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ABSTRACT 

 The immune system of the human body follows adaptive process that learns via 

experience. Some algorithms are designed to take advantage of this process to determine 

solutions for complex problem domains. Collection of these algorithms is known as Artificial 

Immune Systems. Among this collection, one important algorithm is “The Danger Theory.” In 

this thesis, a novel application of the algorithm has been implemented to solve an electrical grid 

problem. This problem of interest is the automatic detection of faulty and failure conditions in 

the electrical grid. This novel application finds faults in electrical-grid data in an automated 

fashion. The methodology treats streams of electrical-grid data as artificial antigens, and uses 

artificial antibodies to identify and locate potentially harmful conditions in the grid. The results 

demonstrate that the approach is promising. I believe this approach has a good contribution for 

the emerging field of Smart Grids.  
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1. INTRODUCTION 

The methodology behind the immune system of the human body deals with problem 

domains where self-adaptive algorithms are of central focus. A power system is an example of 

such a domain. 

 The human body is subject to invasion by diverse bodies that are foreign to that body. 

The human immune system has proven itself as a successful process to protect the human body 

against these invading bodies that are known as antigens. Antigens cause infections to the body 

they attack. The protection system against these antigens is highly complicated. It is perfectly 

designed for detecting and eliminating antigens. The components of the body that this system 

protects are defined as “self” in immunology. Antigens are defined as “non-self” [1]. The 

immune system is able to distinguish between all cells as self-cells and non-self-cells. As time 

passes, this system can change its definition of self and non-self. (i.e., The body currently 

considered as harmful can be tagged as not harmful in the future and vice versa.) Over time, this 

system learns how to change the definitions. This feature helps it to be adaptive.  

The immune system has other adaptive features that are outside the scope of this thesis. 

These additional features are not related to the problem statement that is of concern. The 

adaptability of immune system introduced a collection of algorithms. This collection is called 

Artificial Immune Systems (AIS). They are designed for and applied to problem domains where 

adaptability can improve the solution (e.g., intrusion detection, data mining, and search 

problems).  
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An emerging extension of AIS is the Danger Theory [1]. This theory is concerned with 

the immune system’s response to danger. It proposes that immune-system responses depend 

upon the coordination of two signals known as Danger Signals. Hence, the AIS possess all the 

core features of a monitoring system that are considered as ideal. The monitoring capability of 

AIS is applicable for all systems having variable operating conditions. A power system is such a 

system. 

A power system is exposed to faults. Because most power failures are not preventable 

[2], whenever a fault occurs in a power system, it is easy to quickly detect the fault along with its 

location (e.g., bus number) so that actions can be taken to minimize the fault's effect using a self-

healing process [3]. One challenge with this fault detection is that the fault characteristics vary a 

lot. (e.g., The voltage magnitude that was tagged as anomalous in the past can be safe in the 

current context.) In this context, it is necessary to have a self-adaptive algorithm such that it can 

change the definition of self and non-self over time, relying on multiple sources to ensure fault 

detection..  

Applying the Danger Theory in such systems can give promising results. Hence, for this 

thesis, a novel application of this theory to find faults in an electrical grid by monitoring its data 

as a supervised learning algorithm is presented. Although there are no previous works similar to 

this one in the power-system domain, a similar approach in a different problem domain can be 

found (e.g., fault detection for a telephone system) [4]. 
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2. BACKGROUND 

2.1. Smart Electrical Grid 

 The full suite of challenges in the power-system domain resulted in the evolution of the 

electrical grid. This evolution resulted in the bulk of smart-grid technologies. Hence, we are 

focusing on a Smart Electrical Grid. 

 A Smart Grid is an electrical generation and distribution system that is fully networked, 

instrumented, and automated [3]. The major components of a Smart Electrical Grid are digitally 

addressable (e.g., Each one has an internet protocol (IP) address). Instrumentation and 

networking makes information available to observe the grid. Sensors and processors are installed 

with many of the grid's components. Sensors provide necessary information about the component 

to which they are attached. Processors are able to carry out intelligent actions with little or no 

human intervention [3]. Hence, this system can gather and act on information in an automated 

fashion. Therefore, it can be called a modernized electrical grid, taking advantage of information 

and communication technologies. 

 Researchers are now paving the way to use innovative technologies that ensure a more 

reliable and efficient Smart Electrical Grid. A considerable amount of work [3, 5-8] has been 

done to prevent a power system from failing as a result of disturbances defined as “fault.” Once a 

fault in the Smart Electrical Grid has been detected, system failures can be healed or even 

prevented using methods such as protections systems [5], self-healing [3], etc. in an automated 

fashion. Not all disturbances need to be addressed. Some disturbances do not affect the grid’s 

health while others do. According to [9], small system disturbances do not require prevention 

mechanisms (e.g., protective system response).  
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 On the other hand, a large system disturbance needs immediate attention. Such 

disturbances can cause complete system failure. They need to be dealt with using disturbance-

prevention phenomena. Hence, it is necessary to have a mechanism which distinguishes between 

different disturbance granularities. It is a promising area of research because, depending upon the 

grid’s health, the disturbance’s definition can be changed.   

2.2. Phasor Measurement Unit 

 To monitor a grid's health, it is necessary to have a way of reading and reporting the 

electrical grid’s data using sensors with the smallest time granularity. Phasor Measurement Units 

(PMUs) [10] are such sensors that enable intelligent monitoring of a Smart Electrical Grid in real 

time. A PMU is placed to observe a bus. Upon placement, it can observe the bus where it is 

placed as well as its neighboring busses. Therefore, providing these PMUs installment at certain 

points in a grid, together, they observe all busses on the grid. As soon as they observe the 

information, they send this observed information to the designated decision center, about 30 

times a second. From the decision center, preventive actions can be taken. This process of 

sending information describes  how a PMU communicates the information it observes in a Smart 

Electrical Grid. From the information a PMU provides, phasors are of interest. 

 A part of the electrical grid may lose synchronization with the rest of the system due to 

disturbances. This lack of synchronization causes grid instability and can lead to severe issues 

such as a system shutdown that is known as a blackout. Hence, synchronization issues needs to 

be monitored in as short duration as possible. One efficient way to do this task is by monitoring 

the phases of all bus voltages and currents relative to each other in real time [11].  
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 Again, once a power disruption or disturbance happens, this value is affected and 

changes. Hence, these disturbances can be monitored and predictions can be made about which 

one needs to be taken care of and which one does not.  

 Alternative current (AC) voltage is represented by plotting a graph illustrating the voltage 

variation with respect to time as shown in Figure 1. Here, Vm and –Vm are, respectively, the 

maximum and minimum voltages. Vm is the voltage amplitude. 

 

 

Figure 1. Voltage measured at a fixed point as a function of time 

 Mathematically, an AC voltage [12] is represented by the following equation, 

               

 Here,       , where f is the frequency and   is the phase angle. To deal with complex 

mathematical terms, equations presented above needed simplification. Hence, the transfer of 

equations like this from the usual time domain to a different coordinate system was invented. 

This system is known as phasor notation. In [11], Figure 1 was given to describe a phasor 

notation.  
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Figure 2 . AC power system (left) and its phasor diagram (right) 

 According to [11], an AC voltage is a point (“A” in Figure 2) that moves in a circular 

path in an anticlockwise direction; the amplitude (V) of the signal is the radius of this circle. For 

an instance of time, the value of the voltage is the vertical distance of A(amplitude) above the X-

axis. The angle shown in Figure 2 is called the phase angle. A moves around the circle, hence the 

phase angle increases at a constant rate with respect to time. These values of “A” and the phase 

angle constitute the phasor. Both the magnitude and phase angle of the sine waves found in 

electricity are represented by a phasor. A pasor is represented by its amplitude and angle. A <   

or Ae
i . 

 As discussed earlier, this phasor may vary from bus to bus because of disturbances in the 

grid. In [13], the author described how the phase angle differs from bus to bus. Figure 3, taken 

from [13], shows the different phase angles. In this figure indices represent the phase angle at 

each bus.  

http://en.wikipedia.org/wiki/Phasor_(sine_waves)
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Figure 3. PMUs at different busses showing different phase angles 

 The PMU achieves synchronization by same-time sampling of voltage and current 

phasors using timing signals from Global Positioning System (GPS) satellites. In [14], the author 

showed how bus phase angles are sampled with respect to a reference signal (e.g., the GPS). 

Figure 4, (taken from [14]), shows this concept. 

 

Figure 4. Sampling bus phase angle with respect to a reference phase angle (e.g., of GPS) 
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 This phasor information with respect to the GPS can be communicated with a decision 

point. That decision point then has a snapshot of the entire power system. This snapshot is the 

near real-time view of the electrical grid’s status at that exact point of time. This Phasor 

information of the power system allows mining important information about the grid or system 

(e.g., exact angular difference between different locations, shift in a bus’s normal behavior, etc.). 

An individual bus’s Phasor information would be used here to determine what the grid is doing 

at that time. its behavior can be marked as “faulty” or not. 
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3. OBJECTIVES 

 The objective of this work is to present a study about how this Danger Theory performs 

to find an electrical grid’s fault from the perspective of a Smart Electrical Grid. I built an 

Artificial Immune System model based on the Danger Theory. To build this model, I 

implemented set algorithms that constitute AIS. This model was applied to PMU data. The set of 

algorithms included, but was not limited to, the Clonal Selection algorithm, the Negative 

Selection algorithm, Somatic Hypermutation, and Receptor Editing. I believe this approach will 

contribute to the emerging Smart Grid. This model can sense and quickly report the health of the 

grid by detecting faulty data. To achieve these contributions just mentioned, I aimed to 

accomplish several objectives and tasks. 

3.1. Objective One 

 The first objective is to simulate real-time consumer behavior. For an electrical grid, this 

behavior means the pattern of consumer loads or demands for power. Both real and reactive 

loads need to be considered. Again, these consumer loads need to behave such that they can 

include faults in the electrical grid. 

3.2. Objective Two 

 The next objective is to simulate PMU observations. To accomplish this objective, 

sequential execution of power-flow computation can be performed. Sequential execution means 

the output of one execution, except the consumer-load data, is the input for the next execution. 

Each execution gives the behavior of the power system under observation for the consumer load 

it is experiencing.  
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 The power-flow computation/algorithm just mentioned is performed using MATLAB’s 

power-flow algorithm on the IEEE bus system [10]. This IEEE bus system represents the power 

system under observation. 

 Before feeding the bus data into the current execution, the consumer load at each load 

point needs to be changed so that it can reflect the power grid's behavior for the consumer loads. 

Hence, sequential execution of power-flow computation simulates the real-time electrical grid's 

behavior. The result of each execution in a sequence represents the dynamic change of the grid. 

Hence, this sequence represents the PMU’s reporting of bus observations for the considered 

system. The number of executions depends on the number of different consumer loads available. 

This number represents number of observations by the PMU.  

3.3. Objective Three 

 The objective is to apply this Artificial Immune System, especially the Danger Theory, 

for automatic detection of faults and failures in an electrical grid. This automatic detection 

accomplishes the core objective: study of how well AIS performs to find an electrical grid's fault. 

To achieve this objective, I built a model of the Artificial Immune System based on the Danger 

Theory. It was applied to the PMU data. I believe this approach is appropriate for finding variant 

faults in the electrical grid. 

3.4. Objective Four 

 Some standard data-mining techniques are used to mark the Smart Electrical Grid’s data 

at each time stamp as faulty or non-faulty. Comparing the results from the implemented AIS 

heuristic with the results from these data-mining techniques is done.  
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4. BACKGROUND ON AIS 

4.1. Biological Immune System 

 Analogies exist between the biological immune system and the nature of a Smart 

Electrical Grid. It is necessary to know about this immune system before going into the details of 

my method. 

 The biological immune system defends an organism against disease. The system can 

recognize a wide variety of foreign bodies that can possibly harm the organism. Upon 

recognition, the immune system has the ability to neutralize them. These foreign, invading 

bodies are known as antigens. The antigens are found on the surface of the invading organism. 

They can be both harmful and harmless [1]. The most important cells for the immune system are 

the white blood cells [15]. They are produced in the bone marrow. They recognize and eliminate 

antigens. The white blood cells have two forms, B cells and T cells. B cells start working when 

they are produced. B cells produce and secrete specific proteins called antibodies. Specific B 

cells produce a specific antibody. Antibodies can bind with antigens, making B cells capable of 

recognizing antigens. This part describes the process of antigen recognition. 

 On the other hand, T cells cannot start working when they are produced. They need time 

to mature. For maturation, they pass on to the thymus after their production. Upon maturation, 

they circulate in the body. T cells have three jobs [1].  

 The first job is to activate B cells. The second one is to bind with the antigens. Upon 

binding, the T cells inject poisonous chemicals into the antigens. This poison neutralizes the 

antigens. T cells that activate B cells are known as T helper cells, and T cells that neutralize 

antigens are known as killer T cells.  
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 The third job is to prevent allergic reactions and autoimmune diseases. This task is done 

by suppressing the action of other immune cells. The T cells that suppress the other immune 

system cells are known as suppressor T cells. 

 These invading antigens can be of two types: seen or unseen. The branch of the immune 

system that deals with known invading antigens is called the innate immune system [1]. The 

other branch that deals with the immune response to previously unknown or unseen antigens is 

the Adaptive Immune System [1]. The focus is on the Adaptive Immune System. Its features are 

as follows: learning ability, adaptability, and maintaining memory. Figure 5, taken from [16], 

shows the role of these two branches of the immune system. 

 

Figure 5. Role of the innate and adaptive immune system in the multi-level defense of an 

immune system 
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The innate immune system is not of interest for this work. However, it is necessary to 

know about it to understand how the Adaptive Immune System works. The innate immune 

system [16] is present from an organism’s birth. Physiological conditions, as mentioned in [1] 

(e.g. temperature, acidity, set of cells, proteins, and chemicals in the body) make the antigens’ 

living conditions hostile. Among this set of cells, the Antigen Presenting Cell (APC) roams the 

body searching for any antigen. If the APC can locate any antigens, it tears them from the body. 

These APCs presents [15] these fragments to the T helper cells. Here comes the role of T helper 

cell as described earlier. T helper cells recognize these antigen fragments. This recognition 

initiates an adaptive immune response. Upon recognition, the T helper cell triggers the activation 

of B cells. Upon activation, these B cells produce appropriate antibodies to match the recognized 

antigen. To catch other variations of this recognized antigen, the antibodies are mutated. These 

mutants, or variations, bind to other copies of the antigen. This binding is a signal to destroy the 

invading cell. 

Another section of the immune system is the adaptive immune system. It deals with the 

repetitive attack of an antigen during an organism’s lifetime. This section of the immune system 

functions by using memory cells. Whenever an antigen attacks the system for the first time, the 

adaptive immune response is initiated. This initiation is done by cloning and mutation [17].   

From the B cells that encountered an antigen for the first time, a small number of them 

are selected. These selected B cells are cloned; this principle is known as Clonal Selection. If the 

antibody had high affinity towards the antigen it had experienced, then the number of clones 

from it would be higher. It results in a higher number of clones for higher affinity. This scenario 

is known as affinity maturation.  
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Clones have the same affinity for the antigen it attacked. To create diversity in this 

affinity, the clones are mutated. Among these newly produced antibody cells (B cells), some 

would have higher affinity, and some would have lower affinity. Therefore, the high-affinity 

antibodies are selected and stored. The stored cells are called memory cells. These memory cells 

produce antibodies. If the same antigen or its variation invades the host organism, then the 

produced antibodies can recognize and eliminate them.  

Following this way (i.e., cloning, mutation, memory cells, more the encounter of the 

same antigen or its variation, more antibodies of different variety and number will respond to this 

attack. This is how the response of the adaptive immune system improves itself. Here, the 

scenario of affinity tuning is known as affinity maturation.  

Starting from scratch to produce a considerable amount of the initial clone that 

experienced antibodies (that have already encountered an antigen) for subsequent encounters  

[18] is much more expensive than this affinity maturation. Hereby, affinity maturation ensures 

not only the accuracy, but also the speed of the immune response. This is agreed by [19], stating 

that, through this strategy, the immune response becomes successively greater after each 

infection. Here comes the immune system’s relationship with machine learning. The system’s 

continuous improvement for its job by learning confirms it is reinforcement learning [20].  
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There is an additional property of this immune system that makes it non-self-reactive. 

This is known as Negative Selection. The heart of this is self non-self discrimination. The 

immune system does not react to the self cells having attributes of the antigens that it has seen so 

far. At the same time, it can detect and neutralize that type of antigen. This non-self reaction, 

named Negative Selection, is done during the generation of T-cells. Those reacting 

against/binding with self-proteins are destroyed. Only those that do not bind to self-proteins are 

kept as they are. These relieved T-cells, often called matured T-cells, then circulate throughout 

the body to perform immunological functions and to protect the body against foreign antigens. 

4.2. Artificial Immune System 

 The biological immune system provides a rich metaphor for detecting anomalies in a 

Smart Grid. Because I am describing such anomaly detection, it is important to know about the 

system that is inspired by the biological immune system. This system is called an Artificial 

Immune System. This system can be used to solve computational problems. It applies the 

biological immune system’s underlying principles to various computational systems to solve 

their problems. Because AIS is mimicking a self-learning and self-adaptive system, it belongs to 

machine learning. 

There are several methods in an Artificial Immune System, such as Negative Selection, 

clonal selection, somatic Hypermutation, and Danger Theory. Each approach has its limitations, 

such as false positives, false negatives, the ability to adapt to the evolution of the system, 

scalability issues, etc. [21].  

http://en.wikipedia.org/wiki/Immune_system
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From the applications of AIS, one useful application is the detection of a system’s 

anomalies. Examples of problems that can be dealt with such an application are data mining, a 

malfunctioning computer due to a virus, intrusion detection in a network, fault detection in a 

distributed sensor network, etc. [21] [22] [23].  

Anomaly detection in a Smart Electrical Grid falls under this type of application. Hence, I 

believe that using a suitable AIS algorithm is a good idea to detect anomalies in a Smart 

Electrical Grid. One such algorithm is the Danger Theory. Among the anomalies in a Smart 

Electrical Grid, faults are one type that needs to be addressed. This thesis is focused on applying 

an AIS algorithm known as the Danger Theory to detect faults in a Smart Grid. 

4.2.1. Negative Selection 

Among the several AIS methods mentioned earlier, one is Negative Selection. This 

concept has been described for a biological immune system. Let us describe it in terms of an 

Artificial Immune System. The role of Negative Selection in the human immune system is as a 

self-non-self discriminator so that it can avoid self-reaction. Hence, it is best applicable to 

problems that deal with this self-non-self discrimination. Forrest et al. [24] [17] divided this 

negative-selection mechanism into three phases. The phases are defining self, generating 

detectors, and monitoring the occurrence of anomalies. 

 The first phase starts by defining the self pattern. The self pattern is the normal behavior 

patterns for the system it is monitoring.  
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During the second phase, it generates a number of random patterns. These patterns are 

compared to each self pattern. The concept is that, if an antibody can detect a self pattern as 

harmful (i.e., if the antibody matches with a self pattern), then it will tag this self as harmful. 

Hence, these antibodies, or self-catching patterns (newly generated), need to be deleted or 

removed. This is why the newly generated random patterns that match the self pattern are 

removed or deleted. After checking each new pattern, the patterns that do not match the self 

pattern become detectors. It then proceeds to its third step. 

During the third step, these detectors are used to monitor the system in search of any 

anomaly. For each incoming system pattern which is supposed to be monitored by this system, a 

scan is done. This scan is a pattern matching between the detectors with the incoming patterns or 

antigens. If any match is found, then it is considered that this incoming pattern is the anomalous 

pattern.  

As it captures the normal behavior of the system from its initial observation, it does not 

require prior knowledge of anomalies. This unsupervised learning helps to detect previously 

unseen anomalies. An individual detector can recognize antigens up to a certain threshold. 

Beyond this level, it cannot see the antigens. Hence, individual detectors can find a subset of the 

anomalous pattern. The combination of all these subsets constitutes the set of anomalies it can 

detect.  

 An example of this negative-selection mechanism for anomaly detection is described by 

Forrest et al. [24] [17].  
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4.2.2. Clonal Selection 

 Among the AIS methods mentioned earlier, another one is clonal selection. In simple 

words, the Clonal-Selection principle states that, among all antibodies available in the antibody 

population, the antibodies that recognized antigens before would be proliferated. According to 

Castro and Zuben (2002) [25], a clonal-selection algorithm, in terms of AIS, generates a 

population for a fixed number of antibodies, say N. Each antibody represents a random solution 

for the problem that is being addressed. Figure 6,, taken from [26], demonstrates the clonal-

selection principle. 

 

 

Figure 6. The clonal-selection principle 
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During each iteration, antibodies with the best solution (i.e., the best pattern matching) 

are selected. They are cloned up to the maximum number of clones for each solution. Within this 

maximum amount, the higher the affinity of the antibody with its previously detected antigen, the 

higher the number of clones generated from it and vice versa.  

 Each clone is mutated to have diverse, new candidate solutions or antibodies. The new 

antibodies are evaluated, and a certain percentage of the best ones are added to the antibody 

population. This new addition can result in an increased total number of antibodies in the 

antibody population. To deal with the, the best N antibodies are selected, resulting in the worst 

ones being discarded if they fall outside this N selection. 

 The mutations that create diverse candidate antibodies are done in three ways: Somatic 

Hypermutation, Receptor Editing [27] [28] [29] [30], and a fraction of newcomer cells [25].  

4.2.3. Somatic Hypermutation 

 Among the several AIS methods mentioned earlier, another one is Somatic 

Hypermutation. It states that the higher the affinity of an antibody or memory cell with its 

previously detected antigen, the lower its mutation rate and vice versa.  

 It is used to manage the concentration of antibodies around problem areas. As a result, 

the higher-affinity mutants survive. This is known as the maturation of an immune response [26]. 

In a biological immune system, the antibody-producing cells gene is changed to introduce such 

high-affinity mutants.  
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 According to UWE Aikelen  [31], the AIS mutation mechanism is similar to that of 

genetic algorithms. Examples of such a mutation mentioned by Aikelen are flipping bits for 

binary strings, replacing a value with a random one for strings, swapping between characters of 

strings, etc. In addition, the mechanism is often enhanced by the “somatic” idea, i.e., the closer 

the match (or the less close the match, depending on what one is trying to achieve), the more (or 

less) disruptive the mutation is. 

4.2.4. Receptor Editing 

 Another AIS method mentioned earlier is Receptor Editing. It means not to remove self-

reactive antibody-producing cells, but to get new receptors or to edit their receptors through 

recombination [32]. Somatic Hypermutation keeps selecting higher-affinity mutants, resulting in 

local maxima. Receptor Editing helps the immune system escape these local maxima in terms of 

the affinity landscape. Leandro Nunes de Castro [26] described this scenario by using Figure 7.  

.  

Figure 7. Somatic Hypermutation leads to local maxima where Receptor Editing can lead to a 

better solution and an escape from these local maxima 
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 In Figure 7, the x-axis represents the first two methods for mutation, given the name 

“Antigen-binding sites” by Leandro Nunes de Castro. The Y-axis represents the affinity of 

antigens with antibodies. If antibody A is considered to mutate using Hypermutation, then the 

local areas are explored. This is done by going towards a higher affinity using smaller moves. 

This often leads to local optima A
1
. Because lower-affinity mutants are not selected, there is no 

way to climb down the hill from point A
1
.  

 The only way to be rescued from this region is to take larger steps instead. This is 

ensured by Receptor Editing. These large moves can lead to a lower-affinity region (B) or a 

higher-affinity region (C). From there, it is possible to climb to the global optima (C
1
) or other 

local optima (B
1
). 

4.2.5. Stimulation 

 Among the AIS methods mentioned earlier, one is Stimulation. It means that a selected 

number of antibodies are proliferated. It is used to control the population of new antibodies 

created from older ones. 

 An Artificial Immune System may have an initial antibody population. These antibodies 

have a starting concentration. Concentration refers to the number of antibodies around the 

antigens or the problem area. Higher this number, the higher the efficiency of an AIS system. 

While AIS detects antigens using its mechanisms, some antibodies are selected for removal due 

to their outmodedness for not being able to catch antigens. This inability to detect or catch is due 

to the absence of this type of antigen for a long time. This removal is called the "death rate" of 

antibodies.  
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 Due to this removal, antibodies that used to match with an antigen before may not remain 

in the antibody population. Hence, this death rate decreases the antibody concentration over time. 

To deal with that, an antibody matching the antigen is proliferated; the better the match between 

the antibody and antigen, the higher the number of progenies. This increases the concentration 

again. This selection of an antibody to proliferate is called "Stimulation" [21]. The ratio of 

proliferation based on the match of the considered antibody with the corresponding caught or 

detected antigen is related to Somatic Hypermutation. This stimulation continues until a 

sufficient number of antibodies are added to the antibody population.  

 Once the antibody population size is at its required size, the lower-scored antibodies 

(antibodies having less similarity to their corresponding antigen) are deleted one by one. This 

process is known as "reducing the concentration" of antibodies. An antibody having similarity, 

or a match or affinity below a threshold is removed. This removal continues until there is no 

antibody to remove (i.e., none exist below this acceptable match score or similarity). At this 

point, the antibody population is "stabilized." 

4.2.6. Danger Theory 

Among AIS methods mentioned earlier, Danger Theory is the central focus. Danger 

Theory means that the immune system is only concerned about danger, rather considering every 

non-self as harmful. This confirms that the immune system will not destroy foreign bodies that 

are not harmful. Whenever a danger signal is raised, a Danger Zone is declared.  

Antigens matching the antibodies inside this Danger Zone are considered as problem 

creators. To improve the immune response, these antigen detectors, or antibodies, are 

proliferated so that they can catch a similar problem with great efficiency in subsequent attacks. 
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Figure 8 explains how the immune system responds to danger according to the Danger Theory.  

1. Cells die an unnatural death, cell stress or cell death. 

2. A distress signal is sent by this distressed/dead cell. This is the danger signal. This danger 

signal establishes a Danger Zone around itself. 

3. Upon receiving the danger signal (D), the Antigen Presenting Cell (APC) captures 

antigens in its neighborhood and presents the antigens to the B cell 

4. B cells that are inside the Danger Zone search for a matching antigen. Any antigen-

matching antibodies inside this Danger Zone are considered problem creators. 

5. Matched B cells (cells producing antibodies) are stimulated and undergo the clonal-

selection process to proliferate. Antibodies created with this proliferation method are 

recent antigen-catching antibodies and can catch similar antigens in the future with great 

efficiency. 

 

Figure 8. Danger theory model 
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 The Danger Theory proposes that the biological immune system reacts to threats or 

danger based on the correlation of two signals [33]. It is an extension of the Two-signal model by 

Bretscher and Cohn [22]. Signal 1 is antigen recognition, and signal 2 is co-stimulation. 

 Signal 1. “This antigen is similar in characteristics of previously observed harmful 

antigens” []. 

 Signal 2. “This antigen really is dangerous/foreign [21] [34].  

 The Danger Theory functions by applying three laws known as the laws of lymphocytes 

[21] [34] [35].  

 Law 1. A lymphocyte is activated if it receives Signal 2 and Signal 2. A 

lymphocyte dies whenever it receives Signal 2 without Signal 2. Signal 2 is 

ignored without Signal 2.  

 Law 2. T-lymphocyte (helper) cells can only accept Signal 2 from an Antigen 

Presenting Cell (APC). B-lymphocyte cells can only accept Signal 2 from active 

T cells or memory cells. B cells only can act as an APC for experienced memory 

cells.   

 Law 3. After activation, both T and B cells ignore Signal 2. These cells either die 

or return to inactive memory cells.  

 These laws were restated in [36] as follows. 

 Law 1. An inactive antibody becomes activated if it receives signals one and two 

together. It dies if it receives Signal 2 in the absence of Signal 2. Any Signal 2 is 

ignored without Signal 2. 

 Law 2. Accept Signal 2 from antigen-presenting cells only 
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 Law 3. An activated antibody ignores Signal 2. After activation, they revert to the 

resting state after a short time.  

 The danger model [37] proposed in this work to detect anomalies in a Smart Grid is built 

on these laws. Later, it would be shown that the proposed heuristic follows these laws. This 

proves that this heuristic is a true application of a biological immune system. 

4.2.7. Challenges of Danger Theory 

 Before going into the details about the implemented heuristic following the Danger 

Theory, it is important to know the challenges related to the Danger Theory. Because the Danger 

Theory is based on coordination between the danger signal and Signal 2, the challenge of this 

theory is to define a suitable danger signal. Again, the affinity measurement between two objects 

in a biological system shall convert to the appropriate proximity measure. One part of this 

proximity used for these biological systems is physical distance. The danger signal and affinity 

measure are application dependent. Once researchers can define a feasible one, it is easier for 

followers to try variations to find the optimal measure. 

 The following section describes some works related to this thesis. It describes how AIS is 

applied to solve problems in similar domains.   
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5. RELATED WORKS 

 One important application of AIS is its use in collaborative filtering. It has been 

described by Q. Chen and U. Aickelin  [38]. This application helps to understand the Artificial 

Immune System. The proposed application is for a movie recommendation. It recommends that 

users see some movies based on other people's (individuals who have similar preferences as the 

users) votes about these movies. The problem statement is "The user has a movie which needs a 

recommendation." The design considerations are as follows. 

 Some people's preferences are stored in the database 

 The user provides his/her preference for the movie that he/she wants to watch and had 

preferred some movie previously (e.g., like/dislike). He/she wants a list of movies that 

he/she has not seen. 

 AIS selects a group of people who have similar preferences as the user. 

 The weighted average of the group’s preferences is calculated to generate the 

recommendations the user requires. 

 In terms of AIS. encoding this problem is done as follows.  

 The people in the database are viewed as candidate antibodies. 

 The user who utilizes the movie recommendation system is viewed as an antigen.  

 Affinity between antibodies or between the antibody and the antigen equals the 

correlation between previously voted on common movies between two people or between 

the user and one person from the database.  

 Let us consider two people who voted for six movies. (movie id, score). Scores can be 0, 

0.2, 0.4, 0.6, 0.8, or 1. Therefore, the votes can be as follows.  
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 Person 1. {(2,1); (4,1); (19,0.6); (21,0.2); (24,0.8); (27,1); (31,1); (32,0.8); (62,1); 

(65,0.8); (76,1); (93,0.6); (94,0.8)} 

 Person 2. {(1,0.8); (2,0.6); (5,0.6); (8,0.4); (13,0.2); (15,0); (19,0.2); (24,0.6); (25,0.4); 

(32,0.8); (34,0.8); (52,0.6); (62,0.8); (65,0); (70,0.6); (86,0.4); (87,0.2); (95,0.8); 

(107,0.6)} 

 Common votes between these two people are as follows.  

 Person 1. (2,1)    ; (19,0.6) ; (24,0.8) ; (32,0.8) ; (62,1)    ; (65, 0.8) 

 Person 2. (2,0.6) ; (19,0.2) ; (24,0.6) ; (32,0.8) ; (62,0.8) ; (65, 0)  

 Affinity between the two people is measured as correlation coefficient using a suitable 

method named weighted kappa and Kendall tau. This affinity follows a threshold to determine if 

there is good agreement between them or not. Table 1 shows the affinity range to determine the 

agreement's strength between these two people. 

Table 1. Affinity classification table 

Score Strength of Agreement 

< 0.2 Poor 

0.21-0.40 Fair 

0.41-0.60 Moderate 

0.61-0.80 Good 

0.81-10.0 Very Good 
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 If the value of the correlation coefficient is 0.67, then it is "Good" according to Table 1. 

For all people (i) in the database, this correlation coefficient (Ki) between the user and that 

person (i) is calculated. People with Good or Very Good correlation are selected. This is the 

selection part of the Clonal Selection Algorithm described later in this thesis. The weights are 

calculated using the following equation, where g represents the category of movies.  

      
     

   
   

 These weight values are given in Table 2. The weighted average of these selected people 

is the recommendation. 

Table 2. Weight value table 

 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

i = 1 1 0.8 0.6 0.4 0.2 0 

i = 2 0.8 1 0.8 0.6 0.4 0.2 

i = 3 0.6 0.8 1 0.8 0.6 0.4 

i = 4 0.4 0.6 0.8 1 0.8 0.6 

i = 5 0.2 0.4 0.6 0.8 1 0.8 

i = 6 0 0.2 0.4 0.6 0.8 1 
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 Now, we can focus on AIS applications that apply the Danger Theory. Among many 

applications of the theory, an application that deals with anomaly detection is similar to the 

approach proposed and implemented here. One such application is proposed by Carlos [4]. 

In this application, AIS monitors a telephone system. It classifies abnormal behavior of the 

system as fault. It uses the Danger Theory to determine this fault. The telephone system's faults 

are the result of undesired network situations (e.g., the presence of an excessive number of calls 

during a given period of time). This call attempt varies with time. The number of call attempts 

that is normal for a certain period of time can become an anomaly in another time period. It 

might be a good idea to count the number of calls for a given amount of time to determine 

whether a call is normal or an anomaly.  

 However, due to the varying nature for the number of call attempts, it cannot indicate any 

deviation from the normal occurrence. Here, the Artificial Immune System plays its role. AIS is 

applicable for such situations where the observations vary. Which AIS theory is applicable here 

is an issue. Because features for a telephone system vary a lot, to synchronize different features 

is the key idea to find the faults. The AIS Danger Theory provides such synchronization where 

the two signals correspond to different features.  

 How to encode this telephone system's fault-detection problem into the Danger Theory is 

important. The encoding is as follows.  

1. Antigen. each call.  

2. Each call has properties. origin, destination, duration, a given feature, or special 

quality of the call. 

3. Antibody. data identified as faulty from previous data. 
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4. The antigen and antibody are modeled as heterogeneous strings composed of 

attributes. linear (origin, destination, or duration) and nominal (feature). 

5. A match function. determines if an antigen is inside the affinity region of the 

antibody (e.g., distance between them < threshold). When this function compares 

linear attributes, it looks for the affinity interval (i.e., in which interval of the body’s 

affinity region (antibody or antigen) lies. While comparing features or nominal 

attributes, only equality (i.e., whether the features are the same) is considered. 

6. The Danger zone is the region covered by the danger signal (Signal 2). It is the last 

time interval (∆t); the idea is that the antigens inside this time frame contributed to 

the fault that triggered Signal 2. Hence, if an anomaly is detected inside, the Danger 

Zone is considered as a fault; otherwise, it is not, with an exception for the active 

antibody which will be discussed later. 

7. Signal 2 is true if antibody detects an antigen (i.e., if the properties of the current call 

match (inside the affinity region) the properties of the previously determined one or 

more faulty calls). 

8. Signal 2 is true, if one or more situations are observed. Examples of such situations 

are hardware failure, non-completed calls, etc. Carlos has taken non-completed call 

attempts as an indication of such a situation. If the non-attempt call rate is more than 

an acceptable threshold, signal two becomes true. 

 The algorithm works as follows. 

1. Random initial generation of antibodies (e.g., random property generation where 

each set of properties represents one antibody). This collection is known as the 

antibody population. 
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2. Any antibody giving Signal 2 outside the Danger Zone and not active is eliminated 

from the antibody population. The assumption is that this antibody is giving a false 

positive and can contribute in an incorrect calculation. It Signal 2 for an inactive 

antibody was considered, then it would only be a pattern matching. It would mean 

that, if the call falls for a pattern, then it would be considered a fault. 

3. If Signal 2 is received, all antibodies giving Signal 2 inside the Danger Zone become 

activated. The assumption is that these antibodies, or properties of call, might have a 

contribution to generate an anomaly situation such as Signal 2. 

4. An active antibody may not contribute to fault detection (i.e., It is not giving Signal 

2, or its Signal 2s are outside the Danger Zone for Signal 2. This antibody would be 

deactivated by removing it from the antibody population and adding it to the 

memory-cell population. The assumption is that these antibody properties are not 

similar to the current faulty call's properties, and they are potential false-positive 

generators.  

5. Removal of antibodies from the population will eventually lead to the inability to 

cover the entire observation space, and the population size will decrease. Therefore, 

if the antibody population size becomes smaller than the intended size or if it is 

unable to cover the observation space, then new antibodies are generated by 

renewing the antibody population. This renew process generates antibodies from 

both the active antibodies and the memory cells. It confirms that the observation 

space is covered well along with maintaining the minimum size for the population. 

This coverage ensures a good performance. 
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6. If an active detector gives a signal of 1, then the corresponding antigen is considered 

as "faulty" and the system does not care about any Signal 2. The assumption is that 

these properties are prominent for recent faulty calls, so if these properties are 

observed (by antibody and antigen matching), then it must be a faulty call. 

7. If Signal 2 is observed without any Signal 2 inside the Danger Zone then this Signal 

2 is ignored. If there is no Signal 2 inside the Danger Zone, then there are no 

suspicious properties for the call even if an anomaly situation has been reported 

(Signal 2). This anomaly situation must be an exception. 

 The previous algorithm is run using parallel processes. A call attempt is considered a 

fault if a certain percentage of the processes analyzing the call vote it as faulty. Because there is 

an adaptation process through the renewal of antibodies, this process's outcome are not 

deterministic. 

 In this application of the Danger Theory, the secondary response is from new antibodies, 

active antibodies and memory cells. New antibodies will catch antigens if they are inside the 

affinity region. 

 New antibodies are generated from memory cells using the clonal-selection principle as 

mentioned earlier. The affinity of memory cells is measured. Then, they are normalized with 

respect to the entire memory cell population. Following the negative-selection principle, higher-

affinity cells are selected to generate new antibodies.  

 Higher the affinity, higher is the mutilation rate. The reason is that the majority of the 

antibodies correspond to the fault’s normal behavior. However, it is necessary to catch the 

exceptional faults as well. To do that, the selected antibodies need to be mutated so that they can 

catch exceptional variations for these previously seen faults. 
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 From these candidate new antibodies, those that match antigens or other antibodies are 

eliminated. To generate new antibodies from the active antibodies, the same process is followed. 

There are some thresholds that are maintained. 

1. Threshold for inactive detector/antibody activation. 3 call attempts (if 3 call attempts 

inside the Danger Zone give a signal of 1). 

2. Threshold for inactive detector/antibody elimination. 3 call attempts (if 3 call attempts 

inside the Danger Zone do not give a signal of 1). 

3. Threshold for active detectors/antibodies to become memory cells. 60 call attempts (if 60 

call attempts do not detect any faults). 

4. Number of non-attempted calls (used for Signal 2). 3 attempts (If non-attempted calls are 

more than 3, then it will trigger Signal 2.). 

5. Maximum size of antibody population. 50 antibodies. 

6. Threshold for voting. 25% (If voting by the parallel processes observing a certain call is 

more than 25%, then the call is considered faulty.). 

 The above algorithm, proposed by Carlos [39], has several features that are important for 

the AIS application being discussed here (i.e., the application of the Danger Theory in a Smart 

Grid's fault detection. The features are as follows. voting, using both active antibodies and 

memory cells for antibody-population renewal, considering the antibody population size and 

observation space coverage, different deactivation criteria for active and inactive antibodies, a 

diversified antibody population, and encoding of this problem in terms of the Danger Theory. 
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 Inactive antibodies, if given signal1 outside the Danger Zone, will be eliminated, and no 

renew will be done from them.  If active antibodies give signal1 outside the Danger Zone or if 

they do not give signal1 for awhile, they will become memory cells. These memory cells are 

used to renew the antibody population. From the initial antibody population to this renewal 

process for the population, all the implemented AIS algorithms are closer to what I have 

implemented here, the Artificial Immune System Heuristic. AIS applications like the ones 

described above inspired the implementation of the Artificial Immune System Heuristic 

described here. 

 

 

 

 

 

 

 

 



 

35 

 

6. THE ARTIFICIAL IMMUNE SYSTEM HEURISTIC 

6.1. Introduction 

 The Artificial Immune System Heuristic described takes electrical grid data as input. 

Simulated PMU data are used as these electrical grid inputs. Hence, PMU data are described 

first, and then, the AIS heuristic is described, beginning with the initial antibody population’s 

generation. 

 PMU data contain both the voltage magnitude   and phase angle for one or more buses 

that it observes. In the context of an electrical grid, I consider the data for each bus derived from 

the PMU data for a particular time as an antigen. For a particular bus, an antibody means one 

data from a collection of previously determined faulty data for that bus. This collection is the 

antibody population. Therefore, there would be one antibody population per bus.  

 The Artificial Immune System Heuristic algorithm begins with an initial antibody 

population that is bus data marked as faulty from a history of data for the same bus. This 

heuristic does two tasks. 

 Determines each bus datum provided by PMU as faulty or not. It uses the Danger Theory 

here. 

 Keeps itself adaptive with the changing nature of faults. It keeps renewing the antibody 

population at a regular time interval. For this renewal, it uses Clonal Selection, Somatic 

Hypermutation, and Negative Selection. For the initial antibody population generation, a 

variation of the clonal-selection algorithm and Negative Selection is used. 
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 Hence, to describe the AIS heuristic, it is important to describe the Danger Theory, 

Clonal Selection, Somatic Hypermutation, Receptor Editing, Stimulation, and Negative Selection 

in the context of an electrical grid. 

6.2. Assumptions 

 In this implementation, the assumption is that this heuristic will work effectively for a 

certain pattern of inputs (i.e., for a certain pattern of data) because of the choice for Signal 2 and 

the variation of previous faults. If the data do not contain any criteria for which Signal 2 are 

raised, then this heuristic will not be able to find faults.  

 Again, with Signal 2 being true, it can be true that the variations or the antibodies from 

the antibody population do not match the antigen (i.e., the currently considered data). In these 

scenarios, AIS is not an efficient method of fault detection. These inabilities are inherent to AIS 

systems. The AIS heuristic described here is an attempt to encode an electrical-grid problem into 

an AIS-based problem-solving technique.  

6.3. Danger Theory for the AIS Heuristic 

 It has already been described that the Danger Theory uses two signals (Signal 1 and 

Signal 2) to do its job. Signal 2 is the indication that the currently read data or antigens are 

similar to previously marked faulty data or antibodies. It is set to true if there is a match and false 

otherwise. For each antibody in the antibody population, there is a Signal 2. 
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 Now let us discuss what this “match” means. According to [40] [41], the voltage-

tolerance range for an electrical system is 90-110% of its operating points. Hence, the minimum 

and the maximum tolerable voltages are -10% and +10% of the allowed voltage. This leads to 

the assumption that, if the current data (antigens) are within ± 10% of an antibody, then they are 

considered as matched. This scenario is explained in Figure 9. 

 

Figure 9. Antibody match with data as antigen 

 For example, data are coming in the sequence of 45, 40, 90, 100, 110, 80, 95, etc. with 

respect to time. Let the antibody population be 45, 100, and 110. All data in this sequence are 

compared with all antibodies according to their time precedence. Table 3 describes the matching 

scenario where T stands for true and F stands for False. 

Table 3: Incoming data and Signal 2 generation by matched antibodies 
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Incoming Data 45 40 80 90 110 95 

Time t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 

AB. Signal 

2(T/F) 

45. T 45. F 45. F 45. F 45. F 45. F 

100. F 100. F 100. F 100. F 100. T 100. T 

110. F 110. F 110. F 110. F 110. T 110. F 

Signal 2 F F F F F T 
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 Again, the purpose of Signal 2 is to indicate an interesting feature in the incoming data. 

There are many ways to define this interestingness. One way is if the sequence of incoming data 

is higher than the average of continuously maintained historical data. Table 4 describes this 

scenario for a sequence length of 4.  

 For this example, it is assumed that the average from the historical data before t = 1 is 80, 

and to calculate the average, historical data of 4 in a row are considered. For t = 1, 2, the data are 

less than the average. For t = 3,4,5,6, the data are more than the average. At t = 6, four 

consecutive higher data in a row are observed. This satisfies the condition of Signal 2. Hence, at t 

= 6, Signal 2 is true. However, for t = 7 and 8, Signal 2 is false. 

Table 4. Generation of signal 2, here bold represents higher than the average 

  

 Now, the Danger Theory states that, whenever Signal 2 is noticed, the system looks back 

to all antibodies that raised Signal 1 for a sequence of incoming data ending at the current time. 

This sequence length, or time interval, is the Danger Zone. If, for any antigen inside this Danger 

Zone, there is at least one antibody with Signal 1 = True, that antigen is marked as “faulty.” 

Table 5 shows this scenario by assuming the Danger Zone length is 4.  

 

Time t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 … 

Incoming 

Data 

45 40 80 90 110 95 45 40 … 

Average 71.25 61.25 61.25 63.75 80 93.75 85 72.5 … 

Signal 2 F F F F F T F F … 
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Table 5. Raise of signal 2 and selecting antibodies raising signal 2 in a predefined time interval 

  

 At time t=6, Signal 2 becomes true, and the system looks for all antibodies inside the 

Danger Zone that have a Signal 1 as true (i.e., from t = 3 to t = 6). Here, antibodies 100 and 110 

are such antibodies. Hence, at t = 5 and t = 6, the antigens (110 and 95) are considered faulty. 

Therefore, at t = 3 and t = 4, there is no fault. This process of Signal 2 becoming true describes 

how Signal 1 and Signal 2 determine the fault for incoming data. 

 Figure 10 explains how the Danger Zone moves forward with time; the AIS heuristic 

keeps track of all Signal 1s (s1) inside this time zone or Danger Zone (∆t). T represents time; T = 

0 means the initial time, and T = n means subsequent times. Figure 11 explains that all antigens 

that received Signal 1 inside the Danger Zone are selected when Signal 2 (s2) is observed. 

Time t = 1 t = 2 t = 3 t = 4 t = 5 … … t = n 

Incoming Data 45 40 80 90 110 95 … 

Antibody 

Signal 2. T/F 

45. T 45. F 45. F 45. F 45. F 45. F … 

100. F 100. F 100. F 100. F 100. T 100. T 

110. F 110. F 110. F 110. F 110. T 110. F  
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Figure 10. Danger Zone moving from left to right with time 

 

 

Figure 11. When signal 2 is given, then the AIS looks backward and considers all antibodies 

inside the danger zone that give signal 2 

 To determine fault, Signal 2 is not always needed because of the two states of an 

antibody: active and inactive. An inactive antibody becomes active if it is subject to Signal 1 = 

True followed by Signal 2 = True as described earlier. Once active, an antibody confirms an 

antigen as faulty if it raises Signal 1 and does not wait for Signal 2. However, if this active 

antibody does not give Signal 1 for another predefined time interval, it becomes a “memory 

cell.” Figure 12 shows the life cycle of an antibody. 
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Figure 12. Antibody life cycle. Inactive to active and active to memory cell 

 Figure 13 and Figure 14 show the type of data that Danger Theory confirms as non-faulty 

and faulty, respectively. Here, 110 and 35 are antibodies that are represented by dotted lines. 

 

Figure 13. The danger theory does not consider a sudden spike as faulty data; the upper and 

lower dashed lines are antibodies 110 and 30, respectively 
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Figure 14. The danger theory considers 4 consecutive data higher than the average of the last 4 

data (shaded box) along with a historical match (with antibodies) as faulty data (shaded circle) 

 According to this AIS heuristic, the Danger Theory, in terms of an electrical grid, states 

that the system identifies data as faulty if and only if they match some historical faulty data and 

if they are followed by interesting incoming data (i.e., inside the Danger Zone).  

6.4. The AIS Heuristic Algorithm and Flowchart 

 Figure 15 explains the Danger Theory’s role in the proposed Artificial Immune System 

Heuristic with PMU data as the antigen.   

 

Figure 15. Artificial immune system 
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 The PMU produces data in a regular fashion. The data are read individually. This step is 

represented by the "Incoming Data" block in Figure 1. It also specifies that the data are of two 

types. The types are voltage angle and voltage magnitude. These data are put into the Danger 

Theory algorithm one at a time following its generation sequence. This simulates reading the 

electrical grid data and applying the Danger Theory to it. Each iteration of this algorithm, as 

indicated by the cycle of arrows, represent reading data for the individual time stamps provided 

that the data coming later in the time stamp are processed later. For each time stamp, two data 

are available for each data point (i.e., PUM reading for each bus. voltage angle and voltage 

magnitude).  

 Another input for the Danger Theory is the antibody population (AB). The antibody 

population contains the antibodies with which a match is done inside the Danger Theory 

algorithm. This population is renewed based on the number of successive iterations. For 

example, if the constraint is set such that the renew shall be done after every 5 iterations and the 

first renewal process is done at the 3rd (n
th

) iteration, then iteration numbers 3,8, 13, 18 ..... n + 

i×5 (i ≥ 0) would be the renewal points.  

 The above description is an overview of the entire system. The detailed algorithm for the 

Danger Theory part of the Smart Grid is illustrated by the flow chart in Figure 16, and the 

pseudocode is described afterwards. 
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Figure 16. Danger theory for a smart electrical grid 
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 To describe the algorithm, the following variables are used. 

 AB. Each Antibody from the Antibody population. 

 S1 is. Signal 1. 

 S2. Signal 2. 

 NS1. Number of Signal 2s in the Danger Zone for a particular antibody. 

 Th. Number of Signal 2s needed to activate an antibody. 

 ThDeact. Threshold for an inactive antibody to be eliminated. If the number for 

Signal 2 is less than this value, then it is eliminated. 

 MaxET. Maximum number of Signal 2s allowed. If the number of Signal 2s in the 

Danger Zone is above this value, then it is considered as false-positive generators. 

 Algorithm 1 describes the Danger Theory for a Smart Electrical Grid. 

Algorithm 1. Danger Theory for a Smart Electrical Grid 

(continues) 

Step 1. Initial Generation of Antibody Population from historical data or from Training data. 

Step 2. If Signal 2 = true (current data are interesting enough), then go to step 6. 

Else go to step 8. 

Step 3. If any antibody matches the current data (antigen), then Signal 2 is set to “True” for that 

antibody. 

Else go to step 7. 

Step 4. If an antibody is active, then fault is found. Go to step 7. 
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Algorithm 1. Danger Theory for a Smart Electrical Grid (continued) 

  

Step 5. If the number of Signal 2s by this antibody within the Danger Zone is less than or 

equal to MaxET and greater than or equal to ThDeact, then go to the next step. 

Else eliminate this antibody from the antibody population. 

Step 6. If the number of Signal 2s by this antibody within the Danger Zone is greater than 

or equal to threshold Th, then the antibody is activated. 

Step 7. If all antibodies in the antibody population have been checked, then go to the next 

step  

Else go to step 3. 

Step 8. If the next data are available, then go to the next step. 

Else exit. 

Step 9. Renew the antibody population by adding mutated clones from the clonal selection, 

Hypermutation, and Receptor Editing followed by Negative Selection. Clones are 

generated from active antibodies and memory cells. 

Step 10. If the antibody population is more than its desirable size, then remove the lower-

scored antibodies. 

Step 11. Go to Step 2. 
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 The details of each method used in this algorithm are described in the subsequent 

sections. 

6.5. Clonal Selection 

 In this implementation, Clonal Selection chooses only those antibodies that had 

recognized antigens that they have experienced so far to proliferate. The task is divided into two 

steps. The first task is to select the antigen-recognizing antibodies from the antibody population. 

The second step is how these antibodies are proliferated to fulfill the Clonal-Selection 

Algorithm. Furthermore, a variation of Clonal Selection used here to generate the initial antibody 

population is discussed. These tasks are described in the following sections. 

6.5.1. Selecting Antigen-Recognizing Antibodies from the Antibody Population 

 As mentioned earlier, in this Smart Electrical Grid Heuristic algorithm, a list of antibody 

population members is maintained. In this list, there is a score associated with each antibody. 

This score is called the Match Score. This Match Score means how much difference there is 

between the considered antibody and antigen as a percentile of the antibody. For example, if a 

Voltage angle (antigen) is 109 with an antibody of 100 for this Voltage Angle, then the match 

score for this antibody with this antigen is 109%.  
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 In AIS, if this score is outside a predefined threshold, then it is not considered a match. 

This matching is known as affinity measurement or affinity calculation. In this AIS heuristic, 

(100 – Match Threshold, 100 + Match Threshold) is used as the range. The alternative affinity 

measurement is explained in 0. For example, if the Match Threshold is 10%, it means that, if an 

antigen falls within ± 10% of the considered antibody value, it is considered a match. Hence, the 

antibody value 109 is a match with 100 where the Match Score is 109%. The formula to 

calculate the score is as follows. 

          
              

             
                           

                                                   

                                              if Antigen value = 0 and antibody value ≠ 0 

 These scores are updated only if a higher score is available for the considered antibody. 

By a high score, it means how close it is toward 100. For example, 108 is closer to 100 than 109, 

so 108 is higher than 109. Similarly, 92% is higher than 91%. If the new Match Score is 108 and 

the one associated with this antibody is 109, then the 108 will replace this 109.  

 What happens to the antibodies that did not match any antigens? They get a score of 

“0%,” meaning a 0% match. With Clonal Selection, only antibodies from this list that do not 

have a Match Score of 0 are selected for cloning.  
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6.5.1.1. Antibody Proliferation. Use of Somatic Hypermutation 

 The antibodies selected above are proliferated, depending on their score. In simple words, 

the higher the score, the higher the number of clones, provided that the number of clones be 

below the predefined threshold. For example, if the Match Score is 100%, then the number of 

clones should be the maximum allowable clones. The following equation was utilized to 

calculate the number of clones. 

                

      
                                       

               
 

                          

 According to above equation, if the Match Threshold is 10%, the Match Score is 109%, 

and the maximum number of clones is 10, then the number of clones is 1. If the Match Score is 

101%, then the number of clones is 9. For a Match Score of 110% or 90%, the number of clones 

is zero. 

6.5.2. Variation of Clonal Selection Used for Initial Antibody-Population Generation 

 At the beginning of the Clonal Selection section, we mentioned a variation of the Clonal 

Selection used to generate the initial antibody population. The method is described in the 

subsequent paragraphs. 

 From the set of already known faulty bus data, a certain number of clones for all faulty 

data are generated. Then, Negative Selection is applied. Negative Selection is described later. 
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 Let us describe how these clones are generated from the faulty data. For each faulty 

datum “X,” a range [X - Match Threshold, X + Match Threshold] is determined. Then, this range 

is divided into a predefined number of variants. These variants are considered clones and added 

to the candidate’s initial antibody population. 

 For example, if the number of variants is 10, a faulty data is 100, and the Match 

Threshold is 10%, then the range is [90,110]. The clones are 90, 92, 94, 96, 98, 100, 102, 104, 

106, 108, and 110. These clones are added to the candidate’s initial antibody population. If any 

of the clones already exist in this population, then they will not be added. 

 After getting a candidate list of the antibody population from this Clonal Selection 

Algorithm, Negative selection is used to obtain the initial antibody population. Negative 

Selection’s part is described later in the Negative Selection section. 

6.6. Receptor Editing 

 The selected antibodies obtained at the end of clonal selection (Clonal Selection section) 

go through Somatic Hypermutation. To escape from the possible local maxima provided by 

Somatic Hypermutation, Receptor Editing is applied. In simple words, it is an introduction of a 

random value greater than the Match Score. It chooses a value outside [X - Match Threshold, X 

+ Match Threshold].  

 For example, with a clone of 100 and a Match Threshold of 10%, this Receptor Editing 

chooses one value from the range [minimum allowable value of this data type, 89.99] and one 

value from the range [110.01, maximum allowable value for this data type] (outside the range 

[90,110]). 
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6.7. Negative Selection 

 Any mutant that matches non-faulty data from the antigen history is very likely to 

generate false positives. To deal with them, Negative Selection is used. 

 To describe Negative Selection in terms of this heuristic self, need to be defined. “Self” 

means non-faulty bus data or an antigen that is determined as non-faulty. It is already known 

that, from Clonal Selection and Hypermutation, lots of mutants for the active antibodies have 

been generated. Among these mutants, if one matches with non-faulty bus data/antigens, then it 

is detecting non-faulty bus data as faulty. In other words, they are attacking the self.  

 Any mutant that matches a non-faulty antigen in the antigen history needs to be deleted. 

If a very large history of bus data is considered (e.g., all the bus data from the initial time until 

the current time), then same type of antibody mutant would always be deleted. It will result in a 

non-adaptive algorithm. To be adaptive, this history should be short (e.g., last sequence of 

antigens i.e. bus data for last 30 readings.  

 For example, during antibody renewal, let Somatic Hypermutation generate the list with 

90, 92, 94, 96, 98, 100, 102, 104, 106, 108, and 110. Let 85 and 90 be the bus data that were 

determined as not faulty from the antigen history (i.e., from a certain number of previously seen 

antigens or bus data). Let 10% be the Match Threshold. Then, according to Negative Selection, 

90, 92, and 94 detect 85 as faulty, and 90, 92, 94, 96, 98, and 100 detect 90 as faulty data. These 

are eliminated from the population, and the initial antibody population of 102, 104, 106, 108, and 

110 would be get. 
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6.8. Antibody Renewal 

 Figure 17 shows the antibody renewal process that was described in the "The AIS 

Heuristic Algorithm and Flowchart" section. Here, AB represents antibody. 

 

Figure 17. Antibody renewal process 
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 Figure 17 shows that the memory cells are cloned and Hypermutated to populate 

themselves. Similarly, both active antibodies and faulty data from a certain time span in the past 

are cloned and mutated. All these clones and mutants are negatively selected with non-faulty 

data to remove the candidates that detect non-faulty data (i.e., creating false positives). The 

candidates (clones and mutants) after Negative Selection are considered as new, inactive 

antibodies, and the old, active antibodies also co-exist with them. They are added to the antibody 

population. This is how the antibody population’s renewal works.  

 For antibody population renewal, the concept of "Stimulation" is used in this work. It was 

already described that stimulation defines from which antibodies the population would be 

renewed. In the proposed and implemented AIS heuristic, two different approaches are used to 

select which antibodies are used as a base of renewal. In the second way, "Stimulation" is used. 

In the first way, all the active antibodies and memory cells are used as a base of renewal. In this 

case, the iterations are not meant for filling out the observation right away. Hence, after a 

number of iterations, the antibody population reaches saturation. Upon saturation, antibody 

population-size maintenance can be performed.  

 Through the renewal process for the population’s active antibodies, only those detecting 

current faults are proliferated. This leads to increased antibody (inactive) concentration around 

the faulty data.  If these faults are seen in consecutive data, then the inactive ones will become 

active, resulting in a further increase of the antibody concentration around the problem area. 
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 The second way is "Stimulation." The only difference for this stimulation and the first 

approach is that the stimulation chooses the antibody that points out the current data or antigen as 

faulty are selected for proliferation. The ratio of proliferation based on the match of the 

considered antibody with corresponding caught or detected antigen is related to Somatic 

Hypermutation. Algorithm 2 describes this Stimulation. 

Algorithm 2. Antibody Renewal Using Stimulation 

Step 1. Select all antibodies that detect faults at the current time and the memory cells as a 

population of renewal. 

Step 2. Proliferate antibodies from the renewal population following the AIS algorithms. 

Cloning faults using clonal selection, determining the number of clones using Somatic 

HpyerMutation, Receptor Editing algorithms to keep a way of avoiding local maxima, 

and removing proliferated data or clones that match non-faulty data (i.e., Negative 

Selection). 

Step 3. Add the proliferated data or clones from Step 2 to the antibody population. 

Step 4. Exit. 
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6.9. Antibody Population-Size Maintenance 

 Adding clones to the antibody population during the antibody renewal process eventually 

increases the antibody population size. To deal with that issue, the antibody’s score is used. The 

score is the match score of an antibody when it found a match between it and an antigen. For 

new clones added to the antibody population during an antibody population-renewal process, this 

score is zero because they have not met any antibodies. This renewal process is run after each 

antigen encounter. It is highly possible that the antibody population will increase. If the size is 

more than the threshold, then a number of population antibodies are removed to reduce the 

antibody population size to equal the threshold. To remove an antibody, two phases are executed. 

If the first phase is not able to reduce the antibody population to the threshold, the second phase 

reduces the size. In both phases, the “Active” antibodies are not removed. In the first phase, 

antibodies with a minimum score other than zero are removed. In the second phase, the 

antibodies with a score of zero are removed. This removal process is done one antibody at a 

time, and the process stops when the antibody population size meets the desired population size. 

 From the initial results obtained with this AIS heuristic, it was observed that, if antibody 

population-size maintenance is performed, many possible active antibodies are removed. Hence, 

the antibodies giving Signal 1 are prevented from being deleted. This stops the removal of 

possible active antibody candidates.  
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 For the removal of unfit antibodies during population adjustment in traditional AIS 

systems, antibodies with a lower score (i.e., less match or affinity) are deleted. For an electrical 

grid's AIS encoding, the score for antibodies formed via the renewal process needs to be the 

maximum mismatch score. Zero means a 0% match. If the score is not put to zero, then the new 

antibodies produced by "Receptor Editing" would have a lower score, meaning there is less 

match with their parent's caught antigen. Hence, fewer matched antibodies other than zero scored 

or already received Signal 1 would be deleted from the antibody population in the first phase.  

During the second phase, if the antibody population is still not below the saturation, the 

antibodies having a score of zero and not receiving any Signal 1 are deleted, one by one, until the 

antibody population size is below the saturation. 

 The assumption is that there can still be new antibodies removed during this adjustment. 

Some of them might have a chance to become active in future. However, it is neither possible to 

predict these antibodies nor can their possibility be denied. 

6.10. Training the AIS Heuristic Algorithm 

 At the beginning of the algorithm's execution, the system learns about previously known 

faulty data and their variations. This is done through a training process. During this process, the 

system is trained using previously classified historical data for the smart grid and the same bus. 

The result of this training is an initial antibody population. The classified data provide two 

classes of data: faulty and non-faulty. The faulty data are populated using the clonal selection, 

Somatic HpyerMutation, and Receptor Editing algorithms. The result is a collection of clones 

along with the original copies (i.e., the faults).  
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 After this process, Negative Selection is applied to this collection based on the non-faulty 

data. This Negative Selection removes those clones or projected values of faulty data that match 

non-faulty data. This collection of data, left after removing those matched clones, is the initial 

antibody population. 

6.11. AIS Heuristic Meeting the Laws of Lymphocytes 

 We know from the "Danger Theory" section that the AIS Danger Theory follows the laws 

of lymphocytes. To verify how this Danger-Theory-based AIS heuristic applies the laws of 

lymphocytes, the role of these laws as follows is described as follows. 

 Law 1. Its role is to describe the lifecycle of an inactive antibody and also when 

Signal 2 would be ignored. 

 Law 2. It describes from where Signal 2 is generated.  

 Law 3. It describes the lifecycle of an active antibody.  

 This AIS heuristic follows the above laws (explained in detail in previous sections) and 

restates them as follows. 

 Law 1. An inactive antibody becomes activated if it provides Signal 2 inside the 

Danger Zone (i.e., inside the range of Signal 2). Inactive antibodies die if they do 

not receive a Signal 1 inside the Danger Zone. If no Signal 1 is present inside the 

range of Signal 2 (i.e., inside the Danger Zone), then Signal 2 is ignored. 

 Law 2. Signal 2 is checked in parallel with the other calculations (e.g., renewal of 

the population, Signal 1 matching, etc). A thread runs in parallel to perform this 

calculation. Signal 2 is independent of Signal 2. If Signal 2 becomes true, then the 

Danger Zone is checked for any Signal 1. 



 

58 

 

 Law 3. Active antibodies ignore Signal 2. If an active antibody does not give a 

Signal 1 for a predefined time interval, it becomes a “memory cell” (equivalent to 

the resting state mentioned for previous laws). 
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7. TESTING AND EXPERIMENTATION 

7.1. Finding Existing Faults 

 After running this AIS heuristic, it is necessary to determine the feasibility of the 

implemented heuristic by comparing the result with a standard fault-finding methodology.  

Two methods for finding this fault are utilized. Standard Deviation Multiple and DBSCAN. 

Using these algorithms, outliers can be found, and they can be considered as faulty data or the 

cause of faults. The details of DBSCAN are described by Henrik [42]. Algorithm 3 is the 

algorithm for DBSCAN. 

 According to [43], DBSCAN (Density-based spatial clustering of applications with noise) 

was the most-cited clustering algorithm in 2010. Hence, this algorithm was selected as a standard 

for comparison. 

Algorithm 3. DBSCAN 

Step 1. Calculate the standard deviation of the data from the 

list. 

Step 2. Each data from the list. 

Step 3. Find the data with which the current data has the 

minimum distance. 

Step 4. If this minimum distance > distance amplifier × 

standard deviation, then add it in the list of outliers. 

(continues)   



 

60 

 

Algorithm 3. DBSCAN (continued) 

Step 5. If more data are left in the list un-traversed, then go to 

step 2. 

Step 6. Print the outlier list. 

Step 7. Exit. 

  

 If the data’s standard deviation falls outside a multiple of the collection of data's standard 

deviation, then it is considered as an outlier and, hence, a fault. A 1 is used for this multiple. 

Algorithm 4 is the Standard Deviation Multiple algorithm. 

Algorithm 4. Standard Deviation Multiple 

Step 1. Calculate the standard deviation of the data from the 

list. 

Step 2. Calculate the mean of the data from the list. 

Step 3. Each data from the list. 

Step 4. If data - mean > standard deviation × multiple, then 

Add these data to the list of outliers. 

Step 6. Print the outlier list. 

Step 7. Exit. 
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7.2. Voting 

 The algorithm is run a sufficient amount of time using the same dataset as input. For test 

data and for the IEEE 14 bus, the algorithm was run 100 times. To get an average for these runs, 

a voting process was designed. For every other value except the detected fault, the average of 

these 100 runs is saved against time. For example, for the second time point the result for the 

percentage of active antibodies that attacked the antigen of that time with respect to the total 

number of antibodies is determined  by taking average of the result of all 100 runs. This average 

represented the required percentile for the second time point. For all the other time points, the 

same step is followed.  

 Now for the faults found by this algorithm, if the average is more than 50% (i.e., 50% of 

the runs indicated “fault found”), then the corresponding data or antigens are considered as 

faulty. Otherwise, they are non-faulty. 

7.3. Implementation of the AIS Heuristic 

7.3.1. Complexity of the Implemented Code 

 Table 6 represents the complexity of the implemented code that is written in Java. 

Table 6. Complexity of the implemented code 

Metric results for AIS for Smart Electrical Grid 

Abstractness 0% 

(continues) 
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Table 6. Complexity of the implemented code (continued) 

Metric results for AIS for Smart Electrical Grid 

Average Block Depth 1.3 

    minimum 0 

    maximum 7 

Average Cyclomatic Complexity 3.04 

    minimum 1 

    maximum 31 

Average Lines of Code Per Method 17.69 

    minimum 1 

    maximum 182 

Average Number of Constructors Per Type 0.86 

    minimum 0 

    maximum 2 

Average Number of Fields Per Type 3 

    minimum 0 

(continues) 
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Table 6. Complexity of the implemented code (continued) 

Metric results for AIS for Smart Electrical Grid 

    maximum 32 

Average Number of Methods Per Type 5.04 

    minimum 1 

    maximum 21 

Average Number of Parameters 2.53 

    minimum 0 

    maximum 21 

Comments Ratio 10.90% 

Efferent Couplings 0 

Lines of Code 2,542 

Number of Lines 4,263 

Number of Methods 111 

Number of Types 22 

Weighted Methods 396 
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7.3.2. Variable Tuning 

 Before the deployment of the implementation, the variables for the implemented project 

need to be set up with appropriate values. The following values have been used. 

 antibodySize: Antibody population size (15,000). 

 numberOfTries: Number of times it tries to fulfill the threshold (100).  

 onlyAttackingActiveAB: Which type of renewal to choose? Only attacking (true) or all active 

antibodies (false). Here, its value is true. 

 votingPercentile: How many votes shall be taken to confirm an antigen as faulty (50).  

 testOrNot: Run for test data or for experimental data (false).  

 queueSize: Number of data in the history, can be any data (4).  

 busNo: IEEE bus test system’s bus no, N means N+1th bus (4).  

 activationThresholdInactiveToActive: Number of Signal 1s needed by an inactive antibody 

inside the Danger Zone(1) to become an active antibody.  

 distanceAmplifier: What multiple of the standard deviation shall be used for the Standard 

Deviation Multiple algorithm (1).  

 maxAllowedTimeS1andS2: Maximum allowable time between two different signals, it is the 

Danger Zone (queueSize).  

 numberOfS1ForEliminatingInactive: Number of Signal 1s above or equal which an inactive 

antibody is considered as a false-positive generator and, hence, eliminated (queueSize).  

 initialTimeToRunDeactivationProcess: To deactivate an antibody if it is not giving anything, 

we need to give it some time; this time should be greater than or equal to queueSize 

(queuesize) 
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 minInitialNumberOfDataToRenew: To start the renew, we need to get the first process of 

activating an antibody completed; this will be done right after the "queueSize" number of data 

have been processed; hence, the renew time is queueSize + 1.  

 numberOfConsecutiveErrorsS2: Number of interestingness criteria that will trigger Signal 2 

(queueSize or 2).  

 renewalInterval: After how many iterations shall the renew be run (1).  

 DecimalFormattoDForm: Nmber of digits after the decimal point. 

 thresholdAsPercentile: Match Threshold (10.0).  

 noOfClones: Maximum number of Clones (10).  

 defaultInterval: The initial antibody population can be created following a fixed interval (0.1).  

 historyOfGoodData: How long it has to go to get the good or non-faulty data (queueSize×2).  

 reciptorEditingNo: Percentage of clones that are generated by Receptor Editing.         

 numberOfObservation: Number of run of the AIS heuristic algorithm for voting (100).  

7.4. Test Data for the AIS Heuristic Algorithm 

 The algorithm is designed for all busses of an IEEE bus test system. Before applying the 

IEEE bus system data test, data, which will simulate the data for one single bus, are applied. 

Both the voltage magnitude    and Phase/Voltage Angle are considered. The AIS heuristic 

algorithm is applied to these test data. 
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 To create an initial antibody population, random values are placed as initial faulty and 

non-faulty data values (for both the voltage magnitude    and Phase Angle). Using both the faulty 

and non-faulty data for the voltage values, the initial antibody population is created following the 

AIS algorithms mentioned earlier: cloning faults using clonal selection, Somatic HpyerMutation, 

Receptor Editing algorithms, and removing clones that match non-faulty data (i.e., Negative 

Selection). This is how the AIS heuristic algorithm is trained at the beginning when the antigen 

is encountered or no data are being read. 

 Figure 18 shows the input Voltage/Phase Angle data as an example test data. Figure 19 to 

Figure 30 show the outcome of this algorithm for the Voltage/Phase Angle. This output is an 

average of 100 runs for the AIS heuristic. For voltage magnitude, the average result is given in 

APPENDIX A.  

 

Figure 18. Phase angle 
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 Figure 18 shows the input Phase Angle with respect to time. It also contains the average 

of certain data’s prior data’s average of a certain length. This is to represent places where Signal 

2 can be true. To be mentioned, Signal 2 becomes true here if it can see a series of the latest data 

including the current is higher than the average. This is shown by Figure 19, which illustrates the 

time points where Signal 2 is true. This figure shows a few antibodies produced by this program 

that are saved in a sorted order. It explicitly shows that each antibody has individual IDs. 

 

Figure 19. Signal 2 generations (1 means true of signal 2 is generated/raised) 
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  If new antibody with the same value came, then the one with a higher score is kept. 

Because antibodies that were just created during the renewal process do not have a score, the 

older one with the same value would be maintained, and the newer one would be discarded. 

 Figure 20 and Figure 21 show, respectively, the existing faults and the detected faults. 

Detected faults are identified by the proposed and implemented AIS heuristic. “Existing fault” 

means the faults are detected using the mentioned algorithms. DBSCAN and Standard Deviation 

multiple.  

 

Figure 20. Existing faults 

 

Figure 21. Detected faults 
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 Figure 22 shows the faults common to the AIS heuristic and the two methods used for 

fault finding. Figure 23 and Figure 24 show the false positives and the false negatives, 

respectively, with respect to time. The result shows that there are only two false positives and 

that there is no false negative. This low number of false positive proves that the AIS Heuristic is 

good for this type of voltage value. However, the reason for these false positives can be the 

inability of the other two methods (DBSCAN and Standard Deviation Multiple) to find the 

existing faults in the grid. Figure 20 to Figure 24 show the accomplishment of Objective Four. 

 

Figure 22. Common fault (detected vs. existing) 

 

Figure 23. False positives 
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Figure 24. False negatives 
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Figure 25. Average number of antibodies against time 

 Figure 26 shows the percentage of antibodies that attacked the antigen with respect to the 

total number of antibodies. A portion of the time frame is shown. After this time point, the 

number goes down. The reason for this decrease is that, after this time point, neither the data 

match the antibodies nor is Signal 2 true. It turns those non-matching antibodies to be removed 

from the antibody population.  

 Whenever there is an increase for Signal 2 again (time points 35 to 37 in Figure 19), this 

percentile increases with time because of the "Stimulation" scenario described earlier for this 

example. This scenario is shown in Figure 27. 
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Figure 26. A small part of the time span showing the percentage of antibodies that attacked the 

antigen with respect to the total number of antibodies where signal 2 is raised 

 

Figure 27. Percentage of antibodies that attacked the antigen with respect to the total number of 
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 Figure 28 to Figure 30 also show that the growth of the values in its x-axis is exponential. 

The exponential growth in percentiles indicates the exponential growth of antibody concentration 

to the problem areas (i.e., the faulty data values). This was an objective of this AIS heuristic. 

 On Figure 28 shows the percentage of active antibodies that attacked an antigen with 

respect to the total the number of active antibodies. It means that the number of active antibodies 

is concentrated around the problem area. This was another objective of this AIS heuristic. 

 

 

Figure 28. Percentage of active antibodies that attacked an antigen with respect to the total 

number of active antibodies 
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Figure 29. Average number of memory cells 

 

Figure 30. Average memory cells’ percentage with respect to total number of antibodies 
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7.5. Tests Using the IEEE Bus-Test System Data 

7.5.1. IEEE Bus System 

 To simulate a real-time electrical grid, an IEEE 14-bus system is used. Figure 31 shows 

an example of a bus at an IEEE bus system where it is connected to a generator (G) and 

consumer load (Load). 

 

Figure 31. A single bus for an IEEE bus system 

 Figure 32 represents the IEEE 14-bus test system where arrows illustrate points where 

consumer loads can be added. 

 

Figure 32. IEEE 14-bus system 
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 Here Table 8 describes the available data for the IEEE 14-bus system. Among the above-

mentioned data, only the voltage magnitude    and voltage/phase angle are used for the AIS 

heuristic. Hence, only they are selected, and a separate table containing these two voltage values 

is produced so that the table can work as an input file for the AIS heuristic algorithm.  

Table 8. Part of the IEEE 14-bus data 

 

 Table 8 shows the selected columns of the IEEE 14-bus system. The first column 

represents the bus number. The consecutive columns represent values for each bus in the first 

column.  
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 For example, bus no 1 has a voltage magnitude   of 1.06 with its maximum allowable 

value as 1.06 (column 4) and its minimum as 0.94 (column 5). For voltage Angle (column 3), the 

maximum and minimum angles are +360 degrees and -360 degrees, respectively.  

 The values mentioned in previous paragraph are used for this work. The units used in this 

IEEE bus system are given in Table 9. 

Table 9. Units used in this IEEE bus system 

Elements Unit 

Power Base 100 MVA 

Voltage Base  69 kv for buses 1 to 5 

 13.8 KV for buses 6,7, and 9 to 14 

 18 KV for bus no 8 

Frequency Base 60 Hz 

voltage magnitude    pu (per unit of the Voltage Base) 

Voltage Angle degrees 

7.5.2. Consumer Load 

 Three different ways were developed to simulate the consumer load. One way is to 

consider a standard consumer load pattern. The second and third ways are by introducing some 

random changes to the consumer load that exists in an IEEE bus system.  
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 For the first method, the electricity load pattern for 24 hours was considered. A sample of 

this load pattern is described in 0. It is not discussed further because it is kept as a scope for 

future work.  

 The second and third methods are to create random variables between 0 and 1. The 

number of elements in the array for these random numbers is the number of PMU observations 

that are needed. For each PMU observation for a particular time (t), the element no t-1 of the 

array would be used. 

 For the second method, the selected random number is added with the consumer demand 

of the IEEE bus test system. This second method the following equation: 

                        

                                                  

                                                    

 Figure 33 shows an example of such random-number generation for this second method. 

These random numbers are generated from uniform distribution for producing consumer load for 

bus 1 of the IEEE 14-bus system. It is also for a real load among the two types of consumer load 

(Real and Reactive).  
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Figure 33. Random numbers generated from the uniform distribution for producing a consumer 

load 

 The corresponding consumer load is shown in Figure 34. 

 

Figure 34. Random numbers generated from the uniform distribution for producing a consumer 

load 
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 Figure 35 shows an example of such random-number generation utilizing the third 

method.  

 

Figure 35. Random numbers generated from the uniform distribution for producing a consumer 

load 

 The corresponding consumer load for Figure 35 is shown in Figure 36. Hence, Objective 

One is achieved.  
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Figure 36. Consumer demand/load curve generated from the uniform random distribution for the 

IEEE 14 bus system's bus 1 (real load) 

7.5.3. Generating a PMU Observation 

 As is known from previous sections, Phasor Measurement Units (PMUs) can provide 
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MATPOWER solves an AC power-flow problem using Newton’s method. The output of the 
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 The IEEE bus system includes all the necessary bus, branch, and generator information. 

If it is of interest to know how this grid behaves according to the provided value, then it just 

needs to change it in the input for the IEEE bus system. For this work, the consumer's load 

would be changed along with some additional parameters, if needed (e.g., bus, branch, and 

generator data). Because the result of the power-flow algorithm is also an IEEE bus system 

reflecting these changes, it provides all the necessary information that PMUs provide. Reading 

the result of each execution simulates PMU observations.  

 To simulate the frequency of PMU observations (30 times per second), a consumer load 

that simulates consumer demand at every 1/30
th

 of a second is generated. The following steps are 

taken to obtain the PMU observations. 

Step 1. An array of random numbers from 0 to 1 is generated. The number of 

random numbers is the number of PMU observations that were considered. 

Step 2. The case of an IEEE bus system is considered. Power flow is executed on 

this bus system. The result is saved as the new case for the IEEE bus system. 

Step 3. From the resultant case of the IEEE bus system, appropriated 

parameters are changed as needed. For example, consumer load is changed 

to reflect consumer demand at the current time (t). The changes are saved. 

Consumer demand calculated at time t is the consumer’s demand at time t-1 

(previous time stamp) ± the corresponding random number for time t. This 

(random number for t is the t
th

 element of the random number array 

(following equation) :  

Power Demandt = Power Demandt-1 ± random numbert 
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Step 3. Power flow is executed on this changed, resultant case for the IEEE bus 

system. The result is saved as the new case of IEEE bus system.  

Step 4. Go to Step 3 until the end of the previously generated random number’s 

array is reached. 

 In short, a consumers' load is considered for a particular time by using a random number 

with the previous consumer load, replacing the consumer-load section of the IEEE bus system 

with it, and then running the power flow. 

 This replacement is done for all randomly generated numbers. The result was an array for 

the case of an IEEE bus system. The result contains information for bus, branch and generator. 

Each element of this array represents the power system's status for corresponding time (e.g., the 

0th element represents the 1st time stamp and, hence, the 1
st
 observation by the PMU; the 1

st 

element represents the 2
nd

 PMU observation; the 29
th

 element represents the 30
th

 PMU 

observation, etc). For consumer load data, both real and reactive loads are considered. 

 Random numbers that will modify existing consumer loads at each time point are placed 

in an array fashion to simulate the consumer load against a time sequence. Enough observations 

are generated to cover a sufficient time span. Both real and reactive load data were considered. 

As mentioned earlier, the result of the power-flow algorithm is the simulated power grid's data in 

an IEEE bus-system data format. These data simulate PMU observations. Among the simulated 

PMU observation data, only voltage magnitude    and voltage/phase angle are considered. Figure 

37 and Figure 38 sample voltage magnitude    and Voltage/Phase Angle, respectively, for one 

bus of the IEEE 14-bus system for the generated consumer load. The rest of the PMU 

observation data will be considered in future work. 
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Figure 37. Voltage/phase angle for a bus in the IEEE 14-bus system with respect to the GPS 

 

Figure 38. Voltage magnitude for a bus in the IEEE 14-bus system 
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 Along with these loads, a real-time fault on an electrical grid is simulated. One method is 

that, if any generator, bus, or branch is out of service, is tripped. After the introduction of this 

trip, the system may or may not stabilize itself. When the grid is not stable, then a fault is 

introduced. To trip the appropriate portion, just "zero" is placed in its corresponding cell in the 

tables representing the IEEE bus-system data. This is how Objective Two is met. 

7.5.4. Training the AIS Heuristic Algorithm Using the IEEE Bus Test System 

 Following the techniques mentioned above, voltage values (voltage magnitude   and 

Phase Angle) are generated using the MATLAB code. Then, for each bus, both values are 

classified as faulty and non-faulty using the outlier-finding algorithms. DBSCAN and Standard 

Deviation Multiple. The outliers are considered faults. Using both the faulty and non-faulty data 

for the voltage values, the initial antibody population is created for each bus following the AIS 

algorithms mentioned earlier: cloning faults using clonal selection, Somatic HpyerMutation and 

Receptor Editing algorithms, and removing clones matched with non-faulty data. Therefore, the 

result is 14 initial antibody populations for 14 busses in the IEEE bus test system. 

 Figure 39 and Figure 40 show the consumer demand generated from a uniform 

distribution. They are given in the MATLAB routine that applies these data to the IEEE bus 

system. The resultant Phase Angle and voltage magnitude    for bus 5 are shown in Figure 41 and 

Figure 42. 
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Figure 39. Consumer real load for uniform distribution 

 

Figure 40. Consumer reactive load for uniform distribution 
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Figure 41. Voltage magnitude for bus 5 training data of the IEEE 14-bus system 

 

Figure 42. Voltage angle for bus 5 for training data of the IEEE 14-bus system 
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 The AIS heuristic algorithm reads these values and gets its classification from the 

DBSCAN and Standard Deviation Multiple algorithms. The result is a list of faulty data. These 

faulty data simulate data that are known to be faulty from this electrical grid’s past history. These 

faulty data are used to generate the initial antibody population. This is how the AIS algorithm 

trains itself. There are 100 time points considered as a time span (1 time point = 1/30th of a 

second). 

7.5.5. AIS Heuristic Algorithm Results for the IEEE Bus Test System 

 The consumer-demand curves applied to the MATLAB routine to generate bus scenarios 

are shown in Figure 43 and Figure 44. There are 200 time points considered as the time span. 

The corresponding phase angle and voltage magnitude    generated by MATLAB are shown in 

Figure 45 and in 0. The AIS heuristic algorithm is applied on this generated data for the 

MATLAB routine of the IEEE 14-bus system. 

 

Figure 43. Consumer demand/load curve generated from the uniform random distribution for bus 

5 of the IEEE 14-bus system (real load) 
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Figure 44. Consumer demand/load curve generated from the uniform random distribution for bus 

5 of the IEEE 14-bus system (reactive load) 

 Figure 45 shows the Phase Angle for bus 5 of this system. The AIS heuristic pinpoints to 

the faults it found for this bus. Figure 46 shows the faults detected by this algorithm. Figure 487 

to Figure 51 show the comparison of faults detected with this method to faults detected using two 

other methods. They are DBSCAN and Standard Deviation Multiple. 

 

Figure 45. Phase angle with respect to time for bus 5 (as a result of the consumer load it has) of 

the IEEE 14-bus system 
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Figure 46. Average detected fault with respect to time 

 

Figure 47. Number of signal 2s (averaged through voting process) 

 

Figure 48. Existing fault with respect to time 
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Figure 49. Faults common between detected faults and existing faults 

 

Figure 50. False positive (averaged through the voting process) 

 

Figure 51. False negative (averaged through the voting process) 
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 Figure 52 to Figure 56 show an exponential growth proofing a good performance for this 

algorithm. 

 

Figure 52. Average number of active antibodies with respect to time 

 

Figure 53. Average number of antibodies 
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Figure 54. Average number of attacking active antibodies 

 

Figure 55. Average number of memory cells 
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Figure 56. Average number of attacking antibodies 

 Figure 57 shows an increased memory-cell percentage with respect to the total number of 

antibodies at the beginning and decreasing over time. The reason is that, during their increase, 

the active antibodies are no longer catching faults and becoming memory cells. Because memory 

cells do not die, their decrease means the increase of total number of antibodies (shown in Figure 

53). A similar thing happens in Figure 58 and Figure 59. 

 

Figure 57. Average percentage of memory cells with respect to the total number of antibodies 
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Figure 58. Average percentage of active antibodies with respect to total number of antibodies 

 

Figure 59. Percentage of active antibodies attacking the antigen with respect to total number of 

antibodies 
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 Figure 60 shows an exponential growth percentage for active antibodies attacking the 

antigen with respect to total number of antibodies. This growth means that the active antibodies 

are concentrating around the problem areas. Active antibodies that are not able to catch the fault 

are becoming memory cells, and other antibodies that are able to catch faults are proliferating. 

 

Figure 60. Percentage of active antibodies attacking the antigen with respect to total number of 

antibodies 

 The consumer demand had different combinations of incremental and decremental loads 

for both the real and reactive loads (e.g., real incremental but reactive decremental, real 
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incremental and reactive incremental). Including the uniform distribution, there are five different 

load types that are applied to the MATLAB routine. The resulting five bus-system configurations 
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 For the above 5 consumer cases and 4 different bus modes, there are a total of 20 

different combinations. The AIS heuristic is applied to all these combinations. The results 

showed that, for some data pattern, the number of false positives is low and that, for a certain 

one, it is high.  

 The model proposed and implemented here encoded the theoretical aspects of 

immunology. These aspects are Danger Theory, Danger Zone, Danger Signals, Stimulation, 

Somatic Hypermutation, and Receptor Editing. The goal was to encode one electrical grid issue 

(e.g., a fault) into an issue that was solvable by AIS. The experiment evaluated the proposed and 

implemented model. The dataset used here was a simulation of real-world problems. 

 Experimental results showed that our model is good in many cases, with a few 

exceptions. For successful cases, the result is promising. 
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8. CONCLUSION AND FUTURE WORKS 

 My developed model is empirical. I showed it by successfully accomplishing the 

objectives of this work, simulating real-time consumer behavior, simulating PMU observations, 

applying the Danger Theory for automatic detection of faults in an electrical grid, and comparing 

the result with two data-mining algorithms that are able to find these faults.  

 My goal was to perform a feasibility study about how this natural computation method 

(i.e., AIS) performs in the field of a Smart Electrical Grid. In many cases, the result was 

promising. One question that arose here was whether this AIS heuristic has added value to the 

field of Smart Electrical Grids. The answer lies on the contribution this heuristic provides. 

 The main contribution of this work is to provide a foundation for applying natural 

computation methods such as this AIS heuristic in the field of a Smart Electrical Grid. This work 

also provides an inspiration and guideline for researchers to find harmony between the field of 

Smart Electrical Grids and evolutionary computation methods. By being inspired with the AIS 

heuristic modeling, researchers can also find more AIS applications on a Smart Electrical Grid.  

 The experimental result concludes that the heuristic can indicate the importance of a fault 

by the heuristic's increased number of antibodies catching a fault. This feature is unique 

compared with the other methods. However, the result also proves that this heuristic has 

weaknesses along with its strength. For a certain pattern of data, the number of false positive is 

high. It is also clear that the thresholds play a vital role. For a certain data pattern, particular 

thresholds dominate the result. It can also be concluded from the result that, whenever the 

antibody population size is adjusted, it is highly possible to lose some effective candidate 

antibodies. It is noticeable that, if the same fault comes with a smaller interval, the neighborhood 

for that fault is filled out more quickly. The result demonstrated that the goal was met. 
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 The previous work by Jose Carlos [34] provided a detailed overview of the Artificial 

Immune System that gave a good foundation to apply AIS to a Smart Electrical Grid. This work 

is a good foundation for understanding the application of AIS in the engineering domain. This 

work has a good contribution of deriving the AIS heuristic for a Smart Electrical Grid. 

 In my work with this AIS heuristic, I considered two data types from all the available 

PMU data. To find faults, I considered them individually. One work can be done is that values 

from these two data types can be included in an array of features. Further, this array could be 

extended with more features. These features could be added from different data provided by the 

PMU readings. This feature array could have a variable length.  

 In immunology, the Danger Theory is still being studied. The exact nature of the danger 

signal is still under investigation. Despite the issues with a partially developed theory, I am 

proposing some future work that can be done to improve both the Danger Theory and the AIS 

heuristic I proposed.  

 One way of improving this AIS heuristic is to define the appropriate Signal 2 for 

particular cases. Signal 2 can be a combination of multiple features. Signal 2 can be based on a 

trust model where it would be true if the trust for the current data or current data trend goes 

below a threshold or lost its trust.  

 Another work can be to vary the Danger Zone’s size. This variable Danger Zone can help 

treat different electrical grids at various levels of importance. Presently, the signals have binary 

values (e.g. true or false). For Signal 2, this can be improved by using values greater than 2. One 

way is by using fuzzy logic where each fuzzy value represents a range e.g., a value of 9 to 10 

will represent an excellent condition of Signal 2; 0-1 can represent the worst-case scenario for 

Signal 2.  
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 Again, multiple Signal 2s can be considered, each alarming different features of the data 

(e.g., a spike in the data series, a data trend that has a higher slope with respect to reference or 

threshold, etc.). 

 I believe that these future works are good directions for researchers interested in applying 

bio-inspired algorithms in a Smart Electrical Grid. The next research step is to introduce 

enhancements for the currently proposed and implemented model by designing and 

implementing the above-mentioned techniques.  
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APPENDIX A. RESULTS OF EXECUTING AIS HEURISTIC ALGORITHM 

 Figure A1 to Figure A12 show the results of executing the AIS heuristic algorithm on test 

data for voltage magnitude.  

 

Figure A1. Voltage magnitude for test data 

 

Figure A2. Signal 2 with respect to time (1 means true and 0 means false) 
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Figure A3. Existing faults 

 

Figure A4. Detected faults 

 

Figure A5. False positive 
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Figure A6. False negative 
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Figure A8. Percentage of antibodies attacking the antigen with respect to the total number of 

antibodies 

 

Figure A9. Active antibody percentage with respect to the total number of antibodies 
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Figure A10. Average percentage of memory cells with respect to the total number of antibodies 

 

Figure A11. Average percentage for the total number of attacking antibodies 
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Figure A12. Average number of active antibody percentile with respect to the total antibody 

number 
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APPENDIX B. CONSUMER LOAD PATTERN 

 The consumer-load pattern (1 MW = 10 × 1 TWh) for 24 hours is shown in B1 and B2. 

 

Figure B1. Consumer's average demand for summer (average day) 

 

Figure B2. Consumer's average demand for summer (average day) 
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 This Demand or Load was projected for 24*3,600*30 = 2,592,000. Hence, each data 

point for this projected data is the consumer demand for 1/30th of a second. However, after 

observing these projected data, it became clear that this demand curve does not show sudden 

spikes or sudden demand changes. In the future, I will improve this curve by adding noise so that 

it can satisfy the criteria for Signal 2. 
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APPENDIX C. IEEE BUS SYSTEM 

 Table C1 and C2 show the available data from the IEEE 14-bus system. Only the bus and 

branch data are shown. These bus-system data also contain generator data and generator-cost 

data.  

Table C1. Bus data for IEEE 14-bus system 

Bus # Voltage Generation Load 

Mag(pu) Ang(deg) P(MW) Q(MVAr) P(MW) Q(MVAr) 

1 1.06 0.000* 88.06 10.98 - - 

2 1.045 -1.606 40 8.24 13.51 10.25 

3 1.01 -4.483 0 -17.03 33.95 5.3 

4 1.029 -4.373 - - 30.21 -3.14 

5 1.03 -3.601 - - 1.19 1.3 

6 1.07 -6.154 0 -4.58 1.11 4.62 

7 1.072 -6.117 - - - - 

8 1.09 -6.117 0 11.25 - - 

9 1.071 -7.017 - - 23.16 10.83 

10 1.067 -6.959 - - 3.98 3.13 

11 1.067 -6.544 - - 0.28 1.57 

12 1.062 -6.648 - - 2.87 0.98 

13 1.058 -6.774 - - 11.76 4.87 

14 1.058 -7.046 - - 3.41 3.6 
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Table C2. Branch data for IEEE 14-bus system 

Branch 

# 

Branch Bus Injection To Bus Injection Loss 

From 

Bus 

To 

Bus 

P 

(MW) 

Q 

(MVAr) 

P 

(MW) 

Q 

(MVAr) 

P 

(MW) 

Q 

(MVAr) 

1 1 2 55.54 6.45 -55 -10.63 0.547 1.67 

2 1 5 32.52 4.53 -31.98 -7.7 0.534 2.2 

3 2 3 29.63 9.72 -29.19 -12.49 0.441 1.86 

4 2 4 29.63 -1.26 -29.16 -0.98 0.467 1.42 

5 2 5 22.22 0.15 -21.96 -3.09 0.26 0.79 

6 3 4 -4.76 -9.84 4.83 8.69 0.07 0.18 

7 4 5 -31.72 6.87 31.85 -6.45 0.133 0.42 

8 4 7 16.41 -9.8 -16.41 10.49 0 0.69 

9 4 9 9.44 -1.64 -9.44 2.09 0 0.45 

10 5 6 20.9 15.93 -20.9 -14.51 0 1.43 

11 6 11 3.84 -0.15 -3.82 0.18 0.012 0.03 

12 6 12 4.46 1.33 -4.44 -1.28 0.023 0.05 

(continues) 
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Table C2. Branch data for IEEE 14-bus system (continued) 

Branch 

# 

Branch Bus Injection To Bus Injection Loss 

From 

Bus 

To 

Bus 

P 

(MW) 

Q 

(MVAr) 

P 

(MW) 

Q 

(MVAr) 

P 

(MW) 

Q 

(MVAr) 

13 6 13 11.5 4.14 -11.41 -3.97 0.086 0.17 

14 7 8 0 -11.06 0 11.25 0 0.19 

15 7 9 16.41 0.57 -16.41 -0.32 0 0.26 

16 9 10 0.46 4.92 -0.46 -4.91 0.007 0.02 

17 9 14 2.22 4.27 -2.19 -4.22 0.026 0.05 

18 10 11 -3.53 1.77 3.54 -1.75 0.011 0.03 

19 12 13 1.57 0.3 -1.57 -0.29 0.005 0 

20 13 14 1.23 -0.61 -1.22 0.62 0.003 0.01 
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APPENDIX D. PHASE ANGLE AND VOLTAGE MAGNITUDE GENERATED BY 

MATLAB 

 

Figure D1. Voltage magnitude for bus 5’s training data with an IEEE 14-bus system 

 

Figure D2. Existing fault for bus 5 
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Figure D3. Detected fault for bus 5 

 

Figure D4. Common fault for bus 5 

 

Figure D5. Active attacking antibodies with respect to the total number of antibodies 
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Figure D6. Average percentage of the total number of attacking antibodies 

 

Figure D7. Voltage magnitude    for bus 14’s training data with an IEEE 14-bus system 
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Figure D8. Voltage angle for bus 14’s training data with an IEEE 14-bus system
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APPENDIX E. EXPLANATION OF ALTERNATIVE AFFINITY MEASUREMENT 

 Alternative affinity measurement can be used. This affinity measure can be the 

summation of affinity from bus to bus for an electrical grid system. This summation would be 

the affinity matrix. For an IEEE 14-bus test system, a collection of bus data with faults can be 

found from historical data. For any of these historical faulty data, the affinity between data from 

each bus at current time and the data for the same bus in history can be measured. These 

affinities can be summed and can represent the affinity of the current gird data as a whole with 

the grid's previously experienced faulty-condition data. The implementation showed promising 

affinities. However, it was never applied to the AIS heuristic approach discussed here because 

this heuristic is based on dealing with one bus at a time rather than all buses at the same time. 

Therefore, a variation of this heuristic, dealing with all buses at the same time, is a good place to 

apply this affinity measure. 


