C vs. others x E	10	13.3 **	10	0.8 **	7	$1.15{ }^{* *}$	$2.94{ }^{* *}$	10	0.04**
Pooled error	1285	0.6	1306	0.1	888	0.34	0.39	1306	0.01
CV (\%)		21.1		0.6		1.3	1.3		3.1

and ${ }^{* *}$ indicate significance at α level of 0.05 and 0.01 , respectively.

Table 2 (continued). Combined analyses of variance (GEAN II) for 16 adapted maize populations in northern U. S. Corn Belt, their crosses, and checks for grain yield ($\mathrm{Mg} \mathrm{ha}^{-1}$), and percentage of grain quality traits (starch, HFC, HES, oil, protein, lysine, methionine, and cysteine).

Source of variation	Protein		Lysine ${ }^{\text {a }}$		Methionine		Cysteine ${ }^{\text {b }}$	
	df	MS	df	MS	df	MS	df	MS
Environments (E)	10	141.5***********)	10	$741.0{ }^{\text {** }}$	10	$444.2^{* *}$	8	494.4**********)
Genotypes (G)	143	$2.5{ }^{* *}$	143	$6.4 * *$	143	10.0 **	143	$5.2{ }^{* *}$
Variety (v_{i})	15	12.0 **	15	$48.2{ }^{* *}$	15	$52.7{ }^{* *}$	15	$19.9 *$
Heterosis ($h_{i j}$)	120	0.3 **	120	$0.8{ }^{* *}$	120	$1.5 * *$	120	$1.0{ }^{* *}$
Average heterosis (\bar{h})	1	8.6**	1	11.6**	1	$30.7{ }^{* *}$	1	19.1**
Variety heterosis (h_{i})	15	$0.4 * *$	15	$0.9{ }^{*}$	15	$1.9{ }^{* *}$	15	0.7
Specific heterosis ($s_{i j}$)	104	$0.2^{* *}$	104	0.7	104	$1.1{ }^{* *}$	104	$0.9{ }^{* *}$
Checks (C)	7	9.8 **	7	$11.6{ }^{* *}$	7	$32.1{ }^{* *}$	7	21.4**
C vs. others	1	74.3 **	1	15.0 *	1	276.6**	1	$185 .{ }^{* *}$
GxE	1428	$0.2^{* *}$	1429	$0.7{ }^{* *}$	1415	0.9 **	1132	0.6 **
$v_{i} \mathrm{xE}$	150	$0.4 * *$	150	1.0 **	150	$1.4 * *$	120	0.8 **
$h_{i j} \times \mathrm{E}$	1200	$0.1{ }^{* *}$	1200	0.5	1200	$0.6{ }^{*}$	960	0.3
$\bar{h} \times \mathrm{E}$	10	0.1	10	0.2	10	0.4	8	0.2
$h_{i} \times \mathrm{E}$	150	$0.2^{* *}$	150	0.5	150	0.6	120	0.4
$s_{i j} \times \mathrm{E}$	1040	$0.1{ }^{* *}$	1040	0.5	1040	$0.6{ }^{*}$	832	0.3
CxE	70	$0.2^{* *}$	70	0.9 **	69	0.9 **	55	0.5
C vs. others x E	10	0.8 **	10	1.6 **	10	$1.7{ }^{* *}$	8	0.6
Pooled error	1300	0.1	1306	0.5	1235	0.6	1016	0.4
CV (\%)		3.8		2.7		3.9		3.3

[^0]

Fig. 3. Mean performance of parents, crosses, checks, and overall maize entries for (a) grain yield, (b) starch, (c) protein, and (d) oil across locations and years.
researchers who observed similar patterns of significance for same sources of variation for grain yield (Araujo and Miranda Filho 2001; Santos et al. 1994) and oil content (Misevic et al. 1989).

The contribution of v_{i} and $h_{i j}$ effects was assessed from the total sum of squares among diallel entries. The $h_{i j}$ effects for grain yield accounted for 65% of the total among diallel entries sum of squares, as opposed to 35% due to v_{i} effects. These results agree with the proportions found by Santos et al. (1994). In contrast, Araujo and Miranda Filho (2001) and Misevic et al. (1989) found that v_{i} effects were more important than $h_{i j}$ effects for the among diallel entries sum of squares due to grain yield. Within the overall $h_{i j}$ effects, \bar{h} explained 31% of the among diallel entries sum of squares, and $s_{i j}$ and h_{i} explained 29% and 5%, respectively. The larger proportion of the \bar{h} for grain yield explains the superiority of population crosses over parental populations
as shown in Fig. 3a. The predominance of $h_{i j}$ effects over v_{i} effects suggests that the sum of squares due to grain yield among diallel entries is mostly due to non-additive genetic effects. Previous studies suggest that dominance genetic effects were important for the inheritance of grain yield (Gamble 1962; Holthaus and Lamkey 1995; Wardyn et al. 2007). However, this assumption did not agree with studies using similar populations. Melani and Carena (2005) and Jumbo and Carena (2008) suggested that additive genetic effects had large contribution on the sum of squares due to grain yield among diallel entries of a significantly smaller set of genotypes.

The proportion of v_{i} effects to the total among diallel entries sum of squares was higher than $h_{i j}$ effects for all grain quality traits. The v_{i} effects ranged from 71 to 90% of the among diallel entries sum of squares, while $h_{i j}$ effects ranged from 10 to 29%. The largest contribution of v_{i} effects to the among diallel entries sum of squares was due to starch (90%), and the smallest contribution was due to cysteine (71\%). For $h_{i j}$ effects, the largest contribution to the among diallel entries sum of squares was due to cysteine (29\%), and the smallest contribution was 10% for starch. Misevic et al. (1989) also found similar proportions of v_{i} and $h_{i j}$ effects for oil concentration. Since $h_{i j}$ effects were not dominant over v_{i} effects, it can be assumed that additive genetic effects were the most important source of variation explaining grain quality traits. Theoretically, however, additive and dominance genetic effects are confounded by v_{i} effects using GEAN II (Gardner and Eberhart 1966). Previous studies discussed the genetic effects responsible for the differences of some grain quality traits. Wattoo et al. (2009) found that protein and oil contents were controlled by partial dominance with additive gene action. Similarly, Osorno and Carena (2008) suggested that general combining ability effects were more important for oil, however, they also noted that specific combining ability effects were
predominant for protein and starch. Medici et al. (2009) noted the significance of general combining ability over specific combining ability effects for lysine content in their diallel analysis using advanced lines of maize.

The estimates for v_{i}, h_{i}, \bar{h}, and mean of all parental populations for grain yield and grain quality traits are presented in Table 3. The v_{i} effects for grain yield was highest for NDL and NDBSK(HI-M)C3, and lowest for EARLYGEM 21b. Only NDL, NDBSK(HI-M)C3, and NDBS1011 had positive and significant v_{i} effects ($\mathrm{P}<0.05$), while EARLYGEM 21 b and NDSHLC(M-FS)C5 had negative and significant v_{i} effects $(\mathrm{P}<0.05)$. The v_{i} effects agree with the mean grain yield of parental populations. Grain yield for parental populations ranged from 2.1 to $4.6 \mathrm{Mg} \mathrm{ha}^{-1}$, with EARLYGEM 21b having the lowest grain yield and NDBSK(HI-M)C3 the highest. High grain yield for NDL, NDBSK(HI-M)C3, and NDBS1011 can be explained by the choice of germplasm and efforts in recurrent selection. NDL, a Lancaster version created for ND conditions, was developed from 8 elite short-season inbred lines known to have good combining ability for grain yield. NDBSK(HI-M)C3 and NDBS1011 had undergone at least 13 cycles of recurrent selection from their base populations. On the other hand, the low yield for EARLYGEM 21b and NDSHLC(M-FS)C5 may be due to the fact that they largely represent the most exotic germplasm and may need additional improvement. These populations may contain a low frequency of desirable alleles that resulted to low grain yield.

For grain quality traits, the highest v_{i} effects for starch content was observed in NDL $(\mathrm{P}<0.01)$, and the lowest v_{i} effects was observed in NDSS $(\mathrm{P}<0.01)$. EARLYGEM 21c and EARLYGEM 21b also had positive and significant v_{i} effects for starch at $\mathrm{P}<0.01$ and $\mathrm{P}<0.05$, respectively. Significant and negative v_{i} effects were found for NDSS, NDSCD(FS-CS)C2,

Table 3. Estimates for variety $\left(v_{i}\right)$, variety heterosis $\left(h_{i}\right)$, average heterosis (\bar{h}), and general combining ability $\left(g_{i}\right)$ effects from GEAN II and mean, maximum, and minimum values for grain yield and grain quality traits (starch, HFC, HES, oil, protein, lysine,
methionine, and cysteine) for 16-parent diallel in maize.

${ }^{*}$ and ${ }^{* *}$ indicate that the estimates are significantly different from zero at α level of 0.05 and 0.01 , respectively.
${ }^{a}$ Mean, maximum, and minimum values among parental populations.

Table 3 (continued). Estimates for variety $\left(v_{i}\right)$, variety heterosis $\left(h_{i}\right)$, average heterosis (\bar{h}), and general combining ability $\left(g_{i}\right)$ effects from GEAN II and mean, maximum, and minimum values for grain yield and grain quality traits (starch, HFC, HES, oil, protein, lysine, methionine, and cysteine) for 16-parent diallel in maize.

Populations	Protein			Lysine ${ }^{\text {b }}$			Methionine			Cysteine		
	v_{i}	h_{i}	g_{i}									
NDSS	$0.7 *$	0.1	0.5	2.0 **	-0.2	0.8	1.1	0.2	0.8	0.8	0.1	0.5
NDCG(FS)C1	-0.1	0.2	0.1	0.1	0.3	0.3	-0.2	0.4	0.3	-0.2	0.2	0.2
NDL	-0.9 **	0.1	-0.4	-0.3	0.2	0.0	-1.0	0.1	-0.4	-1.2	0.0	-0.6
NDBSK(HI-M)C3	-0.4	0.0	-0.2	-0.4	0.1	0.0	-0.5	0.3	0.0	-0.1	0.2	0.1
NDBS11(FR-M)C3	0.4	-0.1	0.1	0.7	-0.1	0.3	$1.4{ }^{*}$	-0.2	0.5	0.4	-0.0	0.2
NDBS1011	-0.4	0.1	-0.1	-0.7	0.1	-0.2	-0.3	0.2	0.1	0.0	0.1	0.0
Leaming(S-FS)C6	-0.2	-0.2	-0.3	1.3	-0.2	0.5	-0.1	-0.4	-0.4	-0.4	-0.2	-0.5
NDBS22(R-T1)C9	0.5	-0.2	0.1	0.1	-0.0	0.0	0.6	-0.2	0.1	0.9	-0.2	0.2
NDSAB(MER-FS)C15	0.2	-0.1	0.0	1.2	-0.4	0.2	0.5	-0.3	0.0	-0.2	-0.1	-0.2
- $\mathrm{NDSM}(\mathrm{M}-\mathrm{FS}) \mathrm{C} 9$	$0.7{ }^{*}$	0.0	0.4	0.1	0.1	0.1	$1.5 * *$	-0.1	0.7	1.2	-0.2	0.4
$\pm \quad \mathrm{NDBS} 21(\mathrm{R}-\mathrm{T}) \mathrm{C} 9$	0.1	-0.1	0.0	-0.4	-0.0	-0.2	0.3	-0.2	0.0	0.2	-0.1	0.0
NDSCD(FS-CS)C2	0.5	0.1	0.3	$1.5 *$	-0.1	0.7	0.7	0.2	0.6	0.3	0.3	0.5
NDSHLC(M-FS)C5	0.1	0.1	0.1	-0.6	0.1	-0.2	0.5	0.1	0.4	0.6	0.0	0.3
EARLYGEM 21a	-0.3	0.1	-0.1	-1.4	0.0	-0.7	-1.5**	0.2	-0.6	-0.6	-0.0	-0.3
EARLYGEM 21b	-0.3	-0.1	-0.2	-1.4**	-0.0	-0.7	-1.3**	-0.1	-0.8	-0.8	0.0	-0.4
EARLYGEM 21c	-0.6	0.0	-0.3	$-1.8{ }^{*}$	0.0	-0.9	$-1.7{ }^{* *}$	-0.2	-1.0	-0.9	-0.0	-0.5
\bar{h}		-0.23**			-0.27			-0.45**			-0.39^{*}	
Mean		11.53			0.30			0.25			0.24	
Maximum		12.26			0.32			0.27			0.25	
Minimum		10.61			0.28			0.23			0.23	

${ }^{\mathrm{b}}$ The estimates for lysine, methionine, and cysteine were multiplied by 100 .

NDBS11(FR-M)C3, and NDSM(M-FS)C9. Mean starch content (\%) for the parental populations ranged from 68.0 to 70.2%, with NDL and NDSS having the highest and lowest percentages, respectively. Starch is a function of grain yield, which explains the high starch content for NDL. However, for EARLYGEM 21b and EARLYGEM 21c, their exotic background and traits selected may explain their high v_{i} effects for starch only. EARLYGEM 21 b and EARLYGEM 21c have similar genetic background, and EARLYGEM 21b was specifically selected for high test weight.

HFC and HES are important starch components for ethanol production. The v_{i} effects for HFC were not significantly different from zero. The mean HFC (\%) among parental populations ranged from 47.1 to 48.9%, with EARLYGEM 21c and NDBSK(HI-M)C3 having the highest and lowest percentages, respectively. For HES, the three EARLYGEM 21 populations showed positive and highly significant v_{i} effects ($\mathrm{P}<0.01$). In contrast, $\operatorname{NDSM}(\mathrm{M}-\mathrm{FS}) \mathrm{C} 9$ had the lowest v_{i} effects for HES. The mean HES (\%) for parental populations varied from 58.4 to 62.1%, with EARLYGEM 21c and NDSM(M-FS)C9 having the highest and lowest percentages, respectively. Considering the v_{i} effects for starch content and HES, NDL and EARLYGEM 21c can be good candidates to improve starch for ethanol use. Besides, a 3.6% range in HES among populations shows there is enough genetic diversity in these 16 maize populations to make a significant economic impact.

Three parental populations showed significant and positive v_{i} estimates for oil content (Table 3). NDSCD(FS-CS)C2 gave the highest v_{i} effects, followed by NDSHLC(M-FS)C5 and NDBS11(FR-M)C3, while NDL gave lowest v_{i} effects. The mean oil (\%) for parental populations varied from 4.08 to 4.83%, with NDSCD(FS-CS)C2 having the highest and NDL the lowest percentages. The high v_{i} effects and population mean of NDSCD(FS-CS)C2 make it a
good candidate for developing cultivars with high oil content. Negative correlations were observed between oil and starch contents. Parental populations with high oil content had low starch content, and vice versa. Dado (1999) and Scott et al. (2006) reported that oil and protein concentrations were negatively correlated with starch.

NDSS and NDSM(M-FS)C9 showed the highest v_{i} effects for protein content, and NDL had the lowest v_{i} effects. The mean protein (\%) ranged from 10.6 to 12.3%, with NDSS and NDL having the highest and lowest percentages, respectively. Negative correlations between protein and starch contents were also evident. NDSS showed highest protein and lowest starch contents, while NDL showed lowest protein and highest starch contents, which could make an excellent complementation for hybrid and reciprocal recurrent selection programs.

The v_{i} effects for lysine were highest and significant $(\mathrm{P}<0.01)$ for NDSS, and lowest for EARLYGEM 21c (P <0.01). NDSCD(FS-CS)C2 also showed positive and significant v_{i} effects for this trait. The mean lysine (\%) ranged from 0.28 to 0.32%. NDSS showed the highest mean lysine content, while EARLYGEM 21c had the lowest. In terms of methionine content, NDSM(M-FS)C9 showed the highest and significant v_{i} effects ($\mathrm{P}<0.01$), while EARLYGEM 21c had the lowest v_{i} effects and was significantly different from zero $(\mathrm{P}<0.01)$. The mean methionine (\%) ranged from 0.23 to 0.27%, which agrees with v_{i} effects. For cysteine, v_{i} effects were not significantly different from zero. Mean cysteine (\%) among parent populations ranged from 0.23 to 0.25%. Lysine and methionine were negatively correlated with starch. NDSM(MFS)C9 had high lysine and methionine contents, but low starch content. In contrast, EARLYGEM 21c showed high starch content, but low lysine and methionine contents. To improve protein and amino acids for food and feeds, NDSS and NDSM(M-FS)C9 are good candidates.

The \bar{h} effect is the difference between the means of all population crosses and all parental populations. Positive and significant \bar{h} effects (Table 3) were found in grain yield ($\mathrm{P}<0.01$), and starch and oil contents $(\mathrm{P}<0.05)$. The positive estimates indicate that dominance for grain yield, starch and oil contents is towards high value for these traits. This is contrary to the result obtained for oil content by Misevic et al. (1989). Since v_{i} effects had large sum of squares for starch and oil among diallel entries, it is assumed that these traits are controlled by partial dominance with additive gene action. Results for oil content are similar to Wattoo et al. (2009). On the other hand, negative and significant \bar{h} effects were observed for protein, methionine ($\mathrm{P}<0.01$), and cysteine $(\mathrm{P}<0.05)$ contents. The negative estimates for protein, methionine, and cysteine contents suggest that dominance is towards low value for these traits. High extractable starch and lysine contents for \bar{h} effects were not significantly different from zero, although \bar{h} from the ANOVA showed significance for HES and lysine contents.

Only grain yield had h_{i} effects that were significantly different from zero (Table 3). NDBS21(R-T)C9 was the only parental population that showed positive and significant h_{i} effect ($\mathrm{P}<0.01$). NDBS21(R-T)C9 was initially developed through reciprocal recurrent selection and was selected for grain yield, grain moisture, and resistance to root and stalk lodging. Additive and dominance genetic effects are expected to be accumulated in advanced cycles of reciprocal recurrent selection (Comstock et al. 1949). Accumulation of dominance genetic effects may explain the positive h_{i} effect of NDBS21(R-T)C9 for grain yield. Grain quality traits did not show h_{i} effects significantly different from zero, although h_{i} from the ANOVA showed significance for starch, HES, oil, protein, lysine, and methionine contents.

Effects for g_{i} were calculated from the estimates for v_{i} and h_{i} effects. NDBS21(R-T)C9 showed the highest g_{i} effect (Table 3) for grain yield, since it also had the highest h_{i} effect. It also
confirms previous estimations on this population (Melani and Carena, 2005). The predominance of $h_{i j}$ over v_{i} effects in the total sum squares among the diallel entries for grain yield explained the agreement between h_{i} and g_{i} effects. The trends of parental populations for g_{i} effects were similar with v_{i} effects for all grain quality traits. This agreement is explained by the larger proportion of v_{i} against $h_{i j}$ effects to the total among diallel entries sum of squares for grain quality traits. Similar results were also observed by Misevic et al. (1989) for oil content.

The $s_{i j}$ effects and predicted means for grain yield of the population crosses are presented in Table 4. Predicted means were calculated based on GEAN II model. The predicted population cross means for grain yield ranged from 2.4 to $5.9 \mathrm{Mg} \mathrm{ha}^{-1}$. NDBS21(R-T)C9 x EARLYGEM 21b had the highest grain yield, and EARLYGEM 21a x EARLYGEM 21c had the lowest yield. Two population crosses [NDSS x NDBS22(R-T1)C9 and NDBS1011 x EARLYGEM 21c] showed positive $s_{i j}$ effects and were significantly different from zero ($\mathrm{P}<0.05$), with predicted means of $5.6 \mathrm{Mg}_{\mathrm{ha}}{ }^{-1}$ for both population crosses. NDBS21(R-T)C9 x EARLYGEM 21 b showed also a positive $s_{i j}$ effect, but was not significantly different from zero. On the other hand, three population crosses between EARLYGEM 21 populations (EARLYGEM 21a x EARLYGEM 21b, EARLYGEM 21a x EARLYGEM 21b, and EARLYGEM 21b x EARLYGEM 21c) had negative $s_{i j}$ effects and significantly different from zero ($\mathrm{P}<0.01$), which was expected due to their common origin. This confirms the accuracy of the model.

The $s_{i j}$ and mean cross performance are dependent on the relatedness between populations. This is in agreement with the negative $s_{i j}$ effects and low grain yield of the three EARLYGEM 21 population crosses, which share the same genetic background. The $s_{i j}$ is equivalent to specific combining ability (Gardner and Eberhart 1966). High specific combining ability can be observed from a cross between germplasm belonging to two distinct heterotic

Table 4. Predicted means (above the diagonal) and specific heterosis (below the diagonal) for grain yield ($\mathrm{Mg} \mathrm{ha}^{-1}$) for all maize population crosses.

${ }^{5}$ The following are the parental populations listed in the order: NDSS, NDCG(FS)C1, NDL, NDBSK(HI-M)C3, NDBS11(FR-M)C3, NDBS1011, Leaming(S-FS)C6, NDBS22(R-T1)C9, NDSAB(MER-FS)C15, NDSM(M-FS)C9, NDBS21(R-T)C9, NDSCD(FS-
$\left.{ }_{*}^{C S}\right)$ C2, NDSHLC(M-FS)C5, EARLYGEM 21a, EARLYGEM 21b, and EARLYGEM 21c.

* and ${ }^{* *}$ indicate that the estimates are significantly different from zero at α level of 0.05 and 0.01 , respectively.
groups. The population crosses with high $s_{i j}$ and predicted means for grain yield mostly followed the popular heterotic pattern, BSSS x Lancaster or non-SSS, except for NDSS x NDBS22(RT1)C9. Earlier versions of NDBS21(R-T)C9 belonged to non-SSS (Carena et al. 2008), consequently from the cross between NDBS21(R-T)C9 and EARLYGEM 21b, EARLYGEM 21b may behave like BSSS. Since EARLYGEM 21b and EARLYGEM 21c are genetically related, it seems appropriate to classify EARLYGEM 21c under SSS group. For the cross between NDBS 1011 and EARLYGEM 21c, NDBS1011 may belong to non-SSS, although Carena et al. (2008) suggested that NDBS1011 may belong to an alternative heterotic group. On the other hand, a deviation from the traditional heterotic pattern is observed for NDSS x NDBS22(R-T1)C9. NDSS is a synthetic population composed of germplasm belonging to BSSS, and earlier versions of NDBS22(R-T1)C9 were reported to possibly belong to SSS group (Carena et al. 2008). Melani and Carena (2005) stated that NDBS22(R)C7 has high proportion of non-BSSS in their background. It can be assumed that NDBS22(R-T1)C9 may have behaved as non-SSS when crossed with NDSS, since NDSS was derived from BSSS background. Further studies may need to be conducted to confirm the heterotic group of this particular parental population.

Recurrent selection programs can be established from selected populations and population crosses. Table 5 presents a summary of parental populations and population crosses having favorable mean performance and genetic estimates for grain yield and grain quality traits.

Summary

Sixteen populations were used in a diallel mating design following GEAN II to determine the genetic components and heterotic responses for grain yield and grain quality traits.

Table 5. Summary of parental populations and population crosses with favorable per se performance and genetic estimates for grain yield and grain quality traits.

Populations	Favorable traits
Parental populations	
NDSS	Protein and lysine
NDL	Grain yield and starch
NDBSK(HI-M)C3	Grain yield
NDBS11(FR-M)C3	Oil
NDBS1011	Grain yield
NDSM(M-FS)C9	Protein and methionine
NDBS21(R-T)C9	Grain yield
NDSCD(FS-CS)C2	Oil and lysine
NDSHLC(M-FS)C5	Oil
EARLYGEM 21a	HES
EARLYGEM 21b	Starch and HES
EARLYGEM 21c	Starch and HES
Population crosses	
NDSS x NDBS22(R-T1)C9	Grain yield, protein, lysine, and methionine
NDBS1011 x EARLYGEM 21c	Grain yield, starch, and HES
NDBS21(R-T)C9 x EARLYGEM 21b	Grain yield

The GEAN II was effective in showing the genetic effects that had a large contribution to the total among diallel entries sum of squares for different traits. Heterosis effects had greater influence on the among diallel entries sum of squares for grain yield, while v_{i} effects for grain quality traits. Grain yield, starch, and oil contents accounted for positive and significant \bar{h} effects, suggesting the presence of non-additive effects. The dominance was towards higher mean performance of populations for grain yield, starch, and oil contents. Since v_{i} effects were more dominant than $h_{i j}$ effects for starch and oil contents, these traits could be controlled by partial dominance with additive gene action. On the other hand, protein, methionine, and cysteine contents showed significance for negative \bar{h} effects, suggesting that dominance was in the direction of low mean performance for protein, methionine, and cysteine contents.

Based on the effects of v_{i} and g_{i}, the following populations can be considered as candidates for grain quality improvement: NDL and EARLYGEM 21c for starch, NDSCD(FS-

CS)C2 for oil, and NDSS and NDSM(M-FS)C9 for protein and amino acids. High $s_{i j}$ effects for grain yield were observed between distinct populations. NDSS x NDBS22(R-T1)C9 and NDBS1011 x EARLYGEM 21c can be good candidates as population hybrids with good grain quality traits. Although, NDBS21(R-T)C9 x EARLYGEM 21b showed the highest grain yield, only an average level for grain quality traits was observed (data not shown). NDSS, EARLYGEM 21c, and EARLYGEM 21b can be categorized under SSS group, and NDBS1011 may belong to non-SSS group. Further studies are needed to confirm the heterotic group of NDBS22(R-T1)C9.

Population selection for breeding purposes should consider overall trait performance, genetic estimates and diversity, high population mean, and heterosis observed in crosses. Intrapopulation recurrent selection programs could be established for the parental populations identified with desirable grain quality traits. Inter-population recurrent selection programs can be established for the selected population crosses with high grain yield and favorable grain quality. Recurrent selection programs will integrate pre-breeding with cultivar development by improving populations that will allow the release of the next generation of NDSU maize inbred lines and hybrids.

References

Araujo PM, Miranda Filho JB (2001) Analysis of diallel cross for the evaluation of maize populations across environments. Crop Breed Appl Biotechnol 1:255-262

Boyer CD, Hannah LC (2001) Kernel mutants of corn. In: Hallauer AR (ed) Specialty corns. CRC Press LLC, Boca Raton, FL, pp 1-32

Carena MJ (2011) Germplasm enhancement for adaptation to climate changes. Crop Breed Appl Biotechnol S1:56-65

Carena MJ, Eno C, Wanner DD (2008) Registration of NDBS11(FR-M)C3, NDBS1011, and NDBSK(HI-M)C3 maize germplasm. J Plant Registrations 2:132-136

Comstock RE, Robinson HF, Harvey PH (1949) A breeding procedure designed to make maximum use of both general and specific combining ability. Agron J 41:360-367

Dado RG (1999) Nutritional benefits of specialty corn grain hybrids in dairy diets. J Anim Sci 77:197-207

Gamble EE (1962) Gene effects in corn (Zea mays L.): I. Separation and relative importance of gene effects for yield. Can J Plant Sci 42:339-348

Gardner CO, Eberhart SA (1966) Analysis and interpretation of the variety cross diallel and related populations. Biometrics 22:439-452

Griffing B (1956) Concept of general and specific combining ability in relation to diallel crossing systems. Aust J Biol Sci 9:463-493

Hallauer AR, Carena MJ (2009) Maize breeding. In: Carena MJ (ed) Handbook of Plant Breeding: Cereals, Springer, NY, pp 1-98

Holthaus JF, Lamkey KR (1995) Population means and genetic variances in selected and unselected Iowa Stiff Stalk Synthetic maize populations. Crop Sci 35:1581-1589

Jumbo MB, Carena MJ (2008) Combining ability, maternal, and reciprocal effects of elite earlymaturing maize population hybrids. Euphytica 162:325-333

Klopfenstein TJ, Erickson GE, Bremer VR (2008) Use of distillers by-products in the beef cattle feeding industry. J Anim Sci 86:1223-1231

Larkins BA, Bracker CE, Tsai CY (1976) Storage protein synthesis in maize: Isolation of zeinsynthesizing polyribosomes. Plant Physiol 57:740-745

Littell RC, Milliken GA, Stroup WW, Wolfinger RD, Schabenberger O (2006) SAS for mixed models. $2^{\text {nd }}$ edn. SAS Institute Inc., Cary, NC

Medici LO, Gaziola SA, Varisi VA, Paula JAC, Ferreira RR, Azevedo RA (2009) Diallelic analysis for lysine and oil contents in maize grains. Sci Agric 66:204-209

Melani MD, Carena MJ (2005) Alternative maize heterotic patterns for the northern Corn Belt. Crop Sci 45:2186-2194

Misevic D, Maric A, Alexander DE, Dumanovic J, Ratkovic S (1989) Population cross diallel among high oil populations of maize. Crop Sci 29:613-617

Osorno JM, Carena MJ (2008) Creating groups of maize genetic diversity for grain quality: implications for breeding. Maydica 53:131-141

Pollak LM, Scott MP (2005) Breeding for grain quality traits. Maydica 50:247-257
Santos MX, Pacheco CAP, Guimaraes PEO, Gama EEG, Silva AE, Oliveira AC (1994) Diallel among twenty eight varieties of maize. Brazil J Genet 17:277-282

SAS Institute Inc (2010) SAS/STAT user's guide. 3rd edn. SAS Institute Inc., Cary, NC
Scott MP, Edwards JW, Bell CP, Schussler JR, Smith JS (2006) Grain composition and amino acid content in maize cultivars representing 80 years of commercial maize varieties. Maydica 51:417-423

Shewry, PR, Napier JA, Tatham AS (1995) Seed storage proteins: structures and biosynthesis. Plant Cell 7:945-956

Tabachnick BG, Fidell LS (2001) Computer-Assisted Research Design and Analysis. Allyn \& Bacon, Boston, MA

Taheripour F, Hertel TW, Tyner WE, Beckman JF, Birur DK (2010) Biofuels and their byproducts: Global economic and environmental implications. Biomass and Bioenergy 34:278289

Vasal SK (2001) High quality protein corn. In: Hallauer AR (ed) Specialty corns, CRC Press LLC, Boca Raton, FL, pp 85-130

Wardyn BM, Edwards JW, Lamkey KR (2007) The genetic structure of a maize population: The role of dominance. Crop Sci 47:467-474

Wattoo, FM, Saleem M, Ahsan M, Sajjad M, Ali W (2009) Genetic analysis for yield potential and quality traits in maize (Zea mays L.). American-Eurasian J Agric Environ Sci 6(6):723729

Wilson WW (2012) Northern corn logistics study. In: Annual Report. North Dakota Corn Growers Assoc and North Dakota Corn Utilization Council, Fargo, pp 13-15

Zhang Y, Kang MS, Lamkey KR (2005) DIALLEL-SAS05: A comprehensive program for Griffing's and Gardner-Eberhart analyses. Agron J 97:1097-1106

CHAPTER 3. GENETIC DIVERSITY AND HETEROTIC GROUPING OF 16 MAIZE POPULATIONS ADAPTED TO THE NORTHERN U.S. CORN BELT

Abstract

Understanding the genetic relationships among genetically broad-based populations is a good starting point for breeding programs. These utilize germplasm introduction and adaptation to broaden the genetic resources available for genetic improvement. A diallel of 16 maize populations adapted to the northern U.S. Corn Belt was used to estimate genetic parameters. These were used to assess the genetic diversity of the populations and assign them to heterotic groups. Using the general combining ability $\left(g_{i}\right)$ estimates, 19 agronomic and grain quality traits showed a large contribution on the variability of the first two principal components (PC). All the traits were used to characterize the genetic similarities among the populations. The cluster analysis formed three groups and a singleton based on genetic distances (GD) of g_{i} estimates. The specific heterosis $\left(s_{i j}\right)$ estimates for grain yield were used to assign the 16 populations to heterotic groups, since there was a highly significant correlation between GD and $s_{i j}$. Four heterotic groups were established. There was a good agreement with the groups formed using GD. Generally, the heterotic grouping agreed with genetic background information and heterotic group's specific and general combining ability (HSGCA) estimates. The EARLYGEM 21 populations with exotic background were assigned to a unique heterotic group. They showed high heterosis when crossed with populations from other heterotic groups. The heterotic groupings among the 16 populations validated former heterotic groups, and new heterotic patterns were created. These will increase breeding efficiency to develop new cultivars for the northern U.S. Corn Belt.

Introduction

Genetic diversity is vital in plant breeding. The use of genetically diverse germplasm allows the identification of promising transgressive segregants and the exploration of useful gene combinations for future breeding activities. The genetic diversity of a set of genotypes can be determined by their inherent genetic variability, difference in allele frequencies, presence of heterosis when used in crosses, and their variable response to the environment expressed in the phenotype. Classifying variable genotypes in homogeneous groups based on their genetic relationships and similarities increase the efficiency in planning crosses for a breeding program.

Genetic diversity studies determine the variation among individuals or groups of individuals using a specific method or combination of methods to analyze multivariate datasets (Mohammadi and Prasanna 2003). Diverse datasets have been used to analyze genetic diversity in crop plants, among which are pedigree data, morphological data (Badu-Apraku et al. 2006), genetic parameter estimates (Camussi et al. 1985), heterosis data (Badu-Apraku et al. 2013a; 2013b), biochemical data, and molecular marker data (Melchinger et al. 1991; Betran et al. 2003; Mohammadi and Prasanna 2003). Molecular marker data provide a more reliable differentiation of genotypes (Mohammadi and Prasanna 2003), since these data are less affected by environmental effects. Molecular marker data classified a set of germplasm based on genetic similarities, however Melchinger and Gumber (1998) emphasized that it has been challenging to predict heterotic relationships based on these data. Additionally, researchers agreed that field experiments are still needed to validate groupings of germplasm based on molecular marker data (Melchinger and Gumber 1998; Barata and Carena 2006).

Several methods are available to analyze multivariate datasets. The commonly used methods for genetic diversity studies are cluster analysis, principal component analysis (PCA),
principal coordinate analysis, and multidimensional scaling (Mohammadi and Prasanna 2003). Cluster analysis allows the identification of groups that show high internal homogeneity (within groups) and high external heterogeneity (between groups). Hierarchical clustering methods are usually performed for genetic diversity study in crop plants. Among these, the UPGMA (Unweighted Paired Group Method using Arithmetic averages) method has been the most common for agronomic and morphological data, followed by the Ward's minimum variance method (Mohammadi and Prasanna 2003; Padilla et al. 2007; Badu-Apraku et al. 2006).

Germplasm introduction and adaptation have been common strategies to broaden genetic resources available for breeding purposes. Genetic diversity between populations can be brought about by geographical isolation accompanied with favorable genetic drift and selection in different environments (Moll et al. 1962). Crosses between maize populations from different origins showed heterosis, and greater heterosis was reported from crosses between divergent parents (Moll et al. 1962). Reif et al. (2005) also observed that hybrid performance was higher when parents are genetically diverse. However, the direct relationship between heterosis and genetic diversity is only true to a restricted range of genetic divergence. Extremely divergent crosses resulted in a decrease in heterosis (Moll et al. 1965). Prasad and Singh (1986) also found that greater heterosis for grain yield in maize was observed from crosses with moderate parental diversity over crosses with extreme parental diversity.

Exploitation of heterosis by breeders contributed to the significant yield increase of crops, especially in maize. Heterotic groups and heterotic patterns generate vital information in hybrid breeding. Genotypes belonging to a heterotic group display similar combining ability or heterosis when crossed with other genotypes from genetically distinct germplasm groups. A heterotic pattern is a cross between known genotypes that expresses high levels of heterosis
(Melchinger and Gumber 1998; Carena and Hallauer 2001a). Useful heterotic patterns can, therefore, be established from genetically diverse germplasm. A more strategic breeding plan is to classify genotypes based on heterotic groups. Inbred lines are then often developed from crosses within heterotic groups. Promising hybrids are expected from crosses of inbred lines developed between different heterotic groups.

Extensive information can be generated from diallel studies. These provide useful information to understand the genetic relationships within a set of genotypes. GD from diallel progeny data can be obtained for plant populations (Hanson and Casas 1968; Camussi et al. 1985). Camussi et al. (1985) showed a general method for estimating genetic distances of quantitative traits using a diallel mating design based on Gardner and Eberhart (1966) Analysis (GEAN) II. Their results suggested that variety $\left(v_{i}\right)$ effects reflect the genetic differences shown by the populations in their phenotypes. The heterosis $\left(h_{i j}\right)$ effects provided the basis of genetic divergence between populations, which can be due to differences in allele frequencies between populations. Badu-Apraku et al. (2013a; 2013b) classified inbred lines according to heterotic groups based on combining ability effects and molecular marker data. They used the heterotic group's specific and general combining ability (HSGCA) proposed by Fan et al. (2009). BaduApraku et al. (2013a) found close correspondence between the heterotic groups identified by HSGCA and molecular marker data. On the other hand, Betran et al. (2003) classified tropical maize inbred lines according to their GD measured by molecular marker data, and identified the correlation between the GD, hybrid performance, heterosis, and specific combining ability (SCA). They observed a strong positive correlation between GD and SCA. Genetic parameter estimates from diallel studies have been useful in classifying genotypes into groups according to
their genetic similarities. Grouping of populations into heterotic groups is then based on heterosis.

The objective of this study is to assess the genetic diversity of the 16 maize populations adapted to the northern U.S. Corn Belt and establish heterotic groups among them for future breeding activities.

Materials and Methods

Genetic materials

Sixteen maize populations improved and adapted to North Dakota (ND) environmental conditions were used in a diallel study. The list of the populations is presented in Table 6. The 16 populations were chosen to represent as much genetic diversity that exists in the North Dakota State University (NDSU) maize germplasm. Seeds for population crosses and parental populations were generated from two breeding nurseries: 1) the 2009 Fargo, ND summer breeding nursery, and 2) the 2010-2011 Salta, Argentina winter breeding nursery. Additional seed increase was conducted in the winter nursery due to the 2009 ND cool and wet growing season that led to small population size for each population. The crossing procedure for population crosses and parental populations was described by Laude and Carena (2013).

Experimental design

The experiment consisted of 16 parental populations, 120 population crosses, and 8 checks (four industry single-cross hybrids and four improved population hybrids). The experiment was laid out and randomized in a 12×12 partially balanced lattice design with two replicates across four ND locations (Larimore, Thompson, Prosper, and Casselton) in 2010,

Table 6. Origin and reference for 16 maize populations evaluated in 12 northern U.S. Corn Belt environments.

Population	Origin	Reference
NDSS	North Dakota State Univ.	Carena 2013
NDCG(FS)C1	Univ. of Guelph, Canada	Melani and Carena 2005; Lee et al. 2006; Carena 2013
NDL	North Dakota State Univ.	Carena 2013
NDBSK(HI-M)C3	Nebraska Agric. Exp. Stn.	Carena et al. 2008
NDBS11(FR-M)C3	Iowa State Univ.	Hallauer 1967; Carena et al. 2008
NDBS1011	Iowa State Univ.	Carena et al. 2008
Leaming(S-FS)C6	Iowa State Univ.	Carena and Hallauer 2001b; Melani and Carena 2005; Carena 2013
NDBS22(R-T1)C9	Iowa State Univ.	Hallauer et al. 2000; Laude and Carena 2013
NDSAB(MER-FS)C15	North Dakota State Univ.	Cross 1983; Carena and Wanner 2005
NDSM(M-FS)C9	North Dakota State Univ.	Cross and Wanner 1991; Melani and Carena 2005; Carena 2013
NDBS21(R-T)C9	Iowa State Univ.	Hallauer et al. 2000; Laude and Carena 2013
NDSCD(FS-CS)C2	North Dakota State Univ.	Cross 1982; Cross 1988; Melani and Carena 2005; Sezegen and Carena 2009
NDSHLC(M-FS)C5	CIMMYT, Mexico	Eagles and Lothrop 1994; Eno and Carena 2008; Laude and Carena 2013
EARLYGEM 21a	South America	Carena et al. 2009; Laude and Carena 2013
EARLYGEM 21b	South America	Carena et al. 2009; Laude and Carena 2013
EARLYGEM 21c	South America	Carena et al. 2009; Laude and Carena 2013

2011, and 2012. Seeds generated from the 2009 Fargo breeding nursery were used for evaluation in 2010 trials, and seeds from the 2010-2011 Salta breeding nursery were used in 2011 and 2012 trials. A total of 12 environments (location by year combination) were used for evaluation. Experimental units were single-row plots, each at 7 m long with row spacing of 0.76 m . The
experiment in each environment was planted with 50 seeds, and later was thinned to desired stand. Standard cultural management practices for maize trials were followed.

Traits studied

Agronomic data gathered from all environments were stand (number of plants in each experimental unit before harvest adjusted to number of plants ha^{-1}), and stalk lodging (\%). Grain yield (adjusted to $155 \mathrm{~g} \mathrm{~kg}^{-1}$ grain moisture, expressed in $\mathrm{Mg} \mathrm{ha}^{-1}$), and grain moisture ($\mathrm{g} \mathrm{kg}^{-1}$) were gathered for all locations except at Casselton in 2011, and test weight $\left(\mathrm{kg} \mathrm{hL}^{-1}\right)$ were obtained from all locations except at Casselton in 2011 and 2012. Root lodging (\%), ear and plant heights (cm) were obtained from all locations except at Prosper in 2010, due to severe lodging caused by storms that affected the area. Dropped ears (\%) were not observed in 2010 for all locations, and data were analyzed only for all locations in 2011 and 2012. Days to silking (the number of days from germination to time when 50% of the plants within an experimental unit have emerged their silks) and days to anthesis (the number of days when 50% of the plants within an experimental unit started to shed their pollen) were gathered from Prosper and Casselton for three years, except in 2012 at Casselton. Plots were machine harvested for all environments.

Grain quality traits were determined using 500 g of kernels sampled from each experimental unit in 11 environments. Near-infrared spectroscopy (NIRS) grain analyzer (OmegAnalyzer G) was used to determine the relative concentrations of protein, oil, starch, lysine, methionine, and cysteine in maize kernels for all entries. The calibration for OmegAnalyzer G was provided by the Iowa Grain Quality Initiative Lab at the Iowa State University. A second NIRS grain analyzer (FOSS Infratec 1241) was used to determine extractable starch (HES) and fermentable starch (HFC) in maize kernels for all entries. The

FOSS Infratec 1241 was provided with proprietary calibration in cooperation with Monsanto. Data for HES and HFC were obtained only from all locations in 2010 and 2012.

Statistical analyses

Analyses of variance (ANOVA) were conducted for all traits within and among environments. Genotypes were considered as fixed effects, and environments and replications were considered as random effects. ANOVA for each environment were performed using SAS version 9.3 PROC MIXED procedure with method=REML (restricted maximum likelihood) option (SAS Institute Inc. 2010; Littell et al. 2006). Test for homogeneity of error variances was conducted using the $\mathrm{F}_{\text {max }}$ test (Tabachnick and Fidell 2001) before combining data across environments. Least-squares means from each environment were used for combined analyses of variance using PROC GLM procedure from SAS version 9.3 (SAS Institute Inc. 2010). Genetic and environmental effects were partitioned following GEAN II (Gardner and Eberhart 1966). The genetic model provides estimates for variety $\left(v_{i}\right)$ and heterosis $\left(h_{i j}\right)$ effects. The $h_{i j}$ effects were partitioned to average heterosis (\bar{h}), variety heterosis $\left(h_{i}\right)$, and $s_{i j}$. Checks were removed from the data set prior to analysis. Additionally, g_{i} estimate was calculated following the formula, $g_{i}=\frac{1}{2} v_{i}+h_{i}$ to determine the performance of parental populations in population crosses (Gardner and Eberhart 1966). The analysis was performed using the DIALLEL-SAS05 program developed by Zhang et al. (2005) with modifications to extend the linear matrix for a 16-parent diallel. The v_{i} and $h_{i j}$ effects were tested for significance using the student's t test. In addition, other sources of variation due to genotypes and genotype by environment interaction (GxE) such as checks and 'checks vs. others' and their interactions with environment were also generated. The combined error mean squares were computed by pooling individual environment error mean squares weighted by their corresponding error degrees of freedom.

The estimates of g_{i} effects were used for PCA and cluster analysis. The g_{i} effects were chosen to perform the analysis, since they agreed with the source of variation that explained the most sum of squares in the genetic model (Laude and Carena 2013). The g_{i} estimates for each trait were standardized to general coefficients by taking the observed value and dividing it by the range of that trait (Milligan and Cooper 1988). The PCA was performed on the standardized g_{i} estimates for each trait to determine which group of traits accounted for most of the variation in the dataset. A simple correlation analysis between the PC scores and each trait was conducted to identify the contribution of each trait to the PC axis. For the cluster analysis, the GD between parental populations was calculated from standardized g_{i} estimates as Euclidean distances. This was used to construct a rectangular dissimilarity matrix. The cluster analysis was done using the UPGMA method (Sneath and Sokal 1973). Cophenetic matrix as implied by the dendrogram was computed using ultrametric distance method (Sokal 1986). To determine whether groups created using the cluster analysis represent the relationships observed among the parental populations, the dissimilarity and cophenetic matrices were compared to generate cophenetic correlation coefficient using Mantel statistics (Mantel 1967). The PCA and cluster analysis were performed using NTSYSpc version 2.1 (Rohlf 2000).

Percentage heterosis of population crosses was determined for grain yield. Percentage heterosis based on the high-parent (HPH) was computed using the formula:
$\frac{\left(F_{1}-H P\right)}{H P} \times 100$, where F_{1} refers to the mean grain yield of the population cross and HP is the mean grain yield of the parental population with higher performance.

The HSGCA computation proposed by Fan et al. (2009) was performed for grain yield. The HSCGA combined the g_{i} and SCA estimates, wherein the latter is equivalent to $s_{i j}$. The formula used for this study was $H S G C A=\frac{1}{2}\left(g_{i}+g_{j}\right)+s_{i j}$, where g_{i} is the general combining
ability estimate of the $i^{\text {th }}$ population and $s_{i j}$ is the specific heterosis observed when population i is mated to population j.

Pearson correlation coefficients (r) between GD and grain yield of $\mathrm{F}_{1}, \mathrm{HPH}, s_{i j}$, and HSGCA were computed from means across environments. The statistical computations were performed using SAS version 9.3 (SAS Institute Inc. 2010). Heterotic groups were established by constructing a dendrogram on the heterosis parameter that was highly correlated with GD.

Results and Discussion

The combined analyses of variance showed significant differences among genotypes $(\mathrm{P}<0.01)$ for the genotype by environment interaction (GxE) source of variation in all traits studied except for dropped ears (data not shown). The source of variation due to genotypes was also highly significant $(\mathrm{P}<0.01)$ for all traits. Fig. 4 shows the proportion of sum of squares due to v_{i} and $h_{i j}$ effects over the total among diallel entries sum of squares contributing to the differences of the traits studied. The v_{i} effects contributed most of the among diallel entries sum of squares for grain moisture, test weight, stalk lodging, ear height, plant height, days to silking, days to tasseling, and grain quality traits (protein, oil, starch, lysine, methionine, cysteine, HFC, and HES). The largest proportion of sum of squares due to v_{i} effects was observed for grain moisture having 94%. Heterosis effects contributed most of the among diallel entries sum of squares for grain yield, stand, root lodging, and dropped ears. Largest proportion of sum of squares due to $h_{i j}$ effects was observed for dropped ears followed by grain yield and stand at 79 , 64 , and 63%, respectively. Our results suggest that g_{i} effects agreed with the genetic effect that had larger contribution to the total among diallel entries sum of squares for a particular trait (Laude and Carena 2013). For example, the parental population, NDBS21(R-T)C9, showed the

Fig. 4. Proportion of sum of squares due to variety $\left(v_{i}\right)$ and heterosis $\left(h_{i j}\right)$ effects over the total among diallel entries sum of squares for the agronomic traits [grain yield (GY), grain moisture (MSTR), test weight (TWT), stand, stalk lodging (PSL), root lodging (PRL), dropped ears (PDE), days to silking (DS), days to anthesis (DA), ear height (EH), plant height (PH)], and grain quality traits [protein, oil, starch, lysine (LYS), methionine (MET), cysteine (CYS), high fermentable starch (HFC), and high extractable starch (HES)] across environments in the 16parent maize population diallel.
highest h_{i} effect for grain yield, consequently it also had the highest g_{i} effect. In terms of grain quality traits, parental populations showed similar trends for their v_{i} and g_{i} effects. These results prompted us to use g_{i} effects to estimate GD for all traits to assess the genetic relationships among the parental populations.

The results of PCA suggest that five PC axis described the majority of the variability among the 19 traits studied. The cumulative percent of the variability accounted for by the five PC axis was 88.8% (Table 7). The majority of the variability was explained by PC 1 and PC 2,

Table 7. Eigenvectors of the first five principal components (PC 1, PC 2, PC 3, PC 4, and PC 5) axes for 16 maize populations evaluated in 12 northern U.S. Corn Belt environments.

Trait	PC 1	PC 2	PC 3	PC 4	PC 5
Grain yield	0.04	0.82	0.25	0.33	0.18
Grain moisture	-0.34	0.37	-0.12	-0.76	0.19
Test weight	0.74	-0.28	0.20	0.44	-0.09
Stand	-0.04	0.79	0.38	0.19	0.35
Stalk lodging	0.42	-0.75	-0.18	0.08	-0.07
Root lodging	-0.43	-0.81	-0.22	0.14	-0.03
Dropped ears	-0.67	-0.04	-0.33	0.45	-0.17
Ear height	-0.72	-0.30	-0.47	0.17	0.21
Plant height	-0.82	0.14	-0.26	0.30	0.27
Days to silking	-0.68	0.36	-0.53	-0.12	-0.05
Days to anthesis	-0.52	0.37	-0.63	-0.13	-0.05
Protein	-0.70	-0.42	0.45	-0.19	-0.13
Oil	-0.21	-0.56	0.09	0.16	0.71
Starch	0.82	0.41	-0.37	-0.04	-0.07
Lysine	-0.89	0.10	0.19	0.25	-0.04
Methionine	-0.89	-0.07	0.33	-0.21	-0.07
Cysteine	-0.78	-0.24	0.36	-0.34	-0.11
HFC	0.53	-0.44	-0.09	-0.37	0.42
HES	0.90	-0.08	-0.27	-0.17	0.08
Proportion of variance					
accounted for by PC	41.47	21.30	11.16	9.13	5.74
Cumulative proportion					
of variance accounted					
for by PC	41.47	62.77	73.93	83.06	88.80

${ }^{\text {a }}$ The absolute magnitude of the eigenvector coefficients (values in italicized) are equal to or
greater than 0.3 .
which accounted for 41.4 and 21.3%, respectively. The eigenvectors indicated the relative importance of each trait within each PC axis. The absolute magnitude of the eigenvector coefficients that is equal to or greater than 0.3 was used as a cut-off point (Badu-Apraku et al. 2006). PC 1 appeared to have large loadings for 16 traits. The loadings for these traits also had opposite signs of the eigenvector coefficients. This reflected the negative correlation between traits. Test weight, stalk lodging, starch, HFC, and HES were negatively correlated with grain moisture, root lodging, dropped ears, ear and plant heights, days to silking and anthesis, protein, and amino acids (lysine, methionine, and cysteine). Previous studies reported the negative
correlation between starch and protein on maize kernels (Dado 1999; Scott et al. 2006).
However, the use of large samples of genotypes can reduce this effect. For PC 2, 12 traits showed large loadings, among which were grain yield, grain moisture, stand, stalk lodging, root lodging, ear height, days to silking and anthesis, protein, oil, starch, and HFC. The negative correlation between grain yield and stalk and root lodging may be explained by the yield losses due to lodged plants. Our purpose of doing PCA was to identify group of traits that accounted for the most variation in the dataset. Since PC 1 and PC 2 showed the majority of the variability, the groups of traits that showed large loadings for each PC were considered for cluster analysis. All the 19 traits showed large loadings for PC 1 and PC 2. The result was positive, since maximum number of variables was considered to characterize the parental populations. This is expected to improve the accuracy of grouping the populations.

The GD values based on g_{i} estimates of the 19 traits are presented Table 8. The GD values ranged from 0.38 (between EARLYGEM 21a and EARLYGEM 21b) to 3.30 [between NDSCD(FS-CS)C2 and EARLYGEM 21c]. The three cross combinations with the least GD values were shown by the population crosses between EARLYGEM 21 populations. This is expected, since they all share similar genetic background. The NDSCD(FS-CS)C2 and EARLYGEM 21c showed the largest GD value, and NDSCD(FS-CS)C2 and EARLYGEM 21b also showed large GD value of 2.83 . These results confirmed the divergence between NDSCD(FS-CS)C2 and EARLYGEM 21 populations. Additionally, a large GD value (2.93) was observed between NDSS and EARLYGEM 21c. Preliminary heterotic grouping reported by Laude and Carena (2013) suggest that NDSS and EARLYGEM 21c behaved as a stiff-stalk synthetic heterotic group (SSS). However, our results suggest that EARLYGEM 21 populations may belong to a unique group. The GD value between NDBS22(R-T1)C9 and NDBS21(R-T)C9

Table 8. Dissimilarity matrix of the 16 maize populations constructed based on Euclidean distances of the general combining ability estimates for agronomic and grain quality traits.

Population code ${ }^{\text {a }}$	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12	P13	P14	P15	P16
P1	0.00															
P2	1.48	0.00														
P3	2.12	2.05	0.00													
P4	1.67	1.61	1.26	0.00												
P5	1.06	1.53	1.48	1.45	0.00											
P6	1.53	1.84	1.16	1.34	0.91	0.00										
P7	1.73	1.40	1.42	1.33	1.30	1.43	0.00									
P8	1.32	1.48	1.30	0.83	1.11	1.09	1.36	0.00								
P9	1.40	1.10	1.37	1.29	1.23	1.09	1.19	1.05	0.00							
P10	1.11	1.36	2.04	1.47	1.39	1.78	1.63	1.29	1.49	0.00						
P11	1.81	1.39	1.57	1.38	1.37	1.64	1.30	1.41	1.60	1.55	0.00					
P12	1.50	2.21	2.78	2.46	1.97	1.98	2.22	2.24	1.91	1.91	2.69	0.00				
P13	1.57	1.96	2.08	1.65	1.39	1.65	1.73	1.49	1.75	1.38	1.66	2.06	0.00			
P14	2.35	1.89	1.84	1.78	2.06	2.00	1.78	1.90	1.77	1.70	1.62	2.66	1.81	0.00		
P15	2.53	1.96	1.96	1.92	2.26	2.17	1.92	2.08	1.86	1.92	1.76	2.83	2.03	0.38	0.00	
P16	2.93	2.31	2.19	2.12	2.63	2.55	2.19	2.38	2.25	2.25	2.00	3.30	2.32	0.77	0.59	0.00

${ }^{a}$ The following are the parental populations listed in the order: NDSS, NDCG(FS)C1, NDL, NDBSK(HI-M)C3, NDBS11(FR-M)C3, NDBS1011, Leaming(S-FS)C6, NDBS22(R-T1)C9, NDSAB(MER-FS)C15, NDSM(M-FS)C9, NDBS21(R-T)C9, NDSCD(FS-
CS)C2, NDSHLC(M-FS)C5, EARLYGEM 21a, EARLYGEM 21b, and EARLYGEM 21c.
was 1.41. These two populations represented different heterotic groups. Former versions of NDBS22(R-T1)C9 belonged to the SSS group, while NDBS21(R-T)C9 belonged to the non-SSS group according to previous reports (Carena et al. 2008). High grain yield was observed between BS21(R)C7 x BS22(R)C7 (Melani and Carena 2005), which was expected as the two populations were improved through reciprocal recurrent selection for seven cycles (Hallauer et al. 2000). On the other hand, a relatively small GD value (0.91) was observed between NDBS11(FR-M)C3 and NDBS1011 suggesting that the two populations are related. NDBS1011 was developed from the cross between $\mathrm{BS} 10(\mathrm{FR}) \mathrm{C} 13$ and $\mathrm{BS} 11(\mathrm{FR}) \mathrm{C} 13$, with the latter being an earlier version of NDBS11(FR-M)C3 (Carena et al. 2008).

The dendrogram using the UPGMA method is shown in Fig. 5. The cophenetic correlation coefficient, r_{c}, based on Mantel statistics was 0.83 . Similar r_{c} was also obtained by Osorno and Carena (2008). Sokal (1986) suggested that $r_{c}>0.85$ has a high cophenetic correlation. Our results suggest that there was a good correlation between the dissimilarity matrix and cophenetic matrix obtained by the dendrogram. The hierarchic classification generated by the UPGMA method represented well the relationship implied by the dissimilarity matrix among the 16 populations. Permutation test was performed to test the null hypothesis that a set of genetic variants will not affect the outcome. After 5,000 permutations, the clusters found had strong consistency at $\mathrm{P}=0.0004$. Osorno and Carena (2008) explained that when the matrix was shuffled at random by 5,000 times, similar grouping cannot be obtained by chance at $\mathrm{P}=0.0004$. When the cut-off point for the dendrogram was set at 1.49 , three groups and a singleton [NDSCD(FS-CS)C2] were observed. The cut-off point was set based on our knowledge of the genetic backgrounds of the populations studied and the preliminary results. The group 1 contained three populations, NDSS, NDSM(M-FS)C9, and NDSHLC(M-FS)C5. The NDSS and

Fig. 5. Dendrogram of genetic relationships among 16 maize populations adapted to the northern U.S. Corn Belt. Three main clusters (group 1 to group 3) were formed. The UPGMA (Unweighted Paired Group Method using Arithmetic averages) method was used based on general combining ability estimates of agronomic and grain quality traits.

NDSM(M-FS)C9 showed similar response for grain quality traits. Both of these two populations showed high protein contents and low starch contents (Laude and Carena 2013). However, Osorno and Carena (2008) reported that an earlier version of NDSM(M-FS)C9 was grouped together with the earlier versions of NDSAB(MER-FS)C15. Therefore, a larger sample of genotypes provided more details. Although NDSHLC(M-FS)C5 was classified under group 1, it was slightly divergent from the other two populations. The genetic divergence of NDSHLC(MFS)C5 can be explained by its genetic background and geographical origin. NDSHLC(M-FS)C5 is an exotic germplasm, which originated from four highland white dent populations from Mexico (Eno and Carena 2008).

The group 2 included nine populations. This group can be subdivided into two subgroups and one singleton, NDBS21(R-T)C9. The sub-group 1 had NDCG(FS)C1, NDSAB(MER-FS)C15, and Leaming(S-FS)C6. This result is contrary to the earlier grouping made by Osorno and Carena (2008). They classified the earlier versions of NDSAB(MERFS)C15 and Leaming(S-FS)C6 and parental populations of NDCG(FS)C1 into three different groups. Additional cycles of recurrent selection might have contributed to a change in allele frequencies, which caused the variation in group assignments of these populations. Moreover, the different locations and years of evaluation may also affect the phenotypic response of the populations. The sub-group 2 contained NDL, NDBSK(HI-M)C3, NDBS22(R-T1)C9, NDBS11(FR-M)C3, and NDBS1011. The close resemblance of NDBS11(FR-M)C3 and NDBS1011 placed them in the same group. Additionally, NDBSK(HI-M)C3, NDBS22(RT1)C9, NDBS11(FR-M)C3, and NDBS1011 were initially developed at the Iowa State University before they got adapted and further improved at ND. Their geographic origin may explain the genetic similarities among these populations. Divergence of NDBS21(R-T)C9 from
other populations in group 2 can be explained by its relationship with NDBS22(R-T1)C9. The heterosis for grain yield observed between these two populations may have contributed to their genetic divergence between each other. Previous studies, however, reported some degree of relatedness between BS21(R)C7 and BS22(R)C7 (Melani and Carena 2005; Hallauer et al. 2000).

Group 3 contained EARLYGEM 21a, EARLYGEM 21b, and EARLYGEM 21c. This is expected as these three populations have similar genetic background. Their small GD values reflected the close resemblance among these populations. Additionally, the uniqueness of this group can be attributed to the fact that EARLYGEM 21 is an exotic germplasm derived from South America.

NDSCD(FS-CS)C2 did not belong to any of the three groups. It was the most divergent population, since it was widely separated from the other 15 populations. Osorno and Carena (2008) also had a similar observation. The earlier version of NDSCD(FS-CS)C2 was also grouped separately from the 10 populations they studied.

Grain yield was used to evaluate the heterotic relationships among the 16 populations. Heterosis between genotypes was best measured by grain yield. Additionally, Froyer et al. (1988) stated that yield was the best trait to accurately estimate genetic diversity. The means and HPH for grain yield of the population crosses are presented in Table 9. Means for grain yield ranged from 2.2 (EARLYGEM 21b x EARLYGEM 21c) to $5.9 \mathrm{Mg} \mathrm{ha}^{-1}$ [NDBS21(R-T)C9 x EARLYGEM 21b]. The poor grain yield of EARLYGEM 21b x EARLYGEM 21c was expected, since the two populations are genetically related, hence, the lack of heterosis. The high grain yield observed for NDBS21(R-T)C9 x EARLYGEM 21b can be explained by the divergence between the two populations. NDBS21(R-T)C9 had $3.5 \mathrm{Mg} \mathrm{ha}^{-1}$, while EARLYGEM

Table 9. Mean grain yield ($\mathrm{Mg} \mathrm{ha}^{-1}$) for the 16 parental populations (diagonal), their crosses (above the diagonal), and percentage of high-parent heterosis (below the diagonal).

${ }^{9}$ The following are the parental populations listed in the order: NDSS, NDCG(FS)C1, NDL, NDBSK(HI-M)C3, NDBS11(FR-M)C3, NDBS1011, Leaming(S-FS)C6, NDBS22(R-T1)C9, NDSAB(MER-FS)C15, NDSM(M-FS)C9, NDBS21(R-T)C9, NDSCD(FS-
CS)C2, NDSHLC(M-FS)C5, EARLYGEM 21a, EARLYGEM 21b, and EARLYGEM 21c.

21b had only $2.1 \mathrm{Mg} \mathrm{ha}^{-1}$, the lowest mean grain yield among the parental populations. Moreover, the geographical origin of the two populations contributed to the high grain yield of the cross (Moll et al. 1962; Moll et al. 1965; Reif et al. 2005). In terms of HPH, NDSHLC(MFS)C5 x EARLYGEM 21b had the highest HPH (93.7\%), while EARLYGEM 21a x EARLYGEM 21c had the lowest HPH (-15.4\%). High HPH of NDSHLC(M-FS)C5 x

EARLYGEM 21b can be explained by the divergence between the two populations and the low parental population means, although mean grain yield for the cross was only $4.7 \mathrm{Mg} \mathrm{ha}^{-1}$. The two populations originated from different exotic germplasm sources. This result agrees with Prasad and Singh (1986), wherein they observed that higher grain yield was obtained from crosses between parents with moderate genetic diversity. Additionally, the HPH of top-yielding population cross [NDBS21(R-T)C9 x EARLYGEM 21b] was 69.4%. The difference in parental performance caused the heterosis observed in the cross. On the other hand, the three

EARLYGEM 21 populations showed low and negative heterosis for the crosses between them. Their pedigrees and low frequency of desirable alleles may have resulted in low grain yield of the parental populations and population crosses.

The estimates for $s_{i j}$ effects and HSGCA of the population crosses for grain yield are presented in Table 10. The $s_{i j}$ effects ranged from -1.76 (EARLYGEM 21a x EARLYGEM 21c) to $0.97 \mathrm{Mg} \mathrm{ha}^{-1}$ (NDBS $1011 \times$ EARLYGEM 21c). The negative $s_{i j}$ effect for EARLYGEM 21a x EARLYGEM 21c agreed with its mean grain yield and HPH. EARLYGEM 21a x EARLYGEM 21c obtained the least value for the three heterosis parameters among all the population crosses. However, the uniqueness of the EARLYGEM 21 populations over the other 13 populations seems to increase the frequency of favorable alleles when crossed with populations from different groups. NDBS1011 x EARLYGEM 21c showed the largest $s_{i j}$ effect and high mean

Table 10. Estimates for specific heterosis (above the diagonal) and heterotic group's specific and general combining ability (below the diagonal) for grain yield $\left(\mathrm{Mg} \mathrm{ha}^{-1}\right)$ for all maize population crosses.

Population code $^{\text {a }}$	P 1	P 2	P 3	P 4	P 5	P 6	P 7	P 8	P 9	P 10	P 11	P 12	P 13	P14	P15	P16
P1		-0.66	0.26	0.05	0.58	-0.05	-0.56	0.79	0.11	-0.02	-0.47	0.00	-0.46	0.21	0.37	-0.15
P2	-0.49		-0.56	-0.58	0.23	0.03	0.15	0.46	0.34	-0.22	-0.06	0.11	-0.18	0.46	-0.02	0.49
P3	0.45	-0.27		0.08	0.06	0.28	-0.50	-0.01	-0.24	-0.40	-0.19	0.28	-0.02	0.52	0.15	0.29
P4	0.20	-0.34	0.35		-0.51	0.47	-0.10	-0.32	-0.18	0.32	-0.09	-0.17	-0.09	0.31	0.23	0.58
P5	0.72	0.47	0.32	-0.30		-1.05	0.36	0.23	0.17	-0.26	-0.42	0.50	-0.76	0.29	0.56	0.02
P6	0.07	0.24	0.51	0.66	-0.87		0.16	0.10	-0.62	0.05	-0.66	-0.01	-0.18	0.39	0.13	0.97
P7	-0.46	0.34	-0.28	0.08	0.53	0.30		0.10	-0.08	0.25	0.17	-0.53	-0.25	0.60	0.33	-0.09
P8	0.85	0.62	0.17	-0.18	0.36	0.20	0.19		0.00	-0.75	-0.36	-0.63	-0.10	0.16	0.29	0.04
P9	0.15	0.47	-0.09	-0.07	0.27	-0.54	-0.02	0.02		-0.11	0.26	-0.17	0.02	0.14	0.13	0.24
P10	-0.15	-0.27	-0.42	0.26	-0.33	-0.05	0.14	-0.90	-0.29		0.65	-0.04	0.27	0.21	-0.42	0.49
P11	-0.05	0.46	0.35	0.41	0.07	-0.20	0.62	0.05	0.63	0.85		0.13	0.28	0.03	0.57	0.16
P12	-0.24	-0.03	0.15	-0.34	0.32	-0.21	-0.74	-0.88	-0.46	-0.49	0.23		0.26	-0.23	0.26	0.25
P13	-0.73	-0.35	-0.17	-0.28	-0.96	-0.40	-0.49	-0.38	-0.29	-0.21	0.36	-0.32		0.27	0.73	0.20
P14	0.10	0.45	0.53	0.28	0.25	0.33	0.51	0.04	-0.01	-0.11	0.26	-0.65	-0.18		-1.60	-1.76
P15	0.35	0.06	0.24	0.28	0.60	0.14	0.33	0.26	0.06	-0.65	0.89	-0.08	0.37	-1.80		-1.71
P16	-0.24	0.50	0.32	0.56	-0.01	0.92	-0.15	-0.06	0.11	0.18	0.42	-0.16	-0.23	-2.03	-1.90	

${ }^{9}$ The following are the parental populations listed in the order: NDSS, NDCG(FS)C1, NDL, NDBSK(HI-M)C3, NDBS11(FR-M)C3, NDBS1011, Leaming(S-FS)C6, NDBS22(R-T1)C9, NDSAB(MER-FS)C15, NDSM(M-FS)C9, NDBS21(R-T)C9, NDSCD(FS-
CS)C2, NDSHLC(M-FS)C5, EARLYGEM 21a, EARLYGEM 21b, and EARLYGEM 21c

Table 11. Correlation between genetic distance (GD) with mean grain yield of the population crosses (F_{1}), high-parent heterosis (HPH), specific heterosis ($s_{i j}$), and heterotic group's specific and general combining ability (HSGCA) values.

Parameter	GD	F_{1}	HPH	$s_{i j}$
$\mathrm{~F}_{1}$	0.05			
HPH	$0.20^{* a}$	$0.45^{* *}$		
$s_{i j}$	$0.39^{* *}$	$0.71^{* *}$	$0.58^{* *}$	
HSGCA	0.19^{*}	$0.95^{* *}$	$0.55^{* *}$	$0.89^{* *}$
a^{*}				

a^{*} and ${ }^{* *}$ indicate that the coefficients are significantly different from zero at α level of 0.05 and 0.01 , respectively.
grain yield ($5.6 \mathrm{Mg} \mathrm{ha}^{-1}$). Similar mean grain yield was also obtained by NDSS x NDBS22(RT1)C9, which had the second largest $s_{i j}$ estimate ($0.79 \mathrm{Mg} \mathrm{ha}^{-1}$). For HSGCA, the estimates ranged from - 2.03 (EARLYGEM 21a x EARLYGEM 21c) to $0.92 \mathrm{Mg} \mathrm{ha}^{-1}$ (NDBS1011 x EARLYGEM 21c). The same population crosses were identified to have the smallest and largest estimates for $s_{i j}$ effects and HSGCA. Additionally, NDSS x NDBS22(R-T1)C9 also obtained the third largest HSGCA estimate ($0.85 \mathrm{Mg} \mathrm{ha}^{-1}$). The similarity in estimates between $s_{i j}$ effects and HSGCA can be attributed to the large contribution (50\%) of $s_{i j}$ effect in calculating HSGCA.

A positive correlation was observed between GD and grain yield based on $\mathrm{F}_{1}, \mathrm{HPH}, s_{i j}$, and HSGCA (Table 11). The GD was significantly correlated ($\mathrm{P}<0.05$) with HPH and HSGCA. The correlation between GD and $s_{i j}$ was highly significant ($\mathrm{P}<0.01$). Betran et al. (2003) also observed strongest correlation between GD and SCA. The results suggest that the groups formed by GD using the UPGMA method can be validated by $s_{i j}$ to assign the 16 populations to heterotic groups. Among the heterosis parameters measured for grain yield, the highest correlation was observed between F_{1} and HSGCA with $r=0.95$. This indicates that HSGCA among parental populations can predict population cross performance for this set of genotypes. The top-yielding population cross, NDBS21(R-T)C9 x EARLYGEM 21b, obtained the second largest HSGCA estimate $\left(0.89 \mathrm{Mg} \mathrm{ha}^{-1}\right)$. Additionally, a high correlation of 0.89 was observed between $s_{i j}$ and

HSGCA. This relationship can also be used to confirm the heterotic relationships among the 16 populations. Moreover, Badu-Apraku et al. (2013a) showed that the groups formed using HSGCA agreed with grouping they generated using microsatellite markers.

A second dendrogram was constructed to assess the heterotic relationships among the 16 populations. The estimates for $s_{i j}$ effects for grain yield were used to construct the dissimilarity matrix. Fig. 6 shows four possible heterotic groups at the cut-off point of -0.09 . Heterotic group (HG) 1 contained NDSS, NDCG(FS)C1, NDSHLC(M-FS)C5, and NDBSK(HI-M)C3. The grouping formed using GD classified NDSS and NDSHLC(M-FS)C5 to group 1, and NDCG(FS)C1 and NDBSK(HI-M)C3 to group 2 (Fig. 5). Although NDSS and NDSHLC(MFS)C5 were initially grouped separately from NDCG(FS)C1 and NDBSK(HI-M)C3, small and negative HSGCA estimates were observed among the crosses formed by the populations belonging to HG 1 (Table 10). If we look at NDCG(FS)C1, its HSGCA estimates with NDSS, NDSHLC(M-FS)C5, and NDBSK(HI-M)C3 were $-0.49,-0.35$, and $-0.34 \mathrm{Mg} \mathrm{ha}^{-1}$. This suggests that the populations belonging to HG 1 have similar combining ability for grain yield. On the other hand, HG 2 included three populations, NDBS11(FR-M)C3, NDBS1011, and NDBS21(RT)C9. Earlier grouping based on GD classified NDBS11(FR-M)C3 and NDBS1011 under the same sub-group of group 2 (Fig. 5). The high degree of relatedness between these two populations reflected similarity in their heterotic response with other populations. Moreover, NDBS11(FR-M)C3 x NDBS21(R-T)C9 and NDBS1011 x NDBS21(R-T)C9 had small HSGCA estimates of 0.07 and $-0.20 \mathrm{Mg} \mathrm{ha}^{-1}$ (Table 10). The lack of heterosis for grain yield between these populations allowed NDBS21(R-T)C9 to be classified under HG 2. The HG 3 was the largest group containing NDL, NDSAB(MER-FS)C15, NDBS22(R-T1)C9, NDSM(M-FS)C9, Leaming(S-FS)C6, and NDSCD(FS-CS)C2. Based on GD, these populations were classified

Fig. 6. Dendrogram of genetic relationships among 16 maize populations adapted to the northern U.S. Corn Belt based on specific heterosis estimates for grain yield. Four main clusters (HG 1 to HG 4) were formed using the UPGMA method.
under group 2 except for NDSCD(FS-CS)C2 and NDSM(M-FS)C9 (Fig. 5). The HSGCA estimates of population crosses with NDSCD(FS-CS)C2 ranged from -0.88 [NDBS22(R-T1)C9 x NDSCD(FS-CS)C2] to $0.15 \mathrm{Mg}_{\mathrm{ha}}{ }^{-1}$ [NDL x NDSCD(FS-CS)C2] (Table 10). This result suggests that NDSCD(FS-CS)C2 has similar heterotic response with other five populations under HG 3. On the other hand, NDSM(M-FS)C9 was initially grouped with NDSS due to their similar response to grain quality traits. However, this current grouping agreed with Osorno and Carena (2008), wherein they classified NDSM(M)C7 and earlier versions of NDSAB(MER-FS)C15 together. The last group, HG 4, contained EARLYGEM 21a, EARLYGEM 21b, and EARLYGEM 21c. These three populations were very different from the other 13 populations, and so a unique group was formed among them. This result is consistent with the previous grouping based on GD. Furthermore, the crosses among EARLYGEM 21 populations showed negative heterotic responses based on $s_{i j}$ effects and HSGCA, suggesting lack of heterosis. The heterotic groupings established among the 16 populations validated former heterotic groups. New heterotic patterns were also created from population crosses, NDBS21(R-T)C9 x EARLYGEM 21b, NDBS1011 x EARLYGEM 21c, and NDSS x NDBS22(R-T1)C9. These results are expected to increase breeding efficiency to develop new cultivars for the northern U.S. Corn Belt.

Summary

The population diallel including 16 short-season maize populations provided sufficient information to assess the genetic diversity and establish heterotic groups among them. The genetic parameter estimates based on g_{i} effects from phenotypic data were used for the genetic diversity study. Laude and Carena (2013) showed a good correlation between g_{i} and the genetic
effect showing larger contribution to the total among diallel entries sum of squares. All the traits evaluated from the 16 parental populations were important to explain the variability in PC 1 and PC 2. A total of 19 traits were used to characterize the genetic differences phenotypically expressed by the populations. The cluster analysis based on GD formed three major groups. The populations included in each group were classified based on similarities in phenotypic response, pedigree information, geographic origin, and results of previous studies. Group 1 contained NDSS, NDSM(M-FS)C9, and NDSHLC(M-FS)C5. Both NDSS and NDSM(M-FS)C9 had favorable protein and amino acid contents (data not shown). Group 2 mostly contained populations developed at the Iowa State University. Group 3 was divergent with the other two groups. This group included exotic populations from South America. On the other hand, NDSCD(FS-CS)C2 was not classified to any groups. This population was previously reported as a divergent population within NDSU germplasm (Osorno and Carena 2008).

The heterotic relationships among the 16 populations were determined by the mean performance of population crosses, HPH, $s_{i j}$, and HSGCA for grain yield. Similar results were obtained from the different parameters. High heterosis was observed from population crosses formed from different groups, i.e. NDBS21(R-T)C9 x EARLYGEM 21b and NDBS1011 x EARLYGEM 21c. Both NDBS21(R-T)C9 and NDBS1011 belong to group 2, while EARLYGEM 21b and EARLYGEM 21c are under group 3. Additionally, EARLYGEM 21 populations seemed to increase the frequency of favorable alleles when crossed with populations from different groups.

The highly significant correlation between GD and $s_{i j}$ prompted the use of $s_{i j}$ as a basis to assign the 16 populations to heterotic groups. Four heterotic groups (HG 1 to HG 4) were established. The heterotic groups had good agreement with the groups formed using GD. The
populations belonging to each HG agree with their HSGCA estimates and genetic background. The introduction and adaptation of exotic germplasm formed a unique group that provides utility in population improvement and inbred line development. The heterotic groupings among the 16 populations not only validated former heterotic groups, but also created new heterotic patterns. These results are expected to increase efficiency in breeding. Intra- and inter-population recurrent selection programs can be employed for population improvement according to these results as well as developing the next generation of low and high cost cultivars.

References

Badu-Apraku B, Menkir A, Fakorede MAB, Fontem Lum A, Obeng-Antwi (2006) Multivariate analyses of the genetic diversity of forty-seven Striga resistant tropical early maturing maize inbred lines. Maydica 51:551-559

Badu-Apraku B, Oyekunle M, Akinwale RO, Aderounmu M (2013a) Combining ability and genetic diversity of extra-early white maize inbreds under stress and nonstress environments. Crop Sci 53:9-26

Badu-Apraku B, Oyekunle M, Fakorede MAB, Vroh I, Akinwale RO, Aderounmu M (2013b) Combining ability, heterotic patterns and genetic diversity of extra-early yellow inbreds under contrasting environments. Euphytica. doi:10.1007/s10681-013-0876-4

Barata C, Carena MJ (2006) Classification of North Dakota maize inbred lines into heterotic groups based on molecular and testcross data. Euphytica 151:339-349

Betran FJ, Ribaut JM, Beck D, Gonzalez de Leon D (2003) Genetic diversity, specific combining ability, and heterosis in tropical maize under stress and nonstress environments. Crop Sci 43:797-806

Camussi A, Ottaviano E, Calinski T, Kaczmarek Z (1985) Genetic distances based on quantitative traits. Genetics 111:945-962

Carena MJ (2013) Developing the next generation of diverse and healthier maize cultivars tolerant to climate changes. Euphytica 190:471-479

Carena MJ, Eno C, Wanner DD (2008) Registration of NDBS11(FR-M)C3, NDBS1011, and NDBSK(HI-M)C3 maize germplasm. J Plant Registrations 2:132-136

Carena MJ, Hallauer AR (2001a) Expression of heterosis in Leaming and Midland Corn Belt Dent populations. J Iowa Acad Sci 108:73-78

Carena MJ, Hallauer AR (2001b) Response to inbred progeny selection in Leaming and Midland Yellow Dent maize populations. Maydica 46:1-10

Carena MJ, Pollak L, Salhuana W, Denuc M (2009) Development of unique and novel lines for early-maturing hybrids: moving GEM germplasm northward and westward. Euphytica 170:87-97

Carena MJ, Wanner DD (2005) Registration of NDSAB(MER-FS)C13 maize germplasm. Crop Sci 45:1670

Cross HZ (1982) Registration of maize germplasm (Reg. no. GP117 and GP118). Crop Sci 20:1270

Cross HZ (1983) Registration of NDSAB and NDSF maize germplasm. Crop Sci 23:1227
Cross HZ (1988) Registration of NDSCD, NDSK(FS)C1, and NDSF maize germplasm. Crop Sci 28:201-202

Cross HZ, Wanner DD (1991) Registration of NDSAB(MS)C8(LM)C3, NDSD(FS)C1(LM)C4, and NDSM maize germplasm. Crop Sci 31:239

Dado RG (1999) Nutritional benefits of specialty corn grain hybrids in dairy diets. J Anim Sci 77:197-207

Eagles HA, Lothrop JE (1994) Highland maize from central Mexico. Its origin, characteristics, and use in breeding programs. Crop Sci 34:11-19

Eno C, Carena MJ (2008) Adaptation of elite temperate and tropical maize populations to North Dakota. Maydica 53:217-226

Fan XM, Zhang YM, Hao WH, Chen HM, Tan J, Xu CX, Han XL, Luo LM, Kang MS (2009) Classifying maize inbred lines into heterotic groups using a factorial mating design. Agron J 101:106-112

Froyer AF, Openshaw SJ, Knittle KH (1988) Measurement of genetic diversity among popular commercial corn hybrids. Crop Sci 28:481-485

Gardner CO, Eberhart SA (1966) Analysis and interpretation of the variety cross diallel and related populations. Biometrics 22:439-452

Hallauer AR (1967) Development of single-cross hybrids from two-eared maize populations. Crop Sci 7:192-195

Hallauer AR, Russell WA, White PR (2000) Registration of BS21(R)C7 and BS22(R)C7 maize germplasm. Crop Sci 40:1517

Hanson WD, Casas E (1968) Spatial relationship among eight populations of Zea mays L. utilizing information from a diallel mating design. Biometrics 24:867-880

Laude TP, Carena MJ (2013) Diallel analysis among 16 maize populations adapted to the northern U.S. Corn Belt. (in progress)

Lee EA, Chakravarty R, Good B, Ash MJ, Kannenberg LW (2006) Registration of 38 maize (Zea mays L.) breeding populations adapted to short-season environments. Crop Sci 46:27282733

Littell RC, Milliken GA, Stroup WW, Wolfinger RD, Schabenberger O (2006) SAS for mixed models. $2^{\text {nd }}$ edn. SAS Institute Inc., Cary, NC

Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209-220

Melani MD, Carena MJ (2005) Alternative maize heterotic patterns for the northern Corn Belt. Crop Sci 45:2186-2194

Melchinger AE, Gumber RK (1998) Overview of heterosis and heterotic groups in agronomic crops. In: Lamkey KR, Staub JE (ed) Concepts and breeding of heterosis in crop plants. CSSA Spec Publ 25. CSSA, Madison, WI, pp 29-44

Melchinger AE, Messmer MM, Lee M, Woodman WL, Lamkey KR (1991) Diversity and relationships among U.S. maize inbreds revealed by restriction fragment length polymorphism. Crop Sci 31:669-678

Milligan GW, Cooper MC (1988) A study of standardization of variables in cluster analysis. J Classification 5:181-204

Mohammadi SA, Prasanna BM (2003) Analysis of genetic diversity in crop plants - salient statistical tools and considerations. Crop Sci 43:1235-1248

Moll RH, Lonnquist JH, Fortuno JV, Johnson EC (1965) The relationship of heterosis and genetic divergence in maize. Genetics 52:139-144

Moll RH, Salhuana WS, Robinson HF (1962) Heterosis and genetic diversity in variety crosses of maize. Crop Sci 2:197-198

Osorno JM, Carena MJ (2008) Creating groups of maize genetic diversity for grain quality: implications for breeding. Maydica 53:131-141

Padilla G, Cartea ME, Ordas A (2007) Comparison of several clustering methods in grouping kale landraces. J Amer Soc Hort Sci 132:387-395

Prasad SK, Singh TP (1986) Heterosis in relation to genetic divergence in maize (Zea mays L.). Euphytica 35:919-924

Reif JC, Hallauer AR, Melchinger AE (2005) Heterosis and heterotic patterns in maize. Maydica 50: 215-223

Rohlf FJ (2000) NTSYSpc. Numerical taxonomy and multivariate analysis system. Version 2.1. Applied Biostatistics Inc., Port Jefferson, NY

SAS Institute Inc (2010) SAS/STAT user's guide. 3rd edn. SAS Institute Inc., Cary, NC
Scott MP, Edwards JW, Bell CP, Schussler JR, Smith JS (2006) Grain composition and amino acid content in maize cultivars representing 80 years of commercial maize varieties. Maydica 51:417-423

Sezegen B, Carena MJ (2009) Divergent recurrent selection for cold tolerance in two improved maize populations. Euphytica 167:237-244

Sneath PHA, Sokal RR (1973) Numerical taxonomy. Freeman, San Francisco, CA
Sokal RR (1986) Phenetic taxonomy: theory and methods. Ann Rev Ecol Syst 17:423-42
Tabachnick BG, Fidell LS (2001) Computer-Assisted Research Design and Analysis. Allyn \& Bacon, Boston, MA

Zhang Y, Kang MS, Lamkey KR (2005) DIALLEL-SAS05: A comprehensive program for Griffing's and Gardner-Eberhart analyses. Agron J 97:1097-1106

CHAPTER 4. GENERAL CONCLUSIONS

The v_{i} and $h_{i j}$ effects were significant sources of variation among the 16 short-season populations used in the diallel mating design for 19 traits. Heterosis effects had a greater contribution to the total sum of squares for grain yield among diallel entries, while v_{i} effects had a greater influence for grain quality traits. Grain yield, starch, and oil contents showed significant and positive \bar{h} effects, indicating the presence of non-additive genetic effects. The dominance was in the direction of high mean performance of populations for grain yield, starch, and oil contents. The predominance of v_{i} effects on starch and oil contents suggest that these traits could be controlled by partial dominance with additive gene action. On the other hand, the negative \bar{h} effects were significant for protein, including methionine and cysteine amino acids, which indicate that dominance was towards a low population mean for this set of traits.

The following populations were selected for grain quality improvement based on their v_{i} and g_{i} effects: NDL and EARLYGEM 21c for starch, NDSCD(FS-CS)C2 for oil content, and NDSS and NDSM(M-FS)C9 for protein and amino acid contents. The population crosses, NDSS x NDBS22(R-T1)C9 and NDBS1011 x EARLYGEM 21c, had high $s_{i j}$ for grain yield with good protein and starch contents, respectively. The knowledge generated on genetic and heterotic relationships is important to devise appropriate breeding strategies in population improvement for desirable quantitative traits.

The g_{i} effects agreed with the genetic effect that had larger contribution to the total among diallel entries sum of squares for a particular trait. The g_{i} effects on multiple traits were then used to measure the GD between populations. Three major groups were formed. The populations were classified based on similarities in phenotypic response, pedigree information, geographic origin, and results of previous studies. Similar response to grain quality traits
classified NDSS and NDSM(M-FS)C9 to group 1. Most of the populations belonging to group 2 were developed at the Iowa State University. Group 3 was divergent from the other two groups, since it included the exotic populations from South America. On the other hand, NDSCD(FSCS)C2 was not classified to any of the groups. This population was previously reported as a unique divergent population within the NDSU germplasm, and continues to be a unique source of short-season cultivars.

The heterotic relationships among the 16 populations were determined by estimates for grain yield. High heterosis was observed from population crosses formed from different groups, i.e. NDBS21(R-T)C9 x EARLYGEM 21b and NDBS1011 x EARLYGEM 21c. Moreover, EARLYGEM 21 populations seemed to increase the frequency of favorable alleles when crossed with populations from different groups. The highly significant correlation between GD and $s_{i j}$ allowed the use of $s_{i j}$ in assigning the 16 populations to heterotic groups. Four heterotic groups (HG 1 to HG 4) were established. The heterotic groups had good agreement with the groups formed using GD, except for group 1. The populations belonging to each HG agree with HSGCA estimates and genetic background information. The three EARLYGEM 21 populations formed a unique HG. Therefore, the introduction and adaptation of exotic germplasm offered remarkable potential in population improvement and inbred line development.

The establishment of heterotic groups among these populations is expected to increase breeding efficiency especially in planning for breeding crosses and integrating them with inbred line development and testcrossing for hybrid evaluation. New heterotic patterns were created from population crosses, NDBS21(R-T)C9 x EARLYGEM 21b, NDBS1011 x EARLYGEM 21c, and NDSS x NDBS22(R-T1)C9. Inter-population recurrent selection programs can be established independently for two population crosses for grain quality improvement, NDSS x

NDBS22(R-T1)C9 and NDBS1011 x EARLYGEM 21c. NDSS and NDBS22(R-T1)C9 belong to HG 1 and HG 3, respectively, and NDBS1011 and EARLYGEM21c belong to HG 2 and HG 4, respectively. Inter-population recurrent selection programs can be employed for populations belonging to different heterotic groups. Intra-population recurrent selection programs can be established for the parental populations selected for good grain quality traits. Segregating populations for inbred line development may also be developed from populations belonging to same heterotic group. The predominant genetic effect/s influencing a trait should also be considered in choosing the appropriate breeding strategy. The knowledge generated in this dissertation will successfully integrate germplasm improvement with inbred line development. Therefore, the NDSU maize breeding program will continue to serve as a unique genetic provider of genetically diverse inbred lines. This study will increase the chances of identifying unique and diverse outstanding inbred lines for the northern U.S. industry.

APPENDIX A. MAIZE POPULATIONS USED IN THE DIALLEL ANALYSIS

NDL was developed from eight early maturing elite inbred lines from the Lancaster heterotic group. The list of the lines used is presented in Table A1. Paired-crosses of the different inbred lines were produced in the 2005, 2006, and 2007 Fargo, ND breeding nurseries. They were intercrossed the following season to develop NDL. This was followed by one generation of recombination.

NDSS was developed from seven elite inbred lines from the BSSS heterotic group and the synthetic population BSSS. The list of inbred lines used is presented in Table A1. Pairedcrosses of the different germplasms were done in the 2005, 2006, and 2007 Fargo, ND breeding nurseries. They were intercrossed the following season to form NDSS. One generation of recombination followed.

NDSAB(MER-FS)C15 originated from NDSAB, which was developed from the cross between two synthetic populations, NDSA and NDSB (Cross 1983). Table A1 presents the list of inbred lines used in NDSA and NDSB to create NDSAB. NDSAB(MER-FS)C15 was developed from 12 cycles of modified ear to row selection followed by three cycles of full-sib recurrent selection (Carena and Wanner 2005). A rank-summation index selected 33% of the half-sib families evaluated per each cycle of modified ear to row selection. The families were selected based on the traits weighted as 40% for grain yield, and 20% each for grain moisture, root lodging, and stalk lodging. A heritability index with similar group of traits was used to select 8% of the full-sib families evaluated per each cycle of full-sib recurrent selection conducted in multilocation trials. Bulk-entry method was used to recombine selected families for each cycle of selection. The population was allowed to random mate for three more generations.

NDSAB(MER-FS)C15 has a yellow dent endosperm with high grain yield and test weight, low
grain moisture content at harvest, early maturing (AES 200) and comparable lodging resistance with some commercial hybrids. The earlier version was reported to differ with the traditional heterotic groups, BSSS and Lancaster (Carena and Wanner 2005).

NDSCD(FS-CS)C2 was derived from the cross between two synthetic populations, NDSC and NDSD (Cross 1982). The list of inbred lines used to develop NDSCD from the populations, NDSC and NDSD, is presented in Table A1. One cycle of full-sib family selection between $\operatorname{NDSC}(\mathrm{FS}) \mathrm{C} 1$ and $\operatorname{NDSD}(\mathrm{FS}) \mathrm{C} 1$ was conducted to create the base population (Cross 1988). A rank summation index was used to select 20 full-sib families evaluated in multilocation trials for grain yield, grain moisture at harvest, and root and stalk lodging. Selected families were recombined to create NDSCD. Ten cycles of mass selection for grain yield and standability were used to develop NDSCD(M)C10 (Melani and Carena 2005). Full-sib families were developed for divergent recurrent selection for cold tolerance. For this study, cold susceptible type, NDSCD(FS-CS)C2, was created after two cycles of recurrent selection (Sezegen and Carena 2009).

NDSM(M-FS)C9 originated from NDSM, which was developed by intercrossing 13 elite inbred lines with AES100 to AES300 maturity (Cross and Wanner 1991). The list of inbred lines used to create NDSM is presented in Table A1. The lines were selected based on their combining ability for stalk breakage resistance and grain yield. Three generations of random mating were used to create the base population. Then, the population went through seven cycles of mass selection to create NDSM(M)C7 (Melani and Carena 2005). To further improve the population, two cycles of full-sib recurrent selection was conducted to create NDSM(M-FS)C9. The population was maintained by random mating for three generations.

NDCG(FS)C1 was derived from two synthetic populations, CG-Stiff Stalk (CGSS) and CG-Lancaster (CGL) developed at the University of Guelph, Canada (Lee et al. 2006). CGSS was synthesized using 18 elite inbred lines from the BSSS heterotic group and CO263, an early maturing inbred line developed at Ottawa, Canada. CGSS was improved using five cycles of S_{1-} S_{2} recurrent selection to create $\operatorname{CGSS}\left(\mathrm{S}_{1}-\mathrm{S}_{2}\right) \mathrm{C} 5$ (Melani and Carena 2005). CGL was synthesized using 26 elite inbred lines from the Lancaster heterotic group and OX553, an early maturing CGL inbred line (Lee et al. 2006). CGL was also improved using five cycles of $S_{1}-S_{2}$ recurrent selection to create $\operatorname{CGL}\left(\mathrm{S}_{1}-\mathrm{S}_{2}\right) \mathrm{C} 5$. Both populations have maturity rating of AES 200 (Melani and Carena 2005). The cross between $\operatorname{CGSS}\left(\mathrm{S}_{1}-\mathrm{S}_{2}\right) \mathrm{C} 5$ and $\mathrm{CGL}\left(\mathrm{S}_{1}-\mathrm{S}_{2}\right) \mathrm{C} 5$ was done in the 2002 NDSU winter nursery due to the lack of heterosis in the cross. Full-sib families from the population hybrid were generated in the 2003 Fargo, ND breeding nursery. Selected families were chosen from multi-location trials and then recombined to create $\operatorname{NDCG}(\mathrm{FS}) \mathrm{C} 1$. The population was maintained by random mating for several generations.

The following populations, NDBSK(HI-M)C3, NDBS1011, and NDBS11(FR-M)C3, were coded after adaptation was initiated at ND (Carena et al. 2008). The original codes, BS and K , as well as selection methods, were kept the same to recognize the previous germplasm improvement and breeding efforts at the Iowa State University and Nebraska Agriculture Experiment Station. These three populations are early maturing versions of BSK(HI)C11, BS10(FR)C13 x BS11(FR)C13, and BS11(FR)C13, respectively. Without exceptions, all populations were significantly improved for earliness with stratified mass selection (Carena et al. 2008).

BSK was derived from Krug Yellow Dent, an open-pollinated variety developed at the Nebraska Agriculture Experiment Station. NDBSK(HI-M)C3 was developed using first stratified
mass selection for adaptation and half-sib recurrent selection. BSK was improved for stalk strength in Iowa after 11 cycles of half-sib recurrent selection. The adapted version of BSK(HIM)C11 for early silk emergence was improved using three cycles of stratified mass selection in ND to develop NDBSK(HI-M)C3. The population was allowed to random mate for another generation. Carena et al. (2008) suggested that NDBSK(HI-M)C3 could fall under BSSS heterotic group.

NDBS11(FR-M)C3 was derived from a prolific genetically broad-based maize population, BS11 or 'Pioneer Two-Ear Composite’ (Hallauer 1967; Carena et al. 2008). Germplasm improvement for BS11 was conducted using reciprocal full-sib recurrent selection with BS10 as tester, another prolific maize population designated as 'Iowa Two-Ear Synthetic.' Reciprocal recurrent selection for 13 cycles was carried out to improve grain yield, grain moisture at harvest, and root and stalk lodging. An improved version of BS11(FR)C13 for early silk emergence was developed using three cycles of stratified mass selection in ND to develop NDBS11(FR-M)C3. The population was maintained by another generation of random mating. Carena et al. (2008) suggested that NDBS11(FR-M)C3 shared the same heterotic group as BS21(R-T)C8, LEAMING(S-FS)C6, and CGL(S1-S2)C5.

The cross between BS10(FR)C13 and BS11(FR)C13 was made in the 2000 Fargo, ND breeding nursery to create NDBS1011 (Carena et al. 2008). NDBS1011 was improved for early silk emergence after four cycles of stratified mass selection. The population was allowed to have another generation of random mating. Carena et al. (2008) suggested that NDBS1011 might belong to an alternative heterotic group different from the traditional heterotic groups, BSSS and Lancaster.

NDBS21(R-T)C9 was derived from BS21(R)C7, which was developed at the Iowa State University. The population originated from the cross between BS5 and BS20. Seven cycles of reciprocal recurrent selection with $\mathrm{BS} 22(\mathrm{R}) \mathrm{C} 7$ as tester were used to improve $\mathrm{BS} 21(\mathrm{R}) \mathrm{C} 7$ for grain yield, grain moisture, and resistance to root and stalk lodging (Hallauer et al. 2000). This population has a maturity rating of AES 500-600, and was selected for earliness in ND before further improvement. To further improve the population, two cycles of half-sib recurrent selection with SSS industry sister line tester, LH145 x LH146, was done to develop NDBS21(RT)C9. The improved population was allowed to random mate for another generation.

NDBS22(R-T1)C9 is an improved and adapted version of BS22(R)C7, which was developed at the Iowa State University. BS22 was developed using 16 early maturing lines listed in Table A1. Reciprocal recurrent selection was used to create BS22(R)C7 after seven cycles of selection with BS21(R)C7 as tester. The population was improved for grain yield, grain moisture, and resistance to root and stalk lodging (Hallauer et al. 2000). This population has a maturity rating of AES 500-600, and was selected for earliness in ND before further improvement. Similar procedure with NDBS21(R-T)C9 was used to develop NDBS22(R-T1)C9, with a non-SSS industry sister line tester, LH176 x LH177. The population was maintained by random mating it for another generation.

Leaming(S-FS)C6 was improved from Leaming(S)C4 developed at the Iowa State University (Carena and Hallauer 2001). Leaming(S)C4 was developed using three cycles of $\mathrm{S}_{1^{-}}$ S_{2} recurrent selection and one cycle of half-sib selection with tester. This population has a maturity rating of AES 500, and was selected for earliness in ND before further improvement. Full-sib families for full-sib family selection of Leaming(S)C4 were generated in the 2002 NDSU winter nursery. Selected families from multi-location trials were chosen and recombined.

Two cycles of full-sib family selection were conducted to create Leaming(S-FS)C6. The improved population was allowed to random mate for one generation. Leaming is characterized to have yellow dent endosperm, good yield potential and feed value (Melani and Carena 2005).

NDSHLC(M-FS)C5 was derived from four tropical highland white dent populations developed at CIMMYT, Mexico. A mixture of seeds from Pop.800(FR)C5, Pop.85(FR)C4 (Eagles and Lothrop 1994), Pop.902(FR)C2, and Pop.903(FR)C2 was grown in an isolated field to form a new composite coded as NDSHLC(M)C1 (Eno and Carena 2008). Three more cycles of stratified mass selection for earliness and standability were conducted to improve the population that was coded as NDSHLC(M)C4. Full-sib families were produced for full-sib family selection. Selected families from multi-location trials were chosen and recombined to form NDSHLC(M-FS)C5. The population was maintained by random mating for one generation.

EARLYGEM 21a, EARLYGEM 21b, and EARLYGEM 21c were derived from
AR16026:S17-66-1-B, an S_{3} line from the Germplasm Enhancement of Maize (GEM) USDAbased program. AR16026:S17-66-1-B was screened for adaptation to the northern U.S. Corn Belt, and was crossed to ND2000, an early maturing elite inbred line (Carena et al. 2009). The F_{1} plants were backcrossed to ND2000. F_{1} s were planted side by side with ND2000 and laterflowering plants were discarded. Ears from each BC_{1} plant were harvested separately. Further screening for earliness, seedling vigor, and uniformity was done at $\mathrm{BC}_{1}: \mathrm{S}_{0}$ generation. $\mathrm{BC}_{1}: \mathrm{S}_{1}$ lines were crossed to a non-SS industry tester and hybrids were evaluated in multi-location trials the following season. Top lines were selected based on high grain yield and test weight, and low grain moisture at harvest. Lines selected for high grain yield were recombined to form EARLYGEM 21a. The lines selected for high test weight were recombined to form EARLYGEM 21b, and those selected for low grain moisture at harvest were recombined to form

EARLYGEM 21c. Each of the three populations was allowed to random mate for one
generation.

Table A1. Populations used in the 16-parent maize diallel mating design and their improvement methods and genetic backgrounds (modified from Carena 2013).

Populations ${ }^{\text {a }}$	Genetic background
NDSS Syn 2	A632, A641, ND278, BSSS, B37, ND2000, CG102, B73
NDCG(FS)C1 Syn 4	CGSS (A632, A634, A635, A664, A665, A669, B14A, B37, B73, CH586-12, CH591-23, CH591-36, CM105, CM174, H84, MS153, N28, SD24, CO263), and CGL (A619, A661, A662, A663, A666, A667, A668, CH24, CH661- 17, CH663-8, CH6717, CH671-28, H99, Mo17Ht, MS71, Oh545, Oh551, Pa762, SD23, SDp310, Va26, Va35, W117HHt, W153RHt, W406, W64AHt, OX553)
NDL Syn 2	ND291, Mo17,OH43, B100, ND290, CG44, CG63, A619
NDBSK(HI-M)C3 Syn 2	BSK(HI)C11
NDBS11(FR-M)C3 Syn 2	BS11(FR)C13
NDBS1011 Syn 2	BS10(FR)C13 and BS11(FR)C13
Leaming(S-FS)C6 Syn 2	Leaming open-pollinated variety
NDBS22(R-T1)C9 Syn 2	A619, A632, B55, B68, C123, Ch9, CM37, (CMV3 x B14)B14 sel, M14, Mo17, MS214, Pa884P, SD10, SD15, Va43, W153R
[NDSAB(MER-FS)C15	A90, MS1334, ND376, ND474, ND478, NDB8, SD10, W153R,
Syn2]Syn 2	CO303, CV3, MS142, ND33, ND405, ND363, Zapalote Chico
[NDSM(M-FS)C9	A654, A664, CM105, CM153, ND101, ND245, ND247, ND250,
Syn2]Syn 2	ND363, ND468, ND8Rf, Pa363, W59E
NDBS21(R-T)C9 Syn 2	BS5 (A625, A458, A554, A575, A619, B8, Ch9, F2, F7, F47, F49, F52, F431, Mt42, ND203, WD, WH, WJ, W9, W59M, W97A, W75, W153R), and BS20 (B14A, B53, B57, B64, B67, B69, A73, N6, N28, R101, HD2286, 38-11)
NDSCD(FS-CS)C2	A556(2), CG1, CG5, CO303, MS93, ND474(2), ND478, ND480, ND481, NDB8, W153R(2), A554, A654, A90, MS141, ND203, ND363, ND364, ND376, SD5, SDP2, SDP232, SDP236M, SDP254
NDSHLC(M-FS)C5 Syn 2	Pop.800(FR)C5, Pop.85(FR)C4, Pop.902(FR)C2, Pop.903(FR)C2
EARLYGEM 21a Syn 2	Top yielding lines recombined from AR16026:S17-66-1-B, ND2000
EARLYGEM 21b Syn 2	Top test weight lines recombined from AR16026:S17-66-1-B, ND2000
EARLYGEM 21c Syn 2	Top grain moisture lines recombined from AR16026:S17-66-1-B, ND2000

${ }^{\text {a }}$ Syn $=$ Number of recombinations, FS = intra-population full-sib recurrent selection (RS), $\mathrm{HI}=$ half-sib RS with tester, $\mathrm{M}=$ mass selection, $\mathrm{FR}=$ inter-population full-sib $\mathrm{RS}, \mathrm{S}=$ inbred progeny RS, $\mathrm{R}=$ inter-population half-sib $\mathrm{RS}, \mathrm{T}=$ use of a tester, MER = modified ear-to-row selection, $\mathrm{CS}=$ divergent RS for cold tolerance, in this case, cold susceptibility

References

Carena MJ (2013) Developing the next generation of diverse and healthier maize cultivars tolerant to climate changes. Euphytica 190:471-479

Carena MJ, Eno C, Wanner DD (2008) Registration of NDBS11(FR-M)C3, NDBS1011, and NDBSK(HI-M)C3 maize germplasm. J Plant Registrations 2:132-136

Carena MJ, Hallauer AR (2001) Response to inbred progeny selection in Leaming and Midland Yellow Dent maize populations. Maydica 46:1-10

Carena MJ, Pollak L, Salhuana W, Denuc M (2009) Development of unique and novel lines for early-maturing hybrids: moving GEM germplasm northward and westward. Euphytica 170:87-97

Carena MJ, Wanner DD (2005) Registration of NDSAB(MER-FS)C13 maize germplasm. Crop Sci 45:1670

Cross HZ (1982) Registration of maize germplasm (Reg. no. GP117 and GP118). Crop Sci 20:1270

Cross HZ (1983) Registration of NDSAB and NDSF maize germplasm. Crop Sci 23:1227
Cross HZ (1988) Registration of NDSCD, NDSK(FS)C1, and NDSF maize germplasm. Crop Sci 28:201-202

Cross HZ, Wanner DD (1991) Registration of NDSAB(MS)C8(LM)C3, NDSD(FS)C1(LM)C4, and NDSM maize germplasm. Crop Sci 31:239

Eagles HA, Lothrop JE (1994) Highland maize from central Mexico. Its origin, characteristics, and use in breeding programs. Crop Sci 34:11-19

Eno C, Carena MJ (2008) Adaptation of elite temperate and tropical maize populations to North Dakota. Maydica 53:217-226

Hallauer AR (1967) Development of single-cross hybrids from two-eared maize populations. Crop Sci 7:192-195

Hallauer AR, Russell WA, White PR (2000) Registration of BS21(R)C7 and BS22(R)C7 maize germplasm. Crop Sci 40:1517

Lee EA, Chakravarty R, Good B, Ash MJ, Kannenberg LW (2006) Registration of 38 maize (Zea mays L.) breeding populations adapted to short-season environments. Crop Sci 46:27282733

Melani MD, Carena MJ (2005) Alternative maize heterotic patterns for the northern Corn Belt. Crop Sci 45:2186-2194

Sezegen B, Carena MJ (2009) Divergent recurrent selection for cold tolerance in two improved maize populations. Euphytica 167:237-244

APPENDIX B. ADDITIONAL TABLES

Table B1. Combined analyses of variance (GEAN II) for 16 adapted maize populations in the northern U.S. Corn Belt, their crosses, and checks for grain moisture $\left(\mathrm{g} \mathrm{kg}^{-1}\right)$, test weight $\left(\mathrm{kg} \mathrm{h}^{-1}\right)$, stand (plants ha ${ }^{-1}$), days to silking, days to anthesis, percentage of stalk lodging, root lodging, and dropped ears, ear and plant heights (cm)

Source of variation	Grain moisture		Test weight		Stand		df	$\begin{gathered} \hline \begin{array}{c} \text { Days to } \\ \text { silking } \end{array} \\ \hline \text { MS } \end{gathered}$	$\begin{gathered} \hline \begin{array}{c} \text { Days to } \\ \text { anthesis } \end{array} \\ \hline \text { MS } \end{gathered}$
	df	MS	df	MS	df	MS			
Environments (E)	9	$50901.7^{* *}$	9	$790.8{ }^{* *}$	11	$46051437127^{* *}$	4	5018.0 **	4131.6**
Genotypes (G)	143	$3722.1{ }^{* *}$	143	35.2 **	143	$177823753^{* *}$	143	$6.6{ }^{* *}$	$5.2^{* *}$
Variety (v_{i})	15	30049.5**	15	236.7**	15	479454632**	15	$39.5 * *$	$33.5{ }^{* *}$
Heterosis (H)	120	$223.8^{* *}$	120	9.9**	120	$101638468^{* *}$	120	2.5**	$1.7{ }^{* *}$
Average heterosis (\bar{h})	1	19.1	1	291.8**	1	$562490506^{* *}$	1	49.5**	30.3**
Variety heterosis (h_{i})	15	208.6*	15	19.2**	15	100288959*	15	2.6 *	$1.8{ }^{* *}$
Specific heterosis ($s_{i j}$)	104	227.9**	104	5.9 **	104	97403467**	104	2.1 **	$1.4{ }^{* *}$
Checks (C)	7	4508.7**	7	37.6 **	7	$397060526^{* *}$	7	$5.6 * *$	$4.2^{* *}$
C vs. others	1	$12877.0^{* *}$	1	4.6	1	$3232457214^{* *}$	1	4.6	0.7
GxE	1279	202.1**	1269	$6.7^{* *}$	1572	$54482332 * *$	572	1.3 **	0.9 **
$v_{i} \times \mathrm{E}$	135	717.0**	135	$12.8{ }^{* *}$	165	$82291242 * *$	60	$3.4 * *$	2.2 **
HxE	1080	111.0	1080	1.7	1320	45063242**	480	1.0 **	$0.7 * *$
$\bar{h} \times \mathrm{E}$	9	215.7	9	0.0	11	30448199	4	0.8	0.4
$h_{i} \times \mathrm{E}$	135	103.7	135	3.0	165	47882156**	60	$1.4 * *$	0.7
$s_{i j} \times \mathrm{E}$	936	111.1 *	936	1.6	1144	44797049 **	416	1.0 ***	$0.7 * *$
CxE	63	$166.6{ }^{*}$	63	4.5*	77	$51549244^{* *}$	28	1.3 **	0.9 *
C vs. others x E	9	715.0**	9	80.5**	11	292727129 **	4	0.9	1.2
Pooled error	1169	120.1	1078	3.1	1442	34528682	602	0.7	0.5
CV (\%)		6.7		4.0		11.6		1.8	1.5

and ${ }^{* *}$ indicate significance at α level of 0.05 and 0.01 , respectively.

Table B1 (continued). Combined analyses of variance (GEAN II) for 16 adapted maize populations in northern U. S. Corn Belt, their crosses, and checks for grain moisture $\left(\mathrm{g} \mathrm{kg}^{-1}\right)$, test weight $\left(\mathrm{kg} \mathrm{hL}^{-1}\right.$), stand (plants ha ${ }^{-1}$), days to silking, days to anthesis, percentage of stalk lodging, root lodging, and dropped ears, ear and plant heights (cm).

Source of variation	Stalk lodging		Root lodging		Dropped ears		Ear height		Plant
	df	MS	df	MS	df	MS	df	MS	MS
Environments (E)	6	$12617.3{ }^{\text {** }}$	6	$408.7{ }^{\text {** }}$	6	161.0 **	10	$57242.9{ }^{\text {** }}$	$104805.4{ }^{\text {\% }}$
Genotypes (G)	143	326.6**	143	$12.5{ }^{* *}$	143	$5.1{ }^{* *}$	143	$300.9^{* *}$	644.1**
Variety (v_{i})	15	2057.0**	15	$54.1{ }^{* *}$	15	$9.7{ }^{* *}$	15	2069.2**	4211.9**
Heterosis (H)	120	94.2**	120	7.4	120	$4.6{ }^{*}$	120	77.9 **	192.7**
Average heterosis (\bar{h})	1	468.3**	1	6.7	1	2.1	1	3159.***	10543.8**
Variety heterosis (h_{i})	15	92.3**	15	5.0	15	4.1	15	61.1**	$136.1^{* *}$
Specific heterosis ($s_{i j}$)	104	90.9**	104	7.7	104	$4.7{ }^{*}$	104	50.6**	$101.4^{* *}$
Checks (C)	7	257.2^{*}	7	8.6	7	1.6	7	$251.2^{* *}$	291.2**
C vs. others	1	2759.1**	1	28.0	1	19.3*	1	877.5*	3700.4**
GxE	857	69.0 **	858	$9.1{ }^{* *}$	857	3.7	1429	24.3**	36.0**
$v_{i} \mathrm{x}$ E	90	138.0 **	90	$12.6{ }^{* *}$	90	4.0	150	$45.7{ }^{* *}$	$67.7{ }^{* *}$
HxE	720	50.7	720	9.0**	720	3.5	1200	18.3	27.2 **
$\bar{h} \times \mathrm{E}$	6	59.2	6	24.7 **	6	1.8	10	0.0	0.0
$h_{i} \times \mathrm{E}$	90	49.9	90	$10.7{ }^{* *}$	90	3.1	150	16.8	27.6
$s_{i j} \times \mathrm{E}$	624	50.7	624	8.6**	624	3.5	1040	19.0 *	28.3**********
CxE	42	84.5**	42	4.8	42	2.0	70	23.4*	35.8**
C vs. others x E	6	39.9	6	6.9	6	2.7	10	154.2**	272.4 **
Pooled error	838	50.3	841	7.1	837	4.0	1321	16.9	23.6
CV (\%)		37.1		159.9		119.0		5.3	3.1

Table B2. Grain yield ($\mathrm{Mg} \mathrm{ha}^{-1}$) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments.

Entry Pedigree	Type	2010				2011			2012			
		Casselton	Larimore	Prosper	Thompson	Larimore	Prosper	Thompson	Casselton	Larimore	Prosper	Thompson
1 Leaming(S-FS)C6 X EARLYGEM 21 c	Cross	3.8	2.8	6.4	4.7	6.6	3.5	5.9	1.8	2.8	5.9	5.1
2 Leaming(S-FS)C6 XNDSAB(MER-FS)C15	Cross	4.5	4.6	5.0	8.1	4.8	3.2	4.5	4.2	3.5	3.6	6.1
3 NDBSK(HI-M)C3 X NDSM(M-FS)C9	Cross	7.7	4.9	5.3	6.8	5.6	3.7	3.9	4.3	3.3	4.9	3.3
$4 \mathrm{BS} 21 \mathrm{AB}(\mathrm{R}-\mathrm{FR}) \mathrm{C} 1 \mathrm{XNDSAB} 21(\mathrm{R}-\mathrm{FR}) \mathrm{C} 1$	Check	5.8	6.1	5.1	9.2	8.3	4.0	4.7	2.3	2.7	4.6	4.6
5 EARLYGEM 2 la X EARLYGEM 2 lb	Cross	3.4	2.9	2.7	3.4	2.2	2.2	2.1		3.1	3.4	1.6
6 NDBS $1011 \mathrm{XNDSCD}(\mathrm{FS}-\mathrm{CS}) \mathrm{C} 2$	Cross	3.9	4.3	5.1	6.3	5.1	3.7	4.9	3.2	3.5	2.8	4.3
7 NDSS XNDL	Cross	5.8	6.3	5.7	6.5	6.5	2.6	7.0	2.6	5.3	5.1	5.2
8 NDBSK(HIM)C3 X EARLYGEM 21 lb	Cross	6.9	7.1	4.3	5.6	5.7	3.4	5.5	4.8	4.7	3.8	3.6
9 NDLXEARLYGEM 2 lb	Cross	6.1	4.7	6.1	6.2	6.5	4.5	5.5	2.8	3.7	4.7	4.6
10 NDBS 11(FR-M)C3 XEARLYGEM 21 c	Cross	5.4	5.7	5.1	3.9	4.5	4.1	5.7	3.4	4.9	3.9	4.8
11 NDBS 11(FR-M)C3	P arent	4.9	3.6	4.1	5.5	4.1	2.8	3.6	1.8	2.3	4.1	2.7
$12 \mathrm{NDBSK}(\mathrm{HF}-\mathrm{M}) \mathrm{C} 3 \mathrm{XNDSHLC}(\mathrm{M}-\mathrm{FS}) \mathrm{C} 5$	Cross	4.7	4.4	5.2	5.2	4.5	3.1	3.9	4.3	3.7	3.2	4.2
$13 \mathrm{NDSCD}(\mathrm{FS}-\mathrm{CS}) \mathrm{C} 2$	P arent	4.0	3.6	2.2	4.7	2.9	2.2	2.9	0.7	2.3	2.5	1.7
14 NDSHLC(M-FS)C5 XEARLYGEM 21 c	Cross	4.9	3.9	3.2	5.2	5.8	2.4	5.6	2.6	3.5	3.5	3.8
15 NDSS XNDBS22(R-T1)C9	Cross	5.6	5.8	7.2	6.8	7.1	3.9	7.1	4.3	2.7	6.5	4.7
16 Check 4 DKC 43-27 VT3	Check	10.9	7.4	11.4	11.8	10.3	5.8	9.9	2.8	4.9	7.6	10.2
17 NDSS XNDSHLC(M-FS)C5	Cross	4.6	2.9	5.1	3.5	3.5	3.1	4.3	2.3	3.3	2.7	5.4
18 EARLYGEM 2 lc	P arent	2.8	2.2	3.4	4.3	3.3	2.0	3.1		3.0	2.5	1.7
19 Leaming(S-FS)C6	P arent	3.8	2.8	2.9	5.7	2.4	3.7	4.9	1.8	3.7	2.0	2.3
20 NDBS $1011 \mathrm{XNDBS} 22(\mathrm{R}-\mathrm{T} 1) \mathrm{C} 9$	Cross	5.1	5.4	3.3	7.6	6.4	2.9	4.7	3.7	3.6	6.1	6.4
21 Leaming(S-FS)C6 X NDSHLC(M-FS)C5	Cross	5.5	4.6	3.6	6.4	4.4	2.4	3.8	2.6	3.4	2.5	4.4
22 NDBS 21 (R-T)C9 X NDSHLC(M-FS)C5	Cross	6.4	5.0	5.6	6.8	6.6	3.3	6.3	2.7	3.1	2.7	8.1
23 Check 1P IONEER 39V07	Check	7.2	6.5	11.5	11.1	8.9	3.7	9.5	3.5	6.3	6.3	7.7
24 NDCG(FS)C1XNDSAB(MER-FS)C 15	Cross	5.9	5.5	8.3	8.0	6.3	3.7	5.3	2.4	3.8	4.1	4.9
25 Leaming(S-FS)C6 X NDBS 22(R-T) C9	Cross	5.3	4.1	6.0	6.4	4.8	3.5	4.6	3.3	4.7	7.0	4.8
26 Leaming(S-FS)C6 X NDBS 21 (R-T) C 9	Cross	7.2	4.3	7.0	7.5	6.7	3.1	7.3	4.8	4.2	4.1	7.1
27 NDBSK(HI-M)C3 XEARLYGEM 21 a	Cross	6.6	5.4	4.8	5.1	5.3	4.1	5.8	3.6	4.0	3.2	6.4
28 NDL XLeaming(S-FS)C6	Cross	5.0	3.3	5.8	6.3	7.0	3.1	4.8	2.2	4.0	4.2	5.3
29 EARLYGEM 21 a XEARLYGEM 21 c	Cross	1.9	2.9	2.2	2.1	2.8	1.5	3.1		3.4	2.0	2.1
30 NDCG(FS)C1XEARLYGEM 21 b	Cross	6.0	3.7	6.5	5.7	5.0	4.9	4.6	2.0	3.6	4.7	6.3
31 Leaming(S-FS)C6 X NDSCD(FS-CS)C2	Cross	3.5	5.2	2.8	6.7	4.5	3.8	4.2	2.0	3.2	2.5	2.9
32 NDBSK(HIM)C3 XEARLYGEM 21 c	Cross	6.5	5.5	6.2	6.9	4.0	3.4	7.8	2.6	3.6	4.0	7.3
33 NDBS 1011 XEARLYGEM 2 lb	Cross	6.5	5.2	4.8	4.5	6.4	4.4	5.1	2.7	4.1	4.8	5.0
34 NDSCD(FS-CS)C2 XEARLYGEM 21 a	Cross	3.6	3.9	2.0	6.6	2.6	4.6	3.8	1.3	2.3	4.8	4.3
35 NDSS XEARLYGEM 2 lb	Cross	7.0	4.8	5.4	7.6	4.6	2.7	7.4	2.3	3.4	3.1	6.9
36 NDSAB(MER-FS)C 15 XNDSHLC(M-FS)C5	Cross	5.9	3.3	4.9	6.6	4.1	3.1	4.3	2.1	4.0	3.4	3.3
37 NDBS 11(FR-M)C3 X NDSCD(FS-CS)C2	Cross	5.9	5.0	5.8	8.1	5.8	4.8	4.7	2.0	3.4	3.4	4.6
38 NDCG(FS)C1XEARLYGEM 21 a	Cross	7.7	3.9	4.9	7.2	5.5	3.4	5.9	2.9	4.0	5.7	5.6
39 EARLYGEM 2 lb XEARLYGEM 21 c	Cross	3.8	1.8	2.8	2.9	2.4	2.1	3.6			2.1	2.0
40 NDBSK(HI-M)C3 X NDSAB (MER-FS)C 15	Cross	5.1	4.9	4.6	6.6	6.2	3.8	4.4	2.9	2.8	4.9	6.0

Table B2 (continued). Grain yield ($\mathrm{Mg} \mathrm{ha}^{-1}$) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments.

Entry Pedigree	Type	2010				2011			2012			
		Casselton	Larimore	Prosper	Thompson	Larimore	Prosper	Thompson	Casselton	Larimore	Prosper	Thompson
41 NDBS21(R-T)C9	P arent	3.9	3.5	3.6	4.8	4.1	2.8	5.0	2.3	2.4	2.7	3.3
42 NDSAB(MER-FS)C 15 XEARLYGEM 2 lb	Cross	5.0	3.9	3.5	6.7	5.2	3.0	6.0	3.3	4.4	5.5	5.2
43 NDBSK(HI-M)C3 X NDBS 22(R-T) C 9	Cross	4.8	6.5	3.9	5.6	7.9	2.6	3.7	2.9	3.5	4.3	5.7
44 NDSS XNDBSK(HI-M)C3	Cross	6.1	6.3	4.9	6.6	5.5	2.7	5.6	4.1	5.4	3.4	4.9
45 NDSS XLeaming(S-FS)C6	Cross	4.9	5.1	2.9	3.9	5.5	3.6	4.2	3.2	4.8	5.9	3.6
46 NDLXNDBS22(R-Tl)C9	Cross	5.1	5.5	5.7	5.4	5.7	2.9	6.5	3.9	3.9	4.5	6.5
47 NDSCD(FS-CS)C2 X NDSHLC(M-FS)C5	Cross	4.3	5.8	3.6	5.4	3.8	2.3	3.8	2.4	2.4	3.4	4.5
48 NDBS 11(FR-M)C3 X NDS AB (MER-FS)C 15	Cross	5.2	4.4	4.9	5.8	6.2	2.9	6.5	4.3	4.4	3.3	7.8
49 NDSS XNDSM(M-FS)C9	Cross	5.8	4.8	4.1	7.8	5.0	2.9	4.2	3.4	3.1	4.1	3.4
50 NDBS22(R-T1)C9 XEARLYGEM 21 l	Cross	4.1	5.3	4.7	3.5	5.5	3.1	6.2	4.0	3.6	4.5	6.4
51 NDBS 22(R-T1)C9	P arent	4.6	2.1	2.7	3.6	3.1	1.3	4.7	1.0	2.9	3.3	2.5
52 NDSS XNDBS 1011	Cross	5.9	4.3	5.3	7.0	5.3	4.1	6.2	2.8	3.0	4.2	5.4
53 NDL	P arent	8.0	4.5	6.3	5.4	4.4	2.6	5.8	1.7	4.2	3.4	3.7
54 NDBS 1011 Leaming(S-FS)C6	Cross	5.8	5.3	5.5	7.8	6.2	3.6	4.7	3.1	3.3	5.2	6.0
55 NDBSK(HIM)C3 X NDBS 1011	Cross	5.9	6.0	6.6	6.9	6.6	4.5	6.1	3.0	3.2	6.1	6.2
56 NDSAB(MER-FS)C15 X NDBS 21 (R-T)C9	Cross	6.2	5.4	5.9	6.6	7.9	2.6	5.5	3.8	5.1	5.1	8.5
57 NDBS 11(FR-M)C3 X NDBS22(R-Tl)C9	Cross	6.4	4.6	6.2	6.8	5.6	3.6	5.6	2.4	4.2	5.4	6.4
58 EARLYGEM 2 lb	P arent	3.1	2.2	3.1	2.6	2.7	1.3	1.9		1.7	2.2	2.5
59 NDSAB(MER-FS)C 15 X NDSM(M-FS)C9	Cross	5.1	4.2	6.0	6.0	5.1	2.1	5.6	2.3	2.8	2.6	4.7
60 Check 2 DKC 36-34 VT3	Check	11.7	7.5	10.1	11.5	11.3	3.5	6.7	7.3	6.3	8.3	10.4
61 NDBSK(HI-M)C3 X NDSCD(FS-CS) C 2	Cross	4.6	5.0	3.8	4.9	4.6	3.6	5.9	1.8	3.1	4.1	4.8
62 NDBS22(R-T) C 9 XEARLYGEM 21 c	Cross	4.4	5.3	6.0	4.3	6.1	3.0	5.2	2.2	3.7	3.7	6.2
63 NDL X NDBS 11(FR-M)C3	Cross	6.2	5.0	7.0	6.9	6.0	4.0	5.8	3.4	3.8	4.5	5.5
64 NDBS 11(FR-M)C3 X NDSHLC(M-FS)C5	Cross	3.1	3.1	5.5	4.1	4.2	2.6	3.8	2.2	2.5	3.9	4.0
65 NDBSK(HI-M)C3 X NDBS 21 (R-T)C9	Cross	7.3	7.2	7.4	6.4	6.3	5.0	7.6	3.1	2.3	3.8	5.2
66 NDBS 22(R-T1)C9 X NDSAB (MER-FS)C 15	Cross	7.1	5.6	5.0	7.2	5.1	2.8	3.7	4.9	3.0	3.6	4.2
67 NDBS22(R-T1)C9 X NDSHLC(M-FS)C5	Cross	4.2	5.1	4.2	3.3	4.6	2.2	4.6	2.5	4.4	3.0	6.3
68 NDSM(M-FS)C9 X NDBS 21 (R-T)C9	Cross	8.6	6.9	6.7	9.5	6.1	2.5	6.3	2.9	3.8	3.8	6.2
69 NDBSK(HI-M)C3 X NDBS 11(FR-M)C3	Cross	6.5	5.2	5.8	5.4	4.8	3.5	4.6	3.7	2.0	3.9	5.4
70 NDSS X NDBS 11(FR-M)C3	Cross	7.6	4.9	7.9	6.4	6.8	3.4	6.6	3.1	4.1	4.6	5.9
71 NDBSK(HIM)C3	P arent	7.2	5.9	7.1	6.2	5.5	1.6	5.1	1.9	2.9	2.6	4.2
72 NDSS X NDBS 21 (R-T)C9	Cross	7.7	5.8	4.9	6.5	6.1	3.4	5.3	3.6	2.7	3.5	6.3
73 NDSS XEARLYGEM 21 c	Cross	5.4	5.3	4.1	7.0	6.0	3.2	3.1	2.4	3.7	3.5	4.2
74 NDBS 11(FR-M)C3 X NDBS 1011	Cross	4.7	4.2	5.3	5.1	4.4	3.3	6.1	2.6	2.7	2.7	3.0
75 NDCG(FS)C1	P arent	3.5	4.5	4.2	5.4	4.9	2.6	4.1	1.7	2.7	3.9	3.3
76 NDSAB(MER-FS)C 15	P arent	4.3	2.4	2.7	4.0	4.2	2.5	5.2	2.5	3.4	2.9	3.8
77 NDSS XNDSCD(FS-CS)C2	Cross	4.8	5.5	3.2	6.8	4.3	3.0	6.2	2.1	3.8	3.4	3.4
78 NDBS 1011 X NDBS21(R-T)C9	Cross	6.5	6.3	5.8	5.7	5.2	3.4	6.7	2.3	3.3	3.3	6.2
79 NDSAB(MER-FS)C 15 XEARLYGEM 2 la	Cross	4.5	5.1	4.8	5.3	4.5	3.7	4.9	2.8	3.9	6.1	4.2
80 NDBS 21 (R-T) C9 X EARLYGEM 21 a	Cross	6.2	5.0	4.8	6.7	7.0	3.1	6.6	2.7	3.9	4.8	6.3

Table B2 (continued). Grain yield ($\mathrm{Mg} \mathrm{ha}^{-1}$) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments.

Table B2 (continued). Grain yield ($\mathrm{Mg} \mathrm{ha}^{-1}$) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments.

Entry Pedigree	Type	2010				2011			2012			
		Casselton	Larimore	Prosper	Thompson	Larimore	Prosper	Thompson	Casselton	Larimore	Prosper	Thompson
121 NDLXNDSHLC(M-FS)C5	Cross	4.6	3.8	6.3	6.8	4.4	2.7	4.6	2.4	3.7	4.5	4.3
122 NDL X NDSAB (MER-FS)C 15	Cross	5.8	4.0	3.9	6.0	7.3	4.7	5.5	4.1	4.2	3.1	3.8
123 NDCG(FS) C 1 X NDB S22(R-T1)C9	Cross	5.9	5.7	8.2	6.5	5.5	3.5	7.1	1.5	4.2	5.7	6.6
124 NDCG(FS)C1 ${ }^{\text {P }}$ NDSCD(FS-CS)C2	Cross	4.7	3.7	5.4	8.7	5.0	3.5	5.5	2.6	2.6	3.4	4.7
$125 \mathrm{CGSS} 21(\mathrm{~S}-\mathrm{FR}) \mathrm{C} 1 \mathrm{XBS} 21 \mathrm{CGSS}(\mathrm{R}-\mathrm{FR}) \mathrm{C} 1$	Check	6.8	5.3	5.4	4.8	5.4	3.8	5.8	2.3	4.7	4.9	4.6
126 NDCG(FS)C1XNDBS21(R-T)C9	Cross	6.4	4.8	7.4	8.4	5.0	3.7	7.1	3.0	4.9	4.7	7.0
127 NDBS 22(R-T1)C9 X NDBS21(R-T)C9	Cross	4.3	5.0	6.1	4.8	6.5	2.4	7.0	2.2	4.8	6.9	6.8
128 Leaming(S-FS)C6 XEARLYGEM 2 lb	Cross	3.9	3.6	4.8	5.9	6.6	5.2	6.6	2.9	5.6	4.9	5.3
129 NDBS 1011 X NDSM(M-FS)C9	Cross	4.8	4.6	4.6	6.3	6.1	3.0	5.1	3.2	2.7	4.3	5.3
130 NDLXEARLYGEM 21 c	Cross	5.9	5.0	6.6	6.5	5.6	3.8	5.6	3.6	3.5	4.1	5.3
131 NDL X NDSCD(FS-CS)C2	Cross	4.8	6.4	5.3	4.9	5.4	3.6	6.2	2.3	3.6	3.7	5.9
132 EARLYGEM 21 a	P arent	3.3	2.3	4.8	3.3	2.2	1.4	1.9		2.8	2.2	1.9
133 NDCG(FS)C1X NDBSK(HI-M)C3	Cross	5.0	3.8	4.6	5.9	6.6	3.3	7.1	2.4	3.6	3.1	5.3
134 NDSCD(FS-CS)C2 X EARLYGEM 21 c	Cross	5.7	3.9	4.9	7.0	4.7	3.7	4.5	2.2	2.3	2.2	4.4
135 NDCG(FS)C1XNDSM(M-FS)C9	Cross	6.2	4.7	6.0	5.1	3.8	3.8	4.0	3.2	2.9	4.8	3.8
136 NDSAB(MER-FS)C 15 X NDSCD(FS-CS)C2	Cross	4.0	4.5	4.1	7.0	4.5	3.4	3.6	2.4	3.5	2.3	4.4
137 NDSM(M-FS)C9 X EARLYGEM 21 c	Cross	6.9	5.5	6.7	6.6	5.2	2.9	4.0	1.8	3.1	3.7	4.0
138 Leaming(S-FS)C6 X EARLYGEM 2 la	Cross	5.1	4.9	6.2	6.3	4.4	4.5	6.1	2.5	4.5	7.1	4.8
139 NDSS XNDCG(FS)C1	Cross	3.6	3.7	5.2	5.0	4.1	3.8	6.1	2.0	3.8	4.9	6.0
140 NDSM(M-FS)C9 X NDSCD(FS-CS)C2	Cross	4.3	4.7	3.8	5.7	3.8	3.1	4.4	2.1	2.5	3.9	3.0
141 NDBS21(R-T)C9 X NDSCD(FS-CS)C2	Cross	6.8	5.6	5.6	8.1	5.3	3.0	5.3	2.7	2.4	5.4	5.2
142 NDCG(FS)C1 ${ }^{\text {d }}$ NDBS 1011	Cross	8.2	4.5	7.1	7.0	4.5	3.1	6.0	2.8	4.8	4.2	4.4
143 NDBS 1011 X EARLYGEM 21 a	Cross	5.8	4.8	5.5	4.8	5.6	3.3	6.8	3.3	2.9	6.5	5.1
144 NDSHLC(M-FS)C5	Parent	3.3	1.7	3.7	3.6	2.1	1.7	3.7	1.0	1.8	1.8	2.3
Experiment mean		5.5	4.8	5.4	6.1	5.3	3.3	5.4	2.8	3.6	4.2	4.9
Mean of parental populations		4.3	3.4	4.1	4.8	3.5	2.2	4.0	1.7	2.8	2.8	2.9
Mean of population crosses		5.5	4.8	5.3	6.0	5.4	3.4	5.5	2.8	3.6	4.2	5.0
Mean of checks		7.7	6.7	8.2	9.0	8.0	3.8	7.4	3.7	4.4	6.4	7.0
LSD (0.05)		2.1	2.5	2.2	2.2	2.0	1.6	2.6	1.8	1.7	2.2	2.7
CV		19.5	26.4	20.5	18.4	18.8	24.6	23.7	32.5	24.4	26.5	28.1
MSE		1.2	1.6	1.2	1.2	1.0	0.6	1.7	0.8	0.8	1.2	1.9

Table B3. Grain moisture ($\mathrm{g} \mathrm{kg}^{-1}$) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments.

Entry Pedigree	Type	2010				2011			2012			
		Casselton	Larimore	Prosper	Thompson	Larimore	Prosper	Thompson	Casselton	Larimore	Prosper	Thompson
1 Leaming(S-FS)C6 XEARLYGEM 21c	Cross	227.3	187.0	178.0	197.5	213.5	271.9	202.6	158.9	183.2	186.8	210.7
2 Leaming(S-FS)C6 XNDSAB(MER-FS)C15	Cross	218.3	208.5	182.0	208.5	226.0	296.0	190.5	198.4	168.4	187.0	203.8
3 NDBSK(HI-M)C3 X NDSM(M-FS)C9	Cross	244.5	239.5	198.5	250.5	271.0	365.0	221.0	197.3	195.5	190.1	204.7
$4 \mathrm{BS} 21 \mathrm{AB}(\mathrm{R}-\mathrm{FR}) \mathrm{C} 1 \mathrm{XNDSAB} 21(\mathrm{R}-\mathrm{FR}) \mathrm{C} 1$	Check	244.0	212.5	200.0	210.9	242.5	305.8	212.0	196.8	189.1	203.3	211.6
5 EARLYGEM 2 la X EARLYGEM 2 lb	Cross	176.2	184.5	175.5	178.4	199.0	292.8	211.2		160.6	180.2	207.6
6 NDBS $1011 \mathrm{XNDSCD}(\mathrm{FS}-\mathrm{CS}) \mathrm{C} 2$	Cross	218.1	218.5	209.0	221.5	251.0	309.2	217.0	193.6	182.9	189.7	208.9
7 NDSS XNDL	Cross	269.2	249.0	202.0	244.0	219.0	274.0	198.0	187.1	168.7	186.1	205.7
8 NDBSK(HI-M)C3 X EARLYGEM 21 b	Cross	235.3	195.5	191.0	199.0	210.5	252.1	202.4	188.9	178.9	198.7	220.4
9 NDL XEARLYGEM 2 lb	Cross	246.1	219.5	199.5	216.0	216.0	210.7	189.0	164.1	163.8	186.6	207.2
10 NDBS 11(FR-M)C3 XEARLYGEM 21 c	Cross	246.3	210.5	187.0	209.6	210.5	277.8	200.1	183.2	161.1	187.3	198.7
11 NDBS 11(FR-M)C3	P arent	266.6	262.0	198.0	245.0	250.5	325.4	210.0	200.5	191.3	193.4	208.4
12 NDBSK(HI-M)C3 X NDSHLC(M-FS)C5	Cross	287.0	310.0	276.0	267.1	324.5	390.8	273.9	249.2	227.9	239.5	257.6
$13 \mathrm{NDSCD}(\mathrm{FS}-\mathrm{CS}) \mathrm{C} 2$	P arent	233.2	250.0	187.0	216.0	220.5	325.3	222.2	145.9	193.6	195.6	224.9
14 NDSHLC(M-FS)C5 XEARLYGEM 21 c	Cross	252.2	229.0	219.5	226.5	258.0	360.4	227.7	195.9	216.5	207.4	231.6
15 NDSS XNDBS22(R-T1)C9	Cross	241.4	251.0	201.5	246.5	249.0	300.9	216.1	201.3	181.0	195.9	205.4
16 Check 4 DKC 43-27 VT3	Check	236.4	204.5	182.5	182.5	189.0	267.2	184.2	187.7	146.6	182.7	195.4
17 NDSS XNDSHLC(M-FS)C5	Cross	270.1	259.5	222.0	268.5	283.0	388.7	273.3	225.4	223.2	225.1	250.4
18 EARLYGEM 21 c	P arent	185.1	165.5	188.0	181.6	199.0	270.7	188.7		169.0	183.1	202.2
19 Leaming(S-FS)C6	P arent	246.1	201.5	209.0	213.0	227.5	291.3	215.2	172.5	186.3	172.9	223.9
20 NDBS $1011 \mathrm{XNDBS} 22(\mathrm{R}-\mathrm{Tl}) \mathrm{C} 9$	Cross	242.7	247.5	219.0	239.0	233.5	383.6	268.5	212.3	185.4	198.6	213.1
21 Leaming(S-FS)C6 X NDSHLC(M-FS)C5	Cross	273.5	256.0	225.0	257.0	305.0	371.6	248.2	205.1	207.8	239.0	238.5
22 NDBS21(R-T)C9 X NDSHLC(M-FS)C5	Cross	268.3	255.0	232.5	229.6	310.0	422.7	279.8	246.6	243.7	239.7	245.0
23 Check 1P IONEER 39V07	Check	17.1	152.5	172.0	149.0	172.0	189.9	166.6	183.9	138.3	178.7	185.7
24 NDCG(FS)C1XNDSAB(MER-FS)C 15	Cross	203.9	180.5	174.0	182.6	202.5	261.7	189.0	195.1	170.5	179.4	203.4
25 Leaming(S-FS)C6 X NDBS 22(R-T) C9	Cross	267.3	259.5	228.5	229.5	237.5	353.5	215.1	193.3	184.1	201.8	213.0
26 Leaming(S-FS)C6 XNDBS 21 (R-T)C9	Cross	257.9	205.5	194.0	225.5	229.5	299.2	222.0	198.8	185.5	228.0	232.2
27 NDBSK(HI-M)C3 X EARLYGEM 2 1a	Cross	236.5	219.5	209.0	211.0	234.0	334.6	239.4	191.2	184.5	199.0	207.5
28 NDL XLeaming(S-FS)C6	Cross	248.5	244.0	211.0	223.9	240.0	300.0	217.5	179.1	191.6	189.8	211.0
29 EARLYGEM 2 a X EARLYGEM 21 c	Cross	194.8	186.5	174.5	166.4	212.5	233.0	190.7		165.2	176.4	195.5
30 NDCG(FS)C1XEARLYGEM 21 b	Cross	209.7	193.0	177.5	171.0	191.5	235.9	186.5	177.0	156.0	181.2	222.3
31 Leaming(S-FS)C6 X NDSCD(FS-CS)C2	Cross	234.3	229.5	192.5	213.0	202.5	263.2	219.0	176.9	194.8	162.6	222.5
32 NDBS K(HI-M)C3 X EARLYGEM 21 c	Cross	229.8	224.0	196.5	199.5	222.0	287.8	216.9	180.7	189.4	192.7	211.3
33 NDBS 1011 XEARLYGEM 21 b	Cross	234.2	204.5	198.0	186.0	215.0	246.9	200.0	192.3	175.8	180.1	203.6
34 NDSCD(FS-CS)C2 X EARLYGEM 2 la	Cross	215.4	22.5	169.0	19.6	196.0	238.5	229.6	165.6	186.7	182.3	200.6
35 NDSS XEARLYGEM 2 lb	Cross	210.7	205.5	198.5	195.5	215.5	273.1	212.9	182.9	173.8	189.8	205.3
36 NDSAB(MER-FS)C 15 X NDSHLC(M-FS)C5	Cross	266.0	216.0	204.5	245.1	272.0	370.5	271.8	214.5	220.5	185.0	229.3
37 NDBS 11(FR-M)C3 X NDSCD(FS-CS)C2	Cross	231.2	265.0	198.0	214.5	213.0	246.5	204.1	193.4	182.0	181.0	199.7
38 NDCG(FS)C1XEARLYGEM 21 l	Cross	202.8	204.0	196.0	192.0	207.0	27.6	185.6	181.9	170.9	187.8	199.8
39 EARLYGEM 2 lb X EARLYGEM 21 c	Cross	183.4	184.0	191.5	173.5	206.0	261.1	187.0			174.2	175.2
40 NDBSK(HI-M)C3 X NDSAB (MER-FS)C 15	Cross	263.4	224.5	203.0	220.0	242.0	377.1	200.1	195.2	189.1	199.0	216.7

Table B3 (continued). Grain moisture ($\mathrm{g} \mathrm{kg}^{-1}$) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments.

Entry Pedigree	Type	2010				2011			2012			
		Casselton	Larimore	Prosper	Thompson	Larimore	Prosper	Thompson	Casselton	Larimore	Prosper	Thompson
41 NDBS21(R-T)C9	P arent	254.7	215.0	191.0	210.0	272.5	305.4	242.2	215.4	215.1	188.4	243.2
42 NDSAB(MER-FS)C 15 XEARLYGEM 2 lb	Cross	190.6	201.5	183.0	169.6	208.0	194.4	187.5	182.6	161.9	177.5	195.4
43 NDBSK(HI-M)C3 X NDBS 22(R-T) C 9	Cross	284.7	242.0	220.5	237.0	243.0	357.6	230.1	201.5	198.7	202.8	240.7
44 NDSS X NDBSK(HI-M)C3	Cross	254.2	283.5	212.5	233.0	240.5	300.8	267.4	199.3	205.4	206.4	232.9
45 NDSS XLeaming(S-FS)C6	Cross	216.6	225.0	188.5	213.0	222.0	315.3	226.6	177.6	182.3	192.4	211.7
46 NDLXNDBS22(R-T1)C9	Cross	278.3	268.5	206.0	231.6	216.0	337.9	232.7	195.1	177.1	183.1	207.2
47 NDSCD(FS-CS)C2 X NDSHLC(M-FS)C5	Cross	271.1	234.0	213.0	252.0	25.0	404.1	265.5	256.1	197.3	229.6	249.4
48 NDBS 11(FR-M)C3 X NDSAB(MER-FS)C 15	Cross	236.4	180.5	193.5	193.1	242.5	286.9	209.9	194.6	176.4	192.3	204.2
49 NDSS XNDSM(M-FS)C9	Cross	218.3	210.5	181.5	192.4	227.0	259.6	206.4	186.2	181.2	185.3	207.6
50 NDBS22(R-T1)C9 XEARLYGEM 21 l	Cross	243.9	202.0	205.0	210.4	228.0	322.8	207.4	190.7	181.1	185.5	207.8
51 NDBS 22(R-T1)C9	P arent	274.0	251.5	220.0	237.4	248.5	297.2	234.8	167.1	201.1	206.6	22.7
52 NDSS XNDBS 1011	Cross	273.0	284.5	200.0	238.4	241.5	389.0	199.9	188.5	188.2	188.3	209.6
53 NDL	P arent	254.3	260.0	203.0	240.4	255.0	302.5	244.1	165.2	174.7	188.7	213.1
54 NDBS 1011 XLeaming(S-FS)C6	Cross	248.7	286.5	201.5	236.5	237.5	306.0	198.9	200.9	181.6	200.7	219.9
55 NDBSK(HIM)C3 X NDBS 1011	Cross	290.8	292.0	232.5	262.9	256.0	367.7	24.4	205.8	210.4	202.6	240.6
56 NDSAB(MER-FS)C 15 X NDBS 21 (R-T)C9	Cross	215.8	208.0	190.5	201.9	231.0	341.9	220.3	200.1	184.0	193.7	208.4
57 NDBS 11(FR-M)C3 X NDBS 22 (R-Tl)C9	Cross	279.7	238.5	213.5	240.4	239.0	296.5	231.9	192.4	195.4	199.1	214.2
58 EARLYGEM 21 b	P arent	198.4	188.0	173.0	158.5	208.0	235.1	195.0		158.3	153.0	198.2
59 NDSAB(MER-FS)C 15 X NDSM(M-FS)C9	Cross	198.2	201.0	203.5	183.9	220.5	293.2	190.8	186.3	179.4	189.4	205.4
60 Check 2 DKC 36-34 VT3	Check	203.0	183.5	178.0	180.5	181.5	251.5	188.7	180.4	136.5	171.0	187.1
61 NDBSK(HI-M)C3 X NDSCD(FS-CS)C2	Cross	237.6	227.0	216.5	232.0	222.5	288.7	230.7	186.2	206.2	209.5	207.3
62 NDBS22(R-T1)C9 XEARLYGEM 21 c	Cross	223.1	199.0	204.0	206.5	232.5	224.9	206.2	187.0	191.0	183.7	204.0
63 NDL XNDBS 11(FR-M)C3	Cross	262.3	237.5	203.5	238.4	233.0	323.3	237.6	197.1	185.6	195.3	213.8
64 NDBS 11(FR-M)C3 X NDSHLC(M-FS)C5	Cross	276.3	269.0	251.5	270.4	279.5	403.6	278.7	230.6	205.2	220.0	249.8
65 NDBSK(HI-M)C3 X NDB S 21 (R-T)C9	Cross	270.0	266.0	222.0	245.4	250.0	370.6	251.8	210.3	205.2	216.9	249.8
66 NDBS 22(R-T1)C9 X NDSAB (MER-FS)C 15	Cross	250.4	199.5	212.0	211.5	213.5	328.6	217.7	188.4	186.6	191.0	222.0
67 NDBS22(R-T1)C9 X NDSHLC(M-FS)C5	Cross	268.0	270.5	232.5	205.4	328.5	360.3	284.7	235.9	260.9	215.8	256.3
68 NDSM(M-FS)C9 X NDBS 21 (R-T)C9	Cross	258.5	236.0	202.0	215.0	239.5	262.5	232.0	180.7	195.5	194.9	217.0
69 NDBSK(HIM)C3 X NDBS 11(FR-M)C3	Cross	266.4	269.5	225.0	265.4	270.5	297.1	249.2	201.9	173.4	206.8	221.4
70 NDSS XNDBS $11(\mathrm{FR}-\mathrm{M}) \mathrm{C} 3$	Cross	282.1	275.0	197.0	215.1	226.5	311.7	208.3	202.0	181.2	192.0	207.4
71 NDBSK(HIM)C3	P arent	266.9	210.5	217.0	263.4	267.0	311.3	273.1	209.8	202.4	207.6	232.5
72 NDSS XNDBS21(R-T)C9	Cross	245.3	233.0	205.0	217.0	223.0	314.1	240.5	206.5	189.0	199.2	218.3
73 NDSS XEARLYGEM 21 c	Cross	206.3	200.5	17.5	189.0	200.5	257.6	187.2	182.0	167.2	179.3	190.4
74 NDBS 11(FR-M)C3 X NDBS 1011	Cross	243.3	265.0	194.0	254.5	280.5	310.8	242.1	172.1	190.1	197.0	215.1
75 NDCG(FS)C1	P arent	211.5	203.0	178.0	181.0	197.5	244.2	186.1	184.0	156.6	185.6	204.4
76 NDSAB(MER-FS)C15	P arent	237.5	200.5	186.5	209.4	227.5	288.0	204.1	183.4	174.7	186.3	203.4
77 NDSS XNDSCD(FS-CS)C2	Cross	237.7	210.0	234.0	222.4	215.0	255.0	205.3	192.6	174.3	181.7	203.9
78 NDBS 1011 X NDBS $21(\mathrm{R}-\mathrm{T}) \mathrm{C} 9$	Cross	266.2	242.0	217.0	247.5	239.5	296.0	246.6	201.7	197.1	208.8	243.6
79 NDSAB(MER-FS)C 15 X EARLYGEM 2 la	Cross	236.7	200.0	195.0	171.5	200.5	266.2	201.2	188.2	162.9	182.6	194.9
80 NDBS 21 (R-T)C9 X EARLYGEM 21 l	Cross	214.8	199.5	193.0	176.0	227.5	273.4	217.5	189.0	189.0	182.2	209.1

Table B3 (continued). Grain moisture ($\mathrm{g} \mathrm{kg}^{-1}$) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments.

Entry	Pedigree	Type	2010				2011			2012			
			Casselton	Larimore	Prosper	Thompson	Larimore	Prosper	Thompson	Casselton	Larimore	Prosper	Thompson
81	NDBS 11(FR-M)C3 X NDSM(M-FS)C9	Cross	250.1	223.0	202.0	219.0	218.0	278.0	211.6	175.2	154.4	190.1	211.0
82	NDBSK(HIM)C3 X Leaming(S-FS)C6	Cross	255.9	205.5	211.5	245.6	254.5	295.6	214.7	190.3	185.8	202.8	200.5
83	NDL X NDBS 21 (R-T)C9	Cross	252.7	235.5	213.0	247.0	268.0	288.2	255.6	200.6	179.9	200.4	220.1
84	NDSM(M-FS) C 9	P arent	199.0	196.0	168.0	170.1	228.5	274.5	202.0	171.5	180.6	192.6	206.4
85	NDSS XNDSAB(MER-FS)C 15	Cross	231.0	220.0	192.0	198.0	219.5	252.4	212.8	185.3	17.4	189.5	
86	Leaming(S-FS)C6 X NDSM(M-FS)C9	Cross	216.5	229.5	193.5	194.0	249.5	235.6	200.2	198.3	167.7	186.8	207.7
87	NDCG(FS)C1XNDBS 11(FR-M)C3	Cross	249.7	225.5	196.0	219.5	197.5	270.0	193.6	181.2	168.4	181.3	194.5
88	NDSHLC(M-FS)C5 XEARLYGEM 21 a	Cross	263.2	238.5	202.0	228.0	259.5	314.8	233.7	192.1	210.5	200.0	226.4
89	NDBS 1011	Parent	266.4	290.5	222.5	282.5	264.0	402.8	271.4	194.8	188.0	195.4	201.4
90	NDBS 1011 X NDSAB (MER-FS)C 15	Cross	243.4	264.5	196.0	222.1	227.5	326.8	204.2	204.5	183.8	187.5	213.7
91	Check 3 P IONEER 39N99	Check	234.0	222.5	200.5	182.0	217.5	208.0	200.2	177.9	140.6	177.3	189.0
92	NDSM(M-FS)C9 X NDSHLC(M-FS)C5	Cross	266.0	228.0	215.0	237.0	271.5	309.2	224.6	235.3	219.3	213.4	244.2
93	BS 22LEAM (R-FR)C1XLEAMING22 (S-FR)C1	Check	262.9	220.5	216.5	236.5	243.5	321.3	226.2	221.5	201.2	198.9	235.0
94	NDL X NDBS 1011	Cross	274.1	238.5	202.5	235.6	272.5	331.9	227.3	195.6	180.5	198.6	219.0
95	NDBS 22(R-T1)C9 X NDSM(M-FS)C9	Cross	237.4	228.0	191.5	236.5	240.0	329.5	209.1	172.4	190.2	188.1	219.2
96	NDL X NDSM(M-FS)C9	Cross	253.2	241.5	193.5	212.6	225.5	298.3	217.0	198.6	158.3	188.8	204.4
97	NDSS	Parent	237.2	243.5	199.0	198.5	209.5	277.7	207.0	188.6	184.1	184.9	216.8
98	NDBS22(R-T1)C9 X NDSCD(FS-CS)C2	Cross	264.3	253.0	219.0	224.5	237.5	308.3	214.9	177.1	184.5	190.6	213.5
99	NDCG(FS)C 1 X NDSHLC(M-FS)C5	Cross	24.9	200.5	210.5	218.9	249.5	322.8	212.4	206.8	204.5	212.7	219.8
100	NDL X NDBSK(HI-M)C3	Cross	254.9	266.5	222.5	249.4	24.0	371.1	229.0	203.4	190.6	192.9	232.8
10	NDBS22(R-T1)C9 XEARLYGEM 2 lb	Cross	231.2	199.5	204.5	215.4	215.0	278.6	237.1	158.1	187.7	189.8	207.3
102	NDBS 1011 X NDSHLC(M-FS)C5	Cross	294.1	296.0	250.0	271.5	268.0	377.5	281.4	237.3	229.0	214.3	275.6
103	NDSHLC(M-FS)C5 XEARLYGEM 2 lb	Cross	266.7	219.0	219.5	214.9	252.5	319.8	210.0	195.2	202.3	205.2	218.3
104	NDBS 21 (R-T)C9 X EARLYGEM 21 l	Cross	222.7	199.0	193.0	189.5	206.5	269.4	209.3	200.0	190.4	196.3	207.5
105	CGL(S-FR2)C1X B S $21 \mathrm{CGL}(\mathrm{R}-\mathrm{FR} 2) \mathrm{C} 1$	Check	252.6	252.0	191.5	237.4	260.5	299.0	221.0	203.3	192.8	216.7	217.9
106	NDSAB(MER-FS)C 15 XEARLYGEM 21 c	Cross	211.8	196.5	189.0	191.1	211.5	224.1	194.6	185.3	162.2	180.9	203.9
107	NDBS 11(FR-M)C3 X EAR LYGEM 2 la	Cross	243.1	226.5	210.0	213.9	203.0	269.7	208.4	170.7	158.8	185.5	204.0
108	NDCG(FS)C1X Leaming(S-FS)C6	Cross	242.4	183.5	181.5	197.0	200.5	255.1	195.8	184.8	161.0	183.6	198.3
109	NDSM(M-FS)C9 XEARLYGEM 21 a	Cross	218.7	222.0	188.0	204.1	210.0	324.6	196.0	178.0	184.6	191.0	197.9
110	NDBS 21 (R-T)C9 X EARLYGEM 2 lb	Cross	219.2	195.0	199.5	189.6	235.5	217.2	204.4	192.5	191.5	202.2	213.5
11	NDSCD(FS-CS)C2 X EARLYGEM 2 lb	Cross	210.9	194.0	187.5	215.0	219.0	229.9	192.9	182.9	179.1	181.2	200.4
112	NDSS XEARLYGEM 2 1a	Cross	218.9	220.0	178.5	189.0	203.0	260.0	200.5	189.8	175.7	189.5	208.8
113	NDCG(FS)C1XEARLYGEM 21 c	Cross	222.6	199.0	169.0	184.0	197.0	249.5	186.6	174.0	157.7	177.9	200.9
114	NDCG(FS)C1XNDL	Cross	252.5	226.5	194.0	249.1	196.5	299.9	202.9	169.7	167.0	180.4	201.6
115	NDLXEARLYGEM 21 a	Cross	234.6	204.5	190.0	209.1	225.0	264.2	187.0	184.0	175.3	180.7	200.9
116	NDSM(M-FS)C9 XEARLYGEM 2 lb	Cross	212.2	195.0	172.0	175.1	208.5	247.8	216.8	146.4	172.5	199.4	211.6
117	NDBS $11(\mathrm{FR}-\mathrm{M}) \mathrm{C} 3$ X NDBS $21(\mathrm{R}-\mathrm{T}) \mathrm{C} 9$	Cross	259.5	265.0	196.5	232.0	254.5	284.4	253.0	205.2	188.9	213.3	224.9
118	NDBS 1011 XEARLYGEM 21 c	Cross	264.7	215.5	201.0	207.2	198.5	309.0	213.6	183.7	187.2	189.0	199.9
119	NDBS 11(FR-M)C3 X EARLYGEM 21 b	Cross	230.0	239.0	197.0	199.0	236.0	302.1	198.9	169.0	185.9	191.5	198.1
120	NDBS 11(FR-M)C3 XLeaming(S-FS)C6	Cross	254.4	215.5	204.5	232.1	229.0	298.0	229.3	202.7	181.5	186.7	210.4

Table B3 (continued). Grain moisture ($\mathrm{g} \mathrm{kg}^{-1}$) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments.

Table B4. Test weight $\left(\mathrm{kg} \mathrm{hL}^{-1}\right)$ adjusted means of 16 maize populations, 120 crosses, and 8 checks across 10 environments. Entry Pedigree

Entry Pedigree	Type	20				2011			2012		
		Casselton	Larimore	Prosper	Thompson	Larimore	Prosper	Thompson	Larimore	Prosper	Thompson
1 Leaming(S-FS)C6 XEARLYGEM 21 c	Cross	64.2	68.9	69.3	65.6	70.2	59.3	65.8		69.6	68.4
2 Leaming(S-FS)C6 XNDSAB(MER-FS)C15	Cross	65.3	67.7	71.0	65.0	67.3	58.4	67.3	59.6	62.0	65.8
3 NDBSK(HI-M)C3 X NDSM(M-FS)C9	Cross	65.1	64.3	68.8	61.2	65.9	59.4	58.9	64.0	69.4	66.8
$4 \mathrm{BS} 21 \mathrm{AB}(\mathrm{R}-\mathrm{FR}) \mathrm{C} 1 \mathrm{XNDSAB} 21(\mathrm{R}-\mathrm{FR}) \mathrm{C} 1$	Check	65.1	66.4	70.6	66.6	66.8	60.8	64.8	57.6	65.4	63.1
5 EARLYGEM 2 la XEARLYGEM 2 lb	Cross	70.5	72.9	74.4	68.8	71.8	60.6	56.8	71.6	70.3	66.7
6 NDBS $1011 \mathrm{XNDSCD}(\mathrm{FS}-\mathrm{CS}) \mathrm{C} 2$	Cross	65.3	66.0	68.6	66.1	64.6	59.1	65.5	65.6	53.4	65.1
7 NDSS XNDL	Cross	62.9	64.4	68.1	62.6	68.5	59.6	64.1	68.3	66.6	67.0
8 NDBSK(HI-M)C3 XEARLYGEM 2 lb	Cross	64.6	69.6	69.9	66.6	70.4	60.9	67.1	69.9	65.4	59.9
9 NDL XEARLYGEM 21 b	Cross	65.2	68.8	69.0	64.5	69.4	63.8	67.5	70.3	68.4	67.3
10 NDBS 11(FR-M)C3 XEARLYGEM 21c	Cross	64.0	67.4	69.7	62.3	66.8	62.5	66.4	69.6	69.6	67.7
11 NDBS 11(FR-M)C3	P arent	62.8	65.2	68.6	60.2	63.4	58.9	59.6		65.2	65.3
$12 \mathrm{NDBSK}(\mathrm{HI}-\mathrm{M}) \mathrm{C} 3 \mathrm{XNDSHLC}(\mathrm{M}-\mathrm{FS}) \mathrm{C} 5$	Cross	67.1	65.1	65.3	64.2	64.6	59.6	61.8	65.7	63.6	64.0
$13 \mathrm{NDSCD}(\mathrm{FS}-\mathrm{CS}) \mathrm{C} 2$	P arent	64.0	62.3	70.4	62.8	63.6	58.8	62.1	53.0	52.4	
14 NDSHLC(M-FS)C5 XEARLYGEM 21 c	Cross	65.7	64.9	68.4	64.4	67.3	58.8	67.2	69.8	60.3	64.7
15 NDSS XNDBS22(R-T1)C9	Cross	64.4	63.4	69.2	60.7	64.3	59.4	62.6	65.7	66.4	63.8
16 Check 4 DKC 43-27 VT3	Check	63.3	66.3	68.6	64.3	69.6	59.6	65.7	67.9	67.2	66.9
17 NDSS XNDSHLC(M-FS)C5	Cross	64.4	65.4	65.7	59.8	63.3	58.1	59.5	63.5		61.4
18 EARLYGEM 2 lc	P arent	68.9	74.5	72.0	70.4	73.9	63.6	70.4	56.8	53.4	
19 Leaming(S-FS)C6	P arent	61.3	66.7	65.4	60.9	60.2	60.6	63.7	67.7		61.3
20 NDBS $1011 \mathrm{XNDBS} 22(\mathrm{R}-\mathrm{Tl}) \mathrm{C} 9$	Cross	65.6	64.6	66.1	63.3	66.4	58.6	59.2	68.9	68.4	67.0
21 Leaming(S-FS)C6 X NDSHLC(M-FS)C5	Cross	62.4	63.3	66.5	62.4	65.1	59.8	63.0	66.9	57.6	61.8
22 NDBS21(R-T)C9 X NDSHLC(M-FS)C5	Cross	67.2	65.1	68.3	62.6	64.8	62.8	62.7	63.5	65.5	66.6
23 Check 1P IONEER 39V07	Check	66.0	70.2	69.5	67.4	72.3	62.1	66.2	69.9	67.6	68.1
$24 \mathrm{NDCG}(\mathrm{FS}) \mathrm{C} 1 \mathrm{XNDSAB}(\mathrm{MER-FS}) \mathrm{C} 15$	Cross	66.7	70.0	70.1	65.8	71.4	62.8	68.5	67.2	65.6	66.6
25 Leaming(S-FS)C6 XNDBS22(R-T) C9	Cross	63.9	66.6	66.0	59.0	65.4	58.4	62.6	68.9	67.9	67.7
26 Leaming(S-FS)C6 XNDBS 21 (R-T)C9	Cross	65.1	66.8	68.0	65.1	69.2	58.3	62.4	68.6	61.6	63.8
27 NDBSK(HIM)C3 XEARLYGEM 21 a	Cross	66.0	66.9	68.9	64.7	69.7	61.1	63.9	67.9	63.9	67.5
28 NDL XLeaming(S-FS)C6	Cross	62.2	63.1	65.9	60.1	66.6	58.9	63.6	67.4	65.4	63.0
29 EARLYGEM 2 1a XEARLYGEM 21 c	Cross	68.7	71.9	71.9	71.0	64.4	67.3	65.8	69.9		62.7
30 NDCG(FS)C1XEARLYGEM 21 b	Cross	68.0	69.8	71.2	67.7	75.6	65.5	71.0	70.6	62.5	69.4
31 Leaming(S-FS)C6 X NDSCD(FS-CS)C2	Cross	60.6	63.8	66.3	59.6	68.3	56.6	63.7	63.5	53.8	59.7
32 NDBSK(HIM)C3 XEARLYGEM 21 c	Cross	66.6	67.4	68.5	67.1	70.0	64.0	65.4	70.4	68.1	66.6
33 NDBS 1011 X EARLYGEM 2 lb	Cross	64.5	67.8	69.9	68.1	70.5	62.1	67.0	69.8	69.6	68.5
34 NDSCD(FS-CS)C2 XEARLYGEM 2 1a	Cross	65.7	66.2	70.3	68.1	71.0	61.3	61.7	67.9	68.2	65.8
35 NDSS XEARLYGEM 2 lb	Cross	65.3	67.6	68.2	65.2	70.4	62.0	64.7	64.4	61.8	67.4
36 NDSAB(MER-FS)C 15 X NDSHLC(M-FS)C5	Cross	65.7	67.8	68.8	65.3	65.8	60.4	62.4	66.9	66.3	60.4
37 NDBS 11(FR-M)C3 X NDSCD(FS-CS)C2	Cross	63.6	62.9	66.6	61.5	67.1	61.4	64.6	67.5	68.6	67.5
38 NDCG(FS)C1XEARLYGEM 21 l	Cross	67.2	68.9	69.7	68.9	74.3	63.0	70.7	70.3	69.6	70.0
39 EARLYGEM 2 lb X EARLYGEM 21 c	Cross	69.9	72.1	69.3	68.3	72.9	63.7	70.8			
40 NDBSK(HI-M)C3 X NDSAB(MER-FS)C 15	Cross	63.1	66.9	70.4	66.8	66.6	57.9	66.4	71.0	65.9	67.9

Table B4 (continued). Test weight ($\mathrm{kg} \mathrm{hL}^{-1}$) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 10 environments.

Entry Pedigree	Type	2010				2011			2012		
		Casselton	Larimore	Prosper	Thompson	Larimore	Prosper	Thompson	Larimore	Prosper	Thompson
41 NDBS21(R-T)C9	P arent	65.1	67.9	70.7	64.3	66.3	61.6	63.3	65.2	66.5	63.2
42 NDSAB(MER-FS)C 15 XEARLYGEM 2 lb	Cross	69.2	68.5	71.9	69.1	72.4	63.5	71.5	71.9	69.6	70.3
$43 \mathrm{NDBSK}(\mathrm{HI}-\mathrm{M}) \mathrm{C} 3 \mathrm{X}$ NDBS 22 (R-T 1)C9	Cross	64.3	66.3	67.6	64.0	69.2	58.3	61.9	59.1	64.2	63.5
44 NDSS XNDBSK(HI-M)C3	Cross	64.2	63.4	66.3	62.6	66.6	58.6	60.7	66.2	64.1	63.7
45 NDSS XLeaming(S-FS)C6	Cross	62.6	64.4	69.4	60.4	65.3	56.8	62.2	69.3	64.0	59.4
46 NDL XNDBS22(R-Tl)C9	Cross	61.6	61.6	69.4	64.3	69.7	58.4	65.5	68.3	61.1	67.7
47 NDSCD(FS-CS)C2 X NDSHLC(M-FS)C5	Cross	63.2	64.3	68.3	62.3	66.6	58.8	60.3	63.1	53.8	61.6
48 NDBS 11(FR-M)C3 X NDSAB(MER-FS)C 15	Cross	63.4	70.1	67.0	65.9	66.6	59.3	61.7	65.0	65.1	65.2
49 NDSS XNDSM(M-FS)C9	Cross	64.0	65.8	69.8	69.3	65.6	60.1	67.2	53.0	67.8	64.1
50 NDBS22(R-T1)C9 XEARLYGEM 21 l	Cross	65.1	68.8	71.2	65.8	69.7	59.6	67.5	60.4	69.9	66.7
51 NDBS 22(R-T1)C9	Parent	63.8	63.1	67.2	62.1	65.9	61.7	64.5	71.0	64.5	59.5
52 NDSS XNDBS 1011	Cross	63.9	61.8	68.3	61.3	64.8	62.1	63.0	55.6	67.4	64.0
53 NDL	P arent	63.4	62.3	67.8	58.8	66.1	60.6	62.6	68.6	58.9	62.3
54 NDBS 1011 XLeaming(S-FS)C6	Cross	63.9	60.6	69.2	63.6	64.3	58.1	63.6	68.1	67.4	63.2
55 NDBSK(HIM)C3 X NDBS 1011	Cross	63.7	62.9	66.9	61.7	64.1	59.1	61.5	62.2	64.8	62.6
56 NDSAB(MER-FS)C 15 XNDBS 21 (R-T)C9	Cross	66.2	69.6	70.3	66.9	71.1	59.3	65.6	68.6	69.1	66.9
57 NDBS 11(FR-M)C3 X NDBS 22 (R-Tl)C9	Cross	64.5	65.9	68.0	63.6	65.8	59.8	62.3	69.1	67.1	64.3
58 EARLYGEM 2 lb	Parent	69.1	68.7	74.0	71.4	73.8	50.2	67.7	50.4		55.6
59 NDSAB(MER-FS)C 15 X NDSM(M-FS)C9	Cross	68.8	72.1	68.9	67.4	69.0	58.4	68.0	67.4	56.8	66.3
60 Check 2 DKC 36-34 VT3	Check	66.8	68.7	69.0	67.7	71.1	60.6	66.0	67.2	69.9	68.0
61 NDBSK(HI-M)C3 X NDSCD(FS-CS)C2	Cross	62.0	64.9	66.9	60.9	67.6	57.8	63.6	65.6	65.2	60.5
62 NDBS 22(R-T1)C9 XEARLYGEM 21 c	Cross	64.3	69.3	70.6	66.3	72.1	61.8	69.6	70.4	62.4	69.3
63 NDL X NDBS 11(FR-M)C3	Cross	62.1	66.8	67.3	64.6	65.3	60.3	61.8	66.4	64.7	64.3
64 NDBS 11(FR-M)C3 X NDSHLC(M-FS)C5	Cross	64.3	66.4	66.2	58.8	62.9	57.4	61.3	69.3	65.0	60.7
65 NDBSK(HI-M)C3 X NDBS 21 (R-T) C 9	Cross	64.9	63.9	67.1	64.3	65.8	59.8	62.5	59.9	68.1	61.2
66 NDBS 22(R-T1)C9 X NDSAB (MER-FS)C 15	Cross	63.5	67.0	66.0	66.2	68.3	58.7	64.0	64.9	68.6	59.5
67 NDBS22(R-T1)C9 X NDSHLC(M-FS)C5	Cross	63.4	63.4	66.8	66.1	63.3	60.7	61.5	68.9	64.1	64.3
68 NDSM(M-FS)C9 X NDBS 21 (R-T)C9	Cross	65.8	65.1	70.2	65.2	69.9	59.5	66.3	70.6	66.4	68.2
69 NDBSK(HI-M)C3 X NDBS 11(FR-M)C3	Cross	63.7	62.9	67.4	62.2	64.6	62.1	61.0	59.8	67.6	60.9
70 NDSS XNDBS 11(FR-M)C3	Cross	63.9	64.6	68.9	60.6	67.3	58.4	61.9	66.5	65.0	64.4
71 NDBSK(HIM)C3	Parent	65.6	68.9	67.8	62.9	65.3	49.9	62.3	65.4		63.2
72 NDSS XNDBS $21(\mathrm{R}-\mathrm{T}) \mathrm{C} 9$	Cross	66.4	66.4	70.1	65.4	67.3	57.3	62.7	61.8	61.4	64.7
73 NDSS XEARLYGEM 21 c	Cross	67.3	66.9	72.7	66.7	72.8	61.1	66.6	69.3	66.4	62.7
74 NDBS 11(FR-M)C3 X NDBS 1011	Cross	63.6	63.6	67.4	61.7	63.6	59.4	60.1	57.1	56.3	63.6
75 NDCG(FS)C1	Parent	66.4	67.8	70.5	64.9	72.4	62.1	65.2	68.4	64.3	59.1
76 NDSAB(MER-FS)C 15	P arent	63.7	69.0	71.1	64.4	66.6	59.4	65.6	66.9		65.3
77 NDSS XNDSCD(FS-CS)C2	Cross	62.0	66.3	64.1	60.4	65.4	58.3	62.4	67.6	60.8	62.7
78 NDBS 1011 X NDBS 21 (R-T)C9	Cross	63.4	65.3	67.1	65.7	65.6	60.3	62.0	62.5	63.6	65.3
79 NDSAB(MER-FS)C 15 X EARLYGEM 2 la	Cross	67.7	68.2	70.4	68.8	72.6	61.4	64.7	66.1	69.6	69.6
80 NDBS21(R-T)C9 XEARLYGEM 21 a	Cross	69.6	71.1	71.5	68.1	70.2	62.7	64.8	68.7	68.7	70.4

Table B4 (continued). Test weight ($\mathrm{kg} \mathrm{hL}^{-1}$) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 10 environments.

Entry Pedigree	Type	2010				2011			2012		
		Casselton	Larimore	Prosper	Thompson	Larimore	Prosper	Thompson	Larimore	Prosper	Thompson
81 NDBS 11(FR-M)C3 X NDSM(M-FS)C9	Cross	65.1	66.8	68.6	64.6	69.3	62.7	62.8	69.3	64.9	66.5
$82 \mathrm{NDBSK}(\mathrm{HI}-\mathrm{M}) \mathrm{C} 3$ X Leaming(S-FS)C6	Cross	63.0	62.8	66.1	61.1	64.9	60.6	61.5	68.8	66.0	67.2
83 NDL X NDBS 21 (R-T)C9	Cross	65.3	66.2	67.2	63.5	65.4	62.3	61.3	68.6	67.9	65.7
84 NDSM(M-FS)C9	P arent	71.3	71.2	73.9	68.9	69.4	60.9	67.1	57.8	56.8	63.7
85 NDSS XNDSAB(MER-FS)C 15	Cross	64.1	64.2	68.4	65.6	68.5	60.1	62.4	67.1	65.5	
86 Leaming(S-FS)C6 X NDSM(M-FS)C9	Cross	65.2	66.0	66.9	63.4	67.8	63.0	65.7	67.5	52.0	66.9
87 NDCG(FS)C1 ${ }^{\text {N }}$ NDBS 11(FR-M)C3	Cross	64.8	65.8	67.8	59.8	72.4	60.1	65.1	69.4	69.1	69.5
88 NDSHLC(M-FS)C5 XEARLYGEM 21 a	Cross	64.3	68.0	69.6	62.9	68.5	60.6	65.5	69.9	67.5	66.3
89 NDBS 1011	P arent	66.0	63.6	65.4	61.0	65.6	57.1	60.8	70.8	54.0	69.3
90 NDBS 1011 XNDSAB(MER-FS)C 15	Cross	63.7	63.2	70.3	64.8	68.3	59.3	65.6	69.6	65.5	66.0
91 Check 3 P IONEER 39N99	Check	63.4	66.1	66.9	67.8	70.9	57.3	66.4	70.6	67.7	69.4
92 NDSM(M-FS)C9 XNDSHLC(M-FS)C5	Cross	65.2	66.8	67.8	62.2	64.4	59.4	64.4	66.4	65.9	62.6
93 B 22 LEAM (R-FR)C 1 XLEAMING22 (S-FR)C1	Check	63.0	63.5	66.5	59.3	61.1	56.9	60.4	64.3	68.3	61.6
94 NDL XNDBS 1011	Cross	64.2	65.3	67.4	64.9	66.6	62.4	62.5	68.4	64.9	65.6
95 NDBS 22(R-T1)C9 X NDSM(M-FS)C9	Cross	65.8	67.6	71.1	60.3	67.8	58.1	67.0	68.1	54.6	66.3
96 NDL XNDSM(M-FS)C9	Cross	64.2	60.5	68.8	68.7	67.6	58.9	65.3	68.8	67.9	65.6
97 NDSS	P arent	63.4	65.1	68.7	63.8	67.2	60.2	61.4		64.3	61.7
98 NDBS22(R-T1)C9 X NDSCD(FS-CS)C2	Cross	64.2	61.7	66.3	64.5	68.4	58.3	62.7	68.3	57.8	61.8
99 NDCG(FS)C1XNDSHLC(M-FS)C5	Cross	65.4	69.1	67.2	64.9	65.9	61.6	68.1	64.2	66.4	61.6
100 NDL X NDBSK(HFM)C3	Cross	63.0	64.9	65.8	62.8	67.7	59.1	63.2	63.6	64.9	61.3
101 NDBS 22(R-T1)C9 XEARLYGEM 2 lb	Cross	67.7	68.9	68.9	63.3	71.8	60.8	66.0	68.8	70.1	67.8
102 NDBS 1011 X NDSHLC(M-FS)C5	Cross	63.7	64.0	64.3	59.3	64.9	63.1	63.2	65.2	66.6	61.8
103 NDSHLC(M-FS)C5 X EARLYGEM 2 lb	Cross	66.5	68.6	67.1	65.4	69.7	54.2	66.8	69.9	67.2	66.3
104 NDBS 21 (R-T)C9 X EARLYGEM 21 c	Cross	67.5	70.0	69.4	70.0	72.9	64.0	69.4	70.6	71.8	70.1
$105 \mathrm{CGL}(\mathrm{S}-\mathrm{FR} 2) \mathrm{C} 1 \mathrm{XBS} 21 \mathrm{CGL}(\mathrm{R}-\mathrm{FR} 2) \mathrm{C} 1$	Check	66.0	66.5	70.6	65.6	63.4	60.8	62.4	66.9	62.1	65.1
106 NDSAB(MER-FS)C 15 XEARLYGEM 21 c	Cross	65.4	69.3	71.3	67.1	72.2	63.9	67.8	70.4	65.2	67.5
107 NDBS 11(FR-M)C3 X EARLYGEM 21 l	Cross	65.8	65.7	68.3	64.1	72.2	62.5	66.0	70.3	69.3	66.2
108 NDCG(FS)C1XLeaming(S-FS)C6	Cross	64.0	67.6	70.3	68.0	70.6	60.1	66.4	66.9	68.9	65.8
109 NDSM(M-FS)C9 X EARLYGEM 21 l	Cross	65.7	65.7	71.4	64.1	72.9	61.9	70.4	69.1	66.5	61.9
110 NDBS 21 (R-T)C9 X EAR LYGEM 21 b	Cross	67.0	68.8	71.3	70.8	71.1	65.4	69.7	70.8	69.1	68.3
111 NDSCD(FS-CS)C2 X EARLYGEM 21 b	Cross	65.3	70.1	70.3	58.2	69.1	63.0	67.0	61.3	68.3	64.9
112 NDSS XEARLYGEM 21 a	Cross	66.0	66.5	71.2	63.3	71.4	60.8	66.0	64.1	67.2	64.3
113 NDCG(FS)C1XEARLYGEM 21 c	Cross	65.8	71.3	71.9	68.9	73.9	64.0	69.6	70.1	- 69.8	68.0
114 NDCG(FS)C1XNDL	Cross	63.4	66.8	69.0	62.8	69.3	64.7	69.1	68.1	65.4	68.4
115 NDLXEARLYGEM 21 a	Cross	65.1	67.3	70.2	63.8	69.4	63.8	68.9	68.9	69.1	67.0
116 NDSM(M-FS)C9 X EARLYGEM 21 b	Cross	65.9	69.4	73.7	68.8	72.8	64.7	66.9	58.4	69.3	66.1
117 NDBS 11(FR-M)C3 X NDBS 21 (R-T)C9	Cross	62.1	63.1	67.8	63.0	65.3	56.9	60.8	62.8	63.3	64.6
118 NDBS 1011 XEARLYGEM 21 c	Cross	66.6	66.9	69.8	66.1	73.4	60.9	64.7	70.4	69.3	69.1
119 NDBS 11(FR-M)C3 XEARLYGEM 21 b	Cross	63.5	66.8	69.4	64.2	67.7	62.3	65.7	67.9	68.6	68.4
120 NDBS 11(FR-M)C3 X Leaming(S-FS)C6	Cross	64.2	66.3	67.1	60.4	66.1	58.6	62.8	66.2	64.8	66.0

Table B4 (continued). Test weight ($\mathrm{kg} \mathrm{hL}^{-1}$) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 10 environments.

Table B5. Stand (plants ha ${ }^{-1}$) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 12 environments.

Table B5 (continued). Stand (plants ha ${ }^{-1}$) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 12 environments.

Pedigree	Type	2010				2011				2012			
		Casselton	Larimore	Prosper	Thompson	Casselton	Larimore	Prosper	Thompson	Casselton	Larimore	Prosper	Thompson
41 NDBS21(R-T)C9	P arent	49513	44132	41734	40047	62989	88570	72140	78576	61780	70375	77499	81186
42 NDSAB(MER-FS)C 15 XEARLYGEM 2 lb	Cross	15069	34444	32594	36228	64072	78517	72095	78576	60348	65185	82881	73563
43 NDBSK(HIM)C3 X NDBS 22 (R-T 1)C9	Cross	33368	39826	32633	35176	68950	85814	88421	66736	81864	74014	77499	73268
44 NDSS XNDBSK(HI-M)C3	Cross	40902	48437	38402	40067	63333	88451	86923	76423	78363	90608	76423	87261
45 NDSS XLeaming(S-FS)C6	Cross	35521	36597	36694	25877	62185	90327	84665	83958	68920	70844	79652	65925
46 NDL XNDBS22(R-T1)C9	Cross	27986	43055	46916	31947	61146	86506	84744	81805	77369	71963	61354	79107
47 NDSCD(FS-CS)C2 X NDSHLC(M-FS)C5	Cross	27986	38750	30803	30699	66132	83089	68049	86110	32599	81943	85034	78723
48 NDBS 11(FR-M)C3 X NDS AB (MER-FS)C 15	Cross	37673	36597	38698	33589	58254	85241	86950	82881	68000	81272	79652	82158
49 NDSS XNDSM(M-FS)C9	Cross	47361	52743	40103	49612	67139	86713	81181	80729	61176	69709	67812	65243
50 NDBS22(R-T1)C9 XEARLYGEM 21 l	Cross	25833	50590	42456	21847	59228	83513	80812	75347	77428	83270	88263	86156
51 NDBS 22(R-T1)C9	P arent	22604	20451	26697	37039	44741	81361	78105	83958	65221	75954	74270	75582
52 NDSS XNDBS 1011	Cross	48437	41979	52588	49268	52184	85666	80390	81805	73443	85087	77499	81215
53 NDL	P arent	64583	54895	46968	45410	56632	85340	82644	85034	60822	78245	61354	76320
54 NDBS 1011 XLeaming(S-FS)C6	Cross	33368	44132	32446	52355	60945	86051	82600	82881	70154	70902	75347	74079
55 NDBSK(HIM)C3 X NDBS 1011	Cross	33368	54895	48630	48074	66899	79356	83856	80729	77677	75427	74270	82395
56 NDSAB(MER-FS)C 15 XNDBS 21 (R-T)C9	Cross	44132	50590	46864	40047	47289	87375	82358	78576	69870	83409	82881	79166
57 NDBS 11(FR-M)C3 X NDBS 22 (R-Tl)C9	Cross	46284	35521	46233	51691	64439	88174	84406	85034	70115	75485	78576	76128
58 EARLYGEM 2 lb	P arent	34444	32291	33851	25470	60171	88658	82332	72117	51654	70146	79652	68859
59 NDSAB(MER-FS)C 15 X NDSM(M-FS)C9	Cross	49513	37673	50029	31756	59776	86318	83935	77499	58551	68286	79652	78163
60 Check 2 DKC 36-34 VT3	Check	64583	63506	65459	63708	58356	88470	97454	79652	82111	80531	82881	81597
61 NDBSK(HI-M)C3 X NDSCD(FS-CS)C2	Cross	27986	38750	25317	27715	54565	77322	72592	66736	38667	70961	72117	85149
62 NDBS22(R-T1)C9 XEARLYGEM 21 c	Cross	26909	38750	35205	29013	57417	85962	89445	77499	62454	74835	69965	75923
63 NDL XNDBS 11(FR-M)C3	Cross	37673	45208	53890	40976	57999	87039	84586	82881	69621	81512	86110	83648
64 NDBS 11(FR-M)C3 X NDSHLC(M-FS)C5	Cross	19375	33368	38879	24142	48220	82733	79336	77499	54162	73423	78576	79593
65 NDBSK(HI-M)C3 X NDBS 21 (R-T)C9	Cross	40902	44132	63397	39659	63432	88866	86972	77499	71681	76269	73194	72545
66 NDBS 22(R-T1)C9 X NDSAB (MER-FS)C 15	Cross	46284	41979	44570	50909	53752	82042	80469	77499	72402	80766	74270	77839
67 NDBS22(R-T1)C9 X NDSHLC(M-FS)C5	Cross	27986	40902	33845	25101	48942	88263	87108	88263	60550	78832	76423	82925
68 NDSM(M-FS)C9 X NDBS 21 (R-T)C9	Cross	51666	63506	50377	60130	57318	82289	88839	85034	54895	78203	78576	72162
$69 \mathrm{NDBSK}(\mathrm{HI}-\mathrm{M}) \mathrm{C} 3 \mathrm{XNDBS} 11(\mathrm{FR}-\mathrm{M}) \mathrm{C} 3$	Cross	40902	36597	49746	40558	64781	85241	73664	77499	55141	74585	78576	84194
70 NDSS XNDBS 11(FR-M)C3	Cross	49513	49513	58892	40170	55131	86802	86660	88263	65742	74627	76423	79077
71 NDBSK(HIM)C3	P arent	51666	55972	50313	50762	67652	85537	79652	82881	53264	71691	75347	79770
72 NDSS XNDBS21(R-T)C9	Cross	48437	54895	47445	40736	64080	89843	73796	76423	68213	81784	77499	82128
73 NDSS XEARLYGEM 21 c	Cross	39826	41979	44409	42686	62088	83928	81914	69965	63200	76402	59201	77791
74 NDBS 11(FR-M)C3 X NDBS 1011	Cross	29062	30139	27386	37526	56330	85034	79393	82881	75147	75970	66736	72871
75 NDCG(FS)C1	P arent	38750	43055	40690	40878	54759	86110	87450	83958	72627	78341	76423	79519
76 NDSAB(MER-FS)C 15	Parent	35521	16146	21373	29426	53591	82881	84353	73194	72237	77787	72117	77617
77 NDSS XNDSCD(FS-CS)C2	Cross	35521	39826	41586	41714	47275	81479	88760	86110	55311	76327	66736	49042
78 NDBS 1011 N NDBS 21 (R-T)C9	Cross	46284	55972	49668	40047	68810	84343	87639	82881	72178	87283	67812	75863
79 NDSAB(MER-FS)C 15 X EARLYGEM 2 la	Cross	30139	34444	44325	30384	65077	86258	78132	75347	68937	74585	77499	75568
80 NDBS 21 (R-T)C9 XEARLYGEM 21 a	Cross	36597	41979	40406	37427	53001	83513	72328	79652	67588	77185	78576	83102

Table B5 (continued). Stand (plants ha ${ }^{-1}$) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 12 environments.

Table B5 (continued). Stand (plants ha ${ }^{-1}$) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 12 environments.

Table B6. Stalk lodging (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 12 environments.

Table B6 (continued). Stalk lodging (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 12 environments.

Pedigree	Type	2010				2011				2012			
		Casselton	Larimore	Prosper	Thompson	Casselton	Larimore	Prosper	Thompson	Casselton	Larimore	Prosper	Thompson
41 NDBS 21 (R-T)C9	P arent	1.9	5.2	0.0	0.1	1.4	11.0	5.0	9.3	13.0	44.6	43.1	26.7
42 NDSAB(MER-FS)C 15 XEARLYGEM 2 lb	Cross	0.0	0.1	0.0	-0.2	0.2	16.3	11.7	19.9	35.5	17.7	29.6	36.1
43 NDBSK(HI-M)C3 X NDBS 22 (R-T1)C9	Cross	3.5	0.3	0.0	0.1	-0.1	4.4	3.2	32.3	31.5	26.7	42.9	17.2
44 NDSS XNDBSK(HI-M)C3	Cross	-0.1	0.2	0.0	-0.2	0.0	4.8	7.1	17.0	20.7	32.7	39.6	31.0
45 NDSS XLeaming(S-FS)C6	Cross	0.1	0.2	2.8	0.1	0.0	11.8	7.2	6.9	17.4	28.0	25.9	29.5
46 NDLXNDBS22(R-Tl)C9	Cross	-0.2	0.0	0.0	2.8	0.0	9.8	2.9	19.7	16.6	27.2	24.8	17.6
47 NDSCD(FS-CS)C2 X NDSHLC(M-FS)C5	Cross	0.1	0.2	0.0	0.2	0.0	12.7	5.1	15.0	21.8	29.7	24.0	38.6
48 NDBS 11(FR-M)C3 X NDS AB (MER-FS) 15	Cross	-0.1	-0.2	0.0	-0.2	0.0	0.6	6.3	16.4	6.5	16.3	28.0	16.5
49 NDSS XNDSM(M-FS)C9	Cross	0.4	0.1	3.3	0.0	-0.1	15.0	4.9	15.9	21.8	58.1	40.4	26.1
50 NDBS 22(R-T1)C9 X EARLYGEM 21 la	Cross	-0.2	-0.3	0.0	0.1	-0.1	9.5	5.2	22.0	16.8	22.8	19.5	18.2
51 NDBS 22(R-T1)C9	Parent	0.1	5.0	0.0	0.0	0.0	6.6	4.4	20.3	0.1	12.4	22.9	11.4
52 NDSS X NDBS 1011	Cross	1.9	-0.3	2.3	0.3	-0.1	7.5	3.5	8.7	26.9	17.1	23.1	16.1
53 NDL	P arent	1.8	-0.1	2.8	0.2	-0.1	13.9	10.1	17.7	11.2	33.7	39.5	33.9
54 NDBS 1011 XLeaming(S-FS)C6	Cross	0.0	-0.1	0.0	-0.2	0.1	15.2	13.2	17.6	42.6	35.6	39.3	30.3
55 NDBSK(HI-M)C3 X NDBS 1011	Cross	0.1	0.1	0.0	0.2	-0.1	6.7	3.0	17.5	24.0	52.6	35.9	10.7
56 NDSAB(MER-FS)C 15 XNDBS 21 (R-T)C9	Cross	-0.1	0.0	0.0	-0.2	-0.1	7.8	4.4	14.6	16.2	23.6	23.3	9.5
57 NDBS 11(FR-M)C3 X NDBS22(R-Tl)C9	Cross	0.0	-0.1	0.0	0.1	-0.1	10.2	7.9	10.7	17.0	16.5	15.3	15.8
58 EARLYGEM 2 lb	Parent	-0.3	-0.2	0.0	3.7	3.1	24.5	31.2	40.1	62.0	51.7	64.3	47.7
59 NDSAB(MER-FS)C15 XNDSM(M-FS)C9	Cross	0.1	0.0	0.0	0.2	5.4	10.4	4.9	33.2	24.4	48.9	29.0	25.1
60 Check 2 DKC 36-34 VT3	Check	-0.2	-0.5	0.0	-0.2	-0.1	1.2	2.3	15.4	3.9	10.0	17.8	5.5
61 NDBSK(HI-M)C3 XNDSCD(FS-CS) C 2	Cross	0.3	0.3	0.0	0.0	3.2	27.0	12.3	36.1	27.5	60.6	25.6	23.8
62 NDBS22(R-T1)C9 X EARLYGEM 21 c	Cross	-0.2	-0.2	0.0	0.1	1.4	14.5	9.4	28.4	17.6	22.6	36.6	20.9
63 NDL X NDBS 11(FR-M)C3	Cross	2.7	0.2	0.0	0.0	0.1	5.2	1.4	13.8	25.0	25.1	21.2	15.4
64 NDBS 11(FR-M)C3 X NDSHLC(M-FS)C5	Cross	-0.1	-0.2	0.0	0.3	0.0	10.5	7.2	11.9	11.4	45.3	22.1	14.4
65 NDBSK(HI-M)C3 X NDBS 21 (R-T)C9	Cross	2.4	0.1	1.6	0.2	0.0	6.4	3.4	24.7	13.9	52.0	39.4	22.8
66 NDBS22(R-T1)C9 X NDSAB (MER-FS)C 15	Cross	-0.1	0.1	0.0	3.9	1.5	20.5	6.3	20.2	3.7	21.9	23.1	22.8
67 NDBS22(R-T1)C9 X NDSHLC(M-FS)C5	Cross	0.1	0.2	0.0	0.2	-0.1	8.9	2.6	15.9	14.3	16.7	33.0	15.4
68 NDSM(M-FS)C9 X NDBS 21 (R-T)C9	Cross	-0.1	2.0	0.0	-0.2	0.0	11.4	2.7	7.3	20.6	28.7	34.1	18.9
69 NDBSK(HIM)C3 X NDBS 11(FR-M)C3	Cross	0.0	0.1	0.0	0.1	0.0	9.6	8.0	17.1	12.3	37.2	31.1	24.7
70 NDSS XNDBS $11(\mathrm{FR}-\mathrm{M}) \mathrm{C} 3$	Cross	2.0	0.0	0.0	0.2	0.0	13.4	0.8	10.6	34.4	29.0	26.5	15.1
71 NDBSK(HIM)C3	P arent	3.9	0.1	0.0	0.2	1.3	9.4	8.0	28.6	35.8	46.3	44.9	21.8
72 NDSS X NDBS 21 (R-T)C9	Cross	1.8	1.4	0.0	-0.2	0.0	13.6	5.6	21.6	34.3	26.3	35.3	22.1
73 NDSS XEARLYGEM 21 c	Cross	0.3	3.1	0.0	7.9	0.0	27.1	12.3	16.4	30.9	25.4	39.0	27.5
74 NDBS 11(FR-M)C3 X NDBS 1011	Cross	-0.2	-0.2	0.0	0.2	1.4	7.8	3.8	3.9	18.2	41.9	45.5	21.9
75 NDCG(FS)C1	P arent	0.1	0.2	4.2	2.6	0.1	12.2	6.1	8.1	14.4	35.7	24.2	11.7
76 NDSAB(MER-FS)C 15	P arent	-0.1	-0.1	0.0	0.4	0.0	25.4	4.5	17.1	17.2	17.2	26.9	24.4
77 NDSS XNDSCD(FS-CS)C2	Cross	-0.1	2.7	3.6	0.3	7.0	28.6	8.5	24.6	25.4	54.0	37.1	38.6
78 NDBS 1011 X NDBS 21 (R-T)C9	Cross	2.1	0.1	0.0	2.7	0.2	7.6	3.3	18.2	27.2	20.8	35.9	17.2
79 NDSAB(MER-FS)C 15 X EARLYGEM 21 a	Cross	0.1	0.2	0.0	0.3	0.0	8.4	10.4	29.1	27.0	13.9	33.7	26.2
80 NDBS 21 (R-T)C9 X EARLYGEM 21 a	Cross	-0.1	6.8	2.6	0.0	0.0	17.3	15.6	14.0	18.8	34.6	39.8	20.1

Table B6 (continued). Stalk lodging (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 12 environments.

Entry Pedigree	Type	2010				2011				2012			
		Casselton	Larimore	Prosper	Thompson	Casselton	Larimore	Prosper	Thompson	Casselton	Larimore	Prosper	Thompson
81 NDBS 11(FR-M)C3 X NDSM(M-FS)C9	Cross	2.1	0.1	0.0	0.3	0.0	12.6	9.5	12.1	31.0	29.5	23.8	11.2
82 NDBSK(HI-M)C3 X Leaming(S-FS)C6	Cross	-0.3	3.3	0.0	0.3	0.0	9.6	6.1	4.7	37.9	36.9	37.5	10.8
83 NDL X NDBS21(R-T)C9	Cross	0.1	0.1	4.8	0.4	2.7	8.3	4.8	9.8	18.1	16.8	38.3	18.6
84 NDSM(M-FS)C9	P arent	-0.2	-0.3	2.5	-0.1	0.0	15.0	0.7	27.7	42.2	37.1	32.7	19.6
85 NDSS XNDSAB (MER-FS)C 15	Cross	0.5	0.4	0.0	-0.3	0.0	4.1	5.5	20.4	18.9	33.9	20.3	
86 Leaming(S-FS)C6 X NDSM(M-FS)C9	Cross	0.0	5.8	0.0	-0.2	-0.1	22.9	11.4	15.6	22.1	28.3	48.4	26.1
87 NDCG(FS)C1 ${ }^{\text {N }}$ NDBS 11(FR-M)C3	Cross	0.3	0.3	2.0	-0.3	0.1	7.9	1.8	19.2	22.9	21.5	37.6	7.5
88 NDSHLC(M-FS)C5 XEARLYGEM 21 a	Cross	3.6	3.1	0.0	4.1	0.0	21.4	6.2	33.5	21.8	36.5	37.2	39.0
89 NDBS 1011	P arent	0.1	0.2	0.0	-0.1	0.0	12.4	8.7	13.8	27.6	16.3	24.2	19.3
90 NDBS 1011 X NDS AB (MER-FS)C 15	Cross	0.1	0.2	0.0	-0.4	0.2	12.3	10.3	15.5	19.9	22.1	17.6	12.5
91 Check 3 P IONEER 39N99	Check	0.3	0.3	0.0	-0.1	0.0	1.3	0.6	13.0	1.2	3.6	7.2	14.5
92 NDSM(M-FS)C9 X NDSHLC(M-FS)C5	Cross	0.1	0.2	0.0	-0.5	1.6	13.4	5.5	18.9	35.7	35.4	25.7	21.4
93 BS22LEAM (R-FR)C1XLEAMING22 (S-FR)C1	Check	0.2	0.2	0.0	4.8	0.0	22.0	5.4	12.9	26.4	31.9	19.8	19.7
94 NDL X NDBS 1011	Cross	-0.1	0.1	0.0	-0.1	0.0	4.2	6.6	26.7	30.5	20.8	39.0	13.8
95 NDBS22(R-T1)C9 X NDSM(M-FS)C9	Cross	0.3	0.2	0.0	-0.1	1.5	17.7	0.1	34.6	23.2	38.3	33.9	18.2
96 NDL XNDSM(M-FS)C9	Cross	0.0	-0.2	0.0	-0.5	0.0	8.8	6.2	11.5	29.2	25.0	24.0	33.8
97 NDSS	P arent	11.7	5.4	0.0	2.2	-0.1	17.7	10.2	22.7	22.8	40.7	32.6	24.9
98 NDBS22(R-T1)C9 X NDSCD(FS-CS)C2	Cross	7.7	2.8	4.5	0.1	-0.2	24.5	2.3	23.3	5.4	43.6	20.3	31.6
99 NDCG(FS)C1XNDSHLC(M-FS)C5	Cross	0.0	9.2	0.0	0.0	0.0	18.0	10.3	22.6	10.9	28.2	33.1	25.0
100 NDL X NDBSK(HI-M)C3	Cross	-0.3	7.9	2.0	0.3	-0.1	11.7	5.8	11.5	18.8	46.3	27.0	14.2
101 NDBS 22(R-T1)C9 X EARLYGEM 21 b	Cross	-0.3	0.2	0.0	0.2	-0.1	16.6	15.8	16.1	30.0	10.3	30.1	25.6
102 NDBS 1011 X NDSHLC(M-FS)C5	Cross	-0.2	0.1	0.0	3.2	6.4	10.6	6.7	13.8	23.1	28.4	14.7	32.3
103 NDSHLC(M-FS)C5 X EARLYGEM 21 b	Cross	0.0	4.3	0.0	2.9	-0.2	11.0	13.1	22.6	18.7	39.3	36.0	37.6
104 NDBS 21 (R-T)C9 X EARLYGEM 21 c	Cross	-0.3	0.2	0.0	2.6	6.1	8.3	8.7	13.0	26.9	37.2	37.8	43.6
$105 \mathrm{CGL}(\mathrm{S}-\mathrm{FR} 2) \mathrm{C} 1 \mathrm{XBS} 21 \mathrm{CGL}(\mathrm{R}-\mathrm{FR} 2) \mathrm{C} 1$	Check	-0.1	0.2	0.0	0.2	1.3	5.8	9.1	11.3	36.8	42.1	23.7	20.8
106 NDSAB(MER-FS)C 15 X EARLYGEM 21 c	Cross	-0.4	2.0	0.0	0.2	-0.1	16.4	12.7	27.5	49.6	26.9	25.6	36.3
107 NDBS 11(FR-M)C3 X EARLYGEM 2 la	Cross	-0.1	0.2	0.0	0.3	2.6	10.4	36.2	25.2	23.7	31.2	44.3	28.4
108 NDCG(FS)C1XLeaming(S-FS)C6	Cross	-0.4	3.5	2.2	3.0	-0.1	11.2	7.0	17.8	9.2	16.0	26.2	22.6
109 NDSM(M-FS)C9 X EARLYGEM 21 a	Cross	5.2	11.6	0.0	-0.1	0.1	19.6	12.3	27.2	15.6	56.3	57.3	22.8
110 NDBS 21 (R-T)C9 XEARLYGEM 21 l	Cross	2.0	2.3	0.0	-0.1	0.0	10.6	9.6	20.5	19.8	22.5	53.8	41.9
111 NDSCD(FS-CS)C2 X EARLYGEM 21 b	Cross	3.6	4.8	11.0	-0.1	6.0	20.0	14.8	14.5	23.6	63.2	42.6	39.6
112 NDSS XEARLYGEM 21 a	Cross	-0.2	0.1	0.0	0.1	0.1	30.3	8.0	32.2	10.5	41.7	32.2	31.8
113 NDCG(FS)C1XEARLYGEM 21 c	Cross	1.8	0.3	0.0	0.0	0.0	25.0	4.5	23.4	10.3	24.6	39.1	39.8
114 NDCG(FS)C1XNDL	Cross	-0.2	0.3	0.0	-0.3	0.3	25.5	8.6	17.8	21.0	33.6	27.9	20.7
115 NDLXEARLYGEM 21 a	Cross	4.1	0.5	0.0	0.0	1.3	14.3	9.1	30.2	29.0	35.4	34.1	30.2
116 NDSM(M-FS)C9 X EARLYGEM 21 b	Cross	2.5	0.4	0.0	-0.3	2.6	25.6	13.0	29.9	43.1	56.8	82.9	33.8
117 NDBS 11(FR-M)C3 X NDBS 21 (R-T)C9	Cross	-0.1	0.3	0.0	0.0	0.1	6.7	5.0	17.8	21.6	41.2	18.5	24.5
118 NDBS 1011 XEARLYGEM 21 c	Cross	-0.4	2.1	0.0	0.0	0.1	14.9	11.2	29.2	20.6	22.2	42.8	32.8
119 NDBS 11(FR-M)C3 XEARLYGEM 21 b	Cross	-0.1	0.4	1.9	0.1	0.0	12.2	4.3	19.2	21.4	41.2	45.2	17.3
120 NDBS 11(FR-M)C3 XLeaming(S-FS)C6	Cross	-0.3	1.5	0.0	2.1	0.1	9.4	4.3	17.0	20.8	34.6	26.1	36.0

Table B6 (continued). Stalk lodging (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 12 environments.

Entry Pedigree	Type	2010				2011				2012			
		Casselton	Larimore	Prosper	Thompson	Casselton	Larimore	Prosper	Thompson	Casselton	Larimore	Prosper	Thompson
121 NDL XNDSHLC(M-FS)C5	Cross	0.6	0.2	8.5	-0.1	0.1	17.1	3.8	11.0	16.1	22.5	24.3	17.2
122 NDL X NDSAB(MER-FS)C 15	Cross	3.7	-0.3	0.0	0.0	0.0	8.0	3.4	25.1	13.0	29.8	20.3	29.6
123 NDCG(FS)C1XNDBS22(R-T1)C9	Cross	0.4	0.1	0.0	-0.1	0.2	6.9	1.5	12.3	17.1	17.3	18.0	12.1
124 NDCG(FS)C1XNDSCD(FS-CS)C2	Cross	2.1	6.8	2.3	0.2	0.1	18.8	5.6	18.3	20.4	60.4	40.8	23.8
125 CGSS $21(\mathrm{~S}-\mathrm{FR}) \mathrm{C} 1 \mathrm{XBS} 21 \mathrm{CGSS}(\mathrm{R}-\mathrm{FR}) \mathrm{C} 1$	Check	0.2	3.9	0.0	0.1	0.1	16.6	-0.5	25.9	19.5	28.6	25.5	35.4
126 NDCG(FS)C1XNDBS21(R-T)C9	Cross	0.2	3.2	0.0	-0.2	0.3	13.7	0.8	2.9	27.3	10.2	31.2	18.7
127 NDBS22(R-T1)C9 X NDBS 21 (R-T)C9	Cross	0.4	0.1	5.3	5.1	0.1	3.5	0.0	9.0	31.2	9.6	13.5	16.8
128 Leaming(S-FS)C6 XEARLYGEM 21 b	Cross	0.2	2.8	2.0	2.4	1.8	14.1	4.8	18.0	29.7	30.7	31.2	36.7
129 NDBS 1011 XNDSM(M-FS)C9	Cross	0.3	0.0	0.0	0.1	1.5	8.4	3.8	6.5	21.2	41.0	21.6	18.6
130 NDLXEARLYGEM 21 c	Cross	0.0	7.3	0.0	3.1	0.1	11.9	7.5	43.9	26.4	21.3	24.6	35.4
131 NDL XNDSCD(FS-CS)C2	Cross	0.4	0.0	2.1	3.8	3.0	17.0	9.8	29.3	41.2	48.8	32.5	29.5
132 EARLYGEM 21 a	P arent	2.4	2.9	0.0	-0.2	0.1	13.3	14.2	50.2	49.3	40.4	61.6	17.6
133 NDCG(FS)C1XNDBSK(HI-M)C3	Cross	0.2	0.1	0.0	-0.2	0.1	10.6	4.0	13.0	29.5	31.7	36.4	16.7
134 NDSCD(FS-CS)C2 XEARLYGEM 21 c	Cross	2.5	-0.3	0.0	-0.1	1.5	28.8	25.0	31.9	42.4	66.7	57.3	31.9
135 NDCG(FS)C1XNDSM(M-FS)C9	Cross	0.0	0.0	0.0	-0.2	0.2	17.2	5.1	32.7	25.2	30.7	41.4	21.9
136 NDSAB(MER-FS)C 15 XNDSCD(FS-CS)C2	Cross	3.1	4.0	0.0	0.1	0.1	28.9	8.6	21.8	18.8	43.1	33.9	15.0
137 NDSM(M-FS)C9 X EARLYGEM 21 c	Cross	-0.2	4.3	0.0	4.0	2.7	20.5	24.1	16.3	38.4	44.2	53.0	37.1
138 Leaming(S-FS)C6 X EARLYGEM 2 a	Cross	-0.2	11.2	1.9	-0.3	0.3	22.1	7.6	32.5	24.3	20.3	20.8	35.3
139 NDSS XNDCG(FS)C1	Cross	4.6	0.1	5.6	0.0	0.0	22.0	6.8	14.9	15.6	26.5	20.8	9.9
140 NDSM(M-FS)C9 X NDSCD(FS-CS)C2	Cross	-0.2	0.0	0.0	-0.3	0.1	18.9	8.2	12.1	44.6	61.8	51.7	23.9
141 NDBS21(R-T)C9 X NDSCD(FS-CS)C2	Cross	-0.1	2.0	2.0	0.0	0.1	20.6	18.7	23.1	26.4	37.9	23.8	23.4
142 NDCG(FS)C1XNDBS 1011	Cross	-0.4	2.3	0.0	0.0	0.1	14.3	6.4	14.7	22.5	27.2	20.6	10.8
143 NDBS 1011 X EARLYGEM 21 a	Cross	3.8	0.0	0.0	0.1	0.0	8.1	4.6	21.6	32.7	35.1	27.7	39.3
144 NDSHLC(M-FS)C5	P arent	-0.3	2.5	0.0	-0.3	0.1	8.6	3.5	9.3	31.6	25.5	22.8	10.6
Experiment mean		0.8	1.5	1.0	0.8	0.8	14.6	7.7	20.0	24.4	32.5	34.1	23.5
Mean of parental populations		1.3	2.8	1.4	0.7	0.7	17.6	10.3	21.6	28.8	34.6	38.2	21.8
Mean of population crosses		0.8	1.4	1.0	0.7	0.8	14.6	7.7	20.2	24.4	32.9	34.0	24.1
Mean of checks		0.0	0.6	0.3	1.3	0.2	8.2	2.5	13.4	16.3	22.7	26.8	19.2
LSD (0.05)		4.9	6.7	5.1	4.7	4.1	14.7	11.1	20.1	26.4	20.1	22.4	20.6
CV		301.3	220.7	261.5	309.1	272.1	50.7	72.5	50.9	54.6	31.2	33.2	44.2
MSE		6.0	11.3	6.6	5.5	4.4	54.8	31.3	103.4	177.4	102.9	128.1	108.4

Table B7. Root lodging (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments.

	Entry	Pedigree	Type		2010			20				201		
				Casselton	Larimore	Thompson	Casselton	Larimore	Prosper	Thompson	Casselton	Larimore	Prosper	Thompson
		Leaming(S-FS)C6 X EARLYGEM 21 c	Cross	10.0	0.0	-0.1	0.6	22.8	-0.3	31.9	1.2	0.0	1.5	49.3
	2	Leaming(S-FS)C6 X NDSAB (MER-FS)C 15	Cross	3.8	0.0	0.0	0.4	13.6	0.0	31.7	-0.2	0.0	2.2	51.5
	3	NDBSK(HIM) C3 X NDSM(M-FS)C9	Cross	0.0	0.0	0.0	0.6	11.0	0.1	42.3	2.4	0.0	1.0	66.2
	4	B S 21 AB (R-FR) C 1 X NDS AB $21(\mathrm{R}-\mathrm{FR}) \mathrm{C} 1$	Check	4.5	2.0	-0.1	5.6	2.4	0.0	52.5	3.5	2.6	7.3	59.7
	5	EARLYGEM 2 la XEARLYGEM 21 lb	Cross	7.7	0.0	0.0	0.5	30.5	1.2	81.3	3.5	0.0	12.1	72.6
	6	NDBS $1011 \mathrm{XNDSCD}(\mathrm{FS}-\mathrm{CS}) \mathrm{C} 2$	Cross	0.0	0.0	0.0	0.4	19.6	0.1	37.6	8.2	2.6	7.2	49.7
	7	NDSS XNDL	Cross	0.0	0.0	0.0	2.0	7.8	0.0	31.6	1.5	0.0	1.5	33.9
	8	NDBS K(HI-M)C3 X EARLYGEM 2 lb	Cross	0.0	0.0	-0.1	0.7	5.6	0.1	40.4	2.2	0.0	5.6	65.2
	9	NDL XEARLYGEM 2 lb	Cross	2.5	0.0	0.0	0.5	1.6	0.0	25.8	3.8	1.5	7.5	74.0
	10	NDBS 11(FR-M)C3 XEARLYGEM 21 c	Cross	7.4	0.0	-0.2	0.8	10.1	0.1	45.6	6.6	3.7	4.2	49.6
	11	NDBS 11(FR-M)C3	P arent	2.2	0.0	0.0	0.4	13.7	0.0	32.0	-0.5	4.7	0.5	48.3
	12	NDBSK(HI-M)C3 X NDSHLC(M-FS)C5	Cross	10.8	0.0	0.0	17.7	11.2	0.0	29.4	2.7	0.0	0.2	65.1
	13	NDSCD(FS-CS)C2	P arent	24.3	0.0	8.2	3.5	53.0	-0.2	62.3	6.5	17.4	11.7	65.8
	14	NDSHLC(M-FS)C5 XEARLYGEM 21c	Cross	2.9	0.0	0.0	0.1	16.0	0.1	61.7	-0.4	0.0	6.8	64.4
	15	NDSS XNDBS22(R-T1)C9	Cross	5.9	0.0	3.9	0.3	4.3	0.1	31.6	-0.8	0.0	1.3	43.6
	16	Check 4 DKC 43-27 VT3	Check	3.1	0.0	-0.1	6.1	1.9	0.1	1.4	0.6	0.0	1.8	4.8
	17	NDSS X NDSHLC(M-FS)C5	Cross	6.7	0.0	0.1	0.2	34.6	0.0	60.4	4.0	5.4	3.9	58.1
	18	EARLYGEM 21 c	P arent	12.9	0.0	8.1	0.0	28.8	0.1	52.7	4.1	0.0	7.6	81.7
	19	Leaming(S-FS)C6	P arent	0.0	0.0	0.0	1.5	13.5	0.0	50.5	-0.4	5.5	3.1	38.7
	20	NDBS 1011 X NDBS22(R-T1)C9	Cross	3.6	6.3	0.0	0.3	17.5	0.1	59.7	1.3	0.0	0.1	28.0
N	21	Leaming(S-FS)C6 X NDSHLC(M-FS)C5	Cross	4.3	0.0	0.0	0.2	19.3	0.1	63.5	1.7	0.0	3.6	58.8
N	22	NDBS21(R-T)C9 X NDSHLC(M-FS)C5	Cross	2.4	1.8	-0.2	0.5	9.9	0.1	35.0	4.9	0.0	5.1	28.6
	23	Check 1P IONEER 39V07	Check	0.0	3.4	0.0	0.0	2.7	3.6	11.3	0.3	0.0	-0.3	33.5
	24	NDCG(FS)C 1 X NDSAB (MER-FS)C 15	Cross	7.4	0.0	0.0	0.4	13.0	0.1	52.7	5.4	0.0	13.3	32.4
	25	Leaming(S-FS)C6 X NDBS 22(R-T) C9	Cross	2.8	4.0	2.4	-0.3	43.1	-0.3	54.9	2.1	0.0	0.5	40.0
	26	Leaming(S-FS)C6 X NDBS $21(\mathrm{R}-\mathrm{T}) \mathrm{C} 9$	Cross	5.6	0.0	0.1	-0.4	11.2	0.0	37.8	1.0	0.0	2.9	7.4
	27	NDBS K(HI-M)C3 X EARLYGEM 2 la	Cross	0.0	0.0	0.2	1.9	11.3	0.1	29.8	8.7	0.0	0.2	55.1
	28	NDL XLeaming(S-FS)C6	Cross	0.0	0.0	0.0	-1.5	18.0	0.0	55.0	3.0	0.0	3.6	21.9
	29	EARLYGEM 2 a X XARLYGEM 21 c	Cross	10.8	0.0	0.2	4.0	21.2	-0.1	42.9	-0.6	6.4	6.1	80.3
	30	NDCG(FS)C1X EARLYGEM 21 b	Cross	6.1	0.0	0.2	2.3	24.3	0.1	46.4	-0.6	0.0	11.0	41.7
		Leaming(S-FS)C6 X NDSCD(FS-CS)C2	Cross	27.2	0.0	0.1	2.8	22.4	1.3	61.1	1.0	4.5	8.4	36.5
	32	NDBSK(HI-M)C3 X EARLYGEM 21 c	Cross	4.0	0.0	0.1	-0.2	5.5	0.1	28.4	6.9	1.4	2.8	16.3
	33	NDBS 1011 X EARLYGEM 2 lb	Cross	25.6	4.9	0.1	-0.4	13.0	0.0	27.2	16.9	0.0	8.2	37.5
	34	NDSCD(FS-CS)C2 XEARLYGEM 21 a	Cross	37.8	0.0	8.8	8.2	51.5	0.1	60.6	8.4	11.8	0.7	42.5
	35	NDSS XEARLYGEM 21 b	Cross	4.2	0.0	0.1	4.5	19.8	0.0	22.3	3.4	9.1	2.6	36.4
	36	NDSAB(MER-FS)C 15 X NDSHLC(M-FS)C5	Cross	13.0	0.0	0.2	1.1	17.8	0.0	37.1	11.8	0.0	3.7	49.8
	37	NDBS 11(FR-M)C3 X NDSCD(FS-CS)C2	Cross	2.9	0.0	-0.1	0.3	26.9	-0.3	42.1	2.4	0.0	3.7	45.7
	38	NDCG(FS)C1XEARLYGEM 21 l	Cross	0.0	0.0	2.8	4.1	16.3	0.0	51.0	8.1	1.3	0.4	40.3
	39	EARLYGEM 2 lb XEARLYGEM 2 lc	Cross	6.7	0.0	0.1	0.3	25.2	0.1	52.2	-2.1	6.1	0.3	49.9
	40	NDBSK(HI-M)C3 X NDSAB (MER-FS)C 15	Cross	6.5	0.0	-0.1	-1.0	15.2	0.0	36.6	2.7	0.0	5.3	43.0

Table B7 (continued). Root lodging (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments.

Entry Pedigree	Type	2010			2011				2012			
		Casselton	Larimore	Thompson	Casselton	Larimore	Prosper	Thompson	Casselton	Larimore	Prosper	Thompson
41 NDBS21(R-T)C9	P arent	2.5	12.4	0.1	0.2	5.1	-0.1	37.2	0.5	0.0	1.5	31.1
42 NDSAB(MER-FS)C 15 XEARLYGEM 2 lb	Cross	8.3	0.0	0.1	2.4	33.8	1.5	45.4	4.2	3.4	2.0	59.8
$43 \mathrm{NDBSK}(\mathrm{HI}-\mathrm{M}) \mathrm{C} 3 \mathrm{XNDBS} 22(\mathrm{R}-\mathrm{Tl}) \mathrm{C} 9$	Cross	0.0	0.0	0.0	0.2	20.3	0.0	38.3	0.9	0.0	0.7	24.5
44 NDSS XNDBSK(HI-M)C3	Cross	0.0	4.6	0.0	0.4	5.2	0.0	69.0	4.0	0.0	1.5	43.9
45 NDSS XLeaming(S-FS)C6	Cross	3.1	0.0	0.0	1.7	10.8	1.3	59.9	5.0	3.1	10.0	48.4
46 NDL XNDBS22(R-T1)C9	Cross	3.1	0.0	-0.2	0.5	26.0	0.0	29.6	-0.2	1.4	2.1	16.0
47 NDSCD(FS-CS)C2 X NDSHLC(M-FS)C5	Cross	3.3	0.0	0.0	4.2	21.7	0.0	61.7	20.4	0.0	8.7	33.2
48 NDBS 11(FR-M)C3 XNDSAB (MER-FS)C 15	Cross	0.0	0.0	0.1	0.6	7.1	1.2	34.2	-1.0	1.4	-0.5	43.1
49 NDSS XNDSM(M-FS)C9	Cross	0.0	0.0	-0.1	0.1	18.0	1.3	54.8	0.4	0.0	2.1	47.1
50 NDBS 22(R-T1)C9 X EARLYGEM 21 la	Cross	0.0	0.0	0.0	-0.1	7.7	-0.1	27.8	4.8	0.0	11.0	32.2
51 NDBS 22 (R-T1)C9	P arent	4.2	0.0	0.1	0.1	7.9	0.0	26.2	18.4	0.0	3.0	55.0
52 NDSS XNDBS 1011	Cross	2.0	0.0	-0.1	-1.2	18.4	0.0	31.6	15.4	0.0	11.9	53.0
53 NDL	P arent	3.0	0.0	0.1	0.0	5.9	1.1	28.6	1.5	0.0	-0.1	52.1
54 NDBS 1011 XLeaming (S-FS) C6	Cross	9.4	0.0	0.1	-0.2	19.0	1.4	47.3	3.4	0.0	0.7	42.8
55 NDBSK(H)M C C 3 X NDBS 1011	Cross	0.0	0.0	0.0	0.0	18.6	-0.1	47.0	-0.7	2.6	3.4	43.8
56 NDSAB(MER-FS)C 15 X NDBS 21 (R-T)C9	Cross	2.2	0.0	0.0	0.1	3.5	0.0	27.2	8.1	0.0	2.4	23.2
57 NDBS 11(FR-M)C3 X NDBS22(R-T1)C9	Cross	0.0	0.0	0.0	1.4	0.9	0.0	39.5	7.6	2.8	1.7	33.9
58 EARLYGEM 2 lb	P arent	21.9	0.0	3.4	0.2	34.6	1.3	52.1	-0.5	0.0	4.5	83.6
59 NDSAB(MER-FS)C15 X NDSM(M-FS)C9	Cross	0.0	0.0	0.0	-0.2	21.5	-0.1	54.1	5.5	0.0	5.0	55.9
60 Check 2 DKC 36-34 VT3	Check	0.0	0.0	0.1	-1.1	0.3	0.0	16.6	0.0	0.0	-0.7	16.9
61 NDBSK(HI-M)C3 XNDSCD(FS-CS)C2	Cross	4.2	0.0	-0.1	0.2	26.6	8.7	29.3	0.9	3.3	8.5	51.1
62 NDBS22(R-T1)C9 X EARLYGEM 21 c	Cross	0.0	0.0	0.0	0.0	14.5	0.1	29.5	7.6	4.3	3.4	35.1
63 NDL X NDBS 11(FR-M)C3	Cross	23.7	0.0	0.1	0.2	21.0	0.2	20.8	0.7	5.4	1.5	33.9
64 NDBS 11(FR-M)C3 X NDSHLC(M-FS)C5	Cross	10.0	0.0	-0.1	-1.1	11.6	0.1	42.7	17.9	1.7	7.9	46.9
$65 \mathrm{NDBSK}(\mathrm{HI}-\mathrm{M}) \mathrm{C} 3 \mathrm{XNDBS} 21(\mathrm{R}-\mathrm{T}) \mathrm{C} 9$	Cross	0.0	0.0	0.1	1.6	7.3	0.0	21.9	3.4	0.0	0.2	53.2
66 NDBS 22(R-T1)C9 X NDSAB (MER-FS)C 15	Cross	2.3	0.0	0.1	0.0	13.9	2.9	44.0	0.3	0.0	3.9	29.8
67 NDBS22(R-T1)C9 X NDSHLC(M-FS)C5	Cross	7.7	0.0	0.0	0.2	12.5	0.1	46.6	1.7	0.0	9.0	26.3
68 NDSM(M-FS)C9 X NDBS 21 (R-T)C9	Cross	2.3	0.0	0.0	0.3	1.6	0.1	27.0	2.2	0.0	0.3	12.0
$69 \mathrm{NDBSK}(\mathrm{HI}-\mathrm{M}) \mathrm{C} 3 \mathrm{XNDBS} 11(\mathrm{FR}-\mathrm{M}) \mathrm{C} 3$	Cross	2.2	0.0	0.0	1.5	5.0	0.1	53.1	3.7	0.0	2.1	66.7
70 NDSS XNDBS 11(FR-M)C3	Cross	2.3	0.0	3.2	0.4	7.5	0.2	33.8	6.7	2.8	0.9	38.3
71 NDBSK(HIM) C3	P arent	0.0	0.0	0.0	0.0	8.4	0.1	34.0	0.5	2.9	-0.1	35.8
72 NDSS X NDBS 21 (R-T) C9	Cross	6.0	0.0	0.1	3.3	24.0	0.1	30.2	0.5	0.0	3.7	48.9
73 NDSS XEARLYGEM 21 c	Cross	5.3	4.8	-0.2	1.5	10.6	-0.3	51.1	0.5	0.0	3.9	66.5
74 NDBS 11(FR-M)C3 X NDBS 1011	Cross	5.9	0.0	3.1	1.3	6.9	0.0	32.6	7.9	0.0	-0.5	45.3
75 NDCG(FS)C1	P arent	13.9	0.0	0.0	0.0	9.7	0.0	37.9	4.3	12.4	4.9	54.8
76 NDSAB(MER-FS)C 15	P arent	2.9	0.0	-0.1	-1.2	31.4	1.3	59.0	3.5	2.8	8.8	70.0
77 NDSS XNDSCD(FS-CS)C2	Cross	6.8	0.0	0.0	5.5	17.6	-0.1	47.4	15.7	3.9	11.9	69.8
78 NDBS $1011 \mathrm{XNDBS} 21(\mathrm{R}-\mathrm{T}) \mathrm{C} 9$	Cross	4.7	0.0	0.0	2.1	9.0	0.0	5.1	3.0	1.1	3.0	25.4
79 NDSAB (MER-FS)C 15 X EARLYGEM 21 a	Cross	0.0	0.0	0.0	1.5	17.3	-0.1	56.6	2.7	1.5	14.0	72.4
80 NDBS 21 (R-T)C9 X EARLYGEM 21 a	Cross	2.5	0.0	2.8	2.4	3.6	0.0	29.6	4.6	0.0	2.2	26.8

Table B7 (continued). Root lodging (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments.

	Entry Pedigree	Type		2010			201	11			20		
			Casselton	Larimore	Thompson	Casselton	Larimore	Prosper	Thompson	Casselton	Larimore	Prosper	Thompson
	81 NDBS 11(FR-M)C3 X NDSM(M-FS)C9	Cross	6.3	0.0	0.0	1.5	4.6	0.0	38.3	4.4	0.0	-0.4	47.4
	82 NDBSK(HI-M)C3 X Leaming(S-FS)C6	Cross	6.5	3.3	-0.2	3.0	11.4	0.0	41.7	5.3	4.5	1.3	39.6
	83 NDL X NDBS 21 (R-T)C9	Cross	0.0	0.0	0.0	-0.2	10.8	1.3	26.7	0.2	0.0	-1.1	19.9
	84 NDSM(M-FS)C9	Parent	3.8	0.0	2.1	-1.1	24.1	0.0	45.5	0.5	2.7	7.3	57.8
	85 NDSS XNDSAB(MER-FS)C 15	Cross	2.6	0.0	-0.2	0.2	2.7	-0.3	48.1	4.7	1.6	6.3	
	86 Leaming(S-FS)C6 X NDSM(M-FS)C9	Cross	3.6	0.0	0.0	0.0	11.4	0.0	47.9	8.5	1.6	0.1	75.3
	87 NDCG(FS)C1 ${ }^{\text {N }}$ NDBS 11(FR-M)C3	Cross	2.9	0.0	0.0	0.2	11.2	0.1	29.1	-1.1	0.0	3.0	30.2
	88 NDSHLC(M-FS)C5 XEARLYGEM 21 a	Cross	0.0	0.0	-0.2	-1.1	20.2	0.0	41.3	5.0	4.1	6.1	47.8
	89 NDBS 1011	P arent	3.1	0.0	2.8	0.1	16.8	1.1	40.0	1.4	3.6	-0.1	20.8
	90 NDBS 1011 XNDS AB(MER-FS)C 15	Cross	0.0	0.0	0.0	3.1	26.2	3.3	39.3	4.0	0.0	0.6	40.8
	91 Check 3 P IONEER 39N99	Check	0.0	0.0	0.0	0.2	4.3	0.0	27.6	-0.7	0.0	1.8	39.1
	92 NDSM(M-FS)C9 XNDSHLC(M-FS)C5	Cross	2.5	0.0	-0.1	0.3	5.9	2.4	25.6	4.3	2.9	0.0	71.0
	93 BS22LEAM (R-FR)C1XLEAMING22 (S-FR)C1	Check	3.3	0.0	0.0	0.1	6.9	0.0	50.2	9.1	0.0	9.0	30.6
	94 NDL XNDBS 1011	Cross	1.4	0.0	-0.2	0.4	16.9	0.1	34.4	-0.5	0.0	8.1	45.4
	95 NDBS 22(R-T1)C9 X NDSM(M-FS)C9	Cross	0.0	0.0	0.0	0.0	33.3	0.0	28.1	5.2	20.5	-0.4	38.0
	96 NDL XNDSM(M-FS)C9	Cross	3.6	0.0	0.0	0.2	15.8	0.0	41.3	0.0	0.0	8.7	57.5
	97 NDSS	Parent	11.5	0.0	-0.1	5.7	29.9	-0.3	40.4	5.0	12.2	-1.2	72.1
	98 NDBS22(R-T1)C9 X NDSCD(FS-CS)C2	Cross	4.2	0.0	0.0	0.2	17.6	0.0	37.6	20.4	1.5	-0.1	25.5
	99 NDCG(FS)C1XNDSHLC(M-FS)C5	Cross	7.7	0.0	0.0	3.3	24.4	0.1	32.9	3.7	4.1	3.9	53.0
	100 NDL X NDBSK(HI-M)C3	Cross	4.2	0.0	-0.1	-0.9	8.6	0.0	14.5	6.8	0.0	3.3	18.7
N	101 NDBS22(R-T 1)C9 X EARLYGEM 2 lb	Cross	2.9	0.0	0.0	0.3	23.2	-0.1	51.4	7.3	1.6	9.9	44.1
ค	102 NDBS 1011 X NDSHLC(M-FS)C5	Cross	0.0	0.0	0.0	0.2	8.2	0.1	46.4	1.1	0.0	6.3	35.6
	103 NDSHLC(M-FS)C5 X EARLYGEM 2 lb	Cross	10.6	0.0	0.0	0.3	26.9	0.0	46.8	8.7	6.8	3.1	29.4
	104 NDBS $21(\mathrm{R}-\mathrm{T}) \mathrm{C} 9$ X EARLYGEM 21 c	Cross	8.3	0.0	-0.1	0.5	10.3	0.0	29.5	0.7	0.0	3.7	28.9
	$105 \mathrm{CGL}(\mathrm{S}-\mathrm{FR} 2) \mathrm{C} 1 \mathrm{XBS} 21 \mathrm{CGL}(\mathrm{R}-\mathrm{FR} 2) \mathrm{C} 1$	Check	10.2	0.0	0.0	0.3	9.8	0.0	25.5	6.6	0.0	1.9	33.8
	106 NDSAB(MER-FS)C 15 X EARLYGEM 21 c	Cross	7.7	0.0	-0.2	0.6	28.2	0.0	57.9	0.8	0.0	5.9	41.9
	107 NDBS 11(FR-M)C3 X EARLYGEM 21 l	Cross	0.0	0.0	0.0	0.1	2.8	0.0	27.4	1.3	0.0	-0.7	35.0
	108 NDCG(FS)C1XLeaming(S-FS)C6	Cross	2.4	0.0	0.0	19.3	19.6	0.0	29.6	3.8	0.0	-0.9	25.3
	109 NDSM(M-FS)C9 XEARLYGEM 21 a	Cross	5.0	0.0	-0.1	0.2	21.5	12.4	31.7	1.9	5.8	6.1	67.4
	110 NDBS 21 (R-T)C9 X EARLYGEM 21 l	Cross	11.7	0.0	0.0	1.8	17.8	0.2	33.9	3.5	0.0	2.9	36.4
	111 NDSCD(FS-CS)C2 XEARLYGEM 21 b	Cross	0.0	0.0	0.1	0.2	53.0	0.3	51.3	9.9	6.5	3.3	66.3
	112 NDSS XEARLYGEM 2 la	Cross	0.0	0.0	-0.1	6.3	12.9	0.2	18.4	6.7	6.8	3.9	41.8
	113 NDCG(FS)C1XEARLYGEM 21 c	Cross	10.3	0.0	0.1	0.1	24.3	1.4	72.4	1.4	0.0	2.9	55.3
	114 NDCG(FS)C1XNDL	Cross	0.0	0.0	0.1	0.0	10.8	0.3	30.2	1.3	2.9	0.9	29.6
	115 NDLXEARLYGEM 21a	Cross	4.2	0.0	0.0	0.2	10.1	0.2	31.0	5.2	0.0	0.7	40.9
	116 NDSM(M-FS)C9 X EARLYGEM 2 lb	Cross	7.8	0.0	2.6	1.8	36.3	0.2	56.5	6.3	7.4	0.3	69.5
	117 NDBS 11(FR-M)C3 X NDBS21(R-T)C9	Cross	6.8	0.0	0.0	0.1	6.7	0.2	3.2	2.9	0.0	0.6	41.8
	118 NDBS 1011 XEARLYGEM 21 c	Cross	0.0	0.0	-0.2	0.4	17.6	0.2	33.2	1.1	0.0	3.2	35.4
	119 NDBS 11(FR-M)C3 XEARLYGEM 21 b	Cross	3.1	1.5	0.0	0.0	20.8	0.2	28.2	3.6	1.4	3.7	48.8
	120 NDBS 11(FR-M)C3 X Leaming(S-FS)C6	Cross	3.8	1.6	0.1	-0.9	7.3	0.2	43.9	6.4	9.0	4.5	30.3

Table B7 (continued). Root lodging (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments.

Table B8. Dropped ears (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 8 environments.

Table B8 (continued). Dropped ears (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 8 environments.

Table B8 (continued). Dropped ears (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 8 environments.

Entry Pedigree		Type	2011				2012				
		Casselton	Larimore	Prosper	Thompson	Casselton	Larimore	Prosper	Thompson		
81	NDBS 11(FR-M)C3 X NDSM(M-FS)C9		Cross	-0.1	2.6	0.1	4.6	0.0	0.0	9.0	2.4
82	NDBSK(HIM)C3 X Leaming(S-FS)C6	Cross	0.0	2.7	3.7	10.5	1.9	1.5	3.7	3.0	
83	NDL X NDBS $21(\mathrm{R}-\mathrm{T}) \mathrm{C} 9$	Cross	-0.5	2.4	1.2	6.3	0.0	0.0	5.4	0.7	
84	NDSM(M-FS)C9	Parent	0.0	6.5	0.0	4.3	0.0	0.0	5.6	0.4	
85	NDSS XNDSAB(MER-FS)C 15	Cross	0.2	0.0	1.2	4.7	2.7	1.4	11.2		
86	Leaming(S-FS)C6 X NDSM(M-FS)C9	Cross	0.0	4.1	0.1	6.5	0.0	0.0	5.0	-0.2	
87	NDCG(FS)C1XNDBS 11(FR-M)C3	Cross	0.1	0.0	0.0	11.8	2.9	2.6	2.6	-0.1	
88	NDSHLC(M-FS)C5 XEARLYGEM 2 la	Cross	0.2	0.0	1.3	8.9	0.0	1.6	2.1	1.6	
89	NDBS 1011	Parent	0.0	1.3	-0.1	-1.2	0.0	0.0	2.6	4.1	
90	NDBS 1011 X NDSAB(MER-FS)C 15	Cross	0.2	11.8	-0.1	-0.1	9.5	2.9	6.9	2.8	
91	Check 3 P IONEER 39N99	Check	0.2	1.3	-0.1	13.2	0.0	0.0	2.8	1.2	
92	NDSM(M-FS)C9 X NDSHLC(M-FS)C5	Cross	0.1	2.6	-0.2	6.9	0.0	0.0	5.0	0.2	
93	B S22LEAM (R-FR)C 1 X LEAM ${ }^{\text {a }}$ (22 (S-FR)C1	Check	1.6	1.3	4.8	13.9	1.7	2.9	0.5	-0.6	
94	NDL X NDBS 1011	Cross	0.2	2.4	-0.2	9.8	0.0	1.4	4.5	-0.2	
95	NDBS 22(R-T1)C9 X NDSM(M-FS)C9	Cross	5.1	4.0	1.4	22.9	0.0	0.0	6.4	0.4	
96	NDL XNDSM(M-FS)C9	Cross	0.1	0.0	0.0	-0.7	0.0	0.0	3.2	0.0	
97	NDSS	Parent	0.2	0.0	2.5	4.4	0.0	1.4	4.5	0.2	
98	NDBS22(R-T1)C9 X NDSCD(FS-CS)C2	Cross	0.1	3.4	1.7	7.7	1.7	0.0	2.3	2.9	
99	NDCG(FS)C 1 X NDSHLC(M-FS)C5	Cross	0.2	5.1	0.2	2.9	0.0	2.8	2.1	0.2	
100	NDL X NDBSK(HI-M)C3	Cross	0.2	2.5	0.2	0.9	1.6	0.0	6.3	1.6	
101	NDBS22(R-T1)C9 XEARLYGEM 2 lb	Cross	1.6	1.2	0.1	5.4	0.0	0.0	4.0	2.0	
102	NDBS 1011 X NDSHLC(M-FS)C5	Cross	0.2	0.0	0.1	15.6	0.0	1.4	3.5	3.5	
103	NDSHLC(M-FS)C5 XEARLYGEM 2 lb	Cross	0.2	2.6	0.1	1.1	1.5	1.2	2.3	1.6	
104	NDBS 21 (R-T)C9 XEARLYGEM 21 c	Cross	0.1	3.8	1.2	0.3	0.0	1.4	1.4	1.7	
105	CGL(S-FR2)C1XBS $21 \mathrm{CGL}(\mathrm{R}-\mathrm{FR} 2) \mathrm{C} 1$	Check	0.1	0.0	1.4	5.9	0.0	0.0	3.2	2.4	
106	NDSAB(MER-FS)C 15 XEARLYGEM 21 c	Cross	0.2	1.3	0.0	0.9	0.0	0.0	2.9	3.9	
107	NDBS 11(FR-M)C3 X EAR LYGEM 2 la	Cross	1.1	6.8	0.2	0.8	0.0	0.0	3.1	1.9	
108	NDCG(FS)C1XLeaming(S-FS)C6	Cross	0.2	5.4	1.4	6.6	1.3	2.7	6.6	3.0	
109	NDSM(M-FS)C9 XEARLYGEM 21 a	Cross	0.2	5.3	-0.2	0.0	0.0	0.0	0.6	-0.4	
110	NDBS 21 (R-T)C9 XEARLYGEM 21 b	Cross	0.1	0.0	2.6	0.4	0.0	0.0	4.6	0.9	
111	NDSCD(FS-CS)C2 XEARLYGEM 21 b	Cross	1.7	0.0	2.4	2.6	4.6	4.4	1.3	1.1	
112	NDSS XEARLYGEM 2 a	Cross	0.2	2.4	2.4	8.1	0.0	2.3	2.6	1.0	
113	NDCG(FS)C1X EARLYGEM 21 c	Cross	0.0	0.0	4.9	1.5	0.0	0.0	-0.2	-0.1	
114	NDCG(FS)C1XNDL	Cross	0.2	4.1	1.6	11.3	0.0	1.6	8.7	-0.3	
115	NDLXEARLYGEM 21 a	Cross	0.2	0.0	2.7	7.7	0.0	2.4	2.9	2.8	
116	NDSM(M-FS)C9 X EARLYGEM 2 lb	Cross	0.1	0.0	-0.3	2.7	0.0	0.0	2.5	1.1	
117	NDBS $11(\mathrm{FR}-\mathrm{M}) \mathrm{C} 3$ XNDBS $21(\mathrm{R}-\mathrm{T}) \mathrm{C} 9$	Cross	1.6	0.0	0.0	5.6	2.4	1.6	0.3	-0.9	
118	NDBS 1011 XEARLYGEM 21 c	Cross	0.2	2.5	-0.2	7.2	0.0	0.0	0.7	2.4	
119	NDBS 11(FR-M)C3 XEARLYGEM 2 lb	Cross	1.3	5.0	-0.1	3.0	1.3	1.4	3.0	5.0	
120	NDBS 11(FR-M)C3 XLeaming(S-FS)C6	Cross	0.1	3.8	-0.1	14.9	0.0	4.5	5.6	-0.7	

Table B8 (continued). Dropped ears (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 8 environments.

	Entry Pedigree		Type	2011				2012				
			Casselton	Larimore	Prosper	Thompson	Casselton	Larimore	Prosper	Thompson		
		NDL X NDSHLC(M-FS)C5		Cross	0.1	3.6	-0.1	-0.5	0.0	2.7	3.8	4.4
	122 N	NDL XNDSAB(MER-FS)C 15	Cross	0.0	0.0	3.8	8.0	4.5	0.0	6.8	2.5	
	123 N	NDCG(FS)C1XNDBS22(R-Tl)C9	Cross	1.4	1.2	-0.1	3.3	8.0	0.0	3.1	-0.1	
	124 N	NDCG(FS)C1XNDSCD(FS-CS)C2	Cross	1.8	0.0	-0.1	15.9	2.6	0.0	5.2	3.5	
	125	CGSS21(S-FR)C1XBS21CGSS (R-FR)C1	Check	-0.1	5.3	1.0	5.0	0.0	0.0	4.1	0.2	
	126 N	NDCG(FS)C1XNDBS21(R-T)C9	Cross	0.1	8.9	-0.1	16.0	0.0	1.3	2.5	2.6	
	127 N	NDBS 22(R-T1)C9 X NDBS 21 (R-T)C9	Cross	1.8	0.0	-0.2	1.6	1.6	0.0	3.4	1.4	
	128 L	Leaming(S-FS)C6 XEARLYGEM 21 b	Cross	0.0	6.3	-0.2	7.0	0.0	0.0	2.7	1.6	
	129 N	NDBS $1011 \mathrm{XNDSM}(\mathrm{M}-\mathrm{FS}) \mathrm{C} 9$	Cross	0.0	0.0	3.7	-0.1	0.0	1.4	2.3	-0.6	
	130 N	NDL XEARLYGEM 21 c	Cross	0.1	3.8	1.0	5.2	5.3	0.0	3.8	3.8	
	131 N	NDL XNDSCD(FS-CS)C2	Cross	2.6	4.2	0.0	9.4	8.3	0.0	4.5	3.1	
	132 E	EARLYGEM 21 l	P arent	0.1	0.0	-0.1	5.1	0.0	0.0	2.9	0.1	
	133 N	NDCG(FS)C1X NDBSK(HI-M)C3	Cross	0.1	2.5	-0.1	4.2	1.6	0.0	7.2	1.2	
	134 N	NDSCD(FS-CS)C2 X EARLYGEM 21 c	Cross	2.9	2.8	3.8	3.3	0.0	0.0	0.7	-0.2	
	135 N	NDCG(FS)C1XNDSM(M-FS)C9	Cross	0.1	10.5	0.0	10.6	0.0	1.4	3.2	-0.2	
	136 N	NDSAB(MER-FS)C 15 X NDSCD(FS-CS)C2	Cross	0.1	7.2	1.3	8.0	3.4	2.7	4.5	1.5	
	137 N	NDSM(M-FS)C9 XEARLYGEM 21 c	Cross	-0.1	1.4	0.0	4.6	3.1	0.0	1.9	2.6	
	138 L	Leaming(S-FS)C6 XEARLYGEM 2 1a	Cross	0.1	0.0	0.0	9.0	1.4	0.0	0.8	2.6	
	139 N	NDSS XNDCG(FS)C1	Cross	0.1	4.1	-0.1	6.4	7.1	1.2	0.6	1.2	
N	140 N	NDSM(M-FS)C9 XNDSCD(FS-CS)C2	Cross	0.0	6.8	-0.1	3.0	1.9	3.1	1.4	1.5	
		NDBS21(R-T)C9 X NDSCD(FS-CS)C2	Cross	0.0	0.0	3.0	9.6	4.5	1.6	1.3	-0.7	
	142 N	NDCG(FS)C1XNDBS 1011	Cross	0.1	5.3	-0.1	4.7	2.3	1.5	22.0	6.2	
	143 N	NDBS 1011 XEARLYGEM 21 a	Cross	-0.3	2.5	2.4	3.3	0.0	0.0	-0.6	0.4	
	144 N	NDSHLC(M-FS)C5	P arent	3.4	5.9	0.0	5.6	0.0	1.3	2.0	2.8	
		Experiment mean		0.5	2.5	1.0	6.2	1.4	0.9	3.6	1.4	
		Mean of parental populations		0.4	2.2	0.8	4.6	1.0	1.0	4.2	1.2	
		Mean of population crosses		0.6	2.6	1.1	6.3	1.6	0.9	3.6	1.4	
		Mean of checks		0.2	1.6	0.9	7.7	0.2	0.5	2.3	1.6	
		LSD (0.05)		2.9	6.5	3.8	13.4	6.8	3.6	8.9	4.2	
		CV		275.3	133.6	189.0	109.6	237.0	199.5	124.6	148.9	
		MSE		2.2	10.8	3.6	45.6	11.7	3.3	20.0	4.4	

Table B9. Ear height (cm) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments.

Entry Pedigree	Type	2010			2011				2012			
		Casselton	Larimore	Thompson	Casselton	Larimore	Prosper	Thompson	Casselton	Larimore	Prosper	Thompson
1 Leaming(S-FS)C6 XEARLYGEM 21c	Cross	80.5	80.8	81.9	55.4	113.8	83.6	108.8	82.3	91.1	105.0	94.5
2 Leaming(S-FS)C6 XNDSAB(MER-FS)C 15	Cross	83.8	74.9	83.6	44.4	129.5	91.5	107.2	85.4	95.3	101.3	96.5
$3 \mathrm{NDBSK}(\mathrm{HI}-\mathrm{M}) \mathrm{C} 3 \mathrm{XNDSM}(\mathrm{M}-\mathrm{FS}) \mathrm{C} 9$	Cross	79.8	71.9	78.9	45.2	123.5	91.2	104.7	81.5	84.2	96.8	101.8
$4 \mathrm{BS} 21 \mathrm{AB}(\mathrm{R}-\mathrm{FR}) \mathrm{C} 1 \mathrm{XNDSAB} 21(\mathrm{R}-\mathrm{FR}) \mathrm{C} 1$	Check	86.8	88.1	87.7	59.8	136.8	99.6	125.0	99.8	98.6	128.5	108.8
5 EARLYGEM 2 la XEARLYGEM 2 lb	Cross	84.9	78.1	76.9	41.5	120.5	77.4	101.6	68.5	85.9	109.3	91.1
6 NDBS $1011 \mathrm{XNDSCD}(\mathrm{FS}-\mathrm{CS}) \mathrm{C} 2$	Cross	103.9	88.8	102.7	63.7	129.8	105.6	129.2	98.6	96.4	126.5	122.9
7 NDSS XNDL	Cross	85.1	81.4	88.1	51.8	118.3	89.0	108.8	81.2	93.7	109.6	103.3
8 NDBSK(HI-M)C3 XEARLYGEM 21 b	Cross	91.5	70.7	81.5	54.6	123.5	95.7	102.6	91.5	95.8	114.7	100.4
9 NDL XEARLYGEM 2 lb	Cross	83.3	73.8	78.0	48.9	125.3	94.5	117.0	87.5	89.9	114.6	105.3
10 NDBS 11(FR-M)C3 XEARLYGEM 21 c	Cross	79.0	72.4	75.5	56.7	127.8	90.8	106.3	86.3	90.2	109.0	97.8
11 NDBS 11(FR-M)C3	Parent	73.6	70.6	75.2	49.3	120.3	86.6	115.9	82.6	82.3	106.9	95.5
$12 \mathrm{NDBSK}(\mathrm{HI}-\mathrm{M}) \mathrm{C} 3 \mathrm{XNDSHLC}(\mathrm{M}-\mathrm{FS}) \mathrm{C} 5$	Cross	94.3	72.0	79.1	48.3	106.3	88.3	110.4	89.7	91.9	104.8	99.1
$13 \mathrm{NDSCD}(\mathrm{FS}-\mathrm{CS}) \mathrm{C} 2$	Parent	91.3	102.0	99.1	65.0	145.0	100.4	122.1	101.2	103.8	138.6	126.8
14 NDSHLC(M-FS)C5 XEARLYGEM 21 c	Cross	86.5	71.6	71.5	51.0	122.8	88.1	104.5	85.8	88.1	113.7	97.3
15 NDSS XNDBS22(R-T1)C9	Cross	83.4	82.7	81.1	52.8	123.5	91.5	112.4	88.6	88.2	110.9	100.0
16 Check 4 DKC 43-27 VT3	Check	84.8	82.2	83.0	49.2	125.0	82.2	111.2	75.2	87.4	105.2	104.5
17 NDSS XNDSHLC(M-FS)C5	Cross	89.3	72.3	72.8	58.1	133.8	92.2	119.3	99.1	94.4	119.9	108.3
18 EARLYGEM 2 lc	P arent	71.5	65.1	70.7	44.2	115.8	79.6	99.1	75.2	83.1	105.2	92.4
19 Leaming(S-FS)C6	P arent	73.4	66.2	70.0	45.9	114.5	75.8	105.3	77.8	92.4	114.2	89.8
20 NDBS $1011 \mathrm{XNDBS} 22(\mathrm{R}-\mathrm{T} 1) \mathrm{C} 9$	Cross	85.3	87.8	88.4	52.1	126.8	90.9	102.3	85.1	93.3	119.6	108.5
21 Leaming(S-FS)C6 X NDSHLC(M-FS)C5	Cross	87.6	78.4	72.8	46.7	115.8	84.8	109.0	87.9	93.4	102.0	94.5
22 NDBS21(R-T)C9 X NDSHLC(M-FS)C5	Cross	85.0	76.7	73.4	56.0	126.0	90.4	117.3	86.9	92.7	114.9	108.8
23 Check 1P IONEER 39V07	Check	81.2	96.9	99.9	50.6	140.8	88.1	123.6	93.8	103.5	124.3	117.8
24 NDCG(FS)C1XNDSAB(MER-FS)C 15	Cross	81.0	73.8	80.2	51.4	127.5	82.8	108.6	89.0	102.2	105.4	98.8
25 Leaming(S-FS)C6 X NDBS 22(R-T) C9	Cross	81.1	75.8	82.2	52.3	129.0	84.5	112.3	91.1	98.9	108.0	101.0
26 Leaming(S-FS)C6 X NDBS 21 (R-T)C9	Cross	76.1	77.8	79.3	49.7	13.8	89.4	115.4	80.7	91.7	105.2	106.3
27 NDBSK(HI-M)C3 X EARLYGEM 2 la	Cross	74.5	72.9	84.5	53.6	120.3	86.7	112.6	92.6	92.9	115.0	102.3
28 NDL XLeaming(S-FS)C6	Cross	78.2	73.9	83.4	52.6	131.5	87.7	114.2	89.1	92.3	112.5	98.0
29 EARLYGEM 21 la XEARLYGEM 21 c	Cross	75.5	65.4	73.3	44.7	114.0	80.0	97.5	67.6	82.8	108.0	96.7
30 NDCG(FS)C1XEARLYGEM 21 b	Cross	82.9	75.1	84.3	51.3	115.3	89.2	108.1	85.6	87.0	110.8	98.5
31 Leaming(S-FS)C6 X NDSCD(FS-CS)C2	Cross	104.2	92.1	106.7	57.0	128.8	93.6	122.8	99.0	99.1	118.1	102.2
32 NDBS K(HI-M)C3 X EARLYGEM 21 c	Cross	79.3	71.9	75.6	48.9	123.8	84.0	98.3	83.0	90.2	103.0	99.3
33 NDBS 1011 X EARLYGEM 2 lb	Cross	85.4	84.7	82.5	57.3	127.5	87.3	109.2	98.1	95.1	111.3	103.0
34 NDSCD(FS-CS)C2 XEARLYGEM 2 1a	Cross	113.0	89.2	104.6	60.3	128.8	100.2	111.2	106.9	94.9	121.2	118.0
35 NDSS XEARLYGEM 2 lb	Cross	86.4	84.5	96.7	49.4	128.5	84.9	113.6	82.9	90.2	110.1	104.3
36 NDSAB(MER-FS)C 15 XNDSHLC(M-FS)C5	Cross	89.9	67.8	82.0	59.7	116.3	91.6	110.6	98.5	91.1	120.8	111.0
37 NDBS 11(FR-M)C3 X NDSCD(FS-CS)C2	Cross	96.4	82.7	101.9	64.8	133.0	96.2	132.1	94.5	100.1	124.0	116.3
38 NDCG(FS)C1XEARLYGEM 21 l	Cross	81.6	79.2	87.5	50.5	130.0	82.4	112.3	83.3	89.6	102.8	94.0
39 EARLYGEM 2 lb X EARLYGEM 2 lc	Cross	80.1	69.8	69.0	46.4	111.5	78.0	96.7	67.4	77.1	107.3	85.9
40 NDBSK(HI-M)C3 X NDSAB (MER-FS)C 15	Cross	83.8	76.0	88.9	53.8	129.8	84.2	115.0	91.4	92.7	121.8	106.5

Table B9 (continued). Ear height (cm) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments.

Entry Pedigree	Type	2010			2011				2012			
		Casselton	Larimore	Thompson	Casselton	Larimore	Prosper	Thompson	Casselton	Larimore	Prosper	Thompson
41 NDBS21(R-T)C9	P arent	76.0	74.9	78.5	42.4	117.5	81.5	104.1	73.9	84.8	103.3	96.5
42 NDSAB(MER-FS)C 15 XEARLYGEM 2 lb	Cross	76.9	71.6	80.6	50.3	129.5	86.5	102.7	81.5	86.9	105.6	101.0
43 NDBSK(HIM)C3 X NDBS 22 (R-T 1)C9	Cross	78.9	73.2	76.9	49.5	124.5	79.9	101.1	87.3	90.8	109.3	87.3
44 NDSS XNDBSK(HI-M)C3	Cross	86.9	80.6	85.0	55.0	120.5	91.0	111.1	89.9	95.6	124.0	100.0
45 NDSS XLeaming(S-FS)C6	Cross	86.3	71.0	83.5	69.3	139.3	96.1	120.3	87.2	100.3	116.6	105.5
46 NDLXNDBS22(R-Tl)C9	Cross	82.6	65.6	79.2	56.8	132.3	86.2	115.8	85.7	93.1	111.2	112.5
47 NDSCD(FS-CS)C2 X NDSHLC(M-FS)C5	Cross	89.5	81.0	91.6	63.9	130.3	110.4	125.4	98.0	102.4	120.9	114.0
48 NDBS 11(FR-M)C3 X NDSAB (MER-FS)C 15	Cross	80.5	70.9	80.6	46.7	122.3	88.4	107.6	79.3	88.5	116.0	97.5
49 NDSS XNDSM(M-FS)C9	Cross	85.3	78.0	88.5	51.8	133.5	86.8	112.2	80.2	88.5	116.6	96.3
50 NDBS22(R-T1)C9 X EARLYGEM 21 a	Cross	77.3	68.3	75.1	51.5	127.3	82.2	108.1	84.3	87.8	107.7	98.5
51 NDBS 22(R-T1)C9	P arent	70.1	61.3	73.7	42.6	115.8	78.1	98.8	89.9	78.7	108.7	88.3
52 NDSS XNDBS 1011	Cross	88.9	85.6	93.1	61.4	119.8	95.3	117.4	94.4	92.9	116.4	101.8
53 NDL	P arent	86.3	73.6	82.3	51.9	128.5	91.6	110.7	84.9	88.9	116.2	100.5
54 NDBS 1011 XLeaming (S-FS) C6	Cross	83.6	75.6	96.0	51.5	134.0	87.7	109.0	88.4	95.6	113.0	100.3
55 NDBSK(HI-M)C3 X NDBS 1011	Cross	80.4	71.2	90.8	55.4	127.5	89.2	114.9	92.6	99.9	115.0	102.3
56 NDSAB(MER-FS)C 15 XNDBS21(R-T)C9	Cross	82.1	76.9	81.7	49.4	129.5	97.1	112.4	87.6	100.0	112.2	103.3
57 NDBS 11(FR-M)C3 X NDBS22(R-T1)C9	Cross	93.8	74.7	85.1	46.8	123.0	89.2	109.9	86.6	85.4	111.0	95.3
58 EARLYGEM 2 lb	P arent	77.2	63.9	70.0	45.0	116.8	84.2	92.2	76.4	84.7	110.4	94.9
59 NDSAB(MER-FS)C15 X NDSM(M-FS)C9	Cross	90.1	74.1	85.6	51.4	131.3	88.5	116.2	87.2	91.0	118.1	102.5
60 Check 2 DKC 36-34 VT3	Check	79.3	76.3	82.9	42.4	124.5	73.9	108.0	88.5	93.2	111.9	95.3
61 NDBSK(HI-M)C3 X NDSCD(FS-CS)C2	Cross	91.0	81.5	82.0	62.6	134.0	96.0	117.3	101.5	104.0	119.6	110.5
62 NDBS22(R-T1)C9 X EARLYGEM 21 c	Cross	81.0	68.4	71.7	51.8	123.8	86.4	111.2	84.4	86.0	100.6	94.5
63 NDL XNDBS 11(FR-M)C3	Cross	81.7	77.9	79.3	47.2	131.8	90.5	106.9	85.0	86.2	113.7	95.8
64 NDBS 11(FR-M)C3 X NDSHLC(M-FS)C5	Cross	87.1	74.9	83.8	58.3	125.0	91.7	112.8	94.8	90.4	115.7	104.0
65 NDBSK(HI-M)C3 X NDBS 21 (R-T) C 9	Cross	84.7	66.6	78.9	50.0	122.8	91.7	117.4	96.2	93.9	95.4	100.0
66 NDBS22(R-T1)C9 X NDSAB (MER-FS)C 15	Cross	78.5	70.5	90.7	46.4	118.5	86.9	106.1	91.8	92.8	109.4	106.5
67 NDBS22(R-T1)C9 X NDSHLC(M-FS)C5	Cross	68.9	62.4	72.4	52.3	117.5	91.6	113.3	87.9	93.2	112.0	101.0
68 NDSM(M-FS)C9 X NDBS 21 (R-T)C9	Cross	86.4	81.1	93.3	50.0	121.3	90.7	110.3	80.9	86.3	96.9	95.3
$69 \mathrm{NDBSK}(\mathrm{HI}-\mathrm{M}) \mathrm{C} 3 \mathrm{XNDBS} 11(\mathrm{FR}-\mathrm{M}) \mathrm{C} 3$	Cross	89.4	73.6	75.3	53.8	126.3	85.8	110.8	94.0	78.1	108.7	93.0
70 NDSS XNDBS 11(FR-M)C3	Cross	87.3	77.3	78.4	57.9	134.3	92.2	119.7	89.5	88.0	109.8	109.5
71 NDBSK(HIM)C3	P arent	78.8	79.4	73.7	42.2	123.5	77.2	109.6	81.6	93.8	98.5	94.3
72 NDSS XNDBS $21(\mathrm{R}-\mathrm{T}) \mathrm{C} 9$	Cross	68.2	77.9	81.6	53.0	122.5	85.9	125.6	93.1	94.7	118.9	98.3
73 NDSS XEARLYGEM 21 c	Cross	77.3	75.0	86.3	54.0	124.5	83.5	104.8	84.1	87.0	111.5	93.0
74 NDBS 11(FR-M)C3 X NDBS 1011	Cross	89.1	77.4	100.0	54.5	129.8	88.6	112.2	85.4	89.6	119.0	104.5
75 NDCG(FS)C1	P arent	73.5	83.1	72.9	53.1	120.5	86.5	105.9	79.8	88.7	108.3	91.4
76 NDSAB(MER-FS)C 15	P arent	79.4	81.9	86.1	58.2	117.3	88.7	107.8	93.1	94.1	122.5	109.2
77 NDSS XNDSCD(FS-CS)C2	Cross	99.7	82.2	101.7	63.8	143.5	97.5	124.4	100.5	106.7	126.5	114.3
78 NDBS 1011 N NDBS 21 (R-T)C9	Cross	79.0	77.2	90.6	55.8	130.0	91.7	122.9	85.6	83.8	107.8	115.5
79 NDSAB(MER-FS)C 15 XEARLYGEM 2 la	Cross	85.3	87.0	89.3	53.5	127.0	92.3	109.8	87.0	92.7	119.1	11.0
80 NDBS21(R-T)C9 X EARLYGEM 21 a	Cross	85.3	76.8	92.2	56.2	131.0	91.0	117.3	91.8	93.5	114.2	104.8

Table B9 (continued). Ear height (cm) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments.

Entry Pedigree	Type	2010			2011				2012			
		Casselton	Larimore	Thompson	Casselton	Larimore	Prosper	Thompson	Casselton	Larimore	Prosper	Thompson
81 NDBS 11(FR-M)C3 X NDSM(M-FS)C9	Cross	82.8	84.6	76.3	54.0	130.5	91.8	122.5	93.8	96.4	114.8	101.8
82 NDBSK(HI-M)C3 X Leaming(S-FS)C6	Cross	80.1	75.8	79.5	53.1	125.5	91.2	99.3	82.1	98.5	105.2	98.5
83 NDL X NDBS 21 (R-T)C9	Cross	78.2	76.9	82.8	56.1	124.5	89.2	117.6	86.6	97.5	104.1	97.3
84 NDSM(M-FS)C9	P arent	74.8	69.4	78.4	42.4	126.5	84.9	105.6	86.9	83.9	96.3	84.5
85 NDSS XNDSAB(MER-FS)C 15	Cross	83.2	79.7	78.3	61.6	129.0	90.8	113.8	90.5	91.7	114.9	
86 Leaming(S-FS)C6 X NDSM(M-FS)C9	Cross	80.4	74.7	80.4	53.6	110.5	86.7	109.5	81.1	90.8	103.2	99.0
87 NDCG(FS)C1 ${ }^{\text {d }}$ NDBS 11(FR-M)C3	Cross	94.5	82.8	88.8	48.4	121.5	91.3	113.9	86.4	87.5	111.4	101.5
88 NDSHLC(M-FS)C5 XEARLYGEM 21 a	Cross	85.1	70.4	88.5	60.8	119.0	88.8	112.2	80.5	98.9	109.9	105.0
89 NDBS 1011	P arent	90.8	84.1	94.1	47.5	130.8	94.6	118.3	94.9	91.9	119.4	99.3
90 NDBS 1011 X NDS AB(MER-FS) C 15	Cross	95.1	72.8	101.3	54.3	131.5	98.0	119.4	86.5	93.6	114.7	111.8
91 Check 3 P IONEER 39N99	Check	89.4	86.5	98.0	46.5	131.5	83.7	110.0	86.4	94.7	119.2	108.3
92 NDSM(M-FS)C9 XNDSHLC(M-FS)C5	Cross	88.5	73.8	83.4	52.5	120.8	89.6	111.1	91.9	94.0	106.1	97.0
93 BS22LEAM(R-FR)C1XLEAMING22 (S-FR)C1	Check	84.7	76.6	86.2	51.1	138.3	90.9	112.8	92.2	92.4	110.0	103.8
94 NDL X NDBS 1011	Cross	81.5	80.7	84.0	57.9	129.3	92.8	114.5	86.2	100.5	110.6	97.0
95 NDBS 22(R-T1)C9 X NDSM(M-FS)C9	Cross	84.8	70.5	74.0	52.0	126.8	86.8	115.6	83.3	97.5	102.3	100.0
96 NDL XNDSM(M-FS)C9	Cross	79.4	79.9	87.5	47.8	127.8	90.4	102.6	84.6	91.4	105.7	100.0
97 NDSS	P arent	85.5	77.4	88.3	57.5	136.3	86.6	116.2	89.1	94.1	117.3	97.8
98 NDBS22(R-T1)C9 X NDSCD(FS-CS)C2	Cross	93.2	87.3	88.6	60.5	137.8	97.3	12.8	89.7	101.4	120.4	116.5
99 NDCG(FS)C1XNDSHLC(M-FS)C5	Cross	78.0	73.9	82.6	58.6	116.5	92.6	107.0	76.8	91.0	93.6	102.3
100 NDL X NDBSK(HI-M)C3	Cross	84.2	78.0	79.6	57.7	133.5	94.6	107.8	81.4	98.2	117.2	101.0
101 NDBS 22(R-T 1)C9 X EARLYGEM 21 b	Cross	77.9	71.2	66.9	50.6	12.0	84.4	114.9	89.6	86.5	111.4	100.3
102 NDBS 1011 X NDSHLC(M-FS)C5	Cross	83.5	74.0	85.8	54.6	132.5	97.8	111.3	95.1	100.6	111.9	113.5
103 NDSHLC(M-FS)C5 X EARLYGEM 2 lb	Cross	79.5	67.8	80.3	56.6	126.5	86.0	110.9	91.8	96.7	110.4	99.8
104 NDBS $21(\mathrm{R}-\mathrm{T}) \mathrm{C} 9$ X EARLYGEM 2 lc	Cross	80.3	79.4	87.8	49.0	124.5	94.6	114.4	86.3	99.6	113.4	102.3
$105 \mathrm{CGL}(\mathrm{S}-\mathrm{FR} 2) \mathrm{C} 1 \mathrm{XB}$ - $21 \mathrm{CGL}(\mathrm{R}-\mathrm{FR} 2) \mathrm{C} 1$	Check	77.5	83.8	94.0	56.8	125.8	92.2	115.4	87.8	105.2	113.0	111.3
106 NDSAB(MER-FS)C 15 XEARLYGEM 21 c	Cross	81.3	83.4	87.8	57.3	122.8	81.3	108.9	89.4	89.8	111.3	103.0
107 NDBS 11(FR-M)C3 X EARLYGEM 2 la	Cross	85.9	72.2	81.9	55.1	126.0	91.6	116.9	87.9	88.8	112.0	99.8
108 NDCG(FS)C1XLeaming(S-FS)C6	Cross	83.9	81.7	86.2	49.7	123.5	85.3	112.5	86.7	91.7	102.4	96.3
109 NDSM(M-FS)C9 X EARLYGEM 21 a	Cross	74.8	70.3	77.6	55.3	123.0	79.7	108.1	81.1	95.3	110.9	102.8
110 NDBS 21 (R-T)C9 X EARLYGEM 2 lb	Cross	81.4	75.9	88.9	53.0	126.5	87.3	110.5	85.4	83.9	110.0	103.5
111 NDSCD(FS-CS)C2 XEARLYGEM 21 b	Cross	97.0	90.7	98.8	60.1	128.8	91.2	120.9	100.5	87.8	117.7	118.0
112 NDSS XEARLYGEM 2 la	Cross	88.5	83.6	88.3	61.0	127.5	90.4	112.5	88.8	86.4	112.0	98.8
113 NDCG(FS)C1XEARLYGEM 21 c	Cross	87.7	77.8	85.5	52.4	116.5	93.7	113.4	63.7	94.2	108.5	98.3
114 NDCG(FS)C1XNDL	Cross	91.5	81.5	89.6	49.5	132.8	91.6	107.4	84.6	94.7	110.2	99.5
115 NDLXEARLYGEM 21a	Cross	76.9	76.6	76.8	52.2	127.8	83.3	115.6	88.7	97.0	117.5	99.8
116 NDSM(M-FS)C9 X EARLYGEM 2 lb	Cross	91.4	78.4	85.9	41.4	125.8	82.5	107.6	79.7	89.4	103.2	98.5
117 NDBS 11(FR-M)C3 XNDBS 21 (R-T)C9	Cross	85.6	80.8	92.2	54.8	130.3	89.5	115.0	83.8	107.5	110.8	103.0
118 NDBS 1011 XEARLYGEM 21 c	Cross	97.6	82.8	89.8	57.1	129.5	93.1	112.8	91.0	101.1	112.2	104.8
119 NDBS 11(FR-M)C3 XEAR LYGEM 2 lb	Cross	91.5	71.7	81.0	55.9	124.3	89.4	113.1	80.6	90.6	113.9	104.3
120 NDBS 11(FR-M)C3 XLeaming(S-FS)C6	Cross	79.8	73.6	83.9	48.4	126.8	87.1	111.4	90.2	96.3	115.0	100.5

Table B9 (continued). Ear height (cm) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments.

	Entry Pedigree	Type		2010			20				201		
			Casselton	Larimore	Thompson	Casselton	Larimore	Prosper	Thompson	Casselton	Larimore	Prosper	Thompson
	121 NDL XNDSHLC(M-FS)C5	Cross	88.5	80.7	83.5	55.2	121.8	80.5	105.5	96.8	91.6	109.8	104.0
	122 NDL XNDSAB(MER-FS)C 15	Cross	84.1	72.5	78.0	50.1	130.8	88.9	115.4	88.3	89.7	116.1	106.3
	123 NDCG(FS) C 1 X NDB S 22(R-T1)C9	Cross	73.8	69.3	78.4	52.0	123.8	83.3	110.8	97.4	92.8	112.3	96.0
	$124 \mathrm{NDCG}(\mathrm{FS}) \mathrm{C} 1 \mathrm{XNDSCD}(\mathrm{FS}-\mathrm{CS}) \mathrm{C} 2$	Cross	86.5	84.4	98.6	58.6	136.3	100.3	125.6	90.7	95.2	111.8	105.3
	$125 \mathrm{CGSS} 21(\mathrm{~S}-\mathrm{FR}) \mathrm{C} 1 \mathrm{XBS} 21 \mathrm{CGSS}(\mathrm{R}-\mathrm{FR}) \mathrm{C} 1$	Check	84.4	83.7	83.1	56.0	125.8	93.8	118.5	91.9	96.0	122.3	112.5
	$126 \mathrm{NDCG}(\mathrm{FS}) \mathrm{C} 1 \mathrm{XNDBS} 21(\mathrm{R}-\mathrm{T}) \mathrm{C} 9$	Cross	76.3	78.1	85.3	47.9	123.0	88.2	112.0	83.8	91.4	98.6	104.3
	127 NDBS 22(R-T 1)C9 X NDBS 21 (R-T)C9	Cross	69.3	67.3	76.2	52.6	119.3	85.9	113.4	86.1	90.3	110.4	106.3
	128 Leaming(S-FS)C6 X EARLYGEM 2 lb	Cross	85.5	75.9	78.4	48.3	119.5	83.0	103.2	89.7	99.4	109.8	97.5
	129 NDBS 1011 XNDSM(M-FS)C9	Cross	78.3	80.0	84.9	52.9	126.8	89.1	113.7	91.4	97.5	119.1	109.5
	130 NDLXEARLYGEM 21 c	Cross	86.4	76.9	80.9	50.2	129.5	88.2	110.4	82.5	91.8	108.5	100.8
	131 NDL X NDSCD(FS-CS)C2	Cross	85.4	98.2	88.8	57.5	131.8	95.2	128.0	94.6	99.6	125.9	124.3
	132 EARLYGEM 21 a	P arent	76.7	73.9	75.6	42.3	117.5	78.4	105.7	75.6	86.8	115.6	80.4
	133 NDCG(FS)C1 ${ }^{\text {P NDBSK}}$ (HI-M)C3	Cross	79.2	73.5	87.6	53.6	115.8	84.7	106.4	86.4	90.1	106.9	95.5
	134 NDSCD(FS-CS)C2 X EARLYGEM 21 c	Cross	94.3	85.5	94.4	56.6	134.0	96.4	110.6	89.9	93.1	121.0	113.3
	135 NDCG(FS)C1XNDSM(M-FS)C9	Cross	81.0	71.2	74.4	50.7	130.3	85.2	114.0	82.0	95.5	106.0	97.3
	136 NDSAB(MER-FS)C 15 XNDSCD(FS-CS)C2	Cross	91.7	92.3	106.8	60.5	140.5	103.7	127.8	102.1	107.4	128.7	121.8
	137 NDSM(M-FS)C9 XEARLYGEM 21 c	Cross	70.9	82.5	75.7	47.7	121.0	86.5	105.2	80.0	87.2	112.5	99.7
	138 Leaming(S-FS)C6 X EARLYGEM 2 a	Cross	84.4	73.8	70.5	48.4	118.3	95.7	114.2	85.6	92.2	110.5	103.5
	139 NDSS XNDCG(FS)C1	Cross	75.9	69.9	79.6	53.0	122.3	90.8	117.4	81.3	92.7	117.5	101.0
	140 NDSM(M-FS)C9 X NDSCD(FS-CS)C2	Cross	80.9	89.9	100.9	62.5	134.5	97.2	108.4	102.0	101.6	114.1	108.1
w	141 NDBS 21 (R-T)C9 X NDSCD(FS-CS)C2	Cross	90.2	76.2	88.6	58.9	144.8	100.6	126.1	96.0	98.7	12.5	120.3
ω	142 NDCG(FS)C1XNDBS 1011	Cross	89.2	82.2	84.4	54.9	132.8	97.4	118.9	87.3	98.8	111.1	113.5
	143 NDBS 1011 X EARLYGEM 21 a	Cross	83.3	83.8	89.4	55.2	127.5	92.9	115.2	87.9	98.4	112.1	111.8
	144 NDSHLC(M-FS)C5	P arent	84.5	68.0	69.7	45.8	116.0	82.3	94.5	81.9	86.8	98.0	82.0
	Experiment mean		83.8	77.2	84.0	52.9	126.1	89.2	112.1	87.5	92.8	112.1	102.4
	Mean of parental populations		78.9	74.7	78.6	48.5	122.6	84.8	107.0	84.1	88.7	111.2	95.2
	Mean of population crosses		84.4	77.1	84.4	53.6	126.2	89.8	112.6	87.8	93.2	111.9	103.0
	Mean of checks		83.5	84.3	89.3	51.6	131.0	88.1	115.6	89.4	96.4	116.8	107.8
	LSD (0.05)		15.7	10.3	11.5	8.4	10.9	11.0	11.0	11.2	10.0	12.2	13.2
	CV		9.4	6.8	6.9	8.0	4.4	6.2	4.9	6.5	5.4	5.5	6.5
	MSE		62.7	27.3	33.9	17.8	30.2	30.8	30.7	32.0	25.4	38.0	44.2

Table B10. Plant height (cm) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments.

Entry Pedigree	Type	2010			2011				2012			
		Casselton	Larimore	Thompson	Casselton	Larimore	Prosper	Thompson	Casselton	Larimore	Prosper	Thompson
1 Leaming(S-FS)C6 XEARLYGEM 21 c	Cross	186.7	187.0	181.3	14.6	226.3	200.1	219.9	173.3	181.2	230.4	201.5
2 Leaming(S-FS)C6 XNDSAB(MER-FS)C 15	Cross	207.3	188.8	205.0	142.5	244.5	204.8	222.5	187.0	185.3	223.5	215.6
3 NDBSK(HIM)C3 X NDSM(M-FS)C9	Cross	187.5	165.7	18.9	132.4	226.0	201.3	209.7	175.8	168.5	215.8	207.1
$4 \mathrm{BS} 21 \mathrm{AB}(\mathrm{R}-\mathrm{FR}) \mathrm{C} 1 \mathrm{XNDSAB} 21(\mathrm{R}-\mathrm{FR}) \mathrm{C} 1$	Check	202.2	192.1	200.9	149.7	253.3	221.3	238.0	199.6	187.4	250.0	216.4
5 EARLYGEM 2 la X EARLYGEM 2 lb	Cross	182.1	169.9	174.8	134.0	217.0	183.3	198.3	147.6	167.3	208.7	182.7
6 NDBS 1011 XNDSCD(FS-CS)C2	Cross	216.1	206.8	222.2	156.0	243.5	215.9	239.9	190.2	182.2	243.6	224.4
7 NDSS XNDL	Cross	195.7	189.9	202.0	137.2	224.8	202.4	222.6	179.1	193.6	228.2	209.2
8 NDBSK(HI-M)C3 X EARLYGEM 2 lb	Cross	197.2	174.4	188.7	139.4	229.8	200.5	207.6	183.4	187.8	228.5	200.4
9 NDLXEARLYGEM 2 lb	Cross	195.9	169.7	184.1	14.1	234.0	201.7	224.4	176.0	177.9	230.4	212.5
10 NDBS 11(FR-M)C3 XEARLYGEM 21 c	Cross	185.0	175.4	177.4	140.9	236.5	195.1	210.0	180.3	172.9	225.9	203.6
11 NDBS 11(FR-M)C3	P arent	179.7	169.0	180.2	138.3	224.8	194.3	226.4	175.7	174.2	214.9	201.8
$12 \mathrm{NDBSK}(\mathrm{HI}-\mathrm{M}) \mathrm{C} 3 \mathrm{XNDSHLC}(\mathrm{M}-\mathrm{FS}) \mathrm{C} 5$	Cross	202.1	174.4	188.0	128.8	208.0	196.2	212.5	173.7	178.6	217.6	202.0
$13 \mathrm{NDSCD}(\mathrm{FS}-\mathrm{CS}) \mathrm{C} 2$	Parent	198.6	190.5	204.2	145.0	242.8	218.6	233.0	183.6	202.2	239.0	22.4
14 NDSHLC(M-FS)C5 XEARLYGEM 21 c	Cross	191.4	172.6	178.4	136.4	227.3	192.1	203.7	168.6	176.2	22.1	198.8
15 NDSS XNDBS22(R-T1)C9	Cross	201.0	192.8	203.7	145.1	244.8	206.4	225.9	191.9	175.0	236.5	215.5
16 Check 4 DKC 43-27 VT3	Check	194.3	187.1	198.9	127.6	237.5	192.1	216.7	169.2	176.0	229.7	212.1
17 NDSS XNDSHLC(M-FS)C5	Cross	194.6	167.9	189.4	144.7	240.0	207.8	223.7	182.2	180.5	234.6	209.7
18 EARLYGEM 2 lc	Parent	165.0	155.2	163.4	123.2	214.0	176.2	196.8	148.5	162.6	203.5	183.0
19 Leaming(S-FS)C6	Parent	195.7	175.3	192.0	132.9	234.5	200.9	217.3	170.8	199.5	234.1	208.3
20 NDBS 1011 X NDBS22(R-T 1)C9	Cross	187.5	193.6	201.2	142.8	242.5	198.8	217.3	186.8	188.0	239.7	220.5
21 Leaming(S-FS)C6 X NDSHLC(M-FS)C5	Cross	204.4	182.1	182.4	139.5	226.5	203.2	219.0	178.4	175.8	228.1	209.7
22 NDBS 21 (R-T)C9 X NDSHLC(M-FS)C5	Cross	198.1	176.8	186.7	142.6	241.3	205.4	229.4	179.4	179.0	230.5	219.7
23 Check 1P IONEER 39V07	Check	179.9	189.4	197.6	134.9	239.3	189.9	223.3	175.8	187.3	230.8	216.2
24 NDCG(FS)C1XNDSAB(MER-FS)C 15	Cross	189.0	179.5	184.8	137.4	239.3	190.8	216.1	171.3	192.5	226.3	201.7
25 Leaming(S-FS)C6 X NDBS 22(R-T) C9	Cross	205.0	182.3	196.3	147.7	245.3	207.6	222.7	191.1	189.6	241.7	216.1
26 Leaming(S-FS)C6 X NDBS 21 (R-T)C9	Cross	203.9	185.4	201.3	136.2	244.3	206.6	224.8	182.8	195.4	233.0	217.4
27 NDBSK(HI-M)C3 X EARLYGEM 2 la	Cross	183.1	173.3	186.6	139.4	223.8	199.4	216.5	176.9	182.2	233.9	206.4
28 NDL XLeaming(S-FS)C6	Cross	203.0	187.1	206.3	138.1	242.0	200.5	225.1	182.5	190.5	240.1	207.5
29 EARLYGEM 2 la XEARLYGEM 21 c	Cross	170.8	163.4	166.6	123.2	217.5	185.3	192.6	135.4	165.2	211.3	189.3
30 NDCG(FS)C1XEARLYGEM 21 b	Cross	194.0	174.0	190.0	137.2	225.0	193.5	210.8	174.8	182.3	220.2	205.1
31 Leaming(S-FS)C6 X NDSCD(FS-CS)C2	Cross	229.4	199.0	227.8	145.4	241.5	210.4	230.9	189.0	188.7	234.0	211.9
32 NDBSK(HIM)C3 XEARLYGEM 21 c	Cross	185.4	165.4	173.2	133.5	227.8	188.8	199.7	171.7	172.7	220.6	199.9
33 NDBS 1011 XEARLYGEM 21 l	Cross	182.6	188.1	190.5	14.0	232.5	193.7	212.7	189.6	181.3	229.7	211.4
34 NDSCD(FS-CS)C2 XEARLYGEM 2 1a	Cross	228.0	185.0	209.6	143.0	233.8	213.6	220.1	187.4	181.3	232.9	220.4
35 NDSS XEARLYGEM 2 lb	Cross	191.0	183.0	202.4	130.9	228.5	194.6	215.0	170.3	182.8	224.9	205.8
36 NDSAB(MER-FS)C 15 XNDSHLC(M-FS)C5	Cross	196.6	177.3	192.7	140.7	218.5	197.3	216.0	185.3	182.7	229.9	201.8
37 NDBS 11(FR-M)C3 X NDSCD(FS-CS)C2	Cross	215.5	195.8	215.1	147.2	239.8	206.8	233.9	183.9	194.3	235.0	216.0
38 NDCG(FS)C1XEARLYGEM 21 l	Cross	186.9	178.4	194.5	132.9	237.5	197.8	221.5	175.6	174.8	217.9	194.9
39 EARLYGEM 2 lb XEARLYGEM 2 lc	Cross	176.0	156.4	166.6	133.4	210.0	175.0	189.2	142.7	153.0	203.2	188.0
40 NDBSK(HI-M)C3 X NDSAB (MER-FS)C 15	Cross	189.0	182.1	193.0	143.7	230.0	202.5	218.5	189.0	181.6	231.7	208.7

Table B10 (continued). Plant height (cm) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments.

Entry Pedigree		Type	2010			2011				2012				
		Casselton	Larimore	Thompson	Casselton	Larimore	Pros per	Thompson	Casselton	Larimore	Prosper	Thompson		
41	NDBS21(R-T)C9		P arent	182.7	164.6	186.8	128.2	22.5	193.7	209.8	170.7	17.1	217.1	204.8
42	NDSAB(MER-FS)C 15 XEARLYGEM 21 b	Cross	188.0	179.2	191.0	135.2	230.5	194.4	208.4	174.5	176.7	220.3	201.8	
43	NDBSK(HI-M)C3 X NDBS22(R-T1)C9	Cross	186.4	172.0	185.5	138.1	236.8	193.1	214.1	186.5	182.1	227.9	202.2	
44	NDSS XNDBSK(HI-M)C3	Cross	202.5	186.6	190.8	144.7	231.3	203.0	213.9	186.0	179.8	230.9	205.6	
45	NDSS XLeaming(S-FS)C6	Cross	208.7	186.0	199.9	160.5	249.3	215.2	230.9	188.9	193.7	250.6	222.3	
46	NDL XNDBS22(R-T1)C9	Cross	194.9	175.4	192.0	146.1	250.8	197.3	226.5	186.4	182.9	232.5	220.3	
47	NDSCD(FS-CS)C2 X NDSHLC(M-FS)C5	Cross	197.5	180.9	206.7	159.9	235.8	214.8	235.9	180.1	19.9	231.8	218.5	
48	NDBS 11(FR-M)C3 X NDS AB (MER-FS) C 15	Cross	190.7	177.5	194.4	133.0	233.5	197.4	217.0	173.5	178.6	229.3	202.2	
49	NDSS XNDSM(M-FS)C9	Cross	200.0	177.4	196.1	140.2	242.3	203.2	219.7	176.8	174.2	231.0	203.9	
50	NDBS 22(R-T1)C9 X EARLYGEM 21 l	Cross	183.9	172.9	182.3	134.6	238.5	194.2	209.8	179.5	172.5	229.4	199.2	
	NDBS 22(R-T1)C9	P arent	172.4	164.5	186.2	133.6	227.0	191.5	207.0	182.3	169.7	231.2	197.1	
52	NDSS XNDBS 1011	Cross	198.7	185.7	210.1	156.2	242.3	209.6	232.3	191.3	182.3	237.7	209.5	
53	NDL	Parent	197.3	179.9	195.0	135.6	245.0	206.9	218.8	171.8	185.0	230.6	203.8	
54	NDBS $1011 \mathrm{XLeaming}(\mathrm{S}-\mathrm{FS}) \mathrm{C} 6$	Cross	205.7	191.6	216.1	142.9	247.0	211.3	222.0	191.9	186.9	240.5	212.1	
55	NDB S K(HI-M)C3 X NDB S 1011	Cross	182.1	168.2	204.4	141.3	231.8	199.8	221.2	183.6	181.8	233.6	203.5	
56	NDSAB(MER-FS)C 15 X NDBS 21 (R-T)C9	Cross	190.6	176.6	195.5	144.2	245.3	209.9	221.4	181.4	192.5	234.2	210.9	
57	NDBS 11(FR-M)C3 X NDBS22(R-Tl)C9	Cross	203.0	183.0	195.9	136.5	241.5	199.1	221.2	180.8	178.6	236.1	203.1	
58	EARLYGEM 2 lb	P arent	179.0	162.1	177.9	126.8	220.8	186.9	186.6	152.3	165.1	215.1	191.8	
59	NDSAB(MER-FS)C 15 X NDSM(M-FS)C9	Cross	190.0	170.0	196.4	140.4	237.8	202.0	222.2	175.9	172.9	234.5	204.8	
60	Check 2 DKC 36-34 VT3	Check	196.3	191.4	204.7	132.2	243.5	189.4	229.0	195.2	188.8	243.0	209.0	
61	NDBSK(HI-M)C3 X NDSCD(FS-CS $) \mathrm{C} 2$	Cross	197.9	176.3	194.6	155.3	239.8	209.5	223.7	193.2	198.6	235.1	217.4	
62	NDBS22(R-T1)C9 X EARLYGEM 21 c	Cross	187.0	167.0	177.8	137.5	233.8	189.8	216.8	172.4	169.2	219.4	199.0	
63	NDL X NDBS 11(FR-M) C3	Cross	199.1	186.4	191.6	134.7	239.8	200.5	222.3	178.2	178.9	233.8	199.3	
64	NDBS 11(FR-M)C3 X NDSHLC(M-FS)C5	Cross	195.2	179.4	193.2	153.6	230.5	206.0	222.3	180.2	180.7	225.2	205.1	
65	NDBSK(HI-M)C3 X NDB S 21 (R-T)C9	Cross	199.0	178.3	192.0	138.3	226.0	204.2	222.6	191.2	178.4	220.2	205.2	
66	NDBS 22(R-T1)C9 X NDSAB (MER-FS)C 15	Cross	204.2	186.7	203.7	136.2	231.3	206.4	220.0	192.3	183.5	230.6	213.0	
67	NDBS22(R-T1)C9 X NDSHLC(M-FS)C5	Cross	172.0	159.2	180.9	137.5	217.3	195.8	221.4	181.5	187.2	220.2	205.2	
68	NDSM(M-FS)C9 X NDBS 21 (R-T)C9	Cross	203.4	184.9	206.3	145.6	227.3	196.0	216.2	169.5	179.7	220.7	201.8	
69	NDBSK(HL-M)C3 X NDBS 11(FR-M)C3	Cross	197.6	186.6	182.5	141.3	227.8	195.9	217.2	188.4	161.5	224.1	199.0	
70	NDSS XNDBS 11(FR-M)C3	Cross	198.7	186.2	187.3	144.2	255.5	208.8	230.4	188.4	186.0	232.4	215.2	
	NDBS K(HI-M)C3	P arent	196.0	168.5	180.1	124.3	228.5	176.1	203.5	165.9	182.3	205.8	200.5	
72	NDSS XNDBS21(R-T)C9	Cross	189.0	183.6	195.2	139.6	231.3	200.2	234.3	190.1	183.4	235.6	208.9	
73	NDSS XEARLYGEM 21 c	Cross	180.7	165.8	184.6	138.7	223.0	191.5	206.2	172.1	173.6	223.1	200.2	
74	NDBS 11(FR-M)C3 X NDBS 1011	Cross	195.5	184.2	218.7	137.6	243.8	200.2	217.9	183.6	182.9	240.8	208.1	
75	NDCG(FS)C1	P arent	181.1	189.7	189.0	134.3	229.5	196.5	213.8	170.9	170.4	225.4	200.1	
76	NDSAB(MER-FS)C 15	Parent	190.0	174.8	200.6	145.0	230.3	201.1	225.1	181.5	187.7	241.3	218.3	
77	NDSS XNDSCD(FS-CS)C2	Cross	217.2	186.9	223.3	155.3	256.0	213.2	236.4	192.4	199.4	245.3	216.8	
78	NDBS 1011 X NDBS $21(\mathrm{R}-\mathrm{T}) \mathrm{C} 9$	Cross	190.5	183.9	206.7	145.4	244.8	204.3	228.8	181.5	17.0	235.9	218.0	
79	NDSAB(MER-FS)C 15 X EARLYGEM 2 la	Cross	194.0	186.0	192.0	139.3	234.8	199.8	212.5	174.5	176.0	231.3	206.2	
80	NDBS21(R-T)C9 X EARLYGEM 2 la	Cross	194.3	179.5	197.6	143.2	235.5	196.2	218.5	180.5	178.0	234.1	211.6	

Table B10 (continued). Plant height (cm) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments.

Pedigree	Type	2010			2011				2012			
		Casselton	Larimore	Thompson	Casselton	Larimore	Pros per	Thompson	Casselton	Larimore	Prosper	Thompson
81 NDBS 11(FR-M)C3 X NDSM(M-FS)C9	Cross	196.0	187.3	190.0	144.2	240.8	199.1	230.7	182.9	187.5	237.2	208.3
82 NDBSK(HIM)C3 X Leaming(S-FS)C6	Cross	193.4	184.6	195.4	138.0	240.8	201.7	211.4	179.4	187.5	231.7	212.0
83 NDL X NDBS 21 (R-T)C9	Cross	186.4	186.5	200.5	143.6	244.8	199.5	240.3	187.3	190.0	229.9	209.5
84 NDSM(M-FS)C9	P arent	181.7	162.6	182.1	125.5	228.3	192.1	211.1	172.4	168.7	217.7	186.7
85 NDSS XNDSAB(MER-FS)C 15	Cross	197.3	177.5	197.1	142.8	238.5	205.1	227.2	189.8	180.9	232.1	
86 Leaming(S-FS)C6 X NDSM(M-FS)C9	Cross	201.6	184.3	198.9	143.5	233.3	201.9	220.1	178.0	192.5	225.0	214.0
87 NDCG(FS)C1 ${ }^{\text {N }}$ NDBS 11(FR-M)C3	Cross	209.0	190.0	198.9	135.7	236.0	193.4	218.3	176.3	175.4	229.3	214.3
88 NDSHLC(M-FS)C5 XEARLYGEM 21 a	Cross	185.0	167.2	189.4	142.5	226.3	195.6	212.6	17.1	182.5	216.0	201.9
89 NDBS 1011	P arent	203.8	183.6	207.0	126.5	240.5	192.6	221.3	186.8	182.7	236.3	200.0
90 NDBS 1011 X NDS AB (MER-FS)C 15	Cross	199.1	176.7	210.0	14.0	241.8	213.5	226.0	195.4	185.1	232.1	215.0
91 Check 3 P IONEER 39N99	Check	199.4	194.8	211.3	134.4	246.3	187.7	225.5	188.4	185.7	242.5	220.2
92 NDSM(M-FS)C9 XNDSHLC(M-FS)C5	Cross	196.1	174.2	193.3	132.3	225.3	197.9	217.2	177.4	184.0	226.0	198.5
93 B 22 LEAM (R-FR)C1XLEAMING22 (S-FR)C1	Check	202.0	178.5	202.7	148.0	253.8	199.0	224.7	186.0	186.0	235.4	218.3
94 NDL X NDBS 1011	Cross	201.9	186.3	192.6	150.1	248.0	205.6	222.6	180.0	193.0	230.1	206.5
95 NDBS 22(R-T1)C9 X NDSM(M-FS)C9	Cross	203.5	173.8	184.3	139.0	240.5	195.4	233.5	172.2	184.6	222.4	206.0
96 NDL XNDSM(M-FS)C9	Cross	186.2	179.2	190.9	140.4	239.3	195.0	205.8	179.4	182.0	229.1	206.9
97 NDSS	P arent	189.3	182.5	198.1	137.6	236.3	199.2	224.8	175.9	178.7	232.8	202.3
98 NDBS22(R-T1)C9 X NDSCD(FS-CS)C2	Cross	215.6	192.3	197.6	152.0	254.3	212.9	239.2	178.9	200.8	248.9	220.7
99 NDCG(FS)C1XNDSHLC(M-FS)C5	Cross	188.0	173.1	190.9	14.9	225.5	202.7	212.1	164.9	172.3	222.5	212.5
100 NDL X NDBSK(HI-M)C3	Cross	189.2	181.4	190.0	135.6	238.5	202.3	219.2	172.7	187.1	230.7	204.5
101 NDBS 22(R-T 1)C9 X EARLYGEM 21 b	Cross	190.0	175.4	179.1	136.2	233.8	205.4	220.2	178.7	175.0	231.4	212.9
102 NDBS 1011 X NDSHLC(M-FS)C5	Cross	191.8	179.7	192.4	143.1	241.8	204.3	225.4	181.3	182.6	231.3	214.6
103 NDSHLC(M-FS)C5 X EARLYGEM 2 lb	Cross	190.0	168.4	187.8	138.5	228.0	197.5	218.5	177.2	182.1	225.1	204.5
104 NDBS 21 (R-T)C9 X EARLYGEM 21 c	Cross	190.6	175.0	191.8	136.3	227.5	205.6	216.0	174.7	176.1	228.9	204.9
$105 \mathrm{CGL}(\mathrm{S}-\mathrm{FR} 2) \mathrm{C} 1 \mathrm{XBS} 21 \mathrm{CGL}(\mathrm{R}-\mathrm{FR} 2) \mathrm{C} 1$	Check	192.9	192.2	215.3	140.4	241.5	211.8	233.3	187.4	202.6	234.1	219.9
106 NDSAB(MER-FS)C 15 X EARLYGEM 21 c	Cross	185.3	180.2	197.2	14.6	229.3	19.7	210.4	180.4	175.4	223.1	206.1
107 NDBS 11(FR-M)C3 X EARLYGEM 2 1a	Cross	195.8	172.8	189.8	135.8	232.8	200.4	220.3	171.8	178.7	221.3	203.8
108 NDCG(FS)C1XLeaming(S-FS)C6	Cross	195.0	193.6	209.0	142.2	245.3	203.8	229.4	181.3	182.6	234.0	209.5
109 NDSM(M-FS)C9 X EARLYGEM 21 l	Cross	186.0	170.2	177.2	144.4	228.5	195.3	212.1	175.2	185.0	227.7	209.2
110 NDBS 21 (R-T) C9 X EARLYGEM 21 b	Cross	197.1	172.1	200.8	139.9	234.8	200.0	215.0	179.1	168.0	220.3	216.0
111 NDSCD(FS-CS)C2 X EARLYGEM 21 b	Cross	209.8	199.7	215.3	147.8	238.5	201.1	223.2	193.4	176.0	239.9	219.1
112 NDSS XEARLYGEM 2 la	Cross	189.7	181.3	196.1	144.2	231.8	196.2	215.5	176.5	169.3	224.6	193.6
113 NDCG(FS)C1XEARLYGEM 21 c	Cross	197.3	177.5	191.9	139.4	226.3	200.3	214.0	147.2	177.0	225.3	197.3
114 NDCG(FS)C1XNDL	Cross	208.3	193.0	204.5	135.1	244.5	20.7	217.0	174.8	188.1	235.5	210.7
115 NDLXEARLYGEM 2 la	Cross	196.9	180.3	176.4	137.1	232.8	195.8	219.1	178.8	178.0	231.8	201.6
116 NDSM(M-FS)C9 X EARLYGEM 21 b	Cross	195.9	177.8	187.3	134.5	237.3	195.0	209.1	168.8	172.3	224.9	204.0
117 NDBS 11(FR-M)C3 X NDBS $21(\mathrm{R}-\mathrm{T}) \mathrm{C} 9$	Cross	197.7	184.7	209.0	146.0	239.8	205.9	230.1	183.2	207.1	237.8	213.0
118 NDBS 1011 X EARLYGEM 21 c	Cross	205.2	188.7	199.0	142.3	237.3	200.0	219.8	183.4	192.1	228.5	203.2
119 NDBS 11(FR-M)C3 XEARLYGEM 2 lb	Cross	194.6	177.7	185.6	138.6	226.5	191.8	216.7	175.6	191.1	231.2	204.2
120 NDBS 11(FR-M)C3 XLeaming(S-FS)C6	Cross	196.6	184.8	198.7	137.8	242.5	201.5	224.2	189.6	185.0	235.7	213.0

Table B10 (continued). Plant height (cm) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments.

Table B11. Silking and anthesis dates (days) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 5 environments.

Table B11 (continued). Silking and anthesis dates (days) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 5 environments.

Table B11 (continued). Silking and anthesis dates (days) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 5 environments.

Pedigree	Type	Days to silking					Days to anthes is				
		2010		2011		2012	2010		2011		2012
		Casselton	Prosper	Casselton	Prosper	Prosper	Casselton	Prosper	Casselton	Prosper	Prosper
81 NDBS 11(FR-M)C3 X NDSM(M-FS)C9	Cross	61.6	64.6	74.2	66.6	58.5	60.6	63.5	70.4	64.2	55.5
82 NDBSK(HI-M)C3 XLeaming(S-FS)C6	Cross	59.8	61.6	73.0	63.8	56.4	60.3	60.5	69.4	62.3	53.4
83 NDL X NDBS 21 (R-T)C9	Cross	60.6	61.5	74.6	65.4	57.2	58.7	62.0	68.7	64.4	54.1
84 NDSM(M-FS)C9	P arent	58.7	61.1	72.3	67.7	58.7	57.3	60.0	69.1	63.4	54.6
85 NDSS XNDSAB(MER-FS)C 15	Cross	61.7	63.9	71.4	64.7	58.7	60.9	63.9	69.7	64.2	55.6
86 Leaming(S-FS)C6 X NDSM(M-FS)C9	Cross	59.0	61.4	73.3	65.0	56.7	58.5	61.5	68.3	62.4	53.6
87 NDCG(FS)C1XNDBS 11(FR-M)C3	Cross	62.0	62.6	72.6	64.2	55.1	62.1	62.0	70.1	63.6	54.5
88 NDSHLC(M-FS)C5 XEARLYGEM 21 a	Cross	58.4	60.4	72.5	64.2	56.6	59.1	60.0	68.6	63.2	54.5
89 NDBS 1011	Parent	62.3	66.0	75.4	68.3	59.4	62.3	65.0	71.7	65.9	55.9
90 NDBS 1011 X NDS AB (MER-FS) C 15	Cross	62.3	64.5	75.4	66.3	59.1	62.0	64.5	70.6	64.4	57.1
91 Check 3 P IONEER 39N99	Check	62.8	64.0	69.9	63.8	58.2	61.4	62.5	67.8	62.9	55.9
92 NDSM(M-FS)C9 X NDSHLC(M-FS)C5	Cross	59.8	60.4	74.0	66.2	58.2	59.1	60.0	69.7	63.3	54.0
93 BS22LEAM (R-FR)C1XLEAMNG22 (S-FR)C1	Check	61.1	63.1	74.5	66.1	57.6	61.0	62.5	70.9	64.7	55.0
94 NDL X NDBS 1011	Cross	63.2	65.0	73.3	65.8	58.7	61.8	63.5	70.8	65.3	55.8
95 NDBS22(R-T1)C9 X NDSM(M-FS)C9	Cross	60.1	62.5	73.9	66.9	57.3	59.6	61.5	68.2	64.4	54.6
96 NDL XNDSM(M-FS)C9	Cross	60.2	63.5	76.4	67.7	58.3	60.3	62.5	71.9	64.3	55.1
97 NDSS	P arent	66.6	63.8	76.3	65.7	58.9	65.3	63.4	72.0	64.6	56.6
98 NDBS22(R-T1)C9 XNDSCD(FS-CS)C2	Cross	62.9	63.9	73.3	67.5	58.9	61.8	63.4	70.2	65.3	55.6
99 NDCG(FS)C1XNDSHLC(M-FS)C5	Cross	58.4	63.0	69.5	63.7	55.3	57.5	61.0	66.5	62.5	53.4
100 NDL X NDBSK(HI-M)C3	Cross	62.8	64.3	70.4	67.7	58.3	61.9	62.4	70.4	64.6	54.9
101 NDBS22(R-T1)C9 X EARLYGEM 2 lb	Cross	59.7	59.9	72.4	63.3	55.1	59.6	60.5	67.6	62.7	54.3
102 NDBS 1011 XNDSHLC(M-FS)C5	Cross	63.2	63.4	75.4	67.8	57.3	63.4	64.0	72.5	63.8	54.5
103 NDSHLC(M-FS)C5 X EARLYGEM 21 b	Cross	61.1	60.4	73.3	66.3	54.9	61.8	59.4	68.1	64.8	53.4
104 NDBS 21 (R-T)C9 X EARLYGEM 21 c	Cross	59.6	60.9	71.0	62.7	53.4	58.0	60.4	68.5	60.7	52.0
105 CGL(S-FR2)C1X B S $21 \mathrm{CGL}(\mathrm{R}-\mathrm{FR} 2) \mathrm{C} 1$	Check	60.5	60.5	74.0	65.1	56.8	59.4	60.5	71.8	63.6	54.0
106 NDSAB(MER-FS)C 15 XEARLYGEM 21 c	Cross	61.6	64.4	73.3	63.8	55.8	60.1	62.4	68.2	62.2	53.9
107 NDBS 11(FR-M)C3 X EARLYGEM 2 la	Cross	61.4	62.9	72.9	63.9	56.0	61.0	62.5	69.1	62.8	55.0
108 NDCG(FS)C1XLeaming(S-FS)C6	Cross	61.5	61.4	71.0	63.7	54.5	60.7	61.5	67.5	61.7	53.1
109 NDSM(M-FS)C9 XEARLYGEM 21 a	Cross	60.2	61.9	72.4	65.0	56.1	59.9	61.4	68.1	63.6	54.2
110 NDBS 21 (R-T)C9 XEARLYGEM 21 b	Cross	58.5	60.9	69.8	64.3	54.6	58.9	60.9	68.3	62.3	53.1
111 NDSCD(FS-CS)C2 X EARLYGEM 2 lb	Cross	60.5	63.1	71.6	65.5	56.0	60.0	62.5	68.1	63.0	55.0
112 NDSS XEARLYGEM 2 la	Cross	60.9	62.4	71.5	65.1	55.5	60.5	62.4	68.5	63.1	54.0
113 NDCG(FS)C1XEARLYGEM 21 c	Cross	60.8	60.5	71.0	63.7	54.4	60.2	59.5	67.2	61.7	52.9
114 NDCG(FS)C1XNDL	Cross	63.3	65.0	72.9	64.2	56.0	63.0	63.5	71.1	63.3	54.6
115 NDLXEARLYGEM 21 a	Cross	61.8	62.5	71.4	63.7	55.6	61.9	61.9	70.2	63.3	54.5
116 NDSM(M-FS)C9 X EARLYGEM 21 b	Cross	59.8	62.4	72.0	65.1	54.6	59.1	61.9	68.1	63.2	52.1
117 NDBS 11(FR-M)C3 X NDBS $21(\mathrm{R}-\mathrm{T}) \mathrm{C} 9$	Cross	62.1	63.6	72.0	65.9	59.1	61.0	62.0	69.9	65.1	56.1
118 NDBS 1011 XEARLYGEM 21 c	Cross	59.7	64.0	71.3	65.1	55.0	60.7	63.4	67.8	63.7	54.5
119 NDBS 11(FR-M)C3 XEARLYGEM 21 b	Cross	60.1	61.5	72.0	63.2	56.2	60.1	62.5	68.2	62.8	55.1
120 NDBS 11(FR-M)C3 X Leaming(S-FS)C6	Cross	61.2	63.0	75.1	67.1	56.8	61.2	62.0	71.0	64.2	55.2

Table B11 (continued). Silking and anthesis dates (days) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 5 environments.

Entry P	Pedigree	Type	Days to silking					Days to anthes is				
			2010		2011		2012	2010		2011		2012
			Casselton	Prosper	Casselton	Prosper	Prosper	Casselton	Prosper	Casselton	Prosper	Prosper
	NDL X NDSHLC(M-FS)C5	Cross	65.0	66.0	73.0	66.7	57.2	64.2	63.5	69.2	64.3	54.6
122 N	NDL X NDSAB (MER-FS)C 15	Cross	63.8	66.5	73.9	66.5	58.7	62.8	64.0	69.3	64.0	55.6
123 N	NDCG(FS)C1XNDBS22(R-T1)C9	Cross	62.3	64.6	72.2	64.7	56.6	62.4	62.1	67.6	63.7	55.0
124 N	NDCG(FS)C1XNDSCD(FS-CS)C2	Cross	61.7	62.5	71.1	67.2	55.6	61.4	60.5	68.6	64.3	54.5
125	CGSS21(S-FR)C1XBS21CGSS(R-FR)C1	Check	61.1	62.1	73.0	66.8	56.4	60.1	61.1	69.2	63.9	54.9
126 N	NDCG(FS)C1XNDBS 21 (R-T)C9	Cross	59.6	63.0	70.5	65.4	54.6	59.8	61.1	68.6	62.5	52.1
127 N	NDBS 22(R-T1)C9 X NDBS 21 (R-T) C 9	Cross	62.1	62.5	71.5	66.9	56.2	60.7	62.0	68.3	65.0	54.0
128 L	Leaming(S-FS)C6 XEARLYGEM 2 lb	Cross	61.6	62.5	73.1	63.8	55.2	61.5	63.0	69.7	62.9	53.1
129 N	NDBS 1011 XNDSM(M-FS)C9	Cross	60.9	64.1	75.1	66.1	58.6	60.8	62.1	70.9	64.7	55.5
130 N	NDLXEARLYGEM 21 c	Cross	62.0	62.0	70.4	63.8	55.1	61.6	62.5	67.8	63.9	53.9
	NDL X NDSCD(FS-CS)C2	Cross	62.9	65.0	74.0	66.4	59.8	63.0	64.1	69.7	65.5	56.1
132 E	EARLYGEM 21 l	P arent	62.5	64.0	73.6	65.7	56.3	62.6	63.1	69.1	64.4	55.1
133 N	NDCG(FS)C1X NDBSK(HI-M)C3	Cross	59.8	63.5	71.3	64.6	54.6	59.3	62.5	68.6	63.3	53.5
134 N	NDSCD(FS-CS)C2 X EARLYGEM 21 c	Cross	59.6	61.6	70.7	62.9	56.1	57.9	62.5	68.7	62.5	55.0
135 N	NDCG(FS)C1XNDSM(M-FS)C9	Cross	59.6	63.2	72.5	64.6	55.5	59.0	62.0	68.0	63.1	53.4
136 N	NDSAB(MER-FS)C 15 X NDSCD(FS-CS)C2	Cross	64.0	63.5	75.9	67.2	59.0	60.5	62.5	71.0	65.2	55.9
137 N	NDSM(M-FS)C9 XEARLYGEM 21 c	Cross	59.9	61.1	71.3	64.8	55.3	59.7	60.6	68.6	62.4	53.3
138 L	Leaming(S-FS)C6 XEARLYGEM 2 1a	Cross	60.4	61.1	75.8	63.8	55.0	60.4	61.1	71.5	61.9	53.5
139 N	NDSS XNDCG(FS)C1	Cross	59.9	61.1	72.8	65.3	57.1	59.8	61.0	69.7	63.9	54.8
140 N	NDSM(M-FS)C9 XNDSCD(FS-CS)C2	Cross	60.9	64.6	71.9	67.7	59.0	59.0	63.5	69.6	63.3	55.0
141 N	NDBS21(R-T)C9 X NDSCD(FS-CS)C2	Cross	59.7	59.7	72.4	65.0	57.0	59.4	59.6	69.8	63.7	54.4
142 N	NDCG(FS)C1XNDBS 1011	Cross	59.8	63.1	73.2	65.2	57.5	59.7	63.0	69.3	64.3	54.3
143 N	NDBS 1011 XEARLYGEM 21 a	Cross	62.2	65.6	72.8	64.3	55.7	61.0	64.0	69.6	63.4	55.0
144 N	NDSHLC(M-FS)C5	P arent	59.8	63.1	76.9	65.7	57.2	60.2	60.5	71.5	63.3	54.0
	Experiment mean		61.3	62.8	72.7	65.4	56.8	60.7	62.2	69.4	63.7	54.6
	Mean of parental populations		62.1	63.2	73.5	66.3	57.7	61.5	62.6	69.9	64.4	55.1
	Mean of population crosses		61.2	62.8	72.7	65.3	56.6	60.7	62.2	69.3	63.6	54.5
	Mean of checks		61.0	62.3	72.5	64.6	56.9	60.6	61.9	69.9	63.7	55.2
	LSD (0.05)		2.3	2.8	2.8	2.4	1.4	2.5	2.5	2.2	1.5	1.1
	CV		1.9	2.3	1.9	1.9	1.3	2.1	2.0	1.6	1.2	1.1
	MSE		1.4	2.0	1.9	1.5	0.5	1.6	1.6	1.3	0.6	0.3

Table B12. Protein (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments.

Table B12 (continued). Protein (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments.

Entry Pedigree	Type	2010				2011			2012			
		Casselton	Larimore	Prosper	Thompson	Larimore	Prosper	Thompson	Casselton	Larimore	Prosper	Thompson
41 NDBS21(R-T)C9	P arent	10.1	13.4	12.1	11.2	11.3	10.6	11.2	12.2	13.0	12.2	11.1
42 NDSAB(MER-FS)C 15 XEARLYGEM 2 lb	Cross	10.0	13.1	12.6	10.2	10.8	9.4	10.7	10.2	12.6	11.2	11.3
43 NDBSK(HI-M)C3 X NDBS 22(R-T 1)C9	Cross	10.3	12.7	11.6	11.0	10.9	10.3	10.4	11.0	12.6	10.8	10.7
44 NDSS XNDBSK(HI-M)C3	Cross	10.6	12.6	11.7	10.9	12.6	10.6	11.5	11.7	13.7	11.9	11.9
45 NDSS XLeaming(S-FS)C6	Cross	9.7	13.2	12.7	10.0	11.0	10.7	11.0	11.5	13.9	11.0	11.8
46 NDL XNDBS22(R-T1)C9	Cross	9.7	12.2	11.3	10.7	11.1	9.3	10.2	10.6	13.1	11.0	11.1
47 NDSCD(FS-CS)C2 X NDSHLC(M-FS)C5	Cross	10.9	13.1	11.2	10.7	11.3	11.4	12.1	11.2	13.6	12.6	11.4
48 NDBS 11(FR-M)C3 XNDSAB(MER-FS)C 15	Cross	11.3	12.9	11.8	10.0	10.7	10.2	10.4	10.9	13.0	11.4	10.9
49 NDSS XNDSM(M-FS)C9	Cross	11.4	14.6	12.0	10.1	11.5	11.1	11.7	11.8	13.7	12.3	12.8
50 NDBS22(R-T1)C9 X EARLYGEM 21 la	Cross	10.7	13.6	12.3	9.9	11.7	10.5	10.4	10.5	13.2	10.8	11.0
51 NDBS 22(R-T1)C9	P arent	11.7	13.4	12.0	10.9	12.0	10.9	11.6	11.9	13.7	12.3	12.1
52 NDSS XNDBS 1011	Cross	10.1	12.9	12.0	10.7	11.3		11.2	11.6	13.5	11.8	11.9
53 NDL	P arent	9.3	12.2	10.9	9.7	10.5	9.6	10.1	9.8	12.7	11.0	11.0
54 NDBS 1011 XLeaming (S-FS) C6	Cross	10.3	12.8	10.9	9.7	10.4	10.5	10.4	9.6	12.9	10.5	11.0
55 NDBSK(HIM)C3 X NDBS 1011	Cross	10.9	13.0	11.4	10.8	10.4	9.9	10.4	9.9	12.4	11.0	10.8
56 NDSAB(MER-FS)C 15 XNDBS21(R-T)C9	Cross	9.1	13.1	11.5	10.5	10.9	10.2	10.7	10.6	12.8	11.0	11.3
57 NDBS 11(FR-M)C3 X NDBS 22(R-T 1)C9	Cross	10.2	13.3	11.6	10.3	11.6	11.0	11.7	10.8	13.6	10.8	11.6
58 EARLYGEM 2 lb	P arent	10.8	13.0	12.0	9.9	11.3	10.1	10.8	10.6	12.7	10.9	11.7
59 NDSAB(MER-FS)C 15 X NDSM(M-FS)C9	Cross	10.7	12.8	11.5	10.4	11.6	10.8	10.9	11.7	13.6	11.6	11.8
60 Check 2 DKC 36-34 VT3	Check	8.9	12.5	9.4	9.2	9.7	10.3	9.8	8.8	11.5	9.4	10.1
61 NDBSK(HI-M)C3 X NDSCD(FS-CS)C2	Cross	10.4	12.6	11.6	9.8	11.7	10.9	11.0	11.3	12.6	11.9	11.9
62 NDBS22(R-T1)C9 XEARLYGEM 21 c	Cross	10.1	13.2	12.1	10.5	10.9	10.1	10.8	10.4	12.8	10.8	10.9
63 NDL XNDBS 11(FR-M)C3	Cross	10.5	12.6	11.6	10.3	10.5	10.5	10.6	10.4	13.1	11.0	10.9
64 NDBS 11(FR-M)C3 X NDSHLC(M-FS)C5	Cross	11.8	13.1	12.7	10.8	11.1	10.7	11.6	10.8	13.5	11.2	11.1
65 NDBSK(HI-M)C3 X NDBS 21 (R-T)C9	Cross	10.4	12.2	11.5	10.4	10.7	10.2	10.5	11.5	12.7	11.9	11.2
66 NDBS 22(R-T1)C9 X NDSAB (MER-FS)C 15	Cross	10.2	13.3	11.9	10.1	11.5	11.1	11.2	11.0	12.8	11.4	11.1
67 NDBS22(R-T1)C9 X NDSHLC(M-FS)C5	Cross	10.8	13.0	12.2	10.1	11.8	10.2	11.4	11.5	13.0	11.7	10.8
68 NDSM(M-FS)C9 X NDBS 21 (R-T)C9	Cross	11.2	13.1	12.7	10.9	11.2	10.8	11.4	11.6	12.5	11.5	10.8
69 NDBSK(HIM)C3 X NDBS 11(FR-M)C3	Cross	10.1	12.1	11.7	9.9	10.9	10.1	10.8	10.9	13.0	10.9	11.2
70 NDSS XNDBS 11(FR-M)C3	Cross	11.1	13.0	12.5	11.4	11.7	10.2	11.7	11.4	13.6	12.0	11.5
71 NDBSK(HI-M)C3	P arent	10.5	13.2	11.0	10.0	10.9	9.8	10.9	10.6	13.0	11.4	11.0
72 NDSS X NDBS 21 (R-T) C 9	Cross	11.3	13.4	12.2	10.6	11.6	10.5	10.8	11.8	13.5	11.4	11.1
73 NDSS XEARLYGEM 21 c	Cross	10.0	13.4	11.8	9.9	11.7	10.7	10.9	11.1	14.1	11.6	11.8
74 NDBS 11(FR-M)C3 X NDBS 1011	Cross	10.8	12.9	11.5	10.3	11.6	10.1	11.3	10.9	14.0	11.4	11.9
75 NDCG(FS)C1	P arent	10.2	12.7	11.7	10.0	10.9	10.2	10.7	11.8	14.1	11.4	11.9
76 NDSAB(MER-FS)C 15	P arent	10.8	13.2	12.1	10.7	10.8	11.0	11.7	11.9	14.1	10.7	12.0
77 NDSS XNDSCD(FS-CS)C2	Cross	10.4	13.4	12.9	10.5	11.6	10.0	11.5	11.9	13.5	12.3	12.3
78 NDBS 1011 X NDBS 21 (R-T)C9	Cross	11.4	13.0	12.0	10.3	11.2	10.5	11.2	11.6	13.3	10.9	11.6
79 NDSAB(MER-FS)C 15 XEARLYGEM 2 1a	Cross	10.4	12.7	12.0	9.7	10.9	9.8	10.2	10.8	12.7	10.7	11.4
80 NDBS 21 (R-T)C9 X EARLYGEM 21 l	Cross	11.0	12.5	12.5	10.6	10.4	9.9	10.6	10.4	12.4	10.4	10.9

Table B12 (continued). Protein (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments.

Table B12 (continued). Protein (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments.

Entry Pedigree	Type	2010				2011			2012			
		Casselton	Larimore	Prosper	Thompson	Larimore	Prosper	Thompson	Casselton	Larimore	Prosper	Thompson
121 NDLXNDSHLC(M-FS)C5	Cross	11.3	12.7	11.8	9.7	10.9	9.8	10.6	10.8	12.8	10.6	11.3
122 NDL X NDSAB(MER-FS)C 15	Cross	9.8	12.6	10.9	9.6	10.3	9.7	10.1	10.9	13.0	11.3	10.9
123 NDCG(FS)C 1 X NDBS $22(\mathrm{R}-\mathrm{T}$ 1)C9	Cross	9.3	13.3	12.1	10.8	11.5	10.4	11.2	11.2	13.4	10.8	11.1
124 NDCG(FS)C1XNDSCD(FS-CS)C2	Cross	10.1	13.6	11.8	9.9	10.9	10.8	11.5	12.4	13.8	11.6	11.8
$125 \mathrm{CGSS} 21(\mathrm{~S}-\mathrm{FR}) \mathrm{C} 1 \mathrm{XBS} 21 \mathrm{CGSS}(\mathrm{R}-\mathrm{FR}) \mathrm{C} 1$	Check	9.3	13.6	10.8	10.1	11.3	10.6	11.1	11.3	12.7	10.8	11.1
126 NDCG(FS)C1 ${ }^{\text {d }}$ NDBS21(R-T)C9	Cross	10.1	13.5	11.7	10.4	10.7	10.5	10.9	11.7	13.4	11.7	11.2
127 NDBS 22(R-T1)C9 X NDBS21(R-T)C9	Cross	10.2	12.9	11.4	11.2	11.0	10.7	11.2	11.5	12.9	10.3	11.3
128 Leaming(S-FS)C6 XEARLYGEM 2 lb	Cross	9.4	12.5	11.6	9.7	10.7	10.4	10.1	10.0	12.9	10.8	10.7
129 NDBS 1011 XNDSM(M-FS)C9	Cross	10.7	13.1	11.4	10.1	11.5	10.7	10.9	10.6	13.8	11.2	11.3
130 NDLXEARLYGEM 21 c	Cross	9.3	12.7	11.1	9.4	11.1	10.0	10.4	10.3	12.7	9.9	10.6
131 NDL X NDSCD(FS-CS)C2	Cross	11.0	12.9	12.1	11.1	11.3	10.2	10.4	11.1	12.9	11.4	11.4
132 EARLYGEM 21 l	P arent	9.6	13.5	12.0	9.7	11.4	9.4	11.3	11.2	13.1	10.3	11.5
133 NDCG(FS)C1 ${ }^{\text {P NDBSK}}$ (HI-M)C3	Cross	10.6	13.7	11.1	10.2	11.2	10.3	10.8	10.5	13.8	10.5	11.5
134 NDSCD(FS-CS)C2 X EARLYGEM 21 c	Cross	9.6	12.6	11.4	10.5	10.8	11.1	11.0	9.9	12.6	11.1	11.2
135 NDCG(FS)C1XNDSM(M-FS)C9	Cross	10.9	13.1	12.9	11.2	12.0	11.0	11.6	11.9	14.3	13.0	11.8
136 NDSAB(MER-FS)C 15 X NDSCD(FS-CS)C2	Cross	10.3	13.5	12.4	11.1	11.6	10.6	11.5	11.4	13.0	12.4	11.6
137 NDSM(M-FS)C9 XEARLYGEM 21 c	Cross	10.8	13.0	11.9	10.7	11.2	10.2	11.2	10.9	13.0	10.9	11.7
138 Leaming(S-FS)C6 XEARLYGEM 21 a	Cross	9.8	12.7	11.1	10.2	10.9	10.1	10.0	10.5	12.6	10.9	11.3
139 NDSS X NDCG(FS)C1	Cross	11.2	13.3	12.1	11.2	12.6	10.8	12.0	11.8	13.6	11.7	11.8
140 NDSM(M-FS)C9 X NDSCD(FS-CS)C2	Cross	10.9	13.4	13.3	11.1	11.8	10.3	11.1	12.1	13.8	11.9	11.2
141 NDBS21(R-T)C9 X NDSCD(FS-CS)C2	Cross	10.7	13.5	11.3	10.2	12.0	10.8	11.6	12.0	13.6	11.4	11.7
142 NDCG(FS)C1XNDBS 1011	Cross	10.0	13.8	11.0	9.4	11.1	10.2	11.0	11.2	12.9	11.4	11.2
143 NDBS 1011 X EARLYGEM 21 a	Cross	10.7	12.8	11.8	10.1	11.0	10.1	10.7	10.4	13.5	9.7	10.7
144 NDSHLC(M-FS)C5	P arent	10.4	13.8	11.5	9.7	12.1	10.7	11.2	11.5	13.2	12.2	11.6
Experiment mean		10.3	13.0	11.6	10.2	11.1	10.4	10.9	10.9	13.2	11.1	11.2
Mean of parental populations		10.5	13.2	11.9	10.4	11.3	10.5	11.1	11.3	13.3	11.6	11.6
Mean of population crosses		10.4	13.0	11.7	10.3	11.2	10.4	10.9	10.8	13.2	11.1	11.2
Mean of checks		8.9	12.3	10.4	9.5	10.2	9.7	10.0	10.2	12.4	10.1	10.4
LSD (0.05)		1.1	1.1	1.0	0.8	0.9	0.8	0.7	1.3	0.8	0.9	0.7
CV		5.3	4.2	4.3	3.7	4.0	4.0	3.3	6.2	3.0	4.2	3.1
MSE		0.3	0.3	0.3	0.1	0.2	0.2	0.1	0.4	0.2	0.2	0.1

Table B13. Oil (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments.

Entry Pedigree	Type	2010				2011			2012			
		Casselton	Larimore	Prosper	Thompson	Larimore	Prosper	Thompson	Casselton	Larimore	Prosper	Thompson
1 Leaming(S-FS)C6 XEARLYGEM 21 c	Cross	4.9	4.6	5.1	4.7	4.8	4.6	4.8	5.2	4.8	4.9	4.6
2 Leaming(S-FS)C6 XNDSAB(MER-FS)C15	Cross	4.8	4.4	4.7	4.7	4.6	4.2	4.6	5.1	4.3	4.9	4.7
3 NDBSK(HI-M)C3 X NDSM(M-FS)C9	Cross	4.5	4.3	4.4	4.4	4.3	4.3	4.4	5.0	4.2	4.6	4.5
$4 \mathrm{BS} 21 \mathrm{AB}(\mathrm{R}-\mathrm{FR}) \mathrm{C} 1 \mathrm{XNDSAB} 21(\mathrm{R}-\mathrm{FR}) \mathrm{C} 1$	Check	5.1	4.5	4.6	4.7	4.3	4.2	4.7	5.5	4.6	4.8	4.6
5 EARLYGEM 2 la XEARLYGEM 2 lb	Cross	4.4	4.4	4.7	4.6	4.4	4.2	4.5	5.3	4.3	4.4	4.5
6 NDBS $1011 \mathrm{XNDSCD}(\mathrm{FS}-\mathrm{CS}) \mathrm{C} 2$	Cross	4.8	4.5	4.9	4.8	4.6	4.4	5.0	5.3	4.7	4.8	4.7
7 NDSS XNDL	Cross	4.6	3.9	4.5	4.6	4.3	4.2	4.4	4.9	4.3	4.4	4.6
8 NDBSK(HI-M)C3 XEARLYGEM 21 b	Cross	4.6	4.4	4.9	4.5	4.2	4.0	4.3	5.0	4.2	4.5	4.4
9 NDL XEARLYGEM 2 lb	Cross	4.6	4.3	4.7	4.6	4.3	4.3	4.3	4.9	4.0	4.6	4.4
10 NDBS 11(FR-M)C3 XEARLYGEM 21 c	Cross	4.9	4.5	4.7	4.8	4.5	4.2	4.7	5.5	4.5	4.9	4.7
11 NDBS 11(FR-M)C3	P arent	4.8	4.7	5.0	4.7	4.6	4.3	4.7	5.6	4.5	5.0	4.7
$12 \mathrm{NDBSK}(\mathrm{HI}-\mathrm{M}) \mathrm{C} 3 \mathrm{XNDSHLC}(\mathrm{M}-\mathrm{FS}) \mathrm{C} 5$	Cross	4.8	4.3	4.7	4.6	4.3	4.3	4.5	5.0	4.4	4.8	4.1
$13 \mathrm{NDSCD}(\mathrm{FS}-\mathrm{CS}) \mathrm{C} 2$	P arent	5.1	4.6	5.0	4.8	4.7	4.5	4.8	5.0	4.8	4.9	4.9
14 NDSHLC(M-FS)C5 XEARLYGEM 21 c	Cross	5.2	4.4	5.0	4.6	4.5	4.3	4.8	5.3	4.7	4.7	4.7
15 NDSS XNDBS22(R-T1)C9	Cross	4.8	4.2	4.7	4.3	4.1	4.1	4.3	5.0	4.2	4.6	4.4
16 Check 4 DKC 43-27 VT3	Check	4.5	3.7	4.3	4.1	3.9	3.9	3.8	4.8	3.8	4.2	4.4
17 NDSS XNDSHLC(M-FS)C5	Cross	5.4	4.5	5.1	4.6	4.4	4.2	4.7	5.2	4.6	4.9	4.5
18 EARLYGEM 21 c	Parent	4.6	4.1	4.6	4.5	4.4	4.3	4.5	5.0	4.4	4.6	4.4
19 Leaming(S-FS)C6	Parent	5.0	4.4	4.9	4.7	4.8	4.5	4.6	5.0	4.4	4.6	4.4
20 NDBS 1011 XNDBS22(R-T1)C9	Cross	4.5	4.2	4.6	4.5	4.2	4.0	4.4	5.0	4.3	4.9	4.8
21 Leaming(S-FS)C6 X NDSHLC(M-FS)C5	Cross	5.0	4.5	5.1	4.7	4.6	4.4	4.9	5.1	4.8	4.9	4.6
22 NDBS21(R-T)C9 XNDSHLC(M-FS)C5	Cross	5.0	4.5	4.9	4.7	4.4	4.3	4.7	5.0	4.4	4.8	4.6
23 Check 1P IONEER 39V07	Check	4.2	4.0	4.3	4.4	4.3	4.1	4.1	4.7	4.3	4.5	4.5
24 NDCG(FS)C1XNDSAB(MER-FS)C 15	Cross	4.6	4.5	4.8	4.6	4.8	4.4	4.3	5.2	4.5	4.8	4.6
25 Leaming(S-FS)C6 XNDBS22(R-T1)C9	Cross	4.5	4.2	4.8	4.6	4.4	3.9	4.5	5.0	4.5	4.7	4.5
26 Leaming(S-FS)C6 X NDBS 21 (R-T) C 9	Cross	5.2	4.2	5.1	4.7	4.6	4.5	4.7	5.3	4.4	4.7	4.6
27 NDBSK(HI-M)C3 X EARLYGEM 21 a	Cross	4.5	4.4	4.6	4.2	4.4	4.2	4.4	5.3	4.1	4.7	4.4
28 NDLXLeaming(S-FS)C6	Cross	4.5	4.4	4.8	4.6	4.4	4.3	4.5	5.1	4.5	4.7	4.4
29 EARLYGEM 2 a X X EARLYGEM 21 c	Cross	4.9	4.4	4.6	4.1	4.3	4.4	4.5	5.0	4.4	4.4	4.5
30 NDCG(FS)C1XEARLYGEM 21 b	Cross	4.8	4.4	5.1	4.5	4.7	4.8	4.6	5.3	4.3	4.8	4.6
31 Leaming(S-FS)C6 X NDSCD(FS-CS)C2	Cross	5.0	4.5	5.4	4.7	4.9	4.3	4.7	5.5	4.6	4.9	4.5
32 NDBSK(HIM)C3 XEARLYGEM 21 c	Cross	4.5	4.2	4.7	4.6	4.3	4.2	4.3	5.3	4.4	4.7	4.8
33 NDBS 1011 XEARLYGEM 21 b	Cross	4.8	4.2	4.9	4.9	4.2	4.3	4.6	5.0	4.5	4.8	4.7
34 NDSCD(FS-CS)C2 XEARLYGEM 2 la	Cross	5.1	4.5	5.1	4.9	4.9	4.5	4.8	5.6	4.7	4.9	4.6
35 NDSS XEARLYGEM 2 lb	Cross	4.8	4.5	4.9	4.6	4.6	4.4	4.6	5.1	4.4	4.8	4.6
36 NDSAB(MER-FS)C15 X NDSHLC(M-FS)C5	Cross	4.7	4.6	5.0	4.8	4.5	4.3	4.8	5.2	4.6	4.9	4.8
37 NDBS 11(FR-M)C3 X NDSCD(FS-CS)C2	Cross	4.9	4.8	4.9	4.9	4.5	4.4	4.8	5.4	4.7	5.1	4.7
38 NDCG(FS)C1XEARLYGEM 21 l	Cross	4.6	4.4	4.9	4.4	4.6	4.5	4.8	5.2	4.6	4.8	4.8
39 EARLYGEM 2 lb XEARLYGEM 21 c	Cross	4.6	4.5	4.8	4.5	4.4	4.4	4.3	5.3	4.3	4.6	4.3
40 NDBSK(HI-M)C3 X NDSAB (MER-FS)C 15	Cross	4.5	4.2	4.5	4.4	4.2	4.2	4.4	4.9	4.3	4.5	4.4

Table B13 (continued). Oil (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments.

Entry Pedigree	Type	2010				2011			2012			
		Casselton	Larimore	Prosper	Thompson	Larimore	Prosper	Thompson	Casselton	Larimore	Prosper	Thompson
41 NDBS21(R-T)C9	P arent	4.6	4.4	4.7	4.6	4.3	4.2	4.6	5.1	4.4	4.5	4.5
42 NDSAB(MER-FS)C 15 XEARLYGEM 2 lb	Cross	4.7	4.6	4.8	4.8	4.6	4.2	4.5	5.3	4.4	4.7	4.7
43 NDBSK(HIM)C3 X NDBS 22 (R-T 1)C9	Cross	4.2	4.1	4.5	4.4	3.9	4.0	4.1	5.0	4.1	4.4	4.0
44 NDSS XNDBSK(HI-M)C3	Cross	4.5	4.2	4.7	4.5	4.2	4.1	4.1	4.9	4.2	4.5	4.2
45 NDSS XLeaming(S-FS)C6	Cross	5.0	4.6	5.1	4.7	4.6	4.6	4.5	5.4	4.5	5.1	4.6
46 NDL XNDBS22(R-T1)C9	Cross	4.4	4.2	4.2	4.3	4.0	3.9	4.1	5.2	4.3	4.5	4.4
47 NDSCD(FS-CS)C2 X NDSHLC(M-FS)C5	Cross	5.1	4.5	5.1	4.9	4.7	4.3	5.0	5.8	4.9	4.9	4.6
48 NDBS 11(FR-M)C3 X NDSAB(MER-FS)C 15	Cross	4.6	4.5	4.8	4.7	4.6	4.2	4.5	5.4	4.7	4.9	4.7
49 NDSS XNDSM(M-FS)C9	Cross	4.5	4.3	4.9	4.4	4.2	4.2	4.2	5.2	4.5	4.6	4.3
50 NDBS22(R-T1)C9 X EARLYGEM 21 la	Cross	4.6	4.2	4.7	4.5	4.4	4.4	4.5	5.1	4.2	4.8	4.5
51 NDBS 22(R-T1)C9	P arent	4.3	4.1	4.3	4.3	3.9	3.9	4.1	4.9	4.3	4.5	4.2
52 NDSS XNDBS 1011	Cross	5.0	4.2	4.8	4.7	4.6	4.2	4.5	5.2	4.5	4.7	4.7
53 NDL	P arent	4.1	3.7	4.2	3.9	3.8	4.0	4.0	4.7	4.1	4.2	4.3
54 NDBS 1011 XLeaming (S-FS) C6	Cross	4.9	4.5	4.6	4.8	4.7	4.4	4.6	5.5	4.6	4.7	4.6
55 NDBSK(HL-M)C3 X NDBS 1011	Cross	4.4	4.0	4.5	4.1	4.4	3.8	4.4	5.1	4.5	4.7	4.4
56 NDSAB(MER-FS)C 15 XNDBS21(R-T)C9	Cross	4.8	4.4	4.6	4.6	4.5	4.1	4.4	5.1	4.5	4.8	4.6
57 NDBS 11(FR-M)C3 X NDBS 22(R-T1)C9	Cross	5.2	4.4	4.5	4.7	4.2	4.0	4.5	5.2	4.5	4.8	4.6
58 EARLYGEM 2 lb	P arent	4.7	4.4	4.6	4.5	4.5	4.3	4.4	5.3	4.3	4.5	4.4
59 NDSAB(MER-FS)C 15 X NDSM(M-FS)C9	Cross	4.5	4.4	4.9	4.6	4.5	4.1	4.5	5.2	4.3	4.7	4.4
60 Check 2 DKC 36-34 VT3	Check	4.6	4.0	4.4	4.4	4.3	4.4	4.1	4.5	4.1	4.3	4.3
61 NDBSK(HI-M)C3 X NDSCD(FS-CS)C2	Cross	4.8	4.3	4.8	5.0	4.3	4.2	4.4	5.4	4.4	4.6	4.4
62 NDBS22(R-T1)C9 XEARLYGEM 21 c	Cross	4.6	4.1	4.5	4.4	4.3	4.1	4.5	5.0	4.3	4.6	4.5
63 NDL X NDBS 11(FR-M)C3	Cross	4.3	4.1	4.8	4.7	4.3	4.3	4.4	5.0	4.3	4.6	4.4
64 NDBS 11(FR-M)C3 X NDSHLC(M-FS)C5	Cross	5.3	4.4	5.1	4.8	4.4	4.7	4.7	5.4	4.6	4.8	4.7
65 NDBSK(HI-M)C3 X NDB S 21 (R-T)C 9	Cross	5.0	4.3	4.7	4.7	4.5	4.2	4.5	5.1	4.4	4.7	4.5
66 NDBS22(R-T1)C9 X NDSAB (MER-FS)C 15	Cross	5.0	4.4	4.9	4.6	4.1	3.9	4.3	4.9	4.3	4.7	4.3
67 NDBS22(R-T1)C9 X NDSHLC(M-FS)C5	Cross	4.7	4.0	5.1	4.7	4.4	4.0	4.7	5.3	4.8	4.8	4.4
68 NDSM(M-FS)C9 X NDBS 21 (R-T)C9	Cross	4.6	4.5	4.9	4.6	4.5	4.3	4.6	5.4	4.7	4.8	4.5
69 NDBSK(HI-M)C3 X NDBS 11(FR-M)C3	Cross	4.6	4.3	4.7	4.6	4.0	4.2	4.4	5.2	4.2	4.5	4.5
70 NDSS XNDBS 11(FR-M)C3	Cross	4.7	4.7	5.0	4.7	4.6	4.3	4.7	5.4	4.4	4.7	4.9
71 NDBSK(HIM)C3	P arent	4.3	4.1	4.5	4.3	4.2	3.9	4.1	4.8	4.3	4.4	4.3
72 NDSS X NDBS 21 (R-T)C9	Cross	4.7	4.5	4.9	4.8	4.5	4.1	4.6	5.2	4.5	4.8	4.6
73 NDSS XEARLYGEM 21 c	Cross	4.8	4.1	4.8	4.4	4.4	4.2	4.5	5.1	4.4	4.7	4.5
74 NDBS 11(FR-M)C3 XNDBS 1011	Cross	4.7	4.6	5.1	4.6	4.3	4.2	4.7	5.5	4.6	5.0	4.6
75 NDCG(FS)C1	P arent	4.5	4.5	4.9	4.6	4.8	4.4	4.5	5.6	4.5	4.9	4.8
76 NDSAB(MER-FS)C 15	Parent	4.7	4.4	5.0	4.6	4.4	4.0	4.4	5.4	4.2	4.9	4.6
77 NDSS XNDSCD(FS-CS)C2	Cross	4.7	4.6	4.7	4.6	4.7	4.3	4.6	5.5	4.7	5.0	4.7
78 NDBS $1011 \mathrm{XNDBS} 21(\mathrm{R}-\mathrm{T}) \mathrm{C} 9$	Cross	4.8	4.3	4.6	4.4	4.3	4.2	4.6	5.2	4.5	4.8	4.6
79 NDSAB(MER-FS)C 15 XEARLYGEM 2 la	Cross	4.8	4.5	4.8	4.5	4.6	4.2	4.5	5.2	4.5	4.9	4.7
80 NDBS 21 (R-T)C9 X EARLYGEM 21 l	Cross	4.8	4.7	4.7	4.8	4.5	4.6	4.7	5.4	4.5	4.7	4.7

Table B13 (continued). Oil (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments.

Entry Pedigree	Type	2010				2011			2012			
		Casselton	Larimore	Prosper	Thompson	Larimore	Prosper	Thompson	Casselton	Larimore	Prosper	Thompson
81 NDBS 11(FR-M)C3 X NDSM(M-FS)C9	Cross	4.9	4.5	4.9	4.6	4.7	4.2	4.6	5.5	4.6	4.8	4.5
$82 \mathrm{NDBSK}(\mathrm{HI}-\mathrm{M}) \mathrm{C} 3$ X Leaming(S-FS)C6	Cross	4.7	4.3	4.7	4.6	4.5	4.3	4.4	5.5	4.4	4.7	4.8
83 NDL X NDBS21(R-T)C9	Cross	4.8	4.3	4.6	4.4	4.1	4.2	4.5	5.0	4.3	4.4	4.2
84 NDSM(M-FS)C9	Parent	4.5	4.5	4.7	4.2	4.4	4.1	4.4	5.4	4.6	4.8	4.6
85 NDSS XNDSAB(MER-FS)C 15	Cross	4.6	4.2	4.8	4.6	4.4	4.2	4.1	4.9	4.1	4.5	
86 Leaming(S-FS)C6 X NDSM(M-FS)C9	Cross	4.8	4.4	4.9	4.7	4.5	4.4	4.6	5.2	4.5	4.8	4.8
87 NDCG(FS)C 1 X NDBS 11(FR-M)C3	Cross	4.9	4.6	4.9	4.6	4.7	4.4	4.8	5.5	4.7	5.0	4.8
88 NDSHLC(M-FS)C5 XEARLYGEM 21 a	Cross	4.8	4.3	5.2	4.9	4.5	4.2	4.9	5.5	4.7	4.8	4.7
89 NDBS 1011	P arent	4.5	4.2	4.8	4.6	4.2	4.4	4.7	5.7	4.6	4.8	4.6
90 NDBS 1011 XNDS AB(MER-FS)C 15	Cross	4.7	4.5	4.7	4.6	4.3	4.1	4.4	5.2	4.4	4.7	4.6
91 Check 3 P IONEER 39N99	Check	5.1	4.3	5.0	4.8	4.5	4.3	4.4	5.2	4.4	4.7	4.8
92 NDSM(M-FS)C9 X NDSHLC(M-FS)C5	Cross	5.0	4.4	5.2	4.9	4.6	4.0	4.9	5.6	4.8	4.8	4.4
93 BS22LEAM (R-FR)C1XLEAMING22 (S-FR)C1	Check	4.5	4.5	4.8	4.6	4.4	4.2	4.3	5.1	4.5	4.5	4.5
94 NDL X NDBS 1011	Cross	4.6	4.3	4.6	4.5	4.1	4.0	4.2	5.3	4.3	4.5	4.5
95 NDBS22(R-T1)C9 X NDSM(M-FS)C9	Cross	4.5	4.5	4.7	4.5	4.2	4.1	4.3	4.9	4.3	4.6	4.4
96 NDL XNDSM(M-FS)C9	Cross	4.5	4.4	4.5	4.5	4.3	4.0	4.4	5.2	4.1	4.8	4.5
97 NDSS	Parent	5.0	4.5	4.8	4.7	4.4	4.2	4.5	5.3	4.4	4.7	4.6
98 NDBS22(R-T1)C9 X NDSCD(FS-CS)C2	Cross	4.5	4.5	4.8	4.8	4.3	4.0	4.6	5.1	4.4	4.6	4.6
99 NDCG(FS)C1XNDSHLC(M-FS)C5	Cross	5.1	4.1	4.8	4.8	4.8	4.5	5.0	5.1	4.6	4.8	4.5
100 NDL X NDBSK(HI-M)C3	Cross	4.6	4.1	4.5	4.7	4.1	4.0	4.2	4.8	4.1	4.5	4.2
101 NDBS22(R-T1)C9 XEARLYGEM 21 b	Cross	4.7	4.4	5.0	4.6	4.4	4.0	4.4	5.3	4.5	4.5	4.6
102 NDBS 1011 X NDSHLC(M-FS)C5	Cross	4.7	4.2	4.7	4.9	4.4	4.2	4.9	5.6	4.6	4.9	4.5
103 NDSHLC(M-FS)C5 X EARLYGEM 2 lb	Cross	4.6	4.5	5.0	4.8	4.7	4.4	4.8	5.5	4.6	4.9	4.8
104 NDBS 21 (R-T)C9 X EARLYGEM 21 c	Cross	4.7	4.6	4.7	4.8	4.5	4.4	4.7	5.4	4.5	4.7	4.7
$105 \mathrm{CGL}(\mathrm{S}-\mathrm{FR} 2) \mathrm{C} 1 \mathrm{XBS} 21 \mathrm{CGL}(\mathrm{R}-\mathrm{FR} 2) \mathrm{C} 1$	Check	5.0	4.7	5.1	4.7	4.6	4.5	4.9	5.3	4.7	5.0	4.7
106 NDSAB(MER-FS)C 15 X EARLYGEM 21 c	Cross	4.8	4.4	4.8	4.7	4.4	4.4	4.6	5.1	4.4	4.5	4.6
107 NDBS 11(FR-M)C3 X EARLYGEM 2 la	Cross	4.9	4.4	5.0	4.7	4.6	4.3	4.7	5.4	4.6	4.5	4.6
108 NDCG(FS)C1XLeaming(S-FS)C6	Cross	4.8	4.3	5.0	4.7	4.6	4.6	4.8	5.2	4.6	4.9	4.6
109 NDSM(M-FS)C9 XEARLYGEM 21 a	Cross	4.9	4.4	4.9	4.6	4.6	4.2	4.5	5.2	4.4	4.7	4.7
110 NDBS 21 (R-T)C9 XEARLYGEM 21 b	Cross	4.7	4.6	4.8	4.6	4.5	4.3	4.6	5.3	4.5	4.7	4.7
111 NDSCD(FS-CS)C2 X EARLYGEM 21 b	Cross	5.1	4.4	5.2	4.9	4.8	4.8	4.9	5.5	4.5	5.0	4.7
112 NDSS XEARLYGEM 21 a	Cross	4.6	4.5	4.7	4.5	4.5	4.2	4.4	5.3	4.5	4.6	4.6
113 NDCG(FS)C1XEARLYGEM 21 c	Cross	4.9	4.5	5.1	4.6	4.6	4.4	4.8	5.1	4.4	4.7	4.5
114 NDCG(FS)C1XNDL	Cross	4.7	4.1	4.9	4.6	4.5	4.4	4.8	4.9	4.3	4.7	4.5
115 NDLXEARLYGEM 2 la	Cross	4.6	4.4	4.9	4.6	4.2	4.1	4.3	5.0	4.3	4.5	4.4
116 NDSM(M-FS)C9 XEARLYGEM 21 b	Cross	4.7	4.2	4.6	4.4	4.6	4.3	4.3	5.1	4.2	5.0	4.3
117 NDBS 11(FR-M)C3 X NDBS 21 (R-T)C9	Cross	4.8	4.3	4.8	4.5	4.5	4.2	4.6	5.1	4.4	4.8	4.5
118 NDBS 1011 XEARLYGEM 21 c	Cross	4.9	4.3	4.8	4.5	4.6	4.3	4.5	5.2	4.3	4.9	4.7
119 NDBS 11(FR-M)C3 XEARLYGEM 21 b	Cross	4.6	4.1	4.9	4.6	4.6	4.3	4.7	5.0	4.7	4.9	4.8
120 NDBS 11(FR-M)C3 XLeaming(S-FS)C6	Cross	4.9	4.6	5.1	4.7	4.6	4.5	4.7	5.6	4.6	4.8	5.0

Table B13 (continued). Oil (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments.

Table B14. Starch (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments.

Pedigree	Type	2010				2011			2012			
		Casselton	Larimore	Prosper	Thompson	Larimore	Prosper	Thompson	Casselton	Larimore	Prosper	Thompson
1 Leaming(S-FS)C6 XEARLYGEM 21 c	Cross	70.4	67.6	68.7	70.5	69.6	70.5	69.8	69.8	68.0	69.8	70.0
2 Leaming(S-FS)C6 XNDSAB(MER-FS)C 15	Cross	69.6	67.4	69.0	69.8	69.1	69.8	69.9	68.5	68.3	69.3	69.5
3 NDBSK(HI-M)C3 X NDSM(M-FS)C9	Cross	69.6	68.2	68.4	70.0	69.0	70.2	69.4	68.2	67.7	68.6	69.2
$4 \mathrm{BS} 21 \mathrm{AB}(\mathrm{R}-\mathrm{FR}) \mathrm{C} 1 \mathrm{XNDSAB} 21(\mathrm{R}-\mathrm{FR}) \mathrm{C} 1$	Check	69.6	68.2	67.8	70.1	69.0	70.5	68.8	67.6	66.8	69.2	69.4
5 EARLYGEM 2 la X EARLYGEM 2 lb	Cross	70.7	68.1	68.9	70.4	69.4	71.3	69.5	68.7	68.3	70.0	69.7
6 NDBS 1011 XNDSCD(FS-CS)C2	Cross	69.4	67.7	67.4	69.2	68.6	70.2	68.9	68.2	67.1	68.1	69.0
7 NDSS XNDL	Cross	69.7	68.6	68.7	69.4	69.4	70.8	69.4	68.0	67.3	69.2	69.3
8 NDBSK(HIM)C3 X EARLYGEM 2 lb	Cross	70.4	68.8	68.2	70.5	69.9	70.8	70.3	69.7	68.5	70.5	70.2
9 NDL XEARLYGEM 21 b	Cross	70.9	68.8	68.9	70.8	70.4	71.3	70.2	68.9	68.3	70.8	70.2
10 NDBS 11(FR-M)C3 XEARLYGEM 21 c	Cross	69.9	68.2	68.6	69.8	69.8	70.9	69.4	69.2	67.8	69.2	70.0
11 NDBS 11(FR-M)C3	P arent	69.1	67.6	67.3	69.9	68.5	69.6	68.5	67.3	66.3	67.9	69.2
$12 \mathrm{NDBSK}(\mathrm{HI}-\mathrm{M}) \mathrm{C} 3 \mathrm{XNDSHLC}(\mathrm{M}-\mathrm{FS}) \mathrm{C} 5$	Cross	69.0	67.9	68.5	70.6	69.3	70.3	69.4	69.2	68.3	68.6	70.4
13 NDSCD(FS-CS)C2	P arent	67.9	68.0	67.4	69.2	68.5	69.1	67.6	68.5	67.9	67.4	67.7
14 NDSHLC(M-FS)C5 X EARLYGEM 21c	Cross	69.3	68.5	68.2	71.1	69.1	70.8	68.8	68.5	68.5	69.1	69.9
15 NDSS XNDBS22(R-T1)C9	Cross	69.4	67.9	67.5	69.9	68.7	70.1	68.6	67.9	66.6	68.6	68.5
16 Check 4 DKC 43-27 VT3	Check	72.1	70.7	71.4	72.1	72.5	72.1	72.1	70.6	70.5	71.6	71.4
17 NDSS XNDSHLC(M-FS)C5	Cross	68.2	67.9	66.4	69.7	68.4	70.8	68.7	67.9	66.8	68.3	69.4
18 EARLYGEM 21 c	P arent	70.9	68.1	67.5	70.9	70.0	71.0	70.8	69.7	69.1	69.6	70.5
19 Leaming(S-FS)C6	P arent	69.4	67.4	68.1	70.0	69.3	69.8	69.9	68.3	67.5	68.2	69.2
20 NDBS 1011 XNDBS22(R-T1)C9	Cross	69.4	68.7	67.5	70.3	69.7	70.6	69.5	68.6	67.9	69.2	69.6
21 Leaming(S-FS)C6 X NDSHLC(M-FS)C5	Cross	69.4	68.0	67.5	70.7	69.6	70.5	69.0	69.1	67.9	69.2	70.2
22 NDBS 21 (R-T)C9 X NDSHLC(M-FS)C5	Cross	69.6	68.6	68.4	70.1	69.5	70.2	68.7	69.0	68.0	68.7	69.6
23 Check 1P IONEER 39V07	Check	72.1	68.7	70.6	70.8	70.6	71.2	71.1	69.7	69.1	69.8	70.2
24 NDCG(FS)C1XNDSAB(MER-FS)C 15	Cross	69.6	67.0	68.5	70.3	68.9	70.2	69.6	68.0	68.3	68.1	69.1
25 Leaming(S-FS)C6 XNDBS22(R-T1)C9	Cross	70.6	68.2	69.1	70.0	68.9	70.3	69.4	68.8	67.5	69.6	69.4
26 Leaming(S-FS)C6 X NDBS 21 (R-T) C 9	Cross	70.0	67.7	68.5	70.4	70.5	70.8	69.8	69.3	67.2	69.1	70.1
27 NDBSK(HI-M)C3 X EARLYGEM 2 la	Cross	70.0	68.4	68.3	70.3	70.1	70.2	69.4	69.1	67.7	69.5	69.7
28 NDLXLeaming(S-FS)C6	Cross	70.8	67.8	68.9	70.3	70.2	69.7	70.6	69.7	67.3	69.7	70.1
29 EARLYGEM 21 a X EARLYGEM 21 c	Cross	70.4	68.2	69.2	71.0	70.2	70.6	70.0	69.5	68.6	70.2	69.9
30 NDCG(FS)C1XEARLYGEM 21 b	Cross	70.4	67.2	67.9	70.0	69.0	70.3	69.6	69.2	67.9	69.6	69.7
31 Leaming(S-FS)C6 X NDSCD(FS-CS)C2	Cross	69.0	67.1	67.2	69.4	68.5	69.6	68.7	68.0	67.8	68.5	69.6
32 NDBSK(HI-M)C3 X EARLYGEM 21 c	Cross	70.2	68.6	68.9	70.6	69.6	71.2	70.7	69.4	68.1	69.8	70.2
33 NDBS 1011 XEARLYGEM 2 lb	Cross	71.1	68.0	68.6	70.3	69.8	70.8	69.9	70.2	68.3	69.5	69.3
34 NDSCD(FS-CS)C2 XEARLYGEM 2 la	Cross	69.9	68.0	67.8	69.6	67.7	70.6	69.2	69.0	66.8	68.9	69.2
35 NDSS XEARLYGEM 2 lb	Cross	70.2	67.6	67.3	69.7	68.7	70.0	69.4	69.6	67.2	68.9	69.5
36 NDSAB(MER-FS)C 15 XNDSHLC(M-FS)C5	Cross	69.7	68.1	68.1	70.4	69.0	70.5	68.9	69.2	68.0	69.1	69.3
37 NDBS 11(FR-M)C3 X NDSCD(FS-CS)C2	Cross	69.7	68.1	67.4	69.2	68.4	69.5	68.4	68.4	67.1	68.4	68.7
38 NDCG(FS)C1XEARLYGEM 21 a	Cross	70.3	68.1	68.1	70.1	69.2	70.9	69.2	69.0	67.9	69.3	69.1
39 EARLYGEM 2 lb XEARLYGEM 2 lc	Cross	71.5	68.6	68.5	70.2	69.3	71.0	70.3	69.7	68.4	69.8	70.1
40 NDBSK(HI-M)C3 X NDSAB (MER-FS)C 15	Cross	70.3	68.0	68.8	70.4	70.0	70.3	69.1	69.1	68.1	69.8	70.0

Table B14 (continued). Starch (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments.

Entry Pedigree	Type	2010				2011			2012			
		Casselton	Larimore	Prosper	Thompson	Larimore	Prosper	Thompson	Casselton	Larimore	Prosper	Thompson
41 NDBS21(R-T)C9	P arent	69.9	67.6	67.7	69.5	69.4	70.7	69.2	67.6	68.1	68.6	69.8
42 NDSAB(MER-FS)C 15 XEARLYGEM 2 lb	Cross	70.3	67.7	67.3	69.9	69.6	71.5	69.9	69.3	68.5	69.3	69.4
43 NDBSK(HIM)C3 X NDBS 22 (R-T 1)C9	Cross	70.1	68.4	68.5	69.5	69.9	70.8	70.0	68.7	68.5	69.6	70.6
44 NDSS XNDBSK(HI-M)C3	Cross	69.5	68.7	68.0	69.6	68.0	70.5	69.1	68.3	67.4	68.6	69.1
45 NDSS XLeaming(S-FS)C6	Cross	69.8	67.4	66.5	70.1	69.0	69.2	69.1	67.8	66.8	68.7	68.6
46 NDL XNDBS22(R-T1)C9	Cross	70.6	68.7	69.0	70.0	69.9	71.9	70.4	68.8	67.8	69.4	69.7
47 NDSCD(FS-CS)C2 X NDSHLC(M-FS)C5	Cross	69.0	68.0	68.3	69.5	68.9	70.1	67.6	67.8	67.0	67.8	69.4
48 NDBS 11(FR-M)C3 X NDSAB (MER-FS)C 15	Cross	68.8	67.9	68.1	70.2	69.4	70.6	69.8	68.3	67.5	68.6	69.4
49 NDSS XNDSM(M-FS)C9	Cross	68.9	66.6	67.6	70.5	69.1	69.8	68.8	67.8	67.2	68.2	68.3
50 NDBS22(R-T1)C9 XEARLYGEM 21 l	Cross	69.8	67.9	67.8	70.6	69.0	70.4	70.1	69.4	68.1	69.5	69.8
51 NDBS 22(R-T1)C9	P arent	69.2	67.7	68.1	69.6	69.0	70.3	69.1	67.9	67.4	68.3	69.1
52 NDSS XNDBS 1011	Cross	69.8	68.4	67.8	69.6	68.8	70.2	69.0	67.9	67.4	68.5	68.6
53 NDL	P arent	71.3	69.0	69.5	71.2	70.6	71.5	70.8	70.0	68.4	69.7	69.8
54 NDBS 1011 XLeaming (S-FS) C6	Cross	69.5	67.9	68.9	70.0	69.6	70.4	69.6	69.4	67.7	69.7	69.4
55 NDBSK(HI-M)C3 X NDBS 1011	Cross	69.6	68.3	68.6	70.4	70.0	72.1	69.8	69.6	68.4	69.2	70.0
56 NDSAB(MER-FS)C 15 X NDBS 21 (R-T)C9	Cross	70.6	68.2	68.5	69.9	69.5	71.0	69.7	69.0	68.0	69.1	69.4
57 NDBS 11(FR-M)C3 X NDBS22(R-T1)C9	Cross	69.4	67.3	68.5	69.8	69.1	70.4	68.6	68.7	67.2	69.3	69.1
58 EARLYGEM 2 lb	P arent	69.6	68.3	68.2	71.0	69.4	71.0	69.9	69.1	68.5	69.8	69.6
59 NDSAB(MER-FS)C 15 X NDSM(M-FS)C9	Cross	69.8	68.3	68.0	69.8	68.8	70.1	69.4	67.9	67.6	68.7	69.1
60 Check 2 DKC 36-34 VT3	Check	70.9	68.7	70.5	71.0	70.6	70.0	70.8	71.0	69.5	70.8	70.6
61 NDBSK(HI-M)C3 X NDSCD(FS-CS)C2	Cross	69.3	68.5	68.0	69.9	68.8	69.8	69.3	68.1	68.2	68.5	69.0
62 NDBS22(R-T1)C9 XEARLYGEM 21 c	Cross	70.3	68.2	68.2	70.3	70.1	70.8	69.8	69.4	68.4	69.7	70.0
63 NDL XNDBS 11(FR-M)C3	Cross	70.1	68.4	68.0	69.9	70.0	70.7	69.8	69.1	67.8	69.3	70.0
64 NDBS 11(FR-M)C3 X NDSHLC(M-FS)C5	Cross	67.9	68.0	66.9	69.6	69.6	69.8	68.6	68.5	67.3	69.1	69.5
65 NDBSK(HI-M)C3 X NDBS 21 (R-T)C9	Cross	69.2	69.0	68.3	69.9	69.8	71.1	69.8	68.1	68.4	68.5	69.5
66 NDBS22(R-T1)C9 X NDSAB (MER-FS)C 15	Cross	69.4	67.2	67.6	70.1	69.3	70.1	69.3	68.8	68.1	68.8	69.8
67 NDBS22(R-T1)C9 X NDSHLC(M-FS)C5	Cross	69.5	68.5	67.3	70.3	69.0	71.3	68.8	68.1	67.6	68.7	70.3
68 NDSM(M-FS)C9 X NDBS 21 (R-T)C9	Cross	69.2	68.0	67.1	69.7	69.4	70.2	68.9	67.9	68.2	68.7	70.2
69 NDBSK(HI-M)C3 X NDBS 11(FR-M)C3	Cross	70.0	68.8	68.2	70.3	70.1	71.3	69.5	68.5	68.1	69.6	69.6
70 NDSS XNDBS 11(FR-M)C3	Cross	68.9	67.5	66.9	69.1	68.3	70.2	68.1	67.8	67.2	68.2	68.7
71 NDBSK(HI-M)C3	P arent	69.8	67.9	69.0	70.3	69.6	71.0	69.5	69.2	68.0	69.1	69.8
72 NDSS X NDBS 21 (R-T)C9	Cross	68.6	67.7	67.5	69.6	68.8	70.7	69.4	67.9	67.3	68.8	69.4
73 NDSS XEARLYGEM 21 c	Cross	70.0	67.9	68.0	70.8	69.0	70.4	69.5	68.7	67.1	68.9	69.0
74 NDBS 11(FR-M)C3 X NDBS 1011	Cross	69.5	67.8	67.8	70.1	69.1	71.2	68.7	68.3	66.9	68.5	68.8
75 NDCG(FS)C1	P arent	70.1	68.1	67.9	70.3	69.1	70.4	69.5	67.3	66.8	68.6	68.6
76 NDSAB(MER-FS)C 15	P arent	69.3	67.6	67.4	69.7	69.7	69.8	68.6	67.5	67.2	69.0	68.6
77 NDSS XNDSCD(FS-CS)C2	Cross	69.3	66.9	67.0	69.8	68.2	70.4	68.5	67.3	67.0	67.6	68.4
78 NDBS 1011 X NDBS 21 (R-T)C9	Cross	68.9	68.1	68.0	70.5	69.6	70.9	69.2	68.2	67.6	69.2	69.4
79 NDSAB(MER-FS)C 15 XEARLYGEM 2 la	Cross	69.6	68.2	67.8	70.9	69.3	71.5	70.1	68.9	68.2	69.4	69.3
80 NDBS 21 (R-T)C9 X EARLYGEM 21 l	Cross	69.2	68.5	67.5	70.0	70.2	70.7	69.8	69.1	68.6	70.0	69.9

Table B14 (continued). Starch (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments.

Entry Pedigree	Type	2010				2011			2012			
		Casselton	Larimore	Pros per	Thompson	Larimore	Prosper	Thompson	Casselton	Larimore	Pros per	Thompson
81 NDBS 11(FR-M)C3 X NDSM(M-FS)C9	Cross	69.1	67.3	67.2	70.1	68.0	70.4	68.5	68.0	66.7	68.6	69.5
82 NDBSK(HI-M)C3 XLeaming(S-FS)C6	Cross	70.7	68.1	68.3	70.6	69.8	70.8	69.7	68.8	67.7	69.1	69.8
83 NDL X NDBS 21 (R-T)C9	Cross	69.7	69.3	68.7	71.3	70.5	70.9	70.1	70.0	67.8	70.2	70.3
84 NDSM(M-FS)C9	P arent	68.2	67.9	67.0	69.5	68.5	70.1	69.1	67.8	66.4	68.4	68.4
85 NDSS XNDSAB(MER-FS)C 15	Cross	69.3	67.5	68.4	70.3	68.2	69.8	69.6	68.7	67.6	68.6	
86 Leaming(S-FS)C6 X NDSM(M-FS)C9	Cross	69.8	68.2	67.9	70.3	69.3	69.8	69.5	68.8	67.2	68.4	68.7
87 NDCG(FS)C1 ${ }^{\text {N }}$ NDBS 11(FR-M)C3	Cross	69.8	69.0	68.3	69.7	69.4	69.5	69.1	68.0	66.7	69.3	68.6
88 NDSHLC(M-FS)C5 XEARLYGEM 21 a	Cross	69.3	68.0	68.0	70.3	69.0	71.3	69.0	69.1	68.0	69.3	69.7
89 NDBS 1011	P arent	70.2	68.6	68.3	70.0	69.2	70.2	69.0	68.2	68.3	69.1	69.8
90 NDBS 1011 X NDS AB (MER-FS)C 15	Cross	69.4	68.3	68.1	70.0	69.2	71.0	69.5	68.7	68.3	68.9	69.9
91 Check 3 P IONEER 39N99	Check	71.9	70.1	69.9	71.4	70.3	71.9	71.8	69.9	69.2	70.6	70.5
92 NDSM(M-FS)C9 XNDSHLC(M-FS)C5	Cross	69.0	67.9	67.8	70.5	68.9	70.3	68.7	68.4	67.0	68.4	70.1
93 BS22LEAM (R-FR)C1XLEAMING22 (S-FR)C1	Check	71.1	68.6	69.0	70.3	70.1	71.1	69.9	69.0	67.8	70.1	70.1
94 NDL X NDBS 1011	Cross	70.3	69.0	68.8	70.7	70.3	71.3	70.2	69.4	68.1	69.9	69.5
95 NDBS22(R-T1)C9 X NDSM(M-FS)C9	Cross	69.3	67.9	67.5	70.0	68.5	70.6	69.1	68.7	67.7	68.1	69.4
96 NDL XNDSM(M-FS)C9	Cross	69.5	68.6	68.9	70.8	69.2	70.3	69.6	69.2	68.4	68.8	69.3
97 NDSS	P arent	69.8	66.9	67.2	69.3	68.3	68.7	67.8	67.2	66.4	67.9	68.1
98 NDBS22(R-T1)C9 X NDSCD(FS-CS)C2	Cross	69.7	67.6	67.5	69.0	69.4	70.3	68.7	68.3	67.5	68.4	69.2
99 NDCG(FS)C 1 X NDSHLC(M-FS)C5	Cross	68.9	67.7	68.0	70.3	68.6	70.1	68.4	69.5	67.2	68.2	70.5
100 NDL X NDBSK(HI-M)C3	Cross	70.7	68.7	69.1	70.7	70.5	71.2	70.2	69.4	67.9	70.4	70.2
101 NDBS22(R-T1)C9 XEARLYGEM 2 lb	Cross	69.9	68.4	68.1	70.2	69.8	71.4	69.9	68.8	68.1	70.2	69.7
102 NDBS 1011 X NDSHLC(M-FS)C5	Cross	69.6	68.9	68.7	70.1	69.9	70.7	68.5	67.9	67.8	69.3	70.1
103 NDSHLC(M-FS)C5 X EARLYGEM 2 lb	Cross	70.3	68.3	68.2	70.5	68.8	71.1	69.4	68.3	67.9	69.4	70.1
104 NDBS 21 (R-T)C9 X EARLYGEM 21 c	Cross	70.3	68.0	68.3	70.6	70.0	71.5	69.7	68.6	68.3	70.0	70.2
$105 \mathrm{CGL}(\mathrm{S}-\mathrm{FR} 2) \mathrm{C} 1 \mathrm{XBS} 21 \mathrm{CGL}(\mathrm{R}-\mathrm{FR} 2) \mathrm{C} 1$	Check	69.5	67.2	67.1	69.8	69.4	70.1	69.1	68.3	67.1	68.7	69.7
106 NDSAB(MER-FS)C 15 X EARLYGEM 21 c	Cross	70.3	67.4	68.7	70.3	69.6	70.8	69.9	69.3	68.2	69.6	69.5
107 NDBS 11(FR-M)C3 X EARLYGEM 2 1a	Cross	69.9	68.4	68.2	70.5	69.2	70.9	69.5	68.9	67.6	70.5	69.7
108 NDCG(FS)C1XLeaming(S-FS)C6	Cross	69.8	67.1	67.8	70.2	69.6	69.3	69.3	68.3	67.2	68.7	69.2
109 NDSM(M-FS)C9 XEARLYGEM 21 a	Cross	69.5	68.3	67.1	70.5	69.0	70.5	69.2	69.1	67.8	69.5	69.2
110 NDBS 21 (R-T)C9 XEARLYGEM 21 b	Cross	68.9	67.6	68.4	70.5	70.1	70.4	69.4	69.4	67.7	69.7	70.1
111 NDSCD(FS-CS)C2 X EARLYGEM 21 b	Cross	69.1	67.7	68.1	69.7	69.1	70.1	68.8	68.3	68.0	69.5	69.7
112 NDSS XEARLYGEM 2 la	Cross	69.1	67.9	68.4	70.2	69.0	69.8	69.1	68.3	67.1	69.1	69.1
113 NDCG(FS)C1XEARLYGEM 21 c	Cross	69.3	68.4	67.4	69.9	69.8	70.3	69.8	69.2	68.3	69.9	70.2
114 NDCG(FS)C1XNDL	Cross	69.0	69.0	67.8	70.3	69.6	70.4	69.6	68.9	68.3	69.6	69.8
115 NDLXEARLYGEM 21 a	Cross	69.4	68.2	68.4	70.7	70.5	71.6	70.8	69.6	68.5	70.0	70.2
116 NDSM(M-FS)C9 X EARLYGEM 21 b	Cross	69.5	68.1	67.8	70.5	68.8	70.5	69.8	68.5	68.1	68.6	70.1
117 NDBS 11(FR-M)C3 X NDBS 21 (R-T)C9	Cross	69.5	68.4	67.2	70.2	69.4	70.5	69.1	69.6	67.4	69.6	69.5
118 NDBS 1011 XEARLYGEM 21 c	Cross	70.1	68.4	69.0	70.8	69.6	70.9	69.7	69.9	68.8	69.9	69.9
119 NDBS 11(FR-M)C3 X EARLYGEM 21 b	Cross	69.5	68.4	68.0	70.0	69.4	70.6	69.6	69.4	67.4	69.3	69.7
120 NDBS 11(FR-M)C3 XLeaming(S-FS)C6	Cross	68.9	67.8	67.8	70.4	69.7	69.3	69.9	68.6	67.1	69.9	69.3

Table B14 (continued). Starch (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments.

Table B15. Lysine (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments.

Entry Pedigree	Type	2010				2011			2012			
		Casselton	Larimore	Prosper	Thompson	Larimore	Prosper	Thompson	Casselton	Larimore	Prosper	Thompson
1 Leaming(S-FS)C6 XEARLYGEM 21c	Cross	0.28	0.29	0.32	0.26	0.29	0.27	0.28	0.31	0.33	0.31	0.30
2 Leaming(S-FS)C6 XNDSAB(MER-FS)C15	Cross	0.31	0.31	0.32	0.29	0.31	0.29	0.29	0.33	0.33	0.33	0.31
3 NDBSK(HI-M)C3 X NDSM(M-FS)C9	Cross	0.28	0.29	0.31	0.28	0.29	0.27	0.28	0.32	0.34	0.33	0.31
$4 \mathrm{BS} 21 \mathrm{AB}(\mathrm{R}-\mathrm{FR}) \mathrm{C} 1 \mathrm{XNDSAB} 21(\mathrm{R}-\mathrm{FR}) \mathrm{C} 1$	Check	0.29	0.29	0.31	0.27	0.29	0.24	0.29	0.32	0.35	0.32	0.31
5 EARLYGEM 2 la X EARLYGEM 2 lb	Cross	0.27	0.28	0.30	0.27	0.28	0.24	0.29	0.31	0.32	0.31	0.30
6 NDBS $1011 \mathrm{XNDSCD}(\mathrm{FS}-\mathrm{CS}) \mathrm{C} 2$	Cross	0.29	0.32	0.31	0.28	0.29	0.26	0.29	0.32	0.34	0.33	0.32
7 NDSS XNDL	Cross	0.30	0.29	0.32	0.29	0.29	0.26	0.30	0.34	0.35	0.33	0.32
8 NDBSK(HI-M)C3 X EARLYGEM 21 b	Cross	0.27	0.28	0.30	0.27	0.28	0.27	0.27	0.31	0.33	0.31	0.31
9 NDL XEARLYGEM 2 lb	Cross	0.28	0.28	0.31	0.27	0.27	0.25	0.28	0.32	0.34	0.31	0.31
10 NDBS 11(FR-M)C3 XEARLYGEM 21 c	Cross	0.28	0.28	0.30	0.28	0.29	0.26	0.29	0.31	0.34	0.32	0.30
11 NDBS 11(FR-M)C3	P arent	0.31	0.30	0.32	0.27	0.29	0.27	0.30	0.32	0.35	0.34	0.32
12 NDBSK(HI-M)C3 X NDSHLC(M-FS)C5	Cross	0.30	0.30	0.31	0.27	0.29	0.27	0.29	0.31	0.34	0.34	0.32
$13 \mathrm{NDSCD}(\mathrm{FS}-\mathrm{CS}) \mathrm{C} 2$	P arent	0.33	0.30	0.32	0.28	0.30	0.30	0.31	0.32	0.35	0.35	0.35
14 NDSHLC(M-FS)C5 XEARLYGEM 21 c	Cross	0.29	0.29	0.30	0.25	0.28	0.24	0.29	0.32	0.32	0.31	0.29
15 NDSS XNDBS22(R-T1)C9	Cross	0.29	0.29	0.32	0.27	0.29	0.27	0.30	0.33	0.36	0.33	0.33
16 Check 4 DKC 43-27 VT3	Check	0.25	0.25	0.29	0.26	0.26	0.26	0.26	0.30	0.31	0.31	0.29
17 NDSS XNDSHLC(M-FS)C5	Cross	0.30	0.28	0.32	0.29	0.30	0.23	0.30	0.32	0.35	0.34	0.31
18 EARLYGEM 21 c	P arent	0.27	0.28	0.30	0.26	0.28	0.25	0.26	0.31	0.31	0.31	0.29
19 Leaming(S-FS)C6	P arent	0.29	0.32	0.32	0.29	0.30	0.28	0.30	0.33	0.35	0.35	0.33
20 NDBS $1011 \mathrm{XNDBS} 22(\mathrm{R}-\mathrm{T} 1) \mathrm{C} 9$	Cross	0.30	0.29	0.31	0.26	0.29	0.25	0.29	0.32	0.33	0.32	0.31
21 Leaming(S-FS)C6 X NDSHLC(M-FS)C5	Cross	0.28	0.28	0.31	0.26	0.28	0.25	0.30	0.32	0.33	0.33	0.30
22 NDBS21(R-T)C9 X NDSHLC(M-FS)C5	Cross	0.28	0.27	0.31	0.27	0.28	0.27	0.29	0.31	0.34	0.33	0.31
23 Check 1P IONEER 39 V 07	Check	0.29	0.29	0.31	0.29	0.28	0.31	0.29	0.34	0.34	0.33	0.32
24 NDCG(FS)C1XNDSAB(MER-FS)C 15	Cross	0.30	0.31	0.32	0.27	0.30	0.26	0.30	0.31	0.34	0.34	0.31
25 Leaming(S-FS)C6 XNDBS22(R-T) C9	Cross	0.29	0.31	0.31	0.29	0.30	0.27	0.30	0.32	0.35	0.33	0.31
26 Leaming(S-FS)C6 XNDBS 21 (R-T)C9	Cross	0.29	0.30	0.31	0.28	0.28	0.27	0.28	0.31	0.35	0.33	0.30
27 NDBSK(HI-M)C3 XEARLYGEM 21 l	Cross	0.28	0.28	0.31	0.28	0.28	0.27	0.29	0.31	0.33	0.31	0.31
28 NDL XLeaming(S-FS)C6	Cross	0.30	0.31	0.32	0.29	0.28	0.29	0.29	0.31	0.35	0.33	0.31
29 EARLYGEM 2 a X EARLYGEM 21 c	Cross	0.27	0.29	0.29	0.26	0.27	0.26	0.27	0.31	0.31	0.30	0.30
30 NDCG(FS)C1XEARLYGEM 21 b	Cross	0.27	0.30	0.30	0.28	0.28	0.27	0.28	0.31	0.33	0.31	0.31
31 Leaming(S-FS)C6 XNDSCD(FS-CS)C2	Cross	0.31	0.31	0.32	0.28	0.30	0.29	0.30	0.32	0.34	0.34	0.32
32 NDB SK(HIM)C3 XEARLYGEM 21 c	Cross	0.28	0.29	0.30	0.27	0.27	0.25	0.27	0.31	0.34	0.32	0.29
33 NDBS 1011 XEARLYGEM 21 b	Cross	0.27	0.29	0.30	0.27	0.28	0.28	0.28	0.30	0.32	0.32	0.31
34 NDSCD(FS-CS)C2 XEARLYGEM 2 la	Cross	0.29	0.29	0.31	0.29	0.30	0.25	0.29	0.30	0.34	0.33	0.31
35 NDSS XEARLYGEM 2 lb	Cross	0.28	0.30	0.31	0.29	0.29	0.26	0.29	0.31	0.34	0.32	0.30
36 NDSAB(MER-FS)C 15 X NDSHLC(M-FS)C5	Cross	0.28	0.29	0.31	0.27	0.28	0.28	0.29	0.31	0.33	0.32	0.31
37 NDBS 11(FR-M)C3 X NDSCD(FS-CS)C2	Cross	0.29	0.29	0.32	0.29	0.29	0.29	0.30	0.32	0.34	0.33	0.31
38 NDCG(FS)C1XEARLYGEM 21 l	Cross	0.28	0.29	0.30	0.27	0.28	0.24	0.28	0.32	0.33	0.32	0.30
39 EARLYGEM 2 lb X EARLYGEM 2 lc	Cross	0.26	0.27	0.30	0.27	0.28	0.24	0.26	0.29	0.32	0.31	0.30
40 NDBSK(HI-M)C3 X NDSAB (MER-FS)C 15	Cross	0.28	0.29	0.31	0.27	0.29	0.28	0.29	0.32	0.33	0.33	0.30

Table B15 (continued). Lysine (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments.

Pedigree	Type	2010				2011			2012			
		Casselton	Larimore	Prosper	Thompson	Larimore	Prosper	Thompson	Casselton	Larimore	Prosper	Thompson
41 NDBS21(R-T)C9	P arent	0.28	0.30	0.32	0.28	0.29	0.25	0.28	0.32	0.32	0.33	0.30
42 NDSAB(MER-FS)C 15 XEARLYGEM 2 lb	Cross	0.28	0.29	0.31	0.27	0.28	0.25	0.27	0.31	0.33	0.31	0.30
43 NDBSK(HI-M)C3 X NDBS 22 (R-T 1)C9	Cross	0.28	0.29	0.31	0.29	0.29	0.27	0.28	0.32	0.33	0.33	0.31
44 NDSS XNDBSK(HI-M)C3	Cross	0.31	0.28	0.32	0.29	0.30	0.27	0.29	0.33	0.35	0.34	0.32
45 NDSS XLeaming(S-FS)C6	Cross	0.30	0.31	0.33	0.28	0.31	0.31	0.29	0.33	0.35	0.33	0.33
46 NDLXNDBS22(R-T1)C9	Cross	0.29	0.30	0.31	0.29	0.29	0.25	0.28	0.31	0.35	0.32	0.31
47 NDSCD(FS-CS)C2 X NDSHLC(M-FS)C5	Cross	0.30	0.29	0.31	0.28	0.28	0.31	0.30	0.31	0.34	0.34	0.32
48 NDBS 11(FR-M)C3 X NDS AB (MER-FS)C 15	Cross	0.31	0.29	0.32	0.28	0.29	0.28	0.29	0.33	0.34	0.32	0.31
49 NDSS XNDSM(M-FS)C9	Cross	0.30	0.32	0.32	0.27	0.29	0.28	0.29	0.33	0.34	0.34	0.34
50 NDBS22(R-T1)C9 XEARLYGEM 21 l	Cross	0.28	0.29	0.30	0.27	0.29	0.26	0.27	0.31	0.33	0.31	0.30
51 NDBS 22(R-T1)C9	P arent	0.28	0.30	0.31	0.29	0.29	0.28	0.28	0.32	0.33	0.32	0.31
52 NDSS XNDBS 1011	Cross	0.28	0.28	0.31	0.28	0.29	0.26	0.30	0.32	0.34	0.34	0.32
53 NDL	P arent	0.28	0.28	0.30	0.28	0.27	0.27	0.29	0.31	0.34	0.33	0.32
54 NDBS 1011 XLeaming(S-FS)C6	Cross	0.29	0.29	0.31	0.28	0.28	0.27	0.29	0.32	0.34	0.32	0.31
55 NDBSK(HIM) C3 X NDBS 1011	Cross	0.29	0.30	0.30	0.26	0.28	0.27	0.28	0.31	0.33	0.32	0.30
56 NDSAB(MER-FS)C 15 X NDBS 21 (R-T)C9	Cross	0.28	0.29	0.30	0.28	0.28	0.24	0.28	0.32	0.33	0.31	0.31
57 NDBS 11(FR-M)C3 X NDBS 22 (R-Tl)C9	Cross	0.30	0.31	0.31	0.27	0.29	0.26	0.29	0.31	0.34	0.32	0.31
58 EARLYGEM 2 lb	P arent	0.28	0.29	0.30	0.25	0.27	0.24	0.28	0.30	0.33	0.31	0.31
59 NDSAB(MER-FS)C 15 X NDSM(M-FS)C9	Cross	0.29	0.29	0.31	0.28	0.29	0.28	0.29	0.32	0.34	0.31	0.32
60 Check 2 DKC 36-34 VT3	Check	0.30	0.28	0.29	0.26	0.27	0.27	0.27	0.30	0.32	0.31	0.30
61 NDBSK(HIM) C3 X NDSCD(FS-CS) C 2	Cross	0.30	0.29	0.31	0.28	0.30	0.27	0.29	0.32	0.33	0.34	0.32
62 NDBS 22(R-T 1)C9 XEARLYGEM 21 c	Cross	0.28	0.29	0.30	0.26	0.28	0.27	0.28	0.31	0.33	0.31	0.30
63 NDL XNDBS 11(FR-M)C3	Cross	0.29	0.30	0.33	0.28	0.29	0.27	0.29	0.33	0.34	0.32	0.30
64 NDBS 11(FR-M)C3 X NDSHLC(M-FS)C5	Cross	0.30	0.28	0.31	0.27	0.28	0.27	0.30	0.32	0.34	0.32	0.29
65 NDBS K(HI-M)C3 X NDBS 21 (R-T)C9	Cross	0.29	0.28	0.30	0.28	0.28	0.26	0.28	0.32	0.34	0.33	0.31
66 NDBS 22(R-T1)C9 X NDSAB (MER-FS)C 15	Cross	0.28	0.33	0.31	0.28	0.30	0.28	0.29	0.32	0.35	0.33	0.31
67 NDBS22(R-T1)C9 XNDSHLC(M-FS)C5	Cross	0.28	0.28	0.31	0.26	0.28	0.27	0.29	0.31	0.33	0.32	0.30
68 NDSM(M-FS)C9 X NDBS 21 (R-T)C9	Cross	0.29	0.28	0.32	0.28	0.29	0.26	0.28	0.32	0.33	0.33	0.30
69 NDBSK(HIM) C 3 X NDBS 11(FR-M)C3	Cross	0.29	0.29	0.32	0.28	0.28	0.25	0.30	0.32	0.35	0.33	0.31
70 NDSS XNDBS 11(FR-M)C3	Cross	0.31	0.29	0.32	0.28	0.31	0.26	0.32	0.33	0.34	0.34	0.32
71 NDB S K (HI-M)C3	P arent	0.29	0.31	0.30	0.28	0.29	0.26	0.28	0.31	0.33	0.32	0.30
72 NDSS XNDBS21(R-T)C9	Cross	0.31	0.30	0.33	0.28	0.30	0.26	0.28	0.33	0.35	0.33	0.32
73 NDSS XEARLYGEM 21 c	Cross	0.28	0.30	0.30	0.26	0.29	0.27	0.28	0.32	0.34	0.32	0.32
74 NDBS 11(FR-M)C3 X NDBS 1011	Cross	0.28	0.29	0.31	0.28	0.29	0.25	0.29	0.33	0.34	0.33	0.32
75 NDCG(FS)C1	P arent	0.29	0.29	0.31	0.27	0.30	0.26	0.29	0.33	0.34	0.33	0.32
76 NDSAB(MER-FS)C 15	P arent	0.29	0.30	0.32	0.29	0.29	0.30	0.30	0.34	0.35	0.33	0.33
77 NDSS XNDSCD(FS-CS)C2	Cross	0.29	0.32	0.32	0.28	0.30	0.26	0.31	0.33	0.34	0.35	0.33
78 NDBS $1011 \mathrm{XNDBS} 21(\mathrm{R}-\mathrm{T}) \mathrm{C} 9$	Cross	0.28	0.28	0.31	0.26	0.28	0.25	0.28	0.32	0.34	0.32	0.31
79 NDSAB(MER-FS)C 15 X EARLYGEM 2 la	Cross	0.29	0.29	0.31	0.27	0.29	0.24	0.28	0.31	0.33	0.31	0.31
80 NDBS 21 (R-T)C9 XEARLYGEM 21 a	Cross	0.29	0.28	0.31	0.27	0.27	0.25	0.27	0.31	0.32	0.31	0.30

Table B15 (continued). Lysine (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments.

Table B15 (continued). Lysine (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments.

Table B16. Methionine (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments.

Pedigree	Type	2010				2011			2012			
		Casselton	Larimore	Prosper	Thompson	Larimore	Prosper	Thompson	Casselton	Larimore	Prosper	Thompson
1 Leaming(S-FS)C6 XEARLYGEM 21c	Cross	0.22	0.26	0.25	0.20	0.23	0.21	0.22	0.23	0.26	0.22	0.23
2 Leaming(S-FS)C6 XNDSAB(MER-FS)C15	Cross	0.24	0.29	0.26	0.23	0.23	0.23	0.22	0.26	0.26	0.23	0.24
3 NDBSK(HI-M)C3 X NDSM(M-FS)C9	Cross	0.25	0.27	0.27	0.24	0.26	0.23	0.24	0.27	0.28	0.26	0.25
$4 \mathrm{BS} 21 \mathrm{AB}(\mathrm{R}-\mathrm{FR}) \mathrm{C} 1 \mathrm{XNDSAB} 21(\mathrm{R}-\mathrm{FR}) \mathrm{C} 1$	Check	0.24	0.26	0.28	0.22	0.25		0.23	0.27	0.28	0.24	0.23
5 EARLYGEM 2 la X EARLYGEM 2 lb	Cross	0.22	0.27	0.25	0.22	0.24	0.22	0.23	0.26	0.27	0.23	0.24
6 NDBS 1011 XNDSCD(FS-CS)C2	Cross	0.25	0.28	0.28	0.24	0.25	0.21	0.23	0.26	0.28	0.26	0.25
7 NDSS XNDL	Cross	0.24	0.27	0.26	0.24	0.24	0.23	0.23	0.27	0.29	0.25	0.24
8 NDBSK(HI-M)C3 X EARLYGEM 21 lb	Cross	0.23	0.26	0.27	0.21	0.23	0.22	0.22	0.24	0.26	0.21	0.23
9 NDL XEARLYGEM 2 lb	Cross	0.22	0.26	0.25	0.20	0.22	0.21	0.22	0.26	0.28	0.21	0.22
10 NDBS 11(FR-M)C3 X EARLYGEM 21 c	Cross	0.23	0.26	0.26	0.23	0.24	0.23	0.23	0.24	0.27	0.24	0.24
11 NDBS 11(FR-M)C3	P arent	0.26	0.28	0.28	0.23	0.26	0.24	0.25	0.28	0.31	0.27	0.25
$12 \mathrm{NDBSK}(\mathrm{HI}-\mathrm{M}) \mathrm{C} 3 \mathrm{XNDSHLC}(\mathrm{M}-\mathrm{FS}) \mathrm{C} 5$	Cross	0.23	0.29	0.27	0.23	0.25	0.23	0.22	0.25	0.27	0.25	0.24
$13 \mathrm{NDSCD}(\mathrm{FS}-\mathrm{CS}) \mathrm{C} 2$	P arent	0.26	0.26	0.28	0.23	0.23	0.25	0.26	0.27	0.26	0.27	0.26
14 NDSHLC(M-FS)C5 XEARLYGEM 21 c	Cross	0.24	0.26	0.26	0.21	0.25	0.23	0.24	0.26	0.25	0.25	0.23
15 NDSS XNDBS22(R-T1)C9	Cross	0.25	0.28	0.29	0.23	0.25	0.22	0.25	0.27	0.29	0.25	0.26
16 Check 4 DKC 43-27 VT3	Check	0.19	0.22	0.22	0.19	0.18	0.20	0.19	0.20	0.22	0.19	0.19
17 NDSS XNDSHLC(M-FS)C5	Cross	0.25	0.27	0.29	0.23	0.27		0.24	0.27	0.29	0.25	0.24
18 EARLYGEM 21 c	P arent	0.21	0.26	0.28	0.21	0.23	0.21	0.21	0.24	0.25	0.24	0.22
19 Leaming(S-FS)C6	P arent	0.23	0.27	0.27	0.22	0.24	0.24	0.22	0.27	0.28	0.26	0.24
20 NDBS $1011 \mathrm{XNDBS} 22(\mathrm{R}-\mathrm{T} 1) \mathrm{C} 9$	Cross	0.24	0.28	0.29	0.22	0.23	0.24	0.23	0.26	0.27	0.23	0.23
21 Leaming(S-FS)C6 X NDSHLC(M-FS)C5	Cross	0.26	0.26	0.28	0.21	0.23	0.23	0.24	0.25	0.27	0.24	0.23
22 NDBS21(R-T)C9 X NDSHLC(M-FS)C5	Cross	0.25	0.25	0.27	0.24	0.24	0.24	0.25	0.25	0.27	0.25	0.25
23 Check 1P IONEER 39V07	Check	0.21	0.25	0.24	0.21	0.22	0.21	0.21	0.24	0.25	0.24	0.22
24 NDCG(FS)C 1 X NDSAB (MER-FS)C 15	Cross	0.24	0.27	0.26	0.21	0.23	0.22	0.24	0.27	0.26	0.27	0.25
25 Leaming(S-FS)C6 X NDBS 22(R-T 1)C9	Cross	0.22	0.27	0.25	0.22	0.25	0.24	0.22	0.25	0.27	0.24	0.24
26 Leaming(S-FS)C6 XNDBS 21 (R-T) C 9	Cross	0.23	0.28	0.26	0.20	0.21	0.21	0.21	0.24	0.29	0.25	0.22
27 NDBSK(HI-M)C3 X EARLYGEM 2 la	Cross	0.24	0.25	0.27	0.23	0.23	0.22	0.24	0.24	0.28	0.24	0.24
28 NDL XLeaming(S-FS)C6	Cross	0.22	0.27	0.26	0.22	0.23	0.23	0.20	0.23	0.28	0.23	0.24
29 EARLYGEM 21 a X EARLYGEM 21 c	Cross	0.22	0.26	0.26	0.21	0.23	0.22	0.23	0.24	0.26	0.24	0.24
30 NDCG(FS)C1XEARLYGEM 21 b	Cross	0.22	0.28	0.26	0.23	0.24	0.21	0.23	0.24	0.28	0.22	0.23
31 Leaming(S-FS)C6 X NDSCD(FS-CS)C2	Cross	0.24	0.27	0.27	0.23	0.25	0.26	0.23	0.26	0.27	0.25	0.24
32 NDBSK(HI-M)C 3 X EARLYGEM 21 c	Cross	0.23	0.25	0.26	0.21	0.24	0.21	0.21	0.24	0.26	0.23	0.22
33 NDBS 1011 XEARLYGEM 2 lb	Cross	0.23	0.26	0.26	0.22	0.23	0.22	0.21	0.23	0.26	0.23	0.24
34 NDSCD(FS-CS)C2 XEARLYGEM 2 la	Cross	0.22	0.26	0.26	0.23	0.25	0.21	0.23	0.24	0.28	0.24	0.26
35 NDSS XEARLYGEM 2 lb	Cross	0.23	0.27	0.29	0.22	0.24	0.22	0.22	0.23	0.29	0.25	0.24
36 NDSAB(MER-FS)C 15 XNDSHLC(M-FS)C5	Cross	0.23	0.26	0.27	0.22	0.25	0.23	0.24	0.24	0.28	0.24	0.23
37 NDBS 11(FR-M)C3 X NDSCD(FS-CS)C2	Cross	0.24	0.27	0.28	0.24	0.26	0.24	0.25	0.25	0.29	0.25	0.25
38 NDCG(FS)C1XEARLYGEM 21 a	Cross	0.23	0.28	0.26	0.23	0.23	0.21	0.22	0.24	0.28	0.24	0.24
39 EARLYGEM 2 lb XEARLYGEM 2 lc	Cross	0.19	0.24	0.25	0.22	0.24	0.21	0.22	0.23	0.26	0.22	0.24
40 NDBSK(HI-M)C3 X NDSAB (MER-FS)C 15	Cross	0.25	0.27	0.26	0.22	0.24	0.23	0.23	0.25	0.28	0.23	0.23

Table B16 (continued). Methionine (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments.

Entry Pedigree	Type	2010				2011			2012			
		Casselton	Larimore	Prosper	Thompson	Larimore	Prosper	Thompson	Casselton	Larimore	Prosper	Thompson
41 NDBS21(R-T)C9	P arent	0.26	0.27	0.27	0.23	0.25	0.23	0.24	0.27	0.27	0.26	0.23
42 NDSAB(MER-FS)C 15 XEARLYGEM 2 lb	Cross	0.22	0.27	0.28	0.21	0.24	0.20	0.22	0.24	0.26	0.24	0.23
43 NDBSK(HIM)C3 X NDBS 22 (R-T 1)C9	Cross	0.24	0.27	0.26	0.24	0.25	0.22	0.22	0.25	0.26	0.24	0.24
44 NDSS XNDBSK(HI-M)C3	Cross	0.25	0.27	0.28	0.23	0.26		0.24	0.27	0.29	0.25	0.25
45 NDSS XLeaming(S-FS)C6	Cross	0.22	0.28	0.29	0.21	0.23	0.24	0.23	0.27	0.29	0.24	0.25
46 NDL XNDBS22(R-T1)C9	Cross	0.23	0.26	0.27	0.24	0.24	0.20	0.22	0.25	0.27	0.25	0.24
47 NDSCD(FS-CS)C2 X NDSHLC(M-FS $) \mathrm{C} 5$	Cross	0.26	0.27	0.26	0.23	0.23		0.26	0.26	0.28	0.27	0.23
48 NDBS 11(FR-M)C3 X NDS AB (MER-FS)C 15	Cross	0.26	0.26	0.28	0.22	0.23	0.22	0.22	0.26	0.28	0.25	0.23
49 NDSS XNDSM(M-FS)C9	Cross	0.26	0.29	0.27	0.21	0.24	0.24	0.26	0.28	0.28	0.26	0.27
50 NDBS22(R-T1)C9 X EARLYGEM 21 la	Cross	0.24	0.27	0.27	0.21	0.25	0.23	0.21	0.24	0.27	0.23	0.22
51 NDBS 22(R-T1)C9	P arent	0.26	0.27	0.28	0.24	0.25	0.21	0.23	0.26	0.29	0.26	0.26
52 NDSS XNDBS 1011	Cross	0.23	0.27	0.28	0.23	0.23		0.24	0.26	0.28	0.26	0.25
53 NDL	P arent	0.23	0.26	0.27	0.23	0.23	0.21	0.23	0.24	0.27	0.24	0.24
54 NDBS 1011 XLeaming (S-FS) C6	Cross	0.25	0.27	0.26	0.22	0.22	0.22	0.22	0.23	0.27	0.24	0.24
55 NDBSK(HL-M)C3 X NDBS 1011	Cross	0.26	0.28	0.26	0.25	0.23		0.22	0.24	0.26	0.24	0.24
56 NDSAB(MER-FS)C 15 XNDBS21(R-T)C9	Cross	0.23	0.27	0.27	0.23	0.24	0.21	0.24	0.25	0.27	0.25	0.24
57 NDBS 11(FR-M)C3 X NDBS 22 (R-Tl)C9	Cross	0.25	0.28	0.26	0.22	0.24		0.25	0.26	0.29	0.24	0.25
58 EARLYGEM 2 lb	P arent	0.24	0.26	0.27	0.20	0.23	0.21	0.23	0.23	0.25	0.23	0.26
59 NDSAB(MER-FS)C15 X NDSM(M-FS)C9	Cross	0.25	0.26	0.27	0.23	0.24	0.22	0.23	0.27	0.29	0.25	0.25
60 Check 2 DKC 36-34 VT3	Check	0.22	0.24	0.22	0.20	0.22	0.22	0.21	0.21	0.24	0.21	0.22
61 NDBSK(HI-M)C3 X NDSCD(FS-CS)C2	Cross	0.25	0.26	0.27	0.22	0.26	0.24	0.24	0.26	0.27	0.26	0.26
62 NDBS22(R-T1)C9 XEARLYGEM 21 c	Cross	0.22	0.26	0.28	0.22	0.23	0.22	0.22	0.24	0.26	0.23	0.23
63 NDL XNDBS 11(FR-M)C3	Cross	0.25	0.26	0.28	0.23	0.24		0.23	0.25	0.27	0.25	0.24
64 NDBS 11(FR-M)C3 X NDSHLC(M-FS)C5	Cross	0.27	0.29	0.29	0.24	0.24	0.23	0.25	0.25	0.28	0.25	0.24
65 NDBSK(HI-M)C3 X NDB S 21 (R-T)C 9	Cross	0.25	0.26	0.27	0.23	0.24		0.22	0.26	0.27	0.26	0.24
66 NDBS 22(R-T1)C9 XNDSAB (MER-FS)C 15	Cross	0.24	0.27	0.28	0.22	0.25		0.23	0.26	0.26	0.24	0.23
67 NDBS22(R-T1)C9 X NDSHLC(M-FS)C5	Cross	0.26	0.28	0.28	0.22	0.26	0.22	0.24	0.26	0.27	0.25	0.23
68 NDSM(M-FS)C9 X NDBS 21 (R-T)C9	Cross	0.26	0.27	0.29	0.24	0.25	0.23	0.24	0.26	0.27	0.25	0.24
69 NDBSK(HI-M)C3 X NDBS 11(FR-M)C3	Cross	0.24	0.25	0.28	0.22	0.24		0.24	0.26	0.28	0.24	0.23
70 NDSS XNDBS 11(FR-M)C3	Cross	0.26	0.27	0.28	0.25	0.25	0.23	0.24	0.26	0.28	0.26	0.25
71 NDBSK(HIM)C3	P arent	0.25	0.27	0.26	0.23	0.24	0.21	0.23	0.25	0.27	0.25	0.23
72 NDSS X NDBS 21 (R-T)C9	Cross	0.25	0.27	0.28	0.23	0.24	0.22	0.22	0.27	0.28	0.24	0.23
73 NDSS XEARLYGEM 21 c	Cross	0.22	0.28	0.27	0.22	0.24	0.22	0.22	0.25	0.29	0.24	0.24
74 NDBS 11(FR-M)C3 X NDBS 1011	Cross	0.25	0.27	0.28	0.23	0.25	0.22	0.25	0.25	0.30	0.26	0.25
75 NDCG(FS)C1	P arent	0.24	0.26	0.27	0.22	0.24	0.22	0.23	0.27	0.29	0.25	0.26
76 NDSAB(MER-FS)C 15	Parent	0.24	0.27	0.27	0.24	0.23	0.24	0.25	0.28	0.29	0.24	0.25
77 NDSS XNDSCD(FS-CS)C2	Cross	0.24	0.27	0.28	0.23	0.25	0.22	0.24	0.28	0.28	0.27	0.26
78 NDBS $1011 \mathrm{XNDBS} 21(\mathrm{R}-\mathrm{T}) \mathrm{C} 9$	Cross	0.25	0.28	0.29	0.23	0.25	0.23	0.24	0.27	0.27	0.23	0.25
79 NDSAB(MER-FS)C 15 X EARLYGEM 2 la	Cross	0.24	0.26	0.27	0.21	0.24	0.20	0.22	0.25	0.26	0.23	0.24
80 NDBS 21 (R-T)C9 X EARLYGEM 21 l	Cross	0.25	0.25	0.28	0.23	0.23	0.21	0.22	0.24	0.26	0.22	0.22

Table B16 (continued). Methionine (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments.

Pedigree	Type	2010				2011			2012			
		Casselton	Larimore	Prosper	Thompson	Larimore	Prosper	Thompson	Casselton	Larimore	Prosper	Thompson
81 NDBS 11(FR-M)C3 X NDSM(M-FS)C9	Cross	0.25	0.29	0.29	0.23	0.26	0.22	0.25	0.26	0.30	0.26	0.24
82 NDBSK(HI-M)C3 XLeaming(S-FS)C6	Cross	0.22	0.26	0.27	0.22	0.23	0.21	0.22	0.24	0.28	0.24	0.23
83 NDL X NDBS 21 (R-T)C9	Cross	0.25	0.25	0.27	0.21	0.23	0.21	0.22	0.23	0.28	0.23	0.24
84 NDSM(M-FS)C9	Parent	0.27	0.27	0.29	0.25	0.26	0.24	0.24	0.27	0.30	0.26	0.27
85 NDSS XNDSAB(MER-FS)C 15	Cross	0.25	0.28	0.26	0.23	0.26	0.24	0.23	0.26	0.28	0.25	
86 Leaming(S-FS)C6 X NDSM(M-FS)C9	Cross	0.24	0.27	0.27	0.21	0.24	0.23	0.23	0.25	0.29	0.26	0.24
87 NDCG(FS)C 1 X NDBS 11(FR-M)C3	Cross	0.24	0.24	0.27	0.24	0.23	0.24	0.23	0.26	0.30	0.23	0.26
88 NDSHLC(M-FS)C5 XEARLYGEM 2 la	Cross	0.25	0.27	0.26	0.21	0.25	0.23	0.24	0.24	0.27	0.23	0.23
89 NDBS 1011	Parent	0.24	0.27	0.26	0.24	0.25	0.23	0.24	0.25	0.26	0.25	0.24
90 NDBS 1011 X NDS AB (MER-FS)C 15	Cross	0.25	0.27	0.27	0.23	0.25		0.24	0.25	0.27	0.25	0.24
91 Check 3 P IONEER 39N99	Check	0.20	0.23	0.24	0.19	0.22	0.19	0.18	0.23	0.25	0.22	0.21
92 NDSM(M-FS)C9 X NDSHLC(M-FS)C5	Cross	0.26	0.27	0.27	0.21	0.25	0.24	0.24	0.25	0.29	0.26	0.24
93 BS22LEAM (R-FR)C1XLEAMING22 (S-FR)C1	Check	0.22	0.25	0.25	0.22	0.21	0.20	0.23	0.24	0.26	0.22	0.22
94 NDL XNDBS 1011	Cross	0.23	0.26	0.27	0.22	0.23	0.23	0.23	0.24	0.27	0.24	0.24
95 NDBS22(R-T1)C9 X NDSM(M-FS)C9	Cross	0.26	0.27	0.27	0.22	0.25	0.23	0.24	0.26	0.28	0.26	0.25
96 NDL XNDSM(M-FS)C9	Cross	0.25	0.27	0.26	0.21	0.24	0.24	0.24	0.24	0.26	0.25	0.25
97 NDSS	Parent	0.22	0.28	0.28	0.23	0.25	0.25	0.26	0.28	0.29	0.27	0.26
98 NDBS22(R-T1)C9 X NDSCD(FS-CS)C2	Cross	0.24	0.27	0.28	0.24	0.24		0.23	0.26	0.28	0.26	0.23
99 NDCG(FS)C1XNDSHLC(M-FS)C5	Cross	0.25	0.28	0.28	0.23	0.25	0.23	0.24	0.24	0.28	0.26	0.23
100 NDL X NDBSK(HI-M)C3	Cross	0.23	0.27	0.26	0.21	0.23	0.22	0.23	0.25	0.27	0.21	0.23
101 NDBS 22(R-T1)C9 XEARLYGEM 2 lb	Cross	0.24	0.25	0.26	0.22	0.23	0.22	0.22	0.23	0.26	0.22	0.22
102 NDBS 1011 X NDSHLC(M-FS)C5	Cross	0.25	0.27	0.26	0.23	0.25	0.22	0.24	0.26	0.26	0.24	0.24
103 NDSHLC(M-FS)C5 X EARLYGEM 2 lb	Cross	0.25	0.27	0.27	0.21	0.25	0.22	0.23	0.26	0.27	0.23	0.22
104 NDBS 21 (R-T)C9 X EARLYGEM 21 c	Cross	0.23	0.26	0.27	0.21	0.23	0.23	0.22	0.26	0.27	0.23	0.23
105 CGL(S-FR 2)C1X B S $21 \mathrm{CGL}(\mathrm{R}-\mathrm{FR} 2) \mathrm{C} 1$	Check	0.25	0.27	0.28	0.22	0.23	0.22	0.23	0.26	0.28	0.23	0.24
106 NDSAB(MER-FS)C 15 X EARLYGEM 21 c	Cross	0.22	0.27	0.24	0.21	0.23	0.21	0.22	0.24	0.26	0.24	0.23
107 NDBS 11(FR-M)C3 X EARLYGEM 2 la	Cross	0.23	0.27	0.27	0.21	0.24	0.23	0.23	0.25	0.27	0.22	0.23
108 NDCG(FS)C1XLeaming(S-FS)C6	Cross	0.24	0.28	0.27	0.21	0.24	0.23	0.23	0.26	0.27	0.24	0.24
109 NDSM(M-FS)C9 XEARLYGEM 21 a	Cross	0.24	0.26	0.28	0.21	0.24	0.22	0.23	0.24	0.27	0.23	0.25
110 NDBS 21 (R-T)C9 XEARLYGEM 21 b	Cross	0.25	0.27	0.27	0.21	0.23	0.22	0.23	0.23	0.28	0.24	0.22
111 NDSCD(FS-CS)C2 X EARLYGEM 2 lb	Cross	0.24	0.27	0.25	0.23	0.23	0.22	0.22	0.26	0.26	0.22	0.23
112 NDSS XEARLYGEM 21 a	Cross	0.25	0.27	0.26	0.23	0.23	0.24	0.25	0.24	0.29	0.25	0.24
113 NDCG(FS)C1XEARLYGEM 21 c	Cross	0.25	0.25	0.27	0.23	0.23	0.22	0.21	0.23	0.27	0.22	0.23
114 NDCG(FS)C1XNDL	Cross	0.26	0.26	0.28	0.22	0.24	0.22	0.22	0.25	0.27	0.24	0.24
115 NDLXEARLYGEM 2 1a	Cross	0.26	0.27	0.26	0.21	0.23	0.22	0.20	0.24	0.26	0.23	0.22
116 NDSM(M-FS)C9 XEARLYGEM 21 b	Cross	0.24	0.27	0.28	0.22	0.24	0.22	0.23	0.26	0.28	0.24	0.24
117 NDBS 11(FR-M)C3 X NDBS 21 (R-T)C9	Cross	0.24	0.27	0.29	0.23	0.24	0.23	0.24	0.24	0.28	0.23	0.25
118 NDBS 1011 XEARLYGEM 21 c	Cross	0.22	0.25	0.24	0.21	0.23	0.22	0.23	0.22	0.26	0.23	0.23
119 NDBS 11(FR-M)C3 X EARLYGEM 21 b	Cross	0.26	0.27	0.26	0.22	0.24	0.23	0.22	0.24	0.27	0.23	0.23
120 NDBS 11(FR-M)C3 X Leaming(S-FS)C6	Cross	0.26	0.28	0.28	0.22	0.23	0.25	0.22	0.25	0.28	0.23	0.23

Table B16 (continued). Methionine (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments.

Table B17. Cysteine (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments.

Entry Pedigree	Type	2010				2011			2012			
		Casselton	Larimore	Prosper	Thompson	Larimore	Prosper	Thompson	Casselton	Larimore	Prosper	Thompson
1 Leaming(S-FS)C6 X EARLYGEM 21 c	Cross	0.21	0.24	0.24	0.20	0.22	0.19	0.22	0.26	0.24	0.21	0.21
2 Leaming(S-FS)C6 XNDSAB(MER-FS)C15	Cross	0.24	0.25	0.24	0.22	0.22	0.21	0.22	0.27	0.24	0.22	0.21
3 NDBSK(HI-M)C3 X NDSM(M-FS)C9	Cross	0.12	0.25	0.25	0.22	0.24	0.21	0.24	0.28	0.26	0.24	0.23
$4 \mathrm{BS} 21 \mathrm{AB}(\mathrm{R}-\mathrm{FR}) \mathrm{C} 1 \mathrm{XNDSAB} 21(\mathrm{R}-\mathrm{FR}) \mathrm{C} 1$	Check	0.22	0.24	0.25	0.22	0.23		0.23	0.28	0.26	0.23	0.22
5 EARLYGEM 2 la XEARLYGEM 2 lb	Cross	0.23	0.24	0.24	0.22	0.22	0.23	0.23	0.28	0.25	0.22	0.23
6 NDBS $1011 \mathrm{XNDSCD}(\mathrm{FS}-\mathrm{CS}) \mathrm{C} 2$	Cross	0.24	0.25	0.26	0.23	0.24	0.20	0.23	0.28	0.26	0.25	0.23
7 NDSS XNDL	Cross	0.21	0.12	0.24	0.22	0.22	0.20	0.23	0.28	0.25	0.23	0.22
8 NDBSK(HI-M)C3 XEARLYGEM 21 b	Cross	0.23	0.23	0.25	0.20	0.23	0.21	0.23	0.26	0.24	0.21	0.21
9 NDLXEARLYGEM 2 lb	Cross	0.22	0.24	0.24	0.20	0.21	0.19	0.23	0.27	0.25	0.20	0.20
10 NDBS 11(FR-M)C3 XEARLYGEM 21 c	Cross	0.23	0.24	0.24	0.23	0.22	0.22	0.23	0.26	0.25	0.22	0.23
11 NDBS 11(FR-M)C3	P arent	0.24	0.25	0.25	0.22	0.23	0.22	0.25	0.29	0.27	0.24	0.22
12 NDBSK(HIM)C3 X NDSHLC(M-FS)C5	Cross	0.12	0.26	0.25	0.22	0.24	0.22	0.23	0.27	0.25	0.25	0.23
$13 \mathrm{NDSCD}(\mathrm{FS}-\mathrm{CS}) \mathrm{C} 2$	P arent	0.25	0.24	0.26	0.23	0.23	0.22	0.25	0.28	0.24	0.25	0.23
14 NDSHLC(M-FS)C5 XEARLYGEM 21 c	Cross	0.22	0.24	0.25	0.21	0.24	0.22	0.24	0.27	0.24	0.24	0.21
15 NDSS XNDBS22(R-T1)C9	Cross	0.22	0.24	0.25	0.23	0.24	0.22	0.25	0.28	0.26	0.24	0.23
16 Check 4 DKC 43-27 VT3	Check	0.17	0.20	0.20	0.17	0.18	0.18	0.20	0.24	0.22	0.19	0.19
17 NDSS XNDSHLC(M-FS)C5	Cross	0.24	0.24	0.27	0.23	0.24	0.22	0.24	0.28	0.26	0.23	0.23
18 EARLYGEM 21 c	P arent	0.20	0.23	0.26	0.22	0.22	0.21	0.22	0.26	0.23	0.23	0.21
19 Leaming(S-FS)C6	P arent	0.22	0.24	0.25	0.21	0.21	0.22	0.23	0.27	0.25	0.24	0.22
20 NDBS $1011 \mathrm{XNDBS} 22(\mathrm{R}-\mathrm{Tl}) \mathrm{C} 9$	Cross	0.23	0.25	0.26	0.22	0.23	0.23	0.24	0.27	0.25	0.23	0.21
21 Leaming(S-FS)C6 X NDSHLC(M-FS)C5	Cross	0.23	0.24	0.26	0.21	0.22	0.22	0.24	0.26	0.25	0.23	0.22
22 NDBS 21 (R-T)C9 X NDSHLC(M-FS)C5	Cross	0.24	0.23	0.25	0.22	0.23	0.23	0.25	0.28	0.26	0.23	0.23
23 Check 1P IONEER 39V07	Check	0.19	0.23	0.21	0.20	0.21	0.19	0.21	0.25	0.22	0.21	0.19
24 NDCG(FS)C1XNDSAB(MER-FS)C 15	Cross	0.22	0.24	0.23	0.21	0.22	0.21	0.23	0.28	0.24	0.24	0.22
25 Leaming(S-FS)C6 XNDBS22(R-Tl)C9	Cross	0.21	0.25	0.23	0.22	0.23	0.22	0.23	0.27	0.25	0.22	0.22
26 Leaming(S-FS)C6 X NDBS 21 (R-T) C 9	Cross	0.21	0.25	0.23	0.20	0.22	0.19	0.22	0.27	0.26	0.23	0.22
27 NDBSK(HI-M)C3 X EARLYGEM 21 a	Cross	0.22	0.23	0.25	0.23	0.21	0.20	0.25	0.27	0.26	0.22	0.22
28 NDL XLeaming(S-FS)C6	Cross	0.21	0.23	0.23	0.21	0.21	0.20	0.22	0.26	0.26	0.22	0.23
29 EARLYGEM 2 la XEARLYGEM 21 c	Cross	0.22	0.24	0.25	0.22	0.22	0.21	0.22	0.27	0.24	0.23	0.22
30 NDCG(FS)C1XEARLYGEM 21 b	Cross	0.21	0.24	0.25	0.23	0.23	0.20	0.23	0.26	0.26	0.22	0.21
31 Leaming(S-FS)C6 X NDSCD(FS-CS)C2	Cross	0.22	0.24	0.25	0.22	0.23	0.23	0.22	0.27	0.25	0.23	0.23
32 NDBSK(HIM)C3 X EARLYGEM 21 c	Cross	0.22	0.23	0.25	0.20	0.23	0.20	0.22	0.26	0.25	0.22	0.21
33 NDBS 1011 XEARLYGEM 2 lb	Cross	0.21	0.24	0.25	0.21	0.22	0.22	0.23	0.26	0.24	0.22	0.22
34 NDSCD(FS-CS)C2 XEARLYGEM 2 la	Cross	0.22	0.24	0.26	0.22	0.24	0.21	0.23	0.27	0.26	0.22	0.24
35 NDSS XEARLYGEM 2 lb	Cross	0.21	0.24	0.25	0.22	0.24	0.21	0.23	0.26	0.26	0.23	0.23
36 NDSAB(MER-FS)C 15 XNDSHLC(M-FS)C5	Cross	0.24	0.23	0.25	0.22	0.24	0.21	0.24	0.27	0.25	0.23	0.22
37 NDBS 11(FR-M)C3 X NDSCD(FS-CS)C2	Cross	0.22	0.24	0.26	0.22	0.24	0.22	0.24	0.28	0.25	0.24	0.22
38 NDCG(FS)C1XEARLYGEM 21 l	Cross	0.22	0.24	0.24	0.23	0.23	0.21	0.24	0.27	0.25	0.23	0.22
39 EARLYGEM 2 lb X EARLYGEM 21 c	Cross	0.20	0.23	0.23	0.22	0.23	0.21	0.22	0.26	0.25	0.22	0.22
40 NDBSK(HI-M)C3 X NDSAB (MER-FS) 15	Cross	0.23	0.24	0.24	0.21	0.22	0.21	0.24	0.27	0.25	0.21	0.22

Table B17 (continued). Cysteine (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments.

Pedigree	Type	2010				2011			2012			
		Casselton	Larimore	Prosper	Thompson	Larimore	Prosper	Thompson	Casselton	Larimore	Prosper	Thompson
41 NDBS21(R-T)C9	P arent	0.12	0.25	0.26	0.22	0.23	0.22	0.24	0.29	0.25	0.24	0.22
42 NDSAB(MER-FS)C 15 XEARLYGEM 2 lb	Cross	0.22	0.24	0.26	0.21	0.22	0.18	0.23	0.26	0.24	0.23	0.21
43 NDBSK(HI-M)C3 X NDBS 22 (R-T 1)C9	Cross	0.23	0.24	0.25	0.23	0.23	0.21	0.23	0.27	0.24	0.23	0.23
44 NDSS XNDBSK(HI-M)C3	Cross	0.23	0.24	0.25	0.23	0.25	0.22	0.24	0.28	0.25	0.24	0.23
45 NDSS XLeaming(S-FS)C6	Cross	0.23	0.24	0.26	0.21	0.22	0.20	0.23	0.28	0.26	0.23	0.22
46 NDL XNDBS22(R-T1)C9	Cross	0.22	0.23	0.24	0.22	0.23	0.18	0.23	0.27	0.24	0.23	0.22
47 NDSCD(FS-CS)C2 X NDSHLC(M-FS)C5	Cross	0.24	0.25	0.24	0.22	0.23		0.24	0.28	0.25	0.24	0.22
48 NDBS 11(FR-M)C3 X NDSAB (MER-FS)C 15	Cross	0.24	0.23	0.25	0.22	0.22	0.20	0.23	0.27	0.25	0.24	0.21
49 NDSS XNDSM(M-FS)C9	Cross	0.23	0.27	0.25	0.22	0.23	0.22	0.25	0.28	0.26	0.24	0.25
50 NDBS22(R-T1)C9 X EARLYGEM 21 la	Cross	0.23	0.25	0.25	0.22	0.24	0.22	0.23	0.26	0.25	0.22	0.22
51 NDBS 22(R-T1)C9	P arent	0.24	0.25	0.26	0.24	0.25	0.21	0.25	0.29	0.26	0.24	0.24
52 NDSS XNDBS 1011	Cross	0.21	0.25	0.25	0.23	0.22		0.24	0.28	0.25	0.23	0.22
53 NDL	P arent	0.22	0.24	0.24	0.21	0.22	0.20	0.23	0.26	0.24	0.22	0.22
54 NDBS 1011 XLeaming(S-FS)C6	Cross	0.23	0.24	0.24	0.22	0.22	0.22	0.22	0.25	0.25	0.22	0.22
55 NDBSK(HIM)C3 X NDBS 1011	Cross	0.23	0.25	0.23	0.24	0.21		0.23	0.26	0.24	0.23	0.22
56 NDSAB(MER-FS)C 15 XNDBS21(R-T)C9	Cross	0.21	0.24	0.24	0.22	0.22	0.21	0.24	0.25	0.25	0.23	0.22
57 NDBS 11(FR-M)C3 X NDBS 22(R-T l)C9	Cross	0.23	0.25	0.24	0.21	0.24	0.22	0.24	0.27	0.26	0.23	0.23
58 EARLYGEM 2 lb	Parent	0.23	0.24	0.25	0.20	0.23	0.21	0.23	0.26	0.24	0.22	0.24
59 NDSAB(MER-FS)C 15 X NDSM(M-FS)C9	Cross	0.24	0.24	0.25	0.23	0.23	0.22	0.24	0.27	0.26	0.23	0.23
60 Check 2 DKC 36-34 VT3	Check	0.19	0.22	0.21	0.19	0.20	0.19	0.22	0.23	0.22	0.19	0.19
61 NDBSK(HIM) C 3 X NDSCD(FS-CS)C2	Cross	0.22	0.24	0.25	0.21	0.24	0.22	0.24	0.28	0.25	0.24	0.23
62 NDBS 22(R-T 1)C9 XEARLYGEM 21 c	Cross	0.23	0.24	0.25	0.22	0.23	0.21	0.23	0.26	0.24	0.22	0.22
63 NDL XNDBS 11(FR-M)C3	Cross	0.24	0.12	0.24	0.22	0.22		0.23	0.27	0.25	0.23	0.22
64 NDBS 11(FR-M)C3 X NDSHLC(M-FS)C5	Cross	0.25	0.25	0.26	0.23	0.23	0.22	0.24	0.27	0.26	0.23	0.22
65 NDBSK(HI-M)C3 X NDBS 21 (R-T)C9	Cross	0.23	0.24	0.25	0.23	0.22		0.23	0.28	0.24	0.24	0.22
66 NDBS22(R-T1)C9 X NDSAB (MER-FS)C 15	Cross	0.23	0.24	0.26	0.21	0.24		0.24	0.27	0.24	0.23	0.22
67 NDBS22(R-T1)C9 XNDSHLC(M-FS)C5	Cross	0.24	0.25	0.26	0.21	0.24	0.21	0.24	0.27	0.25	0.24	0.23
68 NDSM(M-FS)C9 X NDBS 21 (R-T)C9	Cross	0.25	0.24	0.27	0.22	0.23	0.22	0.24	0.28	0.25	0.23	0.22
69 NDBSK(HIM)C3 X NDBS 11(FR-M)C3	Cross	0.24	0.24	0.25	0.22	0.23		0.23	0.28	0.25	0.23	0.22
70 NDSS XNDBS 11(FR-M)C3	Cross	0.25	0.24	0.27	0.23	0.23	0.21	0.24	0.28	0.26	0.24	0.22
71 NDB S K(HIM) C3	P arent	0.24	0.24	0.25	0.22	0.23	0.20	0.24	0.28	0.26	0.24	0.22
72 NDSS XNDBS21(R-T)C9	Cross	0.24	0.24	0.24	0.22	0.23	0.21	0.22	0.27	0.25	0.23	0.21
73 NDSS XEARLYGEM 21 c	Cross	0.21	0.25	0.25	0.22	0.23	0.21	0.23	0.27	0.26	0.23	0.22
74 NDBS 11(FR-M)C3 X NDBS 1011	Cross	0.25	0.24	0.25	0.22	0.24	0.21	0.24	0.28	0.26	0.24	0.23
75 NDCG(FS)C1	Parent	0.22	0.24	0.25	0.22	0.22	0.20	0.23	0.28	0.27	0.23	0.23
76 NDSAB(MER-FS)C 15	Parent	0.23	0.24	0.25	0.22	0.21	0.21	0.24	0.28	0.26	0.22	0.23
77 NDSS XNDSCD(FS-CS)C2	Cross	0.23	0.23	0.26	0.22	0.23	0.20	0.24	0.28	0.25	0.24	0.23
78 NDBS $1011 \mathrm{XNDBS} 21(\mathrm{R}-\mathrm{T}) \mathrm{C} 9$	Cross	0.24	0.25	0.26	0.22	0.24	0.23	0.24	0.28	0.25	0.23	0.23
79 NDSAB(MER-FS)C 15 X EARLYGEM 2 la	Cross	0.22	0.23	0.24	0.20	0.22	0.19	0.23	0.27	0.24	0.22	0.22
80 NDBS 21 (R-T)C9 XEARLYGEM 21 a	Cross	0.23	0.23	0.26	0.21	0.22	0.21	0.23	0.26	0.24	0.22	0.21

Table B17 (continued). Cysteine (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments.

Entry Pedigree	Type	2010				2011			2012			
		Casselton	Larimore	Prosper	Thompson	Larimore	Prosper	Thompson	Casselton	Larimore	Prosper	Thompson
81 NDBS 11(FR-M)C3 X NDSM(M-FS)C9	Cross	0.24	0.25	0.27	0.22	0.24	0.21	0.25	0.27	0.26	0.23	0.22
82 NDBSK(HI-M)C3 X Leaming(S-FS)C6	Cross	0.22	0.23	0.24	0.22	0.22	0.21	0.23	0.27	0.25	0.23	0.22
83 NDL X NDBS 21 (R-T)C9	Cross	0.25	0.23	0.24	0.21	0.22	0.20	0.23	0.26	0.26	0.21	0.23
84 NDSM(M-FS)C9	P arent	0.26	0.24	0.27	0.25	0.24	0.22	0.24	0.29	0.27	0.24	0.24
85 NDSS XNDSAB(MER-FS)C 15	Cross	0.22	0.25	0.24	0.21	0.24	0.23	0.23	0.28	0.26	0.23	
86 Leaming(S-FS)C6 X NDSM(M-FS)C9	Cross	0.23	0.24	0.24	0.21	0.23	0.21	0.23	0.27	0.25	0.24	0.23
87 NDCG(FS)C1 ${ }^{\text {N NDBS 11(FR-M)C3 }}$	Cross	0.23	0.22	0.25	0.22	0.23	0.22	0.23	0.27	0.26	0.21	0.23
88 NDSHLC(M-FS)C5 XEARLYGEM 21 a	Cross	0.23	0.24	0.25	0.21	0.23	0.22	0.23	0.26	0.24	0.23	0.22
89 NDBS 1011	Parent	0.24	0.25	0.25	0.23	0.24	0.22	0.24	0.27	0.24	0.23	0.22
90 NDBS 1011 X NDSAB(MER-FS)C 15	Cross	0.23	0.24	0.26	0.22	0.23		0.23	0.27	0.24	0.23	0.22
91 Check 3 P IONEER 39N99	Check	0.18	0.21	0.22	0.19	0.21	0.18	0.20	0.25	0.23	0.20	0.20
92 NDSM(M-FS)C9 XNDSHLC(M-FS)C5	Cross	0.24	0.25	0.25	0.20	0.24	0.23	0.23	0.27	0.26	0.24	0.23
93 BS22LEAM (R-FR)C1XLEAMING22 (S-FR)C1	Check	0.21	0.23	0.24	0.21	0.22	0.19	0.22	0.27	0.24	0.22	0.21
94 NDL X NDBS 1011	Cross	0.23	0.23	0.25	0.21	0.22	0.21	0.23	0.26	0.25	0.23	0.23
95 NDBS22(R-T1)C9 X NDSM(M-FS)C9	Cross	0.26	0.24	0.26	0.21	0.24	0.22	0.23	0.28	0.25	0.25	0.23
96 NDL XNDSM(M-FS)C9	Cross	0.24	0.24	0.25	0.21	0.23	0.21	0.24	0.26	0.24	0.23	0.23
97 NDSS	Parent	0.20	0.25	0.26	0.23	0.24	0.22	0.24	0.28	0.27	0.24	0.23
98 NDBS22(R-T1)C9 X NDSCD(FS-CS)C2	Cross	0.23	0.24	0.26	0.24	0.23		0.24	0.27	0.25	0.24	0.22
99 NDCG(FS)C1XNDSHLC(M-FS)C5	Cross	0.23	0.25	0.25	0.22	0.23	0.22	0.24	0.26	0.26	0.24	0.22
100 NDL X NDBSK(HI-M)C3	Cross	0.20	0.24	0.24	0.21	0.22	0.21	0.23	0.27	0.25	0.21	0.22
101 NDBS 22(R-T1)C9 XEARLYGEM 2 lb	Cross	0.23	0.22	0.25	0.22	0.22	0.21	0.23	0.27	0.25	0.22	0.21
102 NDBS 1011 X NDSHLC(M-FS)C5	Cross	0.24	0.24	0.24	0.22	0.23	0.21	0.24	0.28	0.25	0.23	0.23
103 NDSHLC(M-FS)C5 X EARLYGEM 2 lb	Cross	0.22	0.24	0.24	0.21	0.23	0.22	0.24	0.26	0.25	0.23	0.21
104 NDBS 21 (R-T)C9 X EARLYGEM 21 c	Cross	0.22	0.24	0.25	0.21	0.23	0.23	0.23	0.27	0.25	0.22	0.21
$105 \mathrm{CGL}(\mathrm{S}-\mathrm{FR} 2) \mathrm{C} 1 \mathrm{XB}$ S $21 \mathrm{CGL}(\mathrm{R}-\mathrm{FR} 2) \mathrm{C} 1$	Check	0.24	0.24	0.27	0.21	0.23	0.21	0.23	0.27	0.25	0.22	0.23
106 NDSAB(MER-FS)C 15 X EARLYGEM 2 lc	Cross	0.22	0.25	0.23	0.21	0.22	0.21	0.23	0.27	0.24	0.23	0.22
107 NDBS 11(FR-M)C3 X EARLYGEM 21 a	Cross	0.22	0.24	0.24	0.21	0.23	0.21	0.24	0.27	0.25	0.21	0.22
108 NDCG(FS)C1XLeaming(S-FS)C6	Cross	0.21	0.25	0.24	0.21	0.23	0.20	0.23	0.27	0.25	0.23	0.22
109 NDSM(M-FS)C9 XEARLYGEM 21 a	Cross	0.22	0.24	0.25	0.21	0.23	0.10	0.24	0.27	0.25	0.23	0.23
110 NDBS 21 (R-T)C9 XEARLYGEM 21 b	Cross	0.23	0.25	0.24	0.22	0.22	0.21	0.24	0.26	0.26	0.23	0.22
111 NDSCD(FS-CS)C2 X EARLYGEM 21 b	Cross	0.22	0.24	0.25	0.22	0.21	0.21	0.23	0.26	0.24	0.22	0.22
112 NDSS XEARLYGEM 21 a	Cross	0.23	0.24	0.25	0.22	0.23	0.22	0.24	0.28	0.27	0.23	0.22
113 NDCG(FS)C1XEARLYGEM 21 c	Cross	0.23	0.23	0.25	0.23	0.21	0.21	0.23	0.27	0.24	0.22	0.21
114 NDCG(FS)C1XNDL	Cross	0.23	0.24	0.25	0.21	0.22	0.20	0.23	0.26	0.24	0.22	0.22
115 NDLXEARLYGEM 2 1a	Cross	0.23	0.23	0.25	0.22	0.21	0.22	0.22	0.26	0.24	0.22	0.21
116 NDSM(M-FS)C9 X EARLYGEM 21 b	Cross	0.23	0.25	0.25	0.21	0.24	0.21	0.23	0.27	0.25	0.23	0.23
117 NDBS $11(\mathrm{FR}-\mathrm{M}) \mathrm{C} 3$ X NDBS $21(\mathrm{R}-\mathrm{T}) \mathrm{C} 9$	Cross	0.24	0.25	0.26	0.22	0.23	0.21	0.24	0.26	0.26	0.22	0.23
118 NDBS 1011 XEARLYGEM 21 c	Cross	0.22	0.23	0.24	0.21	0.22	0.21	0.23	0.26	0.24	0.22	0.21
119 NDBS 11(FR-M)C3 X EARLYGEM 21 b	Cross	0.24	0.25	0.25	0.22	0.23	0.22	0.23	0.27	0.25	0.22	0.22
120 NDBS 11(FR-M)C3 XLeaming(S-FS)C6	Cross	0.24	0.25	0.25	0.21	0.22	0.23	0.21	0.27	0.26	0.22	0.21

Table B17 (continued). Cysteine (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 11 environments.

Entry Pedigree	Type	2010				2011			2012			
		Casselton	Larimore	Prosper	Thompson	Larimore	Prosper	Thompson	Casselton	Larimore	Prosper	Thompson
121 NDLXNDSHLC(M-FS)C5	Cross	0.24	0.12	0.25	0.21	0.23	0.20	0.23	0.27	0.24	0.22	0.23
122 NDL XNDSAB(MER-FS)C 15	Cross	0.11	0.24	0.23	0.22	0.22	0.20	0.22	0.27	0.24	0.22	0.21
123 NDCG(FS)C1XNDBS22(R-T1)C9	Cross	0.22	0.24	0.25	0.22	0.23	0.21	0.24	0.28	0.25	0.22	0.22
124 NDCG(FS)C1XNDSCD(FS-CS)C2	Cross	0.22	0.24	0.25	0.21	0.22	0.21	0.24	0.29	0.25	0.24	0.22
$125 \mathrm{CGSS} 21(\mathrm{~S}-\mathrm{FR}) \mathrm{C} 1 \mathrm{XBS} 21 \mathrm{CGSS}(\mathrm{R}-\mathrm{FR}) \mathrm{C} 1$	Check	0.22	0.24	0.25	0.22	0.23	0.21	0.24	0.27	0.24	0.21	0.23
126 NDCG(FS)C1 ${ }^{\text {d }}$ NDBS21(R-T)C9	Cross	0.22	0.25	0.25	0.22	0.22	0.21	0.23	0.28	0.25	0.23	0.22
127 NDBS 22(R-T1)C9 X NDBS21(R-T)C9	Cross	0.23	0.24	0.25	0.23	0.22	0.22	0.23	0.27	0.24	0.22	0.21
128 Leaming(S-FS)C6 X EARLYGEM 2 lb	Cross	0.21	0.24	0.25	0.22	0.22	0.22	0.23	0.26	0.24	0.22	0.21
129 NDBS 1011 XNDSM(M-FS)C9	Cross	0.24	0.24	0.25	0.21	0.23	0.22	0.23	0.27	0.26	0.23	0.21
130 NDLXEARLYGEM 21 c	Cross	0.22	0.23	0.24	0.20	0.23	0.20	0.23	0.26	0.24	0.21	0.21
131 NDLXNDSCD(FS-CS)C2	Cross	0.24	0.23	0.25	0.23	0.23	0.21	0.22	0.27	0.25	0.23	0.23
132 EARLYGEM 21 l	P arent	0.22	0.24	0.25	0.22	0.23	0.19	0.23	0.28	0.25	0.22	0.22
133 NDCG(FS)C1XNDBSK(HI-M)C3	Cross	0.23	0.25	0.24	0.22	0.24		0.23	0.27	0.26	0.23	0.22
134 NDSCD(FS-CS)C2 X EARLYGEM 21 c	Cross	0.22	0.23	0.25	0.22	0.22	0.21	0.23	0.26	0.24	0.22	0.22
135 NDCG(FS)C1XNDSM(M-FS)C9	Cross	0.24	0.23	0.27	0.23	0.24	0.23	0.25	0.29	0.27	0.24	0.22
136 NDSAB(MER-FS)C 15 X NDSCD(FS-CS)C2	Cross	0.23	0.25	0.26	0.23	0.23	0.21	0.24	0.29	0.25	0.25	0.22
137 NDSM(M-FS)C9 XEARLYGEM 21 c	Cross	0.25	0.24	0.25	0.22	0.23	0.20	0.23	0.27	0.25	0.22	0.22
138 Leaming(S-FS)C6 XEARLYGEM 2 la	Cross	0.23	0.23	0.24	0.22	0.22	0.20	0.22	0.27	0.25	0.22	0.21
139 NDSS XNDCG(FS)C1	Cross	0.23	0.24	0.25	0.24	0.24	0.22	0.25	0.28	0.25	0.23	0.22
140 NDSM(M-FS)C9 X NDSCD(FS-CS)C2	Cross	0.12	0.24	0.27	0.23	0.23	0.21	0.22	0.29	0.26	0.24	0.22
141 NDBS21(R-T)C9 X NDSCD(FS-CS)C2	Cross	0.24	0.25	0.24	0.22	0.23	0.22	0.24	0.29	0.25	0.23	0.23
142 NDCG(FS)C1XNDBS 1011	Cross	0.23	0.24	0.24	0.22	0.23	0.21	0.23	0.27	0.25	0.23	0.21
143 NDBS 1011 X EARLYGEM 2 la	Cross	0.24	0.25	0.25	0.21	0.23	0.19	0.23	0.26	0.25	0.21	0.21
144 NDSHLC(M-FS)C5	P arent	0.24	0.25	0.25	0.22	0.25	0.23	0.24	0.27	0.25	0.25	0.24
Experiment mean		0.22	0.24	0.25	0.22	0.23	0.21	0.23	0.27	0.25	0.23	0.22
Mean of parental populations		0.22	0.24	0.25	0.22	0.23	0.21	0.24	0.28	0.25	0.23	0.23
Mean of population crosses		0.22	0.24	0.25	0.22	0.23	0.21	0.23	0.27	0.25	0.23	0.22
Mean of checks		0.20	0.23	0.23	0.20	0.21	0.19	0.22	0.26	0.23	0.21	0.21
LSD (0.05)		0.07	0.05	0.02	0.02	0.01	0.04	0.01	0.02	0.01	0.01	0.02
CV		14.97	10.83	4.08	4.76	3.18	8.73	2.82	3.23	2.89	2.95	3.75
MSE		1.1E-03	$6.6 \mathrm{E}-04$	$1.0 \mathrm{E}-04$	1.1E-04	$5.2 \mathrm{E}-05$	$3.4 \mathrm{E}-04$	4.3E-05	7.6E-05	5.2E-05	$4.5 \mathrm{E}-05$	$6.9 \mathrm{E}-05$

Table B18. High fermentable corn starch (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 8 environments.

Table B18 (continued). High fermentable corn starch (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 8 environments.

Entry Pedigree	Type	2010				2012			
		Casselton	Larimore	Pros per	Thompson	Casselton	Larimore	Prosper	Thompson
41 NDBS21(R-T)C9	P arent	46.4	50.3	45.4	46.6	43.4	50.6	48.9	53.6
42 NDSAB(MER-FS)C 15 XEARLYGEM 21 b	Cross	46.3	50.4	44.6	46.3	43.4	52.4	50.8	53.8
43 NDBSK(HI-M)C3 X NDBS 22(R-T1)C9	Cross	46.3	49.1	44.5	44.9	42.3	50.6	47.4	50.7
44 NDSS XNDBSK(HI-M)C3	Cross	45.5	48.8	43.3	47.0	43.2	50.5	48.9	53.0
45 NDSS XLeaming(S-FS)C6	Cross	45.9	49.5	44.4	46.8	43.3	51.9	48.3	52.8
46 NDLXNDBS22(R-T 1)C9	Cross	46.6	49.6	44.9	46.2	41.9	51.1	48.7	51.8
47 NDSCD(FS-CS)C2 X NDSHLC(M-FS)C5	Cross	47.1	50.5	44.8	47.1	43.5	51.9	49.6	53.0
48 NDBS 11(FR-M)C3 X NDS AB (MER-FS)C 15	Cross	47.0	50.0	44.9	45.0	42.9	51.1	49.8	52.2
49 NDSS XNDSM(M-FS)C9	Cross	46.0	50.4	44.6	45.7	43.0	51.1	50.0	52.4
50 NDBS 22(R-T1)C9 XEARLYGEM 21 l	Cross	46.3	50.5	45.6	45.5	44.3	51.3	48.9	53.8
51 NDBS 22(R-T1)C9	Parent	46.8	49.8	43.0	44.7	42.1	50.2	47.9	53.2
52 NDSS X NDBS 1011	Cross	46.2	50.2	45.0	45.9	42.1	50.9	50.1	53.1
53 NDL	Parent	46.0	49.1	44.5	46.1	44.2	51.8	50.7	52.0
54 NDBS 1011 XLeaming(S-FS)C6	Cross	45.2	50.5	44.4	44.5	42.3	51.6	49.5	52.0
55 NDBSK(HI-M)C3 X NDBS 1011	Cross	45.7	48.8	45.5	45.0	42.3	51.9	48.5	52.2
56 NDSAB(MER-FS)C 15 X NDBS 21 (R-T)C9	Cross	46.3	51.2	44.5	47.1	43.7	51.1	49.4	52.1
57 NDBS 11(FR-M)C3 X NDBS22(R-T 1)C9	Cross	45.7	49.5	45.4	45.9	43.7	51.4	50.3	52.4
58 EARLYGEM 2 lb	P arent	46.3	50.8	45.0	47.4	44.2	52.7	50.4	53.1
59 NDSAB(MER-FS)C 15 X NDSM(M-FS)C9	Cross	45.4	49.9	43.7	44.2	42.4	50.8	49.7	53.2
60 Check 2 DKC 36-34 VT3	Check	45.6	50.2	45.0	47.0	42.3	51.8	49.6	52.9
61 NDBSK(HIM)C3 X NDSCD(FS-CS) C 2	Cross	45.1	49.5	43.6	45.4	42.9	50.4	47.0	53.6
62 NDBS22(R-T 1)C9 X EARLYGEM 21 c	Cross	46.3	50.3	45.3	46.1	42.0	51.3	50.2	52.6
63 NDL X NDBS 11(FR-M)C3	Cross	46.4	49.7	44.8	45.7	43.3	51.6	48.6	53.8
64 NDBS 11(FR-M)C3 X NDSHLC(M-FS)C5	Cross	47.1	50.0	45.3	47.2	44.0	51.3	49.8	53.4
65 NDBS K(HI-M)C3 X NDBS 21 (R-T)C9	Cross	45.1	50.4	44.1	45.7	43.1	51.1	48.4	53.1
66 NDBS 22(R-T1)C9 X NDSAB(MER-FS)C 15	Cross	45.0	50.5	44.1	45.5	42.3	51.2	48.8	52.5
67 NDBS22(R-T1)C9 X NDSHLC(M-FS)C5	Cross	46.1	50.5	44.1	47.4	42.6	51.3	48.5	52.4
68 NDSM(M-FS)C9 X NDBS 21 (R-T)C9	Cross	46.4	50.0	45.0	46.6	43.2	50.9	50.0	52.3
69 NDBSK(HI-M)C3 X NDBS 11(FR-M)C3	Cross	46.4	49.4	44.7	46.2	41.9	51.1	50.5	51.5
70 NDSS X NDBS 11(FR-M)C3	Cross	46.6	51.2	44.0	46.7	43.9	51.8	48.2	53.2
71 NDBSK(HIM)C3	Parent	44.5	49.8	43.6	44.6	42.8	50.4	48.7	52.4
72 NDSS XNDBS 21 (R-T)C9	Cross	46.0	49.8	46.0	42.9	44.7	52.4	49.4	53.1
73 NDSS XEARLYGEM 21 c	Cross	46.3	50.5	44.7	47.3	43.1	51.0	50.1	52.9
74 NDBS 11(FR-M)C3 X NDBS 1011	Cross	48.8	50.1	43.7	46.1	43.3	51.3	48.2	52.6
75 NDCG(FS)C1	P arent	45.2	50.3	44.1	45.0	43.8	51.0	47.6	52.9
76 NDSAB(MER-FS)C 15	P arent	45.2	49.5	45.3	44.9	42.3	51.4	48.7	52.8
77 NDSS XNDSCD(FS-CS)C2	Cross	45.7	50.1	46.3	46.6	42.9	52.2	49.7	53.2
78 NDBS $1011 \mathrm{XNDBS} 21(\mathrm{R}-\mathrm{T}) \mathrm{C} 9$	Cross		49.6	45.2	47.2	43.0	50.7	49.2	53.0
79 NDSAB(MER-FS)C 15 XEARLYGEM 21 a	Cross	45.6	50.4	45.4	47.0	43.0	51.6	48.8	53.5
80 NDBS 21 (R-T)C9 X EARLYGEM 21 a	Cross	47.1	50.6	45.7	47.7	43.3	51.8	49.2	54.2

Table B18 (continued). High fermentable corn starch (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 8 environments.

Entry Pedigree	Type	2010				2012			
		Casselton	Larimore	Prosper	Thompson	Casselton	Larimore	Prosper	Thompson
81 NDBS 11(FR-M)C3 X NDSM(M-FS)C9	Cross	46.2	50.4	43.9	45.9	42.6	51.7	50.2	53.6
82 NDBSK(HI-M)C3 X Leaming(S-FS)C6	Cross	45.5	50.4	43.8	44.1	41.9	50.7	47.7	52.0
83 NDL X NDBS 21 (R-T)C9	Cross	46.5	51.0	44.9	45.4	42.4	52.1	49.9	52.4
84 NDSM(M-FS)C9	P arent	47.0	50.4	44.5	45.4	42.5	51.0	48.2	53.4
85 NDSS XNDSAB(MER-FS)C 15	Cross	45.4	50.1	44.4	46.6	42.5	50.9	50.0	
86 Leaming(S-FS)C6 X NDSM(M-FS)C9	Cross	45.9	50.2	44.8	45.7	42.7	50.5	49.1	52.0
87 NDCG(FS)C1 ${ }^{\text {N }}$ NBSS 11(FR-M)C3	Cross	46.0	49.6	43.1	46.0	41.7	50.9	48.1	52.1
88 NDSHLC(M-FS)C5 XEARLYGEM 21 a	Cross	47.3	50.4	44.9	45.9	43.0	52.3	49.4	52.5
89 NDBS 1011	P arent	45.7	49.9	44.2	45.0	42.4	51.1	49.3	52.7
90 NDBS 1011 X NDS AB (MER-FS)C 15	Cross	45.5	50.1	44.2	46.8	42.3	50.6	48.3	52.9
91 Check 3 P IONEER 39N99	Check	44.3	51.7	43.6	45.5	42.9	51.8	48.4	53.6
92 NDSM(M-FS)C9 X NDSHLC(M-FS)C5	Cross	46.2	50.5	45.1	46.5	42.0	51.0	50.5	52.5
93 BS22LEAM (R-FR)C1XLEAMING22 (S-FR)C1	Check	45.6	49.8	44.0	45.8	42.3	51.2	49.0	52.2
94 NDL X NDBS 1011	Cross	45.6	51.2	43.2	46.2	41.7	50.9	50.0	52.7
95 NDBS22(R-T1)C9 X NDSM(M-FS)C9	Cross	45.7	50.4	44.5	46.6	42.9	52.2	48.9	53.1
96 NDLXNDSM(M-FS)C9	Cross	46.4	49.5	44.5	45.9	43.4	51.4	48.8	52.8
97 NDSS	P arent	44.6	50.3	44.7	45.2	42.8	51.2	48.6	53.8
98 NDBS22(R-T1)C9 X NDSCD(FS-CS)C2	Cross	45.2	49.2	44.0	45.0	42.1	51.3	49.3	53.0
99 NDCG(FS)C1XNDSHLC(M-FS)C5	Cross	46.0	49.6	45.3	46.5	43.0	51.4	48.9	53.0
100 NDL X NDBSK(HIM)C3	Cross	45.6	50.6	43.9	44.8	44.0	50.8	49.6	51.8
101 NDBS22(R-T1)C9 X EARLYGEM 21 b	Cross	46.2	50.9	44.9	44.6	43.0	51.4	48.8	52.2
102 NDBS 1011 X NDSHLC(M-FS)C5	Cross	46.3	51.2	46.2	45.4	44.6	51.6	49.5	53.0
103 NDSHLC(M-FS)C5 X EARLYGEM 2 lb	Cross	46.7	51.2	46.2	46.4	43.8	51.6	49.3	53.7
104 NDBS $21(\mathrm{R}-\mathrm{T}) \mathrm{C} 9$ X EARLYGEM 2 lc	Cross	45.7	50.2	46.0	46.9	43.2	51.3	48.9	52.3
105 CGL(S-FR2)C1X B S 2 1CGL(R-FR2)C1	Check	46.3	50.2	44.1	46.7	44.3	51.7	50.3	53.5
106 NDSAB(MER-FS)C 15 X EARLYGEM 21 c	Cross	46.2	50.0	45.7	47.5	42.2	51.7	50.4	51.8
107 NDBS 11(FR-M)C3 X EARLYGEM 2 la	Cross	46.0	50.9	46.2	46.3	41.5	51.3	50.1	52.5
108 NDCG(FS)C1XLeaming(S-FS)C6	Cross	45.1	50.2	44.6	46.7	43.3	51.1	49.7	52.8
109 NDSM(M-FS)C9 XEARLYGEM 21 a	Cross	45.9	50.8	45.5	47.6	42.7	51.7	48.6	52.5
110 NDBS 21 (R-T)C9 XEARLYGEM 21 b	Cross	46.5	50.9	45.8	47.0	43.7	51.6	49.8	52.2
111 NDSCD(FS-CS)C2 X EARLYGEM 21 b	Cross	46.7	50.5	44.3	46.1	45.0	51.4	50.2	53.7
112 NDSS XEARLYGEM 21 a	Cross	46.6	50.3	45.6	46.0	41.5	52.2	50.5	52.2
113 NDCG(FS)C1XEARLYGEM 21 c	Cross	46.4	50.8	45.1	46.2	41.9	51.4	49.5	53.2
114 NDCG(FS)C1XNDL	Cross	46.4	50.0	43.9	46.1	42.1	51.3	49.8	52.5
115 NDLXEARLYGEM 21a	Cross	47.0	50.9	46.2	45.6	42.9	51.8	50.1	54.1
116 NDSM(M-FS)C9 X EARLYGEM 2 lb	Cross	47.1	49.9	45.8	47.5	45.0	51.3	49.4	52.8
117 NDBS 11(FR-M)C3 X NDB S 21 (R-T)C9	Cross		49.6	46.1	46.1	43.3	51.3	49.0	52.3
118 NDBS 1011 XEARLYGEM 21 c	Cross	45.8	50.4	44.8	46.6	43.6	51.2	48.0	53.7
119 NDBS 11(FR-M)C3 XEARLYGEM 2 lb	Cross	47.5	50.3	46.2	47.3	43.5	51.4	49.8	52.6
120 NDBS 11(FR-M)C3 XLeaming(S-FS)C6	Cross	47.0	50.1	44.3	46.4	42.2	51.4	49.4	52.6

Table B18 (continued). High fermentable corn starch (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 8 environments.

Entry	Pedigree	Type	2010				2012			
			Casselton	Larimore	Prosper	Thompson	Casselton	Larimore	Prosper	Thompson
121	NDLXNDSHLC(M-FS)C5	Cross	47.4	51.6	45.2	45.6	42.6	51.6	49.6	53.0
122	NDL XNDSAB(MER-FS)C 15	Cross	45.9	50.2	46.0	45.4	43.1	51.8	49.9	54.0
123	NDCG(FS)C1XNDBS 22(R-T1)C9	Cross	45.0	49.7	45.0	45.6	41.5	51.3	48.5	52.6
124	NDCG(FS)C1XNDSCD(FS-CS)C2	Cross	45.5	49.6	44.4	44.7	42.4	50.6	48.3	52.8
125	CGSS21(S-FR)C1XBS21CGSS(R-FR)C1	Check	46.1	50.1	44.1	45.5	43.1	51.0	49.0	52.8
126	NDCG(FS)C1XNDBS21(R-T)C9	Cross	45.4	50.2	44.6	46.6	43.5	51.3	49.2	51.9
127	NDBS22(R-T 1)C9 X NDBS 21 (R-T)C9	Cross	46.3	50.1	44.4	46.8	42.4	51.7	48.5	53.0
128	Leaming(S-FS)C6 XEARLYGEM 21 b	Cross	45.5	50.2	44.7	45.5	43.0	51.0	48.5	52.9
129	NDBS $1011 \mathrm{XNDSM}(\mathrm{M}-\mathrm{FS}) \mathrm{C} 9$	Cross	47.0	50.5	44.4	46.9	42.5	51.3	49.1	52.2
130	NDL XEARLYGEM 21 c	Cross	47.0	50.3	46.1	47.1	44.6	51.7	50.3	53.4
	NDL X NDSCD(FS-CS)C2	Cross	45.8	50.5	44.5	46.3	42.9	50.6	49.7	52.1
132	EARLYGEM 21 l	Parent	46.5	50.7	46.1	44.9	43.0	51.4	50.3	53.3
133	NDCG(FS)C1XNDB S K(HI-M)C3	Cross	45.1	49.7	44.4	47.0	41.8	50.7	47.1	51.3
134	NDSCD(FS-CS)C2 XEARLYGEM 21 c	Cross	46.2	51.6	44.7	46.7	43.8	51.5	49.8	53.1
135	NDCG(FS)C1XNDSM(M-FS)C9	Cross	45.6	51.0	43.4	46.4	42.5	51.2	48.6	52.5
136	NDSAB(MER-FS)C 15 X NDSCD(FS-CS)C2	Cross	46.3	49.8	45.6	45.3	41.8	51.9	48.2	52.7
137	NDSM(M-FS)C9 X EARLYGEM 21 c	Cross	46.1	51.0	45.1	47.7	42.3	51.7	49.7	52.9
138	Leaming(S-FS)C6 XEARLYGEM 21 l	Cross	46.1	50.9	45.2	46.2	43.0	51.8	50.3	53.8
139	NDSS XNDCG(FS)C1	Cross	45.6	50.2	44.0	46.0	43.0	51.4	49.2	53.4
140	NDSM(M-FS)C9 XNDSCD(FS-CS)C2	Cross	47.9	50.2	43.9	45.9	41.7	51.1	49.0	51.7
	NDBS 21 (R-T)C9 X NDSCD(FS-CS)C2	Cross		49.9	45.0	46.9	43.4	50.7	48.5	53.4
142	NDCG(FS)C1XNDBS 1011	Cross	46.7	51.0	45.0	44.2	42.9	50.9	48.4	53.1
143	NDBS 1011 X EAR LYGEM 2 la	Cross	46.5	50.4	45.3	46.8	43.6	51.2	49.7	52.2
144	NDSHLC(M-FS)C5	Parent	47.5	51.6	45.3	47.6	44.0	51.4	50.4	52.4
	Experiment mean		46.1	50.3	44.8	46.1	42.9	51.3	49.2	52.8
	Mean of parental po pulations		46.2	50.3	44.7	45.7	43.1	51.1	49.3	53.1
	Mean of population crosses		46.2	50.2	44.8	46.2	42.9	51.3	49.2	52.8
	Mean of checks		45.5	50.5	44.7	46.1	43.2	51.7	49.5	53.2
	LSD (0.05)		1.2	1.4	1.5	2.0	2.0	1.2	1.9	1.5
	CV		1.3	1.5	1.7	2.2	2.4	1.2	1.9	1.4
	MSE		0.4	0.5	0.6	1.0	1.0	0.4	0.9	0.6

Table B19. High extractable starch (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 8 environments.

Entry Pedigree	Type	2010				2012			
		Casselton	Larimore	Prosper	Thompson	Casselton	Larimore	Prosper	Thompson
1 Leaming(S-FS)C6 XEARLYGEM 21c	Cross	63.6	59.0	62.0	64.4	62.5	59.6	61.5	60.5
2 Leaming(S-FS)C6 XNDSAB(MER-FS)C15	Cross	59.5	57.4	59.8	61.8	59.7	57.9	59.5	59.6
3 NDBSK(HIM)C3 X NDSM(M-FS)C9	Cross	61.4	58.4	60.2	62.4	59.5	57.4	58.2	59.2
$4 \mathrm{BS} 21 \mathrm{AB}(\mathrm{R}-\mathrm{FR}) \mathrm{C} 1 \mathrm{XNDSAB} 21(\mathrm{R}-\mathrm{FR}) \mathrm{C} 1$	Check	62.6	58.2	59.5	62.8	59.9	57.2	59.8	59.1
5 EARLYGEM 2 la XEARLYGEM 2 lb	Cross	63.9	59.4	63.4	63.8	61.2	58.7	61.7	60.4
6 NDBS $1011 \mathrm{XNDSCD}(\mathrm{FS}-\mathrm{CS}) \mathrm{C} 2$	Cross	60.7	58.0	60.0	60.9	59.6	57.3	58.7	58.3
7 NDSS XNDL	Cross	61.6	58.8	60.7	61.7	57.8	56.2	59.4	59.5
8 NDBSK(HI-M)C3 XEARLYGEM 21 b	Cross	61.9	59.0	60.3	63.4	62.0	58.8	62.2	61.0
9 NDL XEARLYGEM 2 lb	Cross	63.6	59.5	61.9	64.0	60.2	58.3	63.3	60.3
10 NDBS 11(FR-M)C3 XEARLYGEM 21 c	Cross		59.2	61.8	62.7	61.5	58.6	60.3	60.4
11 NDBS 11(FR-M)C3	P arent	61.4	57.7	60.0	61.8	58.2	55.2	57.7	58.8
12 NDBSK(HI-M)C3 X NDSHLC(M-FS)C5	Cross	61.4	58.1	60.0	62.4	61.0	57.5	60.0	60.2
$13 \mathrm{NDSCD}(\mathrm{FS}-\mathrm{CS}) \mathrm{C} 2$	P arent	60.9	58.8	60.1	62.0	60.2	57.7	57.2	57.7
14 NDSHLC(M-FS)C5 XEARLYGEM 21 c	Cross	62.1	58.8	61.2	64.5	60.7	59.9	60.6	61.2
15 NDSS XNDBS22(R-T1)C9	Cross	61.0	57.4	59.0	62.6	58.8	57.0	59.4	58.5
16 Check 4 DKC 43-27 VT3	Check	65.2	64.4	65.4	67.2	63.7	63.5	65.0	65.6
17 NDSS XNDSHLC(M-FS)C5	Cross		58.6	59.0	62.8	60.7	56.0	59.3	59.8
18 EARLYGEM 21 c	P arent	64.1	60.6	61.1	65.7	62.3	60.6	60.9	61.9
19 Leaming(S-FS)C6	P arent	61.7	56.5	59.1	61.8	58.0	57.1	57.7	58.9
20 NDBS $1011 \mathrm{XNDBS} 22(\mathrm{R}-\mathrm{Tl}) \mathrm{C} 9$	Cross	61.7	58.2	59.1	62.6	60.7	58.6	60.6	60.0
21 Leaming(S-FS)C6 X NDSHLC(M-FS)C5	Cross	61.2	58.5	59.4	62.9	60.5	57.4	60.4	61.4
22 NDBS 21 (R-T)C9 X NDSHLC(M-FS)C5	Cross	62.2	59.8	61.2	63.0	62.1	58.6	59.9	59.9
23 Check 1P IONEER 39 V 07	Check	63.9	59.6	62.1	63.7	60.0	58.2	59.4	61.4
24 NDCG(FS)C1XNDSAB(MER-FS)C 15	Cross	59.6	57.4	60.6	62.5	59.4	58.5	58.1	58.6
25 Leaming(S-FS)C6 XNDBS22(R-T) C9	Cross	62.2	58.3	61.2	62.2	59.9	57.6	61.1	59.2
26 Leaming(S-FS)C6 XNDBS 21 (R-T) C9	Cross	62.1	59.3	60.3	63.3	60.1	57.6	59.2	60.9
27 NDBSK(HI-M)C3 X EARLYGEM 2 la	Cross	63.8	59.9	61.0	63.6	60.8	58.8	61.2	60.5
28 NDL XLeaming(S-FS)C6	Cross		56.8	59.0	61.4	61.2	56.0	59.9	60.1
29 EARLYGEM 2 la XEARLYGEM 21 c	Cross	63.6	60.1	62.4	65.4	62.2	58.9	61.4	61.3
30 NDCG(FS)C1XEARLYGEM 21 b	Cross	63.2	58.0	60.5	63.3	61.0	58.1	60.6	60.9
31 Leaming(S-FS)C6 XNDSCD(FS-CS)C2	Cross	60.8	57.3	59.1	61.1	59.1	57.9	58.7	60.1
32 NDBS K(HI-M)C3 XEARLYGEM 21 c	Cross	63.2	60.5	61.5	64.8	61.4	58.4	61.4	61.6
33 NDBS 1011 XEARLYGEM 21 b	Cross	64.8	59.1	62.2	64.0	62.9	59.2	59.4	59.9
34 NDSCD(FS-CS)C2 XEARLYGEM 2 la	Cross	62.9	59.5	61.7	63.0	61.9	57.6	60.0	60.3
35 NDSS XEARLYGEM 2 lb	Cross	63.1	58.2	59.5	62.8	61.6	57.6	60.1	59.9
36 NDSAB(MER-FS)C 15 X NDSHLC(M-FS)C5	Cross	61.3	57.8	60.3	63.3	60.8	58.0	60.1	59.2
37 NDBS 11(FR-M)C3 X NDSCD(FS-CS)C2	Cross	61.2	57.7	58.7	60.7	59.7	57.6	58.7	58.4
38 NDCG(FS)C1XEARLYGEM 21 l	Cross	63.6	59.0	60.9	63.5	61.5	58.7	60.7	59.7
39 EARLYGEM 2 lb X EARLYGEM 2 lc	Cross	64.0	60.2	60.9	64.2	62.8	59.1	61.6	60.1
40 NDBSK(HI-M)C3 X NDSAB (MER-FS)C 15	Cross	61.3	58.2	60.4	63.2	60.2	57.8	60.4	60.6

Table B19 (continued). High extractable starch (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 8 environments.

| | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Entry Pedigree | | | | | | | |

Table B19 (continued). High extractable starch (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 8 environments.

Entry Pedigree		Type	2010				2012				
		Casselton	Larimore	Prosper	Thompson	Casselton	Larimore	Prosper	Thompson		
81	NDBS 11(FR-M)C3 XNDSM(M-FS)C9		Cross	60.1	57.8	58.7	61.9	60.2	55.9	58.1	59.2
82	NDBSK(HIM)C3 XLeaming(S-FS)C6	Cross	62.6	58.2	59.4	62.7	59.7	57.4	59.3	59.6	
83	NDL X NDBS21(R-T)C9	Cross	60.3	60.4	60.5	63.5	61.3	58.1	60.6	60.7	
84	NDSM(M-FS)C9	Parent	59.7	57.9	58.6	61.6	59.5	55.2	58.6	56.5	
85	NDSS XNDSAB(MER-FS)C 15	Cross	60.0	57.5	60.0	62.1	61.0	57.2	58.4		
86	Leaming(S-FS)C6 XNDSM(M-FS)C9	Cross	60.9	58.3	59.1	63.0	59.3	56.0	58.3	58.5	
87	NDCG(FS)C1X NDBS 11(FR-M)C3	Cross	60.8	60.1	59.8	61.2	59.2	56.1	60.2	58.6	
88	NDSHLC(M-FS)C5 X EARLYGEM 2 1a	Cross	61.8	57.2	60.6	63.5	61.6	58.5	61.4	60.9	
89	NDBS 1011	Parent	62.5	58.7	60.0	62.9	59.5	57.4	59.3	60.3	
90	NDBS 1011 X NDS AB(MER-FS) C 15	Cross	62.3	58.0	59.7	62.0	60.5	58.5	59.4	60.8	
	Check 3 P IONEER 39N99	Check	63.9	61.7	62.0	63.9	61.3	59.1	62.1	61.9	
92	NDSM(M-FS)C9 X NDSHLC(M-FS)C5	Cross	60.2	57.9	60.0	63.9	60.6	57.2	59.0	60.5	
93	BS 22LEAM (R-FR)C1XLEAMING22 (S-FR)C1	Check	62.5	58.5	60.4	63.4	59.5	57.7	61.3	60.7	
94	NDL X NDBS 1011	Cross	61.8	58.4	60.7	63.0	60.5	58.3	59.9	59.8	
95	NDBS 22(R-T1)C9 X NDSM(M-FS)C9	Cross	59.8	57.7	59.5	62.7	60.1	57.6	58.1	58.8	
96	NDL X NDSM(M-FS)C9	Cross	60.4	57.3	60.6	63.5	59.3	57.4	58.3	58.9	
97	NDSS	Parent	62.0	57.7	59.7	61.7	58.0	55.4	57.8	57.5	
98	NDBS22(R-T1)C9 X NDSCD(FS-CS)C2	Cross	60.0	57.9	59.5	61.3	59.5	57.1	58.9	59.0	
99	NDCG(FS)C1XNDSHLC(M-FS)C5	Cross	59.4	57.3	59.8	62.6	62.0	57.2	59.3	60.8	
100	NDL X NDBSK(HI-M)C3	Cross	62.1	58.8	60.9	63.3	59.4	57.2	60.9	60.5	
101	NDBS 22(R-T 1)C9 X EARLYGEM 2 lb	Cross	61.9	59.4	61.8	64.2	61.4	58.3	61.9	61.7	
102	NDBS 1011 XNDSHLC(M-FS)C5	Cross	61.5	60.1	62.1	64.4	60.0	58.3	61.1	60.5	
103	NDSHLC(M-FS)C5 XEARLYGEM 21 b	Cross	63.3	59.4	60.3	64.1	59.9	58.8	61.3	61.3	
104	NDBS 21 (R-T)C9 X EARLYGEM 21 c	Cross	63.4	59.6	61.7	64.6	61.8	59.4	62.1	61.4	
105	CGL(S-FR2)C1X B S $21 \mathrm{CGL}(\mathrm{R}-\mathrm{FR} 2) \mathrm{C} 1$	Check	61.2	57.4	59.2	58.3	59.6	57.2	59.8	60.5	
106	NDSAB(MER-FS)C 15 X EARLYGEM 21 c	Cross	63.4	56.4	60.8	63.0	61.4	59.6	61.2	60.7	
107	NDBS 11(FR-M)C3 XEARLYGEM 2 1a	Cross	62.4	58.9	61.5	63.7	61.4	58.0	62.0	60.7	
108	NDCG(FS)C1X Leaming(S-FS)C6	Cross	60.0	56.2	59.3	61.7	58.7	56.4	58.3	59.6	
109	NDSM(M-FS)C9 XEARLYGEM 2 1a	Cross	61.6	59.0	60.5	64.2	61.7	58.4	60.7	59.5	
110	NDBS 21 (R-T)C9 XEARLYGEM 2 lb	Cross	61.0	59.0	61.1	63.9	62.4	58.5	61.4	61.9	
111	NDSCD(FS-CS)C2 XEARLYGEM 2 lb	Cross	61.3	58.9	62.2	62.5	60.5	58.7	61.3	60.9	
112	NDSS XEARLYGEM 21 a	Cross	62.0	58.9	61.5	63.0	61.0	57.4	60.3	60.3	
113	NDCG(FS)C1XEARLYGEM 21 c	Cross	60.6	59.2	60.1	62.4	61.1	58.7	61.3	62.1	
114	NDCG(FS)C1XNDL	Cross	57.7	58.7	59.4	62.1	60.3	57.6	59.8	58.9	
115	NDLXEARLYGEM 21 a	Cross	62.3	59.4	61.3	64.0	61.3	59.5	61.4	61.5	
116	NDSM(M-FS)C9 X EARLYGEM 2 lb	Cross	61.4	59.0	60.0	63.1	60.7	58.2	59.7	60.9	
117	NDBS 11(FR-M)C3 X NDB S 21 (R-T)C9	Cross		59.3	59.5	63.4	61.5	58.1	61.4	60.0	
118	NDBS 1011 X EARLYGEM 21 c	Cross	63.1	60.4	63.0	64.8	62.5	59.6	61.7	60.7	
119	NDBS 11(FR-M)C3 XEARLYGEM 2 lb	Cross	61.6	58.6	60.9	62.8	61.4	58.6	60.4	60.9	
120	NDBS 11(FR-M)C3 XLeaming(S-FS)C6	Cross	59.7	56.5	59.2	62.3	59.5	56.2	60.6	59.7	

Table B19 (continued). High extractable starch (\%) adjusted means of 16 maize populations, 120 crosses, and 8 checks across 8 environments.

Entry	Pedigree	Type	2010				2012			
			Casselton	Larimore	Prosper	Thompson	Casselton	Larimore	Prosper	Thompson
121	NDL X NDSHLC(M-FS)C5	Cross	60.6	57.2	60.4	63.5	61.2	58.6	61.1	60.5
122	NDL XNDSAB(MER-FS)C 15	Cross	60.8	58.6	60.6	62.4	58.8	57.9	58.0	59.6
123	NDCG(FS)C1 ${ }^{\text {ND }}$ NBS 22(R-T 1)C9	Cross	63.0	58.3	59.1	62.4	58.9	57.0	60.2	59.7
124	NDCG(FS)C1XNDSCD(FS-CS)C2	Cross	61.6	57.0	58.8	62.2	57.3	56.3	58.8	58.4
125	CGSS21(S-FR)C1XBS21CGSS(R-FR)C1	Check	62.2	58.4	60.9	62.5	60.1	58.1	60.6	59.8
126	NDCG(FS)C1XNDBS21(R-T)C9	Cross	61.5	57.4	59.9	61.8	59.6	57.2	59.1	59.4
127	NDBS 22 (R-T1)C9 X NDBS $21(\mathrm{R}-\mathrm{T}) \mathrm{C} 9$	Cross	62.8	59.1	60.8	61.4	60.5	58.2	60.8	60.1
128	Leaming(S-FS)C6 X EARLYGEM 21 lb	Cross	63.0	59.2	60.6	63.8	62.3	57.3	61.1	60.7
129	NDBS $1011 \mathrm{XNDSM}(\mathrm{M}-\mathrm{FS}) \mathrm{C} 9$	Cross	61.7	57.8	60.7	63.0	61.0	56.9	59.6	59.9
130	NDL XEARLYGEM 2 lc	Cross	64.3	60.8	60.7	65.1	61.5	59.0	61.2	60.7
131	NDL XNDSCD(FS-CS)C2	Cross	59.6	56.8	59.4	59.5	59.8	57.8	58.5	59.8
132	EARLYGEM 21 l	Parent	64.5	59.2	62.2	65.1	61.5	59.0	61.8	59.2
133	NDCG(FS)C1X NDB S K(HI-M)C3	Cross	60.3	57.6	61.0	62.3	60.6	57.1	60.3	60.1
134	NDSCD(FS-CS)C2 XEARLYGEM 21 c	Cross	63.9	60.1	61.0	63.1	61.6	58.7	61.0	60.7
135	NDCG(FS)C1XNDSM(M-FS)C9	Cross	60.8	57.9	55.9	60.4	58.8	56.5	57.6	58.5
136	NDSAB(MER-FS)C 15 X NDSCD(FS-CS)C2	Cross	61.0	58.0	58.7	61.5	59.3	56.5	57.9	57.4
137	NDSM(M-FS)C9 XEARLYGEM 21 c	Cross	60.9	59.3	60.9	63.3	62.1	59.6	61.5	60.6
138	Leaming(S-FS)C6 XEARLYGEM 21 a	Cross	62.3	58.0	59.9	61.8	60.3	58.4	59.4	59.1
139	NDSS XNDCG(FS)C1	Cross	60.1	58.6	59.5	62.3	58.6	57.0	58.4	57.2
140	NDSM(M-FS)C9 XNDSCD(FS-CS)C2	Cross	60.2	58.1	57.4	61.6	59.2	55.9	57.2	58.9
141	NDBS 21 (R-T)C9 X NDSCD(FS-CS)C2	Cross		57.8	60.1	62.6	57.4	57.6	59.2	58.2
142	NDCG(FS)C1 ${ }^{\text {P }}$ NDBS 1011	Cross	62.1	56.7	60.9	63.1	60.0	56.9	59.1	59.3
143	NDBS 1011 XEARLYGEM 21 l	Cross	62.7	59.3	61.4	64.0	61.7	58.6	62.7	61.7
144	NDSHLC(M-FS)C5	P arent	62.0	57.8	60.3	64.0	61.0	58.1	59.0	59.9
	Experiment mean		61.6	58.5	60.3	62.8	60.3	57.8	59.9	59.9
	Mean of parental populations		61.8	58.3	60.2	62.8	59.7	57.4	59.1	59.1
	Mean of population crosses		61.5	58.5	60.2	62.8	60.4	57.8	59.9	60.0
	Mean of checks		63.2	59.8	61.7	63.2	60.8	58.9	61.2	61.3
	LSD (0.05)		1.9	1.8	1.9	1.7	2.0	1.4	1.9	1.4
	CV		1.5	1.5	1.6	1.4	1.7	1.2	1.6	1.2
	MSE		0.9	0.8	0.9	0.8	1.1	0.5	0.9	0.5

[^0]: ${ }^{a}$ The values for the percentage of lysine, methionine, and cysteine were multiplied by 10,000 .
 ${ }^{\mathrm{b}}$ Data for cysteine percentage were combined only for 9 environments.

