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ABSTRACT

Healthcare is a unique industry in terms of theeassed requirements and services
provided to patients. Currently, healthcare industifacing challenges of reducing the cost
and improving the quality and accessibility of seev

Operating room is one of the biggest major cost eeMkenue centers in any
healthcare facility. In this study, we develop ap#iation models and the corresponding
solution strategies for addressing the problem abfeduling and rescheduling of the
elective patients for surgical operations in theraing room.

In the first stage, scheduling of the elective gras based on the availability of the
resources is optimized. The resources considerdferstudy are the availability of the
operating rooms, surgical teams, and the beds/eeunpin the downstream post anesthesia
care units (PACUs). Discrete distributions govegnisurgical durations for selected
surgical specialties are developed for represemambility for duration of surgery. Based
on the distributions, a stochastic mathematicagjfnmming model is developed.

It is indicated that with the increase of problemes, the model may not be solved
by using a leading commercial solver for optimiaatproblems. As a result, a heuristic
solution approach based on genetic algorithm ie dkisveloped. It is found out that the
genetic algorithm provides close results as congptoreéhe commercial solver in terms of
solution quality. For large problem sizes, where dommercial solver is unable to solve
the problem due to the memory restrictions, theegermlgorithm based approach is able to
find a solution within a reasonable amount of cotapan time.

In the second stage, the rescheduling of the e&egatients due to the sudden

arrival of the emergency patients is consideredn#@&hematical programming model for



minimizing the costs related with expanding therenir capacity and disruption caused by
the inclusion of the emergency patient is developAtso, two different solution
approaches are brought forward, one with usingtimemercial solver, and the other based
on genetic algorithm. Genetic algorithm based aggitacan always make efficient decision
regarding whether to accept the emergency patemishow to minimize the reshuffling

effort of the original elective surgery schedule.
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1. INTRODUCTION

Healthcare industry is inherently complex and degeon the interdisciplinary
teams of trained professionals and paraprofessaimaineet the need of the individual
patients and general population (United States eyeat of Labor, 2007). Increased need
of the aging population along with the changingltmeare related technologies contributes
to the ever increasing complexity of the healthaadstry. This industry is one of the
fastest growing industries. In the U.S., since 1§ 7Bealthcare spending has grown at an
average annual rate of 9.9% which is 2.5 percerpagégs higher than the growth of GDP
(Kaiser Family Foundation, 2006).

Healthcare industry is facing challenges in termis cost reduction and
improvement of service. Substantial amounts of ueses have been spent on healthcare
industry. Current analysis indicates that 17.9%BP in the U.S. is spent on healthcare in
2012, reaching 2.8 trillion USD, and the trend xpexted to continue in coming years
(Plunkett Research, 2012). At the current raterofmth, the figure is expected to reach to
4.5 trillion USD in 2019, which will constitute 1% of the projected GDP in that
particular year (Terry, 2010). In order to curb theereasing costs on healthcare,
managerial aspects of clinic and hospital operatiare being focused on more closely

recently.

1.1. Operating Room Management and Scheduling
Among the most important cost and revenue centepgrating rooms carry
important significance. It is one of the largesstcand revenue centers in the healthcare

facility (Health Care Financial Management Assaoiat 2005; Macario et al., 1995). It is



estimated that in general 60-70% of all hospitainagions are generated by surgical
interventions and the total expenses related watrating rooms constitute more than 40%
of the expenses in a healthcare facility (Dentoralgt2007). Inefficient and inaccurate
planning might cause delays and cancellations wimatht further lead to wastes and
hence the increase of the total operation cost.Wases should be mitigated or avoided
(Gordon et al., 1998).

A closer attention to the current operating procesldor operating rooms will be
beneficial for overall cost implications of healéne facilities. The overall impact of
operating rooms on the entire healthcare facilityrot be overlooked. This, in part, will be
addressed by the thesis research.

Planning and scheduling operating rooms carry &ipamportance. With the
existence of the conflicting objectives, priorities the stakeholders, and scarcity of the
costly resources, managing operating rooms is deciggng task (Cardoen et al., 2010;
Glouberman and Mintzberg, 2001). Usually, the sohed of operating rooms involves
many facets such as the patient safety and improlwaid outcomes, increasing the access
of the corresponding resources utilized by the esamg and corresponding clinical staff
member, decreasing the related patient delays,ommy overall satisfaction levels (e.g.,
patient, surgeons, clinic staff member, etc.), eruteasing the efficiency related with the
utilization of the corresponding resources (Alord échupfer, 1999). Additionally, the
increase of demand for the related surgical sesvidee to aging population brings
additional challenges for managing and schedulpeyating rooms (Etzioni et al. 2003).

There are several factors that influence the optioperating room planning.

Considerations for the accompanying resources rageobthe major factors in the planning



of operating rooms and downstream clinic units. €lwic resources that are vital for the
proper functioning of operating rooms and downstremits can be classified in different
categories. One category is the human resourcedlirotal personnel comprising of
surgical and support teams. Surgical teams ussallye during the peri-operative stage,
whereas the support teams provide services dun@gite and post-operative stages. The
other category is facilities and equipment suchthes specialized equipment used for
performing specific surgeries, pre-surgical holdiagits for preparing the patient for
surgical operation, and the post-operative holdimiggs such as PACU (Guerriero and

Gido, 2011).

1.2. Hierarchical Structure in Operating Room Plannng
Three different approaches for classifying the ngan@ent strategies for scheduling
elective patients can be summarized as followst¢Rn, 1996; Guerriero and Guido,
2011),
¢ Open scheduling:This case is related with scheduling the eleatages in the
medium and short term on the “first come, firstveel’ basis. The schedule in
the sense is defined by allocating the surgerigs py the day of surgery with
the aim of accommodating as many surgical casepoasible. Under this
system, the surgeons might submit the cases tetilay of surgery for being
included in the schedule.
e Block-scheduling: In block scheduling practice, specific surgeond amgical
groups (SG) are assigned to available time blocksperating rooms. Usually

the time blocks are fixed with respect to the sgleciand the time/date of the



week and month. To cite an instance, General Syrgperations might be
scheduled on Mondays between 8:00am-12:00pm inatpgrrooms #1, #2,
and #4. As such, the block scheduling involves plvases of decision planning.
The first phase involves the construction of a icytimetable. The cyclic
timetable can be defined as “a timetable that @sfithe number and available
operating rooms, the hours that operating roomkheilopen, and the SG and
surgeons available for each operating room bloddaKe et al. 2002). The
second problem phase involves filling up the tinecks with surgical cases
such that the surgical operations can be performéun the scheduled time
period. This practice involves creating a mastegisal schedule. An example
of master surgical schedule obtained from Mt. SiHaispital in Toronto,
Canada is provided in Table 1 (Blake and Donal@®220

e Modified block scheduling: This practice involves the modification of block
scheduling in such a way that some time blocks triigheft open and some of
them might be booked. Unused time blocks mightdbeased before the time of
surgery. Therefore, the open-scheduling practiceghinbe applied. A master
surgical schedule is constructed but there is nmegwty that time blocks are
assigned to any surgeon or surgical group (De2&00).

Block scheduling entails several advantages asdliftelow (Unibased System

Architecture, 2011),
e The surgical team has a clear idea about the suggredule in advance and

can adjust clinic appointments based on this sdeedu



e The patients can be scheduled and the surgicalsteam be dispatched based
on the allocated OR times with respect to blocledciting practices,

e The workload for the surgeons, nurses, and opgratom staff members can
be evenly distributed among the days of the week,

e The admission to PACU and the correspondirigrisive are nit (ICU) can be
better planned through the distribution of load diffierent days of the week

based on the generated block schedule of the sesger

Table 1. An example of master surgical scheduld us#lt. Sinai hospital of Toronto,
Canada

Mainl Main2 Main3 Main4 Main5 Main6 Man7 Main8 Main9 Main 10 OPS ] OPS:

Mon Surg Surg Surg Surg Surg Surg, Gyne Opht Not Not Oral Gyne
08:00- 08:00- 08:00- 08:00- 08:00- Otol 08:00- 08:00- Staffed Staffed 08:00- 08:00-
17:00 17:00 17:00 17:00 15:30 08:00- 15:30 15:30 16:00 15:30

15:30

Tue Surg Surg Surg Surg Surg Otol Gyne Oral, Not Not Gyne Gyne
08:00- 08:00- 08:00- 08:00- 08:.00- 08:00- 08:00- Opht Staffed Staffed 08:00- 08:00-
17:00 17:00 17:00 17:00 15:30 15:30 15:30  08:00- 15:30 16:00

15:30

Wed Surg Surg Surg Surg Surg Otol Gyne Gyne Not Not Gyne Opht
08:00- 08:00- 08:00- 08:00- 08:00- 08:00- 08:00- 08:00- Staffed Staffed 08:00- 08:00-
17:00 17:00 17:00 17:00 15:30 15:30 15:30 15:30 16:00 15:30

Thu Surg Surg Gyne Gyne Surg Gyne Open Opht Not Not Gyne Opht
08:00- 08:00- 08:00- 08:00- 08:00- 08:00- 08:00- 08:00- Staffed Staffed 08:00- 08:00-
17:00 17:00 17:00 17:00 15:30 15:30 15:30 15:30 16:00 15:30

Fri Surg Surg Surg Surg Surg Otol Gyne Opht Not Not Oral Gyne
09:00- 09:00- 09:00- 09:00- 09:00- 09:00- 09:00- 09:00- Staffed Staffed 09:00- 09:00-
17:00 17:00 17:00 17:00 15:30 15:30 15:30 15:30 15:30 16:00

Y'Surg weeks 1 & 2; Otol weeks 3, 4, &5
% Oral weeks 1, 2, & 3; Opht weeks 4 &5

The master surgical schedule have five surgicatdymamely, General Surgery
(Surg), Gynecology (Gyne), Ophthalmology (Opht)ol@tyngology (Otol), and Oral
Surgery (Oral). The type of operation and the dpetiduration are indicated in the
corresponding cell. For example, the General Syrgercedures are conducted in the main
operating room #1 on Mondays between 08:00 and01&m0. Thursday time slots for the

main operating room #7 are left open to be filledinty on first-come, first-served basis.



This practice promotes flexibility in the systenhelmaster surgical schedule presented in
Table 1 presents the case of the modified blockdlng approach, where open time slots
as well as reserved blocks are presented in therays

In terms of the how actual scheduling practices @vaducted, two different
approaches are usually taken. The first one is ramascheduling, which involves
scheduling surgical operation for a particular dagcording to this approach, all surgical
operations are scheduled at once (Magerlein anditMd©78). After surgical operation is
assigned for a particular day, the assignment ef ghrgical operation to a specific
operating room is conducted and the starting tifnéh® surgical operation is determined.
Advance scheduling depends on the various conttrauch as the operating room time,
beds, nursing and operating room staff, and theesponding equipment used in operating
rooms. Advance scheduling practices are in parafithl block scheduling approach where
surgical cases are assigned to the surgical timekblthat have been determined based on
master surgical schedule. The second approactsedlmn the first come-first served basis
which is generally taken with the open schedulirecpces (Magerlein and Martin, 1978).
In this approach, usually, surgical cases are sdbddased on the order of the arrival (i.e.,
when the need for the surgical operation arisesafgrarticular patient) based on the
availability of resources one by one. During 197he first- come, first-served scheduling
is usually the preferred approach (Rinde and Bigke974). However, with the changing
impetus on the cost and revenue considerationsanagd scheduling approaches gain
momentum starting with 1980’s.

In general, open scheduling promotes more flexybihs compared to block-

scheduling (Fei et al., 2009a). However, sinceyeafl80’s, the paradigm in operating



room planning is shifted to the block schedulinggbices, and open scheduling is seldom
implemented (Gabel et al., 1999). As previouslyestadepending on the time block and
variety of the surgical sequences, the block sdinegipractices might decrease the total
set-up times required for surgical operations. ife @an instance, suppose operating room
#6 in Table 1 is reserved for General Surgery dmers for the first and second week, and
Otolaryngology operations for third, fourth and th&h weeks as opposed to open
scheduling where the General surgeons and Otolalygg surgeons fill the time slot
based on first come first served basis. Insteadasting the precious amount of operating
room time with set-up involved in switching betweganeral Surgery and Otolaryngology,
as per block scheduling practices, operating roaghtrbe prepped for Otolaryngology
operations during third, fourth and fifth weeks lwiase, because the conversion from
General Surgery to Otolaryngology operations isyaelquired once a month. Detailed
operating room scheduling practices for the sherhtmight be exercised for reducing set-
up times in the open scheduling practices. On therdchand, block scheduling generally
addresses those issues in better manner basee grnotinds that master surgical schedule
can be formed with the consideration of decreasimggtotal amount of set-up times as
much as possible. Usually, the merits associatél block scheduling practices decrease,
if the variety and type of the operations for irqmanating seldom occurring cases increase.
Increase in the arrival rate of emergency patialgs presents a difficulty for the creation
and implementing master surgical schedule (Gueraed Guido, 2011).

In terms of hierarchical decisions of operatingmoplanning, three decision levels
can be identified. This can be summarized as fal@ennedy, 1992; Wachtel and Dexter

2008; Vissers et al., 2001; Testi et al., 2007),



e Strategic session planningThe main objective in this phase is to distribute
the operating room times among different operatoams. It is considered as
a case-mix planning problem.

e Tactical level planning: This stage involves developing theaster_srgical
schedule (MSS) based on the decision given in ttegegfic level. The master
surgical schedule is formed based on the operatog time allocated for
each surgical group.

e Operational level planning: This level of planning involves scheduling
elective patients on the daily basis. Note thabmpid giving the decision, the
master surgical schedule is already formed andcéses are assigned on a
daily basis based for this schedule (Gabel etl8B9). It might also involve
the reservation of specialized equipment and last#e changes to the
elective surgery schedule (Guerriero and Guido]1201

Note that the distinction among the decision lewelthe open scheduling practice
is usually less strict than that in the block schied) approach (Guerriero and Guido,

2011).

1.3. Surgical Patient Characteristics
Usually, the distinction of the patient charact#ess is based on the nature of the
surgical operation conducted on the patient. Irt tegard, the emergency patients are
usually considered to be the urgent cases whersutigery should be conducted as soon as
possible (Lamiri et al., 2008). It can be said tthet emergency surgery is almost all the

time unexpected. Guerriero and Guido (2011) spetiéylength of the time window for



operating emergency patient as two hours. Typieaes that require urgent surgical
intervention include but are not limited to theldaling (Encyclopedia of Surgery, 2012),

e Invasive resuscitation due to acute respiratorjuf@j pulmonary embolism,

etc.,

e Blunt object penetrating chest, abdomen due toowuaritraumas (i.e., car

accidents, gun-shot wounds),

e Burns,

e Cardiac events such as heart attacks,

e Aneurysms,

e Brain injuries or similar urgent neurological cotals,

e Perforated appendix, ulcer, or peritonitis

The nature of the emergency surgeries necessifat@m®pt action where the
surgeon and surgical team might have limited oppuary for collecting additional
information on the patient’s medical history andreat clinic condition as opposed to
elective surgeries (Encyclopedia of Surgery, 2012).

On the other hand, elective surgeries are usuédlyned in advance that usually do
not involve medical emergency. Since most of thrgisal operations are elective in nature
and can be planned in advance, researchers haeenttme work in developing models for
scheduling of elective patients.

Apart from the two categories of elective surgeaad emergency surgeries, there
is a third category called urgent cases. Thesesga$er to the non-elective cases in which
the patient is sufficiently stable that surgeries de postponed for a short time period,

from several hours to 48 hours (Cardoen et al.02GLerriero and Guido, 2011).



It should be noted that there are alternative vedydassifying the surgical patients
based on the frequency of the occurrence. Accortingan Oostrum et al. (2008a), one
such alternative way can be represented as,

e Frequent elective cases,
e Dummy elective cases which occur rather seldom,
e Emergency cases

In addition, add-elective cases are considerecetthe cases that are scheduled to

fill the remaining time capacities of operating mm The add-elective, emergency, and

urgent cases are collectively termed the add-oesc@Suerriero and Guido, 2011).

1.4. Problem Definition

Considering the importance of the operating rooamping and scheduling and the
inherent complexity in the decision making processthis research, our focus is on
scheduling the elective patients and rescheduhliegetective patients due to the admission
of emergency patients by considering various reswonstraints. These resources are
related with operating rooms or downstream clinigats.

As such, the thesis research problem encompassesstages. The first stage
involves scheduling of elective patients with reseuconstraints in operating rooms and
downstream clinic units. In addition to the curréntel of resources, the possibilities for
expanding the current capacity to accommodate ¢hedsile of elective patients are also
considered. In essence, the successful operatioig @anning and scheduling involve
careful consideration of the resources to put tirethe best use. In that regard, scheduling

of the elective patients dictates the use of ttuses and is closely linked with the
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resource allocation. Considering the fact that ajpeg rooms are the major revenue and
cost center in a healthcare facility, it will be awhile to manage the resources in the
most efficient manner by optimally planning and esblling operating rooms. Moreover,

operating rooms are tightly linked with the doweain clinical units such as PACU and
other clinical units along the patient and matefiev. Providing a sound approach for

operating room planning and scheduling will notyohélp locally increase the efficiency

of operating rooms, but also help increase theallvefficiency in the healthcare facility.

The second stage of the thesis research probleatvas/ examining the effect of
admitting the emergency patients to operating rodfos healthcare facilities, there might
not be any reserved operating room allocated exelysfor the emergency arrivals and
elective and emergency patients might compete Herdame set of resources. In those
cases, current elective surgery might be disruptsdl surgeries for the elective patients
might need to be postponed or preponed to accontedda emergency patients. Also,
given the elective patient schedule, the problewlodéther admitting or turning down the
emergency patient is examined.

Other than PACU units, there are other pathways ghtients might follow after
surgical operation. For some of the cases, if tligesy is majorly invasive, and the patient
is at high risk of complications, the patient mitettransferred tatensive are_wit (ICU)
immediately after the surgical operations (Suttealkh, 2012; lyer, 2001). On the other
hand, especially after minor surgical operatioreg Hre conducted under local anesthesia,
the patient might spend some time in an operatogn; and might be discharged directly

without being transferred to PACU or ICU units.
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The thesis research focuses on the typical caseewtaients are transferred to PACU
units after the surgical operation. After mostlod surgical operation, as previously stated,
unless the surgery is majorly invasive or involvetemtial complications, patient is
transferred to PACU units. In that regard, in thissis research, the typical pathway where
patients having the surgical operation recover he torresponding PACU units is
considered for the analysis. Figure 1 describesyieal flow of patients on hospital floor

whereas Figure 2 provides an overall view relatedh whe problem structure.

Referring clinic

Elective Patient
Subsequent
Operating PACU Unit clinic units

Room located

downstream

Emergency Patient

Emergency
Department

Figure 1. Typical flow of patients on hospital ftoo

Based on Figure 2, elective patients are referoedhfe surgical operations by the
corresponding sub-specialty clinics. The first stag the problem aims at creating the
optimal surgery schedule based on the availabdftyhe corresponding resources while
considering the expansion of the current resowacels.

The output of the first stage problem constitutes input for the second stage
problem where the two types of decisions are giVém first decision is whether to admit
emergency patient(s). If emergency patient(s) eséaimitted, the new schedule based on
minimizing the disruption of the current surgery famed. While forming the new

schedule, availability of the resources and pokis#s for expanding the current capacity
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are also considered. If the emergency patient(ayesnot admitted, the original elective

schedule is retained.

Resources (Surgical
teams, Operaling
room hours, PACU
heds)

Elective Rescheduling
Referring Elective Patient elective Fifil schedule with
Sub-specialty Patient ::> Scheduling E& patients E"’“’ﬂiﬂfzﬁ"e“‘
(First step) (second step)

]

Resources (Surgical
teams, Operating
room hours, PACU

beds)

Is emergency
patient(s)
admitted?

Keep the
elective patient
schedule from

first step

Arrival of

emergency
patient

Figure 2. Schematic of the research problem streictu

1.4.1. Additional considerations on elective patigrscheduling

A sound scheduling practice should consider thieiefft use of the resources. The
PACU unit poses an important concern for the fldw@erations in the healthcare facility
and significantly affects the flow in operating nes. The transfer of patients to the PACU
units might be delayed for various reasons sudh@ason-availability of the PACU beds.
Therefore, the integrated approach that simultasigoconsiders the availability of the

PACU beds as well as the schedule of operating sasmecessary.
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Duration of surgical operations is another impdrtaonsideration. Significant
variations might exist in terms of the surgical ations due to various reasons. Some
variations might be related to the surgeons, whillkeers might be attributed to the
requirements associated with the individual sulgigperations. To cite an instance,
significant variations might be observed for tumamoval operation due to the size of the
tumor, and potential complications associated wathoving the tumor. Therefore, a robust
scheduling approach that accounts for the variatbrsurgery time duration might be
necessary to utilize the resources associated api#inating rooms and downstream clinic
units in the best manner possible.

In order to improve planning and scheduling of afiag rooms, expanding the
current capacity of the resources utilized in opegarooms and downstream clinic units
should also be considered. For this purpose, variexpansion strategies might be
considered. For operating rooms, the overtime mestmight help expand the current
capacity by increasing the number of working hoédditionally, the possibility of hiring
additional surgical teams is also an important ic@ration to provide a more flexible
approach for governing the use of the availableuess in the best manner possible. Also,
expanding the capacity of the PACU units by incoapiag additional equipment/bed will
help level the utilization of resources in opergtimoms and PACU units. While
considering the expansion of the capacity of thalakle resources to facilitate the patient
flow, the associated costs should not be ignoredaddition, expanding the current
capacity may not serve the best interest of a heaié facility if some efficiency issues are

incurred.
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1.4.2. Additional considerations on rescheduling ettive patients

Making unprepared changes to the elective patiehedule is likely to cause
inconveniences from various perspectives suchats reembers, patients, and use of the
equipment. This is elaborated in the following. Mmimize the disruptions and reduce the
costs for expanding the current capacity, in tleosd stage of the thesis research problem,
the decision of including the emergency patienthwespect to available resources and the
consideration for expanding the current capacieypaovided.

Disrupting the current elective schedule might txe@aconvenience for the surgical
team members. For example, a cardiac surgeon nhighassigned a time slot in an
operating room, and he/she performs cardio-vassuiagical operation in the same day of
every week, and the supporting staff takes caner@foperative and peri-operative stages
on that particular day. If the existing scheduldigupted, it might be difficult to re-assign
the required teams for performing those types @raipon in a different date/time of the
week.

Inconvenience might also arise for the electiveepas. Given that the elective
patients are already scheduled, they might noteloeptive to the idea of preponing or
postponing their surgical operations given thessftd nature of surgical operations.
Postponing a surgical operation for a couple ofrbdar a particular patient might not
cause a great deal of inconvenience. However, pregothe surgical operation or
postponing the surgical operation to the next dag couple of days in advance might lead
to patient dissatisfaction and should be avoidednash as possible. The problem is
aggravated if a short notice is given to the pasieegarding the rescheduling of their

surgical operations. Moreover, the disruption @ éxisting elective patient schedule might
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also lead to the readjustment of the medical eqergrto different operating rooms, which
causes more inefficiency. Certainly, the disruptdnhe existing schedule will most likely
propagate to the downstream clinic units. The PAQldght be overcrowded and bed
blocking cases where the patients might not besteared to the PACU units. Therefore, in
order to provide smooth operation in the PACU uratsd ensure the leveling the
corresponding resources in operating rooms and PARQIt3 for increasing the efficiency,
disruptions to the existing schedule should be mired.

Clearly, it is worthwhile to consider the disruptgoin the current elective schedule
from different perspectives. One way to overcome fitoblem is to expand the current
capacity to accommodate those changes. Howeveandkpy the capacity also has some
drawbacks since usually high cost is involved facréasing the level of the available
capacity. This tradeoff should be carefully consedein practice. In particular, for
facilities that have limited resources and unpriatile demands of emergency admissions,
expanding the capacity is not a wise decisionhis tase, the existing resources should be
utilized in the best manner possible to accommottegepotential changes in the elective
surgery schedule due to inclusion of the emerggratients. It is the exact situation that
this thesis research is targeted at.

In many occasions, turning down the emergency mpEtimight also be an option.
The tradeoff between turning down and admitting éngergency patients is an important
consideration. If the emergency patients are tudwan, no changes in the elective patient
schedule is required. However, the opportunity aoistturning down the emergency
patients should not be ignored. If an emergentyemais admitted, then a sound approach

for minimizing the disruption to the existing schéxl should be developed which might
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involve expansion of the current capacity. Anotfaeet of whether admitting or rejecting
an emergency patient is that the decision shouldyilden in a limited time window
considering the nature of the emergency casesthése types of emergency, the situation
warrants that the medical intervention should bégpmed within an hour or so to decrease
the mortality rates due to the effects of traume iaerease the chance of survival (Baez et
al., 2006; Wilde, 2011). This concept is called t@®lden Hour” of trauma (Sacra and

Martinez, 2009).

1.5. Outline of the Dissertation

In Chapter 2, we provide extensive review on theeru literature on the planning
and scheduling of operating rooms. The current mament practices along with the
hierarchical decision making process for short teaand long term are discussed. In
addition, the current work on scheduling and reduheg of the elective patients are
discussed in detail. Moreover, additional inforroation the stochastic nature of the
surgical operations in operating rooms such asvém@ation of surgical durations and the
uncertainties related with the arrival of emergepatients are discussed.

In Chapter 3, our main focus is on developing tleresponding solution
methodologies for the scheduling of elective pasierDetailed information on the
mathematical model and the accompanying genetariign based approach is provided.
A comparison between the genetic algorithm andctivamercial solver based on GAMS
platform in terms of the computation time and tloduson quality is provided as well.

Various other considerations, such as excludingctirestraint of downstream units and
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adopting the deterministic values for the surgidatations are also explored. and the
results are compared with the base stochastic gmabl

In Chapter 4, the solution approaches developedtHer rescheduling elective
patients are examined. The link between the scivefuif the elective patients and the
rescheduling is established. The problem is agarmmdlated as a mathematical
programming model, and solved by using the comraksnlver and a genetic algorithm
approach. A comparison between the two solutiorragmghes is made in terms of the
solution quality and computation time.

In Chapter 5, we draw the general conclusions, jpoidit out future research

directions.
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2. LITERATURE REVIEW
As previously discussed, operating rooms and tivendoeeam units are major cost
and reveue center and the healthcare industryrégtdig a great deal of attention to this
field to reduce the costs and improve the returtherfinancial assets. In parallel, there is a
vast body of research literature in the operatmgm planning and scheduling field. It is
indicated that nearly half of literature publishefter 1950 is from the 2000-2010 period.
This reflects the increasing interest of reseaslogr the management and scheduling of

operating rooms (Cardoen et al., 2010).

2.1. General Review on Operating Room and Schedutin

Magerlein and Martin (1978) provide a review onimeating the surgery times, as
well as advance and day-to-day scheduling of thiemqa in surgical suites. In addition, a
general outline for improving the overall perforroarof operating rooms is also provided
with discussion on underlying reasons for failuce itlnplement proposed scheduling
schemes.

On the other hand, Blake and Carter (1997) proad&ructured review on the
surgical process and provide a unifying view on t¢herent terminology on the surgery
scheduling and operating room planning. Based a dpproach, the framework for
identification and reserving all resources that exéernal to operating room setting but
vital for providing the required care for the pat® undergoing surgical operations are
proposed. In addition, they define the boundaries dtrategic, administrative, and
operational level decision making with respect ke toperating room management.

Przasnyski (1986) provide a literature review orstcoontainment and scheduling of

19



specific resources with respect to operating roof@serreiro and Guido (2011) also
provide an extensive review on operating room sglegl with the main emphasis on the
classification based on the decision levels. Thaynty focus on the mathematical models
for representing the set of the relevant problemsperating room management and
describe the development of corresponding appraachsolve the formulated problems.

In the literature, in a broader context, some nggiare provided on the application
of operations research and mathematical programmmadels in the general healthcare
settings. Boldy (1976) provides a literature review the application of mathematical
programming for healthcare industry. The reviewnariily focuses on tactical and strategic
health and social service problems. The authohéurtliscusses patient mix models where
the primary consideration is to maximize the numbkepatients in a given time period
subject to clinical constraints on departmental atggies and minimum patient
requirements. Similar approaches for reviewing éhesting literature are taken by the
Pierskalla and Brailer (1994), Smith-Daniels e{(#988), and Yang et al. (2000). Although
the literature reviews conducted by those authorsat specifically target at operating
room scheduling and management, they carry impoetamth regard to application of

operations research and optimization models intihealre service delivery context.

2.2. Research on Strategic and Tactical Level Demss
Operating room scheduling and planning at stratégyel is usually seen as a
resource allocation problem (Blake and Carter 19Bi7)hat regard, the primary goal is to
determine the number and type of surgeries to llnoeed based on the availability of

resources (Guerriero and Guido, 2011). Dimensiorohghe other resources that are
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critical in the management of operating rooms sth@go be specified at this level so that
the system will function in a relatively smootheammer (VanBerkel and Blake, 2007).
Usually, strategic planning is based on histordata and forecasts with planning horizon
longer than one year generally, but some authorglede that forecasts might not be
accurate especially for time periods longer thayear (Masursky et al., 2008). Using the
persistence based methods (i.e., using the lagtdoesalizations for the current period
forecasts) might be a viable approach for gettiogueate figures (Dexter et al., 1999a).
Agnetis et al. (2012) address the long term plagjmmnthe operating room environment.
They examine the tradeoff between the organizatiosimplicity which involves
implementing the nearly same master surgical sdadthat does not change completely
every week versus dynamically adapting the mastagical schedule with regard to the
waiting lists with the lean lists. The authors dade that even introducing a very limited
degree of variability might pay off in terms of oesce efficiency and due date
performance. Due date performance is measured éyatmount of time elapsed by the
actual surgery schedule and the date where thersuigyperformed. They also investigate
the scalability of the approach in a medium sizesbital in Italy.

On tactical level, the creation of cyclic mastergstal schedules usually deals with
satisfying the demand for surgical procedures, avhgbnsidering the corresponding
availability of surgical teams and dedicated equwptm In addition to financial
considerations such as giving priority and prowdauditional time blocks for the surgical
procedures with higher profit margin, minimizingesating room costs and maximizing
utilization of critical resources and professionateipts are also considered (Kuo et al.,

2003). In other studies, the equity assignment g@rsurgical specialties (Blake et al.,
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2002; Blake and Donald, 2002) and the availabiitybeds in the downstream units are
also considered (Belién and Demeulemeester, 20@HgrB et al., 2009). In addition,
efficient allocation of operating room time amongrious surgical groups to reduce the
waiting time of elective cases is also tackled (#h&t al., 2009). Allocating operating
room time is an important consideration for cregtthe master surgical schedule thus
forming time blocks allocated for different surdiggoups. Utilization of operating rooms
as well as the minimization of the overtime pragsi¢or elective cases are also tackled in
the literature (Fei et al., 2009b).

Tactical level decision usually involves the deyshent of surgery schedule that
usually last from 1-3 months to one year. Usuathe main objective is to create
homogeneous groups in terms of surgery durationemgth_dé stay (LOS), as well as the
diagnosis related group and procedure codes (@uoerand Guido, 2011). Creating
homogeneous groups in terms of surgery durationL®f@ generally leads to a balanced
use of the clinical resources including surgicaffsmembers and beds in PACU and
hospital wards. Creating homogeneous groups inst@fnthe diagnosis related groups and
procedure codes are usually helpful for decreasetgup times in operating rooms. There
are several clustering approaches in the literahaecan help group the similar surgeries.
In that regard, van Oostrum et al. (2008b) appby hierarchical clustering approach to
minimize the number and volume of the so-called shynsurgeries that cannot be grouped
with other surgical procedures. The study, basedreat data obtained from Beatrix
Hospital located in Netherlands, aims at leveliighe hospital ward occupancy and the

optimization of the operating room utilization.
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Bed occupancy in the corresponding hospital wasdani important consideration
during the preparation of surgical schedules anérsé studies have tackled this research
topic. Belién and Demeulemeester (2007) adopt pednce measures such as the daily
expected bed occupancy and its variance. The wds&ar calculate the expected bed
shortages along with the probability of shortagasheday, and they further develop the
model based on the modification of objective fumctivalue so that the simple and
repetitive surgical schedule might be formed. Tgriactice helps level the average of the
variance of bed occupancy in different hospitaldsaaind the schedule might help decrease
the number of instances where particular operatomgms need to be utilized among
different surgical groups in the same day (Beli&alg 2009).

Other than bed occupancy issues, some studiesdeonsie maximization of
operating room capacity and leveling of the patariflow to the PACU and intensive care
units during the construction of master surgicalesitle. For instance, Vissers et al. (2005)
formulate a_nxed integer_inear_pogramming (MILP) model that minimizes the under-
and over-utilization of the resources. Among theoteces considered in this study are the
over-time hours, intensive care beds, intensive carsing staff, and medium care beds.
The model is based on the deterministic LOS. Ofthetors such as the preference of
surgeons for the time blocks, sequence activiied, the specialty capacity restrictions are
also taken into account.

The distinction between stochastic and determmlIsDS is investigated in Adan et
al. (2009). In that regard, they present an appredcere the length of stay is stochastic in
the intensive and medium care units. In line witls tapproach, they compare the results

with those of Vissers et al. (2005). It is conclddkat the new approach can lead to more
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robust planning of the intensive and medium catiesun the presence of small variability
in LOS. Meanwhile, focusing only operating rooms] afisregarding the pre and post-
operative units might create serious inefficien@ad bottle necks in the system especially

in the presence of high LOS variability.

2.3. Elective Patient Scheduling

Dexter et al. (1999b) compare the performancefédraint scheduling algorithms to
schedule add-on elective cases in operating roomserms of resource utilization. They
conclude that the best fit descending algorithmhviitzzy constraints provides the best
results in terms of operating room utilization. Thest fit descending algorithm sorts add-
on elective cases based on scheduled duration ssignathe longest cases first to the
operating rooms. During this assignment procedines fuzzy constraints generated based
on the operating room time are also taken into idenagtion. In a similar token, Dexter et
al. (1999c) employ the computer simulation appro&oh modeling operating room
scheduling. They investigate the relationship betw®perating room utilization and
various other factors such as the average lengtimef the patients wait for the surgeries.
It is concluded that the practice of allocatingdbidime for the elective cases based on the
expected total hours for the elective cases pravizkst results for maximizing operating
room utilization. It is also concluded that schedylpatients for the first available time
block if the available time blocks exist within fowreeks also help improve operating room
utilization. If a case cannot be scheduled in thinge blocks, it might be shifted into
buffer time slots outside the block time. Hansle(2008) develop a constructive heuristics

and local search methods to increase the utilizatfmperating rooms and reduce overtime
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practices. The approach can help free up some itapa®perating rooms. By clustering
the types of surgeries with similar variabilityddration, the “portfolio effect” is employed
to reduce the overall variation and free up theacdp. Moreover, the solutions put the
similar type of surgical operations in the same @ so that the set-up times for operating
rooms can be decreased and convenient schedulsarfygons can be created. However,
the availabilities of surgical teams and OR stadf @ot taken into the consideration in the
study.

Usually, scheduling decisions are provided at tiperational level. The main
decision given at the operational level is relatgth assigning the patients and then
sequencing them in the operating rooms (Cardoah,e2009). The former is known as the
advanced scheduling, and the latter is known aaltbeation scheduling.

Many researchers employ the two-phase approachevtheradvanced scheduling
and the allocating scheduling problems are sohaacurrently (Guinet and Chaabane,
2003; Fei et al., 2006; Jebali et al., 2006; Fealet2010; Wullink et al., 2008). While
Guinet and Chaabane (2003) and Fei et al. (200é)ead the problem focusing only in
operating room settings, Jebali et al., (2006), Iwkilet al. (2008), and Fei et al. (2010)
develop approaches in an open-scheduling systemewhe corresponding problems are
formulated as a two-stage hybrid flow shop probiewolving other clinical units as well.

Another approach is to bring these two problemseurtie same umbrella by
developing a unified approach (Roland et al., 20R6tand et al., 2010). Roland et al.,
(2006) propose an approach where the opening adstsperating rooms as well as
overtime hours is included in the objective funitio a minimization problem setting. One

unique contribution is that nonrenewable resour@es, pharmaceuticals and sterile
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materials) are also included in the mathematicaldehoas the associated resource
constraints, along with the renewable resourcel aacsurgery teams. Roland et al. (2010)
develop a slightly modified version of the modeleleped by Roland et al. (2006). The
modified model incorporates additional flexibiliip terms of human resources. Both
approaches make use of heuristics based on gehgicthm for solving the mathematical
programming model.

Mulholland et al. (2005) implement a mathematicabgoamming model for
deciding the case-mix for the elective patientseyloonclude that the optimal solution
favors the surgical procedures that require inpatiare with improvements of 16.1% in
hospital total profit margin and 3.6% in professibpayments. In addition, the researchers
conclude that with the changing case mix, underogitenal solution schedule, substantial
changes in terms of general care and ICU resouilcaation are required.

Some of the mathematical models feature multi-dgle®bjective functions rather
than the single criterion (e.g., monetary figuresdiby the Mulholland et al. (2005) in the
objective function). To cite an instance, Ogulatal &rol (2003) employ a hierarchical
multiple criteria mathematical programming approémhscheduling patients in operating
rooms. The model considers three stages. In teediage, the weekly patient acceptance
planning is conducted, in the second stage, assighat the patients to the surgeon groups
are conducted. In the third, and the last stagg;t@alay scheduling of the patients is
performed. They also provide case study from thgel&ospital in Turkey and conduct the
sensitivity analysis based on the simulation sttwyerify the results provided by the

mathematical model.
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Zhang et al. (2009) develop a mathematical modetHe weekly operating room
allocation template with the objective being thpatients’ cost measured as the LOS. The
clinical constraints and the case urgency priairgy included in the formulation as well. In
order to incorporate the effects of the randomrdsthe process, such as surgery time,
demand, arrival time, and no-show rates, a simarlatmodel is utilized and a case study is
implemented.

Scheduling might be conducted in an inpatient amgpatient settings. Usually the
distinction between inpatient and outpatient iseldasn the duration of the stay of the
patient after the surgery. Usually when patient® whdergo surgery stay overnight in the
healthcare facility, they are considered as thatiepts, whereas outpatients are considered
to be the ones who usually leave the hospital enstime day of admission. Although, most
of the researchers do not indicate the type ofpttj some authors make that distinction
(Adan and Vissers, 2002). The researchers empfoixad integer programming model to
identify the number and mix of patients to be atiditto the hospital. Their model also
takes the utilization of the key resources sucb@ating rooms and intensive care units
with respect to the stated target levels into antou

Jebali et al. (2006) implement two-stage model Imclv in the first stage comprised
of assigning the surgical cases to the correspgndperating room. In the second stage,
they develop the model for sequencing of the siggen the given operating room. They
compare the two strategies in which in first sggtethe decision of allocation of the
surgical cases to operating rooms is not recorsier the second stage. Second strategy

involves reconsidering the decisions given in tingt Stage in a less constrained setting.
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The authors indicate that the first strategy presithirly compatible results in terms of the
solution quality as compared to the second stradéghecreased computation time.

In a similar fashion, Roland et al. (2010) devebopeuristic based approach for
involving primarily with the human resource consita and compare the solution with the
mixed integer programming model. Planning and sgheg phases are conducted
simultaneously. While preparing the schedule, trefepences of the staff members for

operating rooms are also taken into consideration.

2.4. Emergency Patient Considerations

Most research efforts focus on scheduling and pranaf operating rooms for the
elective patients by assuming that dedicated ressufi.e., operating rooms, surgery
teams) are allocated for the emergency patientgefileeless, some researchers study this
problem for the patients from both of the streams.,(both emergent and elective)
competing for the same resources. Wullink et #1072 employ a simulation study to make
a comparison between the two policies. The firdicgoallocates a dedicated operating
room for the emergency patients and the secondypallocates the reserved capacity for
the operating rooms in which the elective patieté® receive surgery. Three performance
measures, namely the waiting time for the patiestedf overtime utilization, and operating
room utilization are used. The results show thatdhs a drastic reduction in terms of
waiting time for the emergency patients and sligictease in operating room utilization
when some reserve capacity is allocated in theabipgr rooms for emergency surgeries.
The researchers conclude that promoting the fletyibn terms of staff availability and

promoting the practice of allocating reserve cdpyanithe operating rooms will streamline
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the flow in the overall system thereby reducing wssting time for emergency patients in
the clinic flow.

Similarly, Bowers and Mould (2004) employ a simidatstudy to investigate the
effects of incorporating the elective surgeriesthe operating rooms allocated for the
trauma cases for the orthopedic cases. The resgargphint out that incorporating elective
patient cases in the emergency rooms promotediliéxiand increases the system-wide
utilization. On the flip side, the associated ridkcancellation or deferral of the elective
operation due to the arrival of emergency casesin@gase. This is a viable option based
on the premise that most elective patients prafeealier treatment at the expense of the
associated risk of cancellation. It is pointed twatt 13% of the elective patient demand for
the orthopedic cases can be supplied by sharingatwpg rooms between the two types of
patients. Although the results are dependent omileof patients admitted for the surgical
operations, the practice of sharing operating robetsveen the elective and emergency
patients does not have significant effect on offeegformance measures such as the number
of times the scheduled surgical operations caneatdmpleted in predefined time interval
and overtime practices that are needed for a gives period.

However, not all studies support the practice @ereing allocated capacity for
emergency cases in operating rooms that are phnsatieduled for the elective cases. For
instance, Bhattacharya et al. (2006) suggest tileting the dedicated operating rooms for
the elective cases might actually have benefidfakts in terms of the overall flow in the
system by reducing the overtime utilizations. Thehars, through retrospective study,
demonstrate that overtime utilization by shiftirdfdeon cases to the regular time hours in

the dedicated operating rooms for elective patiantgally reduces the overtime utilization
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of operating rooms by 72%. This improvement is higimlikely, if same operating rooms
might be utilized both for elective and emergenages. This is due to the increased load
and additional uncertainty introduced by the emecgecases. These findings, combined
with previous studies, demonstrate that the trdfidsetween allocating the dedicated
operating rooms for the emergency patients versymgithese two streams of patients in
the same operating rooms should be investigatesfuilyt The decision of allocating the
operating rooms for multiple streams of patientdighly dependent on the actual clinic
settings.

Everett (2002) develops a decision model for pliiong the elective surgeries. By
feeding the type of surgery and the urgency of dage, based on various performance
measures, the schedules of the elective patieatsraated. This approach might also be
used as a comparison tool for the different appgresian which the alternate policies can
be formed in a multi-dimensional setting.

Cardoen and Demeulemeester (2008) evaluate thecingbahe clinic pathways
through discrete-event simulation. Based on mul&tof performance measures, such as
work-in-process inventory and percentage of tinsthrts, efficient frontiers are provided
based on the sequencing rules of the differentscaBee researchers consider not only
operating room assignments where patients undenggical operations, but they also
investigate different processes utilizing variotisical resources. To cite an instance, they
consider the consultations where healthcare ressuate allocated for diagnosing the
health condition of the patient and deciding on film¢her action that needs to be taken.
The operating room is utilized if the patient’s lieeare condition necessitates surgery.

The effects of including emergency cases as weaheasate starts for elective cases are also
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considered. It is found that prioritizing the coltgtions (i.e., patient’s appointments) for
the returning patients, and the consultations dfepts whose surgeries involve pre-
surgical and post-surgical operations over newep#di can improve system efficiency.
Moreover, the researchers also consider the schehtesreasing the number of breaks in
the operating room schedule to respond to the eaneygadmissions in a timely manner.

Some researchers also consider LOS in the hospaall where the patient is
transferred after the surgical operation in theialgsis. In that regard, Harper (2002)
develops a framework for modeling the admissiorcess for the hospital. The researcher
considers LOS for the patient in the hospital wasdvell as the operating room availability
and workforce related constraints for running thegery schedule. In the study, the
operating room utilizations and corresponding beduirements are regarded as the
performance measures. It is indicated that tbegést_ime first LTF policy (i.e.,
conducting first major surgeries, then intermedsuegeries, and finally minor surgeries)
leads to reduced occupancies with the constanudghgmut, which is largely due to reduced
variation in terms of total operating time. Whatfetientiates Harper’'s study (2002) from
Cardoen and Demeulemeester (2008) is that, Hamperporates LOS in the corresponding
ward as an input parameter for the model, wherel@ar and Demeulemeester’'s (2008)
work mainly focus on the number of maximum bed nenents under different pooling
strategies by assuming constant LOS.

Some also combine heuristics and simulation stedync¢orporate the emergency
surgeries in the elective ones. For this purpos®, Der Lans et al. (2006) develop an
approach for allocating the elective surgery schledauch that the length of the break-in

moments can evenly be distributed during the ctirsehedule of the elective surgeries.
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The break-in moments are the moments that an ebestirgery schedule is expected to
finish and a new emergency surgery might be staBgdnly distributing these moments
throughout the day potentially decreases the waiime for the emergency cases that can
be infused to the current operating room schedutleowt preempting the elective surgery
schedules. Based on a simulation study, they detrav@ghat allocating the slack capacity
over all operating rooms with the break-in-momeptimization reduces the overall
waiting time. The researchers also propose difteramstruction and improvement
heuristics for evenly spacing the break-in momentach as possible during the course of
the day.

Niu et al. (2007) develop a simulation based apgroéor determining the
performance of the operating rooms. In their mothedre are basically two different time
slates that the patient might undergo surgical atpmr based on the nature of the surgical
operation. During weekdays, between 7:30 am to (L58, surgical operations for
emergency patients as well as elective patients@nducted. After 15:30 pm, and during
weekends, two operating rooms are allocated fodeaing surgical operations only for
the emergency patient. The researchers consideugaglements in operating rooms such
as the transfer time of patients in and out ofdperating rooms, operating room cleaning
time, setup-time, holding time of the patient ire thre-operation area, etc. The authors
compute the total LOS with respect to differentelevof clinical resources using the

discrete event simulation.
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2.5. Incorporating PACU into the Elective Patient $heduling

In order to capture the relationship between opegatooms and other clinical
units, and present approaches for improving théopeaance in the overall clinic settings,
researchers conduct studies that combine multipleal entities during the planning and
scheduling of operating rooms. In that regard, IQtits (Dexter et al., 2002), hospital
wards (Santibanez et al, 2007), holding area bélgntp the pre-operative facility for
preparing the patient for surgery (Mulholland et @D05; Denton et al., 2006), and the
PACU units (Perdomo et al., 2006; Pham and Klink&®08) are usually considered with
the operating rooms.

Marcon and Dexter (2006) employ a simulation sttalynvestigate the effects of
the different sequencing rules for operating roansPACU availability. Contrary to the
Harper’s (2002) findings, the authors caution 8@teduling the longest cases first leads to
the increases in overtime utilization of operatmogpms, PACU nurses, and the risk of
delayed PACU admissions, and blocking of the opsgatooms. It is suggested that
scheduling the cases in a mixed order (i.e., shbdase first, longest case second, second
shortest case third, etc.) analfrincrease in OR time andlf decrease in OR time (HIHD)
rule (i.e., scheduling the shortest case firstdthortest case second, the longest case in
the middle, and scheduling the other cases substgue terms of decreasing order of
scheduled operating room time later on) providetebetesults as compared to other
approaches. One of the differences is that theoapprtaken by Harper (2002) considers
PACU units as a downstream clinical unit as oppasethe Harper (2002) where they
consider the hospital wards as the immediate nemtndtream clinical unit where the

patients are transferred after surgical operation.
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VanBerkel and Blake (2008) employ a simulation gtadd demonstrate that the
bed availability in the corresponding hospital wandjht also be a bottleneck as well as
operating room availability. In that manner, thel lavailability in the hospital wards and
the PACU units are important factors.

Interestingly, research is also directed at the efiod the scheduling of operating
rooms as job-shop scheduling while incorporatindCPlAas a separate work station in the
system. In this vein, Pham and Klinkert (2008) iempént a job-shop scheduling approach
for representing surgical operations in operatiogms. The system is modeled as multi-
mode blocking job scheduling, where the node remtssthe available resources tied to the
corresponding operation. The model takes into camation the associated set-up times
(e.g., preparation of operating rooms for the ngxtgical operation), as well as the
cleaning times. The model also features the blockedrces where the nodes to the
corresponding operation remain attached and cabeoutilized elsewhere, until the
subsequent operation starts. For example, evemlthitne surgical operation is completed,
the bed in operating room will still be occupiedlass the patient is transferred to the
corresponding PACU unit.

Guinet and Chaabane (2003) consider the mateaahpig for the operating room
planning for the medium term (e.g., around a wedk)incorporates some problem
characteristics such as the hospitalization dateimtervention deadline. In the objective
function, the patient satisfaction and the resowrtiBzation are also incorporated. A
primal-dual heuristic approach is proposed basedtlm assignment problem that

incorporates time window additive constraints aegburce capacity.
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Process redesign activities might also play a mleuccessful operating room
management. Harders et al. (2009) develop an ist@ptinary approach for the process
redesign in operating rooms. The results indichtd significant reductions in the non-
operative time and non-anesthesia time might beeeh Better communication among the
stakeholders paves the way for improving efficieatgperating rooms.

Another study on this field is the work of Hsu €t(@003). It models the operating
room activities as two stage no-wait flow shop sithieg problem, which take the PACU
capacity into account. A Tabu-search based heuwristiiteratively solving those stages
near optimality is proposed. In the first stages tbjective is to determine the minimum
number of nurses in a single PACU such that theptetion time in the PACU is not
greater than the given threshold value regardiegtithe of the day. In the second stage,
based on the optimization of the first-stage of phaeblem, considering the output of the
first stage as input, the objective is to minimthe total make-span in the system. The
proposed approach has been implemented in headthamality with satisfactory results.

An interesting practice that can be associated thgtrecovery of the patients after
the surgical operation is letting the patients negansciousness in operating rooms rather
than the PACU unit in the absence of vacant bedfah particular unit. This approach
allows the flexibility but might present a hindranfor the flow of the operations in the
overall system. The corresponding problem is foatad as a four-stage hybrid flow shop
problem with blockings (Augusto et al., 2010). Téndsur stages are patient transports
from hospital wards to operating rooms, surgery gwbvery process, cleaning task, and
patient transports from operating rooms to hospuatds respectively. The MILP model

and a heuristic based approach based on Lagrangdaxation are developed. Both
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approaches (i.e., allowing and not allowing recowgem operating rooms) are compared. It
is concluded that when the ratio of PACU beds t® iimber of operating rooms drops
below 1.5, allowing the recovery in operating roomght be considered as a viable
option.

Cowie and Corcoran (2012) also investigate the clomcal factors delaying
discharge from the post-anesthesia care unitssititly indicates that not adequate number
of beds in the post-operative ward for admittanee hectic work schedule of the ward
nurses are the common reasons for delaying disebadrgm PACU units. In a larger
context, delays in discharging the patients fronCCRIAUnits have a detrimental effect on
the operating room efficiency. The patients du¢h® blocking in the PACU units cannot
be transferred to those downstream units in a yimmanner, and this might cause the delay
of surgeries in operating rooms. Therefore, impdowischarge planning, restructured
staffing, and alterations in operating room schiedulare beneficial for alleviating the
problem.

Improvements in the utilization of operating rooooms and downstream ICU
units might be realized by forming weekly masteaggal schedules. In a study conducted
by van Houdenhoven et al. (2008), implementingicyelaster surgical schedules leads to
the increased utilization of OR rooms, and the eé@se of unused operating room capacity
to 6.3% in 4 weeks. The schedule, at the same tmekls simultaneous optimal loading
for ICU workload. Table 2 summarizes the reseanchthee inclusion of PACU unit for

operating room planning.
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Table 2. Summary of existing research conductedcorporating PACU for OR planning and scheduling

Source Method Summary PACU units Specifics Strengthof the study Simplifying assumptions and
critique of the study
Ballard and Discrete event Analysis on determining The patients are transferrede Both inpatients and ¢ Only a small subset of
Kuhl (2006)  simulation maximum capacity for to the PACU units after the outpatients are considered in  surgical operations is
operating rooms and surgical  operation. The the PACU unit, considered,
downstream clinic units duration of stay in PACU ¢ Some patients can also be Assignments of different
units is deterministic. rerouted to hospital wards or  surgical operations in the

Cardoen et al.

(2009)

Cardoen et al.

(2010)

Denton et al.

(2006)

Fei et al
(2010)

Jebali et al.

(2006)

Mixed integer Multi objective  function e
programming and branchinvolving equipment usage,

and bound based infection related requirements,
heuristics and presurgical tests .

Exact branch and

method based on columnincorporates

generation is used.

Monte Carlo simulation Multi objective function that The specific duration at the Combination of
the considers patient intake, patienPACU unit is stochastic.

combined  with
heuristic approach

e Hybrid ge
algorithm
e Column gene

based heuristic

A direct
formulation

price Multi objective function that e
equipment,
infection requirements, ande

presurgical tests

waiting time, and overtime

requirements

discharged directly.

Maximum bed e Specified algorithms aree

occupancy in PACU based on tight branch and

units, bound strategies aree

Two stage PACU units  developed,

are considered. o Patient priorities are also
included.

Maximum bed allocation The equipment requirementse
in PACU unit, are also incorporated in the
Two stage PACU units problem solution.

are considered as in the .
case of Cardoen et al.

(2009)

simulation e
approach and meta-heuristic
method .

same operating room during
the day are not allowed,
Deterministic operating
times,

Assignment of patients to the
particular day is not
considered.

The patient assignment to
different operating
rooms/days is not considered,
Deterministic surgical
duration is considered.

No expansion possibilities in
operating rooms,

Inclusion of emergency
patient is not considered.

the

might  affect

sequencing stage.

netic e The first stage for daily ¢ Recovery time that can e Scheduling and sequencingThe daily assignment of patient
assignment is based on the be shared between problems can be performeddecision
ration set partitioning, PACU units and together,
e The hybrid genetic operating rooms, e Hybrid job-shop scheduling
algorithm with Tabu searche The predetermined stay problem
for daily sequencing is  in PACU units.
used.
MIP e First step consists of The patients are eithere The availability of the e

assigning surgical operations transferred to PACU units
e The second step consists ofr ICU units. o

sequencing the assigned
operations with the objective
of improving operating room

utilization.

PACU beds as bottleneck
In addition, the cleaning
time of operating room is
also incorporated.

The expansion of the existing
resources is not included in
the problem formulation.
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Table 2. Summary of existing research conducteddorporating PACU for OR planning and scheduli@giit'd)

Source Method Summary PACU units Specifics Strengthof the study Simplifying assumptions and
critique of the study
Marcon and Discrete event The impact of the sequencingPrimary emphasis is on theDifferent sequencing rules aree No PACU beds are considered

Dexter (2006)

Niu et
(2006)

Pham
Klinkert
(2008)

Cowie
Corcoran
(2012)

al.

and

and

simulation is used.

Discrete event

simulation is used.

MILP model formulation

Retrospective study

rules for the surgical cases orworkload of the PACU investigated. The effect of in the analysis,

the workload of PACU nursesnurses. sequencing rules on thee PACU units are analyzed in
is studied. workload of PACU nurses is jsolation.

studied.
Various performance measure$?ACU and post operatingLength of stay is also e No emergency patient arrival
such as the OR efficiency andhospital wards are considered in the analysis. is considered,
resource utilization is considered in tandem. e The expansion opportunities
calculated. are not considered.

MILP formulation to minimize Provides the pathways fore Flexibility to incorporate the The model does not suggest any
disruption due to consideringpatients to be transferred to emergency and add-on case, improvement heuristics.
add-on and emergency cases ICU units after certaine Minimize the disruption for
surgical operation. including emergency cases
using multi-mode blocking
job-shop framework.
Investigate effects of the-nohinking discharge with the A large sample of the patientse The paper does not establish

clinical reasons for delaying PACU units. is studied. the analytical approach.
admission to PACU units




2.6. Dealing with Stochasticity in Operating Room Rnning

The surgical operations in operating rooms areesitdp significant uncertainty due
to various factors such as the arrival of emergepatents, variability in duration of
surgical operations, no-show cases for the surgipatations, and the variability arising
from workforce related causes such as absenteaidmiek leave. In order to deal with the
stochasticity introduced by the various factorsystderable amount of research has been
conducted. Harper (2002) provides a generic framlewor determining the hospital
capacity by employing simulation analyses. Thréedint sources of variability (i.e., LOS
in hospital ward, duration of surgery, and arrigedfiles of patient groups) are considered.
One distinguishing feature of this study is tha #uthor considers the capacity of a group
of hospitals. In a similar manner, Persson ands@ar§2007) develop another approach in
which the surgery duration and the length of staytaken into the consideration as the
factors subject to variation. They employ a disemtent simulation model to analyze the
impact of resource allocation policies in the Ogédics department on waiting time and
the utilization of emergency resources.

It is a common practice that some planned slacksramorporated in the operating
room schedule at the expense of utilization lev@lgh practices help not only mitigate the
problems associated with the stochastic effectthersurgery duration, but also deal with
the inclusion of the emergency cases (van Oostiuah,2008a)

In order to deal with stochastic effects, otherrapphes are also proposed in the
literature. Most of those approaches are basedhenstochastic linear programming.
Probabilistic constraints are also included in thathematical models to decrease the

associated probabilities of utilizing overtime hauifo address the increasing problem
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sizes, column generation approaches are usuallyemgnted to find optimal or near-
optimal solutions in a reasonable amount of timan(@ostrum et al., 2008b).

Overtime is closely linked with the stochasticitysoirgery duration. Marcon et al.
(2003) explore this aspect by developing a proadaor operating room planning to
mitigate the no-realization risks while stabilizitige utilization rate of operating rooms.
The mathematical model is developed based on thé-kmapsack problem where the
available time for operating rooms is regardedhascbrresponding knapsack. The authors
incorporate two different cost functions. The fifsinction involves minimizing the
difference between the utilization rates of opegtrooms, whereas the second cost
function involves minimizing the no-realization ks (i.e., the associated risk that total
actual duration for the surgical operations excebdsallocated time for operating rooms).
It is concluded that the amount of overtime utdizZeased on these two cost functions
converge to each other when the number of surgigatations increases. The authors also
outline the strategies for minimizing non-realipati risks and conduct a simulation
analysis to evaluate the performance of operatognr schedules optimized by using the
mathematical modeling approaches.

The uncertainty in surgery duration is also evaddty the Denton et al. (2010).
They develop a two stage stochastic MIP model forswering the daily schedule of
operating rooms. The uncertainty in surgery duraisorepresented by the set of scenarios.
The model is applicable both in open scheduling laliledk scheduling practices. Several
heuristics are developed for this purpose for inapr@ the utilization of operating rooms.

Post-operative care resources are also taken ggouat by various authors for

reducing patient waiting time for elective surgsrend determining the capacity of the
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surgical suite (Persson and Persson, 2009; BadladdKuhl, 2006). Similarly, Perdomo et
al. (2006) develop an MIP based model that incatas the recovery rooms such that the
sum of the completion times for all scheduled pasiegs minimized. In addition to the
recovery beds, the cleaning time of operating robetsveen different surgical operations
is also considered. Based on this model, Augustd. ¢2008) develop another version for
incorporating the transporters in charge of transpgp the patient between operating
rooms and pre and post-operative facilities. A tstigrbased approach is then developed
based on Lagrangian relaxation.

In a multiple operating room environment, Dentorakt(2007) develop a block
scheduling approach. Two-stage MILP stochastic qamogning model is employed to
implement this approach. The problem domain is @afe suited for the cases where the
number of open operating rooms varies from dayatyp dheir model aims at determining
the optimal number of operating rooms and assighmiesurgical cases to those operating
rooms. At the same time, the model aims to schetth@lesurgeries to the fixed number of
operating rooms. Associated with this approach,ciexamd heuristic approaches (e.g.,
largest processing time first) are developed araluated based on the real data. The
researchers conclude that heuristic approachesrpefairly well.

Lamiri et al. (2008) develop a stochastic matherahtmodel for considering the
operating room planning under the elective and geray patient demands. In that regard,
the overtime utilization as well as the underuditian is incorporated in the mathematical
model. The authors prove that the stated problemdHsHard. They implement Monte
Carlo optimization method that combines Monte Casimulation and mixed integer

programming. It is demonstrated that increasingdbmputation budget (i.e., increasing
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the number of individual Monte Carlo simulation®lgs converging solution to the real
optimum value.

In a similar token, Lamiri et al. (2007) develog@umn generation approach and
combine Monte Carlo simulation with the column gatien approach. The researchers
demonstrate that near optimal solutions can beirgdttain reasonable computation times
by employing column generation approach that inesleonsideration of subset of possible
columns. This approach involves a pricing problemdetermining the promising columns
to be included in the solution (Lubbecke and Dasres2005; Barnhart et al., 1998). In a
similar sense, in order to address the uncertaimiyced by the duration of surgical
operations, statistical approaches are also propbsgevarious researchers (Dexter and
Ledolter, 2005; Dexter et al., 2007; Stepaniald.e2810; Dexter et al., 2009).

Other than the arrival and duration uncertainiesearchers have addressed other
types of uncertainty. For instance, Dexter and lied@§2003) study the stochastic effects
of contribution margin of the surgeons in the adlic@n of operating room capacity under
maximization of the hospital’'s expected financietiurn. On the other hand, Cardoen and
Demeulemeester (2008) study the effects of theuresounavailability for operating room
planning and related clinical processes by empbpyansimulation model. Lamiri et al.
(2009) compare several optimization methods in ghesence of the shared operating
rooms both for emergency and elective schedulescaseminimizing expected overtime
costs and patients’ related costs. For this purpase‘almost” exact method combining
Monte Carlo simulation and mixed integer prograngnis presented, and convergence
properties are investigated. It is indicated tHaz tMonte Carlo optimization method

provides the convergence to the optimal solutioraratexponential rate using modest
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number of samples. Among the heuristic methodsuTsdarch provides the best results.
An interesting observation is that, when variapilivith respect to arrival rate of
emergency patients decreases, solution qualityhefhteuristic approaches deteriorates,
which indicates that in a sense, it is easier teesthe stochastic problems as compared to
deterministic counterparts. In Table 3, various repphes for the incorporating

stochasticity in operating room and downstream icliunits are summarized.
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Table 3. Summary of existing research incorporastoghasticity in operating room environment

Source Method used Summary How the stochasticity is Strength Simplifying assumptions and
incorporated critique of the study
Ballard  and Kuhl Discrete event Analysis on the determining Duration for the surgical Simulation study might e A comprehensive model
(2006) simulation maximum  capacity  for operation is stochastic andhandle different surgical for handling stochasticity
operating rooms and handled with the durations. in the surgical duration is
downstream clinic units simulation study. missing,

e Overtime utilization of
operating rooms is not
included in the analysis.

Belien and Mixed integer Various  algorithms  for ¢ Number of patients Large set of the problem e Only surgery demand and
Demeuleemeester programming, MIP building master cyclic  who undergo surgical instances with the primary OR capacity constraints
(2009) based heuristics, andschedule are implemented. operations in each timeemphasis on the bed are considered,
simulated annealing block is stochastic. occupancy in the hospital e Model does not consider
e Duration of stay for wards the workforce
patient in downstream requirements in the OR
unit is stochastic. room and downstream
units.
Bhattacharyya et al. A retrospective study Effect of the inclusion of Stochasticity for duration A fairly long observation e Only the results of
(2010) with the corresponding the dedicated OR room forof surgical operation is period is adopted (1 year) empirical observation are
statistical analysis the emergency cases withimplicitly considered. and comparison is provided reported,
corresponding between before and after the Not supported by the
performance measures implementation. mathematical models
Bowers and Mould A  discrete event Effect of the allocating e Stochasticity for Performing surgical The model does not consider
(2004) simulation study separate unit for emergency duration of surgical operation for emergency andPACU units and analysis is
cases is considered. operation, elective patients is permittedconducted only for operating

e Demand for emergency in the same operating room. rooms.
trauma  patient s

stochastic

Cardoen and A  discrete event The effect of various Duration of surgical Effect of non-surgical clinic The model does not consider

Demeulemeester simulation study scheduling rules on theoperation and non-surgicalappointment on the existingthe expansion possibilities of

(2008) current workforce level is clinic appointments are workload of the surgical staff the current resource level.

investigated. stochastic. members is investigated.

Min and Yih (2010) A sample averageGenerate optimal schedule ofe Stochasticity in terms Two stage stochastic modele Expansion of workforce
approximation method elective surgery with  of surgical duration, with the recourse variables levels is not considered.
for two-stage stochastic uncertain surgery durations. e The length of stay in for delaying surgery of
model the downstream SICU elective patient

unit is stochastic.
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Table 3. Summary of existing research incorporasioghasticity in operating room environment (Cant’

Source Method used Summary How the stochasticity is Strength Simplifying assumptions and
incorporated critique of the study
Dexter (2000) A mixed integer Effect of moving last surgical Duration  for  surgical Model takes unconventionale Downstream clinical units
programming  model case of elective schedule tooperation is stochastic. approach for improving is not considered,
combined with new empty operating room utilization by moving start e

retrospective study

Hans et al. (2008)

on overtime utilization is
studied.

Local and constructivéleuristic methods are used tdDuration  for

time of surgical operation.

heuristics based on theminimize slack and overtime operations is considered to

mean and variance ofand number

duration of surgery

Lamiri and Xie (2007) Sample
approximation
metaheuristic

approaches

Lamiri and Xie (2008)

Niu et al. (2007) Discrete event

simulation

and PerssorDiscrete event
simulation combined
with mathematical
programming model

Persson
(2009)

average&Comparison  of
and different methods for elective
surgery planning based on

of cancelled
surgical operations.

several

the reduction of the overtime
and undertime

Monte Carlo simulationAn objective function that e
consists of the overtime costs

and moving the patient for
the next scheduling period is
formed

OR efficiency and resource
utilization are calculated

based on the scenarios and

tested using simulation study.

be stochastic.

e Total demand for the e
surgical operations is
considered to be
stochastic variable, .

e Time for arrival of

emergency patient is

considered to be a

stochastic variable.

Demand for the o

surgical operations is

considered to be
stochastic.

e Duration for surgical e
operation and time

spent in PACU units

are stochastic.

Duration for surgical e
operation is stochastic.

surgical e

Based on single quantitative
measure

e Assumption on the
availability of an operating
room for moving surgical
operation might not be
valid.

Constructive and e Availabilities of workforce

improvement heuristics and surgical teams are not

for clustering similar- considered,

variance surgical e Additionally,  expanding

operations in  same capacity of downstream

operating room PACU units is not
permitted.

Sharing resources o Current capacity is

between elective and assumed to be constant.

emergency surgery, e Duration for  surgical

Costs of scheduling the
elective patient to the
next planning period are
considered.

operation is assumed to be
constant

Both overtime and e
undertime utilization are
taken into account,

Approach does not take
work force requirements
into account.
e Downstream clinical units
are not considered.
of Overtime considerations for
rooms and

Preparation  time
patients for the surgical operating

operation downstream clinic units are
not taken into consideration.
Expanding current Inclusion of the emergency

capacity by adding beds surgery in current elective
Patients are prioritized Schedule is not considered.
based on waiting costs.




2.7. Research Gaps and Contribution of DissertatioResearch

Examining the literature, we conclude that sigmifitresearch gap exists in terms
of effectively establishing models for schedulimgdaescheduling the elective patients.
First of all, there are a few papers that examingerescheduling of elective patients, but a
comprehensive view on the scheduling and rescheglalf elective patients in the same
problem setting is missing. Moreover, although @abproaches developed in the literature
identify the downstream units such as PACU unhs, possibility of resource expansion
for PACU units in terms of adding bed/equipmentfdailitate flow of patients is not
explored. Additionally, although there are modélattdeal with stochastic duration times
and arrival of the emergency patients, those modelsiot establish the link between
operating rooms and downstream clinic units. Altilosome models in the literature are
used for building master surgical schedules, tinesdels rely on additional constraints for
limiting number of changeovers in operating roorttiisgs.

To bridge the research gap, we propose a novestage framework for scheduling
and rescheduling elective patients. Some uniquéribation of the proposed models can
be described below,

e In order to reduce the number of the changeovardaflitating the master
surgical schedule on the weekly basis where cesdiaigical operations can be
grouped in particular day/time of the week, oureziing model can implicitly
handle that requirement by limiting availability thfe desired surgical group to
consecutive time periods of the desired day/timthabthe block schedules can

be formed accordingly. Since the proposed modeliges this consideration
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implicitly rather than presenting explicit constis to enforce it, resulting
problem is smaller in size with respect to numidezomstraints.

e The proposed rescheduling model aims to minimize disruption in the
existing elective patient schedule. Although somedets presented in the
literature also aim to minimize the disruption bételective surgery schedule,
they do not explicitly consider the possibility @tpanding the current capacity
to minimize the amount of disruption. The propoapdroach might be used for
providing a comprehensive view on the tradeoff-mizing the disruption to
the existing schedule and expanding the capacityanetary figures.

e Unlike the other approaches which prioritize pasgeaxplicitly by grouping
them, the proposed models can implicitly take cafeissue of patient
prioritization. This provides additional flexibjiton assessing the consequences
of preponing or postponing surgical operationsdividual patient level. Some
patients might be more reluctant for their surgmagrations being postponed or
preponed. Therefore they might be assigned higb&r fgures as compared to
others.

Given the set of patients, and availability of rases, the developed framework
allows scheduling elective patients and at the séime addresses forming the new
elective schedule after the inclusion of the emeegegoatients. This approach is important
in the sense that usually the existing approacheka literature focus these two aspects
separately. Our approach provides a comprehensve on looking both scheduling and

rescheduling aspects.
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3. MODELING FOR DAY-TO-DAY SCHEDULING AND SEQUENCIN G OF

ELECTIVE PATIENTS

As described in the first Chapter, our approacloives a two-stage approach. In the
first stage, we develop a stochastic mathematicabramming model for day-to-day
scheduling and sequencing elective patients wigfane to various constraints such as the
availability of the surgical teams, operating rocand the bed/equipment in PACU units,
where the patients recover from the effects ofathesthesia. PACU is located downstream of
operating rooms in clinical settings. The elecipatient list with the corresponding types of
surgery is provided as the input for the matherahtitvodel. Based on this, the model is used
for assigning elective patients to the particulay énd sequencing those patients on that
particular day. Figure 1 presents a typical flowpafients on hospital floor. The constraints
included in the first stage are the availabilitigfs operating rooms, surgical teams (i.e.,
surgeons, scrubbers, technicians, and anestheR&§)U beds, and over-time constraints for
operating rooms. Due to physical limitations andiotgs other constraints, the number of
beds/equipment that can be added to the existipgcds for PACU units is limited, and this
perspective is incorporated in the model strucasrevell.

One critical factor for the first stage of the peh is the uncertainty related to the
duration of surgical procedures. Our approach eyspdoenario generation to determine the
joint probabilities that are used as model inpuas®&l on the corresponding joint
distributions and values of the decision varialalesociated with the outcome of the model,
the time slots that are occupied both in operatoamns and PACU units can be identified.
Based on this information, the corresponding madeer<of daily operations in the operating

room, as well as the need for various types ofisafdeams and the number of occupied
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beds in PACU units can be determined. Finding tlakeyspan of surgical operations in
operating rooms helps determine the need for owertiequirements for operating rooms
which is reflected in the objective function asostatem as well.

In that regard, the corresponding costs of hiriddional surgical teams as well as
the cost of adding additional bed/equipment in PA&E also reflected in the model by the
corresponding coefficients in the objective funetids for the constraints, one of the main
considerations is that simultaneously occupied hed¥ACU cannot exceed an upper limit,
and the number of simultaneous ongoing surgicatatipss cannot be more than the number
of operating rooms that are available. In shoe, ¢dbnstraints are considered with respect to
the following resources:

e Availability of the PACU beds, which include thegtgar beds, and additional

beds placed in terms of expanding the current ¢gpac

e Availability of the number and type of the surgidgebms, which include the

current number of surgical teams and additionagisal teams that can be hired
on-need basis,

e Availability of operating rooms in which the numbef ongoing operations

cannot be more than the number of available opgratioms.

Based on the input of the list of patients for 8lec surgeries and corresponding
surgery types, the objective is to,

e Assign the elective surgeries to a particular day,

e Provide the sequencing of surgical operationsam plarticular day
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The mathematical programming model developed f& plurpose addresses these
two problems simultaneously. In the next sectioa,outline the mathematical programming
model.

While surgical team member preferences and puaatibn of patients can also be
incorporated in the proposed scheduling model ptesgein this Chapter similar to the case
of scheduling and sequencing rules implementedaca hospital, differences arise in terms
of the decision making process. In the local hagpttvo-stage decision making process is
conducted, where the scheduling and day-to-dayesengg decision making processes are
carried out successively. In our approach, scheduind sequencing decisions are carried in
as single step.. Rather than assigning separatelilocks in terms of the master surgical
schedule, by limiting the availability of the suwgl teams to the specific time slots, we can
explicitly identify time blocks in our model whergpecific surgeons/surgical teams are
available. Additionally, equipment requirements htigalso be taken into consideration
implicitly, by limiting the number of one type otigyical operation currently ongoing by
limiting the number of surgical teams available fbat particular operation. In short, the
surgeon preferences and the master surgical s@&hstiucture are taken into consideration.
Our model can also take care of the patient pyiasgue. In the local hospital, the inpatients
are operated later in the day, and the outpatemtoperated early in day. The children and
the patients with specific travel requirementsas® given higher priorities. By introducing
constraints in the model that prohibits some p#tién be operated on certain specific time

periods in the model, the patient priority issue ba taken into consideration.
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3.1. Mathematical Programming Model
The mathematical programming model employs twoestagfochastic linear
programming model with recourse variables. Tabpeetents the notation for index, set, and

decision variables.

Table 4. Notation for index, sets, and decisionades

Indices
d: Day index;de{1, ... , D}
i Elective patient indexe{1, ..., I}.
J: Surgical operation type;e{1, ..., J}
t: Time period indexteT+1
t: Auxiliary time index, t'eT
w: Scenario indexoe{l, ... , ¥}
Sets
TdA: {Set for overtime hours at day d}
TdB: {Set for regular working hours at day d}
Decision variables
oLx: Amount of overtime utilized for the operating rooatdayd under scenario
O™V Amount of additional beds/equipment placed in PACU
_ 1if electivepatienti occupiesabedin PACU unit underscenariow
St - Ootherwise
_ 1if surgenyisscheduledostartat periodt for electivepatienti
X Ootherwise
. 1if electivepatienti hassurgeryat timeperiodt underscenariao
Yia Ootherwise
Zig, - Number of additional teams hired for surgical ofieress under scenario

The model features various constraints such ashgability of the surgical teams,
operating room, and PACU bed/equipment. The olyedtinction consists of the following
items:

e Cost of hiring additional surgical teams (with respto number and type),

e Cost of overtime utilization of operating rooms,
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e Cost of adding additional beds for PACU unit.

Elective patient list with the corresponding suygspes is provided as the input for
the mathematical programming model. Based on thésmodel is developed for scheduling
and assigning the elective patients for operatomgns and sequencing elective patients in a
particular day.

Based on this approach, a stochastic mathematicgragamming model with the

corresponding parameters is developed and preseniadble 5.

Table 5. Notation for model parameters

Parameters
BPACY: Current capacity of PACU unit for the scheduliregipd (in terms of beds/equipment)
B : Current capacity of operating rooms at digyn terms of hours)

CPACY . Unit expansion cost of PACU unit during planningipé ($/bed & equipment)
Hourly cost of hiring additional surgical team chlgeof performing surgical operation

ST

Cre of typej

COR: Overtime utilization cost of one unit of operatirmpm for the planning period ($/hour)
_ 1if electivepatienti requiredasurgeryof typej

m: Ootherwise

N: Number of operating rooms in the system

Kio: Operation time for surgery typeinder scenario (stochastic variable)

Sj: Length of stay at PACU unit for surgery typ@ours)

T: Number of time periods in the planning period

UPAcy: Upper limit on the over-utilization of PACU unitéd/equipment)

UOR: Upper limit on the over-time utilization cost ofenating rooms (hours)

Myt - Number of surgical teams available for performinggery typg at time period

pw): Probability of scenaria with respect to probability space., P)

The stochastic mathematical programming model stsif two stages. The first
stage involves determining the sequence and sdhgdof elective patients. After the first
stage, decisions are made, denoted by the corrésgpn variables, which indicate whether

the surgical operation for patients scheduled to start at time peribdlhe corresponding
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pairs for si, and vi, variables are represented and determined withectsp the
corresponding outcome based and) pairs. Based on this initiatios;, andyj, variables
can be classified as the second stage decisiomblesi which are dependent on the
corresponding;; variables based on scenat«io Note that all second stage decision variables
have an effect on the corresponding objective fanctalue whereas first stage variables,
(i.e., xi) have an indirect effect on the objective functiaue through determining the
second stage variables. Note that time pefied indicates the outside planning period in
which the patients are deferred to the next plammariod. This means that not all the
patients have to be operated in a particular pranperiod and some patients can be deferred
to the next planning period indicated By1. This brings additional flexibility to the model
based on the fact that in a high patient load emwvirent, operating all the patients in the
same planning period might be difficult, if not iealty impossible, due to the scarcity of the
available resources such as operating room timegicsh teams, and PACU beds. By
allowing patients to be operated in the next plagnperiod, the model provides a more
flexible approach. Moreover, in some cases, rathan over-utilizing or expanding the
current bed/equipment capacity in PACU units, igimibe preferable to defer some of the
surgeries to the next planning period as well bysatering the cost factor. Deferring
patients to next planning period might be alsoizedl based on prioritization of patients.
Based on prioritization schemes, different cosurég might be assigned for deferring
specific patients to the next planning period.Ha following, we describe the mathematical

model.
min E,[Q(x, )] (1)

S.t.
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Eq. 1 is the expectation of the overall objectivadtion, represented b®(xw),

which is only dependent on the second stage vasaBlq. 2 ensures that the elective patients

will be scheduled during the planning period. E@n3ures that the number of simultaneous

starts for the elective patients cannot be morae the number of operating rooms. Eq. 4
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ensures that the number of simultaneous ongoingatipes cannot be more than the number
of operating rooms. Eqg. 5 is related with the awestutilization of operating rooms. Eq. 6
ensures that the PACU beds are occupied for aimetitae period, after the surgical
operations are performed. Eq. 7 provides the liekveen the start and continuation of the
surgical operation. Eq. 8 stipulates that the @gsihumber of surgical teams (readily
available surgical teams and the additional nunolbérired surgical teams) will be equal or
more than the number of ongoing surgical operatmnypej. Eq. 9 ensures that the total
number of available PACU beds can satisfy the patlemand after the surgical operations
are concluded. Eqg. 10 determines the upper liroitshfe capacity expansion of PACU units.
Eq. 11 satisfies overtime utilization of operatimpms. Eq. 12 is the overall cost function
with respect t®™Y, 04,°%, andz,, variables. Those variables represent additionsi fuw
expanding the current capacity of the availableoweses, namely expanding the current
capacity of PACU units by adding additional bedipment, overtime utilization of
operating rooms, and hiring additional surgicalntés). Eq. 13 is used for calculating the

expected objective function value with respectdensirios with the probabilities.

3.2. Solution Approaches
A commercial optimization solver CPLEX in GAMS (sen 23.2.1) is used for
obtaining the results associated with the stoochamtithematical programming model. The
first step in the GAMS based approach is definihg parameters associated with the
scenarios based on the probabilities and surgioshtidns. After those parameters are
defined, a loop is constructed to calculate thetjprobabilities associated with the surgical

durations. The joint probabilities of the scenariage constructed to calculate the
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corresponding(w) values in Eq. 13. These values are used for adloglthe second stage
costs.

By using the expected values provided in Eq. 13jda#ly the problem is converted
to a deterministic mathematical programming modéle parametep(w) denotes the joint
probability for each scenari@ and corresponding(w) values are calculated based on the
independent realization of each possibility asdediavith the surgical duration. By using the
associatedp(w) values, one can calculate the expected value frsdtond stage costs
associated with the model.

Figure 3 depicts steps that are taken in the GAM@ementation for converting the

stochastic modeling problem to a deterministic ané solving it by the commercial solver.

Providing input for the probabilities associate(li
with durations of surgical operation

v

Creating scenarios and calculation of the join{
probabilities based on each scenario

v

Converting the model to the deterministic
counterpart based on joint probabilities and usipng
Eq. 13

v

Defining the governing equations as well as the
associated variables and parameters for the mgdel
that are described in Section :

v

Solving the mathematical programming mode
using commercial GAMS solver

Figure 3. Flowchart for solving the stochastic neatlatical programming model in GAMS
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On the other hand, another approach that mightakent for solving the stochastic
mathematical programming model is Monte Carlo sahah. Rather than calculating the
joint probabilities based on each scenario, an@pmration method is used for Monte Carlo
simulation. There might be cases where an expeatétinction similar to the one provided
in Eq. 13 cannot be computed exactly, and it mighltapproximated using Monte Carlo
sampling methods. In this case, random samples\gelg to solution space are drawn, and

the second stage costs can be calculated usiriglitving formula,
X 13 i
Ay (X) = WZQ(X, ') (14)
j=1

where q,(X) is the approximation of second stage coistss the total number of random

samples that are drawn, and are the realizations of existing scenarios basesampling.
The Monte Carlo simulation approach provides anr@pmation, and the convergence
properties of the Monte Carlo approach to actuhlesare dependent on the associated cost
function and sample size.

However, this research does not employ the MontdoCsimulation approach
because it may be computationally intensive. Spé&ecks are often needed to improve the
efficiency, but this makes the solution approacss Istraightforward. As such, we adopt
genetic algorithm as a solution approach to compatie the solutions obtained from the

commercial solver, GAMS.

3.3. Genetic Algorithm
In this section, we will provide information on tlgenetic algorithm approach in
detail. Genetic algorithm is an evolutionary stggteconsisting of different structures to

represent the solution. It is basically considei@dhe a search heuristic that can mimic the
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process of evolution. With other heuristic algamt such as the Tabu search, simulated
annealing, etc., they are collectively named asarheuristic algorithms.

The work on genetic algorithm which is computer dmtion of evolution started
around 1950’s by Barricelli (Barricelli, 1957). Tugh the years, researchers lay different
components of evolutionary strategy. The methodewlutionary strategy are in depth
described by Fraser and Burnell (1970) and Cro&ByJ). It came into the spotlight among
research community by work of John Holland in theyyand mid 1970’s (Holland, 1975).
Research in genetic algorithm remained largely ristezal, until the end of 1970’s, however
in 1980’s commercial products based on geneticrilgo began to appear.

The first step of genetic algorithm is to creat@@dom population of the individuals.
These individuals (or chromosomes) are randomlyegdged and a collection of those
chromosomes are included in the pool. This pooteggnts initial generation. To develop
better solutions, the chromosomes are evolved ¢ivout the generation. The evolution is
conducted by various selection and recombinatioaratprs that will be discussed in the
following sections.

Depending on the fitness value of the chromosomthesgchances of the chromosomes
for passing its genotype to next generations aa¢uated. This is done either,

e Stochastically (chromosomes have a better chanceeletction based on their

fitness function value);

e Deterministically (a chromosome with a better fgsefunction value will be

selected for recombination operator for the nexinegation instead of

chromosome that has lower fitness function value).
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After selection based on the fitness function vatbe individual genome is modified
using different operators. The most commonly ussssare,
e Recombination (e.g., crossover),
e Mutation operators

A schematic representation of crossover operatgiven in Figure 4 (Hackett, 1995).

Parents:

o1 1 oo 0
Children:

01 1 g

Figure 4 Example of recombination operativaditional two-point crossover

Based on recombination and mutation operators,poffgs are created. These
offsprings are evaluated based on the fithess ifumatalues to create a new population. In
order to create a new population, offsprings asl \ael parents are evaluated and the
chromosomes pertaining to next generations arecteele This might be either done by
stochastically or deterministically similar to ttechemes for selecting the list of the
chromosomes for producing children. Another appnoac selecting parents for producing
offsprings and selecting chromosomes for next gdiwgr is combining various stochastic

and deterministic approaches. In that regard, comdielitist and stochastic selection might
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be a viable approach. In this approach, a certamber of chromosomes are selected using
the elitist (i.e., deterministic) selection and tleenaining chromosomes are selected using
some stochastic selection principles such as tliette wheel selection. This decision
depends on many factors such as problem domaireseqmtation of solution, scaling of the
fithess function, etc.

After a new population is selected, the previowpstdescribed above are repeated.
Commonly, the algorithm stops when either the nunalbgenerations exceeds the limit or a
satisfactory fitness level has been reached. Ttisfaaory fitness function value might be
determined based on the bounds established fotggnodbomain.

A schematic representation of genetic algorithnpstes presented in Figure 5 as

follows;
Initial Keep the Piskitha friova
population original that reduce
generation and starting time of infeasibilit
feasibility the patient in e ¥
check solution
L] L]
Create a Evaluate Calculate the
random list of fitness function fithess function
patients values value for each
offspring
v
Far each patient
in the list, Choose the
consrwderrmovmg o chromosomes Create a
starting time one : opulation in
period backward forofispring ¥ pl:m :
or forward 3 based on W.
— fitness function 0 generation
value using elitist
Calculate the an,d, ,
infeasibility determu_‘nstlc
index for each | [Y&S Apply the selection
move recombination
and mutation
operator for
producing
Is the move offspring
reduce the
infeasibility
For each
offspring,
Pick the move W A
that reduce the o Car e Best solution
infeasibility et is reported
feasibility
most .
index for each
move

Figure 5. The genetic algorithm flowchart
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As previously discussed, a typical genetic algaonitiequires genetic representation of
the solution. Usually, a standard representatiosach candidate solution is the array of bits.
In our research, we take another approach andngreseh unique solution by combination
of three different parts. The chromosome strucivitiebe described in the following section.

After defining the fitness function and the chromm® structure, the genetic
algorithm proceeds through repetitive applicatibrihe three different operators, which are
mainly the mutation, crossover, and selection &xtrgeneration operators. Those operators

will be discussed in more detail in the following.

3.3.1. Representation of the solution
The chromosome representation for any given salutiandidate consists of three
parts. We demonstrate the chromosome representatiog three different structures. These
chromosome structures can be listed as follows,
e Starting time of the surgical operations,
e Sequence of patients that matches with the startimgs of the surgical
operations
e The number of patients undergoing surgery in egoéraiing room, and the
number of patients rolled to the next planning qeri
These three parts of chromosomes are combinegtesent the solution. All the bits
in the chromosome consist of integer numbers. Treetivo parts are coupled for presenting
the overall sequence and starting times for theratipms. The third part actually

complements the solution. It specifies the numifepatients assigned to each operating
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room. It also specifies the number of patientseblio the next planning period. An example

of the chromosome representation is given in Figure

\_35944313.. 37534
Y

Starting time for surgical operations (First pdrclbromosome)

K4267""2013/

Sequence of the elegtiagents (Second part of chromosome)

\\1112910})

The number of patients assigned to each operatimm and rolled to next planning period
(Third part of chromosome)

Figure 6. Sample chromosome representation

The first part of the chromosome structure provideshe information on the starting
times of the patients. Based on Figure 6 as an pbearwe can see that the first patient in the
sequence is scheduled to be operated at time p@rithee second patient is scheduled to be

operated at time period 5, and so on.

The second part of the chromosome is the sequdnte @atients. For determining
the starting time of a specific patient, the intetption should be conducted based the first
and second part of the chromosome. Based on Fiyagain, we see that the start time of the
surgical operation for the fourth patient is scHeddor the time period 3. The second patient
is scheduled to start at time period 5, the sixtignt is scheduled to start at the time period
9, and the twentieth patient is scheduled to siaithe time period 5, and the thirteenth

patient is scheduled to start at time period 34.
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Note that it is possible that same time slots mlgdhtepeated in the first part of the
chromosome representation in a multi-operating remvironment. To cite an instance, in
the sample chromosome representation, time sletrgégeated twice which means that the
time slot 5 is selected as the operating time viar different patients (i.e., patient number 2
and the penultimate patient), but since they amraipd in two different operating rooms,
their schedules do not have time conflict and hadtients can have the same starting time
for their surgical operation.

The third part of the chromosome governs the nurobsurgeries performed during
a given day. For example, based on Figure 4 agai@, 4-operating room scenario, we
conclude that 11 patients are scheduled to be tgaeina the first operating room, 12 patients
are scheduled to be operated in the second opgnatom, 9 patients are scheduled to be
operated in the third operating room, and 10 p#tieme scheduled to be operated in the
fourth operating room, and regarding the chromosamgresentation, one patient is
scheduled to be operated in the next planning gevitich means that the patient will not be

operated in that particular planning period.

3.3.2. Initial population generation

The first step for the initial population generatiomvolves randomly sequencing
elective patients. The first part of the chromosaméch represents the starting times of the
patients is generated by randomly assigning numibetiwseen 1 and the last available time
slot of an operating room. Using this scheme mighdl to infeasibilities. To cite an instance,
if the surgical operation is scheduled for the laste slot, and the duration of surgical

operation is more than one hour, then time sloés dannot be assigned to any surgical
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operation is occupied with that particular surgicase. The same is true if the surgical
operation is scheduled to start one period betoeddst available time slot and the duration
for surgery is more than 2 hours.

When infeasibility is detected, new random numbetween 1 and number of
available time slots is generated and feasibibtghecked. However, this initial population
generation scheme might also lead to other infddgb due to the scarcity of the resources.
To cite an instance, two different surgical openati might be scheduled in the same
operating room; or due to the lack of resourcesight not be possible to perform two or
more surgical operations for the same time pemadifferent operating rooms.

Note that usually PACU units operate for longer etirperiods as compared to
operating rooms for accommodating patients undaggsurgical procedure. This convention
is valid based on the fact that PACU units are itared to be a downstream clinic unit. For
example, if the time spent in a downstream climd @.e., PACU unit) is one hour and the
operating rooms run 12 hours per day, the PACUswshbuld be operated at least 13 hours
to accommodate all the surgical operations perfdrnre the operating rooms. If the
feasibility check regarding the time limitationsadopted for operating rooms, provided that
PACU units continue to operate for an additionalihanfeasibility in terms of the time
limitations does not exist for PACU units. Howewvether types of infeasibilities related with
PACU units might arise such that the number ofgmasi who simultaneously occupy PACU
beds are greater than the number of available Qeghi@ent in PACU units. However, with
respect to working hour constraints, the initialpplation creation scheme does allow

infeasibilities. The second step is creating thgusace of patients for the second part of the
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chromosome by using random permutation of the pitieThe infeasibility check that is
performed in the previous step is not performethis step.

The third step is assigning patients to differeperating rooms. In this step, a
random number between 1 and the total number aérgatis generated for each operating
room. In addition to that, a random number gendrhtiethe same scheme is assigned for the
patients who are rolled to the next planning haorj2¢+1 bits of the chromosome. After
assigning the corresponding number of patientsebmh operating room, the total sum is
calculated. If the total sum is equal to the numbermpatients, this step is concluded.
However, it might be the case that the sum of totahber of patients scheduled for the
operating rooms and rolled to the next planningzoor might not match the total number of
patients in this representation scheme. If thel &ian is more than the number of patients,
then it is apparent that the total sum should beced to match the total number of patients.
In this case, a random number is uniformly seletietiveen 1 antl+1 whereN represents
the total number of operating rooms. To cite amaimse, 1 indicates the first operating room,
andN+1 means the group of patients rolled to the nextriplag horizon. After selecting the
corresponding group of patients, this number isuced by 1. Then in the next step, this
process is repeated, until the total number ofepédi scheduled for the operating rooms and
rolled to the next planning horizon is equal to tb&al number of patients. If the selected
group is empty (e.g., the number of patients scleeldn that particular operating room is 0),
then another group is selected for reducing nurabpatients in that specific bin.

In a similar manner, if the total number of patgeoperated in different operating
rooms and the number of patients rolled to the mpéaaining horizon is less than the total

number of patients, then similar steps are takéms fime, the sum is incremented by 1 by
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selecting the specific bin and increasing it. Agdhe feasibility checks are performed to
ensure that number of patients in a specific brmoaexceed the total number of patients. If
such a case is encountered, another random numgenerated.

In order to decrease the infeasibility of the adifpopulation, we selectively include
the generated solution in the initial populatioor Ehis purpose, a large number of randomly
generated solutions (i.ey) are considered for the analysis. If the genera@dtion is
feasible, it is automatically included in the ialtipopulation. If the generated solution is
infeasible in terms of the availability of operatirooms, surgical teams, or PACU beds, then
for each infeasible solution, the randomly genefaiatient list is traversed, and for each
patient, the start time of the operation is conrgddo be moved one period back or forth in
an attempt to decrease the overall infeasibilithe Tmove that decreases the level of
infeasibility most is chosen, and a new scheduléoimed based on this move. If the
infeasibility is not reduced by preponing or posting starting time of surgical operation,
then the current schedule is kept.

This move procedure is repeated for every patianthe sequence until all the
patients in the randomly generated list are trackri) order to promote the variability of the
pool of the initial population, the patient listgenerated by using random permutation of the
patients. At the end, the overall infeasibility iarms of the violation of the resource
constraints for each solution is calculated.

After each solution in the initial population is nsadered, chromosomes (i.e.,
solutions) are sorted according to the ascendinigroof their infeasibility value. The top
chromosomes in terms of their infeasibility vales., the least infeasible ones) are selected

for the initial population. In short, we generaterandom solutions, attempt to move the
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starting time for each patient in the randomly tedalist of the patients one time period
forward or backward for decreasing the overall asfbility and then calculate the feasibility
index for each move and select the move that tieasibility is reduced most. If the
infeasibility is increased due to the move for edithction, then the original schedule is kept
in the population. After all patients in the liseaovered, we proceed with the new randomly
generated solution and place it in the list of po& candidates for the consideration for the
initial population. As previously suggested, aftars step, all the solutions are ranked
according to the ascending order of their infeéigybialue, and the top chromosomes in the

list are included in the initial population.

3.3.3. Crossover operator
For each generation, a certain numbectobmosomes/solution pairs are selected for
crossover operation. From those pairs, the first gathe chromosome for the offsprings is
created using the two-point traditional crossovperator for the starting time for each
operating room. In a two-point crossover, two peiarte selected for the parents, and then all
the alleles between these two points are swappédebr the parent chromosomes,
rendering two offspring chromosomes. An exampléhef two point crossover is provided
below;
Parent1:35|46|21
Parent2:63|52|14
In this representation, the crossover sites aratéacafter the second allele and the
fourth allele. Performing the swap, we obtain;

Offspring 1: 355221
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Offspring2: 634621
Note that under this scheme, the duplication dfledl is permitted and it might be

possible to have two patients to have the samdéngiaime for their surgical operations.

Also another point worth noting is that, beforefpaming the crossover operator, combining
information from the first and second parts of chosome, the starting times of the surgical
operations for patients are sorted in the ascendmdgr of their index values. The index
values are represented by the second part of themcsome. After this step, crossover
operator is performed accordingly. An example 1&giin Figure 7.

5298436

Starting time of surgical operations (First parcbfomosome)

2734615

Sequence of elective patients (Second part of cbsome)

35986472

Sorted starting time according to the index values

Figure 7. Schema for sorting the first part of choasome according to index values

For the second part of the chromosome, #rtigd mapped crossover (PMX) operator
is utilized. The reason for using the PMX operasathat the sequence of patients constitutes
the ordered chromosomes, in which applying 2-pomany traditional crossover operator
might yield to infeasible sequences of patientse Thfeasibility might be due to the
representation of patient in the sequence for rtiwaa once, or not being represented at all.
To prevent the representation problem, various soeesr operators for the ordered
chromosomes are developed. The PMX operator iobttem. It offers higher performance

in some problem domains (Al-Dulaimi and Ali, 2008pr this type of crossover operator,
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the first parent donates a group of alleles andctreesponding group from the other parent
is sprinkled about that particular group in thespfing. Once that is done, the remaining
alleles are copied directly from the second paréhe steps are described below (Rubicite
Interactive, 2012),

1. Randomly select a group of alleles from the firatgmt and copy them to the
child. During this process, the index of the segiménrecorded.

2. In the second step, by identifying the same segresitions in the second
parent, pick the same value that has not beenaapithe child. For each of the
values;

a. Record the index of this value in the second paremtate and record the
value from first parent in the same position.

b. Find the index of the same value in the secondnpare

c. If the index value in the second parent is patheforiginal alleles that has
been selected, then go to stegnd use this value.

d. If the position is not the part of the originaleddls that has been selected,
then insert the value in step 1 into the offspimghat position.

e. Copy any remaining positions from second paretiéooffspring.

However, this crossover operator is not appliecevery parent. For each pair of
parents, the random number is generated. If theergeed number is smaller than the
probability of the crossover (i.e;), then the crossover operator for the second qfatthe
chromosome is applied. The crossover operator piepwithin the same operating room,

and since the number of patients in each operatogy might be different, the crossover
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operator involving variable length is performedgutie 8 represents the schematics of

variablecrossover operato

i1) (21
T Fas
I I
i
3) (4)
(31 iZ)

Figure 8. Schematic representation of variableszresr operatc

The variable crossover operator with lower probgbis adopted for preserving tl
order of the sequence of the patients and not mlisig the building blocks based on 1
sequence of the patients.

For the last part of the chromosome representaéisingle point crossover is use
Note that the feasibility check is performed anepstare taken to equate the sum of

scheduled and rolled over patients to the numbéstaf patients

3.3.4. Mutation operator

The mutation operator for the chrommes is performed on the bit by bit basis.
each bit, a random number uniformly distributedwssn O and 1 is generated. If -
generated random number is below the mutation pibtya then the bit is replaced with
random number between 1 and thtal number of operating hours. To cite an insta

assuming that there are 5 operating days, and U lavailable for operating room each ¢
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a random number between 1 and 60 is generatedih@neéxisting starting time for the
particular patient is replaced with this numberr fe second part of the chromosome, the
exchange operator is performed. Again, a numbealr ifhuniformly distributed between 0
and 1 is generated for each bit in that particalaomosome part. If the generated number is
below the mutation probability, then that partieyatient is exchanged with another patient.
For the third part of the chromosome, mutation esfggmed by incrementing and
decrementing the number of patients in a particopsrating room. If the generated random
number is below the mutation probability, then &eotrandom number is generated. If the
number is below 0.5, then the value for that palaic bit is decremented, otherwise it is
incremented. After repeating this step for evetyimithe chromosome structure, the total is
checked to ensure that the number of patientsangarticular representation is equal to the
total number of patients. After the mutation operas performed, the total infeasibility for
the offspring is calculated. Similar to the caseirdfial population generation, for each
patient in the randomly generated patient list, mg\vhe start of the surgical operation one
period backward or forward is considered. If thggasted move decreases the overall

infeasibility, the move is performed. This is penmf®d for every offspring.

3.3.5. Selection for the next generation

For selection for the next generation, a mixtureebfist and the roulette wheel
selection is performed. A certain number of chroomess are selected using the elitist
selection with ranking of the chromosomes from Iest to the worst with respect to the
fitness function values. A fitness function valsecalculated based on the objective function

value and infeasibilities associated with that ipatar solution. The penalizing scheme for
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the infeasibilities for a particular solution istloed in the next section. The remaining

chromosomes are selected using the roulette whksdton.

3.3.6. Penalizing scheme

Regarding penalizing scheme for evaluating theefgnfunction, we adopt the approach
developed by Joines and Houck (2004) where theltyeoaefficients can be calculated as
follows,

9(x) = p* (15)
where g(y) is the corresponding penalty coefficient for violg the constraint at generation
x, and p is a constant After calculating the penalty coefficient, the abtamount of
infeasibilities determined by the violation of ctnagnts depicted by Egs.3-5 and Egs. 8-11.
The violation of constraint is calculated by takihg difference of left and right hand sides
and multiplying it with a particular cost figurehib enables a wider search in scope at the
initial generations with lower penalty coefficienend towards the end of the execution of

genetic algorithm with increased penalty coeffitsen

3.3.7. Genetic algorithm parameters

The parameters of genetic algorithm are providedrable 6. The values of the
parameters are provided in Table 7. The genetiorigiign parameters are decided based on
literature recommendations and pilot runs. Grefitest(1986) shows that the bit-by-bit
mutation rate around 0.01 provides better rese$igecially for the off-line performance. The
off-line performance measures the average fitnesstion value of the best solution found

so far throughout the generations and emphasizeoiimg the best solution found in every
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generation. De-Jong (1992) demonstrates that |l@mm tperformance is improved by
selecting a population size between 50 and 100feGstette (1986) also indicates that the
crossover rate of 0.45 provides better resultenms of the off-line performance as well. The
population sizes varying between 30 and 80 arertegppdo provide better results in that
regard. It has also been indicated that the pediooa of PMX improves with the increasing
population size and is robust with respect to ntatate (Buckles et al., 1990). In this
study, we refer to the literature for an initiahge of the parameter values and employ pilot
runs for fine tuning of those parameters. The nmtaprobabilities and population size are
selected based on the values taken from the literaOther values are selected based on the

pilot runs.

Table 6. Genetic algorithm parameters

Parameter Notation
Number of parent pairs selected for crossover T
Mutation probability for first part of chromosomigture 71
Mutation probability for second part of chromosostreicture 72
Mutation probability for third part of chromosomieusture 73

Number of chromosomes/solutions selected for thxé generation by elitist selection 0
Number of chromosomes/solutions selected for tix¢ geeneration by roulette wheel ¢ -v

selection

Population size 0

Number of randomly created solutions generatedhfiinitial population

Crossover probability for second and third partlmfomosome depicting sequence of ¢
patients

Limit on maximum generation number X
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Table 7. Genetic algorithm parameter values

Parameter Value
o 20
T1 1%
T 1%
73 1%
) 15

®-v 45
) 60
W 1000
G 0.05
x 5000

3.4. Problem Parameters

The parameter selection for the problem is an it@mbrconsideration. In order to
find the values for the parameters used in the maode resort to the literature and use
similar values adopted in the literature previously

Olejarz (2009) reports an average cost of $4000fdiagn additional bed/equipment
for PACU units. Park and Dickerson (2009) repod tperating room cost is around 15-25
USD/minute during the overtime hours. AccordingSalary.com (2012), the hourly median
rate for surgical team consisting of a surgeonam@sthesiologisand a registered nurse is
$4,156/hour. These values are compiled separatety the salary.com site and calculated
based on the individual values for the salariegshef surgeon, anesthetist, and the nurse
assistant. Vogel et al. (2010) indicate that cdsdeferring the surgery of a patient is
$3,798/day. We assume a fixed value of $18,99@dderring the surgery of a patient to next
planning period. The corresponding values for inpatameters that are included in the

model are provided in Table 8.
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Table 8. General problem parameters

Description Cost coefficients
Exceeding the regular capacity but not overtime $4,000/bed-day (Olejarz, 2009)
capacity of the PACU unit
Additional cost of hiring a surgical team $4,156/hour
Cost of overtime for an operating room $1500/hr (Park and Dickerson, 2009)
Rolling patient to next planning period $18,990/patien{Vogel et al., 2010)
Length of planning period 5 (days)

Regarding the percentage of the patients with wdpedifferent surgical types and
duration of surgery, corresponding data is colédi®m a local medical center. Table 9
provides the characteristics for duration of theggmal operations. Based on the information
obtained from the local medical center, the comwesing coefficients of variation are
calculated for each surgical specialty. The sutgspecialties having higher coefficient of
variation are incorporated for forming the scemariéor this purpose, the surgical specialties
having coefficient of variation over 0.52 are s&delc For determining the corresponding
probabilities, the histograms of surgery duratient@ining to particular surgical specialty are
used. For this purpose, corresponding durationhfersurgical operations is grouped into the
bins. Based on the relative frequencies of the esponding bins, the corresponding
probabilities are determined. Table 9 presentsesponding probabilities and coefficient of
variation for each surgical specialty.

Coefficient of variation can be calculated with tbBowing formula,

¢ - (16)

g
U
wherec, is the coefficient of variations is the sample standard deviation, gnds the

sample mean.
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Table 9. Characteristics of the duration of surgaqeeration

. . Duration of operation Corresponding Coefficient of
Surgical Operation . . .

(min) probability variation
Cardio-Vascular (CV) 240 1 0.433205
Ear-Nose-Throat (ENT) 60 | 120 06 | 04 0.801798
General Surgery 60 | 120| 180 02 | 05 |03 0535059
Hand 60 1 0.451006
Neurology 240 1 0.481006
OB/GYN 120 1 0.508653
Ophthalmology 60 | 120 08 | 02 0.523463
Orthopedics 120 1 0.483529
Podiatry 120 1 0.433205
Urology 60 | 120 06 | 04 0.688692

Based on the coefficient of variation analysis, determine that the durations for
Ophthalmology, Urology, ENT, and General Surgergusth be represented by stochastic
variables. In order to determine the correspondimgbabilities, in the first step, the
histograms based on corresponding surgical duaaoa drawn. These histograms are based
on the bins having a width of 15 minutes. The lgsams for surgical duration of General
Surgery, Ophthalmology, ENT, and Urology are preddn Figures 9, 10, 11, and 12

respectively.
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Figure 9. Histogram for surgical duration for Geale&Surgery
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Figure 11. Histogram for surgical duration for ENT

In total, we included 24 scenarios based on thet jdistribution of the duration of
surgical operations. By analyzing the data coli@dtem the local medical center for the
period of July 1, 2011-June 30, 2012, the percestamd types of surgical operations are

calculated. The surgery types with correspondinggreages are provided in Table 10.

77



Counts
Ny
o

m Urology Bin
Count

0-15
15-30
30-45
45-60
60-75
75-90

90-105
120+

105-120

Surgical Duration for Urology

Figure 12. Histogram for surgical duration for gy

Table 10. Corresponding percentages of patients\gelg to each surgical specialty

Surgery type Percentage, %
Cardio-Vascular (CV) 5
Ear-Nose-Throat (ENT) 15

General Surgery 30

Hand 5

Neurology 5
Obstetrics and gynecology 10

(OB/GYN)

Ophthalmology 5
Orthopedics 15

Podiatry 5

Urology 5

In order to identify the effects of the number glecating room and elective patient
load on the solution quality and computation tiness,approach based on the experimental
design has been utilized. For this purpose, 9 ”iffescenarios are developed. Our approach
involves running the genetic algorithm and GAMSdshsommercial solver for different sets
of the input parameters of the problem, and progjdihe comparison based on solution

guality and computation time between these two @gogres.
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As previously mentioned, the parameters that aiegbased in the experimental
design are as follows,
e Elective patient load
e Number of operating rooms
Three different settings for the elective patievad (i.e., 50%, 85%, and 110%) and
three for the number of operating rooms (i.e., 4,a6d 8) are used for our analysis.
Considering the complete experimental design, we Bascenarios in total. Based on these 9
scenarios, a comparison between genetic algoritiuhttze GAMS based commercial solver

is performed.

3.4.1. Elective patient load

Elective patient load is an important parametett dhetermines the utilization of
operating rooms and corresponding cost figuresigh klective patient load likely leads to
postponing some surgical operations to the nextrhg period. The elective patient load for

operating rooms can be expressed as,
L= (17)
K

wherelL is the elective patient loagl,is the total hours required for performing thegsuires
in the elective patient list, and is the number of regular hours for performing suies in
operating rooms.

Note that total hours spent for conducting the isatgoperations in operating rooms
is determined based on the maximum duration tim&jmeng to the surgical operations. On
the other hand, the calculation of the total wogkimours available for operating rooms

excludes the overtime hours.
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Based on those, the elective patient load thathrae levels can be represented with
respect to the generated scenarios. The electitienpdoads are provided in Table 11.
Regarding the PACU beds, for the 4 operating rooemarios, the current number of PACU
beds is set to be 3. For the scenarios involvingpérating rooms, 4 PACU beds are
incorporated. Finally, for the scenarios with 8 igteg rooms, the number of PACU beds is

set to be 6.

Table 11. Elective patient loads utilized for tleersarios

Scenario Elective patient load
1-3 50%
4-6 85%
7-9 110%

3.4.2. Number of operating rooms

Number of operating rooms is determined based @n tttal operating rooms
available for performing the surgical operationbleal?2 lists down the levels utilized for the
scenario analysis based on the number of operatiogns. Based on these settings, final
experimental design is formed. Based on informatibtained from local medical center, we
assume that, for operating rooms where overtimetiges are allowed, the daily overtime

limit is set to 2 hours for each operating roome3énscenarios are provided in the Table 13.

Table 12. Number of operating rooms utilized fdfedent scenarios

Scenarios Number of operating rooms
1,4,and7 4
2,5,and 8 6
3,6,and 9 8
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Table 13. Problem parameters with respect to smenar

Scenario Number of operating rooms that Number of Elective Number of
overtime practice is employed PACU beds patientload operating rooms
1 2 operating rooms 3 50% 4
2 4 operating rooms 4 50% 6
3 6 operating rooms 6 50% 8
4 2 operating rooms 3 85% 4
5 4 operating rooms 4 85% 6
6 6 operating rooms 6 85% 8
7 2 operating rooms 3 110% 4
8 4 operating rooms 4 110% 6
9 6 operating rooms 6 110% 8

3.5. Scenario Results
Based on the corresponding runs, the computatioa &ind solution quality of both
approaches (i.e., GAMS based approach and genlgiicitam) are reported. For a fair
comparison of between the genetic algorithm and GAbhsed commercial solver, equal
amount of computation time is allotted for eachrapph and the results are compared. For
this purpose, first genetic algorithm is run, aotht computation time is recorded. The same
amount of computation time is allocated for GAMSéxd commercial solver. In Table 14, a

comparison between GAMS and genetic algorithm asigied.

Table 14. Comparison of genetic algorithm and GAb&Sed approach

Scenario GAMS Genetic Computation  Relative
solution ($)  algorithm time (sec) difference
solution ($) (%)
1 0 3823 3165 N/A
2 38476 40484 5578 -4.96%
3 43923 44817 7046 -1.99%
4 45815 48372 4562 -5.29%
5 59124 58245 7853 1.51%
6 87839 91635 10131 -4.14%
7 147973 146785 6001 0.81%
8 N/A 173427 10258 N/A
9 N/A 183472 13276 N/A
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Examining the results, we see that usually withitiegease of number of operating
rooms, and elective patient load, the computatiore tincreases considerably. To cite an
instance for Scenario 2, the computation time B78,seconds, whereas for the eighth
scenario, the value rises to 10,258 seconds. Fosd¢knarios involving heavy load and 8
operating rooms (i.e., Scenarios 8 and 9), the GAMSed approach is not able to find the
optimal solution or near optimal solution due te firoblem size. We see that for scenarios
1, 2, 3, 4, and 6, the GAMS based approach prowe#er results. To cite an instance, for
scenario 2, the relative difference is 4.96% inofagf the GAMS based approach. For the
scenarios 4 and 6, the difference is 5.29% and’4.e$pectively.

The progression of objective function value of thneumbent solution over the
generations needs to be examined for the gengjicitim. Figure 13 shows the progression

of the best solution over the number of generatfonthe 8" Scenario.
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Figure 13. Progression of best objective functiatug for the genetic algorithm for th& 5
scenario
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Figure 13 indicates that the objective functionuealconverges to the value of
$58,245 approximately after 4,300 generations. dbjective function value progresses in
stepwise functions. Frequent stepwise decreasexjgctive function value are observed
especially at the initial generations. This tresdréplaced with less frequent decrements
throughout the later generations. However, basetheramount of decrements, the trend is
not obvious, the amount of reductions in the eadenerations usually equals to the amount
of decrements in the later generations. Therefar&end does not exist in terms of the
amount of reductions in the objective function \eathroughout the generations. Similarly,
the progression of the objective function of beduton for Scenarios 2 and 8 are provided

in Figures 14 and 15 correspondingly.
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Figure 14. Progression of best objective functiatug for the genetic algorithm for th&'2
scenario
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Figure 15. Progression of best objective functiatug for the genetic algorithm for thé 8
scenario

Figure 16 depicts the progression of the solutioality provided by GAMS based
approach for the"™Scenario at predefined time intervals. These cdatjon time intervals
are set at 30, 60, 120, 300, 600, 1,800, 3,60007,24,400, and 22,452 seconds. These time
intervals indicate the computation times that t#MS based approach allowed running for
reaching the optimal solution. It can be seen ttiedre is a downward decrease indicating
that with a higher computation time the solutioralify improves. It is also worthwhile to
indicate that up until the 14,400 seconds of comipan time, the genetic algorithm provides
better results.

For Scenario 2, the progression of objective furctralue of best solution provided
by GAMS at the end of 30, 60, 120, 300, 600, 1,8)600, and 6,294 seconds are provided

in Figure 17.
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Figure 17. Progression of the GAMS based approalthian quality over computation time
for the 2 scenario

3.6. Exclusion of PACU Units
In order to investigate the effect of the downsttedACU units on the solution quality
and computation time, an additional set of expenit®iés conducted. In those experiments,

the downstream PACU units are excluded from thdyaisaby assuming that the number of

85



PACU beds is greater or equal to the number ofaijpey rooms. Since the duration of stay
in PACU bed is 1 hour and the duration of any staigoperation is equal to or longer than 1
hour, for the given problem structure, providedt ttiee number of PACU beds are greater
than or equal to the number of operating roomstethll be no capacity restriction for

downstream units. However, if the number of PACUdes less than the total number of
operating rooms, especially for the cases with Ipghient load, the bed blocking issues
might occur in which the patients might not be sfarred from an operating room to a
PACU bed due to the lack of the adequate resoumcasimely manner. Bed blocking might

cause disruptions in the system, and further disrtipe schedule in operating rooms and
flow of patients throughout the system. Since pasieare not able to be transferred to the
PACU beds, some might need to recover in operatogns. This further wastes the

dedicated resources in operating rooms since thessurces are used for the different
purposes than intended. The results are providddbte 15. The third and fourth columns
represent the best objective function values fdupnthe GAMS and genetic algorithm based
approaches without consideration of PACU units. $ix¢h and seventh columns represent
the relative difference with respect to the objextiunction value obtained with PACU unit

consideration.

Table 15. Comparison of the genetic algorithm a®ddS based approaches with and
without PACU consideration

Scenario Number GAMS Genetic  Computation Relative Relative Relative
of solution  algorithm time for difference of difference difference in
PACU %) solution genetic GAMS genetic terms of
beds in (%) algorithm solution with algorithm computation
original solution (sec) PACU unit solution with time
scenario consideration PACU unit
consideration
2 3 36182 39475 5518.78 -5.96% -2.49% -0.44%
6 4 86385 88985 10098.93 -2.89% -1.66% -0.42%
8 6 N/A 170842 10923.65 N/A -1.49% -0.10%
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It is indicated that the reductions in objectivadtion value for both the GAMS and
the genetic algorithm based approaches range frd8?d.to 5.96%. Additionally, there are
slight reductions in terms of the computation tiasecompared to the problem instances with
consideration of PACU units. The difference in canapion time is less than 1% for all
problem instances. This might be related with thet that the capacity constraints for the
fitness function calculations for the downstreamturare excluded from the analysis for
fitness value calculation in genetic algorithm.témms of the GAMS based approach, the
problem becomes more relaxed with less number oftcaints, and reduced objective
function values are obtained with lower computatiores.

The decision of considering the downstream climésudepends on the healthcare
facility setting. If there are adequate number ACCR units (i.e., usually more than number
of operating rooms), and the length of stay in PAQ@ut is shorter than the duration of
surgery), in those cases, the mathematical progragimodel and GAMS based approach
might be run without consideration of PACU unitsowever, for the cases where the
duration of stay in PACU units is longer, or thare not adequate number of PACU beds,
exclusion of downstream units in the analysis migéld to the bed blocking problem. This
in turn might yield to higher system-wide costs dese of the waste of dedicated resources

in the operating room environment.

3.7. Comparison of Deterministic versus Stochastiersion
In order to investigate the effects of variabiliy duration of surgical operation,
another set of runs is conducted using the detestiarsurgical durations rather than the

stochastic counterparts. For this purpose, twoedbfit levels for the duration of surgical

87



operation (i.e., low and high settings) are seticBasically, the low setting involves using
the minimum surgical duration for each type of staboperations as an input parameter. To
cite an instance, for General Surgery, a surgicabttbn of 1 hour is specified for low
setting. For other surgical specialties, the mimmduration for surgical operations is also
specified. In the high setting, the maximum surgidaration for that particular surgical
specialty is specified. To cite an instance, fa¢ general surgery, high-setting involves a
surgical duration of 3 hours. In total, we havesthscenarios (i.e., scenarios 2,6, and 8), and
2 settings for each scenario, leading to 6 differeases. Table 16 provides information

regarding these scenarios. The results are prowdé&dble 17.

Table 16. Scenario descriptions for deterministigial durations

Scenario Setting General Ophthalmology Urology ENT (hour)
Surgery (hour) (hour)
(hour)

2 Low 1 1 1 2

6 1 1 1 2

8 1 1 1 2

2 High 3 2 2 3

6 3 2 2 3

8 3 2 2 3

Table 17. Comparison of genetic algorithm and GAb&Sed approaches for the
deterministic version of the scheduling model

Scenario Setting Genetic GAMS Computation Relative

algorithm solution ($) time for genetic  difference (%)
solution ($) algorithm (sec)

2 Low $33,248 $32,280 856.43 -2.91%

6 Low $84,228 $83,126 1795.28 -1.31%

8 Low $164,456 N/A 1968.92 N/A

2 High $43,060 $41,404 854.28 -3.85%

6 High $95,540 $96,008 1791.92 0.49%

8 High $192,446 N/A 1964.83 N/A
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Examining the results, we see that as comparetie¢cstochastic surgical duration
time, the objective function values provided by e algorithm and the GAMS based
approach are close to each other. To cite an iostdior the second scenario in the low
setting, the relative difference is 2.91%. The B&stic counterpart has a relative difference
of 4.96%. The same is also true for the other lerakbinstances. It can be attributed to the
fact that as the problem sizes get smaller, thetisols provided by the genetic algorithm and
the GAMS based approaches converge to each othethér observation is that compared
to the genetic algorithm approach, the GAMS baggataach provides better results except
for one setting (i.e., Scenario 6, low-setting).

For the low-settings, the objective function valygesvided both by the GAMS and
genetic algorithm approaches are lower than thehasiic counter-parts. This is intuitive
because the surgical operations take less timerform, therefore less amount of resources
is allocated for surgical operations. To cite astance, for the second scenario, the genetic
algorithm solution provides the objective functigadue of $40,484, while the deterministic
counterpart generates a value of $33,248. The saaiso true for the solutions provided by
the GAMS based approach. For the same settingGHS based approach provides the
value of $32,280, whereas the stochastic countegeaerates a value of $38,476.

For the scenarios involving maximum setting, theeas true. Since more resources
are used in terms of operating rooms and surgieains, the results obtained by the
deterministic models are higher in the maximumimsgtias compared to the stochastic
counterparts. To cite an instance for genetic dlgor, for Scenario 2, high setting gives a

value of $43,060, whereas the stochastic counteppaduces a value of $40,484.
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Another finding is that it takes similar amounttwhe to run scenarios involving low
and high settings. To cite an instance, the contiputaime for Scenario 2 under low setting
is 856.43 seconds, whereas the computation timeruhe high setting is 854.28 seconds. It
indicates that the duration length of surgical afiens is not a significant factor for
determining the computation times in a determiaisetting. The same is also true for other
scenarios. Although there is a slight decrease oshputation time with respect to the
scenarios of high-setting, the decrease is notfgignt. An interesting observation is that the
deterministic version of problem takes significgridss amount of time as compared to the
stochastic version. To cite an instance, the coatjut time is decreased from 5,577.82
seconds to 856.43 seconds when the deterministstoveis solved instead of the stochastic
counterpart for Scenario 2 in low setting. The catapon time is reduced by 85%. This is
due to the fact that since a single scenario existis respect to the duration of surgical
operation in a deterministic version, the calcolatfor the fitness function as compared to
the stochastic counterpart (i.e., where 24 scesaist based on joint distributions) takes
much less time for genetic algorithm based implemten. This significantly affects the
computation time. The same is also true for th@ages involving computation time for the
high setting. Rather than using the minimum andimam durations of the surgeries, one
can use the expected values of surgical durationctmmparison purposes. To cite an
instance, the expected value of surgical durattwreneral Surgery is 1.8 hours. However,
in order to accommodate the fractional values togisal durations, the resolution for time
should be increased. Both mathematical programmnogel and genetic algorithm based
approaches assume discrete values representingaudgrations. Rather than incorporating

one hour time slots, it might be worthwhile to ingorate the half-hour time slots for the
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genetic algorithm and GAMS based approaches. Howewereasing the time resolution
increases the problem size. For GAMS implementatio& number of variables significantly
increases, because of expanding the range for infiesxbscriptt. This might significantly
increase the problem size because most of theblesichavet as their subscripts and
dependent on timeas shown in Tables 4 and 5. This is also trugHergenetic algorithm
approach. This is because within the genetic algorimany loops are performed based on
time and thus it is expected that the computatiore tsignificantly increases if the time

resolution is increased from one hour to half anrho

3.8. Case Study
For illustration purposes, a sample problem invadvifour operating rooms with
approximately 110% patient load and planning pemdd days is solved. Tables 18-21
present the schedule of the elective patients. Nuwe the time slots occupied by patient
surgeries in italic letters indicate the possipilaf extending the surgery such that the
particular time slot might be occupied. To citeiastance, for operating room #3, the 09:00
am-10:00 am and 10:00 am-11:00 am time slots of3dayght be occupied for the General

Surgery operation of patient 21 with some probgabilased on the scenario generated.

Table 18. Elective surgery schedule for operatoanr #1

Time Day 1 Day 2 Day 3 Day 4 Day 5
08.00-09:00 Ortho Pat 51 ENT Pat 5 ENT Pat 4
09:00-10:00 Gn. Sur. Pat 14 CV Patient 2 Ortho/Rat ENT Pat 5 ENT Pat 4
10:00-11:00 Gn. Sur. Pat 14 CV Patient 2 Gn. Sur. Pat 23 CV Patient 3 Uro Rat 6
11:00-12:00 Gn. Sur. Pat 14 CV Patient 2 Gn. Sur. Pat 23 CV Patient 3 Uro Pat 67
12:00-13:00 CV Patient 1 CV Patient 2 Gn. Sur. Pat 23 CV Patient 3 Gn. Sur. Pat 22

13:00-14:00 CV Patient 1 Gn. Sur. Pat 26 OrthoB@at CV Patient3  Gn. Sur. Pat 22
14:00-15:00 CV Patient1  Gn. Sur. Pat 26 Ortho Pat 60 Ortho Pat 59  Gn. Sur. Pat 22
15:00-16:00 CV Patient1  Gn. Sur. Pat 26 Ortho Pat 59

16:00-17:00

17:00-18:00
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Table 19. Elective surgery schedule for operatoanr #2

Time Day 1 Day 2 Day 3 Day 4 Day 5
08.00:09:00 Gn. Sur. Pat 15 Gn. Sur. Pat 19 ENT/Pat Opht Pat 49 Gn. Sur. Pat 24
09:00-10:00 Gn. Sur. Pat 15 Gn. Sur. Pat 19 ENT Pat 7 Opht4®at  Gn. Sur. Pat 24
10:00-11:00 Gn. Sur. Pat 15 Gn. Sur. Pat 19 OB/GYN Pat 46 ENT Pat6 Gn. Sur. Pat 24
11:00-12:00 Ortho Pat 52 ENT Pat 9 OB/GYN Pat 46 ENT Pat 6 ENT Pat 8
12:00-13:00 Ortho Pat 52 ENT Pat 9 Gn. Sur. Pat 20 Neuro Pat 39 ENT Pat 8
13:00-14:00 Ortho Pat 58 OB/GYN Pat 42 Gn. Sur. Pat20 Neuro Pat 39 OB/GYN Pat 43
14:00-15:00 Ortho Pat 58 OB/GYN Pat42 Gn. Sur. Pat20 Neuro Pat 39 OB/GYN Pat 43
15:00-16:00 Gn. Sur. Pat 18 Gn. Sur. Pat 17 OrticbB Neuro Pat 39 Gn. Sur. Pat 16
16:00-17:00 Gn. Sur. Pat 18 Gn. Sur. Pat 17  Ortho Pat 53 Ortho Pat 56  Gn. Sur. Pat 16
17:00-18:00 Gn. Sur. Pat 18 Gn. Sur. Pat 17 Ortho Pat56  Gn. Sur. Pat 16

Table 20. Elective surgery schedule for operatoanr #3

Time Day 1 Day 2 Day 3 Day 4 Day 5
08.00:09:00 Ortho Pat 54 OB/GYN Pat44 Gn. Sur2Rat Hand Pat 36 Podi Pat 62
09:00-10:00 Ortho Pat 54 OB/GYN Pat 44 Gn. Sur. Pat 21 Uro Pat 69 Podi Pat 62
10:00-11:00 Uro Pat 68 OB/GYN Pat 45Gn. Sur. Pat 21 Uro Pat 69 ENT Pat 10
11:00-12:00 Uro Pat 68 OB/GYN Pat 45 Opht Pat 48 ENT Pat 10
12:00-13:00 Hand Pat 35 ENT Pat 12 ENT Pat 11 Opht Pat 48 Gn. Sur. Pat 34
13:00-14:00 Gn. Sur. Pat 33 ENT Pat 12 ENT Pat 11 Gn. Sur. Pat 28 Gn. Sur. Pat 34
14:00-15:00  Gn. Sur. Pat33  Ortho Pat 57 Opht Pat 50 Gn. Sur. Pat 28 Gn. Sur. Pat 34
15:00-16:00  Gn. Sur. Pat33  Ortho Pat 57 Opht Pat 50 Gn. Sur. Pat 28

16:00-17:00

17:00-18:00

Table 21. Elective surgery schedule for operatoanr #4
Time Day 1 Day 2 Day 3 Day 4 Day 5

08.00:09:00 Neuro Pat 40 Gn. Sur. Pat 30 Podb®a Gn. Sur. Pat 31 OB/GYN Pat
41

09:00-10:00 Neuro Pat 40 Gn. Sur. Pat 30 Podi Pat 63 Gn. Sur. Pat 31 OB/GYN Pat
41

10:00-11:00 Neuro Pat 40  Gn. Sur. Pat 30 Ortho Pat 55 Gn. Sur. Pat 31  Ortho Pat 61

11:00-12:00 Neuro Pat 40  Gn. Sur. Pat 29 Ortho Pat 55 OB/GYN Pat 47 Ortho Pat 61

12:00-13:00 Gn. Sur. Pat 25 Gn. Sur. Pat29  Gn. Sur. Pat 27 OB/GYN Pat 47 Podi Pat 65

13:00-14:00 Gn. Sur. Pat 25 Gn. Sur. Pat 29 Gn. Sur. Pat 27 ENT Pat 13 Podi Pat 65

14:00-15:00 Gn. Sur. Pat25 Neuro Pat 38 Gn. Sur. Pat 27 ENT Pat 13 Hand Pat 37

15:00-16:00 Uro Pat 66 Neuro Pat 38 Gn. Sur3Rat Podi Pat 64

16:00-17:00 Uro Pat 66 Neuro Pat 38 Gn. Sur. Pat 32 Podi Pat 64

17:00-18:00 Neuro Pat 38  Gn. Sur. Pat 32

Examining the solution presented in Tables 18-2&ain be seen that overtime hours

are scheduled for operating rooms #2 and #4 foelbetive surgeries. For operating rooms

#1 and #3, no overtime hours are scheduled. Naé ith 4-operating room scenarios

overtime hours are allowed for only 2 operatingmgo In our case, these are operating
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rooms #2 and #4. Since no overtime hours can bedsted, the time slots between 16:00-
18:00 are vacant for operating rooms 1 and 3. Aaldhily, the level of PACU beds are set to

3, however there is a need for expanding the cgpatithe current PACU beds. To cite an

instance, in the third day, at 10:00 am, for Or@ips patient 52 and Podiatry patient 63, the
surgical operations are concluded. For ENT patsgrand General Surgery patient 22, with
some probability, the surgical operations mightcbacluded as well. Therefore, 4 PACU

beds are needed. According to Scenario, 3 PACU aexlalready available; there is a need
for expanding the current capacity.

Note that the empty time slots in elective surgssfredule are actually related with
the constraints based on the availability of swaigieams. To cite an instance, if we prepone
the start of the surgery for Patient 9 from 12:60@.1:00 for reducing the idle time, then we
need to increase the number of ENT team workingisaneously from 1 to 2 for that time
period. The possibility of existence of alternatoggimal solutions cannot be ruled out.

The model also considers the variation of surgaatation for Ophthalmology,
Urology, General Surgery, and the Ear Nose andatHEeNT) cases and adjusts the elective
patient schedule accordingly. Note that the devedlomathematical model can implicitly
take the time preferences of surgical team int@maet; by limiting the availability of those
teams during undesired timeslots in operating rodfos instance, if the CV surgical team
will not want to perform surgical operations duriafjernoons then the number of available
teams for CV surgical operations for that that tipggiod might be set to 0, and the overall

schedule might be adjusted accordingly.
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3.9. General Discussions - Elective Patient Schedd

For the scheduling of the elective patients, we the among the scenarios, the
GAMS based approach overall performs better as eoedpto the genetic algorithm.
However, for large problem sizes which involve 8&fa 110% patient loads and 8 operating
rooms, the GAMS based approach is unable to fiedajtimal or near optimal solution,
while the genetic algorithm finds a near optimduson within a reasonable amount of time.
The failure for the GAMS approach to find an optirsalution can be attributable to the
increased problem size. As the number of the ptiand/or number of operating rooms
increases, the GAMS based approach is not ablartdlé the increased number of variables
and constraints associated with the larger prolsdiges and thus fails to provide solutions.

Another observation is that when the downstream BARits are disregarded, the
objective function values reported by both the GABI$roach and the genetic algorithm
decrease considerably. This is intuitive becaugbanscenarios selected for the analysis, the
number of PACU beds is less than the total numbeperating rooms. However, although
the objective function decreases, it does not ntleainnot considering downstream units will
decrease the overall costs. As previously mentiptiete might be a bed blocking instance,
where the patients from operating rooms might retransferred to the PACU units due to
the non-availability of PACU beds. This definitalisrupts the flow of patients in the system
and decreases the patient satisfaction, and foe s@ses, it might cause harm to the patients
because the necessary surgical operation cannmri@med on the next patient scheduled
time. For the cases where dedicated equipment peciadized care are not required after
surgical operations, such as Podiatry and Handesielg) the patients might be transferred to

hospital wards after surgery to alleviate the bledking problem. The patient might recover
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from the effects of anesthesia in the hospital watdwever, most of time, usually
specialized equipment/care is required after syrgespecially for surgeries involving
Neurology and Cardio-Vascular surgical specialtigs.those cases, transferring patient
directly to hospital wards might not be possibler Ehat reason, unless there is adequate
number of beds/equipment in the downstream unfig, downstream units should be
considered in the analysis.

Another point that is worth mentioning is that tbdeterministic version of the
problem takes less amount of time to solve. Adddilty, for the deterministic version of
problem, the objective function value is smalleartithe stochastic counterpart under low
setting. The opposite is true for the high-settilegerministic scenario where the objective
function value is higher than that of the stocttas#@rsion. This is intuitive because fewer
amounts of resources is allocated for the surgigmrations and the additional cost of
expanding the current capacity is reduced. On therdand, for the high end of the duration
for the surgical operations, the objective functi@ues reported by GAMS and the genetic
algorithm based approaches are substantially higtes can also be attributable to the fact
that additional resources need to be allocategérforming surgical operations. Since the
duration for surgical operation is longer than he tase of stochastic version, the need for
additional resources also arises, which in turnreases the objective function value.
However, the stochastic version of the problem ples a more balanced view by
incorporating the possibility of a surgical opeoatitaking variable amount of time, thus
provides a better allocation of resources. Thelstsitc modeling approach increases the
flexibility of the system by alleviating the proloteof allocating scarce resources in the best

manner in a highly chaotic operating room environtne
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4. RESCHEDULING OF ELECTIVE PATIENTS UPON THE ARRIV AL OF

EMERGENCY PATIENTS

In this chapter, we develop the approach for redeleg the elective patients upon
arrival of emergency patients. The approach dewslopvolves building a mathematical
programming model, and a genetic algorithm basedri$tee approach for rescheduling
elective patients.

Although some of the healthcare centers reservepanating room for performing
emergency admissions, due to the scarce resounddsss number of operating rooms, there
might be a need for sharing operating rooms batlihie emergency admissions and elective
patients. In that case, if there is not any avélaesources for performing surgery on
emergency patients, due to the nature of emergaaicyssion, emergency patients should be
given priority over the elective patients, and dtddoe operated immediately. In the cases
where the elective patient load is high, and nda#dd operating rooms are available for the
emergency admissions, it is highly likely that th@émission of emergency patients might
lead to the disruption to the elective surgery doies because there are not enough open
time slots for performing emergency surgery, aneé tective patients need to be
rescheduled. This will disrupt the current elecipatient schedule.

The approach that will be outlined in this chagdiesically addresses two different
guestions. The first question is whether to adiné emergency patient, and the second
guestion is in case the emergency patients aret@dhid healthcare facility, how the new
schedule will be formed after the inclusion of #raergency patients. Rescheduling of the
elective patients provides additional challengestod the time in terms of the availability

of the resources and prioritization of the patiefiitse objective is to minimize disruption to
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the existing schedule. Minimizing disruption is ianfant for two reasons. First, it requires
less planning for reallocating existing resources.cite an instance, if the cyclic schedules
are employed for the surgical staff, the changiéschedule might lead to employing more
resources to accommodate the new surgical schetthglesfore increasing associated costs.
Overtime practices for the surgical staff memberghinbe utilized. Even the schedule is not
disrupted based on time/date, then there might becassity for performing the surgical
operation in a different operating room. This migfldo cause inconvenience because the
dedicated equipment required for performing a gecperation should be moved to a new
operating room. To make it worse, moving equipmemnght not be possible in certain
instances. For example, to move the existing eqeignfor performing Cardio-Vascular
surgical operation from the dedicated operatingrrdo another one might not be possible
due to the certain provisions required for operathmt equipment such as additional cabling
requirements. Therefore, the disruption to thetmgsschedule both in terms of time/date
and operating room should be minimized with regerdhe existing resources. Second,
inconvenience might arise due to the time commith@ssociated with elective patients.
Given that the elective patient is already schetlulee/she might be hesitant to be
rescheduled for another time period. Due to thessful nature of surgical operations,
providing a notice to the elective patient mightgainconvenience especially if it is a short
one. Postponing the surgical operation for a coapleours for a particular patient might not
cause a great deal of inconvenience, however pnegadine surgical operation, or postponing
the surgical operation to the next day or a cogbldays might lead to significant patient

dissatisfaction and should be avoided as much a&silge. For that reason, it will be
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worthwhile to minimize the amount of disruptiontime existing elective schedule from the
staff, equipment, and the patient perspective.

In this chapter, we develop the corresponding aggroand build a model for
minimizing the disruption in the elective patiethedule and the expansion of current
resource levels upon the inclusion of emergenciepat Our objective in this stage is to
develop a methodology for rescheduling the elecsuwegeries upon admission of the
emergency surgeries. Due to the arrival of the gemey patients, the current elective
surgery schedule might be disrupted, and the negttrarise for rescheduling the elective
surgeries scheduled. In order to model this problem develop a deterministic mixed
integer linear programming model. We consider tuabimct categories of patient admissions
for surgical procedures. The first category is @ecsurgeries, which are already scheduled.
The schedule of elective surgeries is treated asguit in our study. The second category is
emergency patient arrivals. If an emergency patiergdmitted, in the presence of shared
operating rooms and surgical teams, the electivgesies might need to be rescheduled.
Upon the request for admission of emergency pati¢hé decision makers in a hospital must
provide the timely decisions on (1) whether to adonidivert the emergency patient(s)? and
(2) if any emergency patient is admitted, how tjusidthe elective schedule to accommodate
emergency admissions such that the disruption ¢octirrent schedule and the need for
expanding the current resources are minimized?

If an emergency patient is admitted, he/she nesthe perated immediately and the
changes need to be made in the elective surgesdatshaccordingly. If the patient is not
admitted, there will be no changes in the electiveery schedule. These decisions are made

under a variety of constraints so that the costarimed due to the disruptions are minimized.
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The constraints include surgical team availabi{gyg., surgeon, scrubbers, technician, and
anesthetists), operating room availability, overdi hour constraints for operating rooms,
overutilization constraints at PACU, and PACU bedikbility. Meanwhile, the cost items
include the costs of delaying and preponing elecsurgeries, the opportunity cost of
diverting (or not admitting) the patients, the dirae and overutilization costs of operating
rooms and the PACU units are also considered imthe@el respectively. The overtime hours
are defined as the extended working hours beyoadédbular working hours of operating
rooms with the accompanying resources such ascslirtggams. The overutilization in a
PACU unit is defined in terms of the additional bednd supporting equipment/staff
members needed in the PACU.

We develop the corresponding mathematical programgmmodel to tackle the
problem. Based on the initial results, it can bensthat depending on the problem size, it
might not be possible to solve the given problestance to optimality within the specified
time period by employing commercial solvers. In erdo overcome this problem, an

evolutionary approach based on the genetic algorithdeveloped and implemented.

4.1. Mathematical Programming Model
In order to make the optimal decisions on emergenegery admission and elective
surgery rescheduling, we develop a mixed integegali programming (MILP) model to
capture the patient flow between operating roomd dawnstream clinic entities. The
objective of the MILP model is to minimize the cosissociated with the delaying and
preponing elective surgery patients, and overtivexiatilization of operating rooms and

PACU units.
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4.1.1. Notation
The notation and descriptions of the indices andsiten variables and parameters

used in the MILP model are provided in Table 22 &alle 23.

Table 22. Notation for index, sets, and decisianables for rescheduling model

Indices
d: Day index;de{1, ... , D}
h: Emergency patient indekge{1, ... , H}.
Elective patient indexe{1, ... , 1}.

— —

Surgical operation typeie{1, ..., J}

Time period indext e TU{T +1},T +1 indicates the time period outside the
scheduling horizon

Auxiliary time index,t'e T U {T +1},T +1 indicates the time period outside the
scheduling horizon

Sets
™ {Set for overtime hours}
T {Set for the time period for which it is not podsitho perform the surgeries}
TS {Set for regular working hours}
Decision variables
ogR: Amount of overtime utilized for the operating rooatdayd
OV Amount of additional beds/equipment placed in PACU
. 1if electivepatient occupiesibedatPACUat timeperiodt
St 0 otherwise
. 1if emergencpatient occupiesibedatPACUat timeperiodt
She- 0 otherwise
_ 1if the surgenstartsat thebeginningf timeperiodt for electivepatient
X Ootherwise
‘ 1if thesurgengtartat thebeginningf timeperiodt foremergengyatient
X Ootherwise
_ 1if electivepatient hassurgenyat timeperiodt
Yit - {Ootherwise
y 1if emergencpatienth hassurgeryat timeperiodt
ht

Ootherwise
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Table 23. Notation for the parameters for matherabprogramming model for rescheduling

Parameters

PACU.
B

OR .
BOR :

C PACU .

COR:

C

jtt -

Oit -

Current capacity of the PACU unit for the schedglihorizon (in terms of
beds/equipment)

Current capacity of the operating rooms at ddiyn terms of hours)
Unit expansion cost of the PACU during the planrpegiod ($/bed & equipment)

Overtime utilization cost of one unit of operatirogpm for the planning period ($/hour)

Cost of performing elective surgery scheduled raetperiodt and performed at time
periodt’

1if electivepatientiis scheduledo haveoperatiorat timet

{Ootherwise

1if electivepatienti needssurgeryof typej
Ootherwise

1if emergencyatienth needsurgeryof typej
Ootherwise

Number of operating rooms in the system
Operation time for surgery typ€hours)
Cost of turning down the emergency patient reqongsturgery typé

Length of stay at PACU for surgery typéhours)

Reference starting time (i.e., the time when theergency patient arrives and the
model is run)
Number of time periods in the planning horizon

Upper limit on the overutilization of PACU (bed/egonent)

Upper limit on the overtime utilization cost of thperating rooms (hours)

Number of beds occupied in the PACU unit at timeiquet from the previous
scheduling cycle

Number of surgical teams available for performinggery type j at time period

4.1.2. MILP model formulation

min

J
z z 0ie Cpe M X, + z

TH1 T+1 H T+1
j=1 h=:

J D
> rmiy (- X, ) + CPUO™Y L3 COROR  (18)
j d=1

1 t=ty j=1

—

—tg t'=tg

s.t.

I J H J
Y3V mOox + 3> m, Ox, =BX+0%  vd (19)
i=1 teT® j=1 h=1teTC j=1
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Z z Yie + z Z Y = OSR vd (20)

i=1 teT# j=1 h=1 teT* j=1
Y =0 v (21)
teT®
y=0 Vh (22)
teT®
T+1
D x =1 fori=1.., (23)
t=t,
| H
DX +D X <N fort=tg,..T (24)
i1 e
| H
DY+ Y <N fort=t,..T (25)
izl h-
| H .
ij Yit +zm'hj Yie < My v, t=t..T (26)
i1 h=L

i = M X, vi,j, t=t,., T, =t+t,+0, -L..,t+t, +O, + S5, -2 (27)

S 2 My Xy vi,j, t=t,,., T, t' =t+t,+O, -1..,t+t,+ O, + S, -2 (28)

S1"t

Vi 2 My %, Vi, jit=t,. T =t+t - L. t+t,+0, -2 (29)
Yo 2 My X vi, j,t=t,,., Tt =t+t,-1..,t+t,+ 0O, -2 (30)
T+1

D x,=0  Vvh (31)
t=tg+1

| H

D § +D Sy +A<BPYLOMY  fort=t,,...T (32)
i=1 h=1

OPACU <U PACU (33)
O <U R, vd (34)
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Sty Sht, %t» X'nt, Vi, andy’ne are binary variables

of*and O™V are non-negative integer variables.

Eq. 18 consists of four different terms. The fiestm indicates the cost of preponing
or postponing the elective surgeries. The secomd tedicates the cost of turning down the
emergency patients in terms of the lost revenue. third term is the overtime utilization of
operating rooms in terms of the available operatiogrs. The fourth term indicates the
marginal cost of placing additional beds, equipmant hiring additional staff for increasing
the capacity of the PACU units.

Eq. 19 ensures that the total time for performinggigal operations for elective and
emergency patients should be equal to the totallaegand overtime utilization of the
operating rooms. Eq. 20 stipulates that the surgiparations performed outside of the
regular working hours are considered to be in thertone hours. Eqgs. 21 and 22 indicate
that no operation is allowed other than the inéidatiegular and overtime hours for elective
and emergency patients respectively. Eq. 23 enshag¢sall the elective patients need to be
operated in the given operating cycle; if this & possible, it will be assumed that they will
be operated beyond the planning period indicatetinby periodT+1. Egs. 24 and 25 ensure
that the number of simultaneous new starts and inggoperations cannot exceed the
maximum number of the operating rooms. Eq. 26 eaeie that the number of surgical
operations that are performed simultaneously caeroeed the number of surgical teams
that are capable of performing those operationss. E2y and 28 indicate that the
bed/equipment in the PACU units will be occupietlofwing the surgical operation for a
specified period of time during the recovery of thatients for elective and emergency

patients respectively. Egs. 29 and 30 ensure tletcorresponding time slots for surgical
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operations are occupied during the specified domatiollowing the start of surgical
operations for elective and emergency patientseasgely. Eq. 31 stipulates that no delay is
permissible for the emergency patients arrivinghat medical facility, and the opportunity
cost of not operating the emergency patients imgeof lost revenue is reflected in Eq. 18.
Eq. 32 is related with the bed/equipment/staff tamsts that are available in the PACU
units. Eq. 33 ensures that the number of oper&ings cannot exceed the upper limit for the
permissible operating hours for the operating raoets 34 stipulates that the total number
of additional beds/equipment added to the PACU sug@&nnot exceed the permissible
additional bed/equipment that can be placed inehwsts due to various considerations such
as rules and regulations, physical place restnstietc.

The mathematical programming model involves theafgée binary variables as well
as integer variables. The problem size increasg®reentially with the increases in the
number of patients and the type of surgical openatiIn addition, the increase in the number
of operating rooms also increases the problem 3ize.model has been implemented in the
commercial optimization software package, GAMS sanlWnfortunately, it is found that the
solver cannot provide efficient solutions for sosmenarios using an Intel Quad Core PC —
exact solutions cannot be obtained in a reasoraabtaint of time. The PC features an Intel®
Core™ |5 processor at 2.8 GHz, and 8 GB memoryarGlethe excessive computation time
has negative impact on the usability of the apdrcaad its potential merits. As mentioned
earlier, the decisions should be made within 35#Butes — the shorter, the better. The
urgency leaves little room for extended computationes required by improving the

solution quality or possibly obtaining optimal stidus. Rather than searching for the exact
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optimal solutions, a heuristic approach is devdlopelow to obtain the near optimal

solutions in a reasonable time limit.

4.2. Genetic Algorithm

Figure 18 shows the steps of genetic algorithm divesthe MILP model. The
notations in the genetic algorithm are summarizedable 24. In the genetic algorithm, the
first generation of chromosomes consists of theecurelective surgery schedule apd
chromosomes representing the random schedule afgemzy patient and elective patients.
Then, each new generation is obtained by applyiegorresponding crossover and mutation
operators on the chromosomes in the current geoeyatepairing new off-springs, and
selecting the new generation from combined pook @lgorithm stops when the maximum
generation limit is attained or the objective fuoctvalue of the best feasible solution

reaches 0.

Table 24 Notation forgenetic algorithm parameters for rescheduling model

Parameter Notation
Number of parent pairs selected for crossoverffspong pairs created T
Mutation probability for first part of chromosomgigture 7
Mutation probability for the second part of chromiwe structure 7
Mutation probability for the third part of chromase structure 3
Mutation probability for the third part of chromase structure 7

Number of chromosomes/solutions selected for tix¢ generation by elitist selection v
Number of chromosomes/solutions selected for thx generation by roulette wheel ¢ - -1
selection

Population size o
Limit on maximum generation number X
Repair probability W
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Figure 18. Proposed genetic algorithm flowchartrésmcheduling model
4.2.1. Representation of the solution

The chromosome representation for a solution ctss$ four parts. Figure 19
provides the chromosome representation;
37 243 94
e ,
(Sequence of patients)

\;35913445...

k344671820323438y

(The number of the empty time slots before eaclepit

\203130...3221229)

(Number of patients that are operated in each tipgreoom)

\_%_/

The operating room that emergency patient is aduahitt

Figure 19. Proposed chromosome structure for relsdimg model
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The first part represents the sequence of theiedepttients scheduled for surgical
operations. For example, the chromosome struc@®i® 9 13 4 45... 37 2 43 34” indicates
that elective patient 3 is the first patient todperated, whereas elective patient 34 is the last
person who will undergo surgery in an operatingmoo

The second part represents the number of open Isédtse a patient’s surgery by
repeating the patient identification for the sammoant of times. For example, the
chromosome representation “2 2 3 4 4 6 7 18 2083842” indicates that there are two
empty time slots just before the start of the staigoperation for patient 2. There is an open
time slot before the surgery of patient 3. There taro open time slots before the surgery
start for patient 4. There is one open time sldbigethe start of the surgery for patients 6, 7,
18, 20, 32, 34, 38, and 42. For the patient IDslistéd in the second part of a chromosome,
there is no open time slot before their surgeries.

The third part of a chromosome governs the numimer type of the surgeries
performed during a given day. For example, the mlmsome representation 203130 ... 3
2212220 demonstrates that the first 2 padieme operated in the first day, no patients
are operated in the second day, 3 patients arai@gkein the third day, 1 patient is operated
in fourth day, 3 patients are operated in the fiffly, and no patients are operated outside the
planning cycle. In short, the first 6 numbers daiee the number of patients operated in and
out of the planning cycle for first operating rooamd the second set of 6 numbers determine
the number of the patients operated in second tpgnaom, etc based on planning cycle of
5 days.

The length of the last part of a chromosome depemdthe number of emergency

patients arriving at that particular time periodick bit in that chromosome part indicates
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whether an emergency patient is admitted or nat th@ operating room assigned for surgery
if the emergency patient is admitted. Based onreid®, we see that the emergency patient

is admitted to the hospital, and assigned to opgrabom #1.

4.2.2. Evaluating the fitness of the population

This particular problem is a constrained minimiaatiproblem. The representation
scheme of the solutions discussed above could natagtee that a chromosome always
represents a feasible solution. The availabilityhaf surgical teams, the constraints satisfying
that the operating room is not utilized during lantours, the availability of the
corresponding beds in the downstream of the clilow (i.e., the PACU), the constraint
satisfying that operating rooms do not operater dfte overtime hours are not enforced by
the representation scheme of the solutions propmsete genetic algorithm. For example, it
might be the case that two surgeries of the same ¢tan start simultaneously according to
the solution represented by the chromosome, althaute surgery team is available to
perform that particular surgery. The chromosomgcstire allows such a schedule although it
is not feasible according to Eq. 26. In order tercome this problem, the weights associated
with the violation of the corresponding constraiate added to the objective function. In
other words, the constraint violation is penalig@@ugh the inclusion of the penalty terms in

the objective function.

4.2.3. Selecting the best-fit individuals for cross/er operator for reproduction
After the fitness value of each solution is caltedia the next step is choosing the

members of the population for crossover operatior. this purpose, we make use of the
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combination of roulette wheel selection with thaigl selection. A solution implied by the
original schedule solution (i.e., rejecting the egemcy admission, and performing the
elective surgeries according to the original schedis always selected for the crossover
operation. This scheme will allow the variationstloé solutions derived from the original

schedule solution be represented as offsprings.

4.2.4. Crossover operator

For each generation, a certain humbeclobmosomes/solution pairs are selected for
cross-over operation. From those pairs, the fiest pf the chromosome for the offsprings is
created using the partial mapped crossover (PMX)aipr (Al-Dulaimi and Ali, 2008). This
is because the traditional crossover operator mygéld offsprings that have duplicate
patients or some patients might not be representéide chromosome solutions. Literature
indicates that PMX operator provides consistentilitesn terms of the solution quality as
compared to other approaches such as order ane cyadsover operators (Al-Dulaimi and
Ali, 2008).

For the second and third parts of chromosomes, pwwot traditional crossover
operator is selected as opposed to single poindsoker operator due to the fact that
generally the former provides better results as pamed to the latter (Sivanandam and
Deepa, 2008). In two-point crossover operator, trmssover points are selected and the
corresponding bits between these two points areeddp the offspring from the first parent.
The bits outside those crossover sites are copiech fthe second parent. The second
offspring is formed in the same manner by replathegroles of the first and second parents.

For the fourth part of chromosomes, the crossoperaior is selected based on the length of
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that particular chromosome part. If only one emecgearrival is considered for admission,
one of the parents is selected randomly and theesomonding value is copied to the
offspring. If more than two emergency patients ditvee are considered for admission, one

point crossover operator is implemented.

4.2.5. Mutation operator

For the first two parts of the chromosomes, theatioh operator is applied on a bit-
by-bit basis. For each bit, a random number unifgraistributed between 0 and 1 is
generated. For the first part of the chromosonfabei generated random number is smaller
thanty, the second bit is picked randomly, and these liit® are exchanged. In practice, it
corresponds to switching the locations of two pdsiein the sequence of the patients
represented in the solution. For the second patthethromosomes, which indicates empty
time slots in the schedule, if the generated randamber is smaller than, another random
number will be generated. If the second random rarrgbnerated is smaller than or equal to
0.5, the bit is deleted from the chromosome, irtdigathat the length of the vacant time for
the operating room before the operation of theepatrepresented by this bit is reduced by
one time unit. If the second random number geneérnatgreater than 0.5, an additional copy
of this bit is added to the chromosome. In otherdspthe length of the vacant time for that
operating room before that patient is increasedri®/time unit.

For the third part of the chromosomes representiteg number and type of the
surgeries performed during a given day, mutatiocucin the form of generating a random
number distributed uniformly between 1 antt{) x N. The bit randomly selected is

replaced with this new number. For the fourth pdithe chromosomes representing whether
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the emergency patients are admitted or not, mutadiccurs in the form of generating a
random number distributed uniformly between 1 &hd for each bit in that chromosome

part. The corresponding number in the bit is repdiawith this new number.

4.2.6. Repair operator

After the crossover and mutation operators areiegppb produce the offsprings, the
repair operator is performed on the new generateohtosomes with certain probability. A
uniformly distributed random number between O and fjenerated for each chromosome,
and if the random number is smaller thanthe repair operator is applied. The repair
operator in general works for reducing the ovard#asibility by two different schemes. The
first scheme is that if the start of the surgenyd@articular patient is scheduled to start on an
infeasible time period, the start of the surgerylédayed by some time periods to start in
working hour to reduce the infeasibility associatéth the solution. Another mechanism for
the repair operator is to prepone the start ofstivgical operation that is scheduled later to
reduce the vacant time between those surgeriekodgh the repair mechanism does not
guarantee the feasibility because of various otlwgrstraints, they serve as an attempt to

decrease the overall infeasibility.

4.2.7. Replacing least-fit population with new indiiduals

The elitist selection is used together with theletia wheel selection to select the
offsprings and parents that will create the nexiegation. After the fitness values of the
offpsrings are calculated, the parents and offggriare ranked in descending order of the

fitness function value. The first chromosomes in the list are selected for the next
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generation. Additionally the remaining- » -1 number of solutions are selected based on the
roulette wheel selection.

The last chromosome included in the new generasidhe original schedule implied
by the elective surgery schedule. This approach iveillp develop variations based on the
elective surgery schedule which likely produce lowbjective function values (i.e., better
fitness function values). The solutions developexnf the original elective schedule more
likely yield solutions that honor the original sclude of elective surgeries, therefore reducing
overall objective function value and increasing ¢tberesponding fitness function.

The genetic algorithm parameters are decided baisditerature recommendations and
the pilot runs. In this study, we refer to therktieire for the initial ranges of the parameter
values and employ pilot runs for fine tuning of seoparameters. As a result, the values

presented in Table 25 are selected for our geagarithm implementation

Table 25. Genetic algorithm parameters for rescliegimodel

Parameter Value
IT 15
71 1%
T 1%
73 1%
Ta 1%
Y 10
p-0v-1 49
0] 60
X 8000
14 50%

Regarding penalizing scheme in evaluating the $grfenction, we adopt the approach
developed by Joines and Houck (1994) where thelfyeoeefficients can be calculated as

follows,

112



9. (1) = (pu2)° (35)
where g, () is the corresponding penalty coefficient for coaistrw at generatiory, andpy,

anda are the constant values. This enables a widecls@arscope at the initial generations
with lower penalty coefficients, and toward the esfdthe execution of genetic algorithm
with increased penalty coefficients. It is founéithhe values of 1.25 fgr, and 0.5 fora
give the best result in this study, and they ase alithin the suggested ranges (Joines and
Houck, 1994).

Table 26 presents coefficients (i.e., cost and Iperigures) that are provided as
input for the genetic algorithm as well as the meathtical programming model described in
Section 4. Taheri et al. (2007), based on an aetpplied study of a trauma center, estimate
that admission of emergency patient will generatditoonal revenue of $16,603 in the
downstream clinic unit. Other cost figures are olgd from the first part of the study

(Olejarz, 2009; Park and Dickerson, 2009; and Vegell., 2010).

Table 26. Corresponding cost parameters and pec@difficients for rescheduling model

Penalty calculation Cost coefficients

After hours operation Eq. 35 withp,, =125, = 05
Exceeding the regular+
overtime capacity of the Eq. 35 withp,, =125, = 05
PACU units
Exceeding the upper limits of
the availability of the Eqg. 35 withp,, = 125 ¢ = 05
surgical team
Turning down the patient for
the emergency admission
Operating the patient other
than designated day (e.qg.,
Wednesday instead of
Monday)

$16,603 (Taheri et al., 2007)

$3,798/day (Vogel et al., 2010)

Operating the patient outside
the planning horizon
Cost of overtime for an
operating room

$18,990 (Vogel et al., 2010)

$1500/hr (Park and Dickerson,
2009)
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The fitness function of each chromosome is caledlais,

16603
4 obj,

f , 0bj, #0 (36)

wherefy is the fitness function of solutiam andobj, is the objective function value of same
solution. Since the problem is a minimization typeblem, a lower objective function value
indicates a better solution which is reflected byigher fitness function value. As such, the
objective function value is inverted in Eqg. 36.this equation, the value of $16,603 is used
as a numerator for calculating the fithess functiorwhich the original elective surgery
schedule will yield a fitness function value off ho additional costs are involved in terms of
exceeding the current capacity of operating roontstbe PACU units. This value is the cost
of turning down an emergency patient accordingtésdture (Taheri et al., 2007). In a sense,
Eq. 36 provides a normalizing scheme where alldbjctive function values are scaled
down with a reference value of 1 that belongs tdhginal elective surgery schedule with
no overtime in operating rooms and overutilizatiorlPACU units with the assumption that

the emergency patient is not admitted.

4.3. Scenarios and Results

Runs are conducted to provide a comparison for GA& genetic algorithm based
approaches in terms of the computation time andtisol quality. The problem actually
involves two different stages, where the first stagldresses scheduling of the elective
patients, and in the second stage, the problerasacheduling the elective patients is tackled.
The output obtained from the first stage is fedtles input for the second stage of the
problem. For this purpose, three scenarios aregdatad, each representing, low, medium
and high patient load.
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These scenarios reflect the general pattern whwezefitst scenario features the 4
operating rooms with 50% patient load. In the secscenario, we have 6 operating rooms
with 110% patient load, whereas in the third scenave have a total of 8 operating rooms
with 85% patient load. These scenarios are refigdtie light, moderate and the high patient
load cases respectively and obtained from the diage of the problem. The scenarios that

are being depicted are presented Table 27.

Table 27. Scenario descriptions for rescheduliegtele patients

Scenario Elective Number of  Number of  Number of Overtime practices
number patient load PACU beds  operating emergency
rooms arrivals
1 50% 3 4 1 2 operating rooms with 4 hours
of overtime on daily basis
2 110% 4 6 1 4 operating rooms with 8 hours
of overtime in total on daily
basis
3 85% 6 8 1 6 operating rooms with 12
hours of overtime on daily
basis

The models are solved both using GAMS commercidlesoand the genetic
algorithm approach. The solution quality and corapah time are compared. For
determining the input for the rescheduling modetpat from the scheduling model is used.
The output of the first model discussed in Chaptes basically the schedule of the elective
patients. The schedule of the elective patient$eds into the rescheduling model. The
solution quality and the computation time for théANBES based approach and genetic

algorithm are provided in the Table 28.
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Table 28. Comparison of GAMS based approaches anetig algorithm solutions

Scenario Solution quality Computation time
GAMS solution Genetic GAMS (sec) Genetic
$) algorithm ($) algorithm (sec)
1 0 0 0.28 503.81
2 30192 28692 2071 2071.03
3 32586 31788 3581 3581.23

Examining the results presented in Table 28, wetbkat for the Scenario 1, the
objective function value of GAMS based approackdsal to the solution provided by the
genetic algorithm albeit with different computatibme. In less than a second, the GAMS
based approach converges to an optimum solutiomhwisi $0, whereas for the genetic
algorithm based approach it takes 503.81 secondsatth to the same objective function
value. For the second problem instance, the gerdgiarithm provides better results as
compared to GAMS based commercial solver for tmeesamount of computation time. For
the third problem instance, the same is true whereetic algorithm providing better results
as compared to GAMS based solver. Note that fahallproblem instances, the computation
time is below 1 hour. In general, it can be saiat tthe computation time for the genetic
algorithm increases linearly with the increasingniver of patients/operating room however,
for the GAMS based commercial solver, the numberapiables increases in quadratic terms
with the problem size. Since the same amount ofptaation time is allowed for both
solution approaches, it can be seen that in gettezajenetic algorithm based approach takes
the upper hand when the problem sizes gets biggderms of the higher number of

operating rooms and heavy elective patient load.
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4.4, Case Study

In order to demonstrate the changes in the eleg@tent schedule upon the arrival
of the emergency patient, we develop a case whezee tare 4 operating rooms and
approximately 110% elective patient load. This esponds to Scenario 3 which is described
in Chapter 3. One key criterion to evaluate theeai¥eness of a solution approach is
whether it is capable of providing near optimaldeally optimal solutions in a limited time
window. As mentioned earlier, the local medicalteerusually deals with emergency cases
that require immediate attention such as trauma.tlams the decision makers have a limited
time window of less than 1 hour before giving tloeresponding decisions.

It is assumed that upon the arrival of the emergguatient, the rescheduling of
elective patients up to 5 days is considered abkancase of the scheduling case. Table 29

provides the information on the general problenapuaters.

Table 29. General problem parameter for the reptatee case for rescheduling model

Parameter Value
Number of PACU bed 3
Average stay in PACU 60 minutes
Overtime options for operating 2 operating rooms can be allocated for 2 hour audit time
room slots each for overtime operations (4:00 pm-6:00 pm
Emergency arrivals A single trauma patient is brought to the hospitahe first day

of the scheduling period (i.e., 08:00 am on Monday)

For demonstration purposes, the evolution of objecfunction values of best
feasible solutions reported by GAMS. It is indichie Figure 20. The main purpose is to
investigate if the solution obtained within 1 holar the decision time window) by the
commercial solver is close to the final solutiomevided by the GAMS based approach . If
this is the case, the genetic algorithm approadhbeiless attractive and the need for using

the genetic algorithm or other heuristic approadbesbtaining the near optimal solutions in
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the given time window of opportunity (35-45 mingtesill not be necessary. For this
purpose, a comparison is made, where the solutialitg after the certain computation time
is reported. The solution quality (i.e., objectfuaction value) after 1, 2, 3, 5, 15, 20, 30, 60,
90, 120, 240, and 360 minutes are reported.

Examining Figure 20, we see that the solution regabafter 1 hour of computational
time is approximately 6.5% worse as compared tosthlation reported after 6 hours of
computation time. This shows that there is a roam improvement, and the heuristic
approach might be a viable option to efficientlytaob the solution for rescheduling of the
elective patients. It is worthwhile to note thdte tgenetic algorithm provides an objective
function value of $34,788 after approximately 2hhuates of computation time. This value is
better than the objective function value reportgdhe GAMS based approach for the same

time period.
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Figure 20. Progression of objective function vadfithe GAMS based approach
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We also examine the evolution of solution qualitihwrespect to the number of
generation using the genetic algorithm approachttierrepresentative case. The objective
function values of the incumbent solutions as \aslithe average objective function values

are provided in Figure 21.
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Figure 21. Progression of objective function valt@syenetic algorithm

As it can be seen in the Figure 21, the incumbieméds function value has a stepwise
character. When, better feasible solutions aredpthre incumbent solution is updated with a
lower objective function value. Amount of decreas¢he objective function value at initial
generations are high, gradually decreasing ovegénerations.

The following example details the change of surgatyedule after the incorporation
of the emergency patient for the representativee.cd®e original schedules of elective
surgery for operating rooms #1-#4 are provided abl&s 18-21, respectively. Inclusion of
the emergency patient to the current schedule teegulthe changes in the current elective

surgery schedule for all the operating rooms. Téae schedules incorporating the admission
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of the emergency patient for those operating roares provided in Tables 30 - 33

respectively.

Table 30. Elective surgery schedule for operatoanr #1

Time Day 1 Day 2 Day 3 Day 4 Day 5
08.00-09:00 Trauma Pat 70 Gn. Sur. Pat29  Ortho Pat 51 ENT Pat 5 ENT Pat 4
09:00-10:00 Trauma Pat 70 Gn. Sur. Pat 29 Ortho Pat 51 ENT Pat 5 ENT Pat 4
10:00-11:00 Gn. Sur. Pat 14 Gn. Sur. Pat 23 CV Patient 3 Uro Pat 67
11:00-12:00 Gn. Sur. Pat 14 Gn. Sur. Pat 23 CV Patient 3 Uro Pat 67
12:00-13:00 CV Patient 1 CV Patient 3 Gn. Sur. Pat 22
13:00-14:00 CV Patient 1 Gn. Sur. Pat 26 Ortho@Pat CV Patient 3 Gn. Sur. Pat 22
14:00-15:00 CV Patient 1 Gn. Sur. Pat 26 Ortho@@at  Ortho Pat 59
15:00-16:00 CV Patient 1 Ortho Pat 59
16:00-17:00
17:00-18:00

Table 31. Elective surgery schedule for operatoanr #2

Time Day 1 Day 2 Day 3 Day 4 Day 5
08.00:09:00 Gn. Sur. Pat 15 Gn. Sur. Pat 19 ENT/Pat Opht Pat 49 Gn. Sur. Pat 24
09:00-10:00 Gn. Sur. Pat 15 Gn. Sur. Pat 19 ENT/Pat Opht Pat 49 Gn. Sur. Pat 24
10:00-11:00 Ortho Pat 52 ENT Pat 9 OB/GYN Pat 46 ENT Pat 6 ENT Pat 8
11:00-12:00 Ortho Pat 52 ENT Pat 9 OB/GYN Pat 46 ENT Pat 6 ENT Pat 8
12:00-13:00 Ortho Pat 58 OB/GYN Pat42  Gn. Sur. Pat 20 Neuro Pat 39 OB/GYN Pat 43
13:00-14:00 Ortho Pat 58 OB/GYN Pat42  Gn. Sur. Pat 20 Neuro Pat 39 OB/GYN Pat 43
14:00-15:00 Gn. Sur. Pat 18 Gn. Sur. Pat 17 Neuro Pat 39 Gn. Sur. Pat 16
15:00-16:00 Gn. Sur. Pat 18 Gn. Sur. Pat 17 Ortho Pat 53 Neuro Pat 39 Gn. Sur. Pat 16
16:00-17:00 Ortho Pat 53 Ortho Pat 56
17:00-18:00 Ortho Pat 56

Table 32. Elective surgery schedule for operatoanr #3

Time Day 1 Day 2 Day 3 Day 4 Day 5
08.00:09:00 Ortho Pat 54 OB/GYN Pat 44 Hand Pat 36 Podi Pat 62
09:00-10:00 Ortho Pat 54 OB/GYN Pat 44 Gn. Sur. Pat 21 Uro Pat 69 Podi Pat 62
10:00-11:00 Uro Pat 68 OB/GYN Pat 45 Gn. Sur. Rat 2 Uro Pat 69 ENT Pat 10
11:00-12:00 Uro Pat 68 OB/GYN Pat 45 Opht Pat 48 ENT Pat 10
12:00-13:00 Hand Pat 35 ENT Pat 12 ENT Pat 11 Opht Pat 48 Gn. Sur. Pat 34
13:00-14:00 Gn. Sur. Pat 33 ENT Pat 12 ENT Pat 11 Gn. Sur. Pat 28 Gn. Sur. Pat 34
14:00-15:00 Gn. Sur. Pat 33 Ortho Pat 57 OphtPat5 Gn. Sur. Pat 28
15:00-16:00 Ortho Pat 57 Opht Pat 50
16:00-17:00
17:00-18:00
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Table 33. Elective surgery schedule for operatoanr #4

Time Day 1 Day 2 Day 3 Day 4 Day 5

08.00:09:00 Neuro Pat 40 Gn. Sur. Pat 30 PodbPa Gn. Sur. Pat 31
09:00-10:00 Neuro Pat 40 Gn. Sur. Pat 30 Podb®a Gn. Sur. Pat 31 OB/GYN Pat 41

10:00-11:00 Neuro Pat 40 Ortho Pat 55 OB/GYN Pat 41
11:00-12:00 Neuro Pat 40 Neuro Pat 38 Ortho Pat 55 OB/GYN Pat 47 Ortho Pat 61
12:00-13:00 Gn. Sur. Pat 25 Neuro Pat 38 Gn.Far27 OB/GYN Pat47 Ortho Pat 61
13:00-14:00 Gn. Sur. Pat 25 Neuro Pat 38 Gn. Pafr27 ENT Pat 13 Podi Pat 65
14:00-15:00 Neuro Pat 38 Gn. Sur. Pat 32 ENT Pat 13 Podi Pat 65
15:00-16:00 Uro Pat 66 Gn. Sur. Pat 32 Podi Pat 64 Hand Pat 37
16:00-17:00 Uro Pat 66 Podi Pat 64

17:00-18:00

Examining Tables 30 - 33, we can see that the nelvedille incorporates the
corresponding changes for 19 elective patientse Nwdt the inclusion of a trauma patient is
indicated in bold, italic, and underlined lettemstihe corresponding tables, whereas schedule
changes involving starting time in the same dayirsdeated by underlined letters. Schedule
changes involving change of operating room is iatid by the italic letters. Schedule
changes in starting times involving different deg/sdicated by the bold letters.

Emergency trauma patient 70 is operated in operatoom #1 at 08:00 am
immediately upon arrival. Patients 41, 61, 65, @ridare postponed one time period ahead in
operating room #4. Since the model does not pen@astponing or preponing in the same
day, the objective function value is not affectgdose moves. In a similar vein, the starting
time for the surgery of patient 21 is postponednf@3:00 am to 09:00 am. The start time for
the surgery of neurology patient 38 is preponeanfrp4:00 pm to 11:00 am. The cardio-
vascular patient 21 is rolled to the next periodisTmove increases the objective function
value by $18,990. The General Surgery patient 14 vshscheduled to receive surgical
operation in operating room #1 on Monday 9:00 asclseduled in the same operating room
next day at 10:00 am. Starting time for Generalg8uy patient 32 is preponed from 15:00
pm to 14:00 pm in operating room #4. The startingetfor surgeries for patients 9, 42, and

17 in operating room #2 on Tuesday are preponednieytime period. In a similar fashion,
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the starting times for the patients 52, 58, andiBpreponed by one time period. Similar in
the case with patients 8, 43, and 16, General Supgient 29 who is scheduled at operating
room #4 at 11:00 am is moved to operating roomt8Q0 am.

It is worthwhile to mention that one patient (ijgatient 21) is rolled to the next period,
and surgical operation for one patient (i.e., pati®4) is postponed by one day. Note that
under the current scheme, there is no need fomehpa the PACU units, and 3 PACU beds
can accommodate the current elective schedulehdnsblution, it might be seen that
adjustments are also made to reduce the numbek©@Umbeds that are required from 4 to 3.
To cite an instance, in operating room #3, theisgtimes of patients 41, 61, 65, and 37 are
postponed by one period. If the original schedaéd been kept, then on Friday at 10:00 am,
there would be a need for 4 PACU beds at a restifteoconclusion of surgical operations of
patients 41, 62, 24, and 4 respectively. In ordeavoid this, the starting time of surgical

operations for those patients are postponed byioreeperiod.

4.5. General Discussion

For rescheduling elective patients, the solutigoragch of using a commercial solver
to solve the MILP model and that of adopting thaege algorithm approach generate fairly
consistent results in terms of the solution qualitythe situations where the patient load is
low, usually no additional cost function is intraga. In these cases, using the commercial
solver to solve the mathematical programming mauaight provide the optimal solution in
the fraction of seconds. When the patient loadigh,hit is very likely that additional cost
figures are introduced by employing overtime inrapieg rooms or expanding the capacity

in the PACU unit, the computation time for bothtbé approaches increased considerably,
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however, both of the approaches provide compatiédealts in terms of objective function
value. For the second and third Scenarios, thatokas described in Table 27, the genetic
algorithm performs better, whereas in the firstrisc®, GAMS is able to find the optimal
solution in much shorter computation time. Althoutjie genetic algorithm can always
provide comparable or better solutions within timeet window for all scenarios, it is still
important to use both solution approaches in practand they should complement each
other. This is because the commercial solver cam aasignificant amount of computation
time for some scenarios, and any time saving véllappreciated by the hospital staff and
patients. Also, in practice, both approaches casebeip to run successively during the given
day, and the process might be automated suchhbatsults of the previous run are fed as
the input for the subsequent run. In other wordeemever the request for emergency
treatment arrives, both approaches can be run aganovide timely decisions whether to
admit the emergency patient or not without the nieednaking corresponding changes in

the genetic algorithm and GAMS code.
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5. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

5.1. Conclusion

In this dissertation, the problem of scheduling aescheduling elective patients is
considered. The problem encompasses two stagée lirst stage, the primary objective is
to schedule the elective patients under varioustcaimts. As previously discussed, these
constraints are surgical team constraints, the dowam clinical unit constraints (PACU
bed/equipment availability), and operating roomstaaints. These constraints are important
for determining the schedule of the elective pasieiihe existing schedule should consider
the resource constraints so that the surgical tipeagacan be performed. If the resource
constraints are not considered, then the operatiotise operating rooms and downstream
units are disrupted.

The possibilities of the expansion of the existoapacity are incorporated in the
problem both in rescheduling and scheduling modéigs. expansion might be carried out in
different fashions in different departments. Foergbing rooms, the overtime hours might be
employed to increase available operating time foerating rooms, or additional surgical
teams might be hired for performing the surgicaérapions and expanding the existing
capacity. Moreover, the number of PACU beds mightifzreased in order to increase the
maximum number of patients in the PACU units froectavering the effects of the
anesthesia. Providing venues for increasing thetiegi capacity might help to handle the
high elective patient load cases.

The scheduling model provides flexible approachHescase of high patient load

and/or scarce resources along with limited meanexXpanding the current capacity, some of
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the patients might be scheduled to the next planperiod. This increases the flexibility in
the scheduling practices by providing more optidriee patients who agree to be scheduled
for the upcoming period might be identified, andgé patients might be associated with low
cost figures for deferring them to the next timeigek This will be especially helpful in the
tight constraint/high patient load environment.

In the second stage, rescheduling of elective pi&tiepon inclusion of the emergency
patients is considered. In that regard, the capa&oihstraints, such as the number of surgical
teams present to perform the surgical operatiowsttione hours and the current available
PACU units are taken into consideration. The olbjecis to minimize the disruption to the
existing schedule while minimizing the amount ofldidnal resources to accommodate the
inclusion of emergency patients and reshuffling ¢hextive patients. Another aspect is that
the suggested rescheduling model can also be saddacision making tool for assessing
and improving the original elective surgery schedwith regard to resource usage. Even
without the admission of emergency patients, itloaradopted as a standalone approach for
evaluating and improving the current elective stygehedule with some modifications to
the mathematical programming model and the geragorithm code. In that case, the
purpose of shifting the elective patients is totdretitilize the available resources. With
proper modifications, the model can be also enlthhoeassess the current elective surgery
schedule with regard to block scheduling practite$ might be applied in other healthcare
settings.

In the scenarios that are incorporated in the exhalng of the elective patient, the
arrival of a single emergency patient at the beigmof the scheduling period is assumed. In

fact, the proposed model and solution approachesatso handle multiple emergency
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patients arriving at the same time. This might bpeeially important for the cases where
more than one patient requiring emergency treatrmagitt be brought to one hospital due to
various reasons, such as traffic accidents andristiattacks involving the injury of multiple
people. Based on the available capacity, the madkehelp make decisions on whether to
admit those patients. Depending upon the casenggftsome emergency patients might be
turned down while others might be admitted. If Hodution is to be obtained by the genetic
algorithm approach, the length of chromosome atrecfi.e., the fourth component) should
be adjusted and the appropriate crossover opeaatdiscussed in previous sections should
be implemented accordingly.

It can be seen that using the rescheduling anddstihg approaches successively
might provide a viable approach for providing a poehensive view on the problem. The
first stage is scheduling the patients, whereasst#wnd stage involves the rescheduling
phase, where the elective patients are shufflednwdre emergency patient arrives. The
rescheduling approach also honors the existing dsdbethus penalizing delaying and
preponing the patients to the next/previous dayitevdonsidering the existing resources.

The models developed in the previous chapters dengiie resource constraints such
as the availability of the surgical teams, avallgbof PACU beds, and the working hours of
operating rooms. The approach presented in thedathg and rescheduling phases is a
flexible one in which the block scheduling practicean be implemented implicitly by
limiting the availability of the surgical teams the specified time periods. These time
periods might constitute the blocks for the surgeams and surgical groups and can be used
towards the creation of the master surgical scleeithuh cyclic pattern. It might be important

for applying the cyclic master surgical scheduléeirms of leveling workforce requirements
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for surgical and support teams. The surgeons aeadstipport staff might prefer working
specific day/time of the week, and by collecting thformation of the preferences, and by
inputting the surgical team preferences in termghefavailability of those teams, the model
might be used for finding the optimum schedules.difdnally, the number of the
changeovers from one type of surgical operatioranother type might be minimized by
adjusting the availability of the surgical team& dite an instance, rather than making a
particular team available in disjoint time periotte availability of a team might be arranged
in such a way that the team is available in theseountive time periods. This serves for two
purposes. The first purpose is that it will inceedbke convenience of the workforce by
allowing them to work for consecutive time periadsher than working on disjoint time
intervals. The second purpose will be reducingritmaber of changeovers from one surgical
operation to another one. This will reduce the tforgpreparing operating rooms for the next
surgical operations. It will be logical to assunmattthe preparation time of an operating
room for the same type of surgery is generally ks the preparation time of the same
operating room for a different type of surgery. timat regard, the minimization of
changeovers in a particular operating room incrieéise efficiency of the operating room by
increasing the total time actually spent for pearfonrg surgical operations and reducing the
time spent for preparing operating rooms for subsagoperations

In general, we see that both for rescheduling atteduling phases, the genetic
algorithm based approaches provide compatible isoluh terms of the objective function
values. Especially, in the rescheduling case, wlieeecomputation time is important in
terms of the giving decision whether accepting ejdcting the emergency patient, rule of

thumb might be developed for employing either geragorithm or mathematical modeling
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based approach separately or using them togetherorAposite index representing the
problem size might be developed for this purposgetermine which approach to be used.
For the genetic algorithm used in scheduling arsghreduling elective patients, two
different approaches based on the representatitregiroblem are developed. In scheduling
the elective patients, the chromosome representasidoased on the starting time of the
surgical operation for the patients, whereas ichieduling the elective patient, the solution
is mainly represented by the sequence of the patieperated in operating rooms.
Representing the sequence of the patient who wdkugo surgical operation work better for
the rescheduling based on the fact that electivengaschedule is always included in the
solution pool and the original elective patientexthle is always selected for the crossover
and subsequent operations. This practice providesitable starting point for forming the
elective patient schedule where the patients camrsiauffled to present the best strategy for
forming the new schedule. Additionally, most of teses, the new optimal or near-optimal
solution is the variation of the original electigdlution based on the sequence of the
patients, and therefore adopting the sequence vapessentation provides better results.
However, for scheduling the elective patients, sirthere is no initial feasible
solution to start with, representing the solutianterms of the starting time provides better
results by searching the solution space in a higésalution. Therefore, for scheduling of the
elective patients, the chromosome representatisedan the starting time of the surgical

operations is adopted.
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5.2. Policy Implications and General Considerations

In this section, we discuss different policy implions and the general consideration
regarding the proposed approaches as follows.

Some states necessitate that it is not possibtartodown the emergency patients.
The mathematical programming model can handle thetumning down rule by either
employing high cost figures associated with thaing down the emergency patients in the
objective function or imposing the correspondingistcaint that the emergency patients
should be operated in that particular time peribdraval.

The prioritization of patients might be also incorgted in the mathematical model.
To cite an instance, for the rescheduling of elecpatients upon arrival of the emergency
patient, the model tries to minimize the disruptionthe current elective schedule by
assigning the monetary cost figures for shifting éhective patient from one particular time
slot to another one. Additionally by imposing aduhal constraints, as previously stated,
some of the patients (i.e., children, outpatienpatients with some travel restrictions) might
be operated in the earlier hours during the day.

Both the scheduling and rescheduling models ailmpwove the patient access to the
surgical operations by increasing throughput. Tghmut in this problem setting might be
loosely defined as the number of patients who wwesurgical operations. In order to
improve the throughput, cost figures are assodiéde the deferring the patient to the next
planning period, therefore given the level of theaurces, during the planning horizon, the
models aim to improve the patient access by minmgiaumber of patients who do not

undergo surgical operations for that planning perio
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Both scheduling and rescheduling models use thatidarof stay in the PACU units
as the input parameter on patient basis. Theretrbglthe case that due to the complications
and other considerations, the patient might neestiap longer in the PACU unit, or might be
transferred to ICU instead of the PACU unit. Longgays in the PACU unit might be
handled with changing the input parameters for tiumeof the stay in the PACU unit. Since
both models consider making corresponding decisatribe patient level and treat patients
on individual basis, duration of stay in the cop@sding PACU unit might be adjusted for
each of the patient/surgical operations on casedsg basis. For transfers to the ICU unit,
new downstream clinical units should be defined iacorporated in the model.

Additional constraints might be imposed to provitle suitable time slots where no
elective patient is scheduled for that particularet slot. If an emergency patient arrives,
without the need for the rescheduling of the elecpatients, the emergency patient might be
operated in that particular time period. This typfe policy brings an improvement in
operating room planning. The number of availablaetislots for operating emergency
patients might be adjusted based on the histodatd. If during the week, for some time
periods, more emergency patients are likely tovayrthe time slots that are available for
emergency surgical operations might be increasedoagpared to the other time periods.
That will help to create the emergency patientniilig schedules that the possibility of

rescheduling elective patients is minimized.
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5.3. Future Research Directions

Based on the thesis research results, we pointheufuture research directions as

follows,

1.

Incorporating constraints in the rescheduling maidwgcal model for limiting the
length of the notice provided to the patients rdoay the change of the schedule.
Developing the mathematical models featuring camtus distributions rather
than the discrete distributions for governing theation of the surgical operations
for the scheduling model. The same approach mitgd be followed for the
rescheduling model as well. A mathematical programgmmodel featuring
stochasticity in duration of surgical operation fescheduling elective patients
might be developed.

Incorporating additional constraints for reducimg humber of changes of the
surgical operation performed in an operating roonmaigiven day. In order to
increase the effectiveness of the system, the @nt& limiting the number of
surgical operations might also be incorporatedérhathematical model both for
scheduling and rescheduling mathematical programmadels.

Another consideration is incorporating the prigation of patients in the
scheduling model. Some patients might prefer toperated at specific time of
the day. To cite an instance, children under certaje are usually given the
priority for the earlier time slots within the giveday. In an outpatient setting,
patients who need to travel long distances bacthéir homes are also given

priority during the day for the earlier time slot$hese can be incorporated in the
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mathematical model, since the model identifies admns based on the
individual patient level.

. Developing other heuristic approaches. These irclugt are not limited to; ant
colony optimization, Tabu search, simulated anngaland other metaheuristic
approaches.

Developing repair schemes for improving the ovesalution feasibility of the
solution throughout the generations for the genetgorithm implementation.
This might be especially a viable approach for ¢ases with the high elective
patient load and large variations in terms of the&gEal duration. The
corresponding move algorithm developed in schedudimd rescheduling sections
might be further improved to provide better solntio a limited amount of time.

. Using Bender’'s decomposition approach. That approsaasually employed to
solve the class of optimization problems that pssslee specific structure. In that
regard, the structure of the problem is exploit®@dnder decomposition is also
extensively used in stochastic programming modefariger, 1994; Nielsen and
Zenios, 1997). Additional detail is provided in Agplix C.

. Implementing Lagrangian relaxation methods to iasee the performance of

mathematical modeling based solutions might beableiapproach.
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APPENDIX A. GAMS CODE FOR MATHEMATICAL PROGRAMMING MODEL

FOR SCHEDULING

sets

t TIME SLOT INDEX 56 REFERS TO THE OUTSIDE THE PLANNG CYCLE 5*11=33 /1*55/
j THE DIAGNOSIS TYPE INDEX 1 /1*10/

i THE PATIENT INDEX /1*70/

h operating time states /1*3/

ww scenarios

d DAY INDEX /1*5/;
alias (t,tprime);

alias (h,h2,h3,h7,h10);
set w /1*24/,

set current(w);
current('1")=yes;

parameter probxx;
parameter p(w);

Table lambda(j,h) probability of surgiucal opévatof type j lasts period of h

1 2 3

0.2 0.5 0.3

P OoO~NOUIT,WNE
=

table G(j,h) operating time of the surgery havinggdosis type |
2 3

2
2

A WN P
N SN L
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loop((h,h2,h3,h7,h10),
probxx =
lambda('2',h2) *
lambda('4',h3) *
lambda('7',h7) *
lambda('10',h10)

O('1',current) = G('1','1"),
O('2',current) = G('2',h2);
O('3',current) = G('3',h3);
O('4',current) = G('4','1"),
O('5',current) = G('5','1");
O('6',current) = G('6','1");
O('7',current) = G('7',h7);
O('8',current) = G('8','1");
O('9',current) = G('9','1");
O('10',current) = G('10',h10);
p(current) = probxx;

*  g(ss) = s(ss-1) current(w+1)$curfent= yes;
current(w-1)$current(w) = no ) ;

parameter su(j) the time of stay in the intensiaeeainit related with diagnosis type j;
su(j) =1;

parameter B(d) number of current operating hourshie operating room;
b(d) = 48;

parameter probxx;

SCALAR

bicu the regular capacity of the number of beds@lCU /3/

cicu THE COST OF ADDING ADDITIONAL BED IN icu DURINKS THE PLANNING HORIZON
120000/

cor THE HOURLY COST OF OPERATING THE OPERATING ROOKM500/

uicu THE UPPER LIMIT ON THE NUMBER OF ADDITIONAL BES THAT CAN BE PLACED
IN icu /1/
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uor the upper limiot on the number of availablertwee hours that can put in ICU 4*(16:00-

18:00)/4/

N nUMBER OF OPERATING ROOM /4/

Over of overtime operating room /2/

surg /4156/;

table tau(t,j)) NUMBER OF SURGERY TEAMS THAT AREVAILABLE FOR PERFORMING

THE SURGERY TYPE J AT TIME PERIOD T

56
11
11

1
1
1

1
1
1

11
01

10
11
12
13
14
15
16
17
18
19

01

o o

20
21

01

22
23

24
25
26
27

o o

28
29
30
31

01

o o

32
33
34
35
36
37

— -
o o

—

01

38

o o

39
40

01

41
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— -
o o

—

42
43

10

1
1
1
1
1
1

0
0

0
0
0
0
0
0

0
0

2

table m(i,)) WHETHER THE PATIENT | HAS THE DIAG@SIS TYPE OF J
1

44
45
46
47
48
49
50
51
52
53
54
55
10

o o

o o
o o

o o

11
12
13
14

17
18
19

o o

o o
o o

o o

o o

20

—

o o

21
22

23
24
25
26
27

o o

o o
o o

o o

o o

—

o o

28
29
30

31
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35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

cNeoloNoNoloNeololoNoolololoNololoNeolojloNeoololeololololoNololoNeloNoNe
ecNeoNoloNoNoNoNeololoNololNoNoloNololoNeololoNoNoNolololNoNoloNoNoNoNeoloNoNe
ecNoNoNoNoNoNoNololoNoloNoNolNoNoloNoNololoNoNoNololoNoNoNoNoNoNoNoNoNoN o
ecNoNoNoNoNoNoNoloNoNoloNoNoNoNoloNoNololoNoNoNoNoloNoNoNoNoNoNoN i Dl Sl el
ecNeoololoololololololojlolololololoNeolojololololololoNoNol i J NeloNeNe
cNoNoNoNoNoNoNololoNoloNoNoloNoloNoNoloNoNal i N N Nl HeleoNoNeoloNeoNe
ecNeoloNeoNoloNeololoNololololoNololoNaoh J I eololelolooloNeololNoNeloNoNe
OCOO0OO0OO0OOCOO0OFRRFRFFRPFRPPFRPPRPPRPPRPPPPOOOODOOOOOOO0OOO0OOOO0OO
OCOOORPFRPPFPPFPOOOOOOOOOOO0OOO0OO0OO0OO0O0OO0O0O0O000O000O0O00OO0
PRPPPRPOOO0OO0O00000000000000000000000O000OO0OO0OOoO

binary variables x(i,t) whether the operation isextuled at time period t for patient i
a(i,t,w) whether the operatioantinued at time period t for patient i
s(i,t,w) whether patient i occupthe bed at ICU at time period t
u(i) if the patient is rolled ta@her horizon
z(t,j) number of additional sumjiteams hired
integer variables
OOR(d) overtime utilization ofenating room at day d)
OICU number of extra beds plaicetCU unit

variable mun

equations

149



*equationl(d,w) this constraint determines thaltatilization of the operating room
equation2(d,w) this constraint determines the awerutilization of the operating oom equation3(w)
the constraints satisfying that it is is not pokstb operate the operating room equation4(ihe t
elective patient should be either performed in piag horizon should be rooled to the next horizon

equation5(t,d,w) the number of ongoing opereticannot be more than the number of operating
room

equation6(j,t,w) the constraint that determinesabeupation of beds in ICU based on the x(i t)
values

equation7(i,j,t,tprime,w)

equation8(i,j,t,tprime,w) the constraint that i€dg$or connecting a(i t) with x(i t)

equation9(t,w) the number of occupied nbeds id & an instant cannot be more than the number
of regular beds+number of extra beds for ICU

equation10 number of extra beds cannot be iti@n the upper limit on the number of beds for
ICU

equation11(d) overtime utilization cannot be enttran the upper limit for Operating room
equation12(t,d,w)

object ;

*equationl(d,w).. sum((i,t)$((ord(t)ge (1+((ord(@)*11)) and (ord(t)le 8+(ord(d)-1)*11))),a(i,t,w))
== B(d);

equation2(d,w).. sum((i,t)$((ord(t)ge (9+((ord(d)y1)) and (ord(t)le 10+(ord(d)-1)*11))),a(i,t,w))
=e= OOR(d);

equation3(w).. sum((i,t)$((mod(ord(t)-1,11) ge 18jj)t,w))=e= 0;

equation4(i).. sum(t,x(i,t))+u(i)=e= 1,

equation5(t,d,w)$((ord(t)ge (1+((ord(d)-1)*11)) afaid(t)le 8+(ord(d)-
1)*11)))..sum(i,a(i,t,w))=I=N;

equation12(t,d,w)$((ord(t)ge (9+((ord(d)-1)*11))chford(t)le 10+(ord(d)-1)*11)))..
sum(i,a(i,t,w))=I=over;

equation6(j,t,w)..sum(i, a(i,t,w)*m(i,j))=I=tau(¥;f z(t,j);

equation7(i,j,t,tprime,w)$((ord(tprime) ge (ord(@4,w))) and (ord(tprime) le (ord(t)+O(j,w)+Su(j)-
1))).. s(i,tprime,w) =g= x(i,t)*m(i,));

equation8(i,j,t,tprime,w)$((ord(tprime) ge (ordjtgnd(ord(tprime) le (ord(t)+O(j,w)-1)))..
a(i,tprime,w) =g= x(i,t)*m(i,j);

equation9 (t,w).. sum(i,s(i,t,w))=l=bicu+OICU,;

equationl10.. oicu =I= uicu;

equation11(d).. OOR(d) =I= uor;

object..
sum(w,p(w)*OICU*CICU)+sum((d,w),p(w)*oor(d)*cor)+su((j,t),z(t,j)*surg)+sum(i,3798*5*u(i))
=e= mun;

Model ergin /all/ ;

option limcol=0,limrow=0,solprint=0ff;

option reslim=3600;
Solve ergin using mip minimizing mun;
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display x.I;

APPENDIX B. GENETIC ALGORITHM CODE FOR THE SCHEDULI

IN MATLAB

tic

clear,;

% streamO = RandStream('mt19937ar','Seed',0);
% RandStream.setDefaultStream(streamO);
pop_size=60;

pat_size=132;

max_tries=20;

cross_size=20;

infeasibility=0;

inf_cost=0;

infeasibility_regular=0;

infeasibility_down=0;

infeasibility_up=0;

feasibility=0;

flag=0;

gen=1000;

global or_room;

or_room=§;

initial_pop_try=60;

pop_startl=zeros(pop_size,pat_size+5);
pat_listl=zeros(pop_size,pat_size);
ul=zeros(pop_size,or_room+1);

pop_start=zeros(initial_pop_try,pat_size+5);
pat_list=zeros(initial_pop_try,pat_size);
u2=zeros(initial_pop_try,or_room+1);

B=zeros(pop_size+cross_size,l);
IX=zeros(pop_size,1);

off_pop_start=zeros(pop_size,pat_size+5);
off_pat_list=zeros(pop_size,pat_size);
off_ul=zeros(pop_size,or_room+1);

IX1=zeros(pop_size,1);
Bl=zeros(pop_size+cross_size,l1);

best _ul=zeros(1,or_room+1);

best_pop_start=zeros(1,pat_size+5);
best_pat_list=zeros(1,pat_size);
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roul_popl=zeros(pop_size,l);
roul_pop2=zeros(pop_size+cross_size,1);

temp=0;

merge_pat_list=zeros(pop_size+cross_size,pat_size);
merge_ul=zeros(pop_size+cross_size,or_room+1);
merge_pop_start=zeros(pop_size+cross_size,pat ize+
crosslist_popl=zeros(cross_size,1);

elit_selection=10;

mut_prob=0.02;

num_gen=1000;

ploy=zeros(1,num_gen);

ployl=zeros(1,num_gen);

ploy(1)=0;

ploy1(1)=0;

global mult;

global prob;

global burak;

global oper_time;
global surgery_availability;
global diag_type;
global additional_hire;
global surg_specialty;
global num_scenarios;
global num_extensioni;
global num_regular;
global num_working;
global oicu;

global bicu;

global num_days;

mult=1.001;

burak=zeros(1,surg_specialty);
burak(surg_specialty+1)=1;

num_working=10;

num_extensioni=14;

num_regular=8;

surg_specialty=10;

num_days=5;
additional_hire=ones(num_extensioni*surg_specialty)

surgery_availability=[
1

RPRRPNR PR
PR R R

NRONRNNN
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RPRRPRRPE R
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product=1;

for k=1:surg_specialty
product=product*nnz(oper_time(k,:));
burak(surg_specialty-k+1)=burak(surgcalty-k+2)*nnz(oper_time(surg_specialty-k+1,3));
end;
num_scenarios=product;

inten_stay=ones(1,surg_specialty);

bicu=5;
oicu=1;
prob=[0.03 0.075 0.045 0.03 0.075 0.045 0.02050.
0.03 0.02 0.05 0.03 0.03 0.075 0.045 0.03

0.075 0.045 0.02 0.05 0.03 0.02 0.05 0.03]
traverse_list=zeros(1,pat_size);

for i=1:initial_pop_try
pat_list(i,:)=randperm(pat_size);
traverse_list=zeros(1,pat_size);
for t=1:0r_room+1

u2(i,t)=randsample((round(((pat_size/oomj)-
(0.1*round(pat_size/or_room))):(round((pat_sizefoom)+(0.1*round(pat_size/or_room))))),1);
end;
u2(i, or_room+1)=max(0,pat_size-sum(u2¢r lroom)));

if sum(u2(i,:))<pat_size

while sum(u2(i,:))<pat_size
k2=randsample(or_room,1);
u2(i,k2)=min(pat_size,u2(i,k2)+1);
end;
end;
if sum(u2(i,:))>pat_size

while sum(u2(i,:))>pat_size
k2=randsample(or_room,1);
u2(i,k2)=max(0,u2(i,k2)-1);
end;
end;
for y=1:0r_room
if y==1
pop_start(i,1:u2(i,1))=randsamplief(n extensioni*num_days,u2(i,1));
else

157



pop_start(i,sum(u2(i,1:y-
1))+1:sum(u2(i,1:y)))=randsample(hum_extensioni*naiays,u2(i,y));
end;
end;
for t2000=1:sum(u2(i,1:0r_room))

t=pop_start(i,t2000);
while (mod(t,num_extensioni)==0) || (mod(t,nuxtedsioni)>num_working)
t=randsample(num_extensioni*num_days,1);

end;
pop_start(i,t2000)=t;

end;

[inf_cost, infeasibility, feasibility, fld=erman(pop_start,pat_list,u2,i);
if flag==
pop_start(i,pat_size+1)=infeasibility;
pop_start(i,pat_size+2)=flag;
pop_start(i,pat_size+3)=inf_cost;
pop_start(i,pat_size+4)=feasibility;
pop_start(i,pat_size+5)=1/(feasipitinf_cost);
else
infeasibility_regular=infeasibility;

traverse_list(1:sum(u2(i,1:or_roomygrdperm(sum(u2(i,1:or_room)));

for koray=1:sum(u2(i,1:0r_room))
if (mod(pop_start(i,traverse_ksiay)),num_extensioni)>1) &&
(mod(pop_start(i,traverse_list(koray)),num_extengienum_working)
if mod(pop_start(i,traverse_list(korggum_extensioni)==1
(pop_start(i,traverse_list(koraypm extensioni))
end;

pop_start(i,traverse_list(kg)apop_start(i,traverse_list(koray))-1;

[inf_cost, infeasibility, feasibilitflag]=erman(pop_start,pat_list,u2,i);
infeasibility_down=infeasibility;
pop_start(i,traverse_list(koray)ppstart(i,traverse_list(koray))+2;
[inf_cost, infeasibility, feasilifi flag]=erman(pop_start,pat_list,u2,i);
infeasibility_up=infeasibility;
if infeasibility_regular<infeasiity_down && infeasibility_regular<infeasibility_pi
pop_start(i,traverse_list(kg)apop_start(i,traverse_list(koray))-1;
else if infeasibility_down<infebgity regular && infeasibility_down<infeasibilityup
pop_start(i,traverse_list(kQdapop_start(i,traverse_list(koray))-2;
end;
end;
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else if (mod((pop_start(i,travergsst(koray))),num_extensioni)==num_working)
pop_start(i,traverse_list(koray))=pstart(i,traverse_list(koray))-1;
[inf_cost, infeasibility, feasibilitflag]=erman(pop_start,pat_list,u2,i);
infeasibility_down=infeasibility;

if infeasibility_regular<infeasiity _down
pop_start(i,traverse_list(kgdapop_start(i,traverse_list(koray))+1;
end;

else if (mod((pop_start(i,traversst(koray))),num_extensioni)==1)
pop_start(i,traverse_list(koray))=pstart(i,traverse_list(koray))+1;
[inf_cost, infeasibility, feasibilitflag]=erman(pop_start,pat_list,u2,i);
infeasibility_up=infeasibility;
end;
if infeasibility_regular<infeadiby up
pop_start(i,traverse_list(kgd)apop_start(i,traverse_list(koray))-1;

end;
end;
end;
end;
[inf_cost, infeasibility, feasibilitylag]=erman(pop_start,pat_list,u2,i);

pop_start(i,pat_size+4)=feasibility;
pop_start(i,pat_size+1)=infeasiilit
pop_start(i,pat_size+3)=inf_g¢ost
pop_start(i,pat_size+2)=flag;
pop_start(i,pat_size+5)=feadiptinf _cost*(mult*gen);
end;
end;

[B1 IX1]=sort(pop_start(:,pat_size+1), 'ascend’)

foril=1:pop_size
ul(il,:)=u2(1X1(i1),);
pop_start1(il,:)=pop_start(IX1(i1),:);

pat_list1(il,:)=pat_list(IX1(i1),);

end;

for gen=2:num_gen
for il=1:pop_size

if pop_startl(il,pat_size+2)==1
pop_startl(il,pat_size+5)=
1/(pop_startl(il,pat_size+4)+pop_startl(il,pat s33g8mult™(gen)));
end;
end;

total_fitness=sum(pop_startl(:,pat_size+5));
[B IX]=sort(pop_startl(;,pat_size+5),'descend";
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% roul_popl=zeros(60,1);
for i=1:pop_size
fithness=sum(B(1:i));
roul_popl(i)=fitness/total_fitness;
end;
for i3=1:cross_size
y=rand;

for j=1:pop_size-1

if ((y>roul_pop1(j))) && (y<=roul_popl(j+1)))

% if ((flag==0) | (IX(j+1)~=60))
crosslist_popl(i3)=IX(j+1);

% i3=i3+1;
break;

else if y<=roul_pop1(1)

% if ((flag==0) | (IX(1)~=60))
crosslist_popl(i3)=IX(1);
% i3=i3+1;
break;
end;
end;
end;
end;

off_pop_start=zeros(cross_size,pat_size+5);
off_pat_list=zeros(cross_size,pat_size);
off_ul=zeros(cross_size,or_room+1);

for j=1:2:cross_size

yson=rand,;
if yson<=0.01

cross_locations=randsample(2:pat_size,2);
cross_locations=sort(cross_locations);
off_pat_list(j,cross_locations(1):cross_location¥€pat_list1(crosslist_popl(j),cross_locations(d):c

oss_locations(2));

off_pat_list(j+1,cross_locations(1):cross_locati@}=pat_list1(crosslist_popl(j+1),cross_locations(
1):cross_locations(2));

for il=cross_locations(2)+1:pat_size
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if
nnz(pat_listl(crosslist_popl(j+1),il)==pat_listsslist_popl(j),cross_locations(1):cross_locations(
2)))==0
off_pat_list(j,il)=pat_listl(crosslist ph(j+1),i1);

else

ind=find(pat_list1(crosslist_popl1(j}opat_listl(crosslist_popl(j+1),il));
while nnz((pat_list1(crosslist_popil]),ind))==0ff _pat_list(j,:))>0

ind=find(pat_list1(crosslist_popLjF=pat_list1(crosslist_popl(j+1),ind));

end;
off_pat_list(j,il)=pat_list1(crossli popl(j+1),ind);

off_pat_list(j,il)=pat_list1(crosslist_pt(j+1),ind);

end;
end;

for il=cross_locations(2)+1:pat_size

if
nnz(pat_listl(crosslist_popl(j),il)==pat_listl(cstist popl(j+1),cross_locations(1):cross_locations(
2)))::?)f'f_pat_list(j+1,i1):pat_listl(crossliq;to_pl(j),il);

else

ind=find(pat_list1(crosslist_popl(j+)F=pat_listl(crosslist_popl(j),il));
while nnz((pat_list1(crosslist_pop;ifd))==off_pat_list(j+1,:))>0
ind=find(pat_list1(crosslist_popdl),:)==pat_listl(crosslist_popl(j),ind));

end;
off_pat_list(j+1,il)=pat_listl(crdiss popl(j),ind);

end;
end;

for il=1:cross_locations(1)-1
if
nnz(pat_listl(crosslist_popl(j+1),il)==pat_listsslist_popl(j),cross_locations(1):cross_locations(
2)))==0
off_pat_list(j,il)=pat_listl(crosslist ph(j+1),i1);

else
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ind=find(pat_list1(crosslist_popl1(j}opat_listl(crosslist_popl(j+1),il));
while nnz((pat_list1(crosslist_popil]),ind))==0ff _pat_list(j,:))>0

ind=find(pat_list1(crosslist_popLjF=pat_listl(crosslist_popl(j+1),ind));

end;
off_pat_list(j,il)=pat_listl(crossli popl(j+1),ind);

off_pat_list(j,il)=pat_list1(crosslist_pt(j+1),ind);

end;
end;

for il=1:cross_locations(1)-1

if
nnz(pat_listl(crosslist_popl(j),il)==pat_listl(cstist popl(j+1),cross_locations(1):cross_locations(
2)))==0

off_pat_list(j+1,i1)=pat_list1(crossligopl(j),il);
else
ind=find(pat_list1(crosslist_popl(j+)F=pat_listl(crosslist_popl(j),il));
while nnz((pat_list1(crosslist_pop;ifd))==off_pat_list(j+1,:))>0
ind=find(pat_list1(crosslist_popdl),:)==pat_listl(crosslist_popl(j),ind));

end;
off_pat_list(j+1,il)=pat_listl(crdiss popl(j),ind);

end;
end;

else

off_pat_list(j,:)=pat_listl(crosslist_popl{)),
off_pat_list(j+1,:)=pat_list1(crosslist_poptl),:);

end;
cross_location1=0;
for t1=1:0or_room
if t1==1 && min((ul(crosslist_popl(j),t1)),(udfosslist_popl(j+1),t1)))~=0
cross_locationl=randsample(min((ul(crossligbLf,t1)),(ul(crosslist_popl(j+1),t1)))-1,1);

off_pop_start(j,1:cross_locationl)=pop_stamdgslist_popl(j+1),1:cross_locationl);

off_pop_start(j,cross_location1+1:ul(crosslist_p@pil))=pop_startl(crosslist_popl(j),cross_locati
onl+1:ul(crosslist_popl(j),tl));
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%off_empty(j+1,cross_locations(1):cross_locatiofs{Ropl_empty(crosslist_popl(j+1),cross_locat
ions(1):cross_locations(2));
off_pop_start(j+1,1:cross_locationl)=pop_standsslist_popl(j),1:cross_locationl);

off_pop_start(j+1,cross_locationl+1:ul(crosslisph@+1),t1))=pop_startl(crosslist_popl(j+1),cros
s_location1+1:ul(crosslist_popl(j+1),t1));

elseif (ul(crosslist_popl(j+1),t1))==0

off_pop_start(j,:)=pop_start1l(crosslist_p@p:);
off_pop_start(j+1,:)=pop_startl(crosslist_pgpl},:);

elseif t1~=1 && min((ul(crosslist_popl(j),tiYL(crosslist_popl(j+1),t1)))~=0
cross_locationl=randsample((min(ul(crosgigpl(j),t1),ul(crosslist_popl(j+1),t1))-1),1);

off_pop_start(j,sum(ul(crosslist_popl(j),1:9+1L:sum(ul(crosslist_popl(j),1:t1-
1))+cross_location1)=pop_startl(crosslist_popl(jstin(ul(crosslist_popl(j+1),1:t1-
1))+1:sum(ul(crosslist_popl(j+1),1:t1-1))+crossakianl);

off_pop_start(j,sum(ul(crosslist_popl(j),1:t1-
1))+cross_location1+1:sum(ul(crosslist_popl(j)})tipop_startl(crosslist_popl(j),sum(ul(crosslis
t_popl(j),1:t1-1))+cross_location1+1:sum(ul(cradsiopl(j),1:t1)));

%off_empty(j+1,cross_locations(1):cross_locatiofs{Ropl_empty(crosslist_popl(j+1),cross_locat
ions(1):cross_locations(2));
off_pop_start(j+1,sum(ul(crosslist_popl(j+114t))+1:sum(ul(crosslist_popl(j+1),1:t1-
1))+cross_location1)=pop_startl(crosslist_popi(ih&il(crosslist_popl(j),1:t1-
1))+1:sum(ul(crosslist_popl(j),1:t1-1))+cross_lomat);
off_pop_start(j+1,sum(ul(crosslist_popl(j+1La:
1))+cross_locationl+1:sum(ul(crosslist_popl(j+1})})=pop_startl(crosslist popl(j+1),sum(ul(cr
osslist_popl1(j+1),1:t1-1))+cross_location1+1:sunf¢odsslist_popl(j+1),1:t11)));

end;
end;
t5=rand;
if t5<=0.01

y=randsample(or_room,1);

off_ul(j,1:y)=(ul(crosslist_popl(j),1:y));
off_ul(j+1,1:y)=(ul(crosslist_popl(j+1),1:y));

off ul(j+1,y+1:or_room+1)=(ul(crosslist_popMjl:or_room+1));
off_ul(j,y+1:or_room+1)=(ul(crosslist_popl(jpthl:or_room+1));

else

off_ul(j,:))=(ul(crosslist_popl(j),:));
off_ul(j+1,:)=(ul(crosslist_popl(j+1),:));
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end;

while sum(off_ul(j,:))>pat_size
t=randsample(or_room+1,1);

while off_ul(j,t)==0
t=randsample(or_room+1,1);
end;

off_ul(j,t)=off _ul(j,t)-1;
end;

while sum(off_ul(j,:))<pat_size
t=randsample(or_room+1,1);

while off_ul(j,t)==pat_size
t=randsample(or_room+1,1);
end;

off_ul(j,t)=off _ul(j,t)+1;
end;

while sum(off_ul(j+1,:))<pat_size
t=randsample(or_room+1,1);

while off_ul(j+1,t)==pat_size
t=randsample(or_room+1,1);
end;
off_ul(j+1,t)=off _ul(j+1,t)+1;
end;

while sum(off_ul(j+1,:))>pat_size
t=randsample(or_room+1,1);
while off_ul(j+1,t)==0
t=randsample(or_room+1,1);
end;

off_ul(j+1,t)=off _ul(j+1,1)-1;

end;
end;

for j=1:2:cross_size
i10=sum(off_ul(j,1:or_room));
i11=sum(off_ul(j+1,1:or_room));
i12=nnz(off_pop_start(j+1,1:pat_size));
i13=nnz(off_pop_start(j,1:pat_size));
if i10-i13>0
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for t1000=1:(i10-i13)

y=randsample(num_extensioni*num_days,1)
while (mod(y,num_extensioni)==0) || (mgd{ym_extensioni)>num_working)
y=randsample(num_extensioni*num_days,1);
end;

off_pop_start(j,i13+t1000)=y;

end;
end;
if i10-i13<0
for t1000=0:(i13-i10-1)
off_pop_start(j,i13-t1000)=0;
end;
end;

if i11-i12>0
for t1000=1:(i11-i12)
y=randsample(num_extensioni*num_days,1);
while (mod(y,num_extensioni)==0) || (mgd{ym_extensioni)>num_working)
y=randsample(num_extensioni*num_days,1);
end;

off_pop_start(j+1,i12+t1000)=y;

end;
end;
if i11-i12<0

for t1000=0:(i12-i11-1)

off_pop_start(j+1,i12-t1000)=0;

end;

end;
end;

for j=1:cross_size
for il=1:pat_size

yl=rand;
if yl<=mut_prob

y2=randsample(pat_size,1);

while y2==i1
y2=randsample(pat_size,1);
end;

temp=off_pat_list(j,y2);
off_pat_list(j,y2)=off_patsi(j,il);
off_pat_list(j,il)=temp;

end;
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end;
for il=1:sum(off_ul(j,1:or_room))

y=rand;
if y<=mut_prob

yl=rand;

y2=randsample(0:num_extensioni*ndays-1,1);
tries=0;
flag=0;

if y1<=0.5

while ((off_pop_start(j,il)-y28¥||(mod(off_pop_start(j,il)-y2,num_extensioni)F4H0
(mod(off_pop_start(j,i1)-y2,num_extensioni)>num_wiag)) && (tries<max_tries)
y2=randsample(0:num_esiem*num_days-1,1);
tries=tries+1;
if tries==max_tries
flag=1,
end;
end;

if flag==
off_pop_start(j,il)=off pop_st@ail)-y2;
end;
else
while ((off_pop_start(j,il)+yBum_extensioni*num_days) ||
(mod(off_pop_start(j,i1)+y2,num_extensioni)==0) ||
(mod(off_pop_start(j,il)+y2,num_extensioni)>num_kiag)) && (tries<max_tries)
y2=randsample(0:num_eskem*num_days-1,1);
tries=tries+1;
if tries==max_tries
flag=1,
end;
end;
if flag==0
off_pop_start(j,il)=off pop_g@il)+y2;
end;

end;
end;

end;
foril=1:or_room+1

y=rand;
if y<=mut_prob

yl=rand;
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if y1<=0.5

y2=randsample(or_room+1,1);

while y2==i1
y2=randsample(or_room+1,1);
end;

if off_ul(j,il)>0 && off _ul(j,y2)pat_size

off_ul(j,il)=off ul(j,i1)-1;
off_ul(j,y2)=off ul(j,y2)+1;

end;

end;

if y1>0.5

y2=randsample(or_room+1,1);

while y2==i1
y2=randsample(or_room+1,1);

end;

if off_ul(j,y2)>0 && off _ul(j,idpat_size

off_ul(j,il)=off_ul(j,il)+1;
off_ul(j,y2)=off_ul(j,y2)-1;

end;
end;
end;
end;
end;

for j=1:2:cross_size

i10=sum(off_ul(j,1:or_room));
i11=sum(off_ul(j+1,1:or_room));
i12=nnz(off_pop_start(j+1,1:pat_size));
i13=nnz(off_pop_start(j,1:pat_size));

if i10-i13>0
for t1000=1:(i10-i13)

y=randsample(num_extensioni*num_days,1)
while (mod(y,num_extensioni)==0) || (mod{ym_extensioni)>num_working)
y=randsample(num_extensioni*num_days,1);
end;
off_pop_start(j,i13+t1000)=y;
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end;
end;

if 110-i13<0
for t1000=0:(i13-i10-1)
off_pop_start(j,i13-t1000)=0;
end;
end;

ifi11-i12>0
for t1000=1:(i11-i12)
y=randsample(num_extensioni*num_days,1);
while (mod(y,num_extensioni)==0) || (mgd{ym_extensioni)>num_working)
y=randsample(num_extensioni*num_days,1);
end;

off_pop_start(j+1,i12+t1000)=y;
end;
end;
if i11-i12<0
for t1000=0:(i12-i11-1)
off_pop_start(j+1,i12-t1000)=0;
end;
end;

end;
for i=1:cross_size

traverse_list=zeros(1,pat_size);
[inf_cost, infeasibility, feasibilityldg]=erman(off_pop_start,off pat_list,off ul,crosize);
if flag==0
off_pop_start(i,pat_size+1)=infeastijl
off_pop_start(i,pat_size+2)=flag;
off_pop_start(i,pat_size+3)=inf_gost
off_pop_start(i,pat_size+4)=feasipil
off_pop_start(i,pat_size+5)=feasipi#tinf_cost*mult*(gen);
else
infeasibility_regular=infeasibility;
traverse_list(1:sum(off_ul(1:i)))adperm(1:sum(off_ul(i,1:i)));
for koray=1:sum(off_ul(1:i))
if (mod((off_pop_start(i,traversist(koray))),num_extensioni)>1) &&
(mod(off_pop_start(i,traverse_list(koray)),num_egi@ni)<num_working)
off_pop_start(i,traverse_list(korayJ pop_start(i,traverse_list(koray))-1;
[inf_cost, infeasibility, feasibilitflag]=erman(off_pop_start,off _pat_list,off ul,csosize);
infeasibility_down=infeasibility;
off_pop_start(i,traverse_list(kopmoff _pop_start(i,traverse_list(koray))+2;
[inf_cost, infeasibility, feasikifi
flag]=erman(off_pop_start,off _pat_list,off ul,crosie);
infeasibility_up=infeasibility;
if infeasibility_regular<infeasiity_down && infeasibility _regular<infeasibility _pi
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off_pop_start(i,traverse_kst(ay))=off pop_start(i,traverse_list(koray))-1;

else if infeasibility_down<infehgity regular && infeasibility_down<infeasibilityup
off_pop_start(i,traverse_kstay))=off _pop_start(i,traverse_list(koray))-2;
end;

end;

else if (mod((off_pop_start(i,tease_list(koray))),num_extensioni)==num_working)
off_pop_start(i,traverse_list(koraydJf pop_start(i,traverse_list(koray))-1;
[inf_cost, infeasibility, feasibility,
flag]=erman(off_pop_start,off_pat_list,off_ul,crosie_size);
infeasibility_down=infeasibility;

if infeasibility_regular<infeasiity _down
off_pop_start(i,traverse_kst@ay))=off pop_start(i,traverse_list(koray))+1;

end;

else if (mod((off_pop_start(i,travertist(koray))),num_extensioni)==num_working)
off_pop_start(i,traverse_list(koraydjE pop_start(i,traverse_list(koray))+1;
[inf_cost, infeasibility, feasibilitylag]=erman(off_pop_start,off_pat_list,off_ul,csosize);
infeasibility_up=infeasibility;
end;
if infeasibility_regular<infeadiby up
off_pop_start(i,traverse_kst(ay))=off pop_start(i,traverse_list(koray))-1;

end;
end;
end;
end;
[inf_cost, infeasibility, feasibilitylag]=erman(off_pop_start,off_pat_list,off _ul,ss0 size);

off_pop_start(i,pat_size+4)=feasililit
off_pop_start(i,pat_size+1)=infed#in
off_pop_start(i,pat_size+3)=icdst;
off_pop_start(i,pat_size+2)=flag
off_pop_start(i,pat_size+5)=&4$ibility+inf_cost*(mult*gen));

end;
end;

merge_pat_list=[pat_list1; off pat_list];
merge_pop_start=[pop_startl ;off _pop_start];
merge_ul=[ul ;off_ul];

[B1 IX1]=sort(merge_pop_start(:,pat_size+5), cawl");
total_fitness=sum(merge_pop_start(:,pat_sizZg+5)
if (merge_pop_start(IX1(1),pat_size+5)>best_mmtprt(pat_size+5)) &&
(merge_pop_start(IX1(1),pat_size+2)==0)
ploy(gen)=merge_pop_start(IX1(1),pat_side+5
best_ul=merge_ul(IX1(1),);
best_pop_start=merge_pop_start(IX1(1),:);
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best_pat_list=merge_pat_list(IX1(1),);
else if (gen>=2);
ploy(gen)=ploy(gen-1);
end;
end;

for i=1:pop_size+cross_size_size
fithess=sum(B1(1:i));
roul_pop2(i)=fitness/total_fitness;
end;

for j=1:elit_selection;

% popl_final(j,:)=merge_population(IX1{)),
pop_startl(j,:)=merge_pop_start(IX1(j),:)
ul(j,:)=merge_ul(IX1(j),?);
pat_list1(j,:)=merge_pat_list(IX1(j),:);

% popl_empty(j,:)=merge_empty(IX1(j),:);

end; for i=elit_selection+1:pop_size
y=rand,
for j=1:pop_size+cross_size _size-1  if ((yHrgop2(j))) && (y<=roul_pop2(j+1)))

% popl_final(i,:)=merge_population(IX1{}:);
pop_startl(i,:)=merge_pop_start(IX1(j+t1),
ul(i,;)=merge_ul(IX1(j+1),:);
pat_listl(i,:)=merge_pat_list(IX1(j+1),:)

% popl_empty(i,-)=merge_empty(IX1(j+1),:)
break;

else if y<=roul_pop2(1)

% popl_final(i,:)=merge_population(IX1))
pop_startl(i,:)=merge_pop_start(IX1(1),))
ul(i,;)=merge_ul(IX1(1),);
pat_list1(i,:)=merge_pat_list(IX1(1),);

% popl_empty(i,:)=merge_empty(IX1(1),:);
break;

end; end;
end;
end;
end;
ployl(gen)=mean(pop_startl(:,pat_size+1));
toc;
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APPENDIX C. BENDER'S DECOMPOSITION ALGORITHM CONSID ERATIONS

Bender's decomposition method is usually employed sblve the class of
optimization problems that possess the specifiecire. In that regard, the structure of the
problem is exploited. Bender’'s decomposition isoa¢xtensively used for the stochastic
programming models (Infanger, 1994; Nielsen andi@&enl1997). The structure of the
solution methodology can be provided as follows iivia 1999),

Consider the optimization problem having the foliegvform;

Minimizec'x+ f Ty (C.1)
S.t.

Ax+By>b (C.2)

yeY (C.3)

x>0 (C.49)

Assuming that y is fixed for some integer valués, todel takes the following form,

Minimizec' x (C.5)
Ax>b- By (C.6)
x>0 (C.7)

The model therefore can be represented as,

Minimize|f Ty + min c" Ax> b— By] (C.8)
y

The dual of the inner LP problem can be represeaed

Maximize (b-By) u (C.9)
Alu<c (C.10)
u>0 (C.11)
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In Bender’'s decomposition algorithm, two differesst of problems (i.e., the master
problem and the sub-problems are solved sequsntatid based on the results obtained
from the sub-problem, the cuts are generated angrgssively added to the master problem

to update the corresponding bounds. A restrictesteng@roblem has the following form;

Minimizez (C.12)
s.t.
z>f'y+(b-By)'0, k=1...K (C.13)
(b-By)'G <0,1=1.L (C.14)
yeY (C.15)

and sub-problem of the following form,

Maximize (b-By) u (C.16)
s.t.

A'u<c (C.17)

u>0 (C.18)

Based on this notation, the algorithm for Bend&&composition can be stated as
follows; (Kalvelagen, 2005)
[Initialization]

Y:=Initial feasible integer solution

LB ;= -
UB ;=0
while UB-LB>¢

[solve subproblem]
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max,{f 'y + (b-By)"u/A"u<c,u>0}
If t he sub-problem is unbounded then

Obtain unbounded rdp-By) U <0

Add cut (b-By)'T < 0to the master problem

Else
Get extreme point
Add cutz< f'y+(b-By) G <0 to the master problem
Update upper bound
End if
[solve master problem]
min, {z|cutsy € Y}
LB:=2
end while
Bender's decomposition method can be applied bypooiblem domain for the first
part of the problem. The master problem will berfed by using the variant of Egs. C.13-
C.15. Bender’s decomposition method will be adopted implemented for the problem. For
this purpose, the problem will be divided into jpams, the master problem and the sub-
problem. Egs. C.2, C.3, C.5, C.10, and C.11 are use¢he master problem. On the other
hand, for each iteration, the Egs. C.4, C.8, ar@l &e included in the sub-problem. The

master and sub problems are linked with Eqs. CdeGi.
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