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ABSTRACT 

Seed dormancy is the delay or inability of viable seeds to germinate under favorable 

conditions. The differential expression of dormancy levels in barley (Hordeum vulgare L.) seeds 

impacts malt quality.  While dormant genotypes are required to avoid the incidence of 

preharvest-sprouting, genotypes with low dormancy are needed for uniform germination of seeds 

during malting.  The objective of this study was to determine the genetic basis underlying seed 

dormancy in spring barley using genome-wide association mapping (AM) and linkage mapping. 

A panel of 3,072 elite U.S. spring barley breeding lines from eight breeding programs 

participating in the USDA-NIFA Barley Coordinated Agricultural Project and 193 F1-derived 

doubled-haploid lines from the cross ‘Stander’/ ‘Robust’ were used to map QTL controlling seed 

dormancy.  The AM panel and the doubled-haploid population were genotyped with SNP 

markers using the Illumina Golden Gate assay. Four mixed linear models that controlled 

population structure and kinship were used for the AM analyses, while composite interval 

mapping was used for the analysis of the biparental population.  Our results confirmed the 

existence of marker-trait associations delineating two QTL regions in the long arm of 

chromosome 5H (5HL) using the AM panel, and a large effect QTL in the same region using the 

biparental population. The locations and effects of these marker-trait associations are congruent 

with previously mapped QTL for seed dormancy and demonstrate the two mapping methods 

effectively targeted the same genetic regions on the barley genome and provide insights about 

the genetics of seed dormancy. 
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PREFACE 

This dissertation includes the result of all my work and understanding about the 

phenomenon of seed dormancy in barley, which was carried out over the period from January 

2009 to June of 2013 in the Department of Plant Sciences at North Dakota State University.  

Four years ago what started as “baby-sitting” plants in the greenhouse, harvesting spikes at the 

right maturity level, and counting thousands of seeds, turned into a great journey that helped me 

to unravel some of the intrinsic genetic and physiological relationships behind this trait, and at 

the same time help me to overcome some of my difficulties in mathematics. Certainly, I would 

not have reached to this point if it was not for the valuable help and contributions made by 

others, specially my advisor Dr. Richard Horsley and Dr. Sujan Mamidi, who believed that 

something good was about to come from this research. Their constant motivation, support and 

discussions helped me to address fundamental questions, while opening my mind to new ideas. 

The following thesis dissertation contains four chapters. Chapter I includes an 

introduction followed by the literature review portion, which describes some of the general 

aspects concerning barley origin and dissemination, the genetics and physiology of seed 

dormancy, as well as the implications that breeding for malting quality traits has over the 

selection of barley cultivars with lower levels of seed dormancy.  Chapter II gives a broad 

overview of the genome-wide association tools utilized to identify significant marker-trait 

associations for seed dormancy using a panel of elite U.S. spring barley breeding lines, as well as 

a description of the putative gene functions associated with them and their corresponding role in 

barley physiology. Chapter III gives an insight about the genetic mechanisms underlying seed 

dormancy in a narrowed genetic base population and provides an idea of what happens inside 

those breeding programs that breed for malt quality traits.  Chapters II and III are written as two 
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separate papers to be submitted for publication in the near future.  Therefore, these chapters 

include an abstract, introduction, materials and methods, results and discussion, and references 

section.  The references are specific for each chapter.  Due to the similarity in genetic and 

statistical tools used, repetition does occur between chapters.  Finally, Chapter V provides a 

general summary of the results and highlights important findings and conclusions. 
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CHAPTER I. INTRODUCTION 

Seed dormancy is a physiological phenomenon characterized by a delay in germination of 

viable seeds, which is modulated by several genetic and environmental factors.  The inability of 

seeds to germinate is an adaptive trait that promotes the survival of the next generations until the 

right conditions appear (Foley, 2001; Finkelstein et al., 2008) and it’s a process that is 

conditioned by the moisture, temperature, light and oxygen conditions present in the seed bed.  

However, the causes behind seed dormancy vary depending on the type of inhibition affecting 

the organism, which could be embryonic, physical, physiological or due to immaturity 

(Finkelstein et al., 2008). Hydrolytic enzymes that modify the endosperm are secreted by 

specialized tissues, such as the scutellum and the aleurone in response to plant growth regulators, 

including abscisic acid (ABA), gibberellic acid (GA), and jasmonate (JA). However, germination 

can be also be triggered by the exogenous application of other substances, such as hydrogen 

cyanide (Oracz et al., 2009). 

Seed dormancy, seed viability, and germination are key factors affecting malting, which 

is the process where the endosperm is modified by changing its friability and increasing the 

enzymatic activity to provide malt with optimal brewhouse performance (Kay, 2005).  However, 

a problem imposed by the differential expression of dormancy on the barley seeds may cause 

reductions in malt quality associated with either high or low levels of seed dormancy, which 

makes grains worthless for malting.  

In programs that breed for spring malting barley, an important step in determining if a 

line should be kept for advancement to subsequent generations is to determine its malt quality.  

In the upper Midwest region of the U.S., the crop is harvested in mid- to late-August and the 

breeding lines are submitted to the USDA-ARS malt quality laboratory in Madison, WI between 
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October and November for evaluation. The decision on whether to advance or discard a line 

needs to be made before March, which makes it hard to determine if poor endosperm 

modification in a line is due to extended seed dormancy or inherently poor malt quality.  Thus, 

lines with extended seed dormancy are often culled in favor of those with low seed dormancy 

and desirable levels of endosperm modification. This can lead into the selection of lines that may 

have acceptable malt quality profiles, but are susceptible to preharvest sprouting (PHS). 

Two main approaches were utilized in this study to identify significant marker-trait 

associations with seed dormancy in barley. One includes the application of association mapping 

(AM) tools for the analysis of a panel of elite breeding lines representing the eight U.S. spring 

barley breeding programs, while the second approach includes the utilization of linkage mapping 

analysis for the study of an F1-derived doubled-haploid (DH) population that has a narrowed 

genetic base. My main goal was to gain a better understanding of the genetics underlying seed 

dormancy and to identify single nucleotide polymorphisms (SNPs) that may be candidates for 

use in marker-assisted selection (MAS) for each of the breeding programs, with special attention 

on the Midwest U.S. six-rowed barley germplasm, which has a narrow genetic base. 

This review focuses on some physiological aspects of the seed germination, including 

some remarks about the function of hydrolytic enzymes and their interactions with starch 

granules during the pre and post-germination processes, as well as the role of ABA, GA and JA 

hormones and their impact on germination. Briefly, aspects on the domestication, geographical 

distribution, breeding and genetics of barley crops are critically discussed to give light of two 

physiological phenomena (dormancy and PHS) that affect the process of starch modification and 

ultimately malt quality. 
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Literature review 

Introduction 

Seed dormancy and PHS are complex traits controlled by several quantitative trait loci 

(QTL), which creates a large variation in dormancy expression patterns among barley genotypes 

(Buraas and Skinnes, 1984; Gu et al., 2005).  Because of low levels of seed dormancy are 

preferred by the malting industry, barley breeders have been forced to select for non-dormant 

genotypes or those with low seed dormancy. The combination of non-dormant genotypes and the 

occurrence of adverse climatological conditions, such as rainy, damp and cold temperatures may 

lead to the occurrence of PHS (Lin et al., 2008). Such pre-germinated barley seeds not only 

exhibit unacceptable levels of germination, but also can imbibe more water during the steeping 

process, which might induce the formation of mold that can decrease malt quality (Brookes, 

1980; and Sole, 1994 cited by Lin et al., 2008). Ultimately, PHS causes financial losses for 

growers and processors. 

Physiological and genetic studies have confirmed the importance of the phytohormones 

GA, ABA, and JA, and their interactions in seed dormancy and PHS responses in cereals 

(Barrero et al., 2009). Different methods have been utilized to determine the mode of action of 

these hormones and their role in the activation/deactivation of genes during the germination 

process. The discovery of barley mutants exhibiting defects on grain morphology, coupled with 

the use of biotechnology approaches, which include transgenics, genetic mapping, enzymology, 

expression analysis and in general all the –onomics approaches have given new insights about 

the molecular mechanisms controlling seed dormancy and PHS (Green et al., 1997; Jensen et al., 

2003; Finkelstein et al., 2008 Barrero et al., 2009).  

 



 

4 
 

Different classifications have been proposed for seed dormancy based on the type of 

inhibition, which could be embryonic, physical, physiological or due to immaturity.  There are 

classifications methods that take into account the controlling structures or substances that are 

derived from the embryo or the surrounding tissues (Finkelstein et al., 2008).  According to 

Foley (2001) a less complex classification method is one that distinguishes two types of 

dormancy (primary and secondary) and two categories (seed coat-imposed and embryo 

imposed). The type refers to the period of time where dormancy is developed, while the category 

makes reference to the structures or mechanisms that impose a constraint for germination (Foley, 

2001).   

After removal from the mother plant and imbibition under optimal conditions, mature 

seeds may show low germinability, which is referred as primary dormancy. On the other hand, 

secondary dormancy appears in after-ripened seeds as the result of their exposure to prolonged 

unfavorable conditions (e.g temperature, light, substances) (Foley, 2001; Finkelstein et al., 

2008). The mechanisms by which dormancy can be overcome in some species include the use of 

scarification, after-ripening, stratification, or the exposure to light. Scarification refers to the 

mechanisms by which the seed coat tissues are removed; these may include chemical or physical 

methods (e.g. acids/fire).  After-ripening refers to a period of dry storage that is needed to 

overcome seed dormancy, while stratification is associated with the requirement of chilling or 

moist conditions. In certain plant species, light may induce or reduced the potential for 

germination depending on the degree of seed dormancy present at the moment of imbibition (e.g. 

fully dormant, intermediate, non-dormant) (Foley, 2001; Finkelstein et al., 2008).  In the 

particular case of cereals, scientist have observed that blue light mimics the effects of white light, 

which affects seed germination by repressing jasmonate production.  Such repression could be 
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occurring at the level of lipid hydrolysis, which could affect the production of precursor 

molecules for jasmonate (i.e., linoleic acid) (Jacobsen et al., 2013) 

Benech-Arnold et al. (2006) suggested that dormancy of the barley grain is imposed by 

the covering structures (i.e., lemma, palea, pericarp and seed coat) based on the observation that 

embryos can germinate well when isolated from the rest of these structures.  These layers form a 

barrier that delays oxygen diffusion, which they believe may result in increased levels of ABA 

induced by hypoxia (Benech-Arnold et al., 2006) 

To date we have seen that most mechanisms underlying seed dormancy and germination 

have been correlated with changes in gene expression, hormone accumulation and sensitivity, 

enzyme activity and environmental factors acting together, which reflects the complexity of this 

trait.  

Germination and mechanisms for dormancy induction and maintenance 

Seed development and germination are separated by a quiescent period, which sometimes 

is incorrectly referred to as dormancy. Quiescent seeds have the capacity to fully germinate; 

however due to limiting external conditions (i.e., light, oxygen, moisture, termperature) such 

seeds cannot complete the germination process (Foley, 2001; Sreenivasulu et al., 2008). During 

seed maturation barley kernels prepare to germinate; however primary dormancy may prevent 

germination.  Primary dormancy is owed to the presence of the covering structures (i.e., 

glumellae) that imposed a physical barrier for the diffusion of water and oxygen into the embryo 

(Bradford et al., 2008).  Secondary dormancy can be acquired after harvest of non-dormant 

grains or after the release of primary dormancy of dormant grains if grains are exposed to 

unfavorable environmental conditions, such high temperatures (30 °C) and high water content, 

which results in an increased expression of genes related with the catabolism of GA and 



 

 

increased in ABA content (Hoang et al., 2012). On the other hand, seed dormancy present at 

harvest is gradually lost during after

temperature ranges and the exposure of the seeds to certain environmental conditions that 

facilitate its germination (Foley, 2001; Bradford et al., 2008).  Among scientist

regarded that the balance between abscisic acid (ABA) and gibberellins (GA)

maintenance and release of seed dormancy.  While ABA promotes the induction of seed 

dormancy, GA is involved in the release and progression towards germination.  However, other 

major controlling elements also include jasmonate (JA) and

and light (Figure 1.1). 

Figure 1.1. Longitudinal section of a barley caryopsis with a brief description of the main seed 
components and the physiological/genetic mechanism involved in the ABA and GA signal 
transduction pathways (adapted from 
accessed: 6 June, 2013; Gómez-Cadenas et al., 2001; Kamiya and García Martinez
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increased in ABA content (Hoang et al., 2012). On the other hand, seed dormancy present at 

harvest is gradually lost during after-ripening (dry storage) as a consequence of the expansion in 

rature ranges and the exposure of the seeds to certain environmental conditions that 

facilitate its germination (Foley, 2001; Bradford et al., 2008).  Among scientist, it is widely 

that the balance between abscisic acid (ABA) and gibberellins (GA) is required for the 

maintenance and release of seed dormancy.  While ABA promotes the induction of seed 

dormancy, GA is involved in the release and progression towards germination.  However, other 

major controlling elements also include jasmonate (JA) and its intermediates, nitric oxides (NO) 

1. Longitudinal section of a barley caryopsis with a brief description of the main seed 
components and the physiological/genetic mechanism involved in the ABA and GA signal 

ion pathways (adapted from http://plantphys.info/plant_biology/seedgerm.shtml
Cadenas et al., 2001; Kamiya and García Martinez

increased in ABA content (Hoang et al., 2012). On the other hand, seed dormancy present at 

ripening (dry storage) as a consequence of the expansion in 

rature ranges and the exposure of the seeds to certain environmental conditions that 

it is widely 

is required for the 

maintenance and release of seed dormancy.  While ABA promotes the induction of seed 

dormancy, GA is involved in the release and progression towards germination.  However, other 

its intermediates, nitric oxides (NO) 

 

1. Longitudinal section of a barley caryopsis with a brief description of the main seed 
components and the physiological/genetic mechanism involved in the ABA and GA signal 

http://plantphys.info/plant_biology/seedgerm.shtml 
Cadenas et al., 2001; Kamiya and García Martinez, 1999). 
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For the purposes of this review, a brief description of the major dormancy controlling 

elements will be described in order to integrate the current knowledge on what is seed dormancy 

and its occurence. 

Abscisic acid 

The accumulation of ABA is associated with the maintenance of seed dormancy and it 

has been detected in lower quantities in ABA-deficient mutants, or during the onset of 

germination due to changes in sensitivity and catabolism of ABA.  Genetic studies have shown 

that ABA is regulated by the genotype of the mother plant, but it seems that the ABA regulated 

by the embryo is correlated with deepest levels of dormancy expression (Foley, 2001; Finkelstein 

et al., 2008). 

Evaluation of the transcriptome of dormant and after-ripened barley embryos revealed 

that ABA sensitivity and its catabolism is promoted in after-ripened seeds by the differential 

regulation of the ABA-8’-hydroxylase, the LIPID PHOSPHATE PHOSPHATASE gene family 

and the ABI3-INTERACTING PROTEIN2 genes, respectively.  Barrero et al. (2009) suggested 

that the coleorhiza enhances dormancy by acting as a barrier for the root emergence, while after-

ripening enhances the up-regulation of genes involved in the jasmonate (JA) and nitric oxide 

biosynthesis pathways, which seems to counteract ABA levels on the seeds. The concomitant 

effect of low ABA levels results in the degradation of the coleorhiza, the emergence of the root 

and germination of the grain (Barrero et al., 2009). 

The catabolism of ABA in barley by HvABA-8’-hydroxylases (HvABA8’OH1) was 

observed to occur during after-ripening, while ABA synthesis is mediated by the expression of 

the gene HvNCED1 (9-cis-epoxycarotenoid deoxygenase) in response to white light.  Gubler et 

al. (2008) revealed that after-ripening did not have any effect on the expression of biosynthetic 
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genes for ABA, but it did promote the expression of ABA catabolic genes (i.e., HvABA8’OH1) 

and GA biosynthetic and catabolic genes (i.e., HvGA3ox2 and HvGA2ox3, respectively) 

following imbibition (Gubler et al., 2008).  

ABA has an important role not only in the maintenance of seed dormancy, but also in the 

protection of seeds against desiccation and the effects of active oxygen species (AOS) 

(Finkelstein et al., 2008). Late Embryogenesis Abundant (LEA) proteins have been associated 

with cellular tolerance to dehydration induced by drying, freezing or salinity conditions.  Most of 

the genes encoding LEA proteins have ABA responsive elements (ABRE), as well as 

temperature responsive elements (LTRE), so its expression is induced by ABA, cold or drought 

(Hundertmark and Hincha, 2008).   

Transcriptomic studies that characterize seed dormancy release in wheat (Triticum 

aestivum) suggested that a decrease in seed sensitivity to the growth regulators abscisic acid 

(ABA) and indole acetic acid (IAA) during the transition from dormancy to germination seems 

to be related with the transcriptional repression of a Protein Phosphatase 2c, SNF1-Related 

Protein Kinase2, ABA Insensitive5, Lipid Phosphate Phosphtase2, Auxin Response Factor, and 

Related to Ubiquitin1 genes.  ABA inhibits seed germination by activating the transcription of 

genes involved in the catabolism of gibberellin products, while repressing the transcription of 

genes associated to chromatin assembly and cell wall modification (Jacobsen et al., 2013). 

ABA biosynthesis. Abscisic acid is known to occur from a pathway involving carotenoid 

precursors.  According to Milborrow (2001) and Xiong and Zhu (2003) the biosynthesis occur in 

three main stages, two occurring in the plastids and the final reactions happening in the cytosol: 

i) initial assembling of small phosphorylated intermediates as precursors; ii) early formation of 

the uncyclized C40 carotenoid phytoene molecule and cleavage of the 9’-cis-neoxanthin; and iii) 
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formation of an ABA intermediate known as xanthoxal and synthesis of ABA via ABA aldehyde 

(Milborrow, 2001; Xiong and Zhu, 2003). According to Xiong and Zhu (2003), the molecular 

and biochemical reactions involved in the production of ABA can be summarized (Figure 1.2) as 

follow: 

1. Epoxidation of zeaxanthin and antheraxanthin to violaxanthin by the zeaxanthin 

epoxidase (ZEP). This reaction occurs in plastids (Marin et al, 1996 cited by 

Xiong and Zhu, 2003) 

2. Conversion of violaxanthin to an epoxycarotenoid known as 9-cis-

epoxycarotenoid and from this to a C15 intermediate known as xanthoxin by the 9-

cis-epoxycarotenoid dioxygenase (NCED) (Schwartz et al., 1997 cited by Xiong 

and Zhu, 2003). 

3. Transport of xanthoxin (C15) to the cytosol and its conversion to ABA.  

a.  Conversion of xanthoxin to ABA aldehyde by the 

dehydrogenase/reductase (SDR) (Xiong and Zhu, 2003 and references 

therein) 

b. Conversion of ABA aldehyde to ABA by the ABA aldehyde oxidase 

(AAO)/ molybdenum cofactor (MoCo) synthase (Xiong and Zhu, 2003 

and references therein). 

The active modification of carotenoids by NCED (9-cis-epoxycarotenoid dioxygenase) 

has been detected during the production of new leaves, which may have the concomitant effect 

of reducing the ABA biosynthesis, thus altering plants resistance to drought and oxidative stress 

(Cazzonelli, 2001; Du et al., 2010). Lower transcription levels of the NCED genes (i.e., NCED3) 

associated with a mutation on the locus atx1 in Arabidopsis has been related with significant 



 

 

reductions for the synthesis of ABA (Ding et al., 2011; Cazzonelli, 2011). Additionally, 

Leymarie et al. (2008) identified t

mediated primary and secondary dormancy of the barley caryopses (Leymarie et al., 2008; 

Graeber et al., 2012).  

Figure 1.2. ABA biosynthetic pathway derived from the C
abiotic stresses associated with the expression of transcription factors associated with the 
degradation of carotenoids for the production of ABA (adapted from Xion and Zhu, 2003; 
Millborrow, 2001; and Mercadante,1999). BCH=
epoxidase; NCED=9-cis-epoxycarotenoid dioxygenase; AAO/MCSU=ABA
coupled with the MoCo sulfurase; SDR=alcohol dehydrogenase/reductase.
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reductions for the synthesis of ABA (Ding et al., 2011; Cazzonelli, 2011). Additionally, 

Leymarie et al. (2008) identified that the genes HvNCED1 and HvNCED2 are involved in ABA

mediated primary and secondary dormancy of the barley caryopses (Leymarie et al., 2008; 

2. ABA biosynthetic pathway derived from the C40 epoxicarotenoid precursors and
abiotic stresses associated with the expression of transcription factors associated with the 
degradation of carotenoids for the production of ABA (adapted from Xion and Zhu, 2003; 
Millborrow, 2001; and Mercadante,1999). BCH=β-carotene hydroxylase; ZEP=zea

epoxycarotenoid dioxygenase; AAO/MCSU=ABA-aldehyde oxidase 
coupled with the MoCo sulfurase; SDR=alcohol dehydrogenase/reductase. 

Gibberellins belong to a big family of tetracyclic diterpenoid molecules that appea

onset of germination and are involved in the control of several other physiological processes 

reductions for the synthesis of ABA (Ding et al., 2011; Cazzonelli, 2011). Additionally, 

are involved in ABA-

mediated primary and secondary dormancy of the barley caryopses (Leymarie et al., 2008; 

 

epoxicarotenoid precursors and 
abiotic stresses associated with the expression of transcription factors associated with the 
degradation of carotenoids for the production of ABA (adapted from Xion and Zhu, 2003; 

carotene hydroxylase; ZEP=zeaxanthin 
aldehyde oxidase 

Gibberellins belong to a big family of tetracyclic diterpenoid molecules that appear at the 

onset of germination and are involved in the control of several other physiological processes 



 

11 
 

including “stem elongation, root growth, leaf expansion, trichome development, flowering and, 

fruit development” (Israelsson, 2004 and references cited therein).  According to Finkelstein et 

al. (2008) and Israelsson (2004), there are hundreds of tetracyclic diterpens (~136), but only few 

of these compounds stimulate biological responses in plants (i.e., GA4 and GA1). Their role in 

germination seems to be controversial since the use of GA treatments by itself does not induce 

the germination of dormant Arabidopsis seeds or does not necessarily stimulate germination in 

all species (Finkelstein et al., 2008). Bradford et al. (2008) identified that sensitivity to GA 

decreased with hypoxia, which helps to explain why GA may or may not stimulate germination 

in some species. However, studies by Gubler et al. (2008) in barley revealed that after-ripening 

promotes the expression of the GA biosynthetic and catabolic genes (HvGA3ox2 and HvGA2ox3, 

respectively) following imbibition, while inducing the expression of genes for ABA catabolism 

(i.e., HvABA8’OH1).  Seo et al. (2006) recognized that Arabidopsis ABA-deficient mutants (i.e., 

nced6-1, aba2-2 and aao3-4), which were imbibed in the dark after irradiation with far red light, 

showed an enhanced ability to germinate compared to the wild type. These results suggest that 

ABA is antagonic to GA and is involved in the suppression of GA biosynthesis (Seo et al., 

2006). Gibberellins induce the expression of hydrolytic enzymes that help to modify the 

endosperm and weaken seed coat tissues, which allow the subsequent mobilization of seed 

storage reserves, which help during the transition from the embryonic to the vegetative 

development (Finkelstein et al., 2008).  There are several factors conditioning the regulation of 

GA, among them light is a critical factor for the seed germination of some species (Shinomura, 

1997 cited by Seo et al., 2006). The effect of red light on the biosynthesis of GA was studied by 

Toyomasu et al. (1998) using lettuce seeds (Lactuca sativa L). Their results suggest that red light 

promotes the synthesis of GA1 by inducing the expression of 3β-hydroxylases (i.e., Ls3h1) via 
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phytochrome regulation. While red light induces the germination of lettuce seeds, far-red light 

has the reverse effect if applied just after treating the seeds with red light (Toyomasu et al., 1998; 

Seo et al., 2006). It is also known that stratification (~4°C) induces the production of bioactive 

GA in Arabidopsis seeds. Using a mutant that affected the cold-inducible GA gene AtGA3ox1, 

Yamauchi et al. (2004) concluded that this gene plays an important role in seed germination and 

that both red light and GA deficiency act in conjunction to increase the transcript levels of the 

AtGA3ox1, which suggest this might integrate multiple signals to control seed germination in 

Arabidopsis (Yamauchi et al., 2004; Seo et al., 2006) 

The theory of the antagonistic effects exerted by the balance between ABA and GA has 

been well supported by the observation that a non-germinating phenotype for a GA-deficiency 

locus can be overcome by an additional mutation in an ABA-deficiency locus (Koornneef et al., 

1982 cited by Seo et al., 2006) 

GA biosynthesis. Giberellic acid is derived from the complex isoprenoid pathway, where 

products are involved in the metabolisms of “hormones (i.e., ABA), photosynthetic pigments 

(i.e., carotenoids and phytol), electron carriers (i.e., ubiquinone and plastoquinone), membrane 

structural components (i.e., phytosterols), mediators of polysaccharide assembly (i.e., polyprenil 

phosphates)” among others (McGarvey and Croteau, 1995; Israelsson, 2004).   

The base chemical structure of gibberellins is based of small five-carbon molecules (C5) 

known as isopentenyl diphosphate (IPP) which join to form a direct precursor known as 

geranylgeranyl diphosphate (GGDP), which is a 20 carbon molecule (C20). The IPP could be 

synthesized via the mevalonate-dependent reactions in the cytoplasm or through the mevalonate-

independent pathway in the plastids (Figure 1.3; Israelsson, 2004; Milborrow, 2001). According 

to Israelsson (2004), the synthesis of gibberellins can be divided into three main steps: i) 
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Figure 1.3. The GA biosynthetic scheme featuring the major steps for the biosynthesis of 
gibberellins in Arabidopsis (adapted from Israelsson, 2004; Milborrow, 2001; Yamauchi et al., 
2004, 2007). MVA=mevalonate; IPP=Isopentenyldiphos
triphosphate; G3P=Glyceraldehyde
diphosphate synthase; ent-CDP=
kaurene oxidase; KAO=ent-kaurenoic acid oxidase. 
 

The conversion of GGDP into 

the ent-copalyl diphosphate synthase (CPS) and the 

2004; Israelsson, 2004). The ent-

is converted into GA12 by the action of membrane

and the ent-kaurenoic acid oxidase (KAO). While KO is present in the outer membrane of the 

13 

kaurene intermediates in plastids; i) synthesis of GA12 from 

450 monooxygenases present in the membrane of the endoplasmic 

reticulum; iii) formation and deactivation of C19-GA molecules in the cytoplasm, which 

ompounds (Figure 3). 

3. The GA biosynthetic scheme featuring the major steps for the biosynthesis of 
(adapted from Israelsson, 2004; Milborrow, 2001; Yamauchi et al., 

2004, 2007). MVA=mevalonate; IPP=Isopentenyldiphosphate; Pyruvate TTP= pyruvate 
triphosphate; G3P=Glyceraldehyde-3-P; GGDP=geranylgeranyl diphosphate; CPS=

CDP=ent-copalyl diphosphate; KS=ent-kaurene synthase; KO=
kaurenoic acid oxidase.  

he conversion of GGDP into ent-kaurene in the plastids of Arabidopsis 

copalyl diphosphate synthase (CPS) and the ent-kaurene synthase (KS) (Yamauchi et al., 

-kaurene molecule is then transported to the cytoplasm where 

by the action of membrane-bounded enzymes ent-kaurene oxidase (KO) 

kaurenoic acid oxidase (KAO). While KO is present in the outer membrane of the 

from ent-kaurene 

450 monooxygenases present in the membrane of the endoplasmic 

GA molecules in the cytoplasm, which provides 

 

3. The GA biosynthetic scheme featuring the major steps for the biosynthesis of 
(adapted from Israelsson, 2004; Milborrow, 2001; Yamauchi et al., 

phate; Pyruvate TTP= pyruvate 
P; GGDP=geranylgeranyl diphosphate; CPS=ent-copalyl 

kaurene synthase; KO=ent-

 is catalyzed by 

kaurene synthase (KS) (Yamauchi et al., 

e cytoplasm where it 

kaurene oxidase (KO) 

kaurenoic acid oxidase (KAO). While KO is present in the outer membrane of the 



 

 

chloroplast, KAO is in the membrane of the endoplasmic

references cited therein). Finally, once GA

metabolic pathways (i.e., the early non

that lead to the formation of activ

species-dependent (Kamiya and García

the metabolic pathway that corresponds to the early non

been proposed for Arabidopsis (Yamauchi et al., 2004).  Kamiya and García

highlighted in their review that the early non

Arabidopsis and cucumber (Cucumis sativus

(Oriza sativa) and lettuce (Lactuca sativa

common (Figure 1.4). 

Figure 1.4. Two biosynthetic pathways in plants that lead to the formation of active GA forms 
(adapted from Israelsson, 2004; Kamiya an

 

  

14 
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Jasmonate and other elements controlling seed dormancy 

Transcriptomic analyses of dormant and after-ripened barley embryos revealed there are 

other mechanisms involved in the dormancy maintenance or release which are associated with 

cell wall modification, JA responses, nitrate and nitrite reduction, mRNA stability, and blue light 

sensitivity processes (Barrero et al., 2009).  Recent studies by Jacobsen et al. (2013) corroborated 

the results obtained by Barrero et al. (2009) in barley by using wheat caryopses.  Their results 

indicate that blue light, nitric oxide (NO) and JA are important elements controlling seed 

dormancy. While blue light has an inhibitory effect on dormancy release, methyl-jasmonate (MJ) 

and NO had the opposite effect by controlling ABA signaling, resulting in lower levels of seed 

dormancy. Both MJ and NO required each other’s presence in order to reduce seed dormancy of 

wheat grains.  Blue light seems to have a negative effect on the production of MJ, which has 

been associated with dormancy release in wheat kernels, while darkness seems to promote the 

production of MJ, which has been associated with germination of dormant seeds and defense 

(Jacobsen et al., 2013). 

Endosperm modification 

Even though most of the efforts in the enzymology research of germinated barley grains 

have been directed toward the identification, characterization, and improvement of α-amylases; 

there are other carbohydrate-hydrolyzing enzymes that have been isolated and characterized that 

are also involved in the catalysis of starches and their mobilization.  Additionally, genes 

encoding for such enzymes have been mapped to six of the seven barley chromosomes (Fincher 

and Stone, 1993).  

In barley and wheat (Triticum aestivum L.), the expression of starch degrading enzymes, 

especially α-amylases, has been used as an indicator of pre-germination of the grain, as well as a 
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sign of the hormonal status that is related to the grain maturity (Izydorczyk, 2004; Green et al., 

1997).  

The degradation of native starch granules is initiated by the α-amylase (1,4-D-

glucanohydroxilase), which hydrolyses α-1,4 linkages binding the glucose molecules 

(Acquistucci et al., 2011). These enzymes have been grouped into a specific glycoside hydrolase 

family depending upon several aspects, including the genetic information, structural and amino 

acid constitution, sequence identity, homology, hydrophobic cluster information, as well as 

physico-chemical properties (Jensen et al., 2003, Delcour and Hoseney, 2010). Enzymology and 

genetic studies on germinated or malted grains indicate the existence of two main groups of α-

amylases, known as α-Amy-1 and α-Amy-2. These have been classified on the basis of their 

isoelectric points (pI) differences, as well as other physico-chemical, and activity properties. The 

members of the low-pI, or α-Amy-1 have a pI value approaching 4.6; while the members of the 

high-pI, or α-Amy-2 exhibit pI values that approach 5.9. Both types are categorized as Ca2+ 

metalloproteins, which indicates that their expression and secretion are stimulated by the 

regulation of Ca2+ (Fincher and Stone, 1993). The α-Amy-1 enzymes have a remarkable stability 

at acidic pH, and are also known as “malt” or “germination” α -amylases. On the other hand, the 

α-Amy-2 enzymes, also known as the “green” or “pericarp” enzymes, exhibit a higher specific 

activity, but a lower affinity for maltodextrins and maltooligosaccharides compared to α-Amy-1. 

Furthermore, α-Amy-2 is specifically inhibited by the α -amylase/subtilisin inhibitor (BASI), and 

exhibits a lower activity towards insoluble blue starch at around 10 mM of Ca2+; while the α-

Amy-1 has its highest activity at 0.1-1 mM of Ca2+. These features make α-Amy-2 less effective 

in the catalysis of starch grains as opposed to α-Amy-1. 
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Matthews and Jacobson (2001) demonstrated the potential for barley improvement using 

transformation technologies to produce transgenic barley containing genes encoding for low and 

hi-pI α-amylases, as well as α-glucosidases. Their results indicated that addition of an extra copy 

of the low-pI α-amylase gene makes little or no difference compared to the addition of an α-

glucosidase gene. This is probably the result of the presence of several endogenous gene copies 

encoding for α-amylase (three low-pI and six high-pI; Chandler et al., 1984 cited by Jensen et al., 

2003; Matthews and Jacobson, 2001), compared to one copy of the gene encoding α-glucosidase 

(Tibbot and Skadsen, 1996 cited by Jensen et al., 2003; Matthews and Jacobson, 2001).  Jensen 

et al. (2003) suggested that an important impact could be made in the malting, kilning, and 

mashing processes if improved versions of the α-Amy-1 genes were used for the transformation 

of barley cultivars. This would directly translate into more stable enzymes, which could enhance 

their activity during the kilning and mashing processes, and thus improve the quality of the end 

product. 

Barley domestication and dissemination  

Domestication syndrome, genetic diversity, and geographical distribution 

The genus Hordeum belongs to the monophyletic tribe Triticeae, which represents an 

evolutionary successful branch of the Poaceae family that evolved roughly 12 million years ago 

(Gaut, 2002; Schulte et al., 2009). The members of this tribe show a mode of speciation that 

includes a variety of polyploidization levels, along with interspecific and intergenetic 

hybridizations, which have allowed the evolution of different life forms, reproductive and 

dispersal mechanisms. Approximately 32 species have been assigned to the genus Hordeum, of 

which H. vulgare spp vulgare is a selfing diploid known as “cultivated barley” and H. vulgare 

spp spontaneum as “wild barley” (von Bothmer and Jacobsen, 1985; Salamini et al., 2002).  
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Fundamental transitions occurred between the cultivated barley and its wild relative during the 

domestication process. These transitions, also known as the “domestication syndrome”, include 

the reduction in grain shattering due to the development of a non-brittle rachis, an increase in 

seed weight, appearance of naked seeds, decrease in seed dormancy, and changes from the two-

rowed to the six-rowed spike type (Salamini et al., 2002; Pourkheirandish and Komatsuda, 2007; 

Sang, 2009). In wild barley, there are two lateral spikelets, which are reduced in size and assist in 

the dispersal of the central spikelet. In contrast, the six-rowed type has developed all three 

spikelets, which leads to an increase on the number of grains per spike. Such a trait did not 

change in the two-rowed barley compared to the wild form, and this has been attributed to the 

gene action exerted by the Vrs1 locus. Cultivated barley genotypes having a recessive version of 

the vrs1 locus exhibit a six-rowed spike, while those containing the dominant version (Vrs1) 

have a two-rowed morphology. The results of mutational studies on the Vrs1 locus allowed 

scientist to support the hypothesis that six-rowed barley was originated from a two-rowed type 

by mutation (Pourkheirandish and Komatsuda, 2007). 

Another important adaptive trait that permitted expansion of barley production to 

different areas around the globe was the development of a spring growth habit.  Three genes 

located on chromosomes 4H, 5H and 7H (respectively) have been associated with the 

differentiation of growth habits.  The Sgh1, Sgh2 and Sgh3 genes are present in the spring growth 

barley genotypes, while their allelic versions (Sgh1, sgh2 and sgh3) are required for the winter 

growth habit (Pourkheirandish and Komatsuda, 2007).  Winter barley requires vernalization and 

long days (LD) for determining flowering time while spring-sown genotypes do not require 

vernalization and have accumulated several mutations that make them LD-insensitive.  A 

reduced response to photoperiod in spring-growth barley genotypes allowed them to accumulate 
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more biomass as a consequence of an extended vegetative growth. Such characteristics directly 

translate into higher yield benefits, and major probabilities for the expansion of barley to higher 

latitudes. 

Like many other cereal crop species, barley originated in the Eastern Mediterranean area 

known as the Fertile Crescent (Rasmusson, 1985). This region includes the current territories of 

central Israel, Jordan, Syria, Lebanon, Turkey, Iraq and Iran. The expansion of barley around the 

ancient world began approximately 8,000 years ago, spreading through ancient routes to Greece, 

North Africa, the Nile and Ethiopia, as well as Iran and India. Approximately 2000-3000 years 

later, this crop was also found in Northern Germany, Southern Scandinavia, and China (von 

Bothmer et al., 2003). It is believed that crosses between cultivars and wild species followed by 

artificial selection resulted in the appearance of the current barley diversity (Sang, 2009).  

It seems that the spread of grain crops through the world occurred in response to (1) 

climate changes, (2) growth in population sizes that forced human migrations into less dense 

areas, (3) domestication of animals (i.e., cattle) that were used to carry loads of grain, and (4) 

commercialization of products. According to Ensminger (1994) an unusual warm climate 

between the 5500 and 3000 B.C. caused the melting of the snow in mountain regions of Europe 

and Russia, pushing farmers from Macedonia to migrate to the Balkans and Central Europe. 

However, the establishment of barley and wheat crops only occurred until climate temperatures 

cooled down. 

Recent studies have demonstrated that temperature and precipitation gradients played a 

major role in the adaption and shaping processes of the population structure of wild barley 

species in the Fertile Crescent area (Hübner et al., 2009). Changes in temperature and humidity 

during the development of modern barley crops have also been associated with changes in the 
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dormancy release patterns and PHS responses. If maturing grain is exposed to rainy and warm 

temperatures, this leads to an immediate loss of seed viability and quality. When high 

temperatures occur during grain fill, this may alter the hormonal metabolism of the embryo, 

which contributes to the disruption of dormancy and triggers the occurrence of PHS (Gualano 

and Benech-Arnold, 2009). Also, low temperatures and frost conditions play an important role in 

the activation of molecular mechanisms that turn on plant frost tolerance functions and 

vernalization responses (Kosová et al., 2011). 

The patterns of differentiation and evolution of cultivated barley landraces, as assessed 

by the use of nuclear loci and morphological traits, indicate that South and East Asian barley 

types are genetically distinct from those in Europe and North Africa. Such differences might be 

the result of differential migration of barley from its two domestication centers of origin during 

the Neolithic age period (Saisho and Purugganan, 2007) and resulted in the development of 

distinctive morphotypes and growth habits in response to the local environments in which crops 

were grown. 

With the discovery of the new world, barley was introduced most likely during the 

second voyage of Christopher Columbus into the Americas (Wiebe, 1979). It is believed two 

main routes allowed for the dissemination of barley into the United States. The first route came 

through the east coast, while the second route came through the southwest area.  

Because of the unbearable climate of the eastern seaboard, barley production was limited 

until settlements moved into western New York. Interestingly, it was found that the six-rowed 

cultivars from Europe grew much better than the two-rowed cultivars from England. The barley 

production then became popular for brewing purposes, which caused its spreading throughout 

the colonies, suitable or not (Wiebe, 1979). Nevertheless, climate factors, biotic stress, and 
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farmer’s freedom formed the distributional pattern of barley crops grown in the U.S. (Weaver, 

1943). There are four main regions devoted to the barley production in the US, and they are: the 

East, upper Midwest, West, and Southwest. Approximately, 80% of the production comes from 

the Midwest and West regions, where North Dakota is the largest producer, followed by Idaho 

and Montana (USDA, 2012 Small Grains 2012 Summary, September 2012 

http://usda01.library.cornell.edu/usda/current/SmalGraiSu/SmalGraiSu-09-28-2012.pdf 

accessed: June 9, 2013).  Most of the barley cultivars sown in the upper Midwest (including 

Minnesota, North Dakota, and South Dakota) are six-rowed malting cultivars, whose ancestry 

could be traced back to the Manchuria region of China (Rasmusson, 1985; Horsley and Harvey, 

2011). Such introductions were adapted to the cold and dry climate conditions present in the 

area, and had acceptable levels of malt quality. On the other hand, the production of two-rowed 

barley is circumscribed to the West region, where the states of Idaho and Montana are the largest 

producers (USDA, 2012 Small Grains 2012 Summary, September 2012 

http://usda01.library.cornell.edu/usda/current/SmalGraiSu/SmalGraiSu-09-28-2012.pdf 

accessed: June 9, 2013). Both states devote between 65-80% of their barley area to the 

production of malting cultivars, whose ancestry can be traced to introductions coming from 

central Europe. The East region, comprised by the states of Maryland, Pennsylvania, and 

Virginia produces on average less than 5% of the total barley area in the U.S. (USDA, 2012 

Small Grains 2012 Summary, September 2012 

http://usda01.library.cornell.edu/usda/current/SmalGraiSu/SmalGraiSu-09-28-2012.pdf 

accessed: June 9, 2013). However, the majority of this barley grown in this region are non-

malting winter cultivars. Finally, the Southwest region, comprised by the states of Arizona and 

southern California, generally produces around 1% of the total U.S. total barley production.  
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Much of the barley grown in this region are non-malting spring barley cultivars that can be 

grown under irrigated conditions. A big proportion of the barley grown in the U.S. is produced 

for domestic use, and only a small percentage (around 15%) is exported as feed barley (Horsley 

and Harvey, 2011). 

Breeding barley cultivars for malting quality 

The production of new cultivars with improved malt quality and other favorable 

agronomical attributes starts with the selection of parents adapted to the specific production 

regions that already have acceptable malt quality. A breeding line is called “Malting-type” only 

when such line has been inspected and approved by an official private company or a non-profit 

organization, such as the American Malting Barley Association, Inc. (AMBA). Public and 

private breeding programs are involved in the development of new malting-cultivars, and the 

AMBA oversees a malt and brewing evaluation program in which prospective cultivars are 

evaluated. 

Quality traits that receive the most attention of breeders, maltsters and brewers include: 

(1) grain protein and kernel plumpness, (2) malt extract, (3) enzymatic activity (i.e., α-amylase 

and diastatic power), (4) wort protein, (5) carbohydrate modification (i.e., β-glucan content and 

wort viscosity), and (6) protein modification or Kolbach Index (Horsley and Harvey, 2011), 

among others. One of the reasons why producing malting cultivars is a big challenge for the 

barley breeders, is that beer brands have their own specific recipes, which include different ratios 

of barley cultivars mixed into a brewing blend. Such blends provide the characteristic flavor to 

each brand, and a little change in the composition might compromise the quality, flavor, and 

consistency of the beer. Such requirements represent a cutoff that can only be overcome by the 

production of cultivars with similar malting attributes to the already existing malting cultivar, but 
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that have improved agronomic traits and/or disease resistance (R. Horsley pers. communication, 

2012). Another limitation that affects the improvement and development of new malting 

cultivars in the upper Midwest of U.S. and the eastern Prairie Provinces of Canada is the narrow 

germplasm base of their respective collections. According to Horsley and Harvey (2011) the 

current breeding lines produced in these regions can be traced back to only fifteen accessions 

that were obtained at the end of the nineteen-century. How can traits within a narrow germplasm 

be improved? Rasmusson and Phillips (1997) suggested that gain from selection in a narrow 

germplasm could be achieved possibly by de novo variation and the occurrence of higher than 

normal rates of epistasis. 

Genetics of seed dormancy and PHS: the genotype by environment interaction 

Seed dormancy is a critical adaptative trait present in many species that is imposed during 

the latter stages of embryo development and prevents the germination prior to the complete 

maturation of the seed (Gubler et al., 2008). Multiple loci and the environment contribute to the 

genetic variation present in nature for this trait. In Arabidopsis, a large number of mutants in 

genes such as ABA-insensitive 3 (ABI3), Fusca 3 (FUS3) and leafy cotyledons (LEC1 and LEC 

2), which are non-dormant genotypes, show a deficiency in seed maturation. Additionally, 

mutants affected in the biosynthesis of GA (non-germinating mutants) and ABA (non-dormant 

mutants) has shown the importance of ABA in the induction and maintenance of dormancy and 

the opposing role of GA in the control of germination. Previous studies on Arabidopsis 

suggested that seed dormancy is specifically controlled by the Delay of germination 1 (DOG1) 

gene family compared to other seed dormancy and germination genes that are usually involved in 

multiple physiological processes (Bentsink et al., 2006)  
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In barley, several cultivars are more prone to sprout as a consequence of the stringent 

selection exerted by breeders (Benech-Arnold et al., 2006; Gubler et al., 2008.) In 2006, Benech-

Arnold et al. confirmed that dormancy of barley seeds is a trait typically imposed by the covering 

structures (lemma and palea, pericarp and seed coat). Their study demonstrated that embryos 

germinate well during earlier stages of development when they were isolated from the rest of the 

seed and incubated in water. Thus, limitation of oxygen supply to the embryo was suggested as 

the mechanism responsible for dormancy of covered seeds due to oxidized phenolic compounds 

present in the lemma and palea (Benech-Arnold et al., 2006). 

Factors affecting the expression of dormancy and its release are determined by the 

genotype, the stage of the seed development, and environmental conditions present at that 

moment. Among other environmental factors affecting dormancy and its release pattern, 

temperature, precipitation, humidity, photoperiod, nitrogen level, global radiation and water 

deficit have been reported (Gualano and Benech-Arnold, 2009). 

Pre-harvest sprouting in barley cultivars is enhanced if maturing seeds are exposed to rain 

and warm temperatures, which leads to the immediate loss of seed viability. In 2009, Gualano 

and Benech-Arnold reported on the effect of temperature during grain fill on the dormancy 

release pattern of five malting cultivars widely used in the Argentina. Their findings suggested 

that high temperatures during a sensitivity window during grain fill could be altering the 

hormonal metabolism of the embryo, leading to the disruption of dormancy and the 

manifestation of PHS. Changes in the thermal environment could be modulating the embryo 

response to hormones by reduction of the ABA sensitivity and increasing of GA sensitivity. 
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Alpha amylases effects on dormancy and PHS 

Dormancy and PHS often are considered two separate processes governing the 

development of the embryo in response to internal and external factors. One of the methods that 

allows for identification of sprout damage in seeds is the presence of α-amylase activity. Alpha-

amylases are key enzymes involved in the metabolism of starches, which act in the amylolytic 

breakdown of the α-1,4 bonds between the amylose and amylopectin sugars. This event is a 

prerequisite for seed germination and seedling growth in terms of energy production and 

provision of carbon structures to create new cellular components (Mitsui et al., 1996). Two 

indirect methods that estimate the levels of α-amylase in the grains are: the falling number (FN) 

and the stirring number (SN). Both methods provide estimates of the enzyme activity based on 

the starch pasting properties. The FN method is used more often in wheat (Triticum spp.) 

industry, while the SN method is commonly used in the malting barley industry (Lin et al., 

2009). 

Two main α-amylase families have been described in cereals and they are named α-Amy-

1 and -2, respectively (Derera, 1989). The α-Amy-2 isozymes, have been detected in the pericarp 

of immature caryopses, but also have been observed later during stages of germination (Lunn et 

al., 2001; Mrva and Mares, 2001), while the α-Amy-1 isozymes, have been detected during the 

germination process and PHS.  

Synthesis of both type of enzymes occurs in the green pericarp tissues where they are 

more abundant during the early stages of the caryopsis development; however, their activity 

declines afterwards as the caryopsis reaches maturity (Mares and Gale, 1990; Lunn et al., 2001). 

This is true for most cultivars where trace amounts of α-amylases remain until maturity, 

although, high levels of α-amylase activity have also been detected during the later stages of 
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ripening in triticale and some wheat cultivars (Mrva and Mares, 1996). For this reason, 

researchers have divided them into two categories, termed “pre-maturity α-amylase” and “late 

maturity α-amylase”. Apparently, the production of pre-maturity α-amylases is associated with a 

delayed ripening of the grains caused by environmental factors such as cold temperatures, 

precipitation, and high humidity. In 1994, Andrzejczuk-Hybel et al. reported that triticale 

caryopses 9 d after pollination had low levels of α-amylase activity, but later the levels increased 

during caryopsis development. Their findings suggest that α-amylase activity in the earlier 

developmental stages may be related to the PHS level exhibited by the triticale cultivars 

(Andrzejczuk-Hybel et al., 1994) and also contradicts the results previously reported by 

Lindblom et al., (1989) cited by Andrzejczuk-Hybel et al., (1994) who found significant 

differences in the α-amylase activity at the end of the maturity stage of triticale cultivars.  

In 1997, Pagano et al. reported that PHS susceptibility of sorghum cultivars is related to 

their α-amylase activity. In the PHS-resistant cultivar low levels of α-amylase were detected 

during the caryopsis development, while in the susceptible ones high levels were observed 

during grain maturation. In 2004, Izydorczyk suggested that pre-maturity α-amylase versions 

might be associated to PHS in barley, however, additional research should be done in order to 

address this question. 
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CHAPTER II. GENOME-WIDE ASSOCIATION MAPPING FOR SEED DORMANCY 

IN THE SPRING BARLEY CAP LINES 

Abstract 

Seed dormancy, seed viability, and germination in barley (Hordeum vulgare L.) are key 

factors affecting malt quality.  While certain levels of seed dormancy are required to avoid 

preharvest-sprouting (PHS) in the field, low dormancy is necessary to assure uniform 

germination of kernels during malting.  The objective of this study was to employ genome-wide 

association mapping (AM) to identify QTL for seed dormancy using elite US spring barley 

breeding lines from eight breeding programs participating in the USDA- CSREES Barley 

Coordinated Agricultural Project (Barley CAP). Dormancy tests were performed on 3,072 lines.  

All 3,072 lines were genotyped using the Illumina GoldenGate assay using two 1,536-SNP 

arrays Barley Oligo Pool Assays (BOPA 1 and BOPA2), but only 2,965 lines were utilized for 

GWAS.  Phenotype and genotype data were subjected to AM analyses using four linear 

regression models that controlled for population structure and kinship.  A total of 40 AM 

analyses were performed, including separate analyses for each year within a breeding program 

and combined across years for each program. Two quantitative trait loci (QTL) regions in the 

long arm of chromosome 5H were consistently observed across programs and years where QTL 

have been reported previously. Other QTL specific to each breeding program and year also were 

identified.  Common SNPs that could be used for marker-assisted selection (MAS) across 

breeding programs were found only on chromosome 5HL.  Further studies need to be done to 

validate the efficacy of these SNPs for MAS in each breeding program, and to determine if the 

associations of seed dormancy with specific malt quality traits is due to linkage or pleiotropy. 
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Introduction 

Among modern cereals, barley has undergone strong selection by plant breeders against 

extended seed dormancy in order to promote uniform and quick germination during malting 

(Oberthur et al., 1995).  Seed dormancy is an adaptive trait characterized by the inability of 

viable seeds to germinate under favorable conditions (Foley, 2001; Li et al., 2004) and is a main 

factor contributing to PHS tolerance (Mares, 1984; Rodríguez et al., 2001; Chao et al., 2010).  It 

has been well documented that there is large genetic variation underlying seed dormancy and 

PHS in common wheat (T. aestivum L.), rice (Oryza sativa) and barley, and that expression is 

strongly controlled by environmental factors and genotype x environment interactions (Buraas 

and Skinnes, 1984; Gu et al., 2005a; Lin et al., 2009; Chao et al., 2010).   

The ultimate goal in malting is to maximize endosperm modification and increase 

enzymatic activity, which are imperative to produce fermentable sugars for the production of 

beer.  However, a problem associated with low seed dormancy is the occurrence of PHS, which 

is characterized by the germination of seeds on the mother plant when maturing grain is exposed 

to rainy conditions (Gualano and Benech-Arnold, 2009).  The occurrence of PHS in barley 

cultivars with low seed dormancy leads to decreased grain weight and malt quality by promoting 

hydrolysis of starch molecules and creating the perfect environment for attack by saprophytic 

pathogens (Li et al., 2004; Gualano and Benech-Arnold, 2009). In severe cases of PHS, the grain 

can be worthless for malting.  On the other hand, dormant genotypes need a prolonged storage 

time before malting, which increases cost, as well as the probability of seed decay if problems 

occur during storage.  Ultimately, dormancy and PHS cause financial losses for growers and 

processors. 
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In breeding programs for spring malting barley, an important step in determining if a line 

should be kept for additional testing in subsequent generations is to determine its malt quality.  

In the upper Midwest US, the crop is harvested in mid- to late-August, the breeding lines are 

submitted to the USDA-ARS malt quality laboratory in October and November for malt quality 

evaluation, and decisions on whether to advance or discard a line are made before March.  It is 

not unusual to begin malting the lines in early November.  A major problem with this scheme is 

that it can be difficult to determine if poor endosperm modification in a line is due to extended 

seed dormancy or inherently poor malt quality.  Thus, lines with extended seed dormancy often 

are culled in favor of those with low seed dormancy and desirable levels of endosperm 

modification. This can lead to lines that may have acceptable malt quality, but are susceptible to 

PHS. 

Traditional genetic studies for seed dormancy in barley have relied on use of biparental 

mapping, where at least one parent is unadapted.  Up to 26 QTL have been mapped across the 

entire barley genome, with a large effect QTL reported in chromosome 5H proximal to the 

centromere (5HC) and in the telomeric region in the long arm (5HL; Oberture et al., 1995; Lin et 

al., 2009; Ullrich et al., 1993; Li et al., 2004a).  While this mapping strategy is effective in 

identifying QTL controlling traits of interest in a population, it may not be effective in 

identifying QTL conferring differences in one’s targeted germplasm. Often, a QTL identified by 

biparental mapping can span 10 to 30 cM, which results in low mapping resolution due to the 

restricted number of meiotic events (Zhu et al., 2008; Pasam et al., 2012).  An alternative to 

biparental mapping is genome-wide association mapping (AM), which harnesses the genetic 

diversity and historical recombination present in natural populations.  Association mapping 

methods allow for increased mapping resolution of polymorphisms to individual nucleotides or 
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single genes (Zhu et al., 2008; Wang et al., 2012).  The use of AM tools promises to increase the 

speed and efficiency of breeding crops by predicting phenotypes based on the identification of 

functional polymorphisms associated with marker loci (Blake et al., 2012).   

The Barley CAP facilitated the collaboration of scientists from the public and private 

sectors with the aim of developing and integrating the information of 3,072 SNP markers into a 

barley consensus linkage map (Close et al., 2009; Blake et al., 2012).  This resulted in a platform 

for the genetic analysis of barley germplasm from across the US.  Each of the breeding programs 

submitted 96 different lines (F4 or more advanced) each year for a period of four years (2006-

2009).  The lines were genotyped in the USDA-ARS molecular marker laboratory of Dr. 

Shiaoman Chao in Fargo, ND and phenotypic data for agronomic and quality traits were 

collected each year by each breeding program or in collaborative trials (Blake et al., 2012).  The 

barley breeding program at North Dakota State University (NDSU) was responsible for 

phenotyping seed dormancy in lines with the spring growth habit from eight breeding programs 

(USDA-ARS, Aberdeen, ID; Busch Agricultural Resources, LLC; NDSU six-rowed; NDSU 

two-rowed; University of Minnesota; Montana State University; Utah State University; and 

Washington State University.  Both phenotype and genotype data are curated and stored in The 

Hordeum Toolbox data resource (THT <http://hordeumtoolbox.org/> accessed: 7 May 2013).   

In the present study, I applied AM to seed dormancy data collected on 2,965 barley 

breeding lines submitted by the eight aforementioned spring barley breeding programs. My main 

goal was to gain a better understanding of the genetics underlying seed dormancy and to identify 

SNPs for each program that may be candidates for use in MAS. 
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Materials and methods 

Plant materials  

A total of 3,072 barley lines submitted by eight of the ten barley breeding programs 

participating in the Barley CAP were phenotyped for seed dormancy.  Breeding programs 

submitting materials included those from the USDA-ARS-Aberdeen, ID; Busch Agricultural 

Resources, LLC; Montana State University; NDSU, two-rowed and six-rowed programs; the 

University of Minnesota; Utah State University; and Washington State University. Each program 

submitted 96 different lines (F4 or later generations) each year from 2006-2009, but only those 

with complete phenotype and genotype data were included in this study (Table 2.1).  

 

Table 2.1. Breeding programs participating in the USDA-CSREES Barley Coordinated 
Agricultural Project (CAP) from which lines were provided for seed dormancy phenotyping. 

Spring breeding program Number of lines evaluated 
USDA-ARS – Aberdeen, ID 369 
Bush Agricultural Resources, LLC  377 

Montana State University  362 

North Dakota State University (two rowed) 379 

North Dakota State University (six rowed) 367 

University of Minnesota 371 

Utah State University 365 

Washington State University  375 

Total number of CAP lines analyzed 2965† 

† Elite breeding lines (F4 or advanced) submitted from 2006-2009. 
 

To determine seed dormancy, the Barley CAP line entries from each year and two checks 

were assigned to experimental units using an augmented block design (Federer and Raghavarao, 

1975) consisting of 27 blocks. The cultivars Stander (non-dormant) and Robust 

(dormant/moderately dormant) appeared in each block and each of the CAP entries appeared 

once in the experiment.  Randomizations were performed using the software AGROBASE 
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Generation II v. 18.18.2 (2010 Agronomix Software, Inc.).  Experimental units were 15.24-cm-

diameter clay pots (Ceramo, Jackson, Missouri) containing a potting media of Sunshine LC 8 

soil mix (Sun Gro Horticulture, Canada).  Three seeds from a single entry were sown in each pot.  

All experiments were conducted in the greenhouse, with a photoperiod of 16 h day/8 h night and 

temperatures of 20 °C day/18 °C night, respectively.  Osmocote Plus (Scotts, Maryville, OH) 

granular fertilizer was applied at the two-leaf stage, followed by weekly applications of a 

solution of 20-20-20 Jack’s Peat Lite (JR Peters, Inc, Allentown, PA) at the recommended rate.  

Spikes from the three plants within a pot were harvested in bulk at physiological maturity.  

Visual indicators of physiological maturity included loss of green color from the glumes and the 

peduncle (Copeland and Crookston, 1985).  Harvested spikes were placed in Ziploc®-type plastic 

bags and stored at -20°C until germination tests were performed as described by Lin (2007).  

Germination test and statistical analyses 

The percent of non-dormant seeds was determined using the protocol Barley 3-C of the 

American Society of Brewing Chemist (1999), with some modifications.  The method consists 

germinating 100 kernels uniformly spread over two sheets of 90-mm Whatman® filter paper in 

51-mm Petri dishes previously saturated with 4 mL of distilled water.  Petri dishes were sealed 

with Parafilm M (Pechiney Plastic Packaging Company; Chicago IL) to maintain stable moisture 

conditions. Samples were incubated in the dark for 72 h at 20 ± 2˚C and relative humidity of 

98% in a growth chamber (Percival Scientific; Perry, IA).  The percent of non-dormant seeds 

was determined at 72 h as described by Lin et al. (2009).  Data gathered from each test year were 

analyzed separately using the MIXED procedure of SAS v. 9.3 (SAS Institute, Inc. 2011), where 

block was considered a random effect and genotypes were a fixed effect.  
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The heritability of seed dormancy and its associated standard error were estimated on a 

family-mean basis using a modification of the method described by Holland et al. (2003) for the 

analysis of random lines in an augmented design,  

�� � ��
�

��
� � ��� 	


 

where ��
�=genetic component of variance, ���=experimental error variance, and 	=number of 

replicates. Data for both checks were removed prior to the calculations.  The variance and 

covariance parameters were calculated using the COVTEST and ASYCOV options of the 

MIXED procedure of SAS 9.3 (SAS Institute, Inc. 2011), where blocks were deemed random 

and genotypes fixed.  Heritability estimates were calculated by the multivariate restricted 

maximum likelihood (REML) option of the MIXED procedure in SAS 9.3 (SAS Institute, Inc. 

2011) and as described by Holland et al. (2003) and Holland (2006).  Approximate standard 

errors for heritability were calculated using the delta method of Lynch and Walsh (1998).  Matrix 

computations to estimate the standard errors were calculated using PROC IML (SAS Institute, 

Inc. 2011).  Variance components were estimated using the REML option of the MIXED 

procedure of SAS v. 9.3 (SAS Institute, Inc. 2011). 

Genotype data acquisition 

 All 3,072 germplasm lines from the eight spring barley participating programs were 

genotyped with the Illumina (San Diego, CA) GoldenGate assay (Fan et al., 2003) using two 

1,536-SNP Barley Oligo Pool Assays (BOPA 1 and BOPA2) previously described in Close et al. 

(2009) and Blake et al. (2012).  Three data sets (annotated alignment, SNP file, and traits) were 

downloaded from the THT in TASSEL (Bradbury et al., 2007) format using a minor allele 
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frequency (MAF) of 0.0 and maximum missing data of 100.  Original files were formatted for 

further imputation analyses. 

Association mapping analyses 

Missing data imputation 

To minimize the problems caused by missing genotype data values, imputation analyses 

were performed.  The software package FastPHASE v. 1.3 (Scheet and Stephens, 2006) was used 

to impute missing genotype data at each of the 3,072 loci using the default parameters and the 

Expectation-Maximization algorithm was used to estimate the maximum likelihood. Only 2,768 

markers having a MAF > 0.05 were considered for analyses herein. 

Identification of polymorphic loci 

Forty separate AM analyses were performed herein, including 1) analyses for each 

breeding program combined across the four years (eight analyses), and 2) separately for each 

breeding program for each of the four years (32 analyses).  SNP markers identifying 

polymorphisms and having a MAF > 0.05 were selected for each of the further steps.  

Population structure and kinship 

Population structure, defined as the differential relatedness among individuals of different 

subsets (e.g. breeding programs), was initially inferred by Principal Component Analysis (PCA) 

using the PRINCOMP procedure of SAS 9.3 (SAS Institute, Inc. 2011).  The first principal 

components (i.e., eigenvectors) that explained at least 25% of the cumulative variation were 

selected for subsequent analyses.  An identical by state pairwise kinship (K) allele sharing matrix 

(Zhao et al., 2007) was calculated using the DISTANCE procedure and Gower method of SAS 

9.3 (SAS Institute, Inc. 2011). 
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Linkage disequilibrium analyses 

Genome-wide LD analysis was performed across breeding programs and years by 

making pairwise comparisons among SNP markers using the squared allele frequency 

correlations between pair of loci (pairwise r2 statistic) as suggested by Hill and Robertson 

(1968).  The squared value of the Pearson’s correlation r2 coefficient was calculated using the 

CORR procedure of SAS 9.3 (SAS Institute, Inc. 2011).  Decay of LD within each chromosome 

and the whole genome was determined using non-linear regression methods as described by 

Remington et al. (2001) and implemented by the NLIN procedure of SAS 9.3 (SAS Institute, Inc. 

2011).  Separate LD analyses for each breeding program, using lines from all four years and for 

the whole panel were performed.  The pattern and distribution of intrachromosomal LD was 

graphically depicted for each chromosome and the whole genome by plotting significant intra-

chromosomal pairwise r2 values against the genetic distance (cM) between markers.  From a 

total of 3,072 SNP markers, only 2,522 with a MAF > 0.05 were included herein to identify the 

average LD decay for the genome-wide AM analyses.  Cosegregating markers were removed and 

an r2 of 0.5 was arbitrarily chosen as a cutoff point beyond which LD was likely due to genetic 

linkage.  This level of LD indicates that the closest marker only captures 50% of the phenotypic 

variation. 

Linear regression models used and identification of marker-trait associations 

Four linear regression models comprising both general linear models (GLM) and Mixed 

Linear Models (MLM) were selected to determine P-values associated with tests for marker-trait 

associations. Descriptions for each of the four models (Naïve, P, K, and P+K) are provided in 

Table 2.2 and information can be found elsewhere (Pasam et al. 2012; Mamidi et al. 2011; Yu et 
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al. 2005).  All analyses were conducted using the MIXED procedure of SAS 9.3 (SAS Institute, 

Inc. 2011). 

The general linear regression model used herein follows the formula: 

y = Xα + Pβ + Kν + ε 

where y is the response vector for phenotypic values for seed dormancy, α is the vector of fixed 

effects related to SNP marker effects, β is the vector of fixed effects with regard to population 

structure, ν is the vector of random effects for co-ancestry, and ε is a vector of the residual 

effects. X denotes the genotypes at the marker, P denotes the principal components from the 

PCA, and K is the Kinship-IBS identity matrix.  The variances of the random effects where 

calculated as follows: Var (ν) = 2Kδg and Var (ε) = IδR, where K is the kinship matrix and I is an 

identity matrix.  Diagonal elements in this matrix correspond to the reciprocals of the number of 

observations for the phenotypic data, while the off-diagonal elements are recorded as zero; δg is 

the genetic variance, and δR is the variance of the error term or residuals variance. 

Table 2.2. Four statistical models used to identify marker-trait associations. 
Linear regression model Information present in the model 

Naïve y = Xα + ε General Linear Model (GLM) without any correction for population structure. y is 
related to X, without correction for structure (PCA) or relatedness (K)  

   

P y = Xα + Pβ + ε GLM with principal components used for correction of population structure and y 
is related to X.  Principal components explaining a minimum of 25% of the 
cumulative variance were chosen. 

   

K y = Xα + Kν + ε Mixed Linear Model (MLM) with the K-matrix used as a correction for population 
structure and y is related to X. Similarity, defined as identity in state, was used as 
the kinship matrix 

   

P+K y = Xα + Pβ + Kν + ε MLM with principal components and the K-matrix as corrections for population 
structure. Principal components explaining 25% of cumulative variance were 
chosen.  

 

The best linear model for each of the 40 data set combinations was identified using the 

method suggested by Mamidi et al. (2011), which is based on the estimation of mean square 
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difference (MSD) values.  In this method, all marker P-values for each model are ranked from 

the smallest to the largest values, and MSDs are calculated as follow: 

�� �  
∑ ��� � �

��
�

�
���

�  

where i denotes the rank number, �� is the probability of the i th ranked P-value, and n is the total 

number of markers.  The linear model exhibiting the lowest MSD value for each analysis was 

deemed as the best. 

Additionally, the positive false discovery rate (pFDR) for each of the markers with 

significant marker-trait associations (P<0.001) was estimated using the MULTTEST procedure 

of SAS 9.3 (SAS Institute, Inc. 2011) The estimated pFDR values allowed for correction of 

multiple marker-trait associations (Storey, 2002).  The efficiency of the models was also 

estimated by comparing their ability to reduce the inflation of false positive associations by 

plotting the observed P-values versus the expected P-values (Kang et al. 2008).  Uniform 

distribution of the observed P-values exhibiting minimal deviations from the expected P-values 

also served as criteria for model selection.  The coefficients of determination (R2) and the allelic 

means were calculated for each of the significant markers using the REG and STEPWISE 

procedures of SAS 9.3 (SAS Institute, Inc. 2011).  For the stepwise regression, the defaults in 

SAS were used (significance level for entry is 0.15 and significance level for staying is 0.15). 

Epistasis 

Epistatic interactions between significant marker loci were estimated using a MIXED 

linear regression model with an interaction term using SAS v. 9.3 (SAS Institute, Inc. 2011).  

The significance threshold used to declare important epistatic interactions was P<0.001.  Maps 

containing the network of epistatic interactions between significant loci were built using the 

software MapChart v. 2.2 (Vorrips, 2002). 
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Gene annotation 

Significant SNP markers found to be associated with seed dormancy were cross 

referenced with information provided in Table S4 by Close et al. (2009), which included relevant 

information about BLAST hits to the rice and Arabidopsis genomes, as well as the corresponding 

Uni-Prot information.  Additional information was also gathered from HarvEST v. 1.83 

(http://harvest.ucr.edu/ accessed: 15 March 2013), which contains a BLAST server that supplies 

information for 2,943 mapped SNP unigene sequences that can be used as queries in the database 

(Close et al., 2009) 

Results and discussion 

Phenotypic data 

The malting process of barley is comprised of three major steps: steeping, germination, 

and kilning. Since differential expression of dormancy levels of barley seeds can impact 

germination and malt quality, a collection of 3,072 CAP lines was evaluated to determine the 

genetic basis of seed dormancy.  Of these, only 2,965 lines having both phenotype and genotype 

data were used for the analyses.  

The phenotypic distribution of percent non-dormant seeds for each breeding program 

showed marked differences from year to year (Appendix Figures A1-A8). Additionally, the 

individual means varied greatly from one year to another, which is partly the result of the 

utilization of different elite breeding lines (F4 or more advanced generations) in each of the four 

years (Table 2.3). The phenotypic distribution of percent non-dormant seeds for all breeding 

lines was continuous (KS =0.145; P<0.01), with means of individual lines extending beyond the 

checks.  Robust, the dormant check and Stander, the non-dormant check, behaved as expected 

for seed dormancy (Figure 2.1).  The normality tests (Kolmogorov-Smirnov D statistic) indicated 
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that percent non-dormant seed values did not follow a normal distribution in most breeding 

programs, with the exception of the NDSU two-rowed and six-rowed programs in 2006, NDSU 

six-rowed in 2007, and Montana State University in 2008.  The P-values for the analysis of each 

breeding program across four years (D=0.145; P<0.01) support the results obtained in the 

individual analyses (Table 2.4).   

Based on the histogram distribution plots, it appears that seed dormancy data generally 

follow a bimodal distribution, which suggest the action of major genes or large QTL effects 

controlling the trait.  Previous studies on barley and other cereal crops, including rice and wheat, 

led to identical conclusions based on the study of wild and cultivated accessions, half diallel 

crosses, BC, and F2 populations (Gu et al., 2003, 2005; Mares et al., 2005; Wan et al., 2006; 

Andreoli et al., 2006; Takeda and Hori, 2007; Torada et al., 2008). 

Heritability estimates ranged between 0.21 ± 0.07 to 0.82 ± 0.06 (Table 2.5), with the 

lowest values generally observed for the breeding materials submitted in 2007 and highest values 

for the materials submitted in 2006.  Differences in the range of heritability values for dormancy 

from year to year for a breeding program suggest that selection for seed dormancy has not been a 

priority in the breeding programs.  Traits, such as heading date, which receive high attention 

because of their importance to adaptation, often have heritability values within narrower ranges 

(Pasam et al., 2012).  It is thought that selection for low seed dormancy in breeding programs has 

stretched to a level where most commercial cultivars are non-dormant or moderately dormant in 

order to promote uniform and quick germination of the kernels upon imbibition, which is a main 

prerequisite for malting (Oberthur et al., 1995; Li et al., 2004). 
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Table 2.3. Mean, minimum and maximum values for percent non-dormant seeds across four years and eight breeding programs 
participating in the USDA-CSREES barley CAP project. 

  2006   2007   2008   2009 

Breeding program Range Mean   Range Mean   Range Mean   Range Mean 

 
--------------%---------------- 

 
--------------%------------ 

 
---------------%--------------- 

 
--------------%----------- 

USDA-ARS – Aberdeen, ID 0 100 56.0 ± 31.2 
 

0 29 4.1 ± 5.9 
 

0 76.7 26.5 ± 25.0 
 

0 100 43.6 ± 24.8 

Bush Agricultural Resources, LLC 5 100 78.6 ± 25.8 
 

0 52 11.5 ± 12.5 
 

0 75.0 22.1 ± 20.0 
 

0 100 46.1 ± 19.9 

Montana State University 0 100 65.0 ± 31.2 
 

0 27 4.71 ± 5.8 
 

0 71.6 28.9 ± 21.5 
 

0 94 34.4 ± 24.1 

North Dakota State University (two row) 0 100 49.3 ± 29.5 
 

0 54 10.3 ± 10.2 
 

0 57.0 13.2 ± 13.4 
 

0 90 40.8 ± 15.2 

North Dakota State University (six row) 14 100 62.3 ± 23.2 
 

0 56 18.6 ± 12.7 
 

0 45.0 10.6 ± 11.0 
 

0 92 41.4 ± 23.2 

University of Minnesota 3 100 69.0 ± 29.7 
 

0 44 5.7 ± 9.0 
 

0 82.0 24.8 ± 27.5 
 

0 100 35.2 ± 19.8 

Utah State University 0 98 27.7 ± 24.1 
 

0 58 4.2 ± 9.8 
 

0 86.2 21.5 ± 22.7 
 

0 90 37.5 ± 21.1 

Washington State University 0 100 42.6 ± 33.4   0 33 3.2 ± 6.5   0 70.0 17.4 ± 18.8   0 100 34.4 ± 23.3 
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Figure 2.1. Phenotypic distribution of percent non-dormant seeds, averaged across four years, for 
spring barley lines from the: (a) USDA-ARS Aberdeen, ID, (b) Busch Agricultural Resources, 
LLC, (c) Montana State University, (d) North Dakota State University (NDSU) two-rowed, (e) 
NDSU six-rowed, (f) University of Minnesota, (g) Utah State University, (h) and Washington 
State University barley breeding programs. The arrows indicate the means for Robust (23.6) and 
Stander (52.9) across four years. The X-axis represents the percentage of germinated seeds, 
while the Y-axis represents the observed frequency for each of the intervals in X. 
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Table 2.4. Goodness of fit test for a normal distribution of percent non-dormant seed data for each breeding program in 2006-2009, 
and across all years and breeding programs. 

  2006   2007   2008   2009   2006-2009 

Breeding Program D† P-value‡   D P-value   D P-value   D P-value   D P-value 

USDA-ARS – Aberdeen, ID 0.125 <0.010 0.253 <0.010 0.185 <0.010 0.294 <0.010 0.149 <0.010 

Bush Agricultural Resources, LLC 0.231 <0.010 
 

0.189 <0.010 
 

0.148 <0.010 
 

0.302 <0.010 
 

0.114 <0.010 

Montana State University 0.158 <0.010 
 

0.246 <0.010 
 

0.107 0.022 
 

0.347 <0.010 
 

0.142 <0.010 

North Dakota State University (two row) 0.071 >0.150 
 

0.157 <0.010 
 

0.179 <0.010 
 

0.330 <0.010 
 

0.152 <0.010 

North Dakota State University (six row) 0.090 0.057 
 

0.104 0.014 
 

0.167 <0.010 
 

0.309 <0.010 
 

0.128 <0.010 

University of Minnesota 0.208 <0.010 
 

0.262 <0.010 
 

0.213 <0.010 
 

0.344 <0.010 
 

0.155 <0.010 

Utah State University 0.130 <0.010 
 

0.334 <0.010 
 

0.173 <0.010 
 

0.344 <0.010 
 

0.167 <0.010 

Washington State University 0.130 <0.010   0.314 <0.010   0.177 <0.010   0.332 <0.010   0.185 <0.010 

†Kolmogorov-Smirnov (KS) statistic. 
‡Values shown in bold indicate the data followed a normal distribution at P≤0.01. 
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The genetic analysis of seed dormancy in weedy rice (Oryza sativa) and its association 

with some adaptive syndrome traits (e.g. shattering, awn length, black hull color, and red 

pericarp color) revealed that seed dormancy QTL are flanked by one or up to four QTL of these 

multiple interrelated traits.  The biological implication of this QTL organization indicates that 

reduction in seed dormancy could be the result of indirect selection against multiple interrelated 

adaptive syndrome traits than the selection against seed dormancy per se (Gu et al., 2004).  

Continuing with this idea, it seems reasonable to believe that low seed dormancy in barley could 

be the result of selection for other traits, including heading date, malt extract, and high α-amylase 

(Li et al., 2004). 

Table 2.5. Heritability estimates for percent non-dormant seeds for each of the eight breeding 
program across four years (2006-2009). 

Breeding Program 2006   2007   2008   2009 

 
-------------------------------------h2--------------------------------------  

USDA-ARS – Aberdeen, ID 0.82 ± 0.06 
 

0.24 ± 0.07 
 

0.70 ± 0.08 
 

0.75 ± 0.08 

Bush Agricultural Resources, LLC  0.55 ± 0.14 
 

0.55 ± 0.13 
 

0.44 ± 0.11 
 

0.60 ± 0.12 

Montana State University  0.80 ± 0.07 
 

0.21 ± 0.07 
 

0.58 ± 0.10 
 

0.56 ± 0.12 

North Dakota State University (two row) 0.78 ± 0.07 
 

0.32 ± 0.13 
 

0.37 ± 0.09 
 

0.45 ± 0.12 

North Dakota State University (six row) 0.61 ± 0.12 
 

0.56 ± 0.11 
 

0.38 ± 0.08 
 

0.56 ± 0.14 

University of Minnesota 0.79 ± 0.07 
 

0.27 ± 0.11 
 

0.77 ± 0.06 
 

0.64 ± 0.12 

Utah State University 0.76 ± 0.06 
 

0.35 ± 0.13 
 

0.53 ± 0.12 
 

0.68 ± 0.11 

Washington State University 0.78 ± 0.06   0.27 ± 0.08   0.56 ± 0.11   0.65 ± 0.11 

†Heritability estimates based on a family mean basis were calculated using formulas and SAS 
codes with some modifications as proposed by Holland et al. (2003). 
 

Association mapping analyses  

Polymorphic loci 

In principle, imputation analysis allows one to estimate missing SNP genotypes using 

methods that rely on heuristics or expectation-maximization algorithms by comparing each 

individual and maker locus against the complete data from other individuals.  The large amount 

of information gathered from the use of thousands of markers provides enough information to 
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impute the missing data with great accuracy (Li et al., 2009; Browning, 2008).  From the 3,072 

SNPs used to genotype the 2,965 lines, 3.5% of the alleles were missing and needed to be 

imputed.  Among them, a subset of 2,768 markers having a MAF > 0.05 were used for 

identification of marker-trait associations on a mapping panel that included lines from all 

programs in all years.  These markers were previously used in biparental mapping and other AM 

studies; therefore, they are considered herein.  Information about the total number of 

polymorphic markers (MAF > 5%) utilized in each of the AM analyses, including the analysis of 

individual years for each breeding program, as well as the combined analysis across the four 

years for each breeding program is provided in appendix Table A1.  The number of markers 

found to identify polymorphisms varied within and among breeding programs from year to year 

as the result of the utilization of different sets of elite breeding lines (~96 lines per year).  Some 

of the highest levels of polymorphism were observed in the lines submitted by the Utah State 

University (2,608) and USDA-ARS-Aberdeen (2,556) breeding programs, while the lowest 

number corresponded to the materials submitted by the University of Minnesota (1,853) and 

NDSU six-rowed (2,055) programs.   

Linkage disequilibrium analysis 

 Linkage disequilibrium, also known as gametic phase disequilibrium, is an estimate of the 

degree of non-random associations existing between alleles at different loci based on 

expectations for allele and haplotype frequencies (Zhu et al., 2008).  In general, the causes of LD 

are the same as those for evolution (i.e., mutation, genetic drift, subpopulation structure, and 

migration).  If the effect of selecting for superior genotypes is added, we should expect to see 

extensive and variable LD across the barley genome. Mapping resolution and the number of 

candidate genes that can be associated with a phenotype are strongly affected by the extent of LD 
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(Pasam et al. 2012; Waugh et al., 2009).  The genome-wide LD patterns observed for each 

breeding program were variable (Figures A9 and A10).  Linkage disequilibrium decay ranged 

from rapid in the Utah State University’ s program (r2 
≤ 0.5 at 2 cM to r2 

≥ 0.1 at 7 cM) to 

extended in the University of Minnesota’s program (r2 
≤ 0.5 at 4 cM to r2 

≥ 0.1 at 44 cM). From 

a total of 2,522 polymorphic SNP markers used, 908 non-cosegregating loci were identified.  

These markers covered approximately 1,090 cM of the barley genome, with an average of one 

marker every 1.2 cM. Results suggest the density of markers used in this study is sufficient for 

the identification of marker-trait associations for seed dormancy.  Additionally, there were only 

seven intermarker distances >2.5 cM where the chances of finding a QTL were reduced. 

Population structure 

A model-based approach using PCA and kinship was implemented to determine 

population structure.  The number of eigenvectors per combination of SNP markers that 

collectively explained at least 25% of the variation is summarized in Table 2.6.  In each of the 

four years, a single principal component sometimes was sufficient to explain up to 35.4, 43.2, 

37.7, and 35.3% of the variation for a single breeding program, while in other cases up to seven 

principal components were necessary to explain a minimum of 25% of the variation (e.g. the 

NDSU two-rowed program in 2006).   

Comparison of models  

Four linear models were utilized in this study (Naïve, P, K, and P+K) to detect 

associations between SNP markers and seed dormancy.  In a self-pollinated crop like barley, the 

level of population structure is expected to be large due to the effect of non-random mating and 

relatedness, in addition to the pressure exerted by selection of important agronomic traits (Wang 

et al., 2012; Passam et al., 2012). 
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Table 2.6. The number of principal components (PC) included in each of the association 
mapping analyses and the percent of cumulative variance (%) explained by the principal 
components. 

 
Breeding Program 

Individual years   Four years 
(2006-2009) 2006   2007   2008   2009   

 
PC % PC % PC % PC % PC % 

USDA-ARS-Aberdeen, ID 1 28.7 1 32.0 1 29.6 4 29.3 1 24.6 

Bush Agricultural Resources LLC. 1 35.4 1 43.2 1 37.7 1 35.3 1 34.5 

Montana State University 3 27.3 2 25.8 3 31.0 2 45.2 4 27.8 

North Dakota State University (two-row) 7 26.0 5 28.0 4 30.3 5 27.4 10 25.7 

North Dakota State University (six-row) 3 25.2 2 28.6 4 30.5 3 27.7 5 25.4 

University of Minnesota 4 28.5 3 30.0 3 26.6 3 28.1 6 27.2 

Utah State University 5 28.5 3 28.1 2 28.3 2 30.8 5 25.0 

Washington State University 1 26.0   1 25.9   5 26.0   5 27.3   3 25.7 

 

In order to detect significant marker-trait associations and reduce the confounding effect 

of population structure, I identified those models that performed “best” based on the MSD values 

(Table 2.7).  The lower the MSD value, the better the model (Mamidi et al., 2011).  Additionally, 

I assessed the effectiveness of these four models and their ability to reduce false positive 

associations by using the method described by Kang et al. (2008).  Under the assumption that 

SNP markers are unlinked and there are only a few true associations, it is expected that the 

cumulative distribution of the P-values should approach a uniform distribution.  Thus, a large 

deviation from the expectation indicates that the model may increase the chances to find spurious 

associations (Kang et al. 2008; Pasam et al., 2012).  Based on this assumption, I identified those 

models containing kinship (K) or a combination of a structure component, P, and kinship to be 

significantly better. Eighteen of the P+K models and 16 of the K models generally had lower P-

values than those in the Naïve or P-only models (appendix Figures A11-A19).  Additional 

information about markers having a convergence with the best linear models is also provided in 

appendix Table A2. 
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Marker-trait association analysis and annotation 

A concern often expressed with AM is that of false positives.  I tried to reduce the 

number of false positives by using population structure and kinship as covariates in the analyses.  

A marker-trait association was considered significant if the marker main effect was significant at 

P≤0.001 [-log10 (0.001) = 3].  The number of markers significantly associated with seed 

dormancy based on the analyses of i) individual programs and years, and ii) across all years for 

each breeding program are summarized in Table 2.7. 

In the combined analysis across programs and years, I identified four SNPs significantly 

associated with seed dormancy (data not shown).  Three of the four SNPs mapped to the 

telomeric region of chromosome 5HL and explained 4.27, 5.14, and 6.05% of the phenotypic 

variation, respectively.  The fourth SNP marker is unmapped, but explained up to 27.9% of the 

phenotypic variation.  An inherent weakness in combined analyses across breeding programs 

with very different germplasm is that the results may not be meaningful for individual programs.  

In the AM analyses across years for each program, the number of significant marker-trait 

associations detected ranged from 20 in the NDSU six-rowed program to 104 in the Busch 

Agricultural Resources program (Table 2.7; appendix Figures A20-A27).  However, in many 

cases for each breeding program, the chromosome region where significant marker-trait 

associations were identified in one year was not consistently detected in other years (Appendices 

Table A3-A10).  This may be due, in part, to an insufficient population size (< 96 lines), lack of 

genetic diversity at specific loci, or both.  To determine if specific SNPs may have utility for 

MAS, interpretation was done on analyses from individual years for each breeding program.  

Valuable markers for MAS must work across the germplasm base of a breeding program, which 

includes lines from a wide range of crosses and years.  For this purpose, I considered SNP  
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Table 2.7. Best linear models selected based on the mean square difference (MSD) value and the 
number of significant makers (P≤0.001) associated with percent of non-dormant seed.  

 
Breeding Program 

 
Analysis 

Linear Model†  
Markers Naïve   P   K   P+K 

  ------------------------ MSD‡----------------------  
          

USDA-ARS-Aberdeen, ID 4 years 0.0054  0.021  0.0414  0.0018 65 
 2006 0.0427  0.0101  0.0032  0.0031 9 
 2007 0.1119  0.0006  0.0098  0.0013 14 
 2008 0.1347  0.0014  0.0002  0.0004 7 
 2009 0.0175  0.0087  0.0001  0.0002 6 
          

Bush Agricultural Resources LLC 4 years 0.0792  0.0284  0.0688  0.0285 104 
 2006 0.0505  0.0409  0.0157  0.0099 52 
 2007 0.1272  0.0014  0.0088  0.0111 41 
 2008 0.1495  0.1862  0.037  0.016 8 
 2009 0.0782  0.0027  0.0014  0.0006 5 
          

Montana State University 4 years 0.0331  0.0701  0.007  0.024 61 
 2006 0.0225  0.0059  0.0007  0.0006 5 
 2007 0.0477  0.0643  0.001  0.0008 7 
 2008 0.025  0.0227  0.0016  0.0023 1 
 2009 0.0417  0.0337  0.0026  0.0024 3 
          

North Dakota State University (two-row) 4 years 0.033  0.0127  0.0212  0.01 39 
 2006 0.0046  0.0009  0.0007  0.001 12 
 2007 0.0009  0.0032  0.0009  0.0017 29 
 2008 0.0049  0.0059  0.0014  0.0006 18 
 2009 0.0069  0.0013  0.1072  0.0039 8 
          

North Dakota State University (six-row) 4 years 0.042  0.0338  0.0092  0.0134 20 
 2006 0.0242  0.0129  0.0003  0.0003 - 
 2007 0.0061  0.0166  0.0077  0.0057 3 
 2008 0.0295  0.0056  0.0006  0.0051 13 
 2009 0.0126  0.0167  0.0099  0.0015 1 
          

University of Minnesota 4 years 0.0528  0.0401  0.0498  0.0363 81 
 2006 0.0457  0.0088  0.0004  0.0009 4 
 2007 0.0009  0.0012  0.0033  0.0048 13 
 2008 0.0403  0.0032  0.0003  0.0007 1 
 2009 0.0061  0.0121  0.0016  0.0019 8 
          

Utah State University 4 years 0.0821  0.0326  0.0214  0.0172 57 
 2006 0.0074  0.0127  0.0042  0.0041 7 
 2007 0.0077  0.0005  0.0003  0.0005 13 
 2008 0.0474  0.0262  0.0004  0.0004 6 
 2009 0.0147  0.0228  0.004  0.0029 12 
          

Washington State University 4 years 0.1079  0.0094  0.0934  0.0063 62 
 2006 0.1062  0.0039  0.0002  0.0004 17 
 2007 0.1243  0.0014  0.0041  0.1268 34 
 2008 0.0177  0.005  0.0005  0.0006 13 
  2009 0.0051   0.0033   0.0004   - 2 

†Naïve=Simple model; P=Principal Component Analysis; K=Kinship; P+K= combination of 
PCA and kinship. 
‡Numbers in bold represent the best linear models selected. 
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markers significantly associated (P≤0.05) with seed dormancy in two or more years as those that 

may be used for MAS (appendices Tables A11-A18).  Ultimately, the utility of specific SNPs for 

MAS needs to be validated using completely different materials for each of the breeding 

programs. 

Marker trait associations identified in similar regions across programs. Two large effect 

QTL on chromosome 5HL were identified in multiple breeding programs and in different years 

(Table 2.8; Figure 2.2).  The QTL named QDrm.BCAP-5H.1 contained two SNP loci (178.43-

182.88 cM) and QDrm.BCAP-5H.2 contained 10 SNP loci (189.60-196.85 cM).  QDrm.BCAP-

5H.1 was detected in breeding lines from the Busch Agricultural Resources, LLC; NDSU two-

rowed; University of Minnesota; and Washington State University programs.  QDrm.BAP-5H.2 

was detected in lines from all eight programs. 

Among these 12 SNP loci in the two QTL, five had putative functions associated with 

seed dormancy.  The SNP 12_30360 had significant marker-trait associations in 50% of the 

breeding programs and is associated with a putative jasmonate O-methyltransferase protein. This 

enzyme catalyzes the formation of methyl jasmonate from jasmonic acid.  Methyl jasmonate is a 

plant volatile reported to be one of the major elements controlling seed dormancy in cereal grains 

and other plant species including sunflower (Helianthus annuus L.), Amaranthus spp., tobacco 

(Nicotiana tabacum L.), oat (Avena sativa L.), wheat, rapeseed (Brassica napus L.), and flax 

(Linum usitatissimum L.).  Methyl jasmonate is involved in regulation of the expression of key 

biosynthetic and catalytic abscisic acid (ABA) genes that ultimately modulate seed dormancy 

responses. Additionally, methyl jasmonate is an important cellular regulator mediating the 

expression of various developmental processes, including flower and fruit development, leaf 
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abscission, senescence, and seed germination; and it induces plant defense responses (Jacobsen 

et al., 2013; Seo et al., 2001).   

Significant marker-trait associations were found in 75% of the breeding programs using 

the SNP 12_31123. This SNP is associated with a putative pectinesterase inhibitor domain 

containing protein.  Pectinesterase inhibitors may have an important role in the defense reaction 

of plants against pathogens and other developmental events including seed germination, 

microsporogenesis, pollen growth, fruit maturation, and senescence (An et al., 2008).  An 

association between seed dormancy and the SNP 11_10401 was detected in 50% of the breeding 

programs. This SNP is associated with a putative RCD1 (Radical Induced Cell Death1) protein, 

which has been identified as a key regulator of stress, hormonal, and developmental responses in 

Arabidopsis thaliana.  Mutants for RCD1 showed altered responses to jasmonate, ethylene, and 

nitric oxide, as well as differential sensitivity to reactive oxygen species (ROS).  For this reason 

it has been suggested that RCD1 plays an important role in the hormone-signaling pathway and 

in the coordination of ROS responses in plants (Jaspers et al., 2009). 

Significant associations between seed dormancy and the SNP 12_10322 were detected in 

75% of the breeding programs. This SNP is associated with a putative protein of the plasma 

membrane encoding another putative ABA induced plasma membrane protein (PM 19) (U35 

Uniprot description; Close et al., 2009).  These types of proteins are expressed in barley embryos 

from mid-embryogenesis up to maturity, and their levels decline upon germination.  In dormant 

embryos the PM19 mRNA levels are high and only start to decrease after 72 h upon imbibition.  

In non-dormant seeds the expression of PM19 mRNA levels can be induced by treatments that 

prevent the germination of the seeds (e.g. addition of ABA). 
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Table 2.8. Significant marker-trait associations identified in the long arm of chromosome 5H in two or more years and across breeding 
programs. 

Marker  Chr cM 
USDA-ARS – Aberdeen, ID 

  Bush Agricultural 
Resources, LLC  

  
Montana State University  

  North Dakota State 
University (two rowed)    

2006 2007 2008 2009   2006 2007 2008 2009   2006 2007 2008 2009   2006 2007 2008 2009 
12_11010 5H 178.43      *   *        *** ***  
12_11450 5H 178.43      *   *       * * ***  
12_31292 5H 189.6      *   *           
11_10401 5H 191.97 ** ** ***   *** ***  **           
12_30360 5H 191.97 ** *** ***   *** ***  ***  *         
12_31210 5H 191.97 ** *** ***   *** ***  **           
12_30382 5H 194.64      **  * *  **  *   ***  *  
12_10857 5H 194.84  *** **   * ***  **           
11_20402 5H 195.42 ***  **        ***  **   ***  *  
12_10322 5H 196.12 ***  **        ***  *   ***  *  
12_30958 5H 196.12      ***  *   *         
12_31123 5H 196.85 ***   **               ***   *     *** * *   

*, **, *** Significant at P≤0.05, 0.01, and 0.001, respectively.
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Table 2.8. Significant marker-trait associations identified in the long arm of chromosome 5H in two or more years and across breeding 
programs (cont.). 

Marker  Chr cM 

North Dakota State 
University (six rowed) 

  
University of Minnesota 

  
Utah State University 

  Washington State 
University     

2006 2007 2008 2009   2006 2007 2008 2009   2006 2007 2008 2009   2006 2007 2008 2009 
12_11010 5H 178.43      ** * **        ***  ***  
12_11450 5H 178.43       * **            
12_31292 5H 189.6   *** *            *  ***  
11_10401 5H 191.97      ***  * **       ***  ***  
12_30360 5H 191.97      ***  * **           
12_31210 5H 191.97      ***  * **           
12_30382 5H 194.64                    
12_10857 5H 194.84      ***  * **  ***  * ***      
11_20402 5H 195.42                *** * *** ** 
12_10322 5H 196.12 *  ***        **  ** *  *** * ** * *** 
12_30958 5H 196.12 *  ***        **   *  ***  *** * * 
12_31123 5H 196.85 *   ***               **   *** *   ***   *** *** 

*, **, *** Significant at P≤0.05, 0.01, and 0.001, respectively. 
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Figure 2.2. Significant marker-trait associations identified across four years and eight breeding programs on the telomeric region of 
the long arm of chromosome 5HL. AB=USDA
University; ND 2R=NDSU two-rowed; ND 6R=NDSU six
WA=Washington State University.  Different colors indicate the presence of a specific SNP marker
breeding programs and years. Brown, royal blue and red colors for the SNP indicate the presence of a significant marker
association in 50%, 63% and 75% of the breeding programs, respectively.

trait associations identified across four years and eight breeding programs on the telomeric region of 
the long arm of chromosome 5HL. AB=USDA-ARS, Aberdeen, ID; BA=Busch Agricultural Resources, LLC; MT=Montana State 

rowed; ND 6R=NDSU six-rowed; UM=University of Minnesota; UT=Utah State University; and 
WA=Washington State University.  Different colors indicate the presence of a specific SNP marker-trait associ
breeding programs and years. Brown, royal blue and red colors for the SNP indicate the presence of a significant marker
association in 50%, 63% and 75% of the breeding programs, respectively. 

 
trait associations identified across four years and eight breeding programs on the telomeric region of 

Resources, LLC; MT=Montana State 
rowed; UM=University of Minnesota; UT=Utah State University; and 

trait association across different 
breeding programs and years. Brown, royal blue and red colors for the SNP indicate the presence of a significant marker-trait 
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PM19 is part of the Late Embryogenesis Abundant (LEA) proteins, which have also been 

associated with cellular tolerance to dehydration induced by drying, freezing conditions, or 

salinity.  Most of the genes encoding LEA proteins have ABA responsive elements (ABRE), as 

well as temperature responsive elements (LTRE), so their expression is induced by ABA, cold, 

or drought (Hundertmark and Hincha, 2008).   

Significant associations between the SNP 11_20402 and seed dormancy were found in 

50% of the breeding programs.  This SNP is associated with a putative ubiquitin-conjugating 

enzyme (E2-21 kDa 1), which is part of the post-translational modification machinery that is 

implicated in the molecular death tagging of proteins (Gao et al., 2013).  Once proteins are 

tagged, they are disposed by the protease complex system, which is responsible of the removal of 

intracellular polyubiquitinated proteins (Smalle et al., 2003).  These proteins have also been 

implicated in the hypersensitivity response to ABA, and might be implicated in the modulation 

of seed dormancy during embryo maturation (Smalle et al., 2003; Finkelstein et al., 2008). Liu et 

al. (2013) suggested that declines in seed sensitivity to ABA and indolacetic acid (IAA) are 

mediated by transcriptional repression of several family genes, including those related to 

ubiquitin1 genes (Liu et al., 2013).  The remainders of the SNP markers with significant 

associations with seed dormancy have putative functions implicated with several developmental 

processes, but with unknown direct relation for seed dormancy (appendices Tables A11-A18). 

An interesting hypothesis arose from the observation that certain SNP loci were 

significantly associated with seed dormancy in some breeding programs, but not others.  For the 

particular case of the University of Minnesota and NDSU six-rowed programs, fewer marker-

trait associations were detected on chromosome 5HL than in the other programs.  Additionally, 

some of the loci in the University of Minnesota and NDSU six-rowed programs without 
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associations were either fixed or approaching fixation (Table 2.8).  For example, the genotype 

BB at locus 12_30382 and AA at locus 11_20402 were highly likely to be found across the four 

years in these two breeding programs, which led me to conclude that fixation of some alleles and 

genotypes in this genomic region is likely the result of indirect selection for other traits 

controlled by loci in this region (Appendices Tables A11-A18). 

The distal portion of chromosome 5HL has been identified in multiple studies as an 

important region harboring QTL that control the expression of multiple malting quality traits, 

including malt extract, diastatic power, soluble nitrogen, α-amylase activity, wort viscosity, β-

glucan, β-glucanase activity, seed dormancy, and PHS (Zhang et al., 2011; Von Korff et al., 

2008; Panozzo et al., 2007; Li et al., 2005; Hayes et al., 2003; Collins et al., 2003; Gao et al., 

2003; Li et al., 2003; Marquez-Cedillo et al., 2001; Mather et al., 1997; Ullrich et al., 1993; Han 

et al., 1996).  In two crosses where ‘Harrington’ was the susceptible parent to PHS, Li et al. 

(2003) identified a large effect QTL for seed dormancy that coincided with a QTL for PHS in 

chromosome 5HL.  The allele from Harrington for increased PHS susceptibility also was 

associated with increased malt extract, diastatic power, α-amylase activity, and soluble nitrogen.  

These results suggest that genes controlling dormancy/PHS susceptibility are in repulsion with 

those for malting quality. However, more research needs to be done to test this hypothesis (Li et 

al., 2003). 

Marker trait associations detected within breeding programs. Apart from comparing the 

results for marker-trait associations detected across different breeding programs, I aimed to 

examine those regions within a breeding program where significant (P≤0.05) marker-trait 

associations were detected in a minimum of two out of four years.  The associations in 

chromosome 5HL discussed previously will not be discussed in detail in this section.   
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A total of 32 marker-trait associations were detected in the USDA-ARS-Aberdeen, ID 

program.  Except for chromosome 1H, associations were identified in all chromosomes, with 

chromosome 5H harboring the most (19 of the 32).  The SNP marker 12_31527 was identified in 

the long arm of chromosome 2H (151.37 cM) in 2006 and 2007 and it is associated with a 

putative α-amylase/trypsin inhibitor precursor.  A QTL with a lesser effect in chromosome 2H 

associated with α-amylase activity was previously identified by Li et al. (2003) in a biparental 

mapping study using the cross ‘Chebec’ x ‘Harrington’.  The allele contributed by Harrington 

was associated with higher α-amylase activity levels than those with the allele from Chebec.  The 

rest of the SNP markers identified with significant marker-trait associations in the USDA-ARS-

Aberdeen, ID program were associated with energy metabolism (e.g ATP dependent processes, 

sugar transport, carbohydrate synthesis and catabolism, cell receptors), as well as other proteins 

involved in the replication of DNA and the ROS pathway. 

One hundred and twelve marker-trait associations were detected in the Bush Agricultural 

Resources LLC program across all seven chromosomes and unlinked markers. The majority of 

the associations were located in chromosome 5H (71 SNP loci), 4H (20 SNP loci) and 2H (19 

SNP loci).  The non-chromosome 5HL SNPs were associated with several metabolic pathways.  

Two marker-trait associations identified were connected to proteins involved in the metabolism 

of plant regulators.  The SNP 11_10793 mapped to the short arm of chromosome 4H (44.94 cM) 

and it is associated with a putative gibberellin-regulated protein 1 precursor; and SNP 12_30494, 

mapped to chromosome 5HL (180.71 cM), is associated with a putative ethylene receptor 

protein.  It is well known that gibberellins stimulate seed germination by inducing the production 

of hydrolytic enzymes that weaken the endosperm and seed coat tissues, as well as prompt the 

translocation of seed reserves and the expansion of the cell walls that end up in the protrusion of 
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the radicle and the expansion of the embryo.  Additionally, ethylene promotes dormancy 

breaking and germination via antagonism of the ABA signaling pathway (Finkelstein et al., 

2008). 

Seventeen marker-trait associations significant were detected in the Montana State 

University program and they were identified in chromosomes 2H, 4H, 5H and 7H.  The majority 

of the associations were located in chromosome 5H (9 SNP loci) and 4H (6 SNP loci).  Most of 

the marker-trait associations identified in this program are related to carbohydrate assimilation 

and metabolism, post-translational modification, plant stress responses, and seed dormancy 

control (e.g. jasmonate and pectinesterase inhibitors). 

For the North Dakota State University two-rowed program, 40 marker-trait associations 

were detected in six of the seven chromosomes and the unlinked group of markers  No 

associations were detected in 3H.  The majority of marker-trait associations were identified in 

chromosomes 5H (16 SNP loci) and 6H (8 SNP loci).  The SNP 12_31481 mapped to 

chromosome 5HL (191.97 cM) and it is associated with a putative gibberellin 20 oxidase 1.  This 

locus was previously identified by Li et al. (2004) as part of a major QTL controlling both PHS 

and seed dormancy in a rice-wheat-barley comparison study.  A lesser effect QTL associated 

with dormancy and previously designated as SD2, also mapped to a similar chromosome location 

in chromosome 5HL (Han et al. 1996; Gao et al. 2003), where other genes controlling malt 

quality traits also have been identified (Li et al. 2004). 

In the North Dakota State University six-rowed program, 34 marker-trait associations 

were identified in chromosomes 1H, 2H, 5H, 6H and the unlinked group of markers, with the 

majority of the marker-trait associations located in chromosome 6H (23 SNP loci).  Once again, 

the majority of the marker-trait associations were related with putative proteins involved in a 
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large number of cell processes. The SNP 12_30856, mapping to chromosome 6H (55.94 cM) 

corresponds to a putative cryptochrome 1 apoprotein, which is a class of photoreceptor in the 

blue region of the spectrum that links the control of seed dormancy and germination with light 

intensity (Yu et al., 2010; Goggin et al., 2008).  Gubler et al. (2008) stated that blue light mimics 

the effects of white light in promoting seed dormancy of freshly harvested cereal grains, which is 

associated with the regulation of genes for ABA metabolism in embryos. 

The University of Minnesota program had the lowest number of marker-trait associations, 

nine.  Most of the associations were found in the long arm of chromosome 5HL and they were 

previously described.  The rest of the marker-trait associations were found on chromosomes 1H, 

2H and the unlinked group of markers.  None of these SNPs appeared to be linked to any of the 

processes involved in seed dormancy or germination. 

A total of 55 marker-trait associations in the Utah State University program were 

identified across all chromosomes, including the unlinked group of markers. The majority of the 

associates were found on chromosome 3H (18 SNP loci), followed by chromosomes 4H and 5H 

(7 SNP loci each).  The SNP 11_10180 maps to chromosome 2HS (21.61 cM) and is in a similar 

region as a QTL for dormancy identified by Lohwasser et al. (2012).  The SNP 11_10180 is 

associated with a putative auxin-binding protein ABP20 precursor. The auxin-binding protein is 

of special interest since auxins accumulate in the cotyledons of mature seeds, where they seem to 

play an important role in embryogenesis and the development of the apical-basal pattern 

formation (Kucera et al., 2005).  The inhibitory effect of L-tryptophan, a precursor of IAA, and 

other synthetic auxins was confirmed using excised embryos from dormant wheat cultivars, 

where germination was inhibited unless auxin antagonists were used.  Additionally, Ramaih et al. 

(2003) showed that excised embryos from dormant seeds lose sensitivity to auxins during after-
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ripening, which supports the importance of auxins during seed development and their role in the 

control of seed dormancy and PHS.  Two other interesting marker-trait associations were 

identified in the short and long arms of chromosome 4H (44.94 cM and 76.03 cM, respectively).  

The SNP on the short arm is associated with a putative gibberellin-regulated protein 1 precursor, 

while the second is associated with a putative chitin-inducible gibberellin-responsive protein 2.  

A QTL located in chromosome 4HS was previously identified by Han et al. (1996) and named 

SD4.  This QTL was flanked by markers WG622 and BCD402B, which positions it within the 

region of 13.1-38.41 cM in the barley OPA consensus map (Close et al., 2009). SD4 was 

identified only under certain environments and explained only 5% of the phenotypic variation of 

seed dormancy (Han et al., 1996).  Coincidentally, a dominant gibberelic acid (GA3) insensitive 

dwarfing gene Dwf2 has been map to chromosome 4HS near microsatellite marker XhvOle (18.3 

cM) using an F2 population from a cross between ‘93/B694’ (Dwf2) and ‘Bonus M2’ (dwf2).  

The identification of the Dwf2 gene and other dwarfing genes among homoeologous groups 

suggest their synteny within the Triticeae tribe (Ivandic et al. 1999).  A QTL in the same region 

of chromosome 4HS has also been identified in other studies and associated with the control of 

several malt quality traits, including, malt extract percentage, α-amylase activity, diastatic power, 

β-glucan content and seed dormancy (Gao et al., 2004; Hayes et al., 1993, 1994; Han and 

Ullrich, 1994 cited by Gao et al., 2004).  The second SNP marker in chromosome 4H 

(12_20143) is associated with a putative chitin-inducible gibberellin-responsive protein 2.  This 

protein has been associated with a QTL affecting plant height in rice (Kovi et al. 2011), which in 

barley corresponds to a genomic region containing GA-insensitive dwarfing genes that seem to 

be collinear with genes Rht-D1c and Rht-D1b in wheat (Ivandic et al. 1999). 
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Finally, 32 marker-trait associations were detected using materials from the Washington 

State University breeding program in chromosomes 1H, 3H, 5H, 6H, and 7H; and some of the 

unlinked markers. Most of the significant marker-trait associations were found in chromosome 

5H (17 SNPs), towards the telomere (191.97 cM to 196.85), and were discussed in the previous 

section.  However, the SNP 12_31094 on chromosome 5HS was found to be associated with a 

putative protein enolase 1, which has been observed in higher amounts in germinating barley and 

rice seeds (Østergaard et al., 2004; Kim et al., 2009).  Another interesting association was 

detected in chromosome 3HS and related to a putative protein cysteine synthase mitochondrial 

precursor.  Cyanide has been identified as a key regulator of seed dormancy in cereals, as well as 

in other plant species including rice, sunflower, apple (Malus domestica L.), and Arabidopsis 

thaliana (Oracz et al., 2009; Garcia et al., 2010 and references therein).  Oracz et al. (2009) 

suggested that the effect of cyanide on dormancy release could be attributed to a response to 

ROS accumulation.  In sunflower it has been observed that dormancy is alleviated by ethylene, 

in which expression is induced by cyanide through the activation of the transcription factor 

ethylene response factor1 (ERF1).  Other metabolites including cysteine, which is a substrate of 

the β-cyanoalanine synthase (β-CAS), stimulate seed germination in some plants as well 

(Maruyama et al., 1998; García et al., 2010).  The rest of the significant marker-trait associations 

are related with proteins unrelated to seed dormancy or germination.  

Because many of the QTL for seed dormancy in the present study map to chromosome 

regions where malt quality QTL have been mapped previously, I wanted to determine if the 

selection for malt quality traits, such as wort protein, soluble protein/total protein (S/T) and α-

amylase, may have indirectly impacted seed dormancy.  This hypothesis is supported, in part, by 

the wide range on heritability values observed for seed dormancy (Table 2.5) and the existence 
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of fixed alleles at some loci within genomic regions with marker-trait associations (e.g. 

chromosome 5HL).  Correlation analyses between percent non-dormant seeds with wort protein, 

S/T and α-amylase did not provide conclusive results to support my hypothesis (data not 

presented).  The weak correlations obtained, generally, (r<0.62), may have been due to large 

amounts of missing phenotype data for the malt quality traits; thus, additional research is needed. 

In the present study I have described the application of the genome-wide AM tools using 

a panel of elite US spring barley breeding lines for the identification of marker-trait associations 

with percent of non-dormant seeds. Two main QTL regions were identified in the long arm of 

chromosome 5HL and its locations are corresponding with previously identified QTL in several 

biparental mapping studies (Ullrich et al., 1993; Han et al., 1996; Li et al., 2003; Lin et al., 2009; 

Zhang et al., 2011; Lohwasser et al., 2012). The results suggest that in the case of US spring 

barley, each program needs to conduct their own mapping studies using their own germplasm in 

order to identify markers than can be used successfully for MAS.  Further studies need to be 

done to validate the different SNPs efficacy for MAS in each breeding program, and to 

determine if the associations of seed dormancy with specific malt quality traits is due to linkage 

or pleiotropy.    

Candidate markers suggested for further validation and use in MAS 

I suggest the following SNP markers be validated to determine their utility for MAS in 

each breeding program (Table 2.9 and 2.10).  Criteria for selecting markers differed based on 

whether the markers mapped to chromosome 5HL or another region.  SNP markers in 

chromosome 5HL significantly associated (P≤0.05) with seed dormancy in two or more years are 

included and critically discussed.  For the other chromosome regions, significant SNP markers 

(P≤0.05) that were found to be significant in two out of four years were selected for validation 
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depended on whether the SNP was associated with a putative function related to seed 

dormancy/germination, or mapped to a region coinciding with known QTL for seed dormancy 

(e.g. SD1, SD3, or SD4; Han et al., 1996).  Significant SNP’s (P≤0.05) whose function did not 

appear to be associated with seed dormancy, but that showed up in three or more years were also 

included herein.  Nine candidate SNP markers were identified for the USDA-ARS-Aberdeen 

program across years, but only eight were detected in the combined analysis with the exception 

of marker 11_20546. The BB genotype in five SNP loci was found to be associated with nearly 

60% more non-dormant seeds (��=38.8).  The remaining four SNP loci showed that the AA 

genotype was associated with 68% more non-dormant seeds (��=38.5).  Eleven candidate SNP 

markers were identified for the Bush Agricultural Resources program across years, but only 

seven markers were detected in the combined analysis. The BB genotype in nine of the markers 

was associated with nearly 86.4% more non-dormant seeds (��=42.3).  Only two SNP markers 

having the A allele at both loci were associated with 57% more non-dormant seeds (��=43.4).  

Five candidate SNP makers were identified for the Montana State University breeding program, 

with only one not detected in the combined analysis across years (marker 11_20546). The AA 

genotype in four out of five SNP markers was associated with 44% more non-dormant seeds than 

those lines with the BB genotype.  Eight candidate SNP markers were identified for the NDSU 

two-row program, but marker 12_31123 was not detected in the combined analysis across years. 

The presence of the AA genotype in five out of eight markers was associated with 54% more 

non-dormant seeds (��=34.3), while in three other loci (12_11450, 11_10236 and 12_30577) the 

BB genotype was associated with 36% more non-dormant seed than the AA genotype. 

Four SNP markers were identified for the NDSU six-rowed program across years, but 

none of them were significant in the combined analyses.  The means for the percentage of  
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Table 2.9. Candidate SNP markers identified on chromosome 5HL using breeding lines from 
eight US spring barley breeding programs from 2006-2009. 

Breeding program  Marker cM 

Separate analysis† Combined 
analysis‡ Years ------AA----- ------BB-----  

% Mean % Mean  
USDA-ARS-Aberdeen, ID 11_20546 172.38 3 75.5 36.43 24.2 30.95 * ns 

11_10869 173.08 2 55.9 25.2 44.1 41.99 * *** 
12_31352 182.88 2 28.5 22.2 71.5 35.93 * *** 
11_10401 191.97 3 39.5 21.72 58.9 39.21 * *** 
12_31210 191.97 3 33.3 21.77 65.3 37.75 * *** 
12_30360 191.97 3 37.8 21.22 60.8 39.12 * *** 
11_20402 195.42 2 67.1 39.31 32.3 20.60 * *** 
12_10322 196.12 2 64.4 39.40 35.1 21.22 * *** 
12_31123 196.85 2 64.7 39.03 35.1 21.44 * *** 

          

Bush Agricultural 
Resources LLC 12_30162 161.58 3 78.9 40.35 20.8 31.14 * ns 

12_30494 180.71 2 14.0 31.64 78.8 42.31 * ns 

11_20897 182.88 3 13.5 25.54 86.5 41.61 * ns 

11_11364 189.60 2 7.2 21.18 92.8 40.66 * *** 

11_20786 189.60 3 13.8 20.36 86.2 42.79 * *** 

11_21108 190.23 2 35.0 46.5 49.3 34.0 * *** 

11_10401 191.97 3 17.5 21.29 82.5 43.50 * *** 

12_30360 191.97 3 15.1 19.09 84.9 43.44 * *** 

12_31210 191.97 3 14.0 18.98 86.0 43.05 * *** 

12_30382 194.64 3 13.5 26.00 86.5 42.24 * ns 

12_10857 194.84 3 6.7 16.78 93.3 40.73 * *** 
          

Montana State University 11_20546 172.38 2 50.4 39.66 49.4 29.66 * ns 

12_30382 194.64 2 44.5 26.63 54.7 38.44 * *** 

11_20402 195.42 2 42.2 43.01 57.0 25.74 * *** 

12_10322 196.12 2 40.9 42.50 58.3 26.18 * *** 

12_31123 196.85 2 41.7 42.26 57.7 26.16 * *** 
          

North Dakota State 
University (two-row) 12_11010 178.43 2 6.6 43.9 92.6 27 * *** 

12_11450 178.43 3 93.7 27.20 6.3 44.48 * *** 
11_10736 180.71 2 45.4 34 52.2 22.9 * *** 

11_10236 181.43 3 45.6 23.60 54.1 32.91 * *** 

12_30577 182.88 3 50.7 24.07 47.8 33.22 * *** 

11_20402 195.42 2 72.8 31.2 25.6 19.4 * *** 

12_10322 196.12 2 71.2 31.3 27.4 20.3 * *** 

  12_31123 196.85 3 72.0 31.28 27.4 20.34 * ns 
*, *** Significant SNP marker-trait associations at P≤0.05 and 0.001. 
† Analyses of individual years within each breeding program.   
‡ Analyses across all years for each breeding program. 
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Table 2.9. Candidate SNP markers identified on chromosome 5HL using breeding lines from 
eight US spring barley breeding programs from 2006-2009 (cont.). 

Breeding Program  Marker cM 

Separate analysis† Combined 
analysis‡ Years ------AA----- ------BB------  

    % Mean % Mean   
North Dakota State 
University (six-row) 12_31292 189.60 2 70.4 33.03 27.4 34.79 * ns 

12_10322 196.12 2 56.6 32.09 41.2 35.22 * ns 

12_30958 196.12 2 41.2 35.22 57.4 32.10 * ns 

12_31123 196.85 2 57.7 32.33 41.2 35.22 * ns 
          

University of Minnesota 12_11010 178.43 3 31.8 39.39 67.4 29.64 * ns 

11_10401 191.97 3 16.2 13.25 83.6 36.02 * *** 

12_30360 191.97 3 14.6 9.38 85.2 35.78 * ns 

12_31210 191.97 3 14.6 9.38 85.2 35.78 * ns 

12_10857 194.84 3 16.1 17.81 83.4 35.90 * *** 
          

Utah State University 12_10857 194.84 3 54.4 17.23 44.5 29.36 * *** 

12_10322 196.12 3 40.3 28.08 58.5 16.71 * *** 

12_31123 196.85 3 41.2 28.08 58.5 16.71 * *** 
          

Washington State University 11_10869 173.08 3 69.7 19.01 29.6 39.37 * ns 
12_31292 189.60 2 66.6 20.34 32.40 31.60 * *** 
11_10401 191.97 2 64.2 17.56 33.43 36.89 * *** 
11_20402 195.42 4 32.4 39.90 65.2 16.06 * *** 
12_10322 196.12 4 30.5 41.20 67.1 16.65 * *** 
12_30958 196.12 3 60.7 16.79 37.1 36.29 * *** 

  12_31123 196.85 3 32.6 40.82 66.6 16.53 * *** 
*, *** Significant SNP marker-trait associations at P≤0.05 and 0.001. 
† Analyses of individual years within each breeding program.   
‡ Analyses across all years for each breeding program. 
 

non-dormant seeds are not significantly different between genotype groups, and that is the reason 

why they were not identified as significant in the combined analysis.  For example, the presence 

of the BB genotype in markers 12_31292, 12_10322 and 12_31123 was associated with 37% of 

the lines having a mean of 35.0% non-dormant seeds, while for the AA genotype was associated 

with 62% of the lines having a mean of 32.5% non-dormant seeds. Based on these results we 

cannot suggest the use of these markers for MAS.  

Five candidate SNP markers were identified for the University of Minnesota breeding 

program. Only 11_10401 and 12_10857 were detected in the combined analysis across years. 
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Overall, the presence of the BB genotype in four out of five SNP loci (11_10401 to 12_10857) 

was associated with 84.3% more non-dormant seeds (��=36.0).  Three candidate SNP markers 

were identified for the Utah State University breeding program. All the three loci were identified 

in the combined analysis across years as well. The AA genotype at loci 12_10322 and 12_31123 

was associated with 41% more non-dormant seeds than the BB genotype. The BB genotype at 

the locus 12_10857 was associated with 45% more non-dormant seeds than the AA.  Finally, 

seven candidate SNP markers were identified for the Washington State University breeding 

program. Only marker 11_10869 was not detected in the combined analysis across years. The 

BB genotype at loci 11_10869, 12_31292, 11_10401 and 12_30958 was associated with 33% 

more non-dormant seeds (��=36.0).  The genotype AA was found to be associated with 32% 

more non-dormant seeds (��=40.6), than the BB genotype (��=16.4) for the SNP loci 11_20402, 

12_10322 and 12_31123. 

Table 2.10. Candidate SNP markers identified across the genome using breeding lines from eight 
US spring barley breeding programs from 2006-2009. 

Breeding program  Marker Chr cM 
Separate analysis† 

Years --------A-------- --------B-------- 

% Mean % Mean 
USDA-ARS-
Aberdeen, ID 12_31527 2H 151.37 2 25.1 35.07 74.1 32.56 * 

 12_11154 3H 138.83 2 53.6 30.86 46.1 35.57 * 

 11_20675 6H 50.07 2 5.2 49.94 94.6 31.52 * 

 11_20211 6H 123.84 2 74.2 33.88 24.5 30.40 * 

 11_11012 7H 147.47 3 40.6 33.27 56.6 31.09 * 
Bush Agricultural 
Resources LLC  11_20371 1H 18.05 2 73.4 40.84 26.6 33.50 * 

 11_21126 1H 73.94 3 60.8 42.82 38.9 33.61 * 

 11_10722 1H 125.27 2 59.5 41.59 40.5 36.81 * 

 11_10782 1H 131.89 3 24.4 35.08 75.0 40.85 * 

 11_11059 2H 7.14 2 54.1 41.95 45.9 35.66 * 

 11_11302 2H 52.47 2 37.0 37.59 63.0 42.01 * 

 12_10545 2H 69.13 2 22.4 33.44 77.6 40.82 * 

 11_21220 2H 120.02 3 34.3 34.25 65.7 41.57 * 
*, *** Significant SNP marker-trait associations at P≤0.05 and 0.001. 
† Analyses of individual years within each breeding program.   
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Table 2.10. Candidate SNP markers identified across the genome using breeding lines from eight 
US spring barley breeding programs from 2006-2009 (cont.). 

Breeding program  Marker Chr cM 
Separate analysis† 

Years --------A-------- --------B-------- 
Bush Agricultural 
Resources LLC 12_30992 4H 38.63 2 20.2 30.36 79.8 41.28 * 

 12_10371 4H 40.36 2 79.2 41.33 20.8 30.42 * 

 11_10793 4H 44.94 1 80.3 41.63 19.7 30.40 * 

 11_20670 4H 80.79 2 91.2 39.35 8.8 40.71 * 

 12_30239 4H 119.84 2 75.3 41.55 24.7 32.62 * 

 12_31055 unlinked 0.00 2 38.4 34.64 61.1 42.98 * 

 12_31054 unlinked 0.00 2 38.4 34.64 61.1 42.98 * 

 12_30351 unlinked 0.00 2 34.2 46.53 65.8 35.58 * 

Montana State 
University  12_30259 2H 54.95 2 50.4 35.83 49.0 34.24 * 

 11_10409 4H 3.74 2 13.2 33.35 86.2 34.13 * 

 11_11345 4H 5.55 2 72.8 34.75 26.1 28.56 * 

 12_30237 4H 61.04 2 69.3 33.07 30.7 33.51 * 
North Dakota State 
University (two-row) 12_30554 4H 96.59 2 27.2 23.48 70.2 30.04 * 

 11_20119 4H 99.28 2 28.8 24.95 68.3 30.01 * 

 12_30239 4H 119.84 2 38.3 22.49 59.6 31.75 * 

 12_10575 6H 45.44 2 71.8 27.67 26.6 30.90 * 

 11_20170 7H 161.54 2 77.6 29.20 19.5 25.95 * 

 12_31128 unlinked 0.00 2 80.5 28.20 19.0 33.44 * 
          

North Dakota State 
University (six-row) 

11_20371 1H 18.05 2 69.9 33.34 29.8 32.88 * 

12_10166 1H 69.53 2 82.6 34.73 16.1 24.38 * 
University of 
Minnesota 11_20943 2H 149.61 2 3.8 52.47 96.2 32.52 * 

 12_31239 unlinked 0.00 2 27.2 38.79 72.2 30.87 * 

Utah State University 12_10693 1H 128.14 2 13.9 44.03 86.1 21.90 * 

 11_10180 2H 21.61 2 97.4 23.23 2.6 16.61 * 

 12_30170 3H 80.89 3 27.9 23.47 71.9 23.87 * 

 12_30767 3H 162.15 3 32.1 21.98 67.0 22.55 * 

 11_10793 4H 44.94 2 89.2 23.06 8.7 28.03 * 

 12_20143 4H 76.03 2 50.6 26.63 48.6 16.88 * 

 11_20725 6H 105.60 2 24.9 29.43 74.6 21.39 * 

 12_30836 7H 4.89 2 78.6 21.88 21.4 31.31 * 

 12_30597 unlinked 0.00 2 91.3 23.08 8.7 24.56 * 
Washington State 
University 12_30953 3H 41.00 2 30.8 22.89 67.4 25.19 * 

 11_10868 6H 24.36 2 81.9 26.18 17.9 16.30 * 

 12_31239 unlinked 0.00 2  38.2 30.38 60.2 18.45 * 
*, *** Significant SNP marker-trait associations at P≤0.05 and 0.001. 
† Analyses of individual years within each breeding program.   
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Epistasis  

Epistatic interactions are likely to play an important role in the control of complex traits, 

in which combinations of certain alleles and the effects of their interactions may result in 

significant phenotypic differences (Romagosa et al., 1999; Bonnardeaux et al., 2008; Yu et al., 

2011).  Seed dormancy has been a difficult trait to dissect because of its polygenic nature and the 

effect of environmental and gene-gene interactions. Oberthur et al. (1995) identified two regions 

on chromosome 5HL, one near RFLP marker PRS 128 (80.61 cM; Close et al., 2009) that 

strongly and consistently affected seed dormancy in a doubled-haploid population from the cross 

Steptoe/Morex; and a second one that had a lesser effect on seed dormancy close to the telomere 

of chromosome 5HL near marker ABG390 (269.63 cM; Close et al., 2009).  Two other QTL 

regions were also identified in chromosome 7HL near the Amy2 locus (126.28 cM; Close et al., 

2009) and in chromosome 4HS near marker BCD402B (38.41 cM; Close et al., 2009).  However, 

these loci had a minor influence on seed dormancy and appeared only under specific 

growing/environmental conditions. The results from the study of Oberthur et al. (1995) suggest 

that the allelic state of the gene near locus PRS128 (5HL) is epistatic to the genes near the 

ABG390 (5HL) and Amy2 (7HL) loci; while the expression of the gene near marker BCD402B 

(4HS) appears to depend moderately upon the allelic state of the gene near ABG390 (5HL). 

Further studies from Han et al. (1996) using reciprocal crosses between doubled-haploid lines 

from the cross of Steptoe (dormant parent) and Morex (non-dormant parent) were used to verify 

interactions between loci present in chromosome 5HL that were previously detected by Oberthur 

et al. (1995). The two regions were named SD1 and SD2.  The SD1 corresponds to the QTL 

region at 80.61 cM near marker PRS128, while SD2 correspond to QTL region located at 269.63 

cM near marker ABG390.  Han et al. (1996) suggested that seed dormancy could be modulated 
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not only by gene-gene interactions among dormancy loci, but also might be the result from the 

interaction between nuclear genes and cytoplasmic factors. However, this last statement could 

not be verified in this study because of the composition of the mapping populations used. 

Several QTL with large and small effects have been identified across the length of the 

barley genome, specifically on chromosomes 2H, 3H, 4H, 5H, 6H, and 7H (Oberthur et al., 

1995; Han et al., 1996; Larson et al., 1996; Romagosa et al. 1999; Ullrich et al., 2008; 

Bonnardeaux et al., 2008; Lohwasser et al., 2013).  Many of these studies have confirmed the 

existence of epistatic interactions between two QTL (SD1 and SD2) located in chromosome 

5HL. Romagosa et al. (1999) stated that SD1, which is close to the aleurone gene in 5HL is “the 

most important QTL in determining the time of dormancy release” and that “SD1 is epistatic to 

SD2 (telomere of 5HL) at early after ripening”.  Bonnardeaux et al. (2008) confirmed these 

results and determined that the epistatic interactions between them had a negative effect on 

germination, reducing it by 7.6%.  Additional epistatic interactions were also documented to 

occur between lesser effect QTL located in chromosomes 2H, 3H, and 4H.  A QTL located in the 

long arm of chromosome 2H showed additive x additive interactions with a locus in the long arm 

of chromosome 3H.  Another interaction was found between a QTL located in the short arm of 

chromosome 4H and two QTL located in the long arm of the same chromosome (Bonnardeaux et 

al. 2008).   

All of the aforementioned studies suggest that epistatic interactions are an important 

genetic factor controlling seed dormancy maintenance and release, and therefore I wanted to test 

for gene-gene interactions using the Barley CAP materials.  The information gathered from 

significant markers identified in the analyses of four years combined within each breeding 

program was used to estimate epistatic interactions between SNP loci. The significance threshold 
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used to declare important epistatic interactions was P<0.001 (Table 2.11).  Intra and inter-

chromosomal loci interactions were detected across the whole barley genome (Figures 3-4; 

appendix Table A19) with marked differences being observed for each breeding program.   

From the analysis of the USDA-ARS, Aberdeen breeding program, I detected 21 

significant pairwise interactions between loci in chromosomes 2H, 3H, 5H, 6H, and the unlinked 

group of markers (Figure 2.3; Table 2.11).  The most significant epistatic interactions (-Log10 

(P)= 8.53) were detected between loci 11_20402 (195.40 cM) and 11_10901 (158.40 cM) 

located in the long arm of chromosome 5H, followed by the epistatic interactions between the 

loci 11_20402 (195.40 cM) in chromosome 5HL and 11_10325 (54.95 cM) in chromosome 2HS.  

Interactions between QTL regions in chromosome 5HL has been previously described by Han et 

al. (1996) and confirmed by Bonnardeaux et al. (2008).  The loci 11_20402 coincides with the 

position of the QTL SD2, which has been identified to have a major effect on seed dormancy and 

is partly epistatic to SD1, which is located in the same chromosome.  Other interactions between 

loci at chromosomes 2HL and 3HS, and between 3HS and 5HL were detected.  Similar 

interactions were reported by Bonnardeaux et al. (2008); however, the genetic positions used in 

this study differed from those reported by Bonnardeaux et al. (2008), which could be the result of 

the use of a high density map herein (~2,522 SNP markers, 908 non-cosegregating markers) 

compared to the map built by Bonnardeaux et al. (~128 SSRs). 

The results of the analysis for the Bush Agricultural Resources breeding program 

revealed five significant pairwise interactions between loci located in chromosomes 1H, 2H, 4H, 

7H, and the unlinked group of markers (Figure 2.3 and Table 2.11).  Significant interactions 

between the SNP loci 11_10756 (48.5 cM) in chromosome 4HS and 11_21079 (83.44 cM) 

located in chromosome coincide with the positions of the QTL SD4 and SD3, respectively.  
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Oberthur et al. (1995) identified SD3 and SD4 only under specific environments, with each of 

them explaining about 5% of the phenotypic variability in seed dormancy.   

The analyses of the Montana State University breeding program revealed the presence of 

12 significant pairwise epistatic interactions between loci located in chromosomes 3H, 5H, and 

the unlinked group of markers (Figure 2.4; Table 2.11).  Interestingly, significant interactions 

were detected between loci from the distal portion of chromosome 5HL and the unlinked group 

of markers.  Several studies have reported important epistatic effects between the two SD QTL 

regions in chromosome 5H (Oberthur et al., 1995; Han et al., 1996; Larson et al., 1996; 

Romagosa et al. 1999; Bonnardeaux et al. 2008), which suggests that some of the unlinked group 

of markers may be in chromosome 5H.  Additional support comes from the observation the same 

epistatic interactions occur in nearly two-thirds of the breeding programs (Table 2.11). 

Six and two significant epistatic interactions were identified for the NDSU two-rowed 

and six-rowed breeding programs, respectively (Figure 2.4; Table 2.11).  Pairwise interactions 

between loci located in chromosomes 3H, 4H, 5H, and the unlinked group of markers was 

detected for the NDSU two-rowed breeding program.  From these interactions, those occurring 

between loci in chromosomes 3HL and 5HS, and 3HL and 5HL have been previously described 

by Bonnardeaux et al. (2008).  The results for the NDSU six-rowed breeding program revealed 

the interaction between loci in chromosome 5HS with 5HL and between 5HS and the unlinked 

group of markers.   

Twenty-seven significant intra- and inter-chromosomal epistatic interactions were 

identified across the whole genome in the Utah State University breeding program (Figure 2.4; 

Table 2.11).  The most significant epistatic interaction was observed between loci 11_11436 

(155.85 cM) and 11_20755 (15.93cM) located in chromosomes 3HL and 7HS, respectively.  
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However, the most interesting interactions identified were those involving loci on chromosomes 

4HL and 7HL, and 5HL and 7HL (appendix Table A19), since they contain putative loci 

associated with dormancy (e.g. hormonal regulation and malting traits) and because dormancy 

QTL have been highlighted in these chromosomal regions in other studies (Oberthur et al., 1995; 

Han et al., 1996; Larson et al., 1996; Romagosa et al., 1999; Li et al., 2003; Li et al., 2004; 

Bonnardeaux et al., 2008; Lohwasser et al. 2013).   

Only one significant pairwise epistatic interaction was detected in the Washington State 

University breeding program.  This included SNP locus 12_31123 (196.9 cM) in chromosome 

5HL and 11_10150 (unlinked).  Both markers have been identified in the marker-trait association 

analysis and their relevance to seed dormancy was previously discussed. Finally, the results from 

the analysis of across all breeding programs and years revealed only three significant epistatic 

interactions between four loci located in the telomeric region of 5HL (Figure 2.3) and marker 

11_10150 (unlinked).   

Summary 

Overall the analysis of 2,965 barley CAP lines using genome-wide AM tools allowed me 

to identify two main QTL regions in the long arm of chromosome 5H that have been previously 

detected thorough biparental QTL mapping. The consistent identification of these QTL regions 

in different studies and the large variability explained in seed dormancy using different 

populations are indicative of their importance in the regulation and maintenance of the 

physiological and metabolic processes involved in seed dormancy.   

Several lesser effect QTL/marker-trait associations for seed dormancy were identified 

independently in some breeding programs, including those on chromosomes 2H, 4H, 6H and 7H 

using the combined analysis across years for each breeding program.   
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Table 2.11. Significant epistatic interactions for seed dormancy detected in the spring barley CAP lines from eight US spring barley 
breeding programs from 2006-2009.  

Epistatic 
Interaction 

USDA-ARS-
Aberdeen 

Bush Agricultural 
Resources LLC 

Montana State 
University 

NDSU 
two-rowed 

NDSU six-
rowed 

University of 
Minnesota 

Utah State 
University 

Washington State 
University 

1HS-2HS *** 
1HS-3HL *** 
1HS-5HL *** 
1HS-6HS *** 
1HL-2HS *** 
1HL-4HS *** 
1HL-6HS *** 
1HL-UG *** 
2HS-3HL *** 
2HS-5HL *** 
2HS-6HS *** 
2HS-6HL *** 
2HS-3HL 
2HS-7HS *** 
2HL-3HS *** 
2HL-3HL *** *** 
2HL-UG *** 

*** Significant SNP marker-trait associations at P≤0.001 identified from the analyses across all years for each breeding program.  
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Table 2.11. Significant epistatic interactions for seed dormancy detected in the spring barley CAP lines from the eight US spring barley 
breeding programs from 2006-2009 (cont.). 

Epistatic 
Interaction 

USDA-ARS-
Aberdeen 

Bush Agricultural 
Resources LLC 

Montana State 
University 

NDSU 
two-rowed 

NDSU six-
rowed 

University of 
Minnesota 

Utah State 
University 

Washington State 
University 

3HS-UG *** 
3HS-5HL *** *** 
3HL-5HS *** 
3HL-5HL *** *** 
3HL-UG *** 
4HL-UG *** 
4HL-6HS *** 
4HL-7HL *** 
5HS-UG *** *** 
5HL-UG *** *** *** *** *** 
5HL-7HL *** 
6HS-7HS *** 
6HL-5HL *** 
7HS-3HL *** 
7HL-4HS   ***             

*** Significant SNP marker-trait associations at P≤0.001 identified from the analyses across all years for each breeding program.  
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Figure 2.3. Gene-gene interactions network for all SNP loci associated with dormancy for the analysis of the whole panel (WBCAP, 
red arrows), USDA-ARS-Aberdeen, ID, four years (AB, green dotted lines), Bush Ag. Resources four years (BA, orange dotted lines), 
Washington (WA, gray dotted line).  Chromosome positions for the significant SNP markers were based on the Infinium Assay Bar
iSelect 9K SNPchip. Different lines and colors represent interactions for each of the analysis previously described.

gene interactions network for all SNP loci associated with dormancy for the analysis of the whole panel (WBCAP, 
four years (AB, green dotted lines), Bush Ag. Resources four years (BA, orange dotted lines), 

Washington (WA, gray dotted line).  Chromosome positions for the significant SNP markers were based on the Infinium Assay Bar
SNPchip. Different lines and colors represent interactions for each of the analysis previously described.

 
gene interactions network for all SNP loci associated with dormancy for the analysis of the whole panel (WBCAP, 

four years (AB, green dotted lines), Bush Ag. Resources four years (BA, orange dotted lines), 
Washington (WA, gray dotted line).  Chromosome positions for the significant SNP markers were based on the Infinium Assay Barley 

SNPchip. Different lines and colors represent interactions for each of the analysis previously described.
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Figure 2.4. Gene-gene interactions network for all SNP loci associated with dormancy for the analysis of Montana four years (MT, red 
scarlet dotted lines); North Dakota 2-R four years (ND2R, blue dotted lines); North Dakota 6
Utah four years (UT, brown dotted lines).  Chromosome positions for the significant SNP markers were based on the Infinium A
Barley iSelect 9K SNPchip. Different lines and colors represent interactions for each of the analysis previously described.

 

gene interactions network for all SNP loci associated with dormancy for the analysis of Montana four years (MT, red 
R four years (ND2R, blue dotted lines); North Dakota 6-R four years (ND6R, aqua dotted line), 

Utah four years (UT, brown dotted lines).  Chromosome positions for the significant SNP markers were based on the Infinium A
Barley iSelect 9K SNPchip. Different lines and colors represent interactions for each of the analysis previously described.

 
gene interactions network for all SNP loci associated with dormancy for the analysis of Montana four years (MT, red 

R four years (ND6R, aqua dotted line), 
Utah four years (UT, brown dotted lines).  Chromosome positions for the significant SNP markers were based on the Infinium Assay 
Barley iSelect 9K SNPchip. Different lines and colors represent interactions for each of the analysis previously described.
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Putative functions are described and some pairwise epistatic interactions were discussed 

(appendices Table A20-A27). Most of these QTL regions have been documented before giving 

credence to the results obtained in the present study (Oberthur et al., 1995; Han et al., 1996; 

Larson et al., 1996; Romagosa et al. 1999; Ullrich et al., 2008; Bonnardeaux et al., 2008; 

Lohwasser et al., 2013).  Even though a QTL relative to SD1 (76.6cM-83.2 cM) was not detected 

across years within any breeding program, the QTL QDrm.BCAP-5H.2, which is effectively 

SD2 or QDrm.StMo-5H.2 (Figure 2.5) in the agronomic QTL consensus map from Rostoks et al. 

(2005), was consistently identified across years and breeding programs. 

 

Figure 2.5.  Position of the QDrm.BCAP-5H.2 (SD2 or QDrm.StMo-5H.2) in the Barley OPA 
Consensus map (Close et al., 2009), agronomic QTL consensus map, and the Steptoe/Morex 
SNP map (Rostoks et al., 2005). 
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This QTL was also found to be most important one in the study by Bonnardeaux et al. 

(2008).  My results do not support the hypothesis of Romagosa et al. (1999) about that SD1 is the 

most important QTL in seed dormancy release based on the results for the Steptoe/Morex 

population; however, I cannot disproved them either.  It seems plausible that epistatic 

interactions between these two QTL on 5HL, and between these two and other genomic regions 

are responsible for most of the dormancy release responses occurring at early-after-ripening. 

Chromosome 5HL also harbors other QTL implicated in the regulation of several malting quality 

and agronomic traits including: diastatic power, free α-amino acid, α-amylase, heading date and 

test weight (Mather et al., 1997; Marquez-Cedillo et al., 2001; Panozzo et al., 2007), which 

complicates the ability of breeding for seed dormancy and PHS tolerance since changes in 

dormancy could cause changes in malt quality (Li et al. 2003; Bonnardeaux et al., 2008).  My 

results highlight the importance of two major QTL in chromosome 5HL near the telomere 

involved in the regulation of seed dormancy, as well as other minor ones located in 

chromosomes 2H, 4H, 6H and 7H.  The observation of numerous epistatic interactions between 

loci in chromosome 5HL and other chromosomal regions is indicative of its importance for the 

control of this trait. Additionally, the observation of positive correlations between α-amylase, 

wort protein, and Kolbach Index with seed dormancy in some of the years and two breeding 

programs (e.g. University of Minnesota and Washington State University) suggest that further 

studies should include the validation of the SNP markers identified herein, and the assessment of 

correlations between malting/agronomic traits and seed dormancy in order to determine if the 

associations are due to linkage or pleiotropy (Li et al., 2003; Lohwasser et al., 2013).  Finally, it 

has yet to be determined if the implementation of a MAS breeding strategy combining the 

selection of the appropriate dormancy levels with the desired malt quality attributes would highly 
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benefit the selection of undesirable genotypes before submitting samples to malt quality 

assessments that are costly, labor intensive and time consuming. 
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CHAPTER III. UNRAVELING THE GENETICS OF SEED DORMANCY IN SIX-

ROWED BARLEY USING A DOUBLE HAPLOID POPULATION DERIVED FROM A 

NARROW CROSS 

Abstract 

The problem imposed by differential expression of dormancy levels on barley (Hordeum 

vulgare L.) seed is a key factor affecting malt quality.  Dormant genotypes need a prolonged 

storage time before malting, which increases the probability of seed decay if problems with 

storage conditions appear.  In contrast, low dormant genotypes are more prone to pre-harvest 

sprouting (PHS), which affects seed viability and makes grains worthless for malting.  An F1-

derived doubled-haploid (DH) population with 193 individuals was developed by intercrossing 

two closely related six-rowed malting cultivars, Stander and Robust, which fit the requirements 

and preferences of the two major brewing companies in the U.S., Anheuser-Bush InBev (ABI) 

and MillerCoors Brewing Company (MillerCoors).  The population was used to determine the 

genetics of seed dormancy in a narrow genetic germplasm base.  The progeny and parents of this 

population were grown in three greenhouse experiments using a simple partial lattice design.  

Spikes were harvested at physiological maturity and their grains were used to determine the 

germination percentage after 72 h.  Eighty-eight SNP markers and 191 individuals were used to 

build a linkage map covering 206.7 cM, which represents six of the seven barley chromosomes, 

except chromosome 7H. A single QTL was detected towards the telomere of chromosome 5H 

that accounts for 69.2% (LOD=48.87) of the phenotypic variation observed for seed dormancy, 

where the allele coming from ‘Stander’ increased the overall phenotypic mean 17%. 
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Introduction 

Barley (Hordeum vulgare L.) has been one of the most important crops since ancient 

times based on archeological evidence and the study of genes involved in the domestication 

process (Pourkheirandish and Komatsuda, 2007).  Barley’s high adaptation to a wide range of 

environments, including the equatorial to boreal zones, has allowed its dissemination and 

expansion around the globe begining 8,000 years ago (von Bothmer et al., 2003; Pedraza-Garcia, 

2011).  The introduction of barley cultivars into the new world most likely occurred during the 

second voyage of Christopher Columbus; however, the first documented evidence about barley 

crops being successfully grown in the U.S. territories of Martha’s Vineyard and Virginia date 

back to 1630 (Wiebe, 1979).  Due to the unbearable climate of the eastern seaboard, barley 

production was limited until settlements penetrated into western New York.  The crop’s 

popularity for brewing purposes caused its production to spread through all the colonies and by 

mid-1800 most growers incorporated the use of six-rowed barley cultivars. By 1873 the 

University of Wisconsin introduced the cultivar Manchuria, which became very popular amongst 

farmers.  Selected Manchuria seeds were distributed to Wisconsin farmers and after several 

cycles of selection seed was send to state farms in Minnesota and North Dakota, starting the 

wide-spread use of Manchuria barley in the Midwest (Wiebe 1979; Weaver, 1943). 

U.S. barley production from 2003 to 2012 has averaged about 4.8 million tones per year, 

with an average annual value of $785 million as a raw commodity (USDA\NASS 

<http://www.nass.usda.gov/> accessed: 2 May 2013). Barley domestic use is mostly devoted to 

the production of alcoholic beverages including beer (53.5%) and whiskey (1.7%), and is used in 

lesser amount for livestock feed and food purposes (~41.6%). The three states producing the 

most barley in the country are North Dakota (68.1 m bu) followed by Idaho (48.7 m bu) and 
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Montana (37.5 m bu) (Source: USDA\NASS http://quickstats.nass.usda.gov/, verified 10 June 

2013 and cited by the American Malting Barley Association: ‘Economic Significance of Barley’ 

<http://ambainc.org/media/AMBA_PDFs/NBIC/2013_Economics.pdf> accessed: May 30th, 

2013).  

Since barley is the raw material required for the production of beer, the selection of 

parents with optimal quality traits is critical for the development of new cultivars that follow 

industry quality guidelines (Horsley et al., 1995; Rasmusson and Phillips, 1997).  Most of these 

parents are closely related elite cultivars bred for low seed dormancy and adaptation to specific 

production areas, which has the concomitant effect of reducing the genetic diversity within the 

crop (Horsley and Harvey, 2010; Mikel et al., 2008).  Additionally, the malt quality 

specifications from the two major brewing companies in the U.S., ABI  and MillerCoors has 

been quite different since the year 2000 (Lewis, 2012).  MillerCoors use a blend of six and two-

rowed cultivars that have low dormancy (>98% non-dormant seeds) and moderate protein 

modification/enzymatic levels (Kay, 2005). On the other hand, ABI prefers the use of barley 

cultivars that have low dormancy as well, but that exhibit higher levels of protein modification, 

enzymatic activity, and higher soluble protein levels (Hertrich, 2005).  These factors, coupled 

with premiums paid to growers for producing the same malting cultivars each year, has 

augmented the incidence of PHS and diseases in the Upper Midwest (Rasmusson and Phillips, 

1997; Schwarz el al., 2004).  

Among modern cereals, barley has undergone strong selection by plant breeders against 

extended seed dormancy in order to promote uniform and quick germination during malting 

(Oberthur, 1995).  In malting, the ultimate goal is to maximize endosperm modification of the 

kernel by changing its friability and increasing the enzymatic activity.  However, a problem 
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imposed by differential expression of seed dormancy leads to reductions in grain and malt 

quality, affecting the production of fermentable sugars that are needed for the production of beer. 

Seed dormancy is an adaptive trait characterized by the inability of viable seeds to 

germinate under favorable conditions (Foley, 2001) and is a main factor contributing to PHS 

tolerance (Mares, 1984; Rodríguez et al., 2001; Chao et al., 2010).  It has been well documented 

that there is a large amount of genetic variation underlying both traits in common wheat (T. 

aestivum L.), rice (Oryza sativa) and barley, where expression is strongly controlled by 

environmental factors and their genotype x environment interactions (Buraas and Skinnes, 1984; 

Gu et al., 2005; Lin et al., 2009; Chao et al., 2010).  

Traditional genetic studies of seed dormancy in barley have relied on the use of 

biparental mapping in which at least one parent is unadapted.  While this strategy is effective in 

identifying quantitative trait loci (QTL) controlling traits of interest, it may not be as effective in 

identifying QTL conferring differences in one’s targeted germplasm.  Burass and Skinnes (1984) 

suggested that several recessive genes, with no cytoplasmic effects, control seed dormancy in 

barley; however, neither genes nor gene locations were identified in the study.  Additionally, no 

associations with other agronomic traits and dormancy were identified (Burass and Skinnes, 

1984).  In later studies, up to 26 QTL were identified for seed dormancy across the entire barley 

genome, with a large effect QTL reported in chromosome 5H proximal to the centromere (5HC) 

and in the telomeric region in the long arm (5HL; Oberture et al., 1995; Lin et al., 2009; Ullrich 

et al., 1993; Li et al., 2004).   

For the purpose of this study, I used an F1-derived doubled-haploid (DH) population 

derived from the cross between two closely related spring six-rowed malting cultivars (Stander 

and Robust) for biparental mapping for seed dormancy .  Both parents differ greatly in 
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agronomic, malting quality, and seed dormancy performance, but also exhibit low levels of 

genetic variability, which is the result of the selection and intermating of a small number of 

founder lines belonging to an elite gene pool.  Robust and Stander were developed by the 

University of Minnesota and released by the Minnesota Agricultural Experimental Station in 

1983 and 1993, respectively.  The cross ‘Manker’ x ‘Morex’ gave origin to ‘Robust’, which is 

present in the pedigree of ‘Stander’ four times 

[Robust*2/3/‘Cree’/‘Bonanza’//‘Manker’/4/‘Robust’/‘Bumper’] (Rasmusson et al., 1993; 

Rasmusson and Phillips, 1997; Pedraza-Garcia, 2011; Lewis, 2011).  The close kinship of both 

cultivars results in most of the shared genomic regions being monomorphic, which represents a 

challenge for the identification of functional polymorphisms associated with traits of interest 

(Lin, 2007; Pedraza-Garcia, 2011).   

Previous studies conducted by Lin (2007) and Pedraza-Garcia (2011) using the Robust x 

Stander DH population found that less than 10% of the SSR and DArT markers identified 

polymorphism between ‘Stander’ and ‘Robust’, which suggests the presence of few genomic 

regions that account for most of the phenotypic differences between the two parents.  To 

overcome some of the limitations associated with the identification of functional polymorphisms 

in this genetically narrowed cross, I utilized a 9,000-SNP iSelect Illumina platform to genotype 

the DH population.  This chip was developed by Martin Ganal (IPK, Gaterslaben, Germany) and 

Robbie Waugh (James Hutton Institute, Dundee, Scotland) in a collaborative effort to genotype 

all barley present in the USDA-ARS National Small Grain Collection, and to make the data 

available for the barley scientific community (Triticeae Coordinated Agricultural Project 

http://www.triticeaecap.org accessed: January 11, 2012).  The premise of mapping in a very 

narrow population is that even though are very few regions with polymorphisms, those areas 
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containing them are more likely to be in regions harboring genes important for Midwest U.S. six-

rowed malting barley. 

The objective of this study was to determine the location and effect of QTL controlling 

seed dormancy in the genetically narrow F1-derived DH population from the cross Stander x 

Robust.  Information gathered in this study will provide clues on the genetics of seed dormancy 

in barley with special attention on Midwest US six-rowed barley germplasm, which has a narrow 

genetic base. 

Materials and methods 

Plant materials and genotyping approach 

One-hundred and ninety-six DH lines from the cross ‘Stander x Robust’ were generated 

by The New Zealand Institute for Plant and Food Research Limited (Lincoln, New Zealand) 

using the Hordeum bulbosum (bulbous barley grass) method (Houben et al., 2011).  A subset of 

54 lines from this population was used in previous studies to identify QTL controlling malting 

quality and agronomic traits (Lin, 2009; Pedraza-Garcia, 2011; Lewis, 2012).  An additional set 

of 142 DH lines was received from our collaborators in New Zealand and increased in Fall 2010 

greenhouse for the purpose of this study.  From the initial population, one line was lost during 

the process of seed increase and two others were discarded due to heterozygosity, which was 

unexpected.  A total of 193 lines, two parents and one check (Tradition) were assigned to 

experimental units using a simple 14 x 14 partial lattice. The experiment was repeated over three 

consecutive greenhouse seasons.  Randomizations were performed using the software 

AGROBASE Generation II v. 18.18.2 (Mulitze, 1990; 2010 Agronomix Software, Inc.).  

Experimental units were 15.24-cm-diameter clay pots (Ceramo, Jackson, Missouri) containing a 

potting media of Sunshine LC 8 soil mix (Sun Gro Horticulture, Canada) and each pot contained 
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three seeds from a single entry. All experiments were conducted under greenhouse conditions at 

a photoperiod of 16 h day/8 h night and temperatures of 20 °C day/18 °C night, respectively.  

Granular fertilizer Osmocote Plus (Scotts, Maryville, OH) was applied at the two-leaf stage, 

followed by weekly applications of a solution of 20-20-20 Jack’s Peat Lite (JR Peters, Inc, 

Allentown, PA) at recommended rate.  Spikes were harvested at physiological maturity (PM), 

described as the point at which 95 % maximum kernel dry weight is attained.  Visual indicators 

of PM included loss of green color from the glumes and the peduncle (Copeland and Crookston, 

1985).  Harvested spikes were placed in Ziploc-type plastic bags and stored at -20°C until 

germination test (GT) were performed.  

Additionally, the entire biparental population, Robust and Stander were sown in fall 2011 

greenhouse to obtain leaf tissue samples for DNA extraction.  One seed per genotype was sown 

in 21-cm-tall Ray Leach UV stabilized cone-tainers (Stuewe & Sons, Inc., Tangent, OR) filled 

with a potting media of Sunshine LC 8 soil mix (Sun Gro Horticulture, Canada) and placed in 

plastic trays that held up to 98 cone-tainers.  The methods for collection of leaf tissue and DNA 

extraction are the same as those described by Bodo Slotta et al. (2008) in the laboratory of Dr. 

Shiaoman Chao at USDA-ARS in Fargo, ND.  The population was genotyped utilizing a 

customized 9,000-Infinium iSelect HD Custum BeadChip panel and the Infinium HD assay 

protocol developed by Illumina, Inc. (San Diego, CA).  This assay interrogates the genome 

through a two-step process that includes the hybridization of 50-mer probes to the loci of 

interest, followed by an enzymatic single base extension reaction that incorporates a fluorescent 

labeled (i.e., Cy5= red or Cy3=green) nucleotide.  The Illumina iScan imaging system was used 

to detect specific alleles at a locus based on signal intensity and color, which is the basis for 

genotype calling.  A cutoff threshold ‘GenCall’ of 0.15, plus the use of a clustering algorithm 



 

97 

and normalization of the data was possible though the implementation of the software 

GenomeStudio™ v. 1.0 (Illumina, Inc., San Diego, CA).  Heterozygous genotypes were rare 

(1.04%) as expected from the process of production of DH lines by the H. bulbosum method.  

These lines were discarded from the analysis of data.  

Germination test and statistical analysis 

The percent of non-dormant seeds was determined using the protocol Barley 3-C of the 

American Society of Brewing Chemist (1999), with some modifications.  The method consists 

germinating 100 kernels uniformly spread over two sheets of 90 mm Whatman® filter paper in 

51 mm Petri dishes previously saturated with 4 mL of distilled water.  Petri dishes were sealed 

with Parafilm M (Pechiney Plastic Packaging Company; Chicago IL) to maintain stable moisture 

conditions. Samples were incubated in the dark for 72 h at 20 ± 2˚C and relative humidity of 

98% in a growth chamber (Percival Scientific; Perry, IA).  The percent of non-dormant seeds 

was determined at 72 h as described by Lin et al. (2009).  Data gathered from each test year were 

analyzed separately using the MIXED procedure of SAS v. 9.3 (SAS Institute, Inc. 2011), where 

block was considered a random effect and genotypes were a fixed effect.  

Using SAS v. 9.3 (SAS Institute, Inc. 2011), germination data from each greenhouse run 

were considered an environment and they were analyzed separately using the PROC LATTICE 

statement to calculate the individual error mean squares (EMS) and the intrablock EMS.  

Homogeneity of variances among experiments was determined by the ratio of the largest to the 

smallest intrablock EMS, or in other words, if the EMS did not differ by more than a factor of 10 

then variances were considered homogeneous.  Based on this premise a combined ANOVA 

across experiments was done using the MIXED procedure, with experiments deemed random 

and genotypes fixed.  F-tests were considered significant at P<0.05.   
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Heritability estimates for the combined environments were calculated for seed dormancy 

from the components of variance using the following equation: 
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were ��
2=genetic component of variance, �� 

� =variance due to genotype*environment 

interaction, ���=experimental error variance, �=number of environments, and 	=number of 

replicates.  The heritability of seed dormancy and its associated standard error were estimated 

using the method described by Holland et al. (2003) for the analysis of random lines in an 

incomplete block design, in this case a simple 14 x 14 lattice design conducted at three 

environments.  Both parental lines and check (Tradition) were removed from the data set to 

assess the variance and covariance components, as well as the heritability on a plant and family 

basis, respectively.  The variance and covariance parameters were calculated using the 

COVTEST and ASYCOV options of the MIXED procedure (SAS Institute, Inc. 2011), with 

environments and genotypes deemed random.  The heritability estimates were calculated using 

the multivariate restricted maximum likelihood (REML) method implemented using PROC 

MIXED (SAS Institute, Inc. 2011) and as described by Holland et al. (2003) and Holland (2006).  

Approximate standard errors for heritability were estimated using the delta method (Lynch and 

Walsh, 1998).  Matrix computations to estimate the standard errors were calculated using PROC 

IML (SAS Institute, Inc. 2011). 

Genotypic and phenotypic coefficients of variation were calculated according to Singh 

and Chaudhary (1977) as follow: 
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where, GCV=genotypic coefficient of variation, PCV=phenotypic coefficient of variation, 

σ
2
G=genotypic variance, σ2

P=phenotypic variance, and �� = general mean. 

Genetic data analysis and mapping approach  

The 9,000-Infinium iSelect HD Custum BeadChip was used for genotyping the lines and 

parents in the study.  Cosegregating markers were manually removed and the number of linkage 

groups was determined using the software MapDisto v. 1.7.5 (Lorieux 2012; 

http://mapdisto.free.fr) with a minimal LOD score of 3.0 and maximum recombination of 0.30.  

The order of the markers in each linkage group was determined using the Order, Ripple, and 

Check inversions commands.  The Seriation II algorithm and SARF (Sum of Adjacent 

Recombination Frequencies) criteria were chosen to determine the best linkage order of each 

sequence (Buetow and Chakravarti, 1987; Lorieux 2012).  Additionally, the stability and 

robustness of each sequence was validated with 1,000 bootstrappings, and the Kosambi function 

was used to convert recombination fractions into centiMorgans (cM) (Kosambi 1944).  

Segregation ratios of individual markers were assessed statistically at an individual marker locus 

for deviations from the expected Mendelian ratio (1:1) by a X2-test.  If the marker deviated from 

the expected 1:1 ratio, then the equation proposed by Zhang et al. (2010) was used to explain the 

effect of marker distortion over the estimation of QTL detection power as follow: 
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were k denotes the ratio of the variance under distortion to the variance of no distortion, p and 1-

p are the frequencies of two QTL types, and f and 1-f are the frequencies of two genotypes that 

segregate according to the Mendelian ration 1:1.  So, in the case of distortion, k will be smaller 

than 1, and therefore the QTL detection power will be reduced. 

QTL analysis 

QTL analyses were performed using the phenotypic adjusted means across all 

experiments utilizing the software QGene v. 4.3.10 (Nelson, 1997). The population distribution 

for seed dormancy was plotted and tested for normality using the Kolmogorov-Smirnov test. 

Data were considered normally distributed if P value >0.05.  Single Marker Regression (SMA) 

Analysis was initially done to identify chromosomal regions associated with dormancy using the 

statistics –log p(F), R2 and additive effect.  Markers were considered significantly associated at a 

P value < 0.001.  Next, simple interval mapping (SIM) was done using the step-wise interval 

analysis every 2 cM, and permutation tests with 1,000 iterations were done to determine the 

LOD scores for the α0.01 and α0.05 experiment-wide errors needed to declare significant marker-

trait associations.  Composite interval mapping (CIM) was conducted as well using the default 

parameters for cofactor selection suggested in QGene v. 4.3.10 (Nelson, 1997), in which markers 

outside an interval containing a QTL are selected as cofactors.  This method allowed the 

positioning and estimation of the magnitude of the QTL.  Again, to determine the LOD score for 

the experiment-wide error rate, a permutation test with 10,000 iterations was used. Graphic 

representation of the linkage groups and QTL was obtained using the software MapChart v 2.2 

(Voorrips, 2002) and map locations for the identified QTL were estimated based on the 

published consensus maps by Close et al., (2009) 
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Results and discussion 

Phenotypic data 

Robust, the dormant parent, and Stander, the non-dormant, parent behaved as expected 

for seed dormancy.  Robust had germination percentages ranging from 0 to 31%, while Stander 

had relatively higher levels of germination ranging from 32 to 74%.  The phenotypic distribution 

for the mapping population was continuous and showed a bimodal distribution with population 

means intermediate to both parents, and ranges extending beyond the parents.  The minimum 

value observed for germination was 4.1% and the maximum 74.5% (Figure 3.1).  

 

 

 
Figure 3.1. Phenotypic distribution of the Stander/Robust DH population means estimated based 
on the LSD (P=0.05) for percent of non-dormant seeds across environments. 

 

Approximately 17% of the progeny behaved similar to Robust, while 30% behaved 

similar to Stander.  Our results corroborate those of Lin (2007) who conducted a similar study 

with a smaller number of lines from the Robust x Stander DH population. Lin (2007) reported 

mean germination values across environments for Robust, Stander and the DH population to be 

23.3%, 65%, and 43.7%, which are similar to the values reported herein.  Mean germination 
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percentage values for the parents and progeny are presented for the individual analysis of 

environments, as well as the means across experiments (Table 3.1).  The relative efficiency of 

the three greenhouse experiments analyzed, as a partial simple Lattice design compared to 

RCBD was 107.13%, 121.70% and 100.86%, corresponding to the 2011 spring greenhouse 

(11sgh), 2011 fall greenhouse (11fgh), and 2012 spring greenhouse (12sgh) seasons, 

respectively.  Intrablock error mean squares from the individual environment analysis of 

variance (ANOVAs) were homogeneous among experiments, as determined by the ratio of the 

largest to the smallest intrablock EMS (Table 3.2).  Thus, a combined analysis across 

environments was performed based on the premise of homogeneity of variances (Table 3.1).   

Table 3.1. Mean percent non-dormant seeds measured at 72 h on caryopses harvested at 
physiological maturity from parents and the Stander/Robust DH progeny, based on the 
individual and combined analysis of the three experiments. 

Season 
Robust Stander   Population 

--------------Mean------------       Mean    LSD SD Range 

11sgh‡ 5.2 a† 58.2b 
 

31.6 32.5 22.4 0-76.6 

11fgh‡ 13.2a 61.2b 
 

46.7 30.9 22.5 1.1-91.3 

12sgh‡ 30.5a 48.5a 
 

42.2 31.8 21.1 2.5-87.5 

Combined 15.2a 54.3b 
 

40.1 17.8 20.0 1.1-75.0 

† The 2011 spring greenhouse (11sgh), 2011 fall greenhouse (11fgh), 2012 spring greenhouse 
(12sgh).  
‡ Means for parents between columns followed by the same letter are not significantly different 
(P≤ 0.05) as determined by an F-test. 

 

Table 3.2. Results from the analysis of variance for seed dormancy coming from three greenhouse 
season experiments.  

Source of Variation 
DF 

11sgh 11fgh 12sgh 

-----------------------MS--------------------- 

Replications 1 
 

1657 
 

16316 
 

54757 

Blocks(rep) (Adj.) 26 
 

530 
 

785 
 

337 

Genotypes (Unadj.) 195 
 

1039 
 

1104 
 

889 

Intra Block Error 169 
 

253 
 

224 
 

260 

Total 391 
 

667 
 

742 
 

718 

† 11sgh=the 2011 spring greenhouse, 11fgh=2011 fall greenhouse, and 12sgh=2012 spring 
greenhouse.  
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The combined analysis revealed a non-significant genotype-by-environment interaction, 

and a highly significant (P<0.01) genotype main effect.  Most of the variance observed for seed 

dormancy was associated with the genotype main effect (47%), and the variance associated with 

the environment main effect was negligible as expected for the given greenhouse conditions 

(Table 3.4).  The estimates of heritability based on individual environment analyses were high 

and consistent, ranging from 0.71±0.04 to 0.77±0.03, while the estimate of heritability for the 

combined analysis was comparatively higher at 0.90±0.01 (Table 3.4). 

Table 3.3. Results from the combined analysis of seed dormancy from three greenhouse seasons. 
Sources of Variation Degrees of freedom MS 
Environment 2 22585 
Rep(environment) 3 24243 
Block(environment*rep) 78 550**  
Genotype 195 2129**  
Genotype*environment 390 225 
Error 507 246 

*, **Significant at P≤0.05 and P≤0.01, respectively. 
 

Table 3.4. Estimate of variance components, heritability plus the standard error, and genotypic 
(GCV) and phenotypic coefficients of variation (PCV) for seed dormancy. 

Covariance parameter 11sgh 11fgh 12sgh Combined 
Environment - - - 0 
Rep(environment) 2.72 76.05 267.95 115.37 
Block(rep*environment) 51.31 87.16 24.34 50.61 
Genotype 358.27 380.61 301.78 358.57 
Genotypes*environment - - - 0 
Error 251.24 226.62 252.51 234.50 
Heritability 0.74±0.04 0.77±0.03 0.71±0.04 0.9±0.01 
CV 50.10 32.23 37.65 39.14 
GCV 59.84 41.77 41.15 47.27 
PCV 69.50 47.54 49.02 49.77 

 

The estimates for the phenotypic and genotypic coefficients of variation for the individual 

analyses of environments were very close to each other (Table 3.4), ranging from 41.2% to 
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59.8% for the GCV and 47.5% to 69.5% for the PCV.  The GCV and PCV values were higher in 

the 2011 spring greenhouse compared to the other two seasons.  The estimates of GCV and PCV 

based on the combined analysis were very close as well; suggesting that phenotypic selection 

based on the germination test is reliable for selection of genotypes with desired levels of seed 

dormancy.  

Creation of a genetic linkage map and QTL analysis 

From a total of 6,715 SNP markers used to screen the mapping population, only 6.6% 

(445 SNPs) were found to identify polymorphisms between Stander and Robust.  The lack of 

polymorphism detected between them can be explained as the result of their close kinship, which 

results in most shared genomic regions being monomorphic and only few being responsible for 

most of the phenotypic differences observed between them (Pedraza-Garcia, 2011).  The few 

polymorphic regions identified may harbor good candidate genes for MAS for seed dormancy 

and other important quality and agronomic traits. 

After the removal of cosegregating markers, a total of 88 SNPs were used to build the 

final map (Figure 3.2). Six out of seven barley chromosomes are represented herein, with three 

linkage groups representing chromosome 5H (5H-1, 5H-2, and 5H-3).  A representation for 

chromosome 7H was not found in either this study or in Pedraza-García (2011).  This could be 

the result of most chromatin regions in chromosome 7H being identical between Stander and 

Robust.  As reported by Pedraza-García (2011), there are linkage gaps in chromosome 5H, which 

are represented herein by two small linkage groups of 4.1 and 5.2 cM and a larger one of 80.6 

cM distance (Figure 3.2).  Linkage group 5H-1 corresponds to a small section of the long arm of 

chromosome 5H between the 159cM to 163.29 cM region on the barley consensus map by Close 

et al. (2009).  The linkage group 5H-2 contains markers near the telomere of the short arm of 5H 
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corresponding to the region 5.38 cM to 10.58 cM (Close et al., 2009).  Finally, linkage group 

5H-3 corresponds to the region near the telomere on chromosome 5HL.  Some of the SNP 

markers mapping within this linkage group have not been mapped before (e.g. 

SCRI_RS_141226), but most of the BOPA SNPs had (Close et al., 2009; Muñoz-Amatriaín et al. 

(2011), which allowed me to determine that 5H-3 comprise a region between distances173 cM 

(1_0869; Close et al., 2009) to 194 cM (12_20775; Close et al., 2009) and extending beyond that 

in both directions (Figure 3.2).  Again, a hypothesis that explains why we obtained several 

linkage groups representing chromosome 5H is the existence of complete homology in certain 

chromosomal regions between both parents spanned by few polymorphic regions.  It is not 

surprising that much of their genome would be fixed since they were produced by intermating a 

small number of founder lines belonging to an elite gene pool followed by selection of parents 

that follow strict malt quality guidelines.  

Interestingly, segregation distortion was observed on a group of 10 SNP makers clustered 

in chromosome 5H-3 and on those markers belonging to chromosomes 1H and 2H, respectively.  

We detected that segregation distortion for those SNP markers located on 5H-3 was toward the 

maternal allele (Stander), while the distortion on chromosomes1H and 2H was towards the 

paternal allele (Robust) (appendix Table A28).  Pedraza-Garcia, (2011) documented the 

existence of deviations from the expected 1:1 ration for about 12 SNP markers that detected 

polymorphism between Stander and Robust. 

This phenomenon of segregation distortion has been reported for other DH populations 

including Morex/’Barke’, ‘Oregon Wolfe’, Steptoe/Morex and ‘Haruna Nijo’/OHU602.  Most of 

the segregation distortion was observed in the Morex/Barke population towards the pericentric 

regions of chromosomes 1H, 2H, 5H, 7H and the long arm of 7H (Close et al., 2009).  Sayed et 
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al. (2002) studied this phenomenon comparing 71 DH lines from the cross ‘Tadmor’/’WI2291’ 

with the segregation of 92 F2 lines coming from the same cross by using simple sequence repeat 

(SSR) markers.  Their results showed that loci deviated 44% more in the DH than in the F2 

population (16%).  Even though, the production of DH lines allows reaching homozygosity 

faster than using other conventional breeding methods, including pedigree and backcrossing, it 

seems to be less effective than recombinant inbred lines (RILs) for mapping purposes (R. 

Brueggemann, personnel communication, 2013).   

Segregation distortion has been documented to occur in DH populations produced using 

the anther culture and Hordeum bulbosum (H.b.) methods.  While the anther culture method 

targets male gametes, the H.b. method targets female gametes.  The former uses the F1 as the 

male parent, from which microspores are taken for the regeneration of entire barley plants by in 

vitro tissue culture; while the latter involves the interspecific hybridization of F1 individuals 

(used as females) with H. bulbosum, followed by embryo rescue, regeneration, uniparental 

chromosome elimination (H. bulbosum), and chromosome doubling of the H. vulgare chromatin 

by colchicine (Cistué et al. 2011; Houben et al. 2011). 

Cistué et al. (2011) reported that DH populations derived by male gametes having 

segregation distortion is the result of differential performance of the parents in in vitro tissue 

culture, while with the H.b. method segregation distortion is more likely the result of allelic 

variation.  The comparative mapping study by Cistué et al. (2011) using two subpopulations of 

the ‘Oregon Wolfe’ barley derived from the utilization of both methods revealed there was a 

greater amount of segregation distortion in the anther culture derived subpopulation than in the 

H.b.-derived subpopulation, which could affect the power of QTL estimation.  However, the 

impact of segregation distortion on QTL analysis will depend on the degree of dominance of the 
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Figure 3.2. Linkage map for the Stander/Robust population built with 88 SNP non-cosegregating markers from the 9K iSelect chip. 
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QTL, the level of linkage existing between distorted markers and the QTL, as well as the 

population size (Zhang et al., 2010).Recent simulation studies by Zhang et al. (2010) 

documented the effect of segregation distortion on QTL mapping detection using an F2 

population.  Their results indicate that the effect of distortion decreases rapidly if there is not a 

tight linkage relationship between the distorted markers with the QTL, and in some cases the 

higher genetic variance resulted from the distortion may benefit the detection of linked QTL 

(Zhang et al., 2010).  For the particular case of DH populations only the additive effects can be 

estimated due to the existence of only two distinct genotypic classes (e.g. AA or BB at a single 

locus) compared to an F2 population for which three distinct genotype classes are detected (e.g. 

AA, AB, and BB), making easier the estimation of both additive and dominance effects.  

The effect of marker distortion on the estimation of QTL detection power was initially 

assessed using the equation proposed by Zhang et al. (2010) [eq.4] and through the 

implementation of 10,000 permutations using the CIM function on QGene v. 4.3.10 (Nelson, 

1997).  Even though, we performed single marker regression, SIM and CIM analyses, only the 

results for the CIM will be presented and discussed herein, since the final outcome for the three 

analyses was nearly identical.  Marker cofactors were selected using the default parameters of 

QGene v. 4.3.10 (Nelson, 1997).  The R2, the threshold of the odds (LOD), and the additive 

effects were determined for each of the four QTL analyses corresponding to the separate analysis 

of each environment and the combined analysis across environments.  Ten thousand 

permutations were used to determine the LOD scores for the α0.01=3.39 and α0.05=2.38 

experiment-wide error needed to declare significant marker-trait associations.  One QTL for seed 

dormancy (α0.01=3.39) was identified in chromosome 5H-3.  Markers SCRI_RS_141226 and 

1_0869 flanked the QTL, and it spanned 32.8 cM (Figure 3.3; appendix Table A29).  I named the 
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QTL QDrm.SdRo-5H.2 had an LOD=48.87 and accounts for 69.2 % of the phenotypic variation 

observed in seed dormancy for the ‘Stander/Robust’ population (Figure 3.3; appendix Table 

A29).  

 

 

Figure 3.3. Genome-wide distribution of LOD values (Y-axis) for percent of non-dormant seeds 
using composite interval mapping. Ten thousand iterations were carried out to determine the 
LOD scores for the α0.01 and α0.05 (α0.01=3.39 and α0.05=2.38) needed to declare significant 
marker-trait associations. a) Distribution of LOD values previous to cofactor selection; b) 
Distribution of LOD values after cofactor selection; c) Additive effect. 
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The alleles from ‘Stander’ were found in about 17% of the non-seed dormant phenotypes, 

suggesting there may have been negative selection against ‘Robust’ alleles, which are associated 

with significantly higher levels of seed dormancy.  The position of QDrm.SdRo-5H.2 

corresponds with the position of QDrm.BCAP-5H.2 (Close et al., 2009), which is effectively 

QTL SD2 (Han et al., 1996; Bonnardeaux et al., 2008; Lohwasser et al., 2013). 

The segregation distortion of some of the markers located in 5H-3 (Figure 3.4) did not 

affect the estimation of QTL detection power based on a k value higher than 1 (k=1.2) (Zhang et 

al., 2010).  

 

Figure 3.4. Position of QDrm.SdRo-5H.2 on linkage group 5H-3 and distribution of LOD values 
associated with the percent of non-dormant seeds. The blue shadowed area on the chromosome 
corresponds to region where markers showed significant segregation distortion (P<0.0001) from 
the Mendelian 1:1 ration. The green solid box represents the interval where the QTL was 
detected. 
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For several years the effect of distorted markers in QTL analysis was unknown, and for 

that reason markers were discarded as a preventive solution.  However, recent studies have 

shown that distorted markers can be safely used for the purpose of QTL mapping with low or no 

detrimental effect on the QTL detection power (Xu et al., 2009; Zhang et al., 2010).  This 

phenomenon occurs as the result of gametic selection, zygotic selection, or both (Xu et al., 

2009).  The SNP markers that showed significant segregation distortion on chromosome 5HL are 

located in a region that also harbors other QTL implicated in the regulation of several malting 

quality and agronomic traits including: diastatic power, free α-amino acid, α-amylase, heading 

date ant test weight (Mather et al., 1997; Marquez-Cedillo et al., 2001; Panozzo et al., 2007), 

which complicates the ability to breed for seed dormancy and PHS tolerance since direct changes 

in dormancy could cause concomitant changes in malting attributes (Li et al. 2003; Bonnardeaux 

et al., 2008).  It is not surprising that this cluster of markers show significant segregation 

distortion since this particular genomic region has been the target of strict selection for malt 

quality.  

The repeatable expression and importance of this QTL for seed dormancy in both 

association mapping and biparental mapping analyses is supported by the results of Bonnardeaux 

et al. (2008) based on the analysis of the ‘Stirling’/’Harrington’ DH population.  They confirmed 

that the QTL 5Hqb or SD2, which is located on the telomere of chromosome 5H had the largest 

additive effect and accounted for most of the variability observed for seed dormancy in barley.  

Even though, most biparental studies in seed dormancy have confirmed the existence of two 

QTL regions on chromosome 5HL, SD1 located near the centromere and SD2 on the telomere 

region, only one was detected herein and it corresponds to QTL SD2.  Romagosa et al. (1999) 

proposed that SD1 was the most important QTL in seed dormancy release, based on the high 
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variability that this one explained (~50% of the phenotypic variance) across different 

environments (Oberthur et al., 1995; Han et al., 1996). The QTL SD1 was never detected in this 

study and should not be expected to be for different reasons, including: i) use of a narrow based 

population, which make it hard to find polymorphism due to most shared genomic regions being 

monomorphic between both parents; ii) the fact that different markers have been used across 

different mapping studies makes difficult to make valid comparisons for QTL positions based on 

different crosses; iii) marker order and map distances vary among crosses depending on the 

saturation of the maps; and iv) the statistical methods and thresholds used to declare significance 

vary among studies (Clancy et al., 2003).  Another possibility is that the SD1 region in Robust 

and Stander has been genotypically fixed.  Even though most biparental mapping studies have 

relied on the use of populations derived from parents distantly related for the identification of 

significant QTL, I believe that identifying these regions using a narrow germplasm based 

population will better represent the case of barley breeding programs that breed for malting 

barley adapted to specific growing areas.   Additionally, identification of specific genes 

conferring actual phenotypic differences in Robust and Stander should be easier. 

Gene annotation for the SCRI_RS_141226  

Pedraza-García (2011) identified a DArT marker bPb-9660 that explains 81% of the 

phenotypic variation observed for percent of non-dormant seeds using a subpopulation of the 

‘Stander/Robust’ cross. This marker mapped to a similar region on chromosome 5HL 

comparable to that identified by SCRI_RS_141226.  According to Pedraza-García this locus is 

under selection pressure, and “only certain allele combinations increase the percentage of the 

non-dormant seed” phenotype.  I wanted to determine if bPb-9660 and SCRI_RS_141226 are 

indeed detecting the same locus.  To test this hypothesis, I compared the nucleotide sequence 
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from the DArT marker bPb-9660 with the complete codon sequence (GenBank accession #: 

AK363215.1) from which marker SCRI_RS_141226 was obtained (Matsumoto et al., 2011).  To 

do so, I utilized the software Clutal Omega v. 1.1.0 (EMBL-EBI < 

http://www.ebi.ac.uk/Tools/msa/clustalo/> accessed: 3 June 3 2013).  The results from the 

alignment indicate there is a similarity of only 53.5%, which makes it hard to determine if both 

markers map exactly to the same region.  The alignment between the sequences is not shown 

herein due to proprietary rights held by Triticarte® (Yarralumla, Australia) over all DArT 

technology. 

On the other hand, the results from searching for translated nucleotide databases using the 

complete translated nucleotide query sequence for AK363215.1 (Figure 3.5) indicates its 

association with a large family of protein kinases (PKs; E-value: 9.21e-52; 

http://blast.ncbi.nlm.nih.gov/ accessed: 3 June  2013).  Protein kinases (PKs) have been proposed 

as candidate proteins involved in the signaling pathway of the phytohormone abscisic acid 

(ABA) based on the observation of increased mRNA levels for a serine/threonine kinase known 

as PKABA1, which accumulates on wheat and barley developing embryos as ABA levels rise 

(Anderberg and Walker-Simmons, 1992; Gómez-Cadenas et al., 1999).  ABA is well known for 

its important role in seed dormancy induction and maintenance, as well as in mediating plant 

responses to environmental, biotic, and abiotic stresses, including drought, salinity, and cold 

(Gómez-Cadenas et al., 1999; Finkelstein et al., 2008).  Gómez-Cadenas et al. (1999) using 

particle bombardment transformation techniques to introduce two types of genetic constructs in 

the barley genome to determine the role of protein kinases in the signaling transduction pathway 

mediating ABA expression.  Their results indicate that PKABA1 acts as an antagonist of GA-

inducible genes by mimicking ABA.  The constitutive expression of the PKABA1 construct 



 

resulted in the suppression of the expression both low and high PI 

other protease genes that are induced by GA. 

Figure 3.5. Results from the TBLASTX
SCRI_RS_141226 was obtained. 
 

Based on the results obtained from the analysis of the sequence 

predicted protein product (protein ID: BAJ94419), we identified that marker SCRI_RS_141226 

is associated with a putative protein kinase having 69% identity with a cysteine

protein kinase 10-like from Brachypodium distachyon

XP_003563975.1); and it is also 53.7% similar to PKABA1 from 

accession #:DQ295068.1) and 55.0% similar to PK4 on wheat (Gene Bank accession 

#:AF519805.1).  Tanaka et al., (2012) identified stress

by the genes ARCK1 and CRK36

transduction responses in Arabidopsis.  The identification of protein kinases induce

involved in the regulation of ABA provide a basis for the study of the role of these type of 

proteins in seed dormancy and stress responses (

Cadenas et al., 1999; Tanaka et al., 2012).

 The AA genotype (A allele=A) was detected in 105 individuals, while the BB genotype (B 

allele=G) was detected in about 86 individuals of the ‘Stander/Robust’ DH population for marker 

SCRI_RS_141226.  The QTL on chromosome 5HL associated with marker 
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resulted in the suppression of the expression both low and high PI α-amylase genes, as well as 

other protease genes that are induced by GA.  

TBLASTX search for the sequence AK363215.1 from which marker 
SCRI_RS_141226 was obtained.  

Based on the results obtained from the analysis of the sequence AK363215.1

predicted protein product (protein ID: BAJ94419), we identified that marker SCRI_RS_141226 

tative protein kinase having 69% identity with a cysteine-rich receptor like 

Brachypodium distachyon (L.) P.Beauv. (Gene Bank accession #: 

; and it is also 53.7% similar to PKABA1 from Secale cereale

and 55.0% similar to PK4 on wheat (Gene Bank accession 

).  Tanaka et al., (2012) identified stress-inducible receptor-like kinases encoded 

CRK36, to be involved in the control of ABA and stress signaling 

transduction responses in Arabidopsis.  The identification of protein kinases induce

involved in the regulation of ABA provide a basis for the study of the role of these type of 

proteins in seed dormancy and stress responses (Anderberg and Walker-Simmons, 1992; 

Tanaka et al., 2012). 

Summary 

type (A allele=A) was detected in 105 individuals, while the BB genotype (B 

allele=G) was detected in about 86 individuals of the ‘Stander/Robust’ DH population for marker 

The QTL on chromosome 5HL associated with marker SCRI_RS_141226

amylase genes, as well as 

 

K363215.1 from which marker 

AK363215.1 and its 

predicted protein product (protein ID: BAJ94419), we identified that marker SCRI_RS_141226 

rich receptor like 

(Gene Bank accession #: 

Secale cereale L. (Gene Bank 

and 55.0% similar to PK4 on wheat (Gene Bank accession 

like kinases encoded 

to be involved in the control of ABA and stress signaling 

transduction responses in Arabidopsis.  The identification of protein kinases induced by ABA 

involved in the regulation of ABA provide a basis for the study of the role of these type of 

Simmons, 1992; Gómez-

type (A allele=A) was detected in 105 individuals, while the BB genotype (B 

allele=G) was detected in about 86 individuals of the ‘Stander/Robust’ DH population for marker 

SCRI_RS_141226 
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accounts for 69.2% (LOD=48.87) of the phenotypic variation observed for seed dormancy, were 

the A allele coming from ‘Stander’ increased the overall phenotypic mean by 17% for the non-

dormant phenotype. Further studies should include the identification of markers on the interval 

between markers SCRI_RS_141226 and 1_0869 in order to saturate the region with informative 

markers that could be used for MAS of seed dormancy.  Additionally, we suggest the validation 

of marker SCRI_RS_141226 and those markers that were found to be in segregation distortion to 

determine the relationships between malt quality traits and dormancy.  The validation of such 

markers should be done using other narrow germplasm base populations (e.g. Barley CAP 

breeding lines from the University of Minnesota and the NDSU six-rowed program) in order to 

determine their utility for MAS.   
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CHAPTER IV. SUMMARY AND CONCLUSIONS 

Historically, most U.S spring barley breeding programs have bred cultivars with similar 

malting and brewing attributes in order to satisfy the preferences and demands of the malting and 

brewing industries. This makes the development of new cultivars a very difficult task, since 

many quality traits need to be considered and the decision to determine which lines to advance 

for further testing must to be made within a narrow period of time after the crop is harvested.  A 

major problem associated with this scheme is that it can be difficult to determine if poor 

endosperm modification in a line during malting is due to extended seed dormancy or inherently 

poor malt quality.  Thus, lines with extended seed dormancy are often culled in favor of those 

with low seed dormancy and desirable levels of endosperm modification. This can lead to lines 

that may have acceptable malt quality, but are susceptible to pre-harvest sprouting (PHS).   

Since differential expression of dormancy levels in barley seeds impacts malt quality, 

there is a need to identify genomic regions that account for most of the phenotypic variation in 

order to design an optimal breeding strategy for the selection of cultivars with acceptable malt 

quality and seed dormancy.  Marker-assisted selection (MAS) has been proposed as a means of 

identifying markers linked to important traits that follow a quantitative inheritance; however, its 

utility will depend on how reliable marker-trait associations are for predicting the phenotype 

(e.g. seed dormancy) based on the genotype. Validation studies and the development of strong 

predictive methodologies are imperative for the development of molecular applications that take 

advantage of the genotyping instead of phenotyping; thus, benefiting the selection of barley 

cultivars with low to intermediate dormancy levels and desirable malting attributes. 

The objective of this study was to unravel the genetic basis underlying seed dormancy in 

spring barley using genome-wide association mapping (AM) and linkage mapping tools for the 
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analysis of: i) a panel of 3,072 elite U.S. spring barley breeding lines from eight breeding 

programs participating in the USDA-NIFA Barley Coordinated Agricultural Project and ii) a 

population of 193 F1-derived doubled-haploid lines from the cross ‘Stander’ x ‘Robust’, 

respectively.  All these with the aim to: 

1. Identify marker-trait associations for seed dormancy that are specific to each 

breeding program that are candidates for use in MAS. 

2. Identify polymorphic regions between Stander and Robust that can lead to the 

identification of marker-trait associations for use in MAS, with special attention 

on Midwest U.S. six-rowed barley germplasm, which has a narrow genetic base. 

3. Propose a set of SNP markers for further validation studies to determine their 

utility for MAS. 

4. Identify possible correlations between malt quality traits and seed dormancy 

5. To identify pairwise epistatic interaction among SNP markers  

Some important results and conclusions drawn from this research are:  

• Two main QTL regions were consistently detected across breeding programs and years in 

the long arm of chromosome 5H using 2,965 barley CAP lines and genome-wide AM. 

This is indicative of the importance of this chromosome region in the regulation and 

maintenance of the physiological processes associated with seed dormancy in U. S. 

spring barley germplasm. 

• Smaller effect QTL were identified independently in some breeding programs in 

chromosomes 2H, 4H, 6H and 7H using combined analyses across years for each 

breeding program.   
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• Even though a QTL relative to SD1 (76.6cM-83.2 cM) was not detected across years 

within any breeding program or in the combined analysis across years within a program, 

a QTL which is likely SD2 and named in here as QDrm.BCAP-5H.2 was detected in 

most breeding programs and years. Bonnardeaux et al. (2008) stated that SD2 was the 

most important QTL region accounting for most of the variability observed for seed 

dormancy in their study.   

• The annotation analyses for the genome-wide AM revealed that most of the genes 

identified near the telomere in chromosome 5HL are associated with the metabolism of 

hormones, as well as other mechanisms associated with defense, stress responses to 

dehydration and ROS, and hormone sensitivity mediated responses (i.e., jasmonate, 

pectinesterases, gibberellins, protease complex, radical induced cell death proteins, LEA 

proteins). 

• The observation of positive correlations between α-amylase, wort protein, and Kolbach 

Index with seed dormancy in some of the years and two breeding programs (e.g. 

University of Minnesota and Washington State University) suggest that further studies 

should include the validation of the SNP markers identified herein, and the assessment of 

correlations between malting/agronomic traits and seed dormancy in order to determine if 

the associations are due to linkage or pleiotropy. 

• The observation of numerous epistatic interactions between loci in 5HL and other 

chromosomal regions is indicative of the importance chromosome 5HL region for the 

control of this trait. 

• The combined analysis on the ‘Stander/Robust’ DH population revealed a non-significant 

genotype-by-environment interaction for seed dormancy, and a highly significant 



 

 123

(P<0.01) genotype main effect (47%). The heritability estimate based on this analysis 

was very high (0.90±0.01) compared to the separate analysis of each environment. The 

estimated values for the genotypic and phenotypic coefficients of variation (GCV and 

PCV, respectively) were very close (GCV=47.27; PCV=49.77), which suggests that 

phenotypic selection based on the use of germination test is reliable for the identification 

of genotypes with desired levels of seed dormancy in barley.  

• From a total of 6,715 SNP markers used to screen the ‘Stander x Robust’ population, 

only 6.6% (445 SNPs) were found to identify polymorphisms between the parents.  The 

lack of polymorphisms can be explained by the close relationship of the two parents, 

which results in most shared genomic regions being monomorphic and only a few regions 

likely accounting for most observed of the phenotypic differences. 

• An 88-marker linkage map covering 206.7 cM was developed and used to identify a 

single QTL for seed dormancy in the long arm of chromosome 5H that accounted for 

nearly 69.2% of the phenotypic variation. 

The SNP marker SCRI_RS_141226 within the QTL region is proposed for use in 

MAS.  The A allele coming from Stander (non-dormant parent) increased the overall 

phenotypic mean of the non-dormant phenotype by 17%. 

• The annotation analysis of the full coding sequence for marker SCRI_RS_141226 

indicates it is associated with a putative protein kinase. Protein kinases (PKs) have been 

proposed as candidate proteins involved in the signaling pathway of the phytohormone 

abscisic acid (ABA), which is implicated in the seed dormancy maintenance and the 

activation of plant defense mechanisms. 
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• A cluster of SNP markers that showed significant segregation distortion on chromosome 

5HL, approximately 32.8 cM from marker SCRI_RS_141226 was identified. Results 

suggest that the segregation distortion of those markers did not affect the estimation of 

QTL detection power based on a k value higher than 1 (k=1.2). This cluster of markers is 

located in a region that also harbors other QTL implicated in the regulation of several 

malt quality and agronomic traits, including: diastatic power, free α-amino acid, α-

amylase, heading date, and test weight.  The fact that QTL for these traits and seed 

dormancy reside in a similar region complicates the ability of breeding for seed 

dormancy and PHS tolerance because direct changes in dormancy could cause 

concomitant changes in malt quality.  It is not surprising that this cluster of markers show 

significant segregation distortion since this particular genomic region has been the target 

of strict selection for malt quality.  
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APPENDIX 

Table A1.  Polymorphic markers identified for each of the forty AM analyses.  
Breeding  
Program† 2006 2007 2008 2009 Combined 4 years 

AB 2334 2359 2370 2330 2556 

BA 2320 2162 2266 2314 2428 

MT 1544 1689 2204 1441 2302 

ND2R 2278 2197 2050 1855 2481 

ND6R 1335 1287 1736 1474 2055 

UM 1295 1539 1304 1186 1853 

UT 2502 2195 2144 2115 2608 

WA 2343 2341 2067 1979 2532 
† AB=USDA-ARS-Aberdeen, ID; BA= Bush Agricultural Resources LLC..; MT= Montana  
State University; ND2R= North Dakota State University (2-Rowed); ND6R= North Dakota State 
University (6-Rowed); UM=University of Minnesota; UT= Utah State; WA=Washington State 
University. 
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Table A2. SNP markers having a convergence with the best linear models. 

Breeding Program Analysis 

Number of SNP Markers 

Naïve† P K P+K 
USDA-ARS-Aberdeen, ID 

4 years 2436 2446 2468 2468 

2006 2257 2257 2257 2257 

2007 2359 2344 2354 2345 

2008 2362 2362 2355 2360 

2009 2330 2330 2329 2329 
Bush Agricultural Resources LLC 

4 years 2325 2320 2303 2297 

2006 2319 2319 2312 2319 

2007 2159 2159 2153 2134 

2008 2266 5207 2227 3993 

2009 2314 2314 2312 2314 
Montana State University 

4 years 2164 2167 2302 2302 

2006 1544 1544 1541 1544 

2007 1689 1689 1686 1688 

2008 2201 2202 2202 2202 

2009 1441 1441 1415 1441 
North Dakota State University  
(two-row) 4 years 2468 2461 2465 2429 

2006 2277 2278 2278 2275 

2007 2197 2197 2197 2195 

2008 2050 2050 2050 2050 

2009 1855 1855 16 1768 
North Dakota State University  
(six-row) 4 years 2029 2035 2046 2046 

2006 1335 1335 1335 1335 

2007 1283 1283 1283 1279 

2008 1731 1732 1732 1732 

2009 1460 1460 1456 1439 
University of Minnesota 

4 years 1809 1825 1852 1840 

2006 1295 1295 1295 1295 

2007 1539 1539 1420 1365 

2008 1304 1304 1304 1304 

2009 1102 1102 1102 1102 
Utah State University 

4 years 2537 2540 2607 2607 

2006 2502 2479 2502 1806 

2007 2161 2161 2153 2109 

2008 2130 2130 2130 2130 

2009 2115 2114 2112 2110 
Washington State University 

4 years 2515 2492 2476 2434 

2006 2343 2343 2341 2343 

2007 2341 2341 2011 78 

2008 2067 2067 1419 2067 

2009 1979 1979 1965 - 

†Simple model=Naïve; P=principal component analysis (PCA); K=kinship; P+K=PCA+Kinship  
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Table A3. Significant marker-trait associations (P≤0.001) for percent of non-dormant seed 
identified for the USDA-ARS-Aberdeen, ID breeding program across years. 

Year Chr cM Marker -log10(p)  
Allele A   Allele B   Heterozygote 

R2 
In 

model Count  Mean   Count  Mean    Count Mean  
2006 5H 0.00 11_10593 5.44 15 81.60 78 51.12 0.13 
 

 
173.08 11_10869 4.25 56 41.96 37 77.34 0.31 x 

 
 

179.06 11_10254 4.37 42 74.40 51 40.91 0.29 x 
 

 
179.64 11_21138 3.94 39 75.81 53 41.97 1 30.00 0.29 

 
 

179.64 12_30656 3.94 39 75.81 53 41.97 1 30.00 0.29 
 

 
194.64 12_30382 3.55 41 38.87 51 70.35 1 30.00 0.21 

 
 

195.42 11_20402 4.93 51 71.19 41 37.82 1 30.00 0.28 x 
 

 
196.12 12_10322 3.96 49 71.16 43 39.41 1 30.00 0.26 

 
 

196.85 12_31123 3.35 51 69.56 42 39.61 0.23 
 

 
             

2007 1H 36.95 11_21072 4.45 1 29.00 92 3.85 0.20 x 
 2H 54.95 11_21096 3.58 91 3.76 2 20.50 0.17 x 
 

 
150.67 11_21436 3.81 52 3.49 39 4.92 2 5.00 0.01 x 

 3H 43.23 11_20647 4.45 1 29.00 92 3.85 0.20 
 4H 0.00 11_10846 3.56 86 3.36 6 15.00 1 4.00 0.14 
 

 
65.05 12_30620 3.65 88 3.54 4 17.00 1 4.00 0.11 

 
 

65.05 11_11224 3.65 88 3.54 4 17.00 1 4.00 0.11 x 
 

 
65.05 11_11229 3.56 6 15.00 86 3.36 1 4.00 0.20 x 

 
 

65.80 12_30455 3.65 4 17.00 88 3.54 1 4.00 0.17 
 5H 191.97 12_31210 3.33 38 2.18 54 5.56 1 0.00 0.06 
 

 
191.97 12_30360 3.30 40 2.15 52 5.72 1 0.00 0.07 x 

 
 

194.84 12_10857 5.66 25 3.24 68 4.45 0.01 
 6H 3.11 12_31233 4.24 76 3.70 16 4.56 1 29.00 0.06 
 Unlinked 0.00 12_31128 3.53 48 3.78 45 4.49 0.00 
 

 
             

2008 2H 113.48 11_11118 3.17 53 15.85 33 42.33 1 68.00 0.30 x 
 4H 3.74 11_21228 3.35 5 2.21 81 27.48 1 68.00 0.08 x 
 

 
12.02 12_31458 3.86 19 12.82 66 29.12 2 69.50 0.13 

 5H 182.88 12_31352 4.39 31 6.25 56 37.70 0.37 x 
 

 
191.97 12_31210 4.21 26 5.72 60 35.93 1 0.00 0.25 

 
 

191.97 12_30360 6.60 29 5.42 57 37.68 1 0.00 0.30 
 

 
191.97 11_10401 7.14 31 5.58 55 38.76 1 0.00 0.33 x 

 
 

             

2009 1H 126.48 11_11481 3.16 6 70.55 90 41.75 0.08 x 
 3H 8.23 11_21190 3.91 49 50.39 43 38.40 4 15.17 0.11 x 
 4H 77.31 11_11004 3.53 81 38.28 12 79.25 3 43.11 0.15 
 

 
77.31 11_21353 3.02 82 38.37 14 73.90 0.26 x 

 
 

77.31 12_31231 3.02 82 38.37 14 73.90 0.26 
 

 
77.31 12_30136 3.02 82 38.37   14 73.90       0.26   
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Table A4. Significant marker-trait associations (P≤0.001) for percent of non-dormant seed 
identified for the Bush Agricultural Resources LLC breeding program across years. 

Year Chr cM Marker -log10(p)  
Allele A   Allele B Heterozygote 

R2 
In  

model Count  Mean Count  Mean  Count Mean  
2006 2H 0.00 11_10017 4.10 13 50.64 82 82.58 0.18 x 

 
 27.29 11_20394 4.18 9 38.16 86 82.40 0.24 x 

 
 63.53 11_10909 4.03 41 73.92 54 81.46 0.02 

 
 71.12 12_10719 3.55 60 72.02 35 88.81 0.10 

 
 78.03 12_30696 3.65 42 65.04 53 88.64 0.20 

 
 78.03 11_10196 3.65 42 65.04 53 88.64 0.20 

 
 133.94 11_20715 3.45 41 67.45 54 86.37 0.13 

 
5H 2.09 11_20894 3.46 76 75.05 19 90.83 0.06 

 
 6.40 11_20206 5.32 62 86.01 33 63.55 0.17 x 

 
 47.39 11_11432 3.10 88 81.08 7 42.11 0.15 

 
 47.39 12_30105 3.95 6 32.97 89 81.26 0.20 

 
 51.00 11_20129 3.08 37 76.05 58 79.58 0.00 

 
 51.00 11_20958 3.08 37 76.05 58 79.58 0.00 

 
 51.30 12_30728 3.08 37 76.05 58 79.58 0.00 

 
 51.30 12_30575 3.08 37 76.05 58 79.58 0.00 

 
 51.60 11_10661 3.08 58 79.58 37 76.05 0.00 

 
 65.49 11_20713 3.67 78 84.45 17 49.56 0.26 

 
 69.90 12_30080 4.50 51 71.00 44 86.57 0.09 

 
 87.35 11_21445 3.40 5 34.00 90 80.66 0.16 

 
 143.27 11_20551 3.68 26 54.49 69 87.15 0.31 

 
 175.90 11_10778 3.94 70 84.91 25 59.45 0.18 

 
 176.62 11_21012 3.94 25 59.45 70 84.91 0.18 

 
 176.62 11_10600 4.17 65 87.21 30 58.70 0.26 

 
 177.07 11_21141 3.00 23 64.52 72 82.58 0.09 x 

 
 177.65 11_20536 3.86 72 84.37 23 58.91 0.17 

 
 179.06 11_10254 4.02 63 86.64 32 61.60 0.20 

 
 179.64 12_30656 3.63 61 87.65 34 61.27 0.23 

 
 179.64 11_21138 4.02 62 87.72 33 60.34 0.25 

 
 181.43 11_20022 3.87 15 46.89 80 84.08 0.27 

 
 189.60 11_20786 4.58 17 45.78 78 85.27 0.33 

 
 190.23 11_21108 3.02 51 88.92 43 66.46 1 36.96 0.21 

 
 191.97 12_31210 6.32 17 45.01 78 85.44 0.35 

 
 191.97 11_10401 7.54 20 46.73 75 86.60 0.38 

 
 191.97 12_30360 7.86 19 45.19 76 86.46 0.40 

 
 195.42 11_20402 7.94 76 86.46 19 45.18 0.40 x 

 
 196.12 11_20132 6.19 17 45.00 78 85.44 0.35 x 

 
 196.12 12_10322 7.41 75 86.60 20 46.72 0.38 

 
 196.12 12_30958 7.41 20 46.72 75 86.60 0.38 

 
 196.85 12_31123 7.41 75 86.60 20 46.72 0.38 

 
6H 34.40 11_10427 4.99 18 63.09 77 81.74 0.08 x 

 
 35.07 12_30358 3.91 13 64.14 82 80.44 0.05 

 
7H 140.21 11_10454 3.42 27 61.54 68 84.83 0.16 x 

 
 144.45 11_20452 3.06 45 81.85 50 74.93 0.02 

 
 144.45 12_30593 3.06 50 74.93 45 81.85 0.02 

 
 144.45 12_31166 4.27 67 83.68 28 65.10 0.10 

 
 159.27 11_21086 3.29 2 12.50 93 79.62 0.14 

 
 166.56 11_20365 3.19 34 78.90 61 77.82 0.00 

 
 166.56 11_10174 3.19 34 78.90 61 77.82 0.00 

 
Unlinked 0.00 12_30685 3.58 12 66.12 83 79.95 0.03 

 
 0.00 12_31521 3.10 7 42.11 88 81.08 0.15 

 
 0.00 12_20985 3.87 4 25.50 91 80.52 0.18 

 
 0.00 12_31240 4.39 8 31.11 87 82.54 0.30 x 
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Table A4. Significant marker-trait associations (P≤0.001) for percent of non-dormant seed 
identified for the Bush Agricultural Resources LLC breeding program across years (cont.) 

Year Chr cM Marker -log10(p)  
Allele A   Allele B   Heterozygote 

R2 
In  

Count  Mean Count  Mean  Count Mean  model 
2007 1H 127.38 12_31387 4.42 29 21.26 63 6.98 0.29 
  128.14 11_11038 5.14 28 21.95 64 6.91 0.31 x 
 2H 119.05 11_10780 3.03 7 29.14 85 10.03 0.17 
 3H 141.54 11_20851 3.22 59 7.44 32 17.73 1 50.00 0.23 
  142.32 12_30137 3.22 59 7.44 32 17.73 1 50.00 0.23 
  144.64 11_10631 3.28 60 7.57 31 17.82 1 50.00 0.23 
  155.09 11_20155 3.12 36 17.10 55 7.11 1 50.00 0.08 
  155.85 12_30921 3.52 18 7.78 73 11.87 1 50.00 0.05 x 
 4H 0.00 11_10379 3.39 27 20.98 65 7.54 0.24 
  40.36 12_20240 3.18 86 10.13 6 30.83 0.17 
  47.60 11_11405 4.02 23 9.09 69 12.28 0.01 
  51.30 12_11063 3.48 21 9.14 71 12.18 0.01 
  54.25 11_11114 3.39 27 20.98 65 7.54 0.24 
  61.04 12_30054 3.33 22 9.55 70 12.09 0.01 
  65.05 12_31515 4.47 6 33.77 86 9.93 0.23 
  65.05 12_30620 4.47 86 9.93 6 33.77 0.23 
  65.05 11_11229 4.47 6 33.77 86 9.93 0.23 x 
  65.05 11_20906 4.47 86 9.93 6 33.77 0.23 
  65.05 11_11224 4.47 86 9.93 6 33.77 0.23 
  65.05 11_20924 3.61 23 22.15 69 7.93 0.25 
  65.05 11_10639 3.61 69 7.93 23 22.15 0.25 
  65.05 11_11431 3.61 23 22.15 69 7.93 0.25 
  65.05 11_10052 3.61 69 7.93 23 22.15 0.25 
  65.80 12_30455 4.47 6 33.77 86 9.93 0.23 
  67.46 11_10606 4.47 6 33.77 86 9.93 0.23 
 5H 94.43 12_21497 3.13 78 9.14 14 24.54 0.20 
  94.43 12_11106 3.13 14 24.54 78 9.14 0.20 
  94.43 12_10930 3.13 14 24.54 78 9.14 0.20 
  95.08 11_10578 3.13 14 24.54 78 9.14 0.20 x 
  180.71 12_30494 3.00 9 11.89 73 12.31 10 5.10 0.02 
  182.88 12_31352 5.66 31 9.52 61 12.48 0.01 
  182.88 11_20897 3.06 9 4.56 83 12.24 0.03 
  189.60 11_20786 3.29 10 4.80 82 12.30 0.04 x 
  189.60 11_11364 3.97 11 4.36 81 12.45 0.04 x 
  191.97 11_10401 3.35 15 6.47 77 12.46 0.03 x 
  191.97 12_31210 4.21 10 3.30 82 12.48 0.05 
  191.97 12_30360 4.21 10 3.30 82 12.48 0.05 
  194.84 12_10857 4.21 10 3.30 82 12.48 0.05 
 7H 91.79 12_30026 3.37 20 8.25 69 12.82 3 2.42 0.01 
 Unlinked 0.00 12_30597 3.48 71 12.18 21 9.14 0.01 
  0.00 12_31414 4.02 69 12.28 23 9.09 0.01 
  

             

2008 4H 78.77 11_10523 3.54 54 17.20 39 29.25 2 0.50 0.04 x 
  85.04 12_10670 8.86 94 21.23 1 75.00 0.08 
 6H 51.41 12_30569 6.19 35 8.49 60 29.56 0.26 x 
  54.60 12_31007 8.86 94 21.23 1 75.00 0.08 
  58.55 12_10803 8.86 94 21.23 1 75.00 0.08 
  60.23 12_30804 8.86 1 75.00 94 21.23 0.08 x 
  83.89 11_11147 5.49 6 27.06 89 21.44 0.00 
 Unlinked 0.00 12_30655 3.03 41 8.73 54 31.72 0.33 x 
  

             

2009 4H 62.83 11_20453 3.35 64 52.33 31 33.23 0.21 x 
  62.83 11_21296 3.35 31 33.23 64 52.33 0.21 
 5H 182.88 11_20897 3.27 13 26.20 82 49.25 0.16 x 
  191.97 12_30360 3.15 12 25.39 83 49.09 0.16 x 
 Unlinked 0.00 12_20295 3.07 93 45.95   1 100.00   1 6.00 0.00   
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Table A5. Significant marker-trait associations (P≤0.001) for percent of non-dormant seed 
identified for the Montana State University breeding program across years. 

Year Chr cM Marker -log10(p)  
Allele A   Allele B Heterozygote 

R2 
In  

Count  Mean Count  Mean  Count Mean  model 
2006 5H 190.23 11_21108 4.83 19 92.79 66 51.45 11 95.36 0.01 

  195.42 11_20402 11.84 41 92.56 54 43.72 1 52.00 0.57 x 

  196.12 12_10322 11.84 41 92.56 54 43.72 1 52.00 0.57 

  196.85 12_31123 10.57 42 91.60 54 43.72 0.58 x 

 
Unlinked 0.00 12_31267 3.28 39 44.72 56 78.79 1 52.00 0.25 

  
             

2007 2H 31.72 11_20864 3.67 35 7.60 56 2.67 1 18.00 0.11 x 

 
3H 

57.12 11_20444 3.29 8 16.88 83 3.45 1 12.00 0.31 

 59.89 11_10653 3.60 17 10.29 74 3.33 1 12.00 0.16 x 

 168.40 11_20057 4.08 83 3.38 9 17.00 0.49 x 

 
4H 0.74 12_30764 4.37 9 16.56 83 3.43 0.45 x 

  3.74 11_21056 5.59 7 18.43 84 3.44 1 16.00 0.31 

 
7H 161.54 11_20170 3.84 87 3.94 5 18.20 0.31 x 

  
             

2008 7H 28.27 12_30329 3.29 39 22.56 42 34.74 0.08 x 
  

             

2009 6H 22.35 12_30843 3.17 88 33.05 5 57.20 0.05 

  22.35 11_10023 3.17 88 33.05 5 57.20 0.05 x 

 
Unlinked 0.00 12_30050 3.17 88 33.05   5 57.20       0.05   
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Table A6. Significant marker-trait associations (P≤0.001) for percent of non-dormant seed 
identified for the North Dakota State University (two-rowed) breeding program across years. 

Year Chr cM Marker -log10(p)  

Allele A   Allele B Heterozygote 

R2 

In  

Count  Mean Count  Mean  Count Mean  model 
2006 1H 4.51 12_10636 3.62 6 76.00 88 47.70 0.06 x 
  93.95 11_10433 3.20 86 52.59 8 16.38 0.12 x 
 4H 26.19 11_20302 3.40 90 48.07 4 81.75 0.05 x 
  119.84 12_30239 4.23 35 32.66 58 59.68 1 49.00 0.18 x 
 5H 190.23 11_21108 3.25 12 81.75 82 44.78 0.18 x 
  194.64 12_30382 3.93 25 28.40 35 50.94 34 63.54 0.22 x 
  195.42 11_20402 3.78 71 56.38 23 28.26 0.17 
  196.12 12_10322 3.54 68 57.02 26 29.85 0.17 
  196.85 12_31123 3.54 68 57.02 26 29.85 0.17 
 Unlinked 0.00 12_11368 3.05 5 20.00 88 50.63 1 98.00 0.08 
  0.00 12_30793 3.46 6 85.50 88 47.05 0.10 
  0.00 12_31267 3.90 45 36.51 49 61.44 0.18 
  

             

2007 1H 57.77 12_10198 3.80 4 28.59 91 9.49 0.14 
 2H 54.95 11_21388 3.21 93 9.78 2 34.18 0.12 
  105.77 11_10630 3.21 24 16.31 71 8.26 0.12 
  122.21 12_30152 3.09 43 9.46 51 10.27 1 47.37 0.02 
  149.36 11_21299 4.16 91 9.56 3 34.46 1 4.00 0.05 
  149.61 11_20943 8.40 92 9.48 2 50.68 1 4.00 0.08 
  150.67 11_21436 9.26 93 9.42 2 50.68 0.34 
 4H 28.40 11_21374 4.89 90 9.26 5 28.87 0.19 
  36.37 11_20411 5.70 4 32.84 91 9.30 0.22 
  96.59 12_30554 4.46 22 8.80 72 10.14 1 54.00 0.03 
 5H 107.59 11_10024 8.93 32 10.59 58 7.94 5 35.62 0.05 
  108.18 11_21321 4.98 51 9.92 39 8.22 5 30.22 0.04 
  108.18 12_10844 4.33 40 6.50 52 12.07 3 30.06 0.16 x 
  109.56 11_21168 9.33 44 10.66 46 7.19 5 35.62 0.04 x 
  110.26 12_30705 5.56 53 9.94 39 8.65 3 37.79 0.04 x 
  113.11 11_10477 4.54 34 10.90 60 9.22 1 54.00 0.00 
  122.38 11_20629 4.30 4 29.84 91 9.43 0.16 
  123.08 11_20637 9.26 2 50.68 93 9.42 0.34 x 
  151.36 12_30062 3.67 5 26.27 90 9.40 0.14 
  151.36 12_30183 5.45 91 9.32 4 32.34 0.21 
  178.43 12_11010 5.65 6 18.50 88 9.24 1 54.00 0.00 x 
  179.64 12_30656 5.03 7 15.57 87 9.36 1 54.00 0.00 
  181.43 11_20189 6.21 26 14.19 68 8.16 1 54.00 0.02 
  181.43 11_10236 3.19 52 7.12 43 14.13 0.12 x 
 6H 38.42 12_30521 4.41 25 10.32 69 9.65 1 54.00 0.01 
  67.70 11_21469 5.02 76 9.04 18 13.16 1 54.00 0.11 
 7H 161.54 11_20170 3.04 77 8.50 13 19.26 5 14.55 0.09 
 Unlinked 0.00 12_30827 3.04 13 19.26 77 8.50 5 14.55 0.05 
  0.00 12_31128 4.30 91 9.43   4 29.84       0.16   
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Table A6. Significant marker-trait associations (P≤0.001) for percent of non-dormant seed 
identified for the North Dakota State University (two-rowed) breeding program across years 
(cont.) 

Year Chr cM Marker -log10(p)  

Allele A   Allele B Heterozygote 

R2 

In  

Count  Mean Count  Mean  Count Mean  model 
2008 1H 

131.15 11_20383 3.48 14 27.36 81 10.80 0.20 x 
  

137.83 11_20840 3.76 9 27.78 85 11.59 1 23.00 0.09 
  

138.92 11_20509 3.66 8 31.13 86 11.47 1 23.00 0.13 
 4H 

48.50 11_10261 3.11 3 3.33 90 12.68 2 53.50 0.15 
  

48.50 11_10942 3.53 4 2.75 89 12.81 2 53.50 0.15 x 
  

50.40 12_30605 3.11 90 12.68 3 3.33 2 53.50 0.10 
  

51.30 11_20496 3.11 90 12.68 3 3.33 2 53.50 0.10 
  

53.50 12_30427 3.11 3 3.33 90 12.68 2 53.50 0.15 
 5H 

178.43 12_11010 4.18 7 36.00 87 11.07 1 43.00 0.13 
  

178.43 12_11450 3.33 88 11.43 7 36.00 0.23 
  

182.88 11_20897 3.04 66 8.82 26 23.66 3 20.33 0.22 
  

182.88 12_30769 3.92 24 25.40 71 9.13 0.28 x 
  

187.96 11_10310 4.20 81 10.82 14 27.25 0.19 x 
  

189.60 11_21052 4.47 79 10.70 16 25.78 0.18 
 6H 

31.73 11_10994 3.07 91 12.97 4 19.50 0.01 
 7H 

61.32 11_10346 3.89 7 35.60 88 11.46 0.23 x 
  

62.88 11_10721 3.06 9 29.02 86 11.59 0.15 
 Unlinked 

0.00 12_10257 4.47 79 10.70 16 25.78 0.18 
  

             

2009 5H 
94.43 12_11106 3.62 2 1.00 90 42.11 3 29.33 0.02 x 

  
94.43 12_10930 3.62 2 1.00 90 42.11 3 29.33 0.02 

  
95.08 11_10578 3.15 5 18.00 90 42.11 0.13 x 

 6H 
0.00 11_11329 3.27 87 42.66 7 21.09 1 20.00 0.15 

  
67.70 11_20468 3.27 87 42.66 7 21.09 1 20.00 0.15 

  
67.70 11_20636 3.27 87 42.66 7 21.09 1 20.00 0.15 

  
69.38 12_31289 3.27 7 21.09 87 42.66 1 20.00 0.08 

  
70.04 11_20673 4.28 89 42.44   6 17.00       0.17 x 
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Table A7. Significant marker-trait associations (P≤0.001) for percent of non-dormant seed 
identified for the North Dakota State University (six-rowed) breeding program across years. 

Year Chr cM Marker -log10(p) 
Allele A   Allele B Heterozygote 

R2 
In 

Count  Mean Count  Mean  Count Mean  model 
2007 1H 121.12 12_21172 3.98 17 33.00 77 15.37 0.29 x 
  128.14 11_20133 3.55 18 32.11 76 15.35 0.27 
  128.14 12_30649 3.98 77 15.37 17 33.00 0.29 
  

  
 

          

2008 5H 135.72 12_30883 3.19 9 27.24 81 8.76 0.26 
  142.20 11_11532 3.19 81 8.76 9 27.24 0.26 
  142.20 12_31366 3.19 9 27.24 81 8.76 0.26 
  142.20 11_10845 3.19 81 8.76 9 27.24 0.26 
  142.20 11_21289 3.19 81 8.76 9 27.24 0.26 
  143.92 11_20375 3.19 81 8.76 9 27.24 0.26 
  143.92 12_30556 3.19 9 27.24 81 8.76 0.26 
  143.92 11_10819 3.19 9 27.24 81 8.76 0.26 x 
  187.38 11_21155 3.02 27 7.44 63 11.96 0.04 
  196.12 12_30958 4.06 26 16.71 63 7.86 1 25.00 0.10 
  196.12 12_10322 4.06 63 7.86 26 16.71 1 25.00 0.15 x 
  196.85 12_31123 4.25 64 8.13 26 16.71 0.13 
 Unlinked 0.00 12_30502 4.06 26 16.71 63 7.86 1 25.00 0.10 
  

  
 

          

2009 3H 162.15 12_30767 3.06 49 40.64   36 40.74   2 71.50 0.01   
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Table A8. Significant marker-trait associations (P≤0.001) for percent of non-dormant seed 
identified for the University of Minnesota breeding program across years. 

Year Chr cM Marker -log10(p) 
Allele A   Allele B Heterozygote 

R2 
In 

Count  Mean Count  Mean  Count Mean  model 
2006 5H 191.97 12_31210 3.58 4 8.75 91 70.65 1 50.00 0.11 
  191.97 12_30360 3.58 4 8.75 91 70.65 1 50.00 0.11 
  191.97 11_10401 3.09 7 23.57 88 71.58 1 50.00 0.13 x 
  194.84 12_10857 3.33 10 42.50 85 71.05 1 50.00 0.06 
  

             

2007 5H 25.23 11_10695 3.41 2 27.50 90 5.25 0.13 
 6H 105.60 11_20036 3.62 89 5.11 3 24.00 0.14 
  110.32 11_20355 3.62 3 24.00 89 5.11 0.14 
  110.32 12_30734 3.62 3 24.00 89 5.11 0.14 x 
 7H 36.77 12_30242 4.48 1 44.00 89 5.42 2 0.50 0.11 
  86.44 12_30199 5.11 1 44.00 91 5.31 0.20 
  87.97 12_10089 5.11 1 44.00 91 5.31 0.20 
  91.79 12_30996 5.11 1 44.00 91 5.31 0.20 
  99.67 12_30806 5.11 91 5.31 1 44.00 0.20 x 
  166.56 12_10378 4.35 89 5.26 2 7.50 1 44.00 0.15 
  166.56 12_30826 4.35 89 5.26 2 7.50 1 44.00 0.15 
  166.56 11_20365 5.11 91 5.31 1 44.00 0.20 
  166.56 11_10174 5.11 91 5.31 1 44.00 0.20 
  

             

2008 7H 133.79 11_10861 4.36 5 61.00 90 22.76 0.10 x 
  

             

2009 4H 39.76 11_20012 3.01 68 35.72 20 29.53 0.02 
  40.96 12_30328 3.43 10 21.70 78 35.93 0.05 
  42.45 11_10048 3.43 78 35.93 10 21.70 0.05 x 
 7H 148.25 11_10896 3.20 78 37.64 10 8.40 0.21 x 
  161.54 11_20170 3.04 78 37.64 9 5.33 1 36.00 0.16 x 
  166.56 12_10378 3.04 78 37.64 9 5.33 1 36.00 0.16 
  166.56 12_30826 3.04 78 37.64 9 5.33 1 36.00 0.16 
 Unlinked 0.00 12_30827 3.04 9 5.33   78 37.64   1 36.00 0.21   
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Table A9. Significant marker-trait associations (P≤0.001) for percent of non-dormant seed 
identified for the Utah State University breeding program across years. 

Year Chr cM Marker -log10(p)  
Allele A   Allele B Heterozygote 

R2 
In  

Count  Mean Count  Mean  Count Mean  model 
2006 4H 26.19 11_20109 3.15 22 26.97 71 25.96 3 71.00 0.02 
  40.36 12_10063 3.46 8 58.47 88 24.79 0.15 x 
  55.63 12_31462 3.35 77 29.73 19 18.96 0.03 x 
  55.63 12_30995 3.35 77 29.73 19 18.96 0.03 
 5H 187.96 11_10310 4.14 73 21.39 22 48.41 1 23.00 0.18 x 
  189.60 12_31292 4.28 92 25.52 4 75.43 0.17 x 
  194.84 12_10857 5.20 66 22.27 30 39.33 0.11 
  

             

2007 1H 136.31 11_20594 4.23 39 1.61 48 4.75 3 29.52 0.13 x 
 4H 116.85 11_21130 3.77 5 23.80 85 3.06 0.24 x 
  120.58 12_31422 3.02 6 19.83 84 3.10 0.18 
 6H 71.87 12_31101 3.48 75 2.09 13 13.27 2 25.00 0.26 x 
  72.54 12_30940 5.77 27 4.51 62 3.34 1 50.00 0.01 x 
  72.54 11_20488 6.08 22 2.50 67 4.09 1 50.00 0.04 
  72.54 11_10469 5.78 56 2.46 33 5.80 1 50.00 0.10 x 
  76.55 12_30573 6.08 67 4.09 22 2.50 1 50.00 0.02 
  77.89 11_21224 6.07 35 1.63 54 5.04 1 50.00 0.09 
 7H 46.19 11_21528 3.60 4 24.25 86 3.28 0.20 x 
 Unlinked 0.00 12_30939 5.68 65 3.44 24 4.41 1 50.00 0.05 x 
  0.00 12_30908 5.68 65 3.44 24 4.41 1 50.00 0.05 
  0.00 12_31200 3.77 85 3.06 5 23.80 0.24 
  

             

2008 1H 135.56 12_11496 4.21 25 5.12 58 28.58 0.23 
 3H 80.89 11_20115 3.57 24 4.50 59 28.44 0.23 x 
  80.89 12_30170 3.57 24 4.50 59 28.44 0.23 
  81.66 12_31262 3.57 24 4.50 59 28.44 0.23 
  162.15 12_30767 3.01 20 12.43 61 22.51 2 82.08 0.12 
 5H 196.85 12_31123 3.42 19 28.35 64 19.49 0.03 x 
  

             

2009 2H 9.28 11_20563 4.12 10 10.60 84 41.03 2 22.83 0.12 x 
 3H 120.59 11_11330 3.29 43 31.90 53 42.01 0.06 
  120.59 12_31220 3.38 53 42.43 43 31.39 0.07 
  123.68 11_21405 3.57 37 28.85 59 42.89 0.11 
  123.68 11_10918 3.39 60 42.94 36 28.39 0.11 x 
  173.17 12_20345 3.04 89 35.93 6 59.17 1 45.66 0.05 x 
 4H 50.40 11_20289 3.30 49 42.90 43 28.24 4 70.42 0.01 
 5H 161.58 11_20646 3.40 8 40.88 87 36.57 1 90.00 0.00 x 
  161.58 12_30642 3.40 87 36.57 8 40.88 1 90.00 0.04 x 
  182.88 12_31352 4.77 19 19.88 74 41.71 3 44.67 0.16 
  191.97 12_30360 5.37 31 20.90 63 45.53 2 41.00 0.27 x 
  194.84 12_10857 5.73 49 29.07   45 46.49   2 41.00 0.15 x 
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Table A10. Significant marker-trait associations (P≤0.001) for percent of non-dormant seed 
identified for the Washington State University breeding program across years. 

Year Chr cM Marker -log10(p)  
Allele A   Allele B   Heterozygote 

R2 
In  

Count  Mean Count  Mean  Count Mean  model 
2006 3H 37.17 11_10672 3.24 57 43.16 35 41.17 2 79.00 0.00 x 
 4H 66.00 12_30904 3.15 21 69.52 72 34.72 1 99.00 0.13 
  66.00 12_30755 3.15 21 69.52 72 34.72 1 99.00 0.13 
  66.00 11_10010 3.15 21 69.52 72 34.72 1 99.00 0.13 
  66.00 12_31385 3.15 72 34.72 21 69.52 1 99.00 0.22 x 
  66.00 12_30905 3.15 72 34.72 21 69.52 1 99.00 0.22 
 5H 178.43 12_11010 3.16 10 85.67 82 37.15 2 78.00 0.11 
  178.43 12_11450 3.39 84 38.12 10 85.67 0.19 x 
  179.06 11_10254 3.43 22 78.51 71 31.97 1 62.00 0.30 
  179.64 11_21138 4.95 20 84.37 73 31.64 1 62.00 0.36 
  179.64 12_30656 4.95 20 84.37 73 31.64 1 62.00 0.36 
  180.71 11_10736 3.15 15 83.11 77 34.50 2 78.00 0.17 
  191.97 11_10401 4.13 65 31.59 26 68.21 3 77.33 0.26 x 
  195.42 11_20402 5.52 32 71.96 60 26.97 2 69.00 0.29 
  196.12 12_30958 4.01 58 29.34 34 65.27 2 69.00 0.26 
  196.12 12_10322 6.63 26 77.01 66 29.07 2 69.00 0.30 
  196.85 12_31123 6.92 28 76.44 66 29.07 0.42 x 
  

             

2007 1H 69.53 12_10166 4.03 85 2.31 10 8.80 1 22.00 0.17 
  69.53 12_30298 6.43 4 24.75 92 2.25 0.48 x 
  72.43 12_11267 5.49 4 24.75 88 2.25 4 2.25 0.25 
  75.45 11_20121 4.28 88 2.26 8 13.38 0.22 x 
  77.29 11_20657 4.28 88 2.26 8 13.38 0.22 
 2H 17.85 11_20107 3.40 88 1.67 7 19.57 1 22.00 0.56 x 
  69.13 12_10545 4.03 8 13.63 87 1.94 1 28.00 0.10 
  71.12 12_31020 3.43 8 17.75 87 1.56 1 28.00 0.24 
  71.56 12_10717 3.43 87 1.56 8 17.75 1 28.00 0.62 
  73.04 11_20528 3.43 87 1.56 8 17.75 1 28.00 0.62 
  133.94 12_30106 3.50 10 18.00 86 1.47 0.60 
  133.94 12_30396 10.27 10 20.00 86 1.23 0.78 x 
  139.65 11_10625 3.31 85 1.25 11 18.18 0.69 
  147.12 12_10181 3.31 11 18.18 85 1.25 0.69 
 4H 26.19 11_21418 4.38 10 11.30 85 1.88 1 33.00 0.06 x 
  26.19 11_20109 4.39 86 1.86 9 12.56 1 33.00 0.44 x 
  111.68 11_11299 4.83 4 24.00 91 2.13 1 16.00 0.25 
 5H 26.28 11_20873 3.10 59 3.03 34 2.44 3 14.67 0.02 
  27.00 11_10974 3.27 33 2.52 59 3.03 4 11.00 0.03 
  94.43 12_10930 3.04 6 20.50 90 2.03 0.47 
  100.28 11_10771 3.04 6 20.50 90 2.03 0.47 x 
  108.18 11_21321 3.31 85 1.25 11 18.18 0.69 
  108.18 12_30852 3.31 85 1.25 11 18.18 0.69 
  110.26 12_10507 3.31 11 18.18 85 1.25 0.69 
  110.26 12_30705 3.31 85 1.25 11 18.18 0.69 
  149.64 11_20791 6.80 91 2.68 4 8.50 1 28.00 0.16 
  149.64 11_21297 6.80 91 2.68 4 8.50 1 28.00 0.16 
  151.36 12_10333 6.61 92 2.96 4 8.50 0.03 
  151.36 11_20100 3.10 91 2.53 4 12.00 1 28.00 0.23 
  161.58 12_30162 4.53 83 1.81 12 10.25 1 33.00 0.37 
 7H 112.46 12_10241 4.86 87 1.47 9 19.78 0.67 
  166.56 12_10378 3.31 11 18.18 85 1.25 0.69 
  166.56 12_30826 3.31 11 18.18 85 1.25 0.69 
 Unlinked 0.00 12_30602 6.61 4 8.50   92 2.96       0.03   
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Table A10. Significant marker-trait associations (P≤0.001) for percent of non-dormant seed 
identified for the Washington State University breeding program across years (cont.) 

Year Chr cM Marker -log10(p)  
Allele A   Allele B   Heterozygote 

R2 
In  

Count  Mean Count  Mean   model Mean  model 
2008 1H 0.00 11_10501 4.28 44 28.52 45 6.54 0.35 x 
 2H 41.66 12_30432 3.14 75 12.88 13 42.76 1 27.00 0.27 x 
 3H 57.12 11_20444 3.66 6 54.53 83 14.72 0.29 x 
 5H 178.43 12_11010 3.60 35 30.03 53 9.23 1 9.00 0.28 
  179.64 11_21138 3.60 35 30.03 53 9.23 1 9.00 0.28 
  181.43 11_10236 4.00 44 6.12 45 28.44 0.36 x 
  189.60 12_31292 4.85 52 8.52 37 29.89 0.32 x 
  191.97 11_10401 3.62 51 8.69 36 29.06 2 30.00 0.27 
  195.42 11_20402 4.41 33 30.91 54 8.69 2 30.00 0.24 
  196.12 12_10322 4.35 32 31.03 54 8.69 3 29.00 0.20 x 
  196.12 12_30958 3.15 51 9.02 36 28.59 2 30.00 0.25 
  196.85 12_31123 4.48 33 30.39 54 8.69 2 38.50 0.20 
 7H 86.44 12_31199 3.21 68 13.08 21 31.42 0.17 x 
  

             

2009 5H 196.12 12_10322 3.03 26 48.22 70 28.11 0.16 
  196.85 12_31123 3.50 27 48.80   69 27.59           
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Table A11. SNP markers significantly associated (P≤0.05) with percent of non-dormant seeds for the USDA-ARS-Aberdeen, ID 
breeding program across years, and located on chromosome 5HL. 

Marker cM 

2006   2007 

Pvalue 
AA BB AB 

Pvalue 
AA BB AB 

  % Mean   % Mean   % Mean     % Mean   % Mean   % Mean 
11_20546 172.38 0.004 74.2 63.5 25.8 34.6 1.000 82.8 4.6 17.2 1.6 
11_10869 173.08 0.000 60.2 42.0 39.8 77.3 0.807 64.5 4.6 35.5 3.3 
12_11010 178.43 0.003 72.0 50.0 28.0 71.7 0.490 32.3 4.2 67.7 4.1 
12_11450 178.43 0.003 72.0 50.0 28.0 71.7 0.490 68 4.10 32 4.17 
12_30504 182.16 0.300 15.1 37.3 82.8 60.0 2.2 36.5 0.045 20.4 1.3 79.6 4.9 
12_31352 182.88 0.032 35.5 51.6 64.5 58.5 0.311 38.7 5.6 61.3 3.2 
11_21155 187.38 0.741 3.2 79.0 96.8 55.3 0.010 8.6 2.5 91.4 4.3 
11_20786 189.6 0.002 31.2 44.5 66.7 62.0 2.2 36.5 0.333 24.7 3.7 75.3 4.3 
12_31292 189.6 0.281 48.4 57.5 48.4 55.1 3.2 48.0 0.265 57 5.75 42 2.01 1 0.0 
11_10401 191.97 0.002 34.4 44.6 63.4 62.2 2.2 57.0 0.008 46.2 3.0 51.6 5.2 2.2 2.5 
12_31210 191.97 0.001 32.3 44.0 65.6 61.9 2.2 57.0 0.000 40.9 2.2 58.1 5.6 1.1 0.0 
12_30360 191.97 0.001 33.3 43.7 64.5 62.4 2.2 57.0 0.000 43.0 2.2 55.9 5.7 1.1 0.0 
12_30382 194.64 0.000 44.1 38.9 54.8 70.3 1.1 30.0 0.852 33 2.0 66.0 5.20 1.0 4.0 
12_10857 194.84 0.138 31.2 51.9 67.7 58.2 1.1 43.0 0.000 26.9 3.2 73.1 4.4 0.0 
11_20402 195.42 0.000 54.8 71.2 44.1 37.8 1.1 30.0 0.149 67.7 5.8 31.2 0.5 1.1 4.0 
11_20132 196.12 0.030 12.9 42.4 84.9 58.6 2.2 36.5 0.764 15.1 0.4 83.9 4.9 1.1 0.0 
12_10322 196.12 0.000 52.7 71.2 46.2 39.4 1.1 30.0 0.699 62.4 5.4 36.6 1.9 1.1 4.0 
12_30958 196.12 0.110 16.1 45.7 81.7 58.6 2.2 36.5 0.942 26 2.83 73 4.64 1 0.0 
12_31123 196.85 0.000 54.8 69.6 45.2 39.6 0.405 62.4 5.4 37.6 2.0 0.0 
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Table A11. SNP markers significantly associated (P≤0.05) with percent of non-dormant seeds for the USDA-ARS-Aberdeen, ID 
breeding program across years, and located on chromosome 5HL (cont.) 

Marker 

2008   2009 

pvalue 
AA BB AB 

pvalue 
AA BB AB 

  % Mean   % Mean   % Mean     % Mean   % Mean   % Mean 
11_20546 0.009 92.0 23.9 8.0 55.8 0.044 53.1 53.7 45.8 31.8 1.0 45.7 
11_10869 0.921 41.4 20.1 58.6 31.0 0.018 57.3 34.1 42.7 56.3 
12_11010 0.133 54.0 34.9 46.0 16.6 0.808 41.7 54.5 58.3 35.7 
12_11450 0.133 46 16.56 54 34.95 0.808 58.3 35.7 41.7 54.5 
12_30504 0.010 5.7 9.2 93.1 27.9 1.1 0.0 0.757 17.7 37.9 79.2 45.1 3.1 37.1 
12_31352 0.000 35.6 6.2 64.4 37.7 0.502 4.2 25.3 95.8 44.3 
11_21155 0.027 8.0 2.9 92.0 28.6 0.779 1.0 45.7 99.0 43.5 
11_20786 0.003 23.0 5.5 77.0 32.7 0.502 4.2 25.3 95.8 44.3 
12_31292 0.844 43 15.62 56 35.24 1 0.0 0.853 36.5 35.2 61.5 48.4 2.1 45.7 
11_10401 0.000 35.6 5.6 63.2 38.8 1.1 0.0 0.516 41.7 33.7 57.3 50.7 1.0 45.7 
12_31210 0.000 29.9 5.7 69.0 35.9 1.1 0.0 0.727 30.2 35.1 68.8 47.6 1.0 20.0 
12_30360 0.000 33.3 5.4 65.5 37.7 1.1 0.0 0.516 41.7 33.7 57.3 50.7 1.0 45.7 
12_30382 0.142 8 13.51 92 27.63 0.525 31.3 34.1 66.7 48.3 2.1 32.8 
12_10857 0.001 26.4 3.8 72.4 35.2 1.1 0.0 0.923 31.3 36.4 67.7 47.2 1.0 20.0 
11_20402 0.006 89.7 28.2 10.3 11.4 0.144 56.3 52.0 43.8 32.6 
11_20132 0.048 4.6 14.6 95.4 27.1 . . 100.0 43.6 
12_10322 0.003 86.2 29.0 13.8 10.9 0.144 56.3 52.0 43.8 32.6 
12_30958 0.003 14 10.91 86 28.98 0.811 32.3 35.1 66.7 47.6 1.0 45.7 
12_31123 0.003 86.2 29.0 13.8 10.9 0.742 55.2 52.2 43.8 33.2 1.0 20.0 
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Table A12. SNP markers significantly associated (P≤0.05) with percent of non-dormant seeds for the Bush Agricultural Resources 
LLC breeding program across years, and located on chromosome 5HL. 

Marker cM 

2006   2007 

pvalue 
AA BB AB 

pvalue 
AA BB AB 

  % Mean   % Mean   % Mean     % Mean   % Mean   % Mean 
12_30162 161.58 0.006 78.9 80.2 21.1 70.7 0.039 66.3 7.9 32.6 18.0 1.1 34.6 
11_11216 171.66 0.006 84.2 83.3 15.8 51.3 0.842 96.7 11.7 3.3 5.8 0.0 
12_11010 178.43 0.039 52.6 84.7 47.4 71.0 0.106 56.5 7.4 43.5 16.8 
12_11450 178.43 0.039 48.4 69.9 51.6 86.0 0.106 43.5 16.8 56.5 7.4 
11_21138 179.64 0.000 65.3 87.7 34.7 60.3 0.245 81.5 11.2 18.5 12.6 
12_30656 179.64 0.000 64.2 87.6 35.8 61.3 0.192 80.4 11.4 19.6 11.9 
12_30494 180.71 0.174 12.6 67.8 82.1 80.0 5.3 75.0 0.001 9.8 11.9 79.3 12.3 10.9 5.1 
11_20897 182.88 0.037 12.6 60.8 87.4 80.7 0.001 9.8 4.6 90.2 12.2 
11_10310 187.96 0.034 11.6 61.9 88.4 80.3 0.002 15.2 6.9 84.8 12.3 0.0 
11_11364 189.6 0.203 3.2 65.7 96.8 78.6 0.000 12.0 4.4 88.0 12.5 0.0 
11_20786 189.6 0.000 17.9 45.8 82.1 85.3 0.001 10.9 4.8 89.1 12.3 
12_31292 189.6 0.013 43.2 68.8 56.8 85.3 0.567 44.6 15.3 55.4 8.5 
11_21108 190.23 0.001 53.7 88.9 45.3 66.5 1.1 37.0 0.870 37.0 7.1 39.1 15.7 23.9 11.3 
11_10401 191.97 0.000 21.1 46.7 78.9 86.6 0.000 16.3 6.5 83.7 12.5 0.0 
12_30360 191.97 0.000 20.0 45.2 80.0 86.5 0.000 10.9 3.3 89.1 12.5 
12_31210 191.97 0.000 17.9 45.0 82.1 85.4 0.000 10.9 3.3 89.1 12.5 
12_30382 194.64 0.001 24.2 57.1 75.8 84.9 0.611 5.4 13.4 94.6 11.4 
12_10857 194.84 0.039 2.1 49.5 97.9 78.8 0.000 10.9 3.3 89.1 12.5 
11_20402 195.42 0.000 80.0 86.5 20.0 45.2 . 100.0 11.5 0.0 
12_30958 196.12 0.000 21.1 46.7 78.9 86.6 0.842 4.3 14.5 95.7 11.3 
12_10322 196.12 0.000 78.9 86.6 21.1 46.7 0.842 95.7 11.3 4.3 14.5 
12_31123 196.85 0.000   78.9 86.6   21.1 46.7         0.842   95.7 11.3   4.3 14.5       
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Table A12. SNP markers significantly associated (P≤0.05) with percent of non-dormant seeds for the Bush Agricultural Resources 
LLC breeding program across years, and located on chromosome 5HL (cont.) 

Marker 

2008   2009 

pvalue 
AA BB AB 

pvalue 
AA BB AB 

  % Mean   % Mean   % Mean     % Mean   % Mean   % Mean 
12_30162 . 83.2 24.4 16.8 9.1 0.011 87.4 48.9 12.6 26.8 
11_11216 0.014 81.1 24.8 18.9 9.1 0.665 87.4 45.7 11.6 48.8 1.1 46.0 
12_11010 0.700 64.2 26.7 35.8 13.0 0.029 65.3 50.7 34.7 37.4 
12_11450 0.619 36.8 12.8 63.2 27.1 0.029 34.7 37.4 65.3 50.7 
11_21138 0.171 67.4 27.1 32.6 10.9 0.027 74.7 49.2 25.3 36.9 
12_30656 0.171 67.4 27.1 32.6 10.9 0.035 72.6 49.3 27.4 37.6 
12_30494 0.032 18.9 4.1 74.7 28.0 6.3 1.3 0.093 14.7 42.8 78.9 48.9 6.3 18.6 
11_20897 0.709 17.9 10.6 82.1 24.2 0.001 13.7 26.2 86.3 49.3 
11_10310 0.612 10.5 8.4 89.5 23.4 0.169 11.6 30.9 88.4 48.1 
11_11364 0.197 8.4 1.5 91.6 23.7 0.005 5.3 13.2 94.7 47.9 
11_20786 0.036 16.8 3.3 83.2 25.6 0.079 9.5 27.6 90.5 48.0 
12_31292 0.545 30.5 11.2 69.5 26.5 0.039 35.8 34.9 64.2 52.3 
11_21108 0.672 29.5 39.2 54.7 11.5 15.8 25.0 0.355 20.0 50.8 57.9 42.5 22.1 51.3 
11_10401 . 16.8 2.5 83.2 25.7 0.006 15.8 29.4 84.2 49.2 
12_30360 . 16.8 2.5 83.2 25.7 0.001 12.6 25.4 87.4 49.1 
12_31210 . 16.8 2.5 83.2 25.7 0.003 10.5 25.1 89.5 48.6 
12_30382 0.022 12.6 3.4 87.4 24.5 0.045 11.6 30.1 88.4 48.2 
12_10857 . 8.4 1.1 91.6 23.7 0.005 5.3 13.2 94.7 47.9 
11_20402 . 89.5 24.0 10.5 2.9 0.072 92.6 47.1 7.4 34.1 
12_30958 0.018 10.5 2.9 89.5 24.0 0.446 12.6 38.9 87.4 47.1 
12_10322 . 89.5 24.0 10.5 2.9 0.446 87.4 47.1 12.6 38.9 
12_31123 .   89.5 24.0   10.5 2.9         0.446   87.4 47.1   12.6 38.9       
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Table A13. SNP markers significantly associated (P≤0.05) with percent of non-dormant seeds for Montana State University breeding 
program across years, and located on chromosome 5HL. 

Marker cM 

2006   2007 

pvalue 
AA BB AB 

pvalue 
AA BB AB 

  % Mean   % Mean   % Mean     % Mean   % Mean   % Mean 
11_20546 172.38 0.048 27.1 86.0 72.9 56.7 0.340 66.3 5.5 32.6 3.3 1.1 1.0 
12_11450 178.43 0.146 76.0 56.8 22.9 90.4 1.0 72.0 0.487 33.7 2.9 66.3 5.6 
12_11010 178.43 0.146 22.9 90.4 76.0 56.8 1.0 72.0 0.713 66.3 5.6 32.6 3.0 1.1 1.0 
12_31292 189.6 0.021 17.7 44.8 82.3 68.9 0.0 0.469 23.9 6.3 76.1 4.2 
11_10401 191.97 0.025 16.7 44.6 83.3 68.7 0.0 0.921 21.7 6.6 78.3 4.2 
12_30360 191.97 0.025 16.7 44.6 83.3 68.7 0.921 21.7 6.6 78.3 4.2 
12_31210 191.97 0.139 1.0 98.0 99.0 64.3 0.0 0.921 21.7 6.6 78.3 4.2 
12_30382 194.64 0.001 40.6 44.8 58.3 78.8 1.0 52.0 0.151 38.0 6.1 59.8 3.9 2.2 3.0 
12_10857 194.84 . 100.0 64.7 0.719 14.1 2.6 85.9 5.1 
11_20402 195.42 0.000 42.7 92.6 56.3 43.7 1.0 52.0 0.369 40.2 5.0 57.6 4.5 2.2 5.0 
12_10322 196.12 0.000 42.7 92.6 56.3 43.7 1.0 52.0 0.369 40.2 5.0 57.6 4.5 2.2 5.0 
12_30958 196.12 0.025 16.7 44.6 83.3 68.7 0.316 42.4 4.4 54.3 5.0 3.3 3.7 
12_31123 196.85 0.000 43.8 91.6 56.3 43.7 0.510 42.4 5.0 55.4 4.4 2.2 6.5 
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Table A13. SNP markers significantly associated (P≤0.05) with percent of non-dormant seeds for Montana State University breeding 
program across years, and located on chromosome 5HL (cont.) 

Marker 

2008   2009 

pvalue 
AA BB AB 

pvalue 
AA BB AB 

  % Mean   % Mean   % Mean     % Mean   % Mean   % Mean 
11_20546 0.792 54.3 31.9 45.7 25.3 0.005 53.8 35.3 46.2 33.3 
12_11450 0.265 64.2 28.7 35.8 29.3 0.921 53.8 30.1 46.2 39.3 
12_11010 0.265 35.8 29.3 64.2 28.7 0.921 46.2 39.3 53.8 30.1 
12_31292 0.742 33.3 27.0 66.7 29.8 0.359 1.1 54.0 98.9 34.1 
11_10401 0.157 25.9 21.3 74.1 31.5 . 100.0 34.3 
12_30360 0.157 25.9 21.3 74.1 31.5 . 100.0 34.3 
12_31210 0.296 23.5 22.8 76.5 30.7 . 100.0 34.3 
12_30382 0.046 45.7 26.1 54.3 31.2 0.783 53.8 29.6 46.2 39.9 
12_10857 0.510 12.3 25.6 87.7 29.3 . 100.0 34.3 
11_20402 0.004 39.5 34.6 60.5 25.2 0.783 46.2 39.9 53.8 29.6 
12_10322 0.020 34.6 32.5 65.4 26.9 0.783 46.2 39.9 53.8 29.6 
12_30958 0.568 30.9 25.7 69.1 30.3 . 100.0 34.3 
12_31123 0.020 34.6 32.5 65.4 26.9 0.783 46.2 39.9 53.8 29.6 
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Table A14. SNP markers significantly associated (P≤0.05) with percent of non-dormant seeds for the North Dakota State University 
(two-rowed) breeding program across years, and located on chromosome 5HL. 

Marker cM 

2006   2007 

pvalue 
AA BB AB 

pvalue 
AA BB AB 

  % Mean   % Mean   % Mean     % Mean   % Mean   % Mean 

12_30162 161.58 0.692 37.23 45.86 60.64 52.29 2.13 34.00 0.036 30.53 7.03 66.32 12.14 3.16 3.00 
12_11010 178.43 0.051 8.51 76.88 90.43 46.83 1.06 58.00 0.000 6.32 18.50 92.63 9.24 1.05 54.00 
12_11450 178.43 0.013 91.49 46.96 8.51 76.88 0.017 94.74 9.71 5.26 20.80 
12_30656 179.64 0.181 13.83 64.00 85.11 47.04 1.06 58.00 0.000 7.37 15.57 91.58 9.36 1.05 54.00 
11_10736 180.71 0.053 57.45 58.64 41.49 37.10 1.06 40.00 0.002 40.00 14.63 57.89 7.32 2.11 9.50 
11_10236 181.43 0.042 39.36 37.22 60.64 57.48 0.001 54.74 7.12 45.26 14.13 
11_20022 181.43 0.088 4.3 28.5 95.7 50.4 0.490 5.3 7.2 94.7 10.5 
12_30577 182.88 0.006 47.9 38.0 52.1 60.0 0.008 51.6 7.4 47.4 13.6 1.1 2.0 
12_31292 189.6 0.185 42.6 54.0 57.4 46.2 0.025 35.8 11.8 62.1 8.9 2.1 27.0 
11_10401 191.97 0.149 2.1 29.0 97.9 49.9 0.435 5.3 6.8 93.7 10.6 1.1 0.0 
12_31210 191.97 0.633 1.1 36.0 98.9 49.6 0.435 5.3 6.8 93.7 10.6 1.1 0.0 
12_30360 191.97 1.000 4.3 44.0 95.7 49.7 0.504 11.6 8.7 87.4 10.6 1.1 0.0 
12_31481 191.97 0.013 37.2 61.5 62.8 42.4 0.007 25.3 13.6 72.6 8.7 2.1 27.0 
12_30382 194.64 0.000 26.6 28.4 37.2 50.9 36.2 63.5 0.090 22.1 6.6 37.9 10.0 40.0 12.6 
12_10857 194.84 0.545 3.2 41.3 96.8 49.8 0.602 8.4 10.1 90.5 10.4 1.1 0.0 
11_20402 195.42 0.000 75.5 56.4 24.5 28.3 0.086 69.5 11.8 26.3 6.7 4.2 7.6 
12_10322 196.12 0.000 72.3 57.0 27.7 29.8 0.107 70.5 11.7 26.3 6.7 3.2 8.8 
12_30958 196.12 0.682 6.4 41.7 93.6 50.0 0.608 8.4 7.0 89.5 10.5 2.1 13.1 
12_31123 196.85 0.000   72.3 57.0   27.7 29.8         0.039   73.7 11.6   26.3 6.7       
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Table A14. SNP markers significantly associated (P≤0.05) with percent of non-dormant seeds for North Dakota State University (two-
rowed) breeding program across years, and located on chromosome 5HL (cont.) 

Marker 

2008   2009 

pvalue 
AA BB AB 

pvalue 
AA BB AB 

  % Mean   % Mean   % Mean     % Mean   % Mean   % Mean 

12_30162 0.150 48.42 12.08 47.37 13.23 4.21 26.75 0.039 49.47 37.66 47.37 43.84 3.16 45.66 
12_11010 0.000 7.37 36.00 91.58 11.07 1.05 43.00 0.368 4.21 44.25 95.79 40.69 
12_11450 0.000 92.63 11.43 7.37 36.00 0.368 95.79 40.69 4.21 44.25 
12_30656 0.010 11.58 26.22 87.37 11.16 1.05 43.00 0.347 11.58 41.70 86.32 41.11 2.11 25.00 
11_10736 0.026 41.05 19.26 55.79 8.41 3.16 20.33 0.240 43.16 43.35 53.68 38.60 3.16 44.55 
11_10236 0.032 57.89 9.05 41.05 19.26 1.05 9.00 0.842 30.53 41.01 69.47 40.76 
11_20022 0.031 2.1 15.5 95.8 13.4 2.1 4.0 0.018 27.4 35.2 72.6 42.9 
12_30577 0.042 60.0 9.9 37.9 18.8 2.1 9.0 0.787 43.2 41.0 53.7 40.4 3.2 46.4 
12_31292 0.678 28.4 10.7 69.5 14.2 2.1 16.3 0.540 16.8 45.1 82.1 39.9 1.1 45.7 
11_10401 0.240 1.1 1.0 98.9 13.4 0.807 1.1 45.7 98.9 40.8 
12_31210 . . . 100.0 13.2 0.951 1.1 45.7 97.9 40.7 1.1 45.7 
12_30360 . . . 100.0 13.2 0.951 1.1 45.7 97.9 40.7 1.1 45.7 
12_31481 0.827 21.1 12.6 76.8 13.7 2.1 1.5 0.358 15.8 45.1 81.1 39.8 3.2 45.7 
12_30382 0.047 9.5 4.4 65.3 14.8 25.3 12.6 0.341 43.2 38.9 41.1 41.5 15.8 44.4 
12_10857 0.240 1.1 1.0 98.9 13.4 0.325 27.4 37.4 69.5 41.9 3.2 46.4 
11_20402 0.017 89.5 14.3 10.5 4.0 0.457 56.8 42.3 41.1 38.5 2.1 45.7 
12_10322 0.026 87.4 14.3 12.6 6.0 0.448 54.7 42.2 43.2 38.9 2.1 45.7 
12_30958 0.071 3.2 10.7 96.8 13.3 0.303 29.5 38.0 67.4 41.8 3.2 46.4 
12_31123 0.026   87.4 14.3   12.6 6.0         0.448   54.7 42.2   43.2 38.9   2.1 45.7 
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Table A15. SNP markers significantly associated (P≤0.05) with percent of non-dormant seeds for North Dakota State University (six-
rowed) breeding program across years, and located on chromosome 5HL. 

Marker cM 

2006   2007 

pvalue 
AA BB AB 

pvalue 
AA BB AB 

  % Mean   % Mean   % Mean     % Mean   % Mean   % Mean 
12_11450 178.43 0.921 59.4 65.1 40.6 60.3 0.951 53.2 16.3 43.6 21.3 3.2 19.0 
12_11010 178.43 0.921 40.6 60.3 59.4 65.1 0.870 43.6 21.3 52.1 16.0 4.3 22.0 
12_31292 189.6 0.792 82.3 62.3 17.7 67.1 0.266 50.0 16.9 43.6 19.5 6.4 25.2 
11_10401 191.97 0.524 51.0 65.9 49.0 60.2 0.420 39.4 16.8 57.4 19.1 3.2 31.3 
12_31210 191.97 0.320 10.4 62.0 89.6 63.2 . . . 100.0 18.6 
12_30360 191.97 0.320 10.4 62.0 89.6 63.2 . . . 100.0 18.6 
12_30382 194.64 . . . 100.0 63.1 . . . 100.0 18.6 
12_10857 194.84 0.320 10.4 62.0 89.6 63.2 . . . 100.0 18.6 
11_20402 195.42 . 100.0 63.1 . . . 100.0 18.6 . . 
12_10322 196.12 0.027 42.7 59.9 57.3 65.5 0.458 56.4 18.4 37.2 17.6 6.4 25.2 
12_30958 196.12 0.027 57.3 65.5 42.7 59.9 0.449 37.2 17.6 59.6 18.5 3.2 31.3 
12_31123 196.85 0.027 42.7 59.9 57.3 65.5 0.951 59.6 19.1 37.2 17.6 3.2 19.0 
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Table A15. SNP markers significantly associated (P≤0.05) with percent of non-dormant seeds for North Dakota State University (six-
rowed) breeding program across years, and located on chromosome 5HL (cont.) 

Marker 

2008   2009 

pvalue 
AA BB AB 

pvalue 
AA BB AB 

  % Mean   % Mean   % Mean     % Mean   % Mean   % Mean 
12_11450 0.407 54.4 12.9 45.6 7.9 0.046 54.0 43.5 44.8 39.9 1.1 0.0 
12_11010 0.407 45.6 7.9 54.4 12.9 0.046 44.8 39.9 54.0 43.5 1.1 0.0 
12_31292 0.001 67.8 11.7 31.1 7.6 1.1 25.0 0.042 81.6 41.2 17.2 45.0 1.1 0.0 
11_10401 1.000 23.3 8.3 76.7 11.3 1.000 51.7 42.8 48.3 39.9 
12_31210 0.208 6.7 2.7 93.3 11.2 1.000 14.9 48.2 85.1 40.2 
12_30360 0.208 6.7 2.7 93.3 11.2 1.000 14.9 48.2 85.1 40.2 
12_30382 0.199 3.3 2.0 95.6 10.7 1.1 25.0 . . . 100.0 41.4 
12_10857 0.208 6.7 2.7 93.3 11.2 1.000 14.9 48.2 85.1 40.2 
11_20402 . 100.0 10.6 . . . 100.0 41.4 . . 
12_10322 0.000 70.0 7.9 28.9 16.7 1.1 25.0 0.288 57.5 42.2 41.4 41.1 1.1 12.0 
12_30958 0.000 28.9 16.7 70.0 7.9 1.1 25.0 0.288 41.4 41.1 57.5 42.2 1.1 12.0 
12_31123 0.000 71.1 8.1 28.9 16.7 0.288 57.5 42.2 41.4 41.1 1.1 12.0 
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Table A16. SNP markers significantly associated (P≤0.05) with percent of non-dormant seeds for the University of Minnesota 
breeding program across years, and located on chromosome 5HL. 

Marker cM 

2006   2007 

pvalue 
AA BB AB 

pvalue 
AA BB AB 

  % Mean   % Mean   % Mean     % Mean   % Mean   % Mean 
12_11010 178.43 0.009 21.9 72.7 77.1 67.1 1.0 19.0 0.018 30.4 9.7 68.5 4.0 1.1 2.0 
12_11450 178.43 0.149 78.1 66.5 21.9 72.7 0.018 68.5 4.0 30.4 9.7 1.1 2.0 
12_31292 189.6 0.007 39.6 81.3 60.4 59.1 0.573 31.5 7.1 67.4 5.1 1.1 2.0 
11_10401 191.97 0.001 7.3 23.6 91.7 71.6 1.0 50.0 0.077 20.7 2.5 79.3 6.6 
12_30360 191.97 0.000 4.2 8.8 94.8 70.6 1.0 50.0 0.055 17.4 1.8 82.6 6.6 
12_31210 191.97 0.000 4.2 8.8 94.8 70.6 1.0 50.0 0.055 17.4 1.8 82.6 6.6 
12_30382 194.64 0.025 6.3 32.2 93.8 70.2 0.640 6.5 7.4 93.5 5.6 
12_10857 194.84 0.000 10.4 42.5 88.5 71.0 1.0 50.0 0.140 17.4 1.8 81.5 6.6 1.1 2.0 
11_20402 195.42 0.193 93.8 68.0 6.3 65.0 0.640 93.5 5.6 6.5 7.4 
12_10322 196.12 0.150 90.6 68.7 9.4 59.4 0.672 90.2 5.6 9.8 6.9 
12_30958 196.12 0.150 9.4 59.4 90.6 68.7 1.000 3.3 6.0 96.7 5.7 
12_31123 196.85 0.484   96.9 68.5   3.1 48.3         0.672   90.2 5.6   9.8 6.9       
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Table A16. SNP markers significantly associated (P≤0.05) with percent of non-dormant seeds for the University of Minnesota 
breeding program across years, and located on chromosome 5HL (cont.) 

Marker 

2008   2009 

pvalue 
AA BB AB 

pvalue 
AA BB AB 

  % Mean   % Mean   % Mean     % Mean   % Mean   % Mean 
12_11010 0.004 43.2 38.4 56.8 14.4 0.932 31.8 36.8 67.0 32.9 1.1 45.7 
12_11450 0.004 56.8 14.4 43.2 38.4 0.932 67.0 32.9 31.8 36.8 1.1 45.7 
12_31292 0.053 22.1 33.0 77.9 22.4 0.085 28.4 37.9 71.6 32.9 
11_10401 0.046 10.5 5.6 89.5 27.0 0.004 26.1 21.3 73.9 38.9 
12_30360 0.046 10.5 5.6 89.5 27.0 0.004 26.1 21.3 73.9 38.9 
12_31210 0.046 10.5 5.6 89.5 27.0 0.004 26.1 21.3 73.9 38.9 
12_30382 0.154 5.3 0.6 94.7 26.1 . 100.0 34.3 
12_10857 0.046 10.5 5.6 89.5 27.0 0.004 26.1 21.3 73.9 38.9 
11_20402 . 100.0 24.8 . . . 100.0 34.3 . . 
12_10322 . 100.0 24.8 . . 0.534 90.9 34.4 9.1 33.8 
12_30958 . 100.0 24.8 0.534 9.1 33.8 90.9 34.4 
12_31123 .   100.0 24.8   . .          0.534   90.9 34.4   9.1 33.8       
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Table A17. SNP markers significantly associated (P≤0.05) with percent of non-dormant seeds for the Utah State University breeding 
program across years, and located on chromosome 5HL. 

Marker cM 

2006   2007 

pvalue 
AA BB AB 

pvalue 
AA BB AB 

  % Mean   % Mean   % Mean     % Mean   % Mean   % Mean 
11_20646 161.58 0.807 18.8 33.6 81.3 26.2 0.001 12.2 6.4 87.8 3.9 
12_30642 161.58 . 76.0 25.6 24.0 33.9 0.001 87.8 3.9 12.2 6.4 
12_11450 178.43 0.710 93.8 26.4 6.3 45.2 0.099 94.4 4.4 5.6 1.6 
12_11010 178.43 0.500 56.3 26.3 43.8 29.3 0.199 54.4 3.8 43.3 4.0 2.2 18.5 
12_31292 189.6 0.000 95.8 25.5 4.2 75.4 0.216 94.4 3.8 5.6 10.4 
11_10401 191.97 0.138 66.7 21.4 25.0 41.9 8.3 34.5 0.757 85.6 3.9 12.2 7.1 2.2 0.8 
12_31210 191.97 0.470 22.9 23.0 77.1 29.0 0.820 30.0 4.9 68.9 4.0 1.1 0.0 
12_30360 191.97 0.196 59.4 23.1 40.6 34.1 0.757 85.6 3.9 12.2 7.1 2.2 0.8 
12_30382 194.64 0.673 59.4 28.9 40.6 25.7 0.417 24.4 3.1 75.6 4.6 
12_10857 194.84 0.000 68.8 22.3 31.3 39.3 0.686 54.4 4.3 44.4 4.2 1.1 2.0 
12_10322 196.12 0.004 33.3 36.3 66.7 23.2 0.436 17.8 8.9 78.9 3.3 3.3 0.5 
12_30958 196.12 0.002 36.5 21.8 63.5 30.9 0.836 55.6 3.2 41.1 5.8 3.3 1.2 
11_20402 195.42 0.278 22.9 37.9 61.5 26.0 15.6 18.8 0.420 17.8 8.9 80.0 3.3 2.2 0.8 
12_31123 196.85 0.004 33.3 36.3 66.7 23.2 0.382 20.0 8.0 78.9 3.3 1.1 0.0 
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Table A17. SNP markers significantly associated (P≤0.05) with percent of non-dormant seeds for the Utah State University breeding 
program across years, and located on chromosome 5HL (cont.) 

Marker 

2008   2009 

pvalue 
AA BB AB 

pvalue 
AA BB AB 

  % Mean   % Mean   % Mean     % Mean   % Mean   % Mean 
11_20646 0.328 20.5 29.1 78.3 19.9 1.2 0.0 0.000 8.3 40.9 90.6 36.6 1.0 90.0 
12_30642 0.328 78.3 19.9 20.5 29.1 1.2 0.0 0.000 90.6 36.6 8.3 40.9 1.0 90.0 
12_11450 0.012 65.1 29.3 34.9 7.0 0.844 72.9 38.5 24.0 36.9 3.1 18.6 
12_11010 0.449 81.9 19.4 18.1 31.2 0.780 31.3 34.1 67.7 38.9 1.0 45.7 
12_31292 0.238 63.9 24.7 36.1 16.0 0.951 72.9 36.2 26.0 42.2 1.0 10.0 
11_10401 0.155 54.2 20.3 44.6 22.4 1.2 44.4 0.087 24.0 28.5 76.0 40.3 
12_31210 0.921 9.6 21.8 90.4 21.5 0.092 22.9 27.7 77.1 40.4 
12_30360 0.133 51.8 19.3 44.6 23.7 3.6 25.8 0.000 32.3 20.9 65.6 45.5 2.1 41.0 
12_30382 0.300 34.9 20.4 65.1 22.1 0.018 11.5 20.8 88.5 39.6 
12_10857 0.014 43.4 13.3 55.4 27.5 1.2 44.4 0.000 51.0 29.1 46.9 46.5 2.1 41.0 
12_10322 0.002 21.7 27.5 77.1 19.5 1.2 44.4 0.018 88.5 39.6 11.5 20.8 
12_30958 0.765 20.5 28.7 79.5 19.7 0.018 11.5 20.8 88.5 39.6 
11_20402 0.002 21.7 27.5 77.1 19.5 1.2 44.4 0.064 87.5 39.6 11.5 20.8 1.0 45.7 
12_31123 0.000 22.9 28.3 77.1 19.5 0.018 88.5 39.6 11.5 20.8 
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Table A18. SNP markers significantly associated (P≤0.05) with percent of non-dormant seeds for the Washington State University 
breeding program across years, and located on chromosome 5HL. 

Marker cM 

2006   2007 

pvalue 
AA BB AB 

pvalue 
AA BB AB 

  % Mean   % Mean   % Mean     % Mean   % Mean   % Mean 
11_11216 171.66 0.002 29.8 71.3 70.2 31.2 0.887 34.4 7.2 62.5 1.1 3.1 0.3 
11_10869 173.08 0.004 85.1 36.4 13.8 84.2 1.1 52.0 0.011 79.2 2.4 18.8 4.9 2.1 17.0 
11_21141 177.07 0.017 63.8 31.0 35.1 64.7 1.1 62.0 0.942 74.0 1.4 25.0 8.5 1.0 1.0 
12_11010 178.43 0.001 10.6 85.7 87.2 37.1 2.1 78.0 0.749 11.5 2.2 87.5 3.3 1.0 1.0 
12_11450 178.43 0.000 89.4 38.1 10.6 85.7 0.567 91.7 3.2 8.3 2.6 
11_21138 179.64 0.000 21.3 84.4 77.7 31.6 1.1 62.0 0.980 21.9 9.7 77.1 1.4 1.0 1.0 
11_10736 180.71 0.001 16.0 83.1 81.9 34.5 2.1 78.0 0.090 17.7 12.8 80.2 1.1 2.1 0.5 
11_10236 181.43 0.017 67.0 31.6 33.0 66.7 0.556 78.1 1.1 21.9 10.7 
11_20022 181.43 0.027 72.3 34.2 25.5 65.6 2.1 78.0 0.504 67.7 1.1 32.3 7.6 
12_31292 189.6 0.041 73.4 39.7 25.5 52.5 1.1 62.0 0.414 67.7 3.7 29.2 2.3 3.1 0.3 
11_10401 191.97 0.000 69.1 31.6 27.7 68.2 3.2 77.3 0.089 63.5 1.1 33.3 7.4 3.1 0.3 
12_31210 191.97 0.423 21.3 35.4 76.6 44.2 2.1 85.0 0.551 11.5 3.3 87.5 3.2 1.0 0.0 
12_30360 191.97 0.001 62.8 29.7 33.0 66.8 4.3 59.0 0.089 63.5 1.1 33.3 7.4 3.1 0.3 
12_30382 194.64 0.289 23.4 29.7 75.5 46.9 1.1 76.0 0.337 13.5 1.2 85.4 3.5 1.0 0.0 
12_10857 194.84 0.238 8.5 26.5 91.5 44.7 0.104 4.2 2.8 95.8 3.2 
11_20402 195.42 0.000 34.0 72.0 63.8 27.0 2.1 69.0 0.036 31.3 8.5 64.6 0.7 4.2 1.0 
12_10322 196.12 0.000 27.7 77.0 70.2 29.1 2.1 69.0 0.036 31.3 8.5 64.6 0.7 4.2 1.0 
12_30958 196.12 0.000 61.7 29.3 36.2 65.3 2.1 69.0 0.083 58.3 0.7 37.5 7.3 4.2 1.0 
12_31123 196.85 0.000   29.8 76.4   70.2 29.1         0.057   35.4 7.6   63.5 0.8   1.0 0.0 
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Table A18. SNP markers significantly associated (P≤0.05) with percent of non-dormant seeds for the Washington State University 
breeding program across years, and located on chromosome 5HL (cont.) 

Marker 

2008   2009 

pvalue 
AA BB AB 

pvalue 
AA BB AB 

  % Mean   % Mean   % Mean     % Mean   % Mean   % Mean 
11_11216 0.034 46.1 25.7 52.8 9.5 1.1 50.0 0.087 46.9 40.2 53.1 27.7 
11_10869 0.001 53.9 7.3 46.1 29.2 0.484 60.4 29.9 39.6 39.2 
11_21141 0.004 58.4 10.1 41.6 27.7 0.921 69.8 32.2 30.2 36.6 
12_11010 0.000 39.3 30.0 59.6 9.2 1.1 9.0 0.914 29.2 37.6 69.8 31.7 1.0 45.7 
12_11450 . 59.6 9.2 39.3 30.0 1.1 9.0 0.795 70.8 31.2 28.1 39.0 1.0 45.7 
11_21138 0.000 39.3 30.0 59.6 9.2 1.1 9.0 0.914 29.2 37.6 69.8 31.7 1.0 45.7 
11_10736 0.002 52.8 27.7 46.1 5.8 1.1 9.0 . 43.8 41.2 56.3 27.6 
11_10236 0.000 49.4 6.1 50.6 28.4 . 54.2 27.8 45.8 40.4 
11_20022 0.003 44.9 5.9 55.1 26.8 . 49.0 26.9 51.0 40.0 
12_31292 0.000 58.4 8.5 41.6 29.9 0.082 66.7 29.5 33.3 41.7 
11_10401 0.000 57.3 8.7 40.4 29.1 2.2 30.0 0.089 66.7 28.9 32.3 42.9 1.0 45.7 
12_31210 0.029 12.4 15.0 85.4 17.2 2.2 38.5 0.618 19.8 34.1 80.2 33.4 
12_30360 . 56.2 8.9 41.6 28.3 2.2 30.0 0.089 66.7 28.9 32.3 42.9 1.0 45.7 
12_30382 . 15.7 12.4 83.1 17.9 1.1 50.0 0.286 27.1 31.9 72.9 34.2 
12_10857 . . . 100.0 17.4 0.486 2.1 22.8 97.9 33.8 
11_20402 0.000 37.1 30.9 60.7 8.7 2.2 30.0 0.003 27.1 48.2 71.9 27.9 1.0 45.7 
12_10322 0.000 36.0 31.0 60.7 8.7 3.4 29.0 0.001 27.1 48.2 72.9 28.1 
12_30958 0.001 57.3 9.0 40.4 28.6 2.2 30.0 0.008 65.6 28.1 34.4 44.0 
12_31123 0.000   37.1 30.4   60.7 8.7   2.2 38.5   0.000   28.1 48.8   71.9 27.6       
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Table A19. Epistatic interactions among SNP markers significantly associated with dormancy 
using the results from the analysis of four years combined for each breeding program.  

Breeding 
Program Marker Chr cM Marker Chr cM P-value -Log10(P) 

AB 11_11435 2H 78.03 11_20193 3H 42.06 3.5223E-06 5.45317737 
11_11435 2H 78.03 11_10325 2H 54.95 0.00041022 3.38698156 
11_11435 2H 78.03 11_21358 3H 81.66 0.00065059 3.18669037 
11_10325 2H 54.95 11_11458 6H 81.17 0.00072198 3.1414754 
12_31356 3H 73.53 12_11010 5H 178.4 0.00082652 3.08274499 
12_31428 3H 0 12_31323 3H 70.71 0.00091815 3.03708599 
11_20402 5H 195.4 11_10901 5H 158.4 2.9332E-09 8.53266002 
11_20402 5H 195.4 11_10325 2H 54.95 2.8657E-07 6.5427633 
11_10901 5H 158.4 12_11010 5H 178.4 3.2662E-06 5.48596011 
11_20402 5H 195.4 11_21358 3H 81.66 1.4975E-05 4.82463139 
11_10869 5H 173.1 11_10736 5H 180.7 2.5883E-05 4.58698954 
11_10901 5H 158.4 11_10736 5H 180.7 6.4919E-05 4.18762668 
11_20402 5H 195.4 11_20193 3H 42.06 0.00036619 3.43628909 
11_10869 5H 173.1 11_10236 5H 181.4 0.0004571 3.33998432 
11_10869 5H 173.1 12_11010 5H 178.4 0.00072531 3.13947838 
12_31352 5H 182.9 12_11010 5H 178.4 0.00075225 3.1236379 
11_11458 6H 81.17 12_11010 5H 178.4 0.00047397 3.32425354 
11_10150 unlinked 0 12_31346 3H 76.98 9.9365E-05 4.00276445 
11_10150 unlinked 0 11_11435 2H 78.03 0.00018494 3.73297096 
11_10150 unlinked 0 11_21358 3H 81.66 0.00029036 3.53706852 
11_10150 unlinked 0 11_10869 5H 173.1 0.00058299 3.23433691 

BA 11_10830 1H 88.23 11_10756 4H 48.5 0.000519 3.28483658 
11_10342 2H 44.13 11_10830 1H 88.23 0.00028386 3.54690288 
11_21079 7H 83.44 11_10756 4H 48.5 0.00013709 3.86300489 
11_10150 unlinked 0 11_10830 1H 88.23 3.2777E-05 4.48443687 
11_10150 unlinked 0 12_30169 5H 129.4 0.00085547 3.06779716 

MT 12_31123 5H 196.9 12_31041 unlinked 0 1.5897E-07 6.79869312 
12_10322 5H 196.1 12_31041 unlinked 0 3.0984E-07 6.50885697 
11_20402 5H 195.4 12_31041 unlinked 0 8.8592E-07 6.05260561 
11_11456 5H 128 12_31123 5H 196.9 1.3374E-06 5.87374965 
11_20402 5H 195.4 11_11456 5H 128 2.0777E-06 5.68241796 
11_11456 5H 128 12_10322 5H 196.1 2.5968E-06 5.58555335 
12_30214 5H 53.9 11_20529 3H 8.23 0.00014986 3.82432307 
12_30214 5H 53.9 12_31123 5H 196.9 0.00038073 3.41938021 
11_10150 unlinked 0 12_31123 5H 196.9 5.7236E-14 13.242327 
11_10150 unlinked 0 12_10322 5H 196.1 3.3202E-13 12.4788325 
11_10150 unlinked 0 11_20402 5H 195.4 1.7725E-12 11.7514136 
11_10150 unlinked 0 11_20529 3H 8.23 0.00047033 3.32759703 

ND2R 11_20402 5H 195.4 11_21008 3H 162.2 0.00019098 3.719001 
11_20761 5H 27.72 11_21008 3H 162.2 0.00038615 3.41324123 
11_20402 5H 195.4 11_20761 5H 27.72 0.00042614 3.37044798 
11_20922 unlinked 0 11_21151 4H 85.04 1.016E-11 10.993121 
11_10150 unlinked 0 11_20402 5H 195.4 7.7216E-06 5.11229384 
11_20922 unlinked 0 11_20402 5H 195.4 7.5246E-05 4.12351497 

ND6R 11_11200 5H 117.5 11_10695 5H 25.23 2.0922E-05 4.67940134 
11_10150 unlinked 0 12_10530 5H 33.09 2.7858E-05 4.55505575 

† AB=USDA-ARS-Aberdeen, ID; BA= Bush Agricultural Resources LLC..; MT= Montana  
State University; ND2R= North Dakota State University (2-Rowed); ND6R= North Dakota State 
University (6-Rowed); UM=University of Minnesota; UT= Utah State; WA=Washington State 
University. 

‡ Marker 1and 2 indicate interacting markers and their chromosomal positions. 
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Table A19.  Epistatic interactions among SNP markers significantly associated with dormancy 
using the results from the analysis of four years combined for each breeding program (cont.)  
Breeding 
Program † Marker 1‡ Chr cM Marker 2‡ Chr cM P-value -Log10(P) 

UT 11_10722 1H 125.3 11_10994 6H 31.73 1.8273E-08 7.74 
11_10722 1H 125.3 12_30358 6H 35.07 5.9396E-06 5.23 
12_30672 1H 54.73 11_11436 3H 155.9 9.5119E-06 5.02 
12_30672 1H 54.73 11_10994 6H 31.73 4.5083E-05 4.35 
11_20929 2H 52.47 11_20710 7H 3.34 3.1412E-06 5.50 
11_20929 2H 52.47 11_11436 3H 155.9 9.3265E-05 4.03 
11_20929 2H 52.47 12_30672 1H 54.73 0.00016505 3.78 
11_10214 2H 93.5 11_11436 3H 155.9 0.00017086 3.77 
11_20929 2H 52.47 11_20755 7H 15.93 0.0002414 3.62 
11_20929 2H 52.47 11_10994 6H 31.73 0.00029699 3.53 
11_11436 3H 155.9 11_20755 7H 15.93 2.4712E-09 8.61 
12_20143 4H 76.03 12_30358 6H 35.07 5.7663E-07 6.24 
12_20143 4H 76.03 11_10534 7H 80.94 1.4864E-05 4.83 
12_20143 4H 76.03 11_10994 6H 31.73 5.9477E-05 4.23 
12_10322 5H 196.1 12_30164 7H 119.5 0.00018604 3.73 
12_10322 5H 196.1 12_30672 1H 54.73 0.00060233 3.22 
12_30358 6H 35.07 12_30672 1H 54.73 1.4026E-08 7.85 
12_30358 6H 35.07 11_20929 2H 52.47 5.0706E-05 4.29 
12_30358 6H 35.07 11_10576 7H 41.85 0.00013843 3.86 
12_30358 6H 35.07 11_20710 7H 3.34 0.00026467 3.58 
11_20710 7H 3.34 11_11436 3H 155.9 3.766E-08 7.42 
11_20710 7H 3.34 11_10994 6H 31.73 7.638E-07 6.12 
11_10534 7H 80.94 11_10994 6H 31.73 8.8547E-05 4.05 
11_10534 7H 80.94 11_20755 7H 15.93 0.00030217 3.52 
11_10534 7H 80.94 12_30358 6H 35.07 0.00037656 3.42 
11_10534 7H 80.94 11_20710 7H 3.34 0.00047422 3.32 
12_30164 7H 119.5 12_30360 5H 192 0.00059707 3.22 

WA 11_10150 unlinked 0 12_31123 5H 196.9 1.2555E-08 7.90 

† AB=USDA-ARS-Aberdeen, ID; BA= Bush Agricultural Resources LLC..; MT= Montana  
State University; ND2R= North Dakota State University (2-Rowed); ND6R= North Dakota State 
University (6-Rowed); UM=University of Minnesota; UT= Utah State; WA=Washington State 
University. 

‡ Marker 1and 2 indicate interacting markers and their chromosomal positions. 

  



 

 156

Table A20. SNP annotation summary for marker-trait associations identified on chromosome 1H 
based on the analysis of four years combined by breeding program. 

cM Marker U35 Rice(v5) Description 

0 11_20149 protein soluble inorganic pyrophosphatase, putative, expressed 

0 11_10501 protein metallothionein-like protein type 2, putative, expressed 

0.95 11_10460 protein keratin-associated protein 5-4, putative, expressed 

11.42 12_30952 protein NAD-dependent epimerase/dehydratase, putative, expressed 

36.95 12_31177 protein floral homeotic protein APETALA2, putative, expressed 

43.28 11_21134 protein myb-like DNA-binding domain containing protein, expressed 

54.73 12_30672 protein peptide transporter PTR2, putative, expressed 

62.78 11_10302 protein endo-1,3;1,4-beta-D-glucanase precursor, putative, expressed 

75.45 11_20121 protein oxidoreductase, putative, expressed 

83.3 12_30072 protein tyrosine aminotransferase, putative, expressed 

87.62 12_11144 protein FK506-binding protein 4, putative, expressed 

88.23 11_10830 protein bHLH transcription factor, putative, expressed 

88.23 12_31160 protein yip1 domain family, member 2, putative, expressed 

90.97 11_11189 protein pleckstrin homology domain-containing protein 1, putative, expressed 

92.04 11_21446 protein expressed protein 

92.04 12_10535 protein ferredoxin-6, chloroplast precursor, putative, expressed 

93.95 12_31163 protein isoflavone reductase homolog IRL, putative, expressed 

96.92 11_20769 protein GTPase, putative, expressed 

97.68 11_11277 protein heat shock 70 kDa protein, mitochondrial precursor, putative 

121.12 12_21172 protein OsIAA19 - Auxin-responsive Aux/IAA gene family member 

121.77 12_31105 protein expressed protein 

125.27 11_10722 protein fasciclin-like arabinogalactan protein 7 precursor, putative, expressed 

126.01 11_21140 protein 40S ribosomal protein S27a, putative, expressed 

137.83 11_20840 protein endopeptidase Clp, putative, expressed 

139.79 11_20772 protein spliceosome RNA helicase BAT1, putative, expressed 
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Table A21. SNP annotation summary for marker-trait associations identified on chromosome 2H 
based on the analysis of four years combined by breeding program. 

cM Marker U35 Rice(v5) Description 

0 11_20631 protein glycosyl transferase, group 1 family protein, putative, expressed 

0 11_10017 protein DNA-binding protein, putative, expressed 

0 11_10996 protein elongation factor 1-delta 1, putative, expressed 

10.06 11_21416 protein cyclopropane-fatty-acyl-phospholipid synthase/ oxidoreductase, putative 

10.06 12_10502 protein phosphoglycerate mutase-like protein, putative, expressed 

15.15 11_20112 protein expressed protein 

17.85 11_20107 protein nucleus protein, putative, expressed 

31.72 11_20864 protein 2-dehydro-3-deoxyphosphooctonate aldolase, putative, expressed 

37.32 11_20173 protein peroxidase precursor, putative, expressed 

44.13 11_10342 protein nucleolar protein NOP5, putative, expressed 

50.49 11_21005 protein novel plant SNARE 11, putative, expressed 

51.75 11_10234 protein hydrophobic protein LTI6A, putative, expressed 

51.75 12_30691 protein ubiquitin-protein ligase, putative, expressed 

51.75 12_30604 protein h/ACA ribonucleoprotein complex subunit 4, putative, expressed 

52.47 11_20929 protein transmembrane emp24 domain-containing protein 10 precursor, putative 

53.53 12_31474 protein cyclin delta-2, putative, expressed 

53.53 11_11522 protein fasciclin-like arabinogalactan protein 8 precursor, putative, expressed 

54.95 11_10325 protein phospho-2-dehydro-3-deoxyheptonate aldolase 1, chloroplast precursor, putative 

54.95 11_10733 protein copper-transporting ATPase PAA1, putative, expressed 

54.95 11_21096 protein glucan endo-1,3-beta-glucosidase 4 precursor, putative, expressed 

54.95 12_30259 protein hydrolase, putative, expressed 

55.67 12_11272 protein strictosidine synthase 1 precursor, putative, expressed 

58.24 11_20500 protein insulin-degrading enzyme, putative, expressed 

58.24 11_10602 protein chlorophyll a-b binding protein of LHCII type III, chloroplast precursor, putative 

58.24 11_11133 protein polygalacturonase inhibitor 1 precursor, putative, expressed 

58.24 12_10485 protein ribosome recycling factor, chloroplast precursor, putative, expressed 

58.24 12_30634 protein myosin-5C, putative, expressed 

58.9 11_20417 protein autophagy-related protein 8 precursor, putative, expressed 

58.9 11_11354 protein ATP-dependent RNA helicase dbp4, putative, expressed 

58.9 11_10012 protein 60S ribosomal protein L38, putative, expressed 

58.9 11_20039 protein pre-rRNA processing protein ESF1, putative, expressed 

58.9 11_21286 protein uncharacterized Cys-rich domain, putative, expressed 

58.9 11_11046 protein cytochrome b6-f complex iron-sulfur subunit, chloroplast precursor, putative 

58.9 11_10070 protein expressed protein 

58.9 11_20458 protein succinate dehydrogenase subunit 3, putative, expressed 

58.9 12_10099 protein ATP synthase gamma chain, chloroplast precursor, putative, expressed 

58.9 12_31175 protein casein kinase II subunit beta-4, putative, expressed 

58.9 12_30828 protein 60S ribosomal protein L38, putative, expressed 
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Table A21. SNP annotation summary for marker-trait associations identified on chromosome 2H 
based on the analysis of four years combined by breeding program (cont.) 

cM Marker U35 Rice(v5) Description 

58.9 12_30582 protein rho-GTPase-activating protein 8, putative, expressed 

58.9 12_30179 protein protein binding protein, putative, expressed 

58.9 11_20160 protein mitochondrial protein, putative, expressed 

59.21 11_10624 protein xylanase inhibitor protein 1 precursor, putative, expressed 

59.21 12_10474 protein UL36 very large tegument protein, putative, expressed 

59.21 12_30853 unknown 

59.9 11_11178 protein prolyl-tRNA synthetase, putative, expressed 

59.9 11_10317 protein ubiquitin carboxyl-terminal hydrolase 7, putative, expressed 

59.9 11_20032 protein oxygen-evolving enhancer protein 2, chloroplast precursor, putative, expressed 

59.9 11_20251 protein peptidyl-prolyl isomerase, putative, expressed 

59.9 11_10358 protein chloroplastic quinone-oxidoreductase, putative, expressed 

59.9 11_20669 protein aldo-keto reductase/ oxidoreductase, putative, expressed 

59.9 12_30561 protein vegetative cell wall protein gp1 precursor, putative, expressed 

59.9 12_30514 protein glycine-rich protein, putative, expressed 

60.68 11_11384 protein expressed protein 

62.82 12_10035 protein cysteine proteinase 1 precursor, putative, expressed 

63.53 11_20438 protein extensin precursor, putative, expressed 

63.53 11_21399 protein protein phosphatase type 2A regulator/ signal transducer, putative, expressed 

63.53 11_20532 protein expressed protein 

63.53 11_10191 protein 2-cys peroxiredoxin BAS1, chloroplast precursor, putative, expressed 

63.53 11_10685 protein expressed protein 

63.53 11_20585 protein 2-oxoglutarate dehydrogenase E1 component, mitochondrial precursor, putative 

63.53 11_20390 protein 1,4-alpha-glucan branching enzyme IIB, chloroplast precursor, putative, expressed 

63.53 11_20887 protein alkaline/neutral invertase, putative, expressed 

63.53 12_11504 protein protein kinase KIPK, putative, expressed 

63.53 12_11324 protein CPL3, putative, expressed 

63.53 12_30323 protein AHK5, putative, expressed 

63.53 12_30275 protein expressed protein 

63.53 12_30265 protein carbonic anhydrase precursor, putative, expressed 

65.67 11_21094 protein calmodulin binding protein, putative, expressed 

66.12 11_11072 protein zeaxanthin epoxidase, chloroplast precursor, putative, expressed 

67.54 12_11121 protein cryptochrome 1 apoprotein, putative, expressed 

71.12 11_20833 protein brain protein 44-like protein, putative, expressed 

71.12 11_10407 protein endochitinase A precursor, putative, expressed 

71.12 12_31021 protein endochitinase A precursor, putative, expressed 

71.12 12_31020 protein endochitinase A precursor, putative, expressed 

71.56 12_10717 protein glycoside transferase, six-hairpin, subgroup, putative, expressed 

75.89 12_30178 protein ammonium transporter 1, member 2, putative, expressed 
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Table A21. SNP annotation summary for marker-trait associations identified on chromosome 2H 
based on the analysis of four years combined by breeding program (cont.) 

cM Marker U35 Rice(v5) Description 

78.03 11_10818 protein expressed protein 

78.03 11_10196 protein beta-mannosidase 4, putative, expressed 

78.03 11_11435 protein NB-ARC domain containing protein, expressed 

78.03 12_31398 protein NB-ARC domain containing protein, expressed 

78.03 12_30696 protein zinc finger, C3HC4 type family protein, expressed 

79.19 12_31445 protein expressed protein 

79.19 12_20489 protein phenylalanine ammonia-lyase, putative, expressed 

81.33 12_10859 protein flavonol sulfotransferase-like, putative, expressed 

85.92 11_20340 protein vacuolar processing enzyme, beta-isozyme precursor, putative, expressed 

86.63 11_10213 protein endothelial differentiation-related factor 1, putative, expressed 

86.63 12_30900 protein DNA binding protein, putative, expressed 

88.74 11_21037 protein deoxyribonuclease ycfH, putative, expressed 

90.1 11_21351 protein mechanosensitive ion channel family protein, expressed 

93.5 11_10214 protein HMG1/2-like protein, putative, expressed 

96.82 11_10138 protein phospholipid hydroperoxide glutathione peroxidase, putative, expressed 

113.92 12_21396 protein SET domain containing protein, expressed 

115.08 11_10429 protein calcium-dependent protein kinase, isoform AK1, putative, expressed 

116.49 11_10707 protein expressed protein 

116.49 12_31095 protein lipid binding protein, putative 

120.02 11_21220 protein expressed protein 

121.5 11_10092 protein nonspecific lipid-transfer protein 4 precursor, putative, expressed 

126.03 11_20480 protein beta-fructofuranosidase, insoluble isoenzyme 7 precursor, putative, expressed 

126.03 11_21440 protein expressed protein 

131.77 11_20895 protein sulfate transporter 3.3, putative, expressed 

133.22 11_11227 protein vacuolar cation/proton exchanger 3, putative, expressed 

133.94 12_30396 protein cysteine proteinase RD21a precursor, putative, expressed 

133.94 12_30106 protein transposon protein, putative, unclassified, expressed 

137.51 11_21274 protein expressed protein 

149.36 11_21299 protein ubiquinone biosynthesis protein COQ4, putative, expressed 
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Table A22. SNP annotation summary for marker-trait associations identified on chromosome 3H 
based on the analysis of four years combined by breeding program . 

cM Marker U35 Rice(v5) Description 

0 11_20952 protein gamma-secretase subunit APH-1B, putative, expressed 

0 12_31428 protein expressed protein 

0 11_11411 unknown 

8.23 11_20529 protein fructose-bisphosphate aldolase, chloroplast precursor, putative, expressed 

8.23 12_30297 protein glycosyltransferase, putative, expressed 

16.33 11_20172 protein eukaryotic translation initiation factor 3 subunit 10, putative, expressed 

22.68 11_20982 protein nonspecific lipid-transfer protein 1 precursor, putative, expressed 

24.99 11_10559 protein metalloendopeptidase, putative, expressed 

32.83 11_20607 protein IWS1 C-terminus family protein, expressed 

32.83 12_30571 protein zinc finger in N-recognin family protein, putative, expressed 

37.17 11_10672 protein ubiquitin family protein, expressed 

39.45 11_20410 protein NADP-dependent oxidoreductase P1, putative, expressed 

39.45 11_10825 protein cysteine synthase, mitochondrial precursor, putative, expressed 

39.45 11_10081 protein 40S ribosomal protein S5, putative, expressed 

39.45 11_10710 protein sphingosine-1-phosphate lyase, putative, expressed 

41 12_30953 protein cysteine synthase, mitochondrial precursor, putative, expressed 

42.06 11_20193 protein senescence-associated-like protein, putative, expressed 

42.06 12_10114 protein senescence-associated-like protein, putative, expressed 

42.47 11_21145 protein CENP-E like kinetochore protein, putative, expressed 

43.23 11_20647 protein integral membrane protein like, putative, expressed 

44.76 11_21259 protein NADPH quinone oxidoreductase 1, putative, expressed 

47.09 11_20356 protein mitochondrial-processing peptidase alpha subunit, mitochondrial precursor 

51.73 11_10380 protein expressed protein 

51.73 11_11313 protein ATP binding protein, putative, expressed 

51.73 12_30680 protein heme-binding protein 2, putative, expressed 

54.4 11_11099 protein argonaute-like protein, putative, expressed 

54.4 12_21475 protein expressed protein 

54.4 12_20574 protein monoglyceride lipase, putative, expressed 

55.57 12_30809 protein ATP binding protein, putative, expressed 

70.71 11_20877 protein ATP binding protein, putative, expressed 

70.71 12_31323 protein oligosaccharyl transferase STT3 subunit, putative, expressed 

72.26 11_20694 protein early nodulin-like protein 3 precursor, putative, expressed 

73.53 11_10350 protein ras-related protein Rab7, putative, expressed 

73.53 12_31356 protein 50S ribosomal protein L13, chloroplast precursor, putative, expressed 

74.15 11_20521 protein expressed protein 

74.78 12_30399 protein ATP synthase epsilon chain, mitochondrial, putative, expressed 

76.98 12_31346 protein DNA polymerase eta, putative, expressed 

78.53 12_11454 protein alpha-1,4-glucan-protein synthase, putative, expressed 

80.89 11_20115 protein expressed protein 
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Table A22. SNP annotation summary for marker-trait associations identified on chromosome 3H 
based on the analysis of four years combined by breeding program (cont.) 

cM Marker U35 Rice(v5) Description 

80.89 12_30170 protein expressed protein 

81.66 11_21358 protein plus-3 domain containing protein, expressed 

87.24 11_21348 protein calmodulin, putative, expressed 

87.24 11_10444 protein expressed protein 

87.24 12_31299 protein apurinic endonuclease-redox protein, putative, expressed 

88.82 11_21294 protein lipid-transfer protein, putative, expressed 

89.31 12_31018 protein transcription factor GAMYB, putative, expressed 

93.43 11_10747 protein ATP binding protein, putative, expressed 

107.63 11_20009 protein homeodomain protein JUBEL2, putative, expressed 

109.14 11_21513 protein laccase, putative 

114 11_10753 protein protein GPR108 precursor, putative, expressed 

117.1 11_10584 protein vignain precursor, putative, expressed 

141.54 11_21427 protein NB-ARC domain containing protein, expressed 

147.43 12_11297 protein leucoanthocyanidin dioxygenase, putative, expressed 

155.85 11_11436 protein ran GTPase binding protein, putative, expressed 

160.08 11_10935 protein expressed protein 

162.15 11_21008 protein cell division protein ftsY, putative, expressed 

167.77 11_10893 protein membrane protein, putative, expressed 

168.4 11_10694 protein ubiquitin-fold modifier 1 precursor, putative, expressed 

168.4 12_10014 protein 60S ribosomal protein L38, putative, expressed 
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Table A23. SNP annotation summary for marker-trait associations identified on chromosome 4H 
based on the analysis of four years combined by breeding program. 

cM Marker U35 Rice(v5) Description 

0 11_10379 protein 30S ribosomal protein S1, chloroplast precursor, putative, expressed 

26.19 11_20109 protein DNA-directed RNA polymerase I subunit 12, putative, expressed 

26.19 11_20680 protein expressed protein 

26.19 11_20302 protein DELLA protein SLR1, putative, expressed 

26.19 11_21418 protein 14-3-3-like protein S94, putative, expressed 

26.19 11_20606 protein phytanoyl-CoA dioxygenase, putative, expressed 

28.4 11_10031 protein phosphoglucomutase, cytoplasmic 2, putative, expressed 

36.37 11_21389 protein monoglyceride lipase, putative, expressed 

37.12 12_31524 protein peptidase, M50 family, putative, expressed 

38.63 12_30992 protein sugar transporter family protein, putative, expressed 

40.36 11_20180 protein expressed protein 

40.36 11_20114 protein serine hydroxymethyltransferase, mitochondrial precursor, putative, expressed 

40.36 12_10371 protein endo-1,4-beta-glucanase Cel1, putative, expressed 

40.36 12_10063 protein serine hydroxymethyltransferase, mitochondrial precursor, putative, expressed 

44.94 11_10793 protein gibberellin-regulated protein 1 precursor, putative, expressed 

46.41 11_21490 protein YKL151C, putative, expressed 

47.6 11_11405 protein selenium-binding protein-like, putative, expressed 

48.5 11_21073 protein DNA-directed RNA polymerases I and III 14 kDa polypeptide, putative, expressed 

48.5 11_20853 protein digalactosyldiacylglycerol synthase 1, putative, expressed 

48.5 11_10756 protein protein kinase domain containing protein, expressed 

48.5 11_10577 protein protein transport protein Sec24-like CEF, putative, expressed 

48.5 12_31382 protein non-imprinted in Prader-Willi/Angelman syndrome region protein 1, putative 

48.5 12_30331 protein transcriptional corepressor SEUSS, putative, expressed 

49.5 12_30777 protein structural constituent of ribosome, putative, expressed 

50.4 11_20289 protein 26S protease regulatory subunit 4, putative, expressed 

50.4 12_11190 protein cupin family protein, expressed 

51.3 11_11332 protein NAC domain transcription factor, putative, expressed 

51.3 12_11063 protein gamma-interferon-inducible lysosomal thiol reductase precursor, putative 

61.04 12_30054 protein phosphoenolpyruvate carboxykinase, putative, expressed 

76.03 12_20143 protein chitin-inducible gibberellin-responsive protein 2, putative, expressed 

78.77 12_31148 protein phosphoserine aminotransferase, chloroplast precursor, putative, expressed 

85.04 11_21151 protein ufm1-conjugating enzyme 1, putative, expressed 

90.29 12_30138 protein homeodomain-leucine zipper transcription factor TaHDZipI-1, putative, expressed 

96.59 11_20838 protein 24-methylenesterol C-methyltransferase 2, putative, expressed 

97.06 11_21243 protein glutathione S-transferase, putative, expressed 
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Table A23. SNP annotation summary for marker-trait associations identified on chromosome 4H 
based on the analysis of four years combined by breeding program (cont.) 

cM Marker U35 Rice(v5) Description 

101.62 11_20515 protein NADH-ubiquinone oxidoreductase B18 subunit, putative, expressed 

101.62 11_20454 protein glyceraldehyde-3-phosphate dehydrogenase B, chloroplast precursor, putative 

103.11 11_21111 protein GMFP5, putative, expressed 

103.11 11_10334 protein CIPK-like protein 1, putative, expressed 

106.03 11_20974 protein 50S ribosomal protein L11, putative, expressed 

116.85 11_21130 protein major pollen allergen Ory s 1 precursor, putative, expressed 

119.84 12_30239 protein ZAC, putative, expressed 
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Table A24. SNP annotation summary for marker-trait associations identified on chromosome 5H 
based on the analysis of four years combined by breeding program. 

cM Marker U35 Rice(v5) Description 

0 11_10405 protein salt tolerance protein, putative, expressed 

0 11_10593 protein 50S ribosomal protein L18, chloroplast precursor, putative, expressed 

2.81 12_30543 protein ATP binding protein, putative, expressed 

18.72 11_20010 protein GTPase family protein, putative, expressed 

25.23 11_10695 protein inositolphosphorylceramide-B C-26 hydroxylase, putative, expressed 

27 11_10974 protein cysteine synthase, putative, expressed 

27.72 11_20761 protein glutathione S-transferase IV, putative, expressed 

33.09 12_10530 protein serine/threonine-protein phosphatase BSL2, putative, expressed 

48.83 11_11198 protein serine/threonine-protein kinase SAPK9, putative, expressed 

48.83 11_21401 protein disease resistance protein, putative, expressed 

50.27 11_20841 protein UNC93 homolog A, putative, expressed 

50.27 11_21447 protein nucleotide pyrophosphatase/phosphodiesterase, putative, expressed 

50.27 12_30729 protein PAPA-1-like conserved region family protein, expressed 

51.3 12_30728 protein fiber protein Fb19, putative, expressed 

51.6 11_11506 protein surfactant protein B containing protein, expressed 

53.9 12_30214 protein indole-3-acetate beta-glucosyltransferase, putative, expressed 

57.36 11_20239 protein asparagine synthetase, putative, expressed 

57.98 11_21148 protein sucrose responsive element binding protein, putative, expressed 

57.98 11_20105 protein monoglyceride lipase, putative 

57.98 12_10079 protein 60S ribosomal protein L15, putative, expressed 

59.4 12_11512 protein 4-nitrophenylphosphatase, putative, expressed 

59.4 12_10034 protein 60S ribosomal protein L17, putative, expressed 

60.74 12_31033 protein alcohol dehydrogenase 2, putative, expressed 

62.15 11_20265 protein expressed protein 

63.31 11_21344 protein serine/threonine-protein kinase 16, putative, expressed 

90.84 12_31427 protein NOL1/NOP2/sun family protein, expressed 

100.28 12_30533 protein 3-hydroxy-3-methylglutaryl-coenzyme A reductase 3, putative, expressed 

108.01 11_20549 protein glutathione S-transferase, putative, expressed 

108.18 12_10844 protein expressed protein 

108.18 12_30854 protein dehydration-responsive element-binding protein 1B, putative, expressed 

110.26 11_20805 protein NC domain containing protein, expressed 

117.47 11_11200 protein phospholipase D delta, putative, expressed 

123.08 11_20637 protein transmembrane 9 superfamily protein member 4, putative, expressed 

127.96 11_11456 protein glutamyl-tRNA, putative, expressed 

129.41 12_30169 protein nuclear transcription factor Y subunit A-10, putative, expressed 

132.48 12_11472 protein expressed protein 

149.1 12_30580 protein 25.3 kDa vesicle transport protein, putative, expressed 

151.36 11_20100 protein hydroxyacid oxidase 1, putative, expressed 

151.36 11_21360 protein 40S ribosomal protein S18, putative, expressed 

151.36 12_31050 protein dehydrin Rab16C, putative, expressed 

153.51 12_10016 protein 40S ribosomal protein S15, putative, expressed 
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Table A24. SNP annotation summary for marker-trait associations identified on chromosome 5H 
based on the analysis of four years combined by breeding program (cont.) 

cM Marker U35 Rice(v5) Description 

158.37 11_10901 protein lipid binding protein, putative 

159.79 11_10536 protein carboxyl-terminal peptidase, putative, expressed 

161.58 12_30162 protein acid phosphatase, putative, expressed 

173.08 11_10869 protein expressed protein 

177.65 11_20536 protein cytidine/deoxycytidylate deaminase family protein, putative, expressed 

177.65 12_21009 protein polygalacturonase, putative, expressed 

178.43 12_20816 protein electron transfer flavoprotein alpha-subunit, mitochondrial precursor, putative 

178.43 12_11010 protein actin-3, putative, expressed 

178.43 12_11450 protein ferredoxin-3, chloroplast precursor, putative, expressed 

179.06 11_10254 protein CESA3 - cellulose synthase, expressed 

179.64 11_21138 protein transport protein particle subunit trs31, putative, expressed 

179.64 12_30656 protein expressed protein 

180.71 11_10736 protein phytosulfokine receptor precursor, putative, expressed 

181.43 11_20022 protein protein kinase Pti1, putative, expressed 

181.43 11_10236 protein mitochondrial prohibitin complex protein 2, putative, expressed 

182.16 12_30504 protein RNA-binding protein Luc7-like 2, putative, expressed 

182.88 12_31352 protein regulatory protein, putative, expressed 

182.88 12_30577 protein mitochondrial carrier C12B10.09, putative, expressed 

187.96 11_10310 protein transcription factor BTF3, putative, expressed 

189.6 11_20786 protein 26S proteasome non-ATPase regulatory subunit 12, putative, expressed 

189.6 12_31292 protein nucleotide binding protein, putative, expressed 

189.6 11_11364 protein pantoate--beta-alanine ligase, putative, expressed 

190.23 11_21108 protein derlin-2, putative, expressed 

191.97 12_31210 protein DANA2, putative, expressed 

191.97 11_10401 protein RCD1, putative, expressed 

191.97 12_30360 protein jasmonate O-methyltransferase, putative, expressed 

194.64 12_30382 protein OsMKK3 - putative MAPKK based on amino acid sequence homology, expressed 

194.84 12_10857 protein RNA polymerase sigma factor rpoD1, putative, expressed 

195.42 11_20402 protein ubiquitin-conjugating enzyme E2-21 kDa 1, putative, expressed 

196.12 12_30958 protein expressed protein 

196.12 12_10322 protein plasma membrane associated protein, putative, expressed 

196.85 12_31123 protein pectinesterase inhibitor domain containing protein, expressed 
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Table A25. SNP annotation summary for marker-trait associations identified on chromosome 6H 
based on the analysis of four years combined by breeding program. 

cM Marker U35 Rice(v5) Description 

0 11_10496 protein allene oxide cyclase 4, chloroplast precursor, putative, expressed 

30.06 12_31485 protein rhodanese like protein, putative, expressed 

31.73 11_10994 protein peptidyl-prolyl cis-trans isomerase, putative, expressed 

35.07 12_30358 protein GDSL-like Lipase/Acylhydrolase family protein, expressed 

42.36 11_10494 protein expressed protein 

42.36 12_11455 protein tetratricopeptide repeat protein KIAA0103, putative, expressed 

48.74 11_10461 protein AP-4 complex subunit sigma-1, putative, expressed 

52.75 11_10003 protein tubulin beta-3 chain, putative, expressed 

58.01 11_11067 protein inner envelope membrane protein, chloroplast precursor, putative 

60.23 12_30804 protein zinc finger, C3HC4 type family protein, expressed 

64.36 11_10455 protein monodehydroascorbate reductase, cytoplasmic isoform 2, putative, expressed 

65.03 11_11261 protein catalytic/ hydrolase, putative, expressed 

65.03 11_10040 protein omega-6 fatty acid desaturase, endoplasmic reticulum isozyme 2, putative 

72.54 12_31111 protein expressed protein 

81.17 11_11458 protein PDE317, putative, expressed 

85.16 11_10815 protein expressed protein 

90.15 11_10202 protein phosphate carrier protein, mitochondrial precursor, putative, expressed 

91.79 12_31235 protein expressed protein 

93.66 11_20728 protein subtilisin-like protease precursor, putative, expressed 

94.73 11_10595 protein dnaJ protein, putative, expressed 

112.32 11_20558 protein electron transporter/ thiol-disulfide exchange intermediate, putative, expressed 

112.32 11_20733 protein mRNA decapping enzyme 2, putative, expressed 

112.32 11_11534 protein PAP-specific phosphatase, putative, expressed 

119.02 11_10107 protein MTN3, putative, expressed 

121.22 11_11187 protein ABC-1, putative, expressed 

129.38 12_30627 protein zinc finger C-x8-C-x5-C-x3-H type family protein, expressed 
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Table A26. SNP annotation summary for marker-trait associations identified on chromosome 7H 
based on the analysis of four years combined by breeding program. 

cM Marker U35 Rice(v5) Description 

0.62 11_11132 protein expressed protein 

3.34 11_20710 unknown 

4.12 11_11179 protein MTA/SAH nucleosidase, putative, expressed 

6.78 12_11433 protein serine/threonine-protein kinase MAK, putative, expressed 

9.84 11_20307 protein ATOZI1, putative, expressed 

15.93 11_20755 protein expressed protein 

19.11 12_30723 protein spastin, putative, expressed 

25.7 11_20495 protein ATP-dependent Clp protease proteolytic subunit 2, putative, expressed 

25.93 12_30530 protein GDP-mannose 4,6 dehydratase 2, putative, expressed 

39.04 12_10218 protein alpha-L-fucosidase 2 precursor, putative, expressed 

41.85 11_10576 protein caffeoyl-CoA O-methyltransferase 1, putative, expressed 

58.57 12_10959 protein expressed protein 

61.32 12_30880 protein sucrose synthase 1, putative, expressed 

61.32 12_30879 protein sucrose synthase 1, putative, expressed 

64.8 12_10605 protein gibberellin receptor GID1L2, putative, expressed 

68.46 11_11098 protein nuclear migration protein nudC, putative, expressed 

68.46 12_10267 protein annexin-like protein RJ4, putative, expressed 

73.75 12_30496 protein ribonucleoside-diphosphate reductase small chain, putative, expressed 

74.52 11_10983 protein transmembrane 9 superfamily protein member 2 precursor, putative, expressed 

76.08 12_30344 protein multiple stress-responsive zinc-finger protein ISAP1, putative, expressed 

76.17 12_10655 protein lipid transfer protein, putative, expressed 

76.17 12_30595 protein signal recognition particle receptor beta subunit, putative, expressed 

77.85 11_10924 protein protein ariadne-1, putative, expressed 

77.85 11_20879 protein NAC domain-containing protein 68, putative, expressed 

77.85 12_10698 protein glycyl-tRNA synthetase 1, mitochondrial precursor, putative, expressed 

77.85 12_30794 protein protein ariadne-1, putative, expressed 

77.85 12_30760 protein VIP2 protein, putative, expressed 

77.85 11_10256 protein nuclear transport factor 2, putative, expressed 

79.6 11_20460 protein APOBEC1 complementation factor, putative, expressed 

79.6 12_11146 protein topoisomerase-like protein, putative, expressed 

79.6 12_10581 protein fructokinase-2, putative, expressed 

79.6 12_30589 protein expressed protein 

80.94 11_10534 protein far upstream element-binding protein 1, putative, expressed 

83.44 11_21079 protein peptide methionine sulfoxide reductase msrB, putative, expressed 

83.44 12_10369 protein expressed protein 

83.44 12_30213 protein vacuolar protein sorting protein 72, putative, expressed 

84.07 12_30645 protein nicalin precursor, putative, expressed 

84.92 12_11499 protein histone-like transcription factor and archaeal histone family protein, expressed 

86.44 11_20896 protein OsPP2Ac-1 - Phosphatase 2A isoform 1 belonging to family 1, expressed 
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Table A26. SNP annotation summary for marker-trait associations identified on chromosome 7H 
based on the analysis of four years combined by breeding program (cont.) 

cM Marker U35 Rice(v5) Description 
86.44 12_31199 protein xyloglucan endotransglucosylase/hydrolase protein 32 precursor 
86.44 12_31137 protein expressed protein 
86.44 12_30199 protein cyclopropane-fatty-acyl-phospholipid synthase, putative 
86.44 11_21330 protein FK506 binding protein, putative, expressed 
87.21 11_20771 protein expressed protein 
87.97 12_10089 protein elongation factor 1-gamma 3, putative, expressed 
91.79 12_30026 protein expressed protein 
107.11 12_31261 protein expressed protein 
114.78 12_30362 protein DNA polymerase alpha subunit B, putative, expressed 
119.54 12_30164 protein nuclear transcription factor Y subunit B-3, putative, expressed 
140.21 12_31241 unknown 
144.45 11_11440 protein transcriptional corepressor SEUSS, putative, expressed 
144.45 11_10843 protein expressed protein 
144.45 11_21363 protein structural constituent of ribosome, putative, expressed 
144.45 11_20452 protein proteasome subunit beta type 3, putative, expressed 
144.45 12_30593 protein phosphopantothenate--cysteine ligase, putative, expressed 
149.8 11_20962 protein expressed protein 
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Table A27. SNP annotation summary for marker-trait associations identified on the unlinked 
group of markers based on the analysis of four years combined by breeding program. 
Marker U35 Rice(v5) Description 

11_20922 protein DNA-directed RNA polymerases II 24 kDa polypeptide, putative, expressed 

11_20131 protein 40S ribosomal protein SA, putative, expressed 

11_20639 protein expressed protein 

12_11408 protein peptidyl-prolyl isomerase, putative, expressed 

12_10915 protein pathogenesis-related 10 protein PR10-1, putative 

12_21157 protein polyubiquitin 2, putative, expressed 

12_10752 protein transcription initiation factor IIB, putative, expressed 

12_20632 protein profilin A, putative, expressed 

12_10313 protein coatomer subunit delta, putative, expressed 

12_20323 protein 60S acidic ribosomal protein P2B, putative, expressed 

12_31414 protein expressed protein 

12_31267 protein expressed protein 

12_31239 protein cysteine-type peptidase, putative, expressed 

12_31230 protein ATP binding protein, putative, expressed 

12_31229 protein hypothetical protein 

12_31200 protein expressed protein 

12_31041 protein water stress-inducible protein Rab21, putative, expressed 

12_30982 protein prolamin PPROL 17 precursor, putative, expressed 

12_30939 protein OsPDIL2-3 - Oryza sativa protein disulfide isomerase, expressed 

12_30908 protein glutamine synthetase root isozyme 3, putative, expressed 

12_30845 protein dehydration-responsive element-binding protein 1D, putative, expressed 

12_30822 protein alpha-glucosidase precursor, putative, expressed 

12_30646 protein signal recognition particle 9 kDa protein, putative, expressed 

12_30603 protein serine/threonine-protein kinase Cx32, chloroplast precursor, putative, expressed 

12_30597 protein dehydrogenase/reductase SDR family member 7 precursor, putative, expressed 

12_30503 protein cytochrome P450 51, putative, expressed 

12_30502 protein expressed protein 

12_30224 protein cytokinin-O-glucosyltransferase 2, putative 

11_21213 protein retrotransposon protein, putative, unclassified, expressed 

11_10150 protein ubiquitin-conjugating enzyme E2 I, putative, expressed 
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Table A28. SNP markers detecting polymorphisms between Stander and Robust were used to 
build a linkage genetic map with a minimal LOD score of 3.0 and maximum recombination 
fraction of 0.30. Chi-square tests were used to determined segregation distortion from the 1:1 
Mendelian ration for all the loci. 

Marker Name Chr cM 
Allele 

χ
2
1:1 A B 

2_0959 1H 0.00 39 152 66.85    ***** 
SCRI_RS_168172 1H 0.50 40 151 64.51    ***** 
1_0905 1H 8.90 56 135 32.68    ***** 
SCRI_RS_173813 1H 19.00 61 130 24.93    ***** 
       

2_0711 2H 0.00 77 114 7.17    ** 
2_1220 2H 2.60 76 115 7.96    ** 
1_0780 2H 3.10 75 116 8.80    ** 
3_1095 2H 4.70 76 115 7.96    ** 
   

    

SCRI_RS_202154 3H 0.00 94 97 0.05 ns 
1_1516 3H 3.10 94 97 0.05 ns 
SCRI_RS_237894 3H 3.60 95 96 0.01 ns 
SCRI_RS_128254 3H 4.70 95 96 0.01 ns 
1_0014 3H 5.20 94 97 0.05 ns 
2_0605 3H 7.30 92 99 0.26 ns 
2_1523 3H 7.80 93 98 0.13 ns 
   

    

3_0992 4H 0.00 86 105 1.89 ns 
1_0371 4H 1.00 86 105 1.89 ns 
2_0114 4H 1.50 87 104 1.51 ns 
SCRI_RS_167844 4H 3.60 85 106 2.31 ns 
12_31414 4H 4.10 86 105 1.89 ns 
SCRI_RS_9618 4H 4.70 87 104 1.51 ns 
3_0605 4H 5.20 88 103 1.18 ns 
1_0639 4H 6.20 86 105 1.89 ns 
SCRI_RS_194525 4H 6.80 85 106 2.31 ns 
1_0010 4H 7.30 86 105 1.89 ns 
SCRI_RS_137903 4H 8.30 86 105 1.89 ns 
1_0627 4H 8.90 87 104 1.51 ns 
SCRI_RS_89959 4H 9.40 86 105 1.89 ns 
3_1148 4H 18.90 92 99 0.26 ns 
SCRI_RS_200957 4H 20.50 91 100 0.42 ns 
SCRI_RS_13460 4H 22.60 89 102 0.88 ns 
SCRI_RS_144204 4H 23.10 88 103 1.18 ns 
2_0197 4H 23.60 87 104 1.51 ns 

ns,***, ***** non-significant and significant SNP marker-trait associations at P≤ 0.001 and 
0.00001. 
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Table A28. SNP markers detecting polymorphisms between Stander and Robust were used to 
build a linkage genetic map with a minimal LOD score of 3.0 and maximum recombination 
fraction of 0.30.  Chi-square tests were used to determined segregation distortion from the 1:1 
Mendelian ration for all the loci (cont.) 

Marker Name Chr cM 
Allele 

χ 21:1 A B 
2_0134 5H-1 0.00 93 98 0.13 ns 
SCRI_RS_218201 5H-1 2.60 90 101 0.63 ns 
SCRI_RS_80595 5H-1 3.10 89 102 0.88 ns 
1_0414 5H-1 4.10 91 100 0.42 ns 
   

    

3_1023 5H-2 0.00 90 101 0.63 ns 
SCRI_RS_236068 5H-2 0.50 89 102 0.88 ns 
3_0591 5H-2 1.00 88 103 1.18 ns 
SCRI_RS_168359 5H-2 1.50 89 102 0.88 ns 
2_1202 5H-2 3.60 91 100 0.42 ns 
SCRI_RS_228061 5H-2 5.20 94 97 0.05 ns 
   

    

SCRI_RS_141226 5H-3 0.00 105 86 1.89 ns 
1_0869 5H-3 32.80 140 51 41.47    ***** 
SCRI_RS_169845 5H-3 43.90 159 32 84.45    ***** 
12_31239 5H-3 44.50 160 31 87.13    ***** 
3_0494 5H-3 45.00 159 32 84.45    ***** 
3_0769 5H-3 46.00 157 34 79.21    ***** 
3_1352 5H-3 46.60 158 33 81.81    ***** 
2_1155 5H-3 47.60 160 31 87.13    ***** 
2_1162 5H-3 48.70 160 31 87.13    ***** 
SCRI_RS_167850 5H-3 49.70 158 33 81.81    ***** 
2_1108 5H-3 50.20 157 34 79.21    ***** 
12_20775 5H-3 68.80 165 26 101.16    ***** 
SCRI_RS_159536 5H-3 80.60 143 48 47.25    ***** 
       

SCRI_RS_237782 6H 0.00 103 88 1.18 ns 
2_1521 6H 1.00 103 88 1.18 ns 
2_0315 6H 24.00 102 89 0.88 ns 
1_0136 6H 24.50 101 90 0.63 ns 
SCRI_RS_231372 6H 25.00 100 91 0.42 ns 
2_0745 6H 30.30 100 91 0.42 ns 
3_1308 6H 30.80 99 92 0.26 ns 
3_1485 6H 31.80 99 92 0.26 ns 
3_0358 6H 37.60 104 87 1.51 ns 
3_0521 6H 38.10 103 88 1.18 ns 
3_0361 6H 39.20 101 90 0.63 ns 
2_1030 6H 39.70 100 91 0.42 ns 
1_0244 6H 41.80 98 93 0.13 ns 
3_0317 6H 42.90 98 93 0.13 ns 
3_0316 6H 43.40 97 94 0.05 ns 

ns,***, ***** non-significant and significant SNP marker-trait associations at P≤ 0.001 and 
0.00001. 
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Table A28. SNP markers detecting polymorphisms between Stander and Robust were used to 
build a linkage genetic map with a minimal LOD score of 3.0 and maximum recombination 
fraction of 0.30.  Chi-square tests were used to determined segregation distortion from the 1:1 
Mendelian ration for all the loci (cont.) 

Marker Name Chr cM 
Allele 

χ 21:1 A B 
1_0910 6H 44.40 97 94 0.05 ns 
2_0675 6H 45.50 95 96 0.01 ns 
3_0857 6H 46.50 93 98 0.13 ns 
SCRI_RS_187343 6H 47.60 91 100 0.42 ns 
1_1253 6H 48.10 90 101 0.63 ns 
3_0804 6H 48.60 89 102 0.88 ns 
SCRI_RS_175000 6H 49.10 90 101 0.63 ns 
2_0904 6H 51.80 89 102 0.88 ns 
12_10348 6H 53.30 92 99 0.26 ns 
1_0040 6H 53.80 93 98 0.13 ns 
2_0744 6H 54.40 94 97 0.05 ns 
2_0682 6H 56.50 94 97 0.05 ns 
2_0969 6H 57.00 95 96 0.01 ns 
2_0746 6H 58.00 95 96 0.01 ns 
1_0220 6H 59.60 94 97 0.05 ns 
SCRI_RS_165945 6H 61.20 97 94 0.05 ns 
SCRI_RS_102418 6H 61.70 96 95 0.01 ns 

ns,***, ***** non-significant and significant SNP marker-trait associations at P≤ 0.001 and 
0.00001. 
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Table A29. Statistics from the composite interval mapping analysis based on the separate means for each environment and overall 
means from the Stander x Robust DH population. 

Chr Marker cM Interval 

11FGH   11SGH   12SGH   Combined 

Additive LOD  R2   Additive LOD  R2   Additive LOD  R2   Additive LOD  R2 

1H 2_0959 0 -1.956 0.485 0.012 -2.779 1.025 0.024 0.324 0.014 0 -1.989 0.855 0.02 

1H 2 -1.456 0.267 0.006 -2.13 0.596 0.014 0.55 0.04 0.001 -1.558 0.519 0.012 

1H 4 -1.122 0.16 0.004 -1.788 0.425 0.01 0.576 0.045 0.001 -1.324 0.38 0.009 

1H 6 -0.757 0.078 0.002 -1.38 0.27 0.006 0.57 0.047 0.001 -1.041 0.251 0.006 

1H 8 -0.417 0.027 0.001 -0.976 0.151 0.004 0.539 0.047 0.001 -0.757 0.148 0.004 

1H 10 -0.309 0.015 0 -0.813 0.106 0.003 0.559 0.051 0.001 -0.657 0.113 0.003 

1H 12 -0.351 0.018 0 -0.794 0.096 0.002 0.618 0.06 0.001 -0.673 0.112 0.003 

1H 14 -0.38 0.021 0.001 -0.738 0.082 0.002 0.655 0.066 0.002 -0.66 0.107 0.003 

1H 16 -0.393 0.023 0.001 -0.653 0.066 0.002 0.664 0.07 0.002 -0.62 0.097 0.002 

1H 18 -0.39 0.024 0.001 -0.55 0.05 0.001 0.646 0.071 0.002 -0.559 0.085 0.002 
                  

2H 2_0711 0 0.221 0.001 0 -2.424 0.146 0.004 0.241 0.001 0 -0.797 0.026 0.001 

2H 2 1.049 0.006 0 -3.892 0.081 0.002 4.629 0.117 0.003 -0.218 0 0 

2H 4 -3.102 1.74 0.041 -1.591 0.484 0.012 -3.763 2.709 0.063 -2.873 2.51 0.059 
                  

3H SCRI_RS_202154 0 0.517 0.053 0.001 -0.134 0.004 0 -1.598 0.54 0.013 -0.264 0.023 0.001 

3H 2 0.721 0.099 0.002 0.276 0.015 0 -1.296 0.344 0.008 0.029 0 0 

3H 4 0.842 0.138 0.003 0.493 0.049 0.001 -1.051 0.23 0.006 0.18 0.011 0 

3H 6 1.121 0.241 0.006 0.726 0.105 0.003 -0.817 0.137 0.003 0.428 0.06 0.001 
                  

4H 3_0992 0 0.635 0.078 0.002 1.072 0.232 0.006 1.282 0.341 0.008 0.908 0.272 0.007 

4H 2 0.627 0.075 0.002 0.953 0.182 0.004 0.908 0.169 0.004 0.724 0.171 0.004 

4H 4 0.729 0.103 0.002 1.006 0.205 0.005 1.027 0.219 0.005 0.815 0.219 0.005 

4H 6 0.848 0.139 0.003 1.123 0.255 0.006 1.085 0.244 0.006 0.917 0.277 0.007 

4H 8 0.756 0.111 0.003 0.996 0.2 0.005 0.558 0.064 0.002 0.669 0.147 0.004 
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Table A29. Statistics from the composite interval mapping analysis based on the separate means for each environment and overall 
means from the Stander x Robust DH population (cont.) 

Chr Marker cM Interval 

11FGH   11SGH   12SGH   Combined 

Additive LOD  R2   Additive LOD  R2   Additive LOD  R2   Additive LOD  R2 

4H 10 0.826 0.13 0.003 1.369 0.372 0.009 0.621 0.078 0.002 0.863 0.241 0.006 

4H 12 0.922 0.152 0.004 1.404 0.369 0.009 0.562 0.06 0.001 0.864 0.227 0.005 

4H 14 0.991 0.172 0.004 1.39 0.353 0.008 0.477 0.042 0.001 0.831 0.206 0.005 

4H 16 1.024 0.187 0.004 1.324 0.325 0.008 0.373 0.026 0.001 0.768 0.178 0.004 

4H 18 1.019 0.195 0.005 1.215 0.289 0.007 0.264 0.014 0 0.682 0.148 0.004 

4H 20 1.188 0.269 0.006 1.013 0.203 0.005 0.16 0.005 0 0.625 0.126 0.003 

4H 22 1.541 0.451 0.011 1.5 0.445 0.011 0.431 0.037 0.001 1.051 0.355 0.009 
                  

5H-1 2_0134 0 0.213 0.009 0 0.966 0.191 0.005 -0.948 0.189 0.005 0.31 0.032 0.001 

5H-1 2 0.241 0.011 0 0.664 0.088 0.002 -1.049 0.227 0.005 0.119 0.005 0 

5H-1 4 -0.259 0.013 0 -0.126 0.003 0 -0.812 0.138 0.003 -0.265 0.023 0.001 

5H-2 3_1023 0 -0.318 0.019 0 -1.26 0.319 0.008 -1.678 0.583 0.014 -1.019 0.341 0.008 

5H-2 2 -0.183 0.006 0 -1.366 0.368 0.009 -1.968 0.787 0.019 -1.152 0.427 0.01 

5H-2 4 -0.138 0.004 0 -1.35 0.362 0.009 -2.096 0.902 0.022 -1.196 0.464 0.011 

5H-3 SCRI_RS_141226 0 16.925 35.367 0.574 16.864 36.136 0.582 15.399 32.494 0.543 16.793 48.87 0.692 

5H-3 2 17.609 34.554 0.565 17.596 35.62 0.576 16.063 32.025 0.538 17.495 47.765 0.684 

5H-3 4 18.22 33.412 0.553 18.266 34.775 0.568 16.669 31.27 0.529 18.13 46.14 0.671 

5H-3 6 18.722 31.906 0.537 18.836 33.548 0.555 17.183 30.185 0.517 18.661 43.951 0.653 

5H-3 8 19.067 30.022 0.515 19.261 31.909 0.537 17.564 28.739 0.5 19.042 41.195 0.63 

5H-3 10 19.21 27.774 0.488 19.493 29.855 0.513 17.767 26.927 0.478 19.225 37.92 0.599 

5H-3 12 19.103 25.212 0.455 19.483 27.423 0.484 17.75 24.777 0.45 19.165 34.228 0.562 

5H-3 14 18.71 22.419 0.418 19.194 24.692 0.449 17.476 22.352 0.417 18.823 30.265 0.518 

5H-3 16 18.015 19.504 0.375 18.602 21.772 0.408 16.926 19.745 0.379 18.181 26.2 0.468 

5H-3 18 17.022 16.589 0.33 17.709 18.79 0.364 16.102 17.07 0.337 17.241 22.202 0.415 
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Table A29. Statistics from the composite interval mapping analysis based on the separate means for each environment and overall 
means from the Stander x Robust DH population (cont.) 

Chr Marker cM Interval 

11FGH   11SGH   12SGH   Combined 

Additive LOD  R2   Additive LOD  R2   Additive LOD  R2   Additive LOD  R2 

5H-3 20 15.765 13.788 0.283 16.544 15.874 0.318 15.031 14.441 0.294 16.036 18.421 0.359 

5H-3 22 14.303 11.197 0.237 15.161 13.133 0.271 13.762 11.958 0.25 14.62 14.969 0.303 

5H-3 24 12.71 8.884 0.193 13.632 10.648 0.226 12.36 9.698 0.209 13.066 11.917 0.25 

5H-3 26 11.064 6.884 0.153 12.032 8.466 0.185 10.895 7.708 0.17 11.452 9.297 0.201 

5H-3 28 9.438 5.205 0.118 10.435 6.604 0.147 9.435 6.005 0.135 9.85 7.105 0.157 

5H-3 30 7.889 3.833 0.088 8.9 5.053 0.115 8.032 4.585 0.105 8.317 5.314 0.12 

5H-3 32 6.459 2.742 0.064 7.47 3.791 0.087 6.727 3.429 0.079 6.896 3.882 0.089 

5H-3 34 -2.897 0.974 0.023 -1.619 0.314 0.008 -1.575 0.305 0.007 -2.279 1.024 0.024 

5H-3 36 -3.094 0.974 0.023 -1.851 0.36 0.009 -1.747 0.329 0.008 -2.497 1.078 0.026 

5H-3 38 -3.167 0.931 0.022 -2.038 0.398 0.01 -1.864 0.341 0.008 -2.629 1.09 0.026 

5H-3 40 -3.068 0.838 0.02 -2.134 0.419 0.01 -1.89 0.337 0.008 -2.629 1.046 0.025 

5H-3 42 -2.794 0.706 0.017 -2.112 0.418 0.01 -1.81 0.315 0.008 -2.48 0.947 0.023 

5H-3 44 -2.442 0.569 0.014 -2.083 0.43 0.01 -1.658 0.279 0.007 -2.266 0.834 0.02 

5H-3 3_0769 46 -2.506 0.61 0.015 -3.219 1.052 0.025 -1.868 0.361 0.009 -2.736 1.243 0.03 

5H-3 48 -2.217 0.404 0.01 -3.245 0.904 0.022 -1.377 0.165 0.004 -2.657 0.99 0.024 

5H-3 50 -2.346 0.459 0.011 -2.603 0.589 0.014 -0.665 0.039 0.001 -2.307 0.757 0.018 

5H-3 52 -2.139 0.343 0.008 -2.523 0.498 0.012 -0.695 0.039 0.001 -2.234 0.638 0.015 

5H-3 54 -2.134 0.305 0.007 -2.481 0.429 0.01 -0.943 0.063 0.002 -2.315 0.611 0.015 

5H-3 56 -2.037 0.255 0.006 -2.323 0.346 0.008 -1.203 0.095 0.002 -2.314 0.561 0.013 

5H-3 58 -1.837 0.198 0.005 -2.042 0.255 0.006 -1.447 0.131 0.003 -2.21 0.489 0.012 

5H-3 60 -1.547 0.141 0.003 -1.657 0.168 0.004 -1.637 0.168 0.004 -2.005 0.402 0.01 

5H-3 62 -1.204 0.089 0.002 -1.22 0.095 0.002 -1.751 0.201 0.005 -1.724 0.311 0.007 

5H-3 64 -0.856 0.049 0.001 -0.788 0.043 0.001 -1.782 0.227 0.005 -1.411 0.226 0.005 
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Table A29. Statistics from the composite interval mapping analysis based on the separate means for each environment and overall 
means from the Stander x Robust DH population (cont.) 

Chr Marker cM Interval 

11FGH   11SGH   12SGH   Combined 

Additive LOD  R2   Additive LOD  R2   Additive LOD  R2   Additive LOD  R2 

5H-3 66 -0.541 0.022 0.001 -0.407 0.013 0 -1.746 0.244 0.006 -1.104 0.155 0.004 

5H-3 68 -0.279 0.007 0 -0.097 0.001 0 -1.663 0.254 0.006 -0.831 0.101 0.002 

5H-3 70 0.202 0.004 0 0.413 0.016 0 -1.19 0.134 0.003 -0.341 0.017 0 

5H-3 72 0.868 0.066 0.002 1.096 0.11 0.003 -0.397 0.015 0 0.35 0.018 0 

5H-3 74 1.461 0.198 0.005 1.694 0.277 0.007 0.38 0.014 0 0.994 0.155 0.004 

5H-3 76 1.909 0.372 0.009 2.136 0.485 0.012 1.037 0.117 0.003 1.506 0.393 0.009 

5H-3 78 2.19 0.558 0.013 2.404 0.701 0.017 1.52 0.286 0.007 1.855 0.681 0.016 

5H-3 80 2.326 0.734 0.018 2.522 0.899 0.021 1.832 0.484 0.012 2.054 0.974 0.023 
                  

6H SCRI_RS_237782 0 0.529 0.055 0.001 1.266 0.326 0.008 0.909 0.172 0.004 0.958 0.305 0.007 

6H 2 0.452 0.038 0.001 0.919 0.164 0.004 0.4 0.032 0.001 0.692 0.152 0.004 

6H 4 0.383 0.025 0.001 0.965 0.167 0.004 0.272 0.014 0 0.653 0.125 0.003 

6H 6 0.296 0.014 0 1 0.168 0.004 0.119 0.002 0 0.597 0.097 0.002 

6H 8 0.192 0.006 0 1.022 0.166 0.004 -0.057 0.001 0 0.523 0.071 0.002 

6H 10 0.075 0.001 0 1.027 0.162 0.004 -0.247 0.01 0 0.431 0.046 0.001 

6H 12 -0.05 0 0 1.013 0.155 0.004 -0.443 0.03 0.001 0.327 0.026 0.001 

6H 14 -0.175 0.004 0 0.98 0.145 0.003 -0.633 0.062 0.001 0.215 0.011 0 

6H 16 -0.294 0.013 0 0.929 0.134 0.003 -0.806 0.103 0.002 0.103 0.003 0 

6H 18 -0.399 0.025 0.001 0.866 0.121 0.003 -0.953 0.151 0.004 -0.004 0 0 

6H 20 -0.488 0.039 0.001 0.794 0.108 0.003 -1.07 0.202 0.005 -0.1 0.003 0 

6H 22 -0.558 0.055 0.001 0.718 0.096 0.002 -1.155 0.254 0.006 -0.183 0.01 0 

6H 2_0315 24 -0.609 0.072 0.002 0.643 0.083 0.002 -1.211 0.304 0.007 -0.251 0.021 0 

6H 26 -0.27 0.014 0 0.723 0.103 0.002 -0.969 0.189 0.005 -0.052 0.001 0 
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Table A29. Statistics from the composite interval mapping analysis based on the separate means for each environment and overall 
means from the Stander x Robust DH population (cont.) 

Chr Marker cM Interval 

11FGH   11SGH   12SGH   Combined 

Additive LOD  R2   Additive LOD  R2   Additive LOD  R2   Additive LOD  R2 

6H 28 -0.244 0.011 0 0.813 0.127 0.003 -0.892 0.157 0.004 -0.026 0 0 

6H 30 -0.204 0.008 0 0.851 0.146 0.004 -0.762 0.12 0.003 0.002 0 0 

6H 32 0.357 0.025 0.001 0.738 0.11 0.003 -0.878 0.16 0.004 0.062 0.001 0 

6H 34 0.828 0.127 0.003 0.818 0.128 0.003 -1.043 0.215 0.005 0.189 0.011 0 

6H 36 1.272 0.301 0.007 0.853 0.141 0.003 -1.154 0.265 0.006 0.312 0.031 0.001 

6H 38 1.591 0.495 0.012 0.949 0.182 0.004 -1.164 0.282 0.007 0.437 0.063 0.002 

6H 40 2.001 0.784 0.019 0.818 0.135 0.003 -1.211 0.305 0.007 0.511 0.086 0.002 

6H 42 2.119 0.885 0.021 0.878 0.156 0.004 -1.138 0.27 0.006 0.636 0.134 0.003 

6H 44 2.368 1.103 0.026 0.935 0.177 0.004 -0.814 0.137 0.003 0.892 0.263 0.006 

6H 46 2.432 1.164 0.028 0.677 0.093 0.002 -0.978 0.199 0.005 0.827 0.226 0.005 

6H 48 1.963 0.757 0.018 0.118 0.003 0 -1.222 0.311 0.007 0.397 0.052 0.001 

6H 50 1.696 0.552 0.013 0.257 0.013 0 -1.38 0.389 0.009 0.312 0.032 0.001 

6H 52 1.073 0.224 0.005 0.427 0.037 0.001 -1.714 0.611 0.015 0.019 0 0 

6H 54 0.573 0.064 0.002 0.475 0.046 0.001 -2.11 0.94 0.022 -0.297 0.029 0.001 

6H 56 0.415 0.033 0.001 0.593 0.071 0.002 -2.127 0.942 0.022 -0.329 0.035 0.001 

6H 2_0746 58 0.095 0.002 0 0.347 0.025 0.001 -2.124 0.956 0.023 -0.525 0.092 0.002 

6H   60 0.243 0.011 0   0.699 0.099 0.002   -1.726 0.623 0.015   -0.216 0.015 0 
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Figure A1. Phenotypic distribution of seed dormancy for the breeding materials from USDA-
ARS-Aberdeen, ID (AB). (a) 2006, Robust mean=89; Stander=91; (b) 2007, Robust mean=1.96; 
Stander=16.85; (c) 2008, Robust mean=3.44; Stander=42.51; (d) 2009, Robust mean=0; 
Stander=61.28. The X-axis represents the percentage of germinated seeds, while the Y-axis 
represents the observed frequency for each of the intervals in X. 
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Figure A2. Phenotypic distribution of seed dormancy for the breeding materials from Bush 
Agricultural Resources (BA). (a) 2006, Robust mean=89; Stander=91; (b) 2007, Robust 
mean=1.96; Stander=16.85; (c) 2008, Robust mean=3.44; Stander=42.51; (d) 2009, Robust 
mean=0; Stander=61.28. The X-axis represents the percentage of germinated seeds, while the Y-
axis represents the observed frequency for each of the intervals in X. 
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Figure A3. Phenotypic distribution of seed dormancy for the breeding materials from Montana 
State University (MT). (a) 2006, Robust mean=89; Stander=91; (b) 2007, Robust mean=1.96; 
Stander=16.85; (c) 2008, Robust mean=3.44; Stander=42.51; (d) 2009, Robust mean=0; 
Stander=61.28. The X-axis represents the percentage of germinated seeds, while the Y-axis 
represents the observed frequency for each of the intervals in X. 
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Figure A4. Phenotypic distribution of seed dormancy for the breeding materials from North 
Dakota State University-two rowed (ND2R). (a) 2006, Robust mean=89; Stander=91; (b) 2007, 
Robust mean=1.96; Stander=16.85; (c) 2008, Robust mean=3.44; Stander=42.51; (d) 2009, 
Robust mean=0; Stander=61.28. The X-axis represents the percentage of germinated seeds, 
while the Y-axis represents the observed frequency for each of the intervals in X. 
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Figure A5. Phenotypic distribution of seed dormancy for the breeding materials from North 
Dakota State University-six-rowed (ND6R). (a) 2006, Robust mean=89; Stander=91; (b) 2007, 
Robust mean=1.96; Stander=16.85; (c) 2008, Robust mean=3.44; Stander=42.51; (d) 2009, 
Robust mean=0; Stander=61.28. The X-axis represents the percentage of germinated seeds, 
while the Y-axis represents the observed frequency for each of the intervals in X. 
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Figure A6. Phenotypic distribution of seed dormancy for the breeding materials from University 
of Minnesota (UM). (a) 2006, Robust mean=89; Stander=91; (b) 2007, Robust mean=1.96; 
Stander=16.85; (c) 2008, Robust mean=3.44; Stander=42.51; (d) 2009, Robust mean=0; 
Stander=61.28. The X-axis represents the percentage of germinated seeds, while the Y-axis 
represents the observed frequency for each of the intervals in X. 
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Figure A7. Phenotypic distribution of seed dormancy for the breeding materials from Utah State 
University (UT). (a) 2006, Robust mean=89; Stander=91; (b) 2007, Robust mean=1.96; 
Stander=16.85; (c) 2008, Robust mean=3.44; Stander=42.51; (d) 2009, Robust mean=0; 
Stander=61.28. The X-axis represents the percentage of germinated seeds, while the Y-axis 
represents the observed frequency for each of the intervals in X. 
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Figure A8. Phenotypic distribution of seed dormancy for the breeding materials from 
Washington State University (WA). (a) 2006, Robust mean=89; Stander=91; (b) 2007, Robust 
mean=1.96; Stander=16.85; (c) 2008, Robust mean=3.44; Stander=42.51; (d) 2009, Robust 
mean=0; Stander=61.28. The X-axis represents the percentage of germinated seeds, while the Y-
axis represents the observed frequency for each of the intervals in X.
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Figure A9. Genome-wide LD decay scatterplots for the analysis of each breeding program (four 
years): a) USDA-ARS-Aberdeen, ID (AB); b) Bush Ag. (BA); c) Montana State 
(MT); d) North Dakota State two
polymorphic loci (MAF>0.05) was plotted against the genetic distance (cM). 
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(MT); d) North Dakota State two-row (ND2R).  LD measured as R2 between pairs of 
0.05) was plotted against the genetic distance (cM).  
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Figure A10.  Genome-wide LD decay scatterplots for the analysis of each breeding program 
(four years): a) North Dakota State University 
(UM); c) Utah State (UT); d) Washington State (WA). LD measured as R
polymorphic loci (MAF>0.05) was plotted against the genetic distance (cM). 
 

187 

 

 

LD decay scatterplots for the analysis of each breeding program 
(four years): a) North Dakota State University six-row (ND6R); b) University of Minnesota 
(UM); c) Utah State (UT); d) Washington State (WA). LD measured as R2 between pairs of 

0.05) was plotted against the genetic distance (cM).  
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Figure A11.  Comparison of four linear models for individual AM analysis of materials 
submitted by USDA-ARS-Aberdeen, ID (Aberdeen) across four years.  Cumulative distribution 
of P-values was computed as follow: (a) 2006= 2,334 SNPs and 95 lines; (b) 2007:
lines; (c) 2008: 2,370 and 96 lines; (d) 2009= 2,330 and 96 lines.
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Figure A11.  Comparison of four linear models for individual AM analysis of materials 
Aberdeen, ID (Aberdeen) across four years.  Cumulative distribution 

values was computed as follow: (a) 2006= 2,334 SNPs and 95 lines; (b) 2007:
lines; (c) 2008: 2,370 and 96 lines; (d) 2009= 2,330 and 96 lines. 
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Figure A11.  Comparison of four linear models for individual AM analysis of materials 
Aberdeen, ID (Aberdeen) across four years.  Cumulative distribution 

values was computed as follow: (a) 2006= 2,334 SNPs and 95 lines; (b) 2007: 2,359 and 96 



 

 

Figure A12.  Comparison of four linear models for individual AM analysis of materials 
submitted by Bush Agricultural Re
P-values was computed as follow: (a) 2006= 2,320 SNPs and 96 lines; (b) 2007: 2,162 and 96 
lines; (c) 2008: 2,266 and 95 lines; (d) 2009= 2,314 and 96 lines.
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Figure A12.  Comparison of four linear models for individual AM analysis of materials 

ush Agricultural Resources LLC., across four years.  Cumulative distribution of 
values was computed as follow: (a) 2006= 2,320 SNPs and 96 lines; (b) 2007: 2,162 and 96 

lines; (c) 2008: 2,266 and 95 lines; (d) 2009= 2,314 and 96 lines. 
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Figure A13.  Comparison of four linear models for individual AM analysis of materials 
submitted by Montana State University across four years.  Cumulative distribution of 
was computed as follow: (a) 2006= 1,544 SNPs and 96 line
2008: 2,204 and 96 lines; (d) 2009= 1,441 and 96 lines.
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Figure A13.  Comparison of four linear models for individual AM analysis of materials 
submitted by Montana State University across four years.  Cumulative distribution of 
was computed as follow: (a) 2006= 1,544 SNPs and 96 lines; (b) 2007: 1,689 and 96 lines; (c) 
2008: 2,204 and 96 lines; (d) 2009= 1,441 and 96 lines. 
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Figure A13.  Comparison of four linear models for individual AM analysis of materials 
submitted by Montana State University across four years.  Cumulative distribution of P-values 

s; (b) 2007: 1,689 and 96 lines; (c) 



 

 

Figure A14.  Comparison of four linear models for individual AM analysis of materials 
submitted by North Dakota State University (two
distribution of P-values was computed as follow: (a) 2006= 2,278 SNPs and 96 lines; (b) 2007: 
2,197 and 96 lines; (c) 2008: 2,050 and 96 lines; (d) 2009= 1,855 and 96 lines.
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Figure A14.  Comparison of four linear models for individual AM analysis of materials 

Dakota State University (two-row) across four years.  Cumulative 
values was computed as follow: (a) 2006= 2,278 SNPs and 96 lines; (b) 2007: 

2,197 and 96 lines; (c) 2008: 2,050 and 96 lines; (d) 2009= 1,855 and 96 lines. 
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Figure A15.  Comparison of four linear models for individual AM analysis of materials 
submitted by North Dakota State University (six
of P-values was computed as follo
lines; (c) 2008: 1,736 and 96 lines; (d) 2009= 1,474 and 96 lines.
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Figure A15.  Comparison of four linear models for individual AM analysis of materials 

th Dakota State University (six-row) across four years.  Cumulative distribution 
values was computed as follow: (a) 2006= 1,335 SNPs and 96 lines; (b) 2007: 1,287 and 96 

lines; (c) 2008: 1,736 and 96 lines; (d) 2009= 1,474 and 96 lines. 
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Figure A15.  Comparison of four linear models for individual AM analysis of materials 
row) across four years.  Cumulative distribution 

w: (a) 2006= 1,335 SNPs and 96 lines; (b) 2007: 1,287 and 96 



 

 

Figure A16.  Comparison of four linear models for individual AM analysis of materials 
submitted by University of Minnesota across four years.  Cumulative distribution of 
was computed as follow: (a) 2006= 1,295 SNPs and 96 lines; (b) 2007: 1,539 
2008: 1,304 and 96 lines; (d) 2009= 1,186 and 96 lines.
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Figure A16.  Comparison of four linear models for individual AM analysis of materials 
submitted by University of Minnesota across four years.  Cumulative distribution of 
was computed as follow: (a) 2006= 1,295 SNPs and 96 lines; (b) 2007: 1,539 and 96 lines; (c) 
2008: 1,304 and 96 lines; (d) 2009= 1,186 and 96 lines. 
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Figure A16.  Comparison of four linear models for individual AM analysis of materials 
submitted by University of Minnesota across four years.  Cumulative distribution of P-values 

and 96 lines; (c) 



 

 

Figure A17.  Comparison of four linear models for individual AM analysis of materials 
submitted by Utah State University across four years.  Cumulative distribution of 
computed as follow: (a) 2006= 2,502 SNPs and 96 lines; (b) 2007: 2,195 and 
2,144 and 96 lines; (d) 2009= 2,115 and 96 lines.
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Figure A17.  Comparison of four linear models for individual AM analysis of materials 
submitted by Utah State University across four years.  Cumulative distribution of 
computed as follow: (a) 2006= 2,502 SNPs and 96 lines; (b) 2007: 2,195 and 96 lines; (c) 2008: 
2,144 and 96 lines; (d) 2009= 2,115 and 96 lines. 
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Figure A17.  Comparison of four linear models for individual AM analysis of materials 
submitted by Utah State University across four years.  Cumulative distribution of P-values was 
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Figure A18.  Comparison of four linear models for individual AM analysis of materials 
submitted by Washington State University ac
values was computed as follow: (a) 2006= 2,343 SNPs and 96 lines; (b) 2007: 2,341 and 96 
lines; (c) 2008: 2,067 and 96 lines; (d) 2009= 1,979 and 96 lines.
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Figure A18.  Comparison of four linear models for individual AM analysis of materials 
submitted by Washington State University across four years.  Cumulative distribution of 
values was computed as follow: (a) 2006= 2,343 SNPs and 96 lines; (b) 2007: 2,341 and 96 
lines; (c) 2008: 2,067 and 96 lines; (d) 2009= 1,979 and 96 lines. 
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Figure A18.  Comparison of four linear models for individual AM analysis of materials 
ross four years.  Cumulative distribution of P-

values was computed as follow: (a) 2006= 2,343 SNPs and 96 lines; (b) 2007: 2,341 and 96 



 

 

 

 

 
Figure A19. Comparison of four linear models from the combined analysis across four years for 
individual breeding programs.  The cumulative distribution of 
individual breeding program and four years as follow: (a) AB= 2,556 SNP markers and 369 
barley CAP lines; (b) BA= 2,428 SNP markers and 377 lines; (c) MT= 2,302 SNP markers and 
362 lines; (d) ND2R= 2,481 SNP markers and 379 lines;
lines; (f) UM= 1,853 SNP markers and 371 lines; (g) UT= 2,608 SNP markers and 365 lines; (h) 
WA= 2,532 SNP markers and 375 lines.
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Figure A20. Genome-wide association results for seed dormancy on each of the four 
subpopulations submitted by USDA
model=P; c) 2008, model=K; d) 2009, model=K.
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association results for seed dormancy on each of the four 
subpopulations submitted by USDA-ARS-Aberdeen, ID (AB). a) 2006, model=PK; b) 2007, 
model=P; c) 2008, model=K; d) 2009, model=K.
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Figure A21. Genome-wide association results for seed dormancy on each of the four 
subpopulations submitted by Bush Agricultural Resources LLC (BA). a) 2006, model=PK; b) 
2007, model=P; c) 2008, model=PK; d) 2009, 
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wide association results for seed dormancy on each of the four 
subpopulations submitted by Bush Agricultural Resources LLC (BA). a) 2006, model=PK; b) 
2007, model=P; c) 2008, model=PK; d) 2009, model=PK.

2H       3H       4H        5H         6H 7H 
Chromosome 

 

 

 

 

wide association results for seed dormancy on each of the four 
subpopulations submitted by Bush Agricultural Resources LLC (BA). a) 2006, model=PK; b) 



 

 

 
Figure A22. Genome-wide association results for seed dormancy on each of the four 
subpopulations submitted by Montana State University 
model=PK; c) 2008, model=K; d) 2009, model=PK.
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wide association results for seed dormancy on each of the four 
subpopulations submitted by Montana State University (MT). a) 2006, model=PK; b) 2007, 
model=PK; c) 2008, model=K; d) 2009, model=PK.
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wide association results for seed dormancy on each of the four 
(MT). a) 2006, model=PK; b) 2007, 



 

 

 
 
Figure A23. Genome-wide association results for seed dormancy 
subpopulations submitted by North Dakota State University two
model=K; b) 2007, model=Naïve; c) 2008, model=PK; d) 2009, model=P.
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wide association results for seed dormancy on each of the four 
subpopulations submitted by North Dakota State University two-rowed (ND2R). a) 2006, 
model=K; b) 2007, model=Naïve; c) 2008, model=PK; d) 2009, model=P. 
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Figure A24. Genome-wide association results for seed dormancy on each of the four 
subpopulations submitted by North Dakota State University six
model=K; b) 2007, model=PK; c) 2008, model=K; d) 2009, 
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wide association results for seed dormancy on each of the four 
subpopulations submitted by North Dakota State University six-rowed (ND6R). a) 2006, 
model=K; b) 2007, model=PK; c) 2008, model=K; d) 2009, model=PK. 
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wide association results for seed dormancy on each of the four 
rowed (ND6R). a) 2006, 



 

 

 
Figure A25. Genome-wide association results for seed dormancy on each of the four 
subpopulations submitted by University of 
model=Naïve; c) 2008, model=K; d) 2009, model=K.
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wide association results for seed dormancy on each of the four 
University of Minnesota (UM). a) 2006, model=K; b) 2007, 

model=Naïve; c) 2008, model=K; d) 2009, model=K. 
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Figure A26. Genome-wide association results for seed dormancy on each of the 
subpopulations submitted by Utah State University (UT). a) 2006, model=PK; b) 2007, 
model=K; c) 2008, model=K; d) 2009, model=PK.
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wide association results for seed dormancy on each of the 
subpopulations submitted by Utah State University (UT). a) 2006, model=PK; b) 2007, 
model=K; c) 2008, model=K; d) 2009, model=PK. 
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subpopulations submitted by Utah State University (UT). a) 2006, model=PK; b) 2007, 



 

 

 
 
Figure A27. Genome-wide association results for seed dormancy on each of the four 
subpopulations submitted by Washington State University (WA). a) 2006, model=PK; b) 2007, 
model=P; c) 2008, model=K; d) 2009, model=K.
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wide association results for seed dormancy on each of the four 
subpopulations submitted by Washington State University (WA). a) 2006, model=PK; b) 2007, 
model=P; c) 2008, model=K; d) 2009, model=K. 
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wide association results for seed dormancy on each of the four 
subpopulations submitted by Washington State University (WA). a) 2006, model=PK; b) 2007, 


