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ABSTRACT 

 

Among various energy conversion and storage devices available in the market, 

supercapacitors are deemed as an effective, competitive solution to the increasing demand for 

high-power density energy-storage devices. Yet, supercapacitors usually carry relatively low 

energy density compared to batteries. Nanostructured electrode materials are expected being able 

to greatly enhance the electrochemical performance of supercapacitors. This research aims at 

rational synthesis and electrochemical characterization of novel hierarchically functionalized 

carbon nanofibers (CNFs) for use as advanced electrode materials of supercapacitors. These novel 

CNFs [(i.e., graphene-beaded CNFs (G/CNFs) and carbon nanotube (CNT)-grown CNFs 

(CNT/CNFs)] were successfully synthesized. The unique synthesis routes consist of 

electrospinning the precursor polymer nanofibers, followed by controlled carbonization, chemical 

vapor deposition (CVD) for CNT growth, and in situ polymerization for coating nanostructured 

conducting polymer. These new electrode materials carry the advantages of G/CNFs and 

CNT/CNFs (e.g., unique nanostructural continuity, large specific surface area, low intrinsic 

contact electric resistance, etc.) and conducting polymers (e.g., high pseudocapacitance), and 

therefore show excellent electrochemical performance including high specific capacitance, 

superior energy and power densities, and excellent cyclability. In addition, this work also provides 

the experimental study on parameter dependency of conic angle in electrospinning and scalable 

fabrication of core-shell nanofibers via needleless emulsion electrospinning. 
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CHAPTER 1. INTRODUCTION 

 

1.1. Increasing Demands of Alternative Energy Technologies 

Fast consumption of nonrenewable fossil fuels and its severe influence on climate change 

and environmental pollution have become one of the major challenges to our modern society. 

Fossil fuels such as petroleum oils, coal, and natural gas have constituted the primary sources to 

meet the world’s energy demands since the 20th century. In 2010 the International Energy Agency 

reported that about 13.2% of the global final energy consumption came from renewables, with 

12.3% coming from traditional biofuels and hydropower, while only 0.9% came from new 

renewable energy sources (e.g., solar, wind, tide, biomass, geothermal energy, etc.). However, 

more than 81% of the global final energy consumption accounted from fossil fuels (Figure 1.1) 

(Arunachalam and Fleicher, 2008; Brennan and Owende, 2010; International Energy Agency, 

2010; Sharma et al., 2009). Without fossil fuels, most today’s social and economic activities such 

as transportation, communication, production of goods and commercial services could disappear 

or shrink significantly. Yet, fossil fuels are very limited and nonrenewable resources. Moreover, 

the emission of green gases and other harmful wastes due to combustion of fossil fuels is the 

leading factor responsible for global climate change and environmental pollution, which threatens 

both human health and the entire ecosystem. 
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Figure 1.1. Global primary energy supply (2010) (International Energy Agency, 2010). 

 

With the concern of increasing energy consumption, decreasing availability of fossil fuels, 

and resulting environmental deterioration, substantial effort has been dedicated to development of 

innovative, affordable, high-efficiency energy harvesting, conversion and storage technologies for 

utilization of various renewable energy sources such as solar, wind, tide, and geothermal energy. 

To meet the characteristics of renewable energy resources, novel energy conversion and storage 

technologies are expected to store and utilize electrical energy generated from various intermittent 

renewable “clean” energy sources to lower dependence on fossil fuels (Benson and Orr, 2008; 

Winter and Brodd, 2004; Zhao, 2011). At the forefront of renewable energy technologies, 

rechargeable batteries, fuel cells and electrochemical capacitors constitute the three major types of 

energy conversion and storage devices. Among these devices, innovative materials/technologies 

pay a crucial role in the enhancement of renewable energy conversion and storage capacity, 

efficiency, and cyclability (Whittingham, 2008). In the last two decades, nanostructured materials 

have attracted worldwide interests as high-performance electrodes of energy conversion and 

storage devices because of their unique low-dimension and size effect at nanoscale, which provides 

favorable high specific surface area to facilitate the fast charge transfer across the surface of 
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electrodes than conventional electrode materials. As a matter of fact, the efficiency and reliability 

of energy conversion and storage devices primarily depends on the electrode materials and 

structures, thus development of high-performance nanostructured materials with optimized 

material composition, structures and surface morphology is highly demanded to enhance their 

electrochemical performance. In addition, to better meet the growing demands of high-quality 

energy requirements, new technological breakthroughs are essential to design and fabrication of 

innovative electrodes for next generation of low-cost, high efficiency energy conversion and 

storage devices with high energy and power densities, superior cyclability, and excellent 

environmental adaptability. 

 

1.2. Outstanding Problems to Be Resolved 

Novel technologies and devices are urgently desired to meet such a global trend of energy 

harvesting, conversion and storage. In parallel, there are worldwide interests and huge market 

potential in portable electronics and power tools, all-electric and plug-in hybrid electric vehicles 

(HEVs), and smart electrical grid integrated with fluctuating energy resources (e.g., solar and wind 

energies). These broad applications require low-cost, reliable and efficient energy conversion and 

storage devices with high energy and power densities. 

Among a variety of electrochemical energy storage devices, electrical double layer 

capacitors (EDLCs), also called ultracapacitors or supercapacitors, have been under intensive 

investigation due to their high power density, ultrafast charge/discharge rates and long life cycles 

(Miller and Simon, 2008; Chmiola et al., 2006; Simon,  and Gogotsi, 2008). It has been generally 

accepted that supercapacitors can be designed to bridge the gap between rechargeable batteries 

and standard capacitors used in broad industrial sectors (Snooka et al., 2010). Yet, owing to their 
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unique charge-storage mechanism of rooting charges at the interface of electrochemical double 

layers, supercapacitors usually carry a much lower energy density than that of secondary batteries 

(~1/100-1/10). Thus, it is technically crucial to enhance the energy density of supercapacitors 

while maintaining their existing advantages via nurturing novel charge-storage strategies, 

formulating innovative system architectures, and synthesizing new generation electrode materials, 

electrolytes, and separators to meet the ever growing requirements of future systems (Qu et al., 

2012; Wang et al., 2011). 

In addition, conducting polymers have been under intensive research as potential low-cost 

electrode materials for use in supercapacitors due to their high capability of storing charges in the 

bulk state via a reversible redox reaction and resulting high energy density (Snooka et al., 2010). 

As one of the promising conducting polymers for use in electrodes, polyaniline (PANI) carries a 

high theoretical specific pseudocapacitance up to 750 F/g (Snooka et al., 2010; Lota et al., 2004). 

Besides, PANI also possesses other favorable properties such as low mass density and cost 

compared to transition-metal oxides [e.g., Ruthenium dioxide (RuO2), Manganese dioxide (MnO2), 

etc.], and good electrical conductivity, easy synthesis, and sound environmental stability (Gomez 

et al., 2011; Ryu et al. 2002, Lota et al., 2004; Zhao et al., 2011). However, several outstanding 

issues still need to be resolved in rendering PANI as an electrode material to meet the practical 

requirements of supercapacitors such as the redox switching, relatively low electrical conductivity, 

and poor cyclability(Zhao et al., 2011; Zhou et al., 2004). To address these issues, nanostructured 

PANI have been synthesized on the surface of various carbon materials such as carbon nanotubes 

(CNTs), carbon nanofibers (CNFs), porous carbon, and graphene for use in supercapacitors (Ghosh 

et al., 2013; Chen et al., 2013; Wang et al., 2006; Portert et al., 2008; He et al., 2012; Zhou et al., 

2013). 
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Moreover, due to their discrete nature, carbon nanostructures (e.g., CNTs, short CNFs, 

exfoliated graphene, graphitic nanoflakes, etc.) are typically stacked loosely in porous electrodes. 

Such a discrete structural configuration may lead to noticeable electrical contact resistance and 

thus adversely decreases the energy and power densities of the resulting supercapacitors (Ghosh 

et al., 2013; Chen et al., 2013; Wang et al., 2006; Portert et al., 2008; He et al., 2012; Zhou et al., 

2013; Wu et al., 2012). Therefore, new techniques and processes are still desired to resolve such a 

dilemma of achieving the ultrahigh specific surface area while maintaining the high, reliable 

electrical connectivity in carbon nanostructures. 

 

1.3. Dissertation Objectives  

The goal of this dissertation research was to investigate three innovative, rational, effective 

approaches for synthesis of new multifunctional nanofibers for use as hybrid electrode materials 

of supercapacitors with highly enhanced energy and power densities. Specifically, innovative 

rational synthesis routes were formulated for fabricating electrospun graphene-beaded CNFs and 

CNT-grown CNFs, which were further utilized as the supporting backbones for the nanostructured 

active materials. Besides, high-performance pseudocapacitive materials (e.g., PANI) were coated 

on the surface of these novel continuous CNFs to form hierarchically functionalized ternary core-

shell nanofibrous structures. When integrated into porous electrodes in supercapacitors, these 

hierarchical multifunctional CNFs were expected to yield high power and energy densities.  The 

high power density was derived directly from the high specific surface area as well as the high 

conductivity of the continuous electrospun CNFs, while the high energy density was resulted from 

the pseudocapacitive performance of the novel nanofibrous active materials. Moreover, the 

internal electrical conductivity, capacitance efficiency, and cycling stability of the resulting hybrid 
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high-performance supercapacitors would be remarkably enhanced during cycling. Thus, the 

research was expected to greatly advance the fundamental understanding of novel nanostructured 

electrode materials for use in supercapacitors and related nanomanufacturing, structural and 

electrochemical characterization, device fabrication, and performance modeling. The research 

would significantly contribute to the development of next generation of high-performance 

electrical energy conversion and storage devices with high energy and power densities for a 

greener world based on cutting-edge renewable energy technologies. In addition, the research 

would also stimulate and extend to broad research areas of nano-architectured electrochemical 

energy conversion and storage devices such as batteries, fuel cells and solar cells based on hybrid 

hierarchically functionalized nanofibrous electrodes.  

Specifically, the research tasks in this dissertation work included the follows:  

(1) To formulate unique rational effective routes to synthesize innovative porous carbon 

nanofibrous materials by means of low-cost electrospinning, followed by controlled 

carbonization and surface-functionalization. Three types of multifunctional carbon 

nanofibrous materials  were proposed: 

a) Continuous CNFs that would be synthesized by controlled carbonization of 

electrospun polyacrylonitrile (PAN) nanofibers with the diameter around 200-

400 nanometers; 

b) Continuous porous CNT-grown CNFs that would be synthesized by controlled 

carbonization of electrospun composite PAN/Ni(AcAc)2 nanofibers, followed by 

controlled CNT-growth by means of chemical vapor deposition (CVD); 

c) Continuous graphene-beaded CNFs that would be synthesized by controlled 

carbonization of electrospun PAN/oxidized graphene nanofibers; 
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(2) To form hybrid ternary hierarchical porous core-shell materials via controlled 

deposition of nanostructured PANI onto the above electrospun carbon nanofibrous 

materials as supporting backbones.  

(3) To characterize the microstructure, surface morphology, and electrochemical 

properties of the hierarchical nanofibrous electrode materials synthesized above.  

(4) To fabricate both solid-state and aqueous proof-of-concept hybrid supercapacitors 

with the proposed hierarchical multifunctional nanofibrous materials as electrodes, 

and to characterize their electrochemical properties. 

(5) To explore the fundamental understanding of the electrochemical performance and 

related structural and electrochemical mechanisms of the resulting high performance 

supercapacitors.  

(6) To explore the fundamental understanding of parameter dependency of conic angle in 

electrospinning and scalable fabrication of core-shell nanofibers via needleless 

emulsion electrospinning. 

 

1.4. Chapter Arrangement 

The dissertation begins in Chapter 1 with an introduction of the topic that underlies the 

demands of alternative energy technologies, outstanding problems, dissertation objectives, and 

chapter arrangement. Chapter 2 is a brief review on the development and energy storage 

mechanisms of supercapacitors, as well as a novel, low-cost, top-down nanomanufacturing 

technique – electrospinning. Chapter 3 deals with the fabrication and electrochemical capacitor 

behavior of CNFs surface-grown with CNTs. Chapter 4 describes the fabrication and 

characterization of graphene-beaded CNFs for use in supercapacitors. Chapter 5 describes the 
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ternary core-shell structured CNFs surface-grown with CNTs and PANI as hierarchal 

multifunctional electrodes for use in pseudosupercapacitors. Chapter 6 focuses on the high-

performance porous electrodes for pseudosupercapacitors based on graphene-beaded CNFs 

surface-coated with nanostructured conducting polymers (PANIs). Chapter 7 covers a fundamental 

study of the formation of conic angle in electrospinning of nanofibers and scale-up fabrication of 

core-shell nanofibers by needleless emulsion electrospinning. Each chapter consists of a brief 

introduction, experimental section, results and discussion, and a summary. Chapter 8 summarizes 

the main conclusions of the dissertation research and future work. 
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CHAPTER 2. LITERATURE REVIEW 

 

In this chapter, a brief review is made on electrochemical capacitors and related novel 

nanostructured materials for electrodes. The emphasis is focused on the development and 

fundamental principles of electrochemical capacitors and related fabrication methods. Typical 

electrode materials, e.g., carbon materials, conducting polymers, transition oxides, etc., are further 

addressed. The nanomanufacturing approaches used in this dissertation work are also reviewed.   

 

2.1. Historical Development of Electrochemical Capacitors  

Electrostatic capacitors are the most direct and literal way of storing electrical energy and 

have been one of the primary building blocks of electrical circuits since the earliest days of 

electrical engineering. Figure 2.1 shows the historical development of electrical capacitor 

technology (Tan et al., 2006). The concept of electrostatic charge was first described by the 

Ancient Greeks, but the first electrical capacitor using electrostatic charge was patented by Pieter 

van Musschenbroek in 1745 (Conway, 1999), using a Leyden jar. The Leyden jar capacitor, called 

the “condenser”, used a glass phial as the dielectric medium, acidic electrolyte as the conductor, 

and metal coating on either side of the glass as the electrodes. Since then, the performance of 

capacitors has progressed through generations of technological evolution in understanding of the 

fundamental science behind the electrochemical charge storage device with vital contributions 

from Luigi Galvani, Alessandro Volta, Benjamin Franklin, Michael Faraday, and Joseph John 

Thompson, among others (Conway, 1999). 
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Figure 2.1. Historical evolution of capacitor technology (Tan, 2006). 

 

Electrostatic capacitors accumulate and store electric charges on the conductive electrodes 

separated by an insulator or dielectric material (Aricò et al., 2005; Benson and Orr, 2008; Bruce 

et al., 2008; Dunn et al., 2011; Song et al., 2011; Winter and Brodd, 2004; Zhao et al., 2011). The 

primary advantages of electrostatic capacitors include high power density of over 10 kW/kg, fast 

charge/discharge rates within tens of microseconds, and low equivalent series resistance (ESR) 

and inductance (ESL) (Zhao et al., 2011). Current commonly used dielectric materials in 

electrostatic capacitors include electrolytics, ceramics, polymer films and mica, which are 

typically available in planar or spiral wound constructions and employed widely in microelectronic 

devices. Although electrostatic capacitor technology appears to be the ideal choice for high-speed 

electronic devices and circuits, the specific capacitance generated by an electrostatic capacitor is 

typically less than 10 mF/g and related energy density is less than 0.1 Wh/kg. 
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Historically, the phenomenon of storing electrical charges at the interface between an 

electrode and an electrolytic solution had been extensively studied since the late 1800s. Yet, the 

first practical device based on electrolytic capacitors was invented as late as 1957 by Becker in 

General Electric Co. This first capacitor was based on high surface-area porous carbon electrodes 

in an aqueous electrolyte (see Figure 2.2). Later, in 1966 the Standard Oil Company of Ohio 

(SOHIO) patented the first commercial electrochemical charge storage device based on the double-

layer capacitance of high surface-area carbon material in a non-aqueous tetraalkylammonium 

electrolyte (Rightmire, 1966). However, it was not until 1978 that Nippon Electric Company (NEC) 

and Panasonic Co. in Japan started to manufacture double-layer capacitors based on aqueous 

electrolyte in pasted electrodes and non-aqueous electrolyte in non-pasted electrodes, respectively 

(Endo et al., 2001). In the same year, NEC coined the term “supercapacitor.” These low voltage 

double-layer capacitors with a high internal resistance were primarily designed to replace the 

unreliable coin cell batteries for memory backup applications. In the 1980s, ELNA Co. designed 

another type of double-layer capacitors, with the brand name “Dynacap,” using an organic 

electrolyte.   
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Figure 2.2. The electrolytic capacitor patented by Becker in General Electric Co. (Becker, 1957). 

 

Furthermore, Trasatti proposed the first non-carbon electrode material, RuO2, in the late 

1970’s and 1980’s for use in supercapacitors, and Conway and coworkers implemented a different 

principle named pseudocapacitance and carried out extensive fundamental and development work 

of electrochemical capacitors based on transition metal oxides including RuO2, MnO2, Titanium 

dioxide (TiO2), Iridium dioxide (IrO2), and Cobalt oxide (Co3O4) (Conway and Angerstein-

Kozlowska, 1981; Hadzi-Jordanov et al., 1975; Trasatti and Buzzanca, 1971). The high surface 

area of carbon based electrodes (1000 – 2000 m2/g) and solid state transition metal oxides led to 

the commercialization of electrochemical storage devices by Matsushita Electric Industrial Co. 

(Japan) in 1980’s. These devices were called power capacitors with the power densities of 200 – 
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300 W/kg (Conway, 1999). However, only in the 1990’s the whole field of supercapacitor 

technology burgeoned in the context of hybrid electric vehicles (HEVs). By 1996, a number of 

patents on supercapacitors had been granted (Sarangapani, 1996). Two years later, the U.S. 

Department of Energy (DOE) initiated a 5-year short-term program (1998-2003) and long-term 

supercapacitor development program (2003-present) with the goals of reaching the specific energy 

density of 5 and 15 Wh/kg and the specific power density of 500 and 1600 W/kg, respectively 

(Kotz and Carlen, 2000). Today, many companies, e.g., Maxwell, Tanahashi, AVX, ENC, ESMA, 

CAP-XX, NCC, NessCap, etc., have been actively involved in developing high-performance 

electrochemical capacitors in the world for a variety of applications such as those used in electric 

and fuel cell vehicles for improving acceleration and recovering braking energy, and in 

microcomputers and system boards as a backup power supply. 

 

2.2. Energy Storage Mechanisms in Supercapacitors  

Based on the charge storage mechanisms, supercapacitors can be categorized into EDLCs 

and pseudocapacitors. 

 

2.2.1. EDLCs 

EDLCs charge/discharge electrical energy only by adsorption of the highly reversible 

electrolyte ions, which form an electric double layer at the interface between the porous electrodes 

and electrolyte (Burke, 2000; Conway, 1991; Kotz and Carlen, 2000). A schematic illustration of 

an EDLC is shown in Figure 2.3. The non-faradaic process of surface-charge/discharge of EDLCs 

involves only physical adsorption of ions; it doesn’t involve any chemical reaction or transfer of 

charges between the electrolyte and electrode. Because of this unique energy storage mechanism, 
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EDLCs have a faster charge/discharge rate and a much longer life cycle (>500,000 cycles) than 

those of rechargeable batteries and fuel cells (Duffy et al., 2008). Yet, EDLCs have a relatively 

lower energy density because the ion adsorption only happens on the surface of electrodes. 

 
 

Figure 2.3. Schematic of an EDLC (Conway, 1991). 

 

2.2.2. Pseudocapacitors  

Compared to EDLCs, pseudocapacitors store electrical energy depending on the 

electrosorption process and redox reactions occurring on or near the electrode surface (Simon and 

Gogotsi, 2008). During this process, electrons and ions transfer through the electrode system, 

similar to charging and discharging in a battery. Pseudocapacitors usually use transition metal 

oxides [e.g., RuO2,Nickel oxide (NiO), Co3O4, MnO2, Molybdenum trioxide (MoO3), etc.] or 

conducting polymers [e.g., PANI, polypyrrole (PPy), poly-[3,4-ethylenedioxythiophene] 

(PEDOT), etc.] as active materials to increase the specific capacitance via pseudocapacitive redox 

reactions because they have a variety of oxidation states available for redox charge transfer (Fan 

and Maier, 2006; Frackowiak et al., 2006; Gupta and Miura, 2006; Hu and Chen, 2004; Naoi and 
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Simon, 2008; Toupin et al., 2004; Xu et al., 2006; Zheng et al., 1995). In principle, 

pseudocapacitors can provide the energy density with the magnitude over one order higher than 

EDLCs.  

 

2.2.3. Hybrid systems 

Hybrid capacitors are developed to exploit the advantages and mitigate the disadvantages 

of both EDLCs and pseudocapacitors for improved energy-storage performance. Hybrid capacitors 

utilize both Faradaic and non-Faradaic processes to store charges; in principle, they can achieve 

the energy and power densities greater than EDLCs without sacrificing the cycling stability and 

affordability that have limited the electrochemical performance of pseudocapacitors. Based on 

their electrode configuration, hybrid systems can be classified as asymmetric and battery-

supercapacitor type electrodes. Asymmetric hybrids combine Faradaic and non-Faradaic processes 

by coupling an EDLC electrode with a pseudocapacitor electrode. In particular, asymmetric 

hybrids coupling an activated carbon cathode with a conducting polymer anode have been under 

intensive investigation. In contrast, battery-type hybrids couple a supercapacitor electrode with a 

battery electrode. Such a unique configuration reflects the demand for higher energy-density 

supercapacitors and higher power-density batteries, which combines the energy characteristics of 

batteries with the high power density, long cycle life, and short charging/discharging times of 

supercapacitors. 

 

2.3. Capacitance, Energy Density and Power Density of Supercapacitors  

According to the capacitor model proposed by Helmholtz in 1853, the double layer 

capacitance C of a capacitor is (Simon and Gogotsi, 2008) 
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𝐶 =
ε𝑟𝜀𝑜𝑆𝑎

d
,                                 (2.1) 

where 𝜀𝑟 is the electrolyte dielectric constant, 𝜀𝑜 is the dielectric constant of 8.854×10-12 F/m, 𝑆𝑎 

is the specific area of the electrode/electrolyte interface accessible to ions, and 𝑑 is the effective 

thickness of the electric double layer. However, some studies suggested that the capacitance 

depends not only on the surface area, but also on the pore size accessible to reversible electrolyte 

ions (Gamby et al., 2001; Qu and Shi, 1998). Helmholtz’s capacitor model was refined recently 

by Huang et al. (Huang et al., 2008) by taking into account the effect of pore size on the effective 

capacitance such that the capacitive behavior could be characterized by the following two models 

corresponding to different pore sizes. When the pore size of the mesoporous carbons is larger than 

2 nm, the capacitance is determined as (Huang et al., 2008) 

𝐶 =
ε𝑟𝜀𝑜𝐴

b ln(
𝑏

𝑏−𝑑
)
,                             (2.2) 

when the size of micropores is less than 1 nm, the capacitance is calculated as (Huang et al., 2008) 

𝐶 =
ε𝑟𝜀𝑜𝐴

b ln(
𝑏

𝑎0
)
,                                (2.3) 

where b is the pore radius and 𝑎0 is the effective size of the ion.  

The maximum specific capacitance (𝐶𝑠) (capacitance per unit mass of a single electrode, 

F/g) of an EDLC is calculated as a function of the discharging voltage according to the following 

formula (Kotz and Carlen, 2000; Liu et al., 2003) 

𝐶𝑠 =
𝐼

𝑑𝑉(𝑡) 𝑑⁄ 𝑡
(

1

𝑚𝑎
+

1

𝑚𝑏
),             (2.4) 

where I is the constant charge/discharge current (A), dt is the discharge time (s), dV is the voltage 

drop (V) during  the interval of a discharging process (excluding the internal resistance (IR) drop), 

and 𝑚𝑎 and 𝑚𝑏 are the masses (g) of the anode and cathode, respectively. 
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In all energy conversion and storage devices, energy and power densities are the two major 

measures of their qualities. Energy density describes the amount of energy that can be stored per 

unit mass while power density delineates how fast the stored energy can be released. The energy 

storage mechanism in EDLC is due to charge accumulation in the electric double layer at the 

interfaces between electrodes (cathode and anode) and electrolyte. The energy density Ed (Wh/kg) 

delivered by the electrodes of a supercapacitor in electrochemical testing is defined by (Niu et al., 

2012; Cheng et al., 2013) 

𝐸𝑑 =
1

2
×  𝐶𝑠 × ∆𝑉2,          (2.5) 

while the corresponding power density Pd (W/kg) is expressed as: 

𝑃𝑑 =
𝐸𝑑

∆𝑡
.            (2.6) 

where 𝐶𝑠 is the specific capacitance (F/g), ∆𝑉 is the voltage drop (V) upon discharging process 

(excluding the internal resistance (IR) drop). An ideal energy storage system is supposed to have 

high energy and power density; accordingly, it should have high capacitance, large voltage window 

and low equivalent series resistance (ESR). 

 

2.4. Advantages of Supercapacitor Compared to Other Energy Storage Devices  

Figure 2.4 shows the Ragone plot of various electrochemical energy storage systems, a 

diagram of the power density against the energy density (US defense logistics agency, 2004). From 

this plot, it can be found that supercapacitors occupy the domain between rechargeable batteries 

or fuel cells (i.e., high energy density) and conventional capacitors (i.e., ultrahigh power density). 

Both rechargeable batteries and fuel cells have much lower power densities, which limit their 

applications, though they have relatively higher energy densities up to several hundred watt hours 

per kilogram (Wh/kg) than the others. Compared to rechargeable batteries and fuel cells, etc., 
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supercapacitors store and release electrical energy based on highly reversible electrolyte ions at 

the interface between the porous electrodes and electrolyte (Winter and Brodd, 2004; Conway, 

1991; Kötz and Carlen; 2000). According to the report of US defense logistics agency, 

supercapacitors can provide a much higher power density (about 10 kW/kg) than rechargeable 

batteries and fuel cells (Simon and Gogotsi; 2008). Owing to their unique charge-storage 

mechanism of rooting charges at the interface of electrochemical double layers, supercapacitors 

usually carry a much lower energy density (~4-5 Wh/kg) than that of secondary batteries (~1/100-

1/10). Thus, supercapacitors can be used as a supplement to provide a higher power boost to 

rechargeable batteries or fuel cells. Key benefits of supercapacitors include their higher 

energy/power efficiency, faster charge/discharge rate and longer lifetime even in harsh conditions, 

which relies on their low electrical internal resistance of the electrodes and the electrical contact 

resistance between the electrodes and charge collectors (Wu et al., 2012). To date, with their 

numerous superior advantages, supercapacitors become an increasingly competitive option in a 

wide range of applications such as instant switches, portable electronics, backup power supplies, 

regenerative braking systems, and motor starters, and the like (Andrew, 2000; Harrop et al., 2009; 

Miller and Burke, 2008; Miller and Simon, 2008; ).  
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Figure 2.4. Variation of the energy density vs. the power density for various energy conversion 

and storage devices (US defense logistics agency, 2004). 

 

In principle, the specific capacitance of a supercapacitor relies highly on the specific 

surface area of the electrodes and the module voltage (Winter and Brodd, 2004; Conway, 1991; 

Kötz and Carlen; 2000), in which the former is determined by the porosity of the electrode material 

while the latter is governed by the dielectric properties of the electrolyte. Besides, the 

energy/power efficiency and lifetime of a supercapacitor also depend upon the internal electrical 

resistance and electrical contact resistance within the electrodes and between the electrodes and 

the charge collectors (Wu et al., 2012). Due to the low cost and high electrochemical stability, 

activated carbon has been extensively integrated into commercialized supercapacitors with the 
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capacitance of a unit supercapacitor up to 5,000 F (Frackowiak and Béguin, 2001; Pandolfo and 

Hollendamp, 2006).  

 

2.5. Applications of Supercapacitors  

In earlier days because of their limited energy and power densities, supercapacitors were 

mainly used for low-power, low energy applications such as memory backup. Recently, intensive 

research has been conducted to increase their energy and power densities. As a result, 

supercapacitors are offering new solutions for many cutting-edge applications (Miller and Simon, 

2008; Chmiola et al., 2006; Simon and Gogotsi, 2008). 

The idea of using electrochemical supercapacitors for electric vehicle application is much 

appealing because of their high energy efficiency, high power density and ability to recuperate 

energy loss during braking. Fuel cells and batteries are promising energy storage devices for 

electric vehicles because of their high energy density, but they do not meet the high power 

requirement needed for acceleration and hill climbing in an instant. Such a crucial peak power 

requirement can be met by involving supercapacitors (Frackowiak, 2007; Obreja, 2008). As 

supercapacitors have fast charge rate, it makes regenerative braking possible. It has been reported 

that by installing supercapacitor-based regenerative braking systems in vehicles, the fuel 

consumption could be reduced by 15-20% (Clegg, 1996). Also, supercapacitors can be used for 

the internal combustion engine cranking to reduce the power load of batteries and extend their 

lifetime. So far, expanding potential applications of high power supercapacitors are under intensive 

investigation such as those used for railway and subway vehicles. 

Supercapacitors can also be used to provide electrical energy needed by power quality 

systems that ensure reliable and disturbance-free power distribution. Supercapacitors can supply 
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the energy needed to inject power into the electrical grid and thus compensate for any voltage 

fluctuations. Similarly, in wind power applications, an energy storage system is required to carry 

a large power capacity to absorb power surges during wind gusts, and also a large energy capacity 

for deep wind fluctuations lasting for minutes or longer. A battery-supercapacitor hybrid energy 

storage system will take advantages of both the technologies and provide high power and energy 

capacities, and thereby increase the overall efficiency of the energy storage system. The largest 

portion of the supercapacitors sold nowadays is installed in consumer electronic products, where 

they mainly serve as power backup sources for memories, microcomputers, system boards, and 

clocks. In these applications, there is a primary power source which normally supports the load. 

In case of power outages due to disconnection or turn-off of the primary power source, contact 

problems due to vibration or shocks, or a drop of the system voltage due to switching to other 

heavy loads, supercapacitors can supply the instantaneous power. Supercapacitor development is 

also underway to reduce the cell size and cost. These two issues, particularly the latter, are 

considered crucial to the continued migration of supercapacitors into new applications. As cost per 

Farad drops over time, applications of supercapacitors will tend to expand rapidly. 

 

2.6. Materials for Supercapacitor Electrodes 

2.6.1. Carbon materials  

The electrodes of EDLCs are usually made of high effective surface-area conducting 

materials such as activated carbons (AC), carbon aerogels, carbon nanotubes (CNTs), carbon 

nanofibers (CNFs), and graphene platelets (Fern et al., 2008; Futaba et al., 2006; Izadi-Najafabadi 

et al., 2010; Liu et al., 2010; Zhu et al., 2010; Frackowiak, 2007; Obreja, 2008). Among these 

carbon materials, AC is the most widely used material today due to its high specific surface area 
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and moderate cost. In the recent years, a mesoporous AC obtained by the carbonization of mixtures 

of poly (vinyl alcohol) (PVA) with magnesium citrate, with a high specific surface area (1,000 to 

2,000 m2/g) and a pore size distribution (2 to 5 nm), is able to reach the power density around 

2,600 W/kg at 1 Wh/kg in 2 M H2SO4 aqueous electrolytes (Fern et al., 2008).  

Among various types of CNTs, single-walled nanotubes (SWNTs) have an ideal limiting 

specific surface area (up to 1,300 m2/g), which makes them an attractive candidate for use in the 

high-capacitance supercapacitors (Izadi-Najafabadi et al., 2010). The energy density of 

supercapacitors with the electrodes made of aligned high-densely packed SWNTs can reach up to 

69.4 Wh/kg (from 180 F/g) by using the zipping effect of liquids (An et al., 2001; Futaba et al., 

2006). However, the high cost for mass production of high-quality SWNTs is a challenge to the 

commercialization of SWNT based supercapacitors.  

Continuous electrospun CNFs were firstly prepared by Reneker and his co-workers via 

stabilization and carbonization of electrospun precursor polymer nanofibers (Reneker and Chun, 

1996; Reneker et al., 2006; Reneker and Yarin; 2008). After that, CNFs have shown the great 

potential for development of cost-effective, structure-flexible, and property-tailorable porous 

electrodes for uses in supercapacitors and rechargeable batteries (Kim and Yang; 2003; Miao et 

al., 2010; Zhang et al., 2011; Ji and Zhang, 2009; Ji et al., 2009). When measured in KOH aqueous 

solution, the specific capacitance of the electrodes based on carbonized electrospun PAN 

nanofibers (with diameters of 200-400 nm) was 173 F/g at a low charge/discharge current density 

of 10 mA/g and 120 F/g at a high charge/discharge current density of 1,000 mA/g (Kim and Yang; 

2003). The electrochemical performance of such electrodes can be further enhanced via improving 

the specific surface area of the CNFs through a variety of post-processes such as coating metal (or 
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metal oxide) nanoparticles on the CNFs to induce the pseudocapacitive effect (Zhang et al., 2011; 

Ji and Zhang, 2009; Ji et al., 2009). 

Graphene consists of two-dimensional (2D) monolayers of sp2-bonded carbon atoms and 

has attracted rapidly growing attention in the last decade (Geim, 2009; Novoselov et al., 2004; 

Huang and Kaner, 2004; He et al., 2012; Katsnelson, 2007; Hu et al., 2012; Fan et al., 2013; Wang 

et al., 2006). Graphene exhibits unique physical and chemical properties such as excellent 

electrical conductivity (~2 × 103 S/cm) (Wu et al., 2009), large specific surface areas (~ 3,100 m2/g) 

(Zhu et al., 2011), and amazing intrinsic electron mobility (~200, 000 cm2/v/s) (Zhang et al., 2005). 

These unique features make graphene a promising nanostructured material for broad application 

including microelectronics, energy storage devices, fuel cells, sensors, and gas sorbents (Liang 

and Zhi, 2009; Fowler et al., 2009; Wu et al., 2009). In particular, graphene-based materials can 

be used as high-performance electrodes for EDLCs and pseudocapacitors, which have 

demonstrated higher values of specific capacitance than other carbonaceous materials, e.g., CNFs, 

CNTs, and activated carbon (Stoller et al., 2008; Lv et al., 2009; Liang and Zhi, 2009; Fowler et 

al., 2009; Wu et al., 2009; Zhou et al., 2012). Recent study of graphene-based supercapacitors 

reported that a supercapacitor with graphene-based electrodes has a high specific capacitance of 

154.1 F/g and energy density of 85.6 Wh/kg (based on the total electrode weight) at a current 

density of 1 A/g (Liu et al., 2010). In addition, graphene can be conveniently manufactured and 

functionalized in large quantity at low cost from graphite by means of chemical exfoliation 

(Balandin et al., 2008; Neto et al., 2009; Lee et al., 2008; Dreyer et al., 2010; Loh et al., 2010; 

Drzal et al., 2004; Wan et al., 2011; Ruoff, 2008). Furthermore, recent intensive investigations 

have pointed out that metal oxides (e.g., RuO2 and MnO2) and conducting polymers (e.g., PANI, 

polythiophene, PPy, etc.) loaded/coated on the surface of graphene nanosheets can noticeably 
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enhance the electrochemical performance of capacitors with graphene as electrodes (Lota et al., 

2004; Zhao et al., 2011; Gomez et al., 2011; Ryu et al. 2002). However, in the process of graphene 

preparation and electrode fabrication, restacking/aggregation of graphene sheets may lead to 

irreversible agglomeration and folding/scrolling, which results in a decrease of the effective 

electrochemical performance and therefore limits the practical applications of supercapacitors. 

 

2.6.2. Transition metal oxides   

Among various metal oxides, RuO2 has been broadly studied because of its ultrahigh 

theoretical specific capacitance (~2,000 F/g), a wide potential window (1.4 V), high electrical 

conductivity (3×105 S/cm), long cycle life, and excellent chemical stability (Hu and Chen, 2004; 

Naoi and Simon, 2008; Zheng et al., 1995). Although a high specific capacitance (up to 750 F/g) 

of hydrous RuO2 has been reported in sulphuric acid electrolytes, its high cost severely limits its 

attractive commercial applications as a high-capacitance pseudocapacitive electrode material for 

energy storage devices (Naoi and Simon, 2008). In the recent years, low-cost MnO2 has been 

intensively investigated to replace the high-cost RuO2 for pseudocapacitive electrode materials. 

Toupin et al. (2004) achieved a very high specific capacitance of 1,380 F/g by using Platinum (Pt) 

supported amorphous MnO2 nano-sized ultrathin film as electrodes, which is close to the 

theoretical value of 1,370 F/g as expected for a redox process involving one electron per 

manganese atom (Toupin et al., 2004). Yet, the low electrical conductivity, poor compatibility with 

organic electrolytes, and short life cycle of MnO2 are the major factors responsible for the rate-

limiting for high power applications. 
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2.6.3. Conducting polymers 

Besides metal oxides, conducting polymers are also regarded as the promising electrode 

materials for use in high-performance pseudocapacitors due to their large pseudocapacitance, 

relatively high electrical conductivity, low cost, and low mass density (Snooka et al., 2010; Fan 

and Maier, 2006; Frackowiak et al., 2006; Gupta and Miura, 2006; Xu et al., 2006). The charge-

discharge processes of conducting polymer-based electrodes are related to their reversible faradic 

reactions, which can trigger the pseudocapacitive effect to reach the superior electrochemical 

performance, e.g., the specific capacitance of 775 F/g for PANI, 480 F/g for PPy, and 210 F/g for 

PEDOT (Fan and Maier, 2006; Gupta and Miura, 2006; Xu et al., 2006; Lota et al., 2004). The 

main drawback of conducting polymers as supercapacitor electrodes is related to their low power 

density and poor mechanical stability during cycling due to the volumetric changes in the 

doping/undoping processes (Frackowiak et al., 2006). In addition, due to their sluggish transport 

of ions into the electrode system, the charge/discharge rate of conducting polymer based electrodes 

is much slower than that of carbon based electrodes. 

To address these issues, PANI nanostructures have been grown on the surface of various 

carbon materials such as CNTs, CNFs, porous carbon, and graphene for use in supercapacitors 

(Ghosh et al., 2013; Chen et al., 2013; Wang et al., 2006; Portert et al., 2008; He et al., 2012; Zhou 

et al., 2013; Lota et al., 2004; Zhao et al., 2011; Gomez et al., 2011; Ryu et al. 2002). For example, 

Zhou et al. reported a supercapacitor based on SWCNTs coated with PANI with a specific 

capacitance of 190.6 F/g (Zhou et al., 2004). Meng et al. synthesized a flexible paper-like 

buckypaper coated with PANI films as supercapacitor electrodes, which exhibited a capacitance 

of 424 F/g with a retention ratio of 89.4% after 1,000 cycles at 1 A/g (Meng et al., 2009). Niu et 

al. also developed ultrathin flexible SWCNT/PANI hybrid films with a unique continuous 
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“skeleton/skin” structure; the resulting supercapacitor based on such hybrid films as electrodes 

had the energy and power densities of 131 W h/kg and 62.5 kW/kg, respectively (Niu et al., 2012). 

Wei et al. fabricated the novel whisker-like PANI nanorods grown on CNFs as supercapacitor 

electrodes; the maximum specific capacitance of the resulting supercapacitors was 427 F/g in 1 M 

H2SO4 electrolyte (Wei et al., 2013). Luo et al. also developed porous ZnCo2O4 nanotubes and 

carbon-coated MoO2 nanofibers as high-performance electrode materials by using the low-cost 

single-nozzle electrospinning technique (Luo et al., 2011; Luo et al., 2012). The electrochemical 

performance of typical nanostructured electrode materials is tabulated in Table 2.1.  

Table 2.1. The electrochemical performance of typical nanostructured electrode materials. 

Materials Specific 

Capacitance (F/g) 

Electrolytes Voltage 

Window (V) 

Discharge 

Current Density 

or Scan Rate  

Activated Carbons (AC) 100 1 M (C2H5)4NBF4  0-2.0 1 mA/cm−2 

CNTs 90 1 M H2SO4 0-1.0 2 mV/s 

Graphene sheets 146 1M KOH -0.9-0.4 50 mA/cm−2 

CNFs 173 6 M KOH 0-0.9 10 mA/g 

PANI/graphene 425 2 M H2SO4 -0.2-0.8 1 mA/g 

Polypyrrole/graphene 165 1M NaCl 0-1.0 1 A/g 

Polyanline(PANI)/carbon  150 1M Me4NCF3SO3/ 

acetonitrile 

0-1.0 20 mA/g 

PANI/CNFs 427 1 M H2SO4 -0.2-0.8 5 mV/s 

PANI-20 wt% CNTs 320 1 M H2SO4 0-0.6 5 mV/s 

Hydrous RuO2 750 1M H2SO4 -0.2-0.7 50 mA/cm−2 

PANI/SWCNT cloth 

composite 

410 1 M H2SO4 -0.2-0.8 0.5 A/g 
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2.7. Nanomanufacturing and Electrospinning 

Continuous, scalable, low-cost fabrication of nanomaterials is one of the most active fields 

in nanotechnology. Several efficient fabrication techniques have been formulated for synthesis of 

continuous nanofibers with controlled properties such as electrospinning, meltblowing and 

spunbonding. Electrospinning is a low-cost, scalable, and efficient top-down nanofabrication 

process that has been well-established for producing continuous nanofibers of a large variety of 

natural and synthetic polymers, and polymer derived carbon, metals, metal oxides, and ceramics 

(Doshi and Reneker, 1995; Zheng et al., 1995; Reneker and Chun, 1996; Huang et al., 2003; Hu 

and Chen, 2004; Dzenis, 2004; Li and Xia, 2004; Grieiner and Wendorff, 2007; Ramaseshan et al., 

2007; Reneker et al., 2007; Reneker and Yarin, 2008; Naoi and Simon, 2008). Electrospinning 

produces nanofibrous materials with the diameters in the range from a few nanometers to 

micrometers based on the principle of electrohydrodynamic jetting from a single spinneret or liquid 

surface (Doshi and Reneker, 1995; Reneker and Chun, 1996; Dzenis, 2004; Grieiner and Wendorff, 

2007; Reneker et al., 2007; Rutledge and Fridrikh, 2007; Reneker and Yarin, 2008). Due to the 

large surface-to-mass ratio (specific surface area), tailorable surface morphology, as well as 

relatively high degree of molecular orientation, electrospun nanofibers are suitable for uses in 

protective clothing and wound dressing (Gibson et al., 2001; Smith et al., 2001; Smith and Reneker, 

2004), fine filtration (Gopal et al., 2006; Barhate and Ramakrishna, 2007; Maze et al., 2007), 

nanofiber-reinforced polymer matrix composites (PMCs) (Kim and Reneker, 1999; Wu, 2003; 

Dzenis 2008; Chen et al., 2008; Wu, 2009 (book); Cheng et al., 2010; Chen et al., 2011; Chen et 

al., 2012 (a, b); Wu et al., 2013; Wu and Yarin, 2013) Furthermore, electrospun nanofibers have 

also been considered as scaffolds for tissue growth (Li et al., 2002; Matthews et al., 2002; Burger 

et al., 2006; Pham et al., 2006; Barnes et al., 2007; Xie et al., 2008), drug delivery (Kenawy et al., 
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2002; Chew et al., 2006; Liang et al., 2007), sensor/transistor (Ramakrishna et al., 2007; Andrady, 

2008), and energy harvesting, conversion and storage (Kim and Yang, 2003; Kim et al., 2007; Ji 

and Zhang, 2009; Schulz et al., 2010; Zhang et al., 2011; Zhou et al., 2012), among others. 

 

2.7.1. Needle-based electrospinning 

As shown in Fig. 2.5, a typical needle-based electrospinning setup consists of a syringe, 

syringe pump, spinneret, fiber collector, and a high-voltage direct-current (DC) supply. The DC 

potential of 10 to 50 kV is typically applied between the spinneret and the collector plate to create 

a high DC electrostatic field, which causes the polymer solution to be highly charged. With 

increasing the applied voltage, a critical voltage can be reached to ensure that the electrostatic 

force overcomes the surface tension of the polymer solution. At the beginning of a classic 

electrospinning process, the solution droplet at the tip of needle will first form a conical structure 

under the action of electrostatic force (Yarin et al., 2001). The formed conical shape of the solution 

droplet is called the Taylor cone (Taylor, 1964 and 1969; Spivak and Dzenis, 1999; Yarin, 

Koombhonges, Reneker, 2001(JAP)). When the electrostatic force surpasses the surface tension, 

an electrified jet is ejected from the Taylor cone, further elongated and accelerated within the 

electrostatic field. After a variety of jet destabilizations occurring simultaneously with solvent 

evaporation, the ultra-thinned jet is solidified and then deposited on the collector to form a 

nonwoven nanofiber mat. Figure 2.6 shows a few types of nanofibers produced by means of 

electrospinning for this thesis research in Professor Xiangfa Wu’s research group at NDSU.  
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Figure 2.5. Schematic of a classic needle-based electrospinning setup. 

 

It is noteworthy that the process of electrospinning is very complicated, and it involves 

multiple physical phenomena such as electrohydrodynamics, diffusion and transfer of heat, 

solidification and crystallization, and the process has not yet been completely elucidated. The 

contemporary theoretical investigations are focused primarily on jet initiation (Taylor, 1964 and 

1969; Spivak and Dzenis, 1999;  Yarin et al., 2001), slender jet behavior (Kirichenko et al., 1986; 

Spivak and Dzenis, 1998; Spivak et al., 2000; Shin et al., 2001; Hohman et al., 2001; Feng, 2002 

and 2003; Fridrikh et al., 2003) and straight jet destabilization (Kirichenko et al., 1986; Spivak and 

Dzenis, 1998; Reneker et al., 2000; Spivak et al., 2000; Hohman et al., 2001; Yarin et al., 2001) 

as reviewed recently by Reneker et al. (2007). Among these, to understand the whipping/bending 

instability of an electrospinning jet, Hohman et al. (2001) developed a linearized destabilization 

model to determine the critical condition of jet instability (i.e., the axisymmetric and asymmetric 
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modes). This model has been used to predict the jet destabilization wavelength once the 

whipping/bending of a jet occurs, and has also been considered to correlate the final nanofiber 

diameter to the processing and material parameters (Fridrikh et al., 2003). In parallel, Reneker et 

al. (2000) formulated an efficient bead model to elucidate the whipping/bending instability of the 

jet in electrospinning. In this model, the jet is treated as a chain of beads (mass particles), each of 

which is connected through two neighboring one-dimensional (1D) spring-dashpot elements based 

on the Maxwellian viscoelastic model with varying viscosity according to the extent of solvent 

evaporation. By further taking into account the effect of solvent evaporation, Yarin et al. (2001) 

refined this model to predict the jet trajectory at a distance up to 10 cm from the spinneret as largely 

validated by their experimental observations. To date, numerous experimental and modeling 

studies have been carried out for understanding the fundamental electrohydrodynamic phenomena 

involved in the electrospinning process and the properties of the resulting nanofibres; these include 

the recent studies on controllable nanofiber production, jet solidification and mechanical properties 

of electrospun nanofibers, among others (Wu and Dzenis, 2005 and 2007; Thompson et al., 2007; 

Lim et al., 2008; Wu, 2010; Wu et al., 2011; Wu et al., 2013; Wu and Yarin, 2013). 
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Figure 2.6. Electrospun nanofibers with controlled morphologies. A: Smooth PAN nanofibers, B: 

Rough polystyrene (PS) fibers, C: Poly (vinyl alcohol) (PVA)/soy protein nanofibers coated with 

silver nanoparticles, D: Core-shell dicyclopentadiene (DCPD)/PAN nanofibers, E: Graphene-

beaded CNFs, F: Graphene-beaded CNFs coated with Ni nanoparticles, G: CNTs grown on the 

surface of CNFs, H: Needle-like PANI nanorods grown on the surface of CNFs (Synthesized for 

this thesis research). 
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Figure 2.6. Electrospun nanofibers with controlled morphologies (continued). A: Smooth PAN 

nanofibers, B: Rough polystyrene (PS) fibers, C: Poly (vinyl alcohol) (PVA)/soy protein 

nanofibers coated with silver nanoparticles, D: Core-shell dicyclopentadiene (DCPD)/PAN 

nanofibers, E: Graphene-beaded CNFs, F: Graphene-beaded CNFs coated with Ni nanoparticles, 

G: CNTs grown on the surface of CNFs, H: Needle-like PANI nanorods grown on the surface of 

CNFs (Synthesized for this thesis research). 

 

2.7.2. Needleless electrospinning 

As a matter of fact, the productivity of single-needle-based electrospinning is very low, 

largely a few grams per day, which could not satisfy the demand of any practical applications. To 

date, substantial research effort has been devoted to enhancing the manufacturing productivity of 

nanofibers, such as adopting multiple spinnerets and utilizing destabilization of a thin layer of 
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immiscible polymer solution based on the principle of needleless electrospinning (Yarin and 

Zussman, 2004; Wu and Dzenis, 2005; Theron et al., 2005; Reneker et al., 2007; Lukas et al., 2008 

and 2009; Miloh et al., 2009; Forward et al., 2013), i.e., free-surface electrohydrodynamic jetting 

(as shown in Fig. 2.7). However, such an approach may encounter technical difficulties because 

initiation of multiple jets from a thin dielectric liquid layer depends upon its electrohydrodynamic 

destabilization in electrostatic field. The wavelength of such an electrohydrodynamic 

destabilization highly relies on the surface (interface) tension, dielectric constant, mass density, 

and thickness of a thin liquid layer (Theron et al., 2005; Wu and Dzenis, 2005; Zhou et al., 2014).  

 

Figure 2.7. Multiple jets from a rotating drum of a lab-made needleless electrospinning device 

for continuous PEO nanofibers fabrication (The device was designed by a senior design group 

mentored by Drs. Wu and Akhatov at NDSU). 

 

Among others, in recent years, Lukas and his coworkers made the technical breakthrough 

in needleless electrospinning technology by using free-jetting of a thin liquid layer formed on a 
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rotating drum (as shown in Fig. 2.7) (Sarkar and Lukas, 2007; Lukas et al., 2008 and 2009; Petrick 

and Maly, 2009). Such a technical breakthrough directly led to the NanospiderTM, a robust and 

efficient needleless electrospinning device commercialized successfully by Elmarco, Inc, a world-

leading company focusing on fabrication and commercialization of needleless-electrospinning 

machines for mass production of nonwoven nanofibers for various industry-level uses. Elmarco 

has provided over one hundred of NanospiderTM machines to companies and universities for mass 

fabrication of high quality nanofibres in the United States. 

 

2.7.3. Co-electrospinning 

The classic electrospinning technique has also been extended to produce core-shell and 

hollow nanofibers by replacing the single needle (nozzle) with a coaxial spinneret, i.e., co-

electrospinning (Sun et al., 2003; Li et al., 2004; McCann et al., 2005; Moghe and Gupta, 2008; 

Sinha-Ray et al., 2012), in which two polymer solutions are infused into the interior and exterior 

nozzles to form the core and shell materials, respectively. In addition, co-electrospun core-shell 

nanofibers can be further converted into hollow nanofibers via extracting or thermal 

decomposition of the core material (Li et al., 2004). Continuous core-shell and hollow nanofibers 

can be potentially used for gas and liquid transport, drug delivery, electrode materials of 

supercapacitors and rechargeable batteries, encapsulation of healing agent for self-repairing 

composites (Sinha-Ray et al., 2012; Wu et al., 2013; Wu and Yarin, 2013), etc. In addition, core-

shell nanofibers can also be produced by means of single-needle-based emulsion electrospinning 

(Xu et al., 2006; Bazilevshy et al., 2007; Yarin, 2011; Zhou et al., 2014). During this process, the 

core and shell materials are first dissolved separately into proper solvents to form two immiscible 

or less-miscible solutions. Proper mixture of the two resulting solutions leads to an 
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electrospinnable emulsion. Upon electrospinning of the emulsion, droplets of one solution of the 

emulsion are encapsulated into the second one inside the electrospinning jet, deformed, and 

elongated, and consequently form the core of the core-shell fiber. In principle, emulsion 

electrospinning can be utilized for producing a variety of core-shell and hollow nanofibers based 

on the conventional electrospinning setup with a single spinneret (nozzle), although appropriate 

preparation of an electrospinnable emulsion is required.  

Nevertheless, if applying needleless electrospinning to massively produce core-shell 

nanofibers based on destabilization of two immiscible solution layers, it is challenging to 

simultaneously tune the parameters of two liquid layers (e.g., thickness) such that destabilization 

of two immiscible liquid layers takes place with very close wavelengths, which could guarantee 

the generation of stable core-shell jets. Initiation of multiple jets due to destabilization of either 

the top or bottom liquid layer can be expected; however, in such a case, destabilization of the 

second liquid layer could be suppressed due to the different destabilization conditions. Therefore, 

new techniques for scale-up fabrication of ultrathin core-shell fibers are still desired in order to 

satisfy the ever-growing demand of core-shell fibers for broad applications in biomedical, 

industrial, and other sectors. 
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CHAPTER 3. FABRICATION AND ELECTROCHEMICAL BEHAVIOR 

OF CARBON NANOFIBERS SURFACE-GROWN WITH CNTS 

 

3.1. Introduction  

One-dimensional (1D) CNTs carry high electrical conductivity and specific surface area, 

due to their unique tubular graphene nanostructure. However, when CNTs are integrated into 

electrodes for use in supercapacitors and rechargeable batteries, their discrete nature and electrical 

contact resistance (ECR) directly influence the effective electrical and electrochemical 

performances of the electrodes. In view of this concern, in this chapter, a recently reported 

innovative rational synthesis route (Lai et al., 2008) was adopted and modified for fabrication of 

continuous hierarchical CNFs surface-grown with CNTs (CNT/CNFs) for first use as flexible, 

porous electrode materials of electrochemical supercapacitors. This rational synthesis consisted of 

electrospinning the precursor polymer nanofibers, followed by controlled carbonization, and CNT 

growth via chemical vapor deposition (CVD) in a reaction furnace. Prototype solid-state 

supercapacitors were fabricated with the porous hierarchical CNF films as symmetric electrodes 

and a thin layer of PVA/H3PO4 (10 wt. %) as polymer electrolyte. The electrochemical behavior 

of the solid-state supercapacitor was characterized using cyclic voltammetry (CV) and 

galvanostatic charging/discharging (GCD) tests on a BT-2000 Battery tester (Arbin Instruments, 

TX). Experimental results showed that the specific capacitance of the porous CNF electrodes was 

up to 185 F/g at the discharge current density of 625 mA/g and the specific capacitance of 114 F/g 

can be maintained even at a high discharge current density up to 2.5 A/g. SEM and TEM were 

used to characterize the morphology and structure of the porous CNF electrodes. The excellent 

connectivity of the synthesized continuous hierarchical CNF networks resulted in the low intrinsic 
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contact electric resistance of the supercapacitors; the ultrahigh specific surface area and related 

unique nanostructures are responsible for the high electrochemical properties of the novel 

continuous hierarchical CNFs as measured in this study. 

 

3.2. Experimental  

3.2.1. Materials 

In this study, polyacrylonitrile (PAN, Mw = 150,000) and N, N-dimethylformamide 

anhydrous (DMF, 99.0%) were used for electrospinning the precursor polymer composite 

nanofibers. Nickel (II) acetylacetonate [Ni(AcAc)2, 95.0%] was dissolved in the PAN/DMF 

solution as catalyst after thermal decomposition in the as-electrospun nanofibers for the growth of 

CNTs on carbonized electrospun nanofibers. PVA (Mw = 130,000, 99% hydrolyzed) and H3PO4 

were utilized to prepare the gel electrolyte of PVA/H3PO4 solution. All the chemicals above were 

purchased from Sigma-Aldrich, Corp. (St. Louis, MO). In addition, copper sheets purchased from 

McMaster-Carr (Elmhurst, IL) were used as the current collectors in the electrodes. All the 

materials were used as received without further purification or change. 

 

3.2.2. Preparation of PAN/Ni(AcAc)2/DMF solution for electrospinning  

The electrospinnable PAN/Ni(AcAc)2/DMF solution was prepared using the following 

route. As-received Ni(AcAc)2 was first dispersed in DMF solvent by bath sonication for 1 hour at 

room temperature. PAN powder was dissolved in DMF to prepare 15 wt. % PAN/DMF solutions. 

Then, the Ni(AcAc)2/DMF solution was added into the 15 wt. % PAN/DMF solution to achieve a  

solution with the concentrations of 13 wt. % PAN and 5 wt. % Ni(AcAc)2 in DMF, respectively. 
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The solution was further stirred for 24 h at room temperature, resulting in uniform 

PAN/Ni(AcAc)2/DMF solution before electrospinning.  

 

3.2.3. Electrospinning precursor PAN/ Ni(AcAc)2 nanofibers 

The experimental setup for electrospinning is schematically shown in Fig. 2.4. The PAN/ 

Ni(AcAc)2/DMF solution was placed into a 10 ml plastic syringe installed with a blunt-ended 

stainless steel needle as spinneret, which had an inner diameter of 0.48 mm. The spinneret was 

connected to a positive high-voltage DC power supply with adjustable voltage that was purchased 

from the Gamma High Voltage Research, Inc. (Ormond Beach, FL). A laboratory- made aluminum 

rotary plate as the nanofiber collector with a diameter of 33 cm was placed 20 ~ 25 cm away from 

the tip of the spinneret. During electrospinning, a high positive voltage of 15-25 kV was applied 

to the needle, while a high negative voltage of 2-10 kV [provided by another negative high-voltage 

DC power supply that was purchased from the Gamma High Voltage Research, Inc. (Ormond 

Beach, FL)] was applied to the aluminum rotary plate. The flow rate of the electrospun solution 

was set at 1.0-1.5 ml/h using a syringe pump (model number: KDS 200) purchased from the KD 

Scientific Inc. (Holliston, MA). After electrospinning, a nonwoven nanofiber film of randomly 

oriented electrospun PAN/Ni(AcAc)2 nanofibers was obtained and peeled off from an aluminum 

foil attached onto the aluminum rotary plate. The as-electrospun nanofiber films were dried at 

100 °C in oven for 6 h prior to the stabilization treatment. 
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3.2.4. Stabilization and carbonization of PAN/Ni(AcAc)2 nanofibers and CVD for CNT 

growth 

Controlled stabilization and carbonization of as-electrospun PAN/Ni(AcAc)2 nanofiber 

films were performed  in a tubular furnace (Atomate, Inc., Santa Barbara, CA). For oxidative 

stabilization of PAN, the electrospun nanofiber films were first heated in air to 215 C at a heating 

rate of 1C/min followed by holding the temperature at 215 C for 1 h.   

During the process of carbonization, the as-stabilized PAN/Ni(AcAc)2 nanofiber films 

were heated in Ar to 500 C at a rate of 5 C/min; subsequently, the carbonized composite 

nanofibers were treated at 500 C for 1 h in a mixture flow of H2 and Ar (H2/Ar = 1/2) for the 

reduction of Ni2+ ions into Ni atoms, which diffused to the surface of the nanofibers and 

agglomerated into Ni nanoparticles. The size of the resulting Ni nanoparticles can be controlled 

via adjusting the temperature and duration of the process similar to that based on other catalytic 

metal as reported in the literature (Lai et al., 2008). After that, the samples were heated to 650 C 

at a rate of 5 °C/min in an Ar flow and kept at this temperature; the Ar flow was then replaced with 

the mixture flow of Ar and C2H4 (Ar/C2H4 = 1) to grow carbon nanostructures (i.e., multi-walled 

CNTs). After reaction for 1 h, the C2H4 gas was turned off. Then the furnace was cooled down to 

the ambient temperature. After the above treatments/reactions, the electrospun PAN/Ni(AcAc)2 

nanofibers were converted into hierarchical porous CNFs surface-grown with multi-walled CNTs 

(MWCNTs). 

 

3.2.5. Electrode preparation and electrochemical characterization  

The prototype solid-state supercapacitors were fabricated based on the above hierarchical 

porous CNFs surface-grown with Ni nanoparticles and CNTs using a symmetrical two-electrode 
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cell setup (see Fig. 3.1). During the fabrication, a thin layer of polymer electrolyte made of PVA 

and H3PO4 (10 wt. %) was sandwiched between two patches of the CNF samples with the thickness 

of ~200 μm, which functioned as the two electrodes of the prototype supercapacitors (Kaempgen 

et al., 2009; Sung et al., 2006). In addition, a thin PAN nanofiber film was used as the separator to 

isolate the two CNF electrodes. Two copper foils were used to cover the CNF electrodes as the 

current collectors of the supercapacitors.  

 
 

Figure 3.1. Schematic of a solid-state supercapacitor. 

 

The electrochemical capacitive behavior and specific capacitance of the solid-state 

supercapacitors were characterized on a battery tester BT-2000 (Arbin Instruments, TX) available 

in the Center for Nanoscale Science and Engineering (CNSE) at NDSU, from which the 

corresponding characteristic CV and GCD curves were recorded. In the constant current 

charging/discharging measurement, the symmetrical two-electrode cell was charged and 

discharged between 0 to 0.8 V in the PVA and H3PO4 (10 wt.%) electrolyte. The current densities 

used in the test were 625, 1250, 1875, and 2500 mA/g, respectively. Scanning rates of 5, 10, 30, 

and 50 mV/s in the potential range of 0 to 0.8 V were utilized in the CV measurements. By 

analyzing the CV diagrams and GCD curves, the specific capacitance, energy density, power 
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density, cycling stability, and electrical resistance of the solid-state supercapacitors were 

calculated using the relations (2.4)-(2.6) in Chapter 2.  

 

3.2.6. Morphology and microstructure characterization 

The surface morphologies of the as-electrospun, stabilized, and carbonized nanofibers were 

analyzed by using a field-emission scanning electron microscope (SEM, JEOL JSM-7600F). Prior 

to SEM examination of the as-electrospun and stabilized nanofibers, these nanofiber specimens 

were sputter-coated with carbon to avoid charge accumulations. A transmission electron 

microscope (TEM, JEOL JEM-2100) was further employed to characterize the carbonaceous 

microstructures of the carbonized CNF specimens. Before TEM characterization, the specimens 

were dispersed by sonication in acetone, and the resulting solution mixture was dropped onto lacey 

carbon films supported on a copper grid. In addition, the microstructures and structural conversion 

of the carbonized nanofibers were investigated by a laser confocal Raman Spectrometer (Nicolet 

NXR 9650 FT-Raman spectrometer, 632.8 nm) and a Siemens D5000 X-ray diffractometer (XRD).  

The X-ray tube operating at 40 kV and 44 mA with the CuKα radiation (wavelength λ = 0.154 nm) 

was used; and the XRD profiles were recorded with the 2 angles ranging from 5  to 60  at the 

scanning speed of 5 /min. 

 

3.3. Results and Discussions   

3.3.1. Morphology and structure characterization 

SEM micrographs shown in Figs. 3.2 (A-D) show the representative morphologies of the 

as-electrospun PAN nanofibers, PAN/Ni(AcAc)2 nanofibers, carbonized electrospun PAN 

nanofibers, and carbonized PAN/Ni(AcAc)2 nanofibers, respectively. Both the PAN and 
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PAN/Ni(AcAc)2 precursor nanofibers in the as-electrospun nanofiber mats exhibited uniform and 

smooth morphology without identifiable microscopic  beads and/or beaded nanofibers. These 

nanofibers have an average diameter in the range of 400-500 nanometers. After carbonization of 

the precursor as-electrospun PAN nanofibers at 650 C, the average diameter was reduced to about 

300 nm. During carbonization of PAN/ Ni(AcAc)2 nanofibers at 500 C for 1 h in a mixture flow 

of H2 and Ar (H2/Ar = 1/2) , the Ni2+ ions were reduced into elemental Ni, which further aggregated 

into nanoparticles on the surface of nanofibers (Lai et al., 2008; Zhou et al., 2012) as shown in Fig. 

3.2 (D). 
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Figure 3.2. SEM micrographs of (A) PAN and (B) PAN/Ni(AcAc)2 nanofibers; SEM 

micrographs of (C) carbonized electrospun PAN nanofibers and (D) electrospun CNFs surface-

grown with Ni nanoparticles. 

 

In principle, the major factors that influence the capacitance of electric double-layer 

capacitors (EDLCs) are the specific surface area and electrical conductivity of the electrodes. 

Tubular carbon nanostructures such as CNTs and CNFs provide a high electrical conductivity and 

a large specific surface area. Thus, the present process to grow tubular carbon nanostructures onto 

the surface of carbonized electrospun PAN nanofibers is expected to enhance the specific surface 

area and electrical conductivity of the resulting electrode materials. At the reaction condition of 

650 C in H2/Ar atmosphere, reduction of Ni2+ ions and formation of Ni nanoparticles on the CNF 
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surface can be evidenced in the TEM micrograph (Fig. 3.3A). The Ni nanoparticles agglomerated 

on the surface in nearly uniform morphology with the sizes of 10-30 nm. The C2H4 gas was carried 

into the tubular reaction furnace and decomposed into carbon atoms, which deposited on the 

surface of Ni nanoparticles, where tubular nanostructures in terms of multi-walled CNTs grew 

consequently on the electrospun CNFs (Lai et al., 2008). The TEM micrograph (Fig. 3.3B) clearly 

shows the growth of tubular carbon nanostructures on CNFs. Theses tubular carbon nanostructures 

carried the graphene shells with the outer diameters of ~20-40 nm and the lengths of several 

microns. The diameter and length of the tubular carbon nanostructures could be tailored by 

adjusting the temperature and duration of the reaction (Ziebro et al., 2010). In addition, Ni 

nanoparticles could also be identified at the tip or middle locations of carbon nanostructures due 

to the different growth mechanisms. The presence of Ni nanoparticles in the tubular carbon 

nanostructures and CNFs could be advantageous, because such a hybrid system consisted of both 

pseudocapacitive nanoparticles of metals or metal oxides and conventional capacitive carbon. 

 

Figure 3.3. TEM micrographs of Ni nanoparticles on the electrospun CNFs (A) and tubular 

carbon nanostructures embedded with Ni nanoparticles at the surface of a CNF (B). 

 

 

A 
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During the pyrolysis process inside the tubular furnace at 650 C, the Ni atoms inside the 

CNFs diffused onto the CNF surface and aggregated into Ni nanoparticles, which functioned as 

catalyst for the growth of carbon nanostructures. Figure 3.4 shows the SEM micrographs about the 

growth of CNTs on the surface of CNFs with varying durations of C2H4 supply of (A) 2 min, (B) 

10 min, (C) & (D) 30 min, and (E) & (F) 60 min, respectively. It can be found that the length of 

the CNTs depended on the duration of C2H4 supply. The longer is the supply duration of C2H4, the 

larger is the length of CNTs (Lai et al., 2008). The lengths of CNTs under this study were 

controlled in the range of several nanometers to micrometers.  
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Figure 3.4. SEM micrographs of hierarchical porous CNT/CNFs at varying duration of C2H4 

supply. The duration of C2H4 supply: (A) 2 min, (B) 10 min, (C) & (D) 30 min, and (E) & (F) 60 

min. 
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The crystalline structures of CNFs and Ni/CNT/CNFs at the process temperature of 650 

C were analyzed by the X-ray diffraction with the 2θ values lying between 5 and 60, as shown 

in Fig. 3.5. The XRD pattern of as-prepared Ni/CNT/CNFs shows two characteristic peaks at 2θ 

angles of ~44.7 and 52.6 corresponding to the (111) and (200) reflection position of Ni (Geng et 

al., 2007; Kumar et al., 2013), respectively. These diffraction peaks indicated that the Ni 

nanoparticles were a single fcc phase without significant oxides or other impurity phases (Geng et 

al., 2007; Kumar et al., 2013). Additionally, the pattern shows a typical intense peak of carbon or 

graphite materials at 2θ angles of ~25, which was attributed to the crystallographic plane (002) 

(Zhou et al., 2009 and 2010). Compared to pure CNFs without a clear 2θ peak (~25), 

Ni/CNT/CNFs demonstrated an obvious peak and more ordered in structure and well crystallized. 
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Figure 3.5. X-ray diffraction patterns of CNFs and Ni/CNT/CNFs at the process temperature of 

650 C, respectively. 
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3.3.2. Electrochemical characterization 

3.3.2.1. CV measurements  

The electrochemical behavior of the hierarchical porous CNT/CNF electrodes was 

characterized in a gel electrolyte of PVA and 10 wt. % H3PO4 by CV. Figure 3.6 depicts the typical 

CV curves of the electrodes at various scanning rates (e.g., 5, 10, 30, and 50 mV/s). At the low 

scanning rates (e.g., 5 mV/s and 10 mV/s), the shapes of CV curves were nearly rectangular; i.e., 

the electrodes were stable in the gel electrolyte (see the inserted cyclic CV diagram at scanning 

rate of 10 mV/s in Fig. 3.6). In contrast, at high scanning rates (e.g., 30 mV/s and 50 mV/s), the 

CV curves were distorted with oblique angles. This observation indicated the existence of high 

contact electric resistance between the electrodes and current collectors (Wu et al., 2012). 

Pseudocapacitive behavior of the Ni nanoparticles was not clearly identified from Fig. 3.6 (i.e., 

the Ni nanoparticles in this study exhibited the electrochemical behavior similar to that of carbon) 

(Srinivasan and Weidner, 1997). In principle, the high specific surface area of the electrodes, low 

volume fraction of Ni nanoparticles, and the well-capsulation of Ni nanoparticles by the 

surrounding carbon might have shielded the pseudocapacitive effect of the Ni nanoparticles 

(Srinivasan and Weidner, 1997). 
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Figure 3.6. CV curves of the hierarchical porous CNF electrodes in the gel electrolyte of PVA 

and 10 wt. % H3PO4 at different scanning rates. 

 

3.3.2.2. GCD measurements 

The typical GCD curves of the hierarchical porous CNT/CNF electrodes in the PVA/H3PO4 

gel electrolyte at 625 and 1,875 mA/g, respectively, are shown in Fig. 3.7. No significant IR drop 

was detected at a relatively low discharge current of 625 mA/g, reflecting a very low equivalent 

series resistance (ESR) of the hybrid porous electrodes. The results suggested that the unique 

connectivity of continuous CNT/CNFs effectively improved the electric conductivity of the hybrid 

porous electrodes; nonetheless, it was evident that the IR dropped substantially with the increase 

of discharge current density.  
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Figure 3.7. GCD curves of the hierarchical porous CNF electrodes in the PVA/H3PO4 gel 

electrolyte at different discharge current densities. 

 

The specific discharge capacitance of the hierarchical porous CNT/CNF electrodes of 

supercapacitors can be calculated according to relation (2.4). Figure 3.8 shows the specific 

capacitance as a function of the discharge current density of the hierarchical porous CNT/CNF 

electrodes in the PVA/H3PO4 gel electrolyte. The specific capacitance was up to 185 F/g at the 

discharge current density of 625 mA/g. It is also noticed that the capacitance of the hierarchical 

porous CNT/CNF electrodes is higher than those reported recently in the literature, including 

activated carbon nanofiber electrodes (100 F/g at 1 A/g) (Seo and Park, 2009), MWNTs (102 F/g) 

(Niu et al., 1997), SWNTs (180 F/g) (An et al., 2001), and porous CNF electrodes (140 F/g in 6 

M KOH solution) (Kim et al., 2007). Due to the high conductivity and large specific surface area 
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of the hierarchical porous CNT/CNF electrodes, the specific capacitance values of 114 F/g  can be 

still maintained even at the discharge current density as high as 2.5 A/g. All the experimental 

results reported in this chapter have been published in Applied Physics Letters in 2012 (Zhou et 

al., 2012). 
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Figure 3.8. Dependence of the specific capacitance on the discharge current density for the 

hierarchical porous CNT/CNF electrodes in the PVA/H3PO4 gel electrolyte. 

 

3.4. Summary  

Electrospun CNFs surface-grown with CNTs could be a new type of hierarchical porous 

nanomaterials for design and fabrication of porous electrodes with high specific surface area and 

superior specific capacitance for use in supercapacitors and pseudocapacitors. The excellent 
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connectivity and electrical conductivity of the hierarchical porous carbonaceous nanomaterials can 

provide the low intrinsic contact electric resistance of the supercapacitors. Such hierarchically-

structured conductive nanofibrous material also offers an innovative nanostructured template for 

synthesis of advanced porous multifunctional electrode materials to be discussed in Chapter 4. 
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CHAPTER 4. TERNARY CORE-SHELL STRUCTURED CARBON 

NANOFIBERS SURFACE-GROWN WITH CNTS AND POLYANILINE AS 

MULTIFUNCTIONAL ELECTRODES FOR USE IN 

PSEUDOSUPERCAPACITORS 

 

4.1. Introduction  

As reviewed in Chapter 1, conducting polymers have been under intensive research as 

potential low-cost electrode materials for use in supercapacitors due to their large 

pseudocapacitance, low mass density, and sound environmental stability. Yet, conducting 

polymer-based pseudocapacitors usually carry relatively low electrical conductivity, poor 

cyclability, and low power density compared to EDLCs. This chapter studies the synthesis and 

electrochemical performance of CNFs surface-grown with CNTs and ultrathin PANI layers, 

termed as PANI/CNT/CNFs, for use as high-performance electrode material for pseudocapacitors. 

The novel hierarchical multifunctional PANI/CNT/CNF films were successfully synthesized via 

in situ polymerization of aniline on the surface of CNT/CNFs as prepared in Chapter 3. The 

morphology and microstructure of the PANI/CNT/CNFs were characterized by means of SEM, 

TEM, and Raman spectroscopy. The electrochemical properties of the new material were analyzed 

by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and galvanostatic 

charge/discharge (GCD) in a 1 M H2SO4 electrolyte. Experimental results of the microstructures 

and electrochemical properties were discussed in detail, and related mechanisms were explored to 

correlate the electrochemical performance of the novel ternary multifunctional PANI/CNT/CNF 

films to their unique microstructure.  
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4.2. Experimental  

4.2.1. Materials 

Ammonium persulfate (APS), sulfuric acid (H2SO4), and aniline monomer were purchased 

from Sigma-Aldrich Chemical Co. (St. Louis, MO, USA). All the chemicals were used as received 

without further purification or modification. 

 

4.2.2. Preparation of PANI/CNT/CNF films 

The process to synthesize the CNFs surface-grown with CNTs (CNT/CNFs) has been 

reported in Chapter 3. In this study, the PANI/CNT/CNF films were synthesized by in situ 

polymerization of aniline in the as-synthesized CNT/CNF films as hierarchically nanostructured 

templates. A solution of 0.03 M aniline in 200 ml 1 M H2SO4 was prepared first. The CNT/CNF 

films were immersed in the solution for 1 h. Then, another 200 ml 1 M H2SO4 solution containing 

0.0075 M APS was added to the above solution, drop-by-drop. The mixture solution was 

continuously stirred for 5 h and the aniline polymerized in an ice-bath. The molar ratio of 

aniline/APS was 4:1. During this period, the color of the solution slowly changed till dark green. 

After polymerization, the PANI/CNT/CNF films were filtered and washed sequentially with 

deionized water and acetone. The films were dried in a vacuum oven at 70 C for 3 h. The PANI 

content in the PANI/CNT/CNF films was ~50% by weight.  

 

4.2.3. Structural and electrochemical characterization 

The surface morphology and structure of the films were analyzed by SEM, TEM, and 

Raman spectroscopy. The electrochemical properties of the supercapacitor cells were 

characterized by EIS, CV, and GCD. Three-electrode EIS setup was employed for the impedance 
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measurements. A saturated calomel electrode was used as the reference electrode. 1 M H2SO4 

aqueous solution and stainless steel wire mesh were used as the electrolyte and the current collector, 

respectively. EIS was tested in the frequency range of 105-0.01 Hz by using the Electrochemical 

Multiplexer ECM8 (Gamry Instruments, Inc., PA). The CV and GCD were conducted by using 

the Arbin BT-2000 testing system (Arbin Instruments, TX) in a 1 M H2SO4 electrolyte in the 

voltage range of -0.2 to 0.8 V. The specific capacitance, energy density, and power density were 

calculated according to the GCD curves which were recorded at constant current densities. The 

specific capacitance, 𝐶𝑠  (F/g), energy density, Ed (W h/kg), and power density, Pd (kW/kg), 

delivered by supercapacitors are calculated by relations (2.4-2.6). 

 

4.3. Results and Discussions 

4.3.1. Scheme of synthesis of PANI/CNT/CNFs 

The synthesis procedure of the novel ternary core-shell PANI/CNT/CNFs consisted of 

three sequential processes: the “top-down” electrospinning fabrication, “bottom-up” CVD, and in-

situ polymerization. As illustrated in Fig. 4.1, the precursor solution was prepared by dissolving 

Ni(AcAc)2 and PAN powders in DMF, which were used to electrospin Ni(AcAc)2/PAN nanofibers 

with the diameter around 300 nm (He et al., 2012; Zhou et al., 2013). These nanofibers were 

converted into continuous CNFs with Ni nanoparticles aggregated at surface via thermal 

stabilization in open air, carbonization in inert gas environment (Ar), and NiO reduction into Ni in 

the H2/Ar environment in a tubular reaction quartz furnace (Zhou et al., 2012; Zhou and Wu, 2013). 

During the CVD process of CNT growth onto CNFs, ethylene (C2H4) was used as carbon source, 

and Ni nanoparticles were used as catalyst (Zhou et al., 2012). Consequently, in-situ 

polymerization of aniline with synthesized CNT/CNF networks as a porous scaffold for active 
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sites of aniline resulted in ternary hierarchical core-shell nanofibrous material with PANI coated 

onto the surface of CNTs and CNFs.  

 

 

Figure 4.1. Schematic illustration of the rational synthesis process for fabrication of ternary core-

shell PANI/CNT/CNF. 

 

The PANI/CNT/CNF films carried several unique features as demanded for use as 

electrode material of high-performance supercapacitors: 1) the ultrathin PANI layers were 

deposited onto CNT/CNF networks to enable the fast electron transport and effective current 

collection (Wang et al., 2011; Wu et al., 2012); 2) the CNF networks were utilized as current 

collectors and the CNTs coated onto the CNFs functioned as charge channels of the PANI layers, 

which ensures the high rate charge/discharge capability (Portert et al., 2008, Wu et al., 2012; Chen 

et al., 2011); and 3) the ultrathin PANI layers carried very high specific surface area and complex 

surface morphology beneficial to the large specific pseudocapacitance and high energy and power 

densities. Results of electrochemical characterization demonstrated that the supercapacitors 

comprising of continuous PANI/CNT/CNF film electrodes exhibited high electrochemical 

performance and superior cycling stability.  
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4.3.2. SEM and TEM micrographs of CNFs and CNT/CNFs 

During the process of fabricating PANI/discrete carbon nanostructure (e.g., CNTs, 

graphene, carbon black, etc.) materials, the restacking and aggregation of carbon nanostructures 

and PANI composites (see Fig. 4.2) directly leads to the decrease of the effective electrical and 

electrochemical performance and limits the practical applications of the resulting supercapacitors. 

 

Figure 4.2. SEM micrographs of CNTs (A) and carbon black (B) coated with PANI. 

 

Figures 4.3 (A) and (B) show the typical SEM micrographs of the CNF and CNT/CNF 

films synthesized in this study, respectively. The CNFs had a smooth surface with a nearly uniform 

diameter in the range of 200 to 300 nm. From Fig. 4.3 (C), it can be observed that the entangled 

CNTs with the diameter of 20-30 nm were randomly grown on the surface of CNFs. The length of 

CNTs was about a few micrometers. The diameter and length of the CNTs can be tailored by 

adjusting the material and process parameters such as the catalyst, carbon source, temperature, and 

the duration of the CVD (Lai et al., 2008; Zhou et al., 2012). It can also be founded from Fig. 4.3 

(D) that CNFs and CNTs were interconnected, continuous, and not overlapped. Compared to the 

purified CNFs or CNTs, the present porous CNT/CNF films are expected to have advantages in 

transporting electrons over a large specific surface area. Furthermore, the CNT/CNF films also 
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play an important role in reducing CNT agglomeration in the aqueous solution. These results 

suggest that the CNT/CNF films could act as good templates for formation of the hierarchal porous 

PANI/CNT/CNF films.  

 

Figure 4.3. SEM micrographs of (A) purified CNFs, (B) CNT/CNFs, and (C) a typical CNT-

grown CNF; TEM micrograph of (D) CNT/CNFs. 

 

4.3.3. SEM and TEM micrographs of PANI/CNT/CNFs 

It has been reported that the morphology and microstructure of PANI can be sensitively 

tailored by templates during in situ polymerization (Niu et al., 2012). In this process, CNF and 

CNT/CNF films were used as the 3D free-standing templates for growing ordered PANI 
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nanostructures. Due to the hydrogen bond effect of CNFs, some aniline molecules may be 

adsorbed on the surface of CNFs (Yan et al., 2010). Once APS was added, these adsorbed aniline 

molecules polymerized preferentially to form small PANI ‘seeding dots’. These “seeding dots” 

further reacted to form PANI nanowires as shown in Fig. 4.4 (A) (Wei et al., 2013; Yan et al., 

2011). These PANI nanowires carried needle-like morphology and vertically positioned on the 

surface of CNFs. The TEM micrograph of Fig. 4.4 (B) further reveals the formation of uniform 

needle-like PANI nanowires with a diameter in the range from 50 to 80 nm and a height up to 150 

nm. In addition, the diameter and height of the PANI nanowires could be tuned via adjusting the 

concentration of aniline, temperature, and duration of polymerization (He et al., 2012; Wei et al., 

2013; Yan et al., 2011). 

Figure 4.4 (C) is the SEM micrograph of PANI-coated CNT/CNFs, which carried 

homogenous, ultrathin PANI layers on the surface. However, the needle-like PANI nanowires of 

PANI/CNFs were not observed in this SEM analysis. This is because the anilines were sufficiently 

adsorbed onto the surface of CNT/CNFs to form a thin PANI layer at the initial stage of 

polymerization, owing mainly to the rich hydroxyl and carbonyl groups existing on the surface of 

CNT whiskers as well as their high aspect ratio (Zhou et al., 2013; Peng et al., 2007). The PANI 

multilayers were further formed by reacting with the free aniline in solution. In addition, the TEM 

micrograph further validates the successful synthesis of the hierarchical porous PANI/CNT/CNF 

films (Fig. 4.4 D). The diameters of PANI/CNT nanowires were about 30-60 nm and the thickness 

of PANI layers coated on CNTs was about 10-30 nm, which were estimated from the above SEM 

micrographs. Compared to the nanostructured PANI prepared by polymerization of aniline with 

the aid of CNTs (Ghosh et al., 2013; Zhou et al., 2013; Peng et al., 2007; Hyder et al., 2011),  the 

present PANI/CNT/CNF films provided a rougher surface with higher specific surface area, which 
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guaranteed the high-performance of the resulting supercapacitors. Meanwhile, the CNT/CNF 

networks functioned as the excellent current-delivery channels to suppress the electrical contact 

resistance of the electrodes due to their high electrical conductivity and excellent topological 

connectivity. 

 

Figure 4.4. SEM micrographs of (A) PANI/CNFs and (C) PANI/CNT/CNFs; TEM micrographs 

of (B) PANI/CNFs and (D) PANI/CNT/CNFs. 

 

4.3.4. Raman spectra of PANI/CNT/CNFs 

The chemical microstructures of electrode materials were characterized by means of 

Raman spectroscopy, which can provide detailed information of their molecular structure and 

 

(B) 

 

(A) 

 

(D) 

 

(C) 
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further confirm the structure of PANI/CNT/CNFs. The Raman spectra of PANI/CNT/CNF and 

CNT/CNF films were carried out at an excitation wavelength of 632.8 nm as shown in Fig. 4.5. 

The curve of CNT/CNF film shows two typical characteristic peaks at 1,582 cm-1 (G bands) and 

1,349 cm-1 (D bands), which were attributed to the phonon propagation along the graphitic 

structures and the disordered turbostratic structures or defects, respectively (Zhou and Wu, 2013). 

In the plot of the PANI/CNT/CNF films, the characteristic bands of PANI and some overlap bands 

with CNT/CNF films can be observed. The band located at 1,166 cm-1 was attributed to the C-H 

bending vibration of the benzenoid/quinoid ring; the peak located at 1,216 cm-1 was linked to the 

weak C-N stretching. The bands situated at 1,491 cm-1 and 1,582 cm-1 were corresponded to the 

C=N stretching of the quinoid ring and C-C stretching of the benzenoid ring of PANI, respectively 

(Li et al., 2012; Ghosh et al., 2013; Wei et al., 2013 ). Moreover, the peak of C-N*+ at 1,333 cm-1 

was resulted from the formation of a radical cation on the doping and co-doping of PANI (Ghosh 

et al., 2013). As shown, the PANI/CNT/CNF films yielded the similar Raman data as the PANI 

materials prepared by polymerization under acid condition, which is in a good agreement with 

those reported recently in the literature (Peng et al., 2007; Hyder et al., 2011; Zhou et al., 2013; 

Wei et al., 2013).  
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Figure 4.5. Raman spectra of CNT/CNF and PANI/CNT/CNF films. 

 

4.3.5. FTIR spectra of PANI/CNT/CNFs 

Figure 4.6 shows the typical Fourier transform infrared spectroscopy (FTIR) spectra of 

PANI/CNT/CNF and CNT/CNF films. The absorption peaks at 1,564 cm-1 and 1,465 cm-1 

correspond to the C–C stretching deformation mode of the quinoid (Q) and benzenoid (N) rings of 

PANI, respectively (Tang et al., 2009). The peaks at 1,231 cm-1 and 1,294 cm-1 were attributed to 

the C-N stretching vibration of an aromatic conjugation. The N-Q-N stretching band at 1,087 cm-

1 is the characteristic band of the PANI (Yuan et al., 2011). The intensities of these peaks imply 
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the formation of PANI layers onto the surface of CNT/CNFs. In contrast, a characteristic band of 

CNT/CNFs associated with C-C symmetric stretching was observed at 790 cm-1. 
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Figure 4.6. FTIR spectra of CNT/CNF and PANI/CNT/CNF films. 

 

4.3.6. EIS characterizations 

EIS has been considered as a very effective method for analyzing the electrochemical 

impedance properties of a material, including the internal electrical resistance, charge transport in 

electrode/electrolyte, and ion diffusion of electrochemical devices (Kötz and Carlen, 2000). In this 

work, two patches of stainless steel mesh were used as the current collectors and a 1 M H2SO4 

aqueous solution was utilized as the electrolyte. Figure 4.7 shows the Nyquist plots of PANI/CNF 
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and PANI/CNT/CNF film electrodes in the frequency ranging from 100 kHz to 0.01 Hz under an 

open circuit potential. As shown, both Nyquist plots consist of two distinct parts including a small 

semicircle at the high frequency region and an inclined line in the low frequency region. The x-

intercept in the Nyquist plots represents the equivalent series resistance (ESR), which is 

corresponded to the electrical resistance of the electrolyte solution and the electrical contact 

resistance of the electrode/electrolyte (Ryu et al., 2002; Lai et al., 2012). As observed from the 

plots, the ESR values of PANI/CNF and PANI/CNT/CNF electrodes are about 1.50 and 1.46 Ω, 

respectively. Clearly, these electrodes had a small semicircle in the high frequency region, 

indicting a low interfacial charge-transfer resistance (Rct). As calculated from the diameter of 

semicircles, the Rct values are 0.50 and 0.55 Ω, respectively. Such a low Rct indicates the very good 

interfacial conductivity between the PANI and carbon materials. Besides, the Rct values of both 

PANI/CNF and PANI/CNT/CNF electrodes are much lower than the values reported for the CNF-

PANI composite paper (9.2 Ω) (Yan, 2011), hybrid PANI-CNT/Ni electrode (10.0 Ω) (Li et al., 

2012), and ordered mesoporous carbon/PANI composite (5.4 Ω) (Li et al., 2009). The inclined 

lines of the Nyquist plots were attributed to the ion diffusion in the electrode/electrolyte, known 

as the Warburg behavior (Wang et al., 2009). The PANI/CNT/CNF electrode with nearly vertical 

line exhibited higher accessibility of PANI surfaces for ion diffusion than that of PANI/CNF 

electrode. This is due mostly to the unique integrated nanostructure, in which the CNF network 

was utilized as current collector and the CNT-coated CNFs acted as charge channels of the PANI 

layers. All the EIS data further demonstrated the successful synthesis of PANI/CNT/CNF hybrids 

with enhanced ion diffusivity and conductivity.   
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Figure 4.7. Nyquist plots of PANI/CNF and PANI/CNT/CNF film electrodes in 6 M KOH 

solution in the frequency range of 100 kHz - 0.01Hz. Z/ and Z// are the real and imaginary parts 

of the complex impedance, respectively. 

 

4.3.7. CV characterizations 

The electrochemical properties of the electrode materials were further characterized by CV 

and GCD in this study. Figure 4.8 shows the CV curves of the supercapacitors. The experiments 

were carried out at a potential scan rate of 5 mV/s in a wide potential range of -0.2 – 0.8 V. The 

background signal of the stainless steel mesh is negligible. Compared to the CNF electrode, the 

CV curve of CNT/CNF electrode exhibited a nearly rectangular shape along with the time-

potential axis, indicating its excellent double-layer electrochemical performance. This observation 
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is due mostly to the unique structure of CNT/CNFs with enhanced specific surface area and 

conductivity. The PANI/CNF and PANI/CNT/CNF electrodes clearly demonstrated two pairs of 

typical redox peaks (C1/D1 and C2/D2), which are characteristic of PANI materials. The first pair 

of peaks C1/D1 can be ascribed to the redox transition from the leucoemeraldine form to the 

polaronic emeraldine form. The second pair of peaks C2/D2 is corresponded to the Faradaic 

transformation of emeraldine/pernigraniline (Wang et al., 2009; Wei et al., 2013; Zhou et al., 2013). 

Generally speaking, conducting polymer (e.g., PANI and PPy) stores and releases charges through 

redox transitions, which is associated with the 𝜋–conjugated polymer chains. During the oxidation 

process (also referred to as p-doping), electrolyte ions are transferred to the polymer surface. In 

contrast, during the reduction process (also known as un-doping), electrolyte ions are transported 

back into the solution. As expected, the current density of PANI/CNT/CNF electrode was much 

higher than that of the CNF, CNT/CNF, and PANI/CNF electrodes at the same scan rate of 5 mV/s, 

implying the superior electrochemical performance of PANI/CNT/CNF film. In addition, as the 

CV plot of the PANI/CNT/CNF electrode is distorted and carries an area larger than that of the 

PANI/CNF, it implies that the PANI/CNT/CNF electrode exhibits a strong synergistic effect 

between the PANI layers and CNT/CNF network. 
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Figure 4.8. CV curves of the stainless steel mesh, CNF, CNT/CNF, PANI/CNF, and 

PANI/CNT/CNF film electrodes at a scan rate of 5 mV/s. 

 

Figures 4.9 and 4.10 present the CV curves of PANI/CNF and PANI/CNT/CNF film 

electrodes at different scan rates from 5 to 100 mV/s, respectively. An obvious increase of the 

current density was observed for these electrodes with increasing scan rate. Meanwhile, it is 

notable that the cathodic peaks shifted positively, while the anodic peaks shifted negatively, which 

is attributed mainly to a slight increase of the electrode resistance at a high scan rate (Wang et al., 

2006). The redox peaks even disappeared at a high scan rate of 100 mV/s, and the CV curves 

exhibit a symmetric and approximately rectangular shape, indicating the excellent charge transport 
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and low contact electrical resistance in the electrodes (Zhou et al., 2013; Cheng et al., 2013; Luo 

et al., 2013). 
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Figure 4.9. CV curves of the PANI/CNF film electrodes at different scan rate. 
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Figure 4.10. CV curves of the PANI/CNT/CNF film electrodes at different scan rate. 

 

4.3.8. GCD characterizations 

To further quantify the specific capacitance of the electrodes, GCD tests of the 

supercapacitor cells were performed in 1 M H2SO4 aqueous solution. Figure 4.11 shows the GCD 

curves of CNF, CNT/CNF, PANI/CNF, and PANI/CNT/CNF film electrodes at a current density 

of 0.3 A/g, respectively. In the case of CNF electrode, the GCD curve deviates from triangular 

shape during discharging, whereas in the case of CNT/CNF electrode, the GCD curve is a nearly 

triangular shape, indicating the reversible charge/discharge behavior of an ideal EDLC (Qu et al., 

2012). The “IR drop” of the CNT/CNF electrode is lower than that of CNF electrode, which further 
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demonstrated that the internal resistance of the CNT/CNF electrode was largely suppressed by the 

grown CNTs. The GCD curves of PANI/CNF and PANI/CNT/CNF electrodes deviate from the 

linear shape owing to the existence of faradic pseudocapacitive effect of PANI (Biswas and Drzal, 

2010; Li et al., 2011). As expected, due to its high capacitance, the PANI/CNT/CNF electrode 

exhibited a longer discharge time duration than that of the PANI/CNF electrode. This high 

capacitance further confirmed the favorable synergistic effect between the PANI layers and 

CNT/CNFs. It is worth to mention that the “IR” drops of the PANI/CNT/CNF and PANI/CNF 

electrodes are lower than those of the CNT/CNF and CNF electrodes, which is probably resulted 

from their low ion diffusion/transport resistance in the PANI surface.   
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Figure 4.11. GCD curves of the CNF, CNT/CNF, PANI/CNF, and PANI/CNT/CNF film 

electrodes at a current density of 0.3 A/g, respectively. 
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The specific capacitance was calculated from the GCD curves according to the relation 

(2.4). At a current density of 0.3 A/g, the specific capacitance of PANI/CNT/CNF electrode is 503 

F/g, much higher than that of PANI/CNF (422 F/g), CNT/CNF (270 F/g), and CNF (196 F/g) 

electrodes. As aforementioned, CNTs were wrapped by ultrathin PANI layers with the thickness 

of 10-30 nm, where the excellent electrical properties of CNTs such as high conductivity and 

specific surface area had been effectively activated. The CNT-coated CNFs played the important 

role as conductive channels of the PANI layers. As a result, it can be concluded that the improved 

capacitance is due mainly to the synergetic effect of the high specific surface area of PANI layers 

and the unique structure of CNT/CNFs. In this experimental study, the mass ratio of PANI is about 

50 wt. % in the PANI/CNT/CNFs. With consideration of the synergistic effect between the PANI 

layers and CNT/CNFs, the real specific capacitance of PANI layers can be calculated as 736 F/g, 

i.e., {[(503 F/g (PANI/CNT/CNF) − 270 F/g (CNT/CNF)*50%] / 50%}. This capacitance is 2.26-

4.36 times that of pure PANI nanofiber electrodes (169-326 F/g) (Zhou et al., 2004; He et al., 2012; 

Liu et al, 2013). It is also noticed that the capacitance of the novel PANI/CNT/CNF electrode in 

this study is competitive with those reported in the literature, for instance the PANI/SWCNT cloth 

composite (410 F/g at 0.5 A/g) (Niu et al., 2012), graphene/CNT-PANI composite (271 F/g at 0.3 

A/g) (Cheng et al., 2013), PANI/MWCNT nanofiber (490 F/g at 0.5 A/g) (Zhou et al., 2013), 

PANI/MWCNT composite (560 F/g at 1 mV/s) (Zhou et al., 2010), CNT/PANI composite (424 

F/g at 0.1 A/g ) (Peng et al., 2007), PANI/CNT composite (528 F/g at 1.0 A/g) (Chen et al., 2013), 

core-shell MWCNT/graphene oxide nanoribbon (252.4 F/g at 50 mV/s) (Lin et al., 2013), and 

SWCNT/BiVO4 composite (395 F/g at 2.5 A/g) (Khan et al., 2014). 

The GCD curves of the PANI/CNT/CNF electrodes were examined at different current 

densities from 0.3 to 6.0 A/g as shown in Fig. 4.12. It can be observed that all the curves are nearly 
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linear and symmetrical in their shapes, indicating that the corresponding supercapacitor has an 

excellent electrochemical reversibility in a wide range of current density.  
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Figure 4.12. GCD curves of the PANI/CNT/CNF film electrodes at different current densities. 

 

Figure 4.13 shows the influence of the specific capacitance of PANI/CNF and 

PANI/CNT/CNF electrodes upon the current densities. Interestingly, the capacitance values 

slightly increased at the low current densities and then decreased. For example, the capacitances 

of PANI/CNT/CNF electrode are 502, 503 and 504 F/g at the current densities of 0.15, 0.3 and 0.6 

A/g, respectively, which demonstrated the superior rate capability. When the current density is 

increased to 3 A/g, the capacitance of PANI/CNT/CNF can still be maintained as high as 471 F/g, 

only 6% decrease compared to the capacitance at 0.3 A/g. On the contrary, up to 13% of 
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capacitance was dissipated for the PANI/CNF electrode. Besides, about 28% of the maximum 

capacitance of PANI/CNT/CNF electrode was decayed at a high current density of 15 A/g.  
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Figure 4.13. Variation of the specific capacitance vs. the current density for the PANI/CNF and 

PANI/CNT/CNF film electrodes. 

 

4.3.9. Cycling capability and energy and power densities 

To evaluate the cycling capability of the PANI/CNT/CNF supercapacitor, the GCD curves 

were obtained for 1,000 cycles at a high current density of 15 A/g as shown in the inset of Fig. 

4.14. It is observed that the capacitance value only dropped ~8% from 360 to 332 F/g after 1,000 

cycles, revealing the remarkable cycling stability of the PANI/CNT/CNFs for potential use as 

electrode material of high-performance electrochemical supercapacitors. Furthermore, the energy 
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and power densities of the new supercapacitors were calculated from the GCD curves gained at 

various current densities. Figure 4.14 shows the Ragone plot of PANI/CNF and PANI/CNT/CNF 

supercapacitors. It can be found in Fig. 4.14 that the PANI/CNT/CNF supercapacitor delivered a 

high energy density of ~50 Wh/kg at a high power density of ~15 kW/kg. This energy density is 

~25% higher than that of the PANI/CNF supercapacitor. In addition, the highest energy density of 

~70 Wh/kg at a power density of 600 W/kg was obtained from the PANI/CNT/CNF supercapacitor, 

which is almost one order higher than the values of commercially available supercapacitors that 

have the energy densities of 1-10 Wh/kg (Zhao et al., 2011). It should be pointed out that their 

characteristics were performed at a potential window of -0.2 to 0.8 V in 1 M H2SO4 aqueous 

electrolyte. As a result, it can be expected that the PANI/CNT/CNF material could be combined 

with suitable battery electrode materials to form battery-supercapacitor hybrids (BSHs) to realize 

high-performance energy storage devices. All the experimental results reported in this chapter have 

been published in RSC Advances in 2014 (Zhou et al., 2014). 
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Figure 4.14. Ragone plot of the PANI/CNF and PANI/CNT/CNF supercapacitors, respectively; 

the inset of charging/discharging cycling stability of PANI/CNT/CNF film electrodes at a current 

density 15 A/g. 

 

4.4. Summary 

Ordered, flexible PANI/CNT/CNF films have been successfully synthesized via three 

sequential steps: electrospinning, CNT growth, and in situ polymerization. Incorporation of the 

continuous CNT/CNF films has significantly enhanced the electrochemical properties of 

PANI/CNT/CNF film electrodes, such as the high interfacial charge-transfer conductivity and ion 

diffusivity. Such observation is due mostly to their unique integrated nanostructure, in which the 

CNF network was utilized as a current collector and the CNT-coated CNFs acted as charge 
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channels of the PANI layers. Supercapacitors based on PANI/CNT/CNF film electrodes exhibited 

a high specific capacitance of 503 F/g at a current density of 0.3 A/g and a superior cycling stability 

of ~92% specific capacitance retention after 1,000 cycles of charges and discharges. The highest 

energy density of ~70 Wh/kg and maximum power density of ~15 kW/kg have been achieved. 

Due to the effective synergistic effect between the PANI layers and CNT/CNF networks, such 

high-performance supercapacitors are expected for broader applications in electrochemical energy 

storage.  
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CHAPTER 5. FABRICATION AND CHARACTERIZATION OF 

GRAPHENE-BEADED CNFS FOR USE IN SUPERCAPACITORS 

 

5.1. Introduction 

In this chapter, a new route was devised for synthesis and characterization of an innovative 

porous electrode material based on hierarchically continuous graphene-beaded CNFs (G/CNFs) 

for use in supercapacitors. The goal was to comprehensively exploit the advantages of electrospun 

CNFs (e.g., continuity and electrical conductivity) and graphene (e.g., large specific surface area 

and high electrical conductivity) for the purpose of electrical energy storage. The porous G/CNF 

films were produced via electrospinning PAN/DMF solution dispersed with oxidized graphene 

nanosheets and consecutive carbonization; the chemical structure and electrochemical properties 

of the novel G/CNF-based electrodes were characterized and compared with those based on pure 

electrospun CNFs (without graphene). The rest of the chapter is formulated as follows. Section 5.2 

delineates the experimental details to produce and characterize the novel porous G/CNF electrode 

material. Section 5.3 describes the experimental measurements and relevant discussions. 

Consequently, Section 5.4 addresses the conclusions and prospect of the present study. 

 

5.2. Experimental   

5.2.1. Materials 

Commercial, as-grown, highly graphitic graphene nanosheets supplied by XG Sciences, 

Inc. (Michigan, USA) were employed in this study. The graphene nanosheets containing oxygen 

(<1 wt. %) had an average thickness of approximately 6 to 8 nm and a typical surface area of 120 
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to 150 m2/g. PAN powder and solvent DMF were purchased from Sigma Aldrich, Inc. (MO, USA).  

All the materials were used as received without any further purification or change. 

 

5.2.2. Preparation of continuous G/CNFs 

To produce PAN/G nanofibers by means of electrospinning technique, the solutions for 

electrospinning containing graphene nanosheets and PAN in DMF were prepared using the 

following route. PAN powder was dissolved in DMF to prepare a 15 wt. % PAN/DMF solution. 

The dispersed graphene nanosheets in DMF were then added into the as-prepared PAN/DMF 

solution to achieve a graphene-dispersed PAN/DMF solution with the concentration of 10 wt. % 

PAN and 1 wt. % graphene nanosheets. Both the PAN/DMF and graphene-dispersed PAN/DMF 

solutions were prepared at a temperature of 80 °C with continuous stirring for 24 h. The two as-

prepared solutions were respectively placed into 10 ml plastic syringe installed with a spinneret, 

which was connected to a positive high-voltage DC power supply purchased from the Gamma 

High Voltage Research, Inc. (Ormond Beach, FL). A laboratory-made aluminum rotary plate with 

a diameter of 33 cm was connected to a grounded electrode as the nanofiber collector. The 

electrospinning process was performed in a high electric field of 80 kV/m, which was generated 

by applying a positive voltage 20 kV to a 25 cm gap between the spinneret and the collector plate. 

The flow rate of the electrospun solution was fixed at 1.0 ml/h using a digital flow controller. After 

electrospinning, randomly oriented PAN/G nanofiber films were obtained and peeled off from an 

aluminum foil which was attached onto the aluminum rotary plate. The gained PAN and PAN/G 

nanofibers were dried at 100 °C in oven for 6 h prior to the stabilization treatment.  

The stabilization and carbonization of the as-prepared PAN/G nanofiber films were 

performed in a tubular furnace (Atomate, Inc., Santa Barbara, CA). The electrospun PAN/G 
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nanofiber nanosheets were first heated up at a rate of 1 C/min and kept at 215C for 1 h in air for 

the oxidative stabilization of PAN. The PAN/G nanofibers were then carbonized as the 

temperature was increased from 215 to 800 C under Ar atmosphere at a rate of 5 C/min and 

annealed at 800 C for 30 min. Thereafter, the furnace was cooled down to 400 C in Ar and then 

kept at this temperature by introducing air for 1 h to activate the carbonized PAN/G nanofibers. 

As a result, novel hierarchical graphene-beaded CNFs (G/CNFs) were obtained and used as the 

novel electrode material of supercapacitor. 

 

5.2.3. Characterization of morphology and structure 

The surface morphology of G/CNFs was analyzed by SEM. For the purpose of comparison, 

CNFs synthesized in Chapter 3 were also used as the control samples. In addition, TEM was used 

to characterize the microstructure of the G/CNF samples. Before measurements, the samples were 

dispersed in acetone and then deposited on a Cu grid. The structural variations of the G/CNF 

specimens were identified by a laser confocal Raman spectrometer (Nicolet NXR 9650 FT-Raman 

spectrometer, 632.8 nm). 

 

5.2.4. Electrochemical measurements 

Electrochemical characterization can be performed using a symmetrical two-electrode cell 

because it provides the most accurate evaluation of the electrochemical performance of the 

resulting electrode material for supercapacitors (Zhao et al., 2011). During fabrication of the 

supercapacitors, two pieces of 1.0 cm2 G/CNFs were tailored into wire cloth, mesh, and perforated 

nickel-copper sheets, which functioned as the current collectors.  A 6 M KOH aqueous solution 

was used for the electrolyte in this study. The two current collectors were used to conduct the 
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electrical current from each electrode. The electrochemical performance of the supercapacitor cells 

was evaluated by cyclic voltammetry (CV), galvanostatic charge/discharge (GCD). The CV and 

GCD curves were used to investigate the capacitive behavior and calculate the specific capacitance 

of G/CNF electrodes using Arbin Instruments' BT-2000 (TX, USA). The CV and GCD 

measurements of the G/CNF electrodes were recorded at the potential rage of 0 to 0.8 V by varying 

the scan rate from 5 to 100 mV/s.  

 

5.3. Results and Discussions 

5.3.1. Morphology and structure characterization 

5.3.1.1. SEM micrographs  

Digital optical image of the synthesized G/CNF film is shown in Fig. 5.1(A), from which 

it can be observed that the carbonized G/PAN nanofibers made from the precursor G/PAN 

nanofibers still keep the high structural flexibility and in-planar extensibility. With consideration 

of the unique topological connectivity and high electrical conductivity of the G/CNF network, the 

synthesized G/CNF films are suitable for potential use as interconnects and electrodes in 

stretchable electronic devices. Figures 5.1(B) and 1(C) are the typical SEM micrographs of the 

CNFs and G/CNFs, respectively. These electrospun CNFs with the diameter ranging from 300 to 

400 nm were prepared via carbonization of the precursor as-electrospun PAN nanofiber at 800 C, 

and these CNFs carried very smooth surface. In addition, Figure 5.1(D) is the high-resolution SEM 

micrograph of the G/CNFs, from which it can be clearly observed that the graphene nanosheets 

were closely jointed to the CNF segments after carbonization of the precursor as-electrospun 

G/PAN nanofibers. These platelet-shaped graphene nanosheets have an average in-planar size of 

1–5 microns and an average thickness of 6–8 nm. In general, graphene nanosheets can attain a 



81 
 

large surface area and very high electrical conductivity, which may eliminate the need of 

conductive fillers and result in thinner electrodes.  

 

Figure 5.1. (A) Digital photograph of a piece of G/CNF film, (B) SEM micrograph of CNFs, and 

(C) low-magnification and (D) high-magnification SEM micrographs of G/CNFs. 

 

5.3.1.2. TEM micrographs  

Figures 5.2 (A) and (B) are the TEM micrographs of an as-electrospun G/PAN nanofiber 

segment and the corresponding graphene platelet, respectively. Figures 5.2 (C) and (D) are the 

TEM micrographs of the G/CNF nanofiber segments and the corresponding graphene platelet after 

carbonization, respectively. Obvious difference of the surface morphology between the G/PAN 
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nanofibers and G/CNFs can be identified such that the graphene nanosheets after carbonization 

exhibited sharper and cleaner edges because the graphene platelets in the as-electrospun G/PAN 

nanofibers might be covered dusts or solution residues after drying, which were burnt off during 

the process of carbonization. In addition, as shown in Figs. 5.2 (A) and (C), the graphene 

nanosheets are firmly connected at two ends with the nanofiber segments before and after 

carbonization. It is known that the graphene nanosheets were electrospun to form the G/PAN 

nanofibers, which consequently formed into the G/CNFs after carbonization. It needs to be 

emphasized that the connection between the graphene nanosheets and the CNF segments could be 

the strong covalent C–C bonds. Besides, Figure 5.2 (D) shows a typical linkage between a 

graphene nanosheet and its substrate amorphous CNF. At the edge of the graphene nanosheet, the 

graphene plane was detected onto the surface of the nanofiber segment (Balaya, 2008). Such a 

unique morphology would contribute to stabilization of the three-dimensional (3D) structure of 

the electrodes during the charge/discharge cycling and enhancement of the specific capacitance 

and cycling life span.  
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Figure 5.2. (A) & (B): TEM micrographs of an electrospun G/PAN nanofiber segment and a 

graphene nanosheet in G/PAN nanofiber segment before carbonization, respectively; (C) & (D): 

G/CNF segments at low and high magnifications after carbonization, respectively. The black 

arrows in micrographs (A) and (D) indicate a precursor PAN nanofiber and a carbon nanofiber, 

respectively; the white arrow marks the graphene nanosheet. 

 

5.3.1.3. Raman spectra  

In this study, the chemical microstructure of the as-prepared CNFs was characterized by means 

of Raman spectroscopy. Figure 5.3 shows the comparative Raman spectra of CNFs (black, solid) 

and G/CNFs (red, dotted) in the region of 800–2,200 cm-1. The Raman spectra of both the G/CNFs 

and pure CNFs exhibit two well-known bands of carbon at ~1,342 cm-1 and ~1,567 cm-1, i.e., the 

“D-band” and “G-band”, respectively. The D-band is attributed to the disordered turbostratic 

structures or defects in the curved graphene nanosheets (Geim, 2009); the G-band is related to the 

phonons propagating along the graphitic structures (Katsnelson, 2007). The intensity ratio of the 
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D peak to the G peak, denoted by R=ID/IG, represents the amount of ordered graphite crystallites 

in the CNFs. The R value of G/CNFs is 0.81, much lower than that of CNFs of 1.04. This difference 

indicates that the G/CNF films have more ordered graphite crystallites than the pure CNF films 

due to addition of the highly ordered graphitic (graphene) nanosheets (~20 wt.% in the final 

G/CNFs). Furthermore, addition of graphene nanosheets into PAN could potentially enhance the 

transition ratio of disordered carbon into ordered graphite carbon in CNFs during the process of 

carbonization. The above results on the chemical microstructure clearly demonstrate that the 

G/CNF films have higher electrical conductivity than the pure CNF films as shown in Fig. 5.4. 

800 1000 1200 1400 1600 1800 2000 2200

 

 

In
te

n
s
it
y
 (

A
rb

. 
U

n
it
s
)

Raman shift (cm
-1
)

 CNFs
 G/CNFs

 

Figure 5.3. Raman spectra of CNFs (black) and G/CNFs (red), respectively. 
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5.3.2. Electrochemical characteristics 

5.3.2.1. EIS characterizations  

The electrochemical impedance properties of the electrode materials based on CNFs and 

G/CNFs were investigated by EIS using a three-electrode cell. EIS is a very effective method to 

analyze the internal resistance, charge transfer in the electrode materials/electrolyte, and ion 

diffusion process of electrochemical devices (Kötz and Carlen, 2000; Ryu et al., 2002; Lai et al., 

2012). Figure 5.4 shows the typical Nyquist plots of CNFs and G/CNF electrodes in the frequency 

range from 100 kHz to 0.01 Hz under open circuit potential. Both of the plots include two main 

parts: 1) a small incomplete semicircle at the high frequency region represents the charge transfer 

resistance of the electrode; 2) a nearly vertical line in the low frequency region corresponds to the 

diffusion behavior of ions in the electrode pores and the electrolyte (Ryu et al., 2002; Lai et al., 

2012; Kim et al., 2007). As calculated from the intercept in the Fig. 5.4 insert, the internal electrical 

resistances of the CNF and G/CNF electrodes are 1.1 Ω and 0.8 Ω, respectively. These results 

imply that the graphene nanosheets suppressed the electrode resistance, corresponding to a smaller 

IR drop as observed in Fig. 5.7. The G/CNF electrode shows a nearly vertical line, which implies 

an ideal capacitive behavior with faster diffusion of ions in electrolyte than that of CNF electrode. 

Moreover, the improved electrolyte ion accessibility is associated with the lower resistance.  
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Figure 5.4. Nyquist plots for the CNF and G/CNF cells in 6 M KOH solution in the frequency 

range of 100 kHz - 0.01 Hz. Z/ and Z// are the real and imaginary parts of the complex 

impedance, respectively. 

 

5.3.2.2. CV characterizations 

To evaluate the electrochemical performance of the pure CNFs and G/CNFs, CV 

measurements were tested on the CNFs and G/CNFs as the electrodes of supercapacitors in a 6 M 

KOH aqueous solution, respectively. Figure 5.5 shows the typical CV curves of the tested CNF 

and G/CNF electrodes at a scan rate of 5 mV/s and a potential window of 0 － 0.8 V. The CV curve 

of the G/CNF electrodes exhibits a nearly rectangle-shaped profile without obvious redox peaks, 

which is the characteristic of an ideal electrochemical double-layer capacitor. In contrast, the CV 
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curve of the control CNF electrodes becomes relatively distorted rectangular shape. This difference 

can be partially attributed to the improved internal electrical conductivity of G/CNF electrodes via 

graphene nanosheets interlaying. Figure 5.6 shows the CV curves of the G/CNF electrodes tested 

at different potential scan rates of 5, 10, 30, 50, and 100 mV/s and at the same electrolyte and 

potential window. With increasing potential scan rate, the CV profiles still retain a relatively 

rectangular shape without obvious distortion, even at the scan rate up to 100 mV/s. 
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Figure 5.5. CV cureves of CNFs (black) and G/CNFs (red) samples at a scan rate of 5 mV/s in 6 

M KOH. 
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Figure 5.6. CV curves of the G/CNFs samples at different scan rate from 5 to 100 mV/s. 

 

5.3.2.3. GCD characterizations 

To accurately determine the electrochemical performance of the novel supercapacitors, the 

GCD performance of both the CNFs and G/CNFs as electrodes was characterized at several 

constant current densities. The average specific capacitance (Cs) of the electrodes in the prototype 

supercapacitor is calculated according to the relation (2.4). Figure 5.7 shows the representative 

charge/discharge curves of both the pure CNF and G/CNF electrodes at a constant current density 

of 500 mA/g. From these curves, the specific capacitance of the G/CNF electrodes is calculated as 

226.2 F/g, twice that of the pure CNF electrodes (114.6 F/g). It can be observed that a voltage drop 
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existed at the beginning of the discharge curve, i.e., the IR drop due to the internal resistance of 

electrodes. Obviously, large internal resistance and contact resistance between the CNFs existed, 

as evidenced by a noticeable IR drop in the discharge curve in the CNF electrode as shown in Fig. 

5.7. However, the IR drop is significantly lower than that of the CNF electrode. These results 

indicate that the unique interlaying graphene nanosheets effectively suppressed the internal 

electrical resistance of the electrodes. 
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Figure 5.7. Charge-discharge curves of CNFs (black) and G/CNFs (red) at a constant current 

density of 500 mA/g. 

 

 Figure 5.8 shows the variation of the specific capacitance of the G/CNF electrodes with 

respect to the discharge current density from 100 mA/g to 5 A/g . In general, the specific 
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capacitance decreases slightly with increasing discharge current density. The maximum value of 

the specific capacitance of G/CNF electrodes reached 263.7 F/g at a discharge current density of 

100 mA/g. It is noteworthy that the specific capacitance of the G/CNF electrodes still remained a 

high value of 131.25 F/g even at a high discharge current density up to 2.5 A/g. Also, the measured 

highest specific capacitance of G/CNF electrodes (263.7 F/g) is higher than the estimated specific 

capacitance (~175 F/g) based on the mass ratio (~50%) of graphene in G/CNFs and the specific 

capacitances of CNFs (~150 F/g) and graphene nanosheets (~200 F/g) as reported in the literature. 

It needs to be mentioned that the specific capacitance of graphene nanosheets reported in the 

literature was measured using randomly stacked graphene electrodes, in which the graphene 

nanosheets could be commonly stacked each other and thus charges could not be fully stored on 

all the surfaces of the individual nanosheets. Thus, the specific capacitance of stacked graphene 

nanosheets would be much smaller than that of nearly free-standing individual graphene 

nanosheets, like the ones in G/CNFs. 
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Figure 5.8. Variation of the specific capacitance of G/CNFs with the varying current density. 

 

Furthermore, electrochemical stability is one of the crucial factors of supercapacitors for 

consideration of any practical use (Novoselov, 2011). The cycling life test of the CNF and G/CNF 

based supercapacitors had been performed in a 6 M KOH aqueous solution over 2,000 cycles. 

Constant current cycling was performed at a current rate of 2.5 A/g between 0 and 0.8 V. Figure 

5.9 shows the specific capacitance retention ratio of the CNF and G/CNF electrodes as a function 

of the cycle number. The supercapacitor retention ratios of CNF and G/CNF electrodes were 75.6% 

and 86.9% after 2,000 cycles, respectively. This implies that incorporation of graphene nanosheets 

into the carbonized PAN nanofibers had a significant influence on the cyclic durability of the 

supercapacitor during the cycling charge/discharge process. Within the G/CNFs, graphene 
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nanosheets acted as interconnectors for improving the internal electrical conductivity and 

enhancing the specific surface area of the electrodes for charge storage. Meanwhile, the substrate 

CNFs also acted as frameworks to bridge the graphene nanosheets and prevent the nanosheets from 

severe swelling and shrinking during the cycling process (Stoller et al., 2008). Also, the retention 

ratio (86.9%) of the G/CNF electrodes after 2,000 cycles is lower than that of activated carbon 

(~95%) after the similar cycles though the G/CNF electrodes still carry the specific capacitance 

than that of activated carbon. The possible reconfiguration of the nearly free-standing graphene 

nanosheets in the G/CNF electrode at a high current density (2.5 A/g) could be responsible the fast 

decrease of the retention ratio of the G/CNF electrodes with the cycle number in the present study. 

Thus, further investigation is still desired for exploring the potential mechanisms of such a fast 

retention decrease and finding new routes to optimize the material design and selection for 

enhanced capacitive performance of the novel G/CNF electrodes in this study. All the experimental 

results reported in this chapter have been published in Journal of Power Sources in 2013 (Zhou 

and Wu, 2013). 
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Figure 5.9. Cycling performance of the G/CNFs at a constant current density of 2.5 A/g. 

 

5.4. Summary  

Successful synthesis and structural/electrochemical characterization of a novel porous 

G/CNF-based electrode material for use in high-performance supercapacitors has been 

demonstrated. During the process, the porous G/CNFs have been successfully synthesized by 

electrospinning the solution of PAN/DMF dispersed with oxidized graphene nanosheets, followed 

by carbonization in a tubular quartz furnace. One of the major benefits of the study is that the 

graphene nanosheets with excellent 2D nanostructures and electrical properties can be embedded 

along with CNFs to achieve attractive chemical structure and superior surface morphology. The 
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excellent connectivity of the graphene nanosheets embedded in carbonized PAN nanofibers 

significantly improved the specific surface area and electrical conductivity of the resulting G/CNFs. 

These free-standing, flexible nanofiber mats can be directly used as electrodes in supercapacitors 

without the aid of polymer binder. The novel porous G/CNF films exhibit superior electrochemical 

properties for potential use in high-capacitance EDLCs. New technical routes are still needed to 

enhance the capacitance retention ratio of such novel G/CNF-based supercapacitors for potential 

use in electrical energy conversion and storage. 
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CHAPTER 6. HIGH-PERFORMANCE POROUS ELECTRODES FOR 

PSEUDOSUPERCAPACITORS BASED ON GRAPHENE-BEADED 

CARBON NANOFIBERS SURFACE-COATED WITH 

NANOSTRUCTURED CONDUCTING POLYMERS 

 

6.1. Introduction  

Novel hierarchical continuous G/CNF films had been successfully synthesized and 

characterized Chapter 5 for use as electrode materials of supercapacitor. In this chapter, a rational 

technical route was further devised to introduce the unique pseudocapacitive effect to the G/CNF-

based electrode materials via coating an ultrathin layer of thorn-like PANI nanorods onto the 

G/CNFs to form a ternary multifunctional electrode material: PANI-coated G/CNFs (PANI-

G/CNFs). Such porous, multifunctional PANI-G/CNF films were expected to carry noticeable 

pseudocapacitive effect due to the synergetic interaction of nanostructured PANI and CNT/CNF 

substrate, superior intrinsic connectivity, and very high specific surface area. SEM was employed 

to characterize the unique morphology and microstructure of the G/CNFs and PANI-G/CNFs. The 

electrochemical behavior of the novel electrode materials was characterized based on a two-

electrode cell, which was made of a pair of electrodes 1.0 cm2 G/CNFs and PANI-G/CNF films. 

The electrochemical performance was tested in a 1 M H2SO4 aqueous solution. Cyclic 

voltammetry (CV) and galvanostatic charging/discharging (GCD) behavior were studied on a BT-

2000 battery tester (Arbin Instruments, TX) to evaluate the capacitive behavior and specific 

capacitance of the hierarchical electrodes, respectively. The microstructural and electrochemical 

results of the G/CNF and PANI-G/CNF electrodes are discussed in consequence.  
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6.2. Experimental 

6.2.1. Materials 

 Source materials of PAN powders, graphene nanosheets, ammonium persulfate (APS), 

and DMF solvent utilized for synthesis of G/CNFs and PAN-G/CNFs in this chapter have been 

described in Chapters 4 and 5. No further purification and treatments have been applied before 

use.  

 

6.2.2. Preparation of G/CNF and PANI-G/CNF films 

Successful fabrication of the precursor graphene-beaded CNFs (G/CNFs) has been 

described in Chapter 5. In this study, the as-synthesized precursor G/CNFs (~0.38 g) was coated 

with thorn-like PANI nanorods to form ternary porous PANI-G/CNFs via in-situ polymerization 

of aniline monomer in aqueous solution as described in Chapter 4. During the process, as-prepared 

G/CNF mats were first immersed into 200 mL aniline (0.03 M) / H2SO4 (1 M) solution for 6 h in 

an ice bath (~0 – 5 C). Then, APS dissolved in another 50 mL 1 M H2SO4 solution was slowly 

added dropwise into the mixture. The molar ratio of aniline/APS was adjusted to 4:1. The mixture 

had been continuously stirred for 12 h, and the color of the solution slowly changed to dark green. 

After polymerization, the resulting precipitates were filtered out and washed sequentially with 

deionized water and acetone. Finally, the wet product had been dried in a vacuum oven at 80 C 

for 10 h. The areal mass density of PANI-G/CNFs was calculated about 1.5 mg/cm2. The mass of 

PANI was about 52% based on the weight difference of the G/CNFs before and after 

polymerization. 
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6.2.3. Microstructural and electrochemical characterization 

The surface morphology of as-synthesized G/CNFs and PANI-G/CNFs was analyzed by 

utilizing SEM. Electrochemical characterization was performed using a two-electrode cell setup. 

1 M H2SO4 aqueous solution and stainless steel wire mesh were used as the electrolyte and the 

current collector, respectively. The electrochemical performance of the supercapacitor cells was 

evaluated by CV, GCD, and EIS as used in the previous chapters. The CV and GCD curves were 

obtained by using a BT-2000 battery tester (Arbin Instruments, TX), which were further used for 

evaluation of the capacitive behavior and calculation of the specific capacitance of the porous 

G/CNF and PANI- G/CNF electrodes. The CV response of the synthesized porous electrodes was 

determined at varying scan rate from 5 to 50 mV/s; the galvanostatic charge/discharge testing was 

performed in the potential range of -0.2 - 0.8 V at varying current density from 0.15 to 15 A/g. 

The three-electrode EIS setup was employed for the electrochemical impedance measurements in 

this study. A saturated calomel electrode was used as the reference electrode. The measurements 

were taken over a frequency range of 100 kHz - 0.01 Hz by an Electrochemical Multiplexer ECM8 

(Gamry Instruments, Inc., PA). 

  

6.3. Results and Discussions 

6.3.1. SEM micrographs 

The surface morphologies and microstructures of electrospun G/CNFs and PANI-G/CNFs 

were characterized by SEM. Compared to the Figs. 6.1 of discrete graphene coated with PANI, 

Figs. 6.2 (A) and (B) show the typical SEM micrographs of G/CNFs with unique continuous 

nanostructural configuration at low and high magnifications, respectively. As shown in Fig. 6.2 

(B) and discussed in Chapter 5, G/CNFs apparently consisted of two constituents, i.e., carbonized 
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PAN nanofibers and unfolded, opened graphene nanosheets with porous structures. It can be 

observed that all the graphene nanosheets were firmly connected to the CNF segments at two ends. 

The graphene nanosheets and CNF segments could be connected by the covalent C-C bonds, which 

can noticeably enhance the electrical conductivity and specific surface area as shown in the 

experimental results in Chapter 5 (Zhou and Wu, 2013). The graphene nanosheets were typically 

6-8 nm in thickness and 1-5 micron in-planar size, while the CNFs had an average diameter of 200 

- 400 nm.  

 

Figure 6.1. SEM micrographs of graphene coated with thin PANI layers. 

 

 

 

(B) 

 

(A) 
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Figure 6.2. SEM micrographs of carbonized electrospun G/CNFs nanofibers at low (A) and high 

(B) magnification, respectively. 

 

The hierarchical nanostructure of PANI-G/CNFs was obtained via in situ polymerization 

of aniline monomer onto the G/CNFs in aqueous solution as shown in Fig. 6.3. It can also be found 

from Fig. 6.3 (C) that the dense thorn-like PANI nanorods were coated evenly onto the surfaces 

of both the CNFs and graphene nanosheets. The diameter of the coated PANI nanorods was about 

30-50 nm as estimated from the high-resolution SEM micrograph as shown in Fig. 6.3 (D). 

According to Kaner’s mechanistic study (Huang and Kaner, 2004), the diameter of PANI nanorods 

can be tailored by adjusting the concentration of aniline used in the polymerization process.  

 

(B) 

 

(A) 
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Figure 6.3. SEM micrographs of graphene-CNFs coated PANI nanorods at low (A and B) 

magnifications and high (C and D) magnifications, respectively. 

 

In addition, the densely stacked PANI nanorods were interconnected each other to form a 

highly porous ultrathin surface layer, resulting in high surface area and very efficient contact with 

the electrolyte solution. Serving as the supporting template for deposition of PANI nanorods, 

G/CNFs can be exploited as the conductive filler and electrically-conductive channels of the 

electrodes in supercapacitors. Thus, such unique microstructure of G/CNFs can improve the 

electrochemical performance and mechanical stability of PANI-G/CNFs when used as porous 

electrodes in supercapacitors. 
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6.3.2. EIS characterizations 

Similar to the EIS tests performed in Chapters 4 and 5, the EIS method was further 

employed to characterize the electrochemical impedance properties of the porous electrode 

materials based on G/CNFs and PANI-G/CNFs based on a three-electrode cell.  Figure 6.4 shows 

the typical Nyquist plots of both the G/CNF and PANI-G/CNF electrodes. The Nyquist plots 

consist of one incomplete semicircle and a nearly vertical line, which represent the charge transfer 

resistance of the electrode (Rct) and the diffusion behavior of ions in the electrode pores, 

respectively (Ryu et al., 2002; Lai et al., 2012). As estimated from the intercept in the Fig. 6.4 

insert, the equivalent series resistance (Rs) of G/CNF and PANI-G/CNF electrodes is about 1.6 and 

2.0 Ω, respectively. In the mid- to low-frequency region, the vertical lines of G/CNF and PANI-

G/CNF electrodes represented an ideal capacitive behavior with the faster diffusion of ions in 

electrolyte. As calculated from the diameter of semicircles on the real axis in the Fig. 6.4 insert, 

the Rct values of G/CNF and PANI-G/CNF electrodes are about 0.7 and 0.9 Ω, respectively. The 

Rct resistance of PANI-G/CNF electrode is much lower than the values of resistance reported in 

the literature for graphene nanosheets and PANI nanoworms (20.0 Ω) (Luo et al., 2013), nanorod-

PANI-graphene composite (7.5 Ω) (Hu et al., 2012), and PANI/graphitized electrospun carbon 

fibers (PANI/GECFs) (2.4 Ω) (He et al., 2012). The low Rct resistance is attributed to the unique 

graphene-beaded structure (Fig. 6.2 (B)) and excellent electrical conductivity of G/CNFs. 
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Figure 6.4. Nyquist plots for G/CNF and PANI-G/CNF cells in 1 M H2SO4 solution in the 

frequency range of 100 kHz - 0.01 Hz. Z/ and Z// are the real and imaginary parts of the complex 

impedance, respectively. 

 

6.3.3. CV characterizations 

Similar to the electrochemical characterizations performed in the previous chapters, CV 

and GCD measurements were further utilized to characterize the electrochemical performance of 

G/CNFs and PANI-G/CNFs in a two-electrode supercapacitor cell. Figure 6.5 shows the typical 

CV curves of G/CNFs, PANI-G/CNFs, and stainless steel mesh in a potential range from -0.2 to 

0.8 V at a scan rate of 10 mV/s. The CV shape of G/CNFs was nearly rectangular along the time-

potential axis and exhibited a rapid current response to voltage reversal, which occurred at each 
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end of the potential, indicating that G/CNFs had an excellent double-layer electrochemical 

capacitance.  
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Figure 6.5. CV curves of the G/CNFs, PANI-G/CNFs, and stainless steel mesh at a scan rate of 

10 mV/s in 1 M H2SO4 solution in the potential range from -0.2 to 0.8 V. 

 

Similar to these of PANI-CNT/CNF electrodes in Chapter4, the CV curves of PANI-

G/CNFs clearly exhibited two pairs of redox peaks (O1/R1 and Q2/R2), revealing the 

pseudocapacitive behavior of PANI, which is different from these of G/CNF electrodes. The peaks 

of O1/R1 were attributed to the reversible redox transition of PANI between the leucoemeraldine 

and polaronic emeraldine forms; whereas the peaks of O2/R2 represented the reversible Faradaic 

transformation of PANI between the emeraldine and pernigraniline forms (Fan et al., 2013; Wang 
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et al., 2006; Li et al., 2013). Although substantial quantities of PANI nanorods were coated onto 

G/CNFs, nearly rectangle-shaped CV curves of PANI-G/CNFs indicated that the resulting ternary 

PANI-G/CNFs carried excellent electrochemical capacitive behavior in supercapacitors (Numao 

et al., 2009). 

Furthermore, the reversibility of the redox reactions was determined by the potential 

difference between the oxidation and reduction peaks ΔEOR (Wang et al., 2007). The values of 

0.11 and 0.18 V were obtained for ∆𝐸𝑂1𝑅1
 and ∆𝐸𝑂2𝑅2

of PANI-G/CNFs, respectively. These 

values are lower than the values of 0.25 and 0.50 V for pure PANI fibers (Liu et al., 2013). This 

observation indicates a high reversibility for the PANI-G/CNF electrodes, which can be attributed 

to the low Rct resistance. It is also noted that the area formed by the CV loop and the current density 

of PANI-G/CNFs are both much larger than those of G/CNFs at the same scan rate, indicating a 

higher specific capacitance. The remarkable increases for the PANI-G/CNFs are obviously 

associated with the doping of PANI nanorods onto the surface of G/CNFs and the presence of 

G/CNFs acting as the electrically conductive channels. Figure 6.6 presents the CV curves of the 

PANI-G/CNFs in 1 M H2SO4 aqueous solution at varying scan rates. As the scan rates increased 

from 5 to 50 mV/s, the cathodic peaks of these curves shifted to the side of higher positive 

potentials, while the anodic peaks shifted to the side of lower negative potentials. These shifts 

could be attributed to a slight increase of the internal resistance at a high scan rate (Wang et al., 

2006; Fan et al., 2013; Luo et al., 2013). At a high scan rate, once the electrolyte ions fast diffuse 

to electrode to react, the response current will substantially increase. Furthermore, the current-

density response of PANI-G/CNFs clearly increased with increasing scan rate, which indicates a 

good rate capability for the PANI-G/CNF electrodes in supercapacitors.  
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Figure 6.6. CV curves of the PANI-G/CNFs at different scan rates in 1 M H2SO4 solution in the 

potential range from -0.2 to 0.8 V. 

 

6.3.4. GCD characterizations 

To calculate the specific electrochemical capacitance, the GCD plot was used to evaluate 

the synthesized electrode materials at a constant current density of 0.3 A/g with a potential window 

of -0.2 to 0.8 V, as shown in Fig. 6.7. The curve of the G/CNFs exhibits a linear and symmetrical 

shape, which implies that the electrode has excellent electrochemical reversibility as of an ideal 

EDLC. In contrast, the GCD plot of the PANI-G/CNFs shows a little deviation from linearity due 

to the Faradaic charge-transfer accompanied with the double-layer charging/discharging process. 

The voltage jump at the beginning of the discharge curve is related to the internal resistance (also 
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called IR drop) of the electrode material. No obvious IR drops on the discharge curve of G/CNFs 

were measured, but a little IR drop was observed from the discharge plot of PANI-G/CNFs, 

representing the low internal electrical resistance of the capacitors as shown in Fig. 6.4.  
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Figure 6.7. GCD curves of G/CNFs and PANI-G/CNFs at a constant current density of 0.3 A/g. 

 

The above electrochemical measurements clearly demonstrated that the porous G/CNF 

backbone networks effectively suppressed the internal electrical resistance of the PANI-G/CNF 

electrodes, resulting in an improved electrochemical reversibility and charge-discharge efficiency 

compared to those of the traditional graphene/PANI electrode materials (Yan et al., 2010; Zhou 

and Wu; 2013; Lai et al., 2012; Luo et al., 2013; Li et al., 2013; Wang et al., 2007; Basnayaka et 
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al., 2013). The average specific capacitance values, Cavg (F/g), of the resulting electrode materials 

were calculated from the discharge process according to the relation (2.4).  

The Cavg of PANI-G/CNFs was calculated as high as 591 F/g at a current density of 0.3 

A/g, which is much higher than the capacitance value of 309 F/g for G/CNFs. Such a high value 

of pseudocapacitance of PANI-G/CNFs may be derived from the high theoretical value of 

pseudocapacitance (750 F/g) of PANI and the synergistic effect between the thorn-like PANI 

nanorods and G/CNFs (Lota et al., 2004; Kumar et al., 2012). A high value of pseudocapacitance 

(520 F/g) of pure PANI film on Pt electrode has been measured by Cong et al. (Cong et al., 2013). 

In the present study, 52 wt. % of PANI coated the G/CNFs. Without consideration of the 

synergistic effect between the PANI nanorods and G/CNFs, the theoretical specific capacitance of 

the PANI-G/CNFs can be calculated as high as 419 F/g, i.e., [309 F/g (G/CNFs) × 48 wt. % + 520 

F/g (pure PANI) × 52 wt.%]. Thus, the specific capacitance increased by 172 F/g, i.e., (591 F/g-

419 F/g), reaching 41% enhancement compared to the theoretical capacitance. Figure 6.8 shows 

the variation in the specific capacitance of PANI-G/CNFs as a function of the current density. It is 

noted that the specific capacitance of PANI-G/CNFs decreased with increasing current density. 

The maximum specific capacitance of 637 F/g is obtained at the low current density of 0.15 A/g. 

PANI-G/CNFs still maintained a high value of specific capacitance of 478 F/g (only 25% of 

decrease from 637 F/g) even at a high current density of 6 A/g. Furthermore, the value of 

capacitance of PANI-G/CNFs is larger than those of previously reported graphene/PANI 

composites (Lai et al., 2012; Luo et al., 2013; Li et al., 2013; Kumar et al., 2012). The reason is 

that the graphene-beaded CNF backbone networks not only aided the charge pathway inside the 

PANI-G/CNFs, but also enhanced the specific surface area and electrical conductivity of the 

electrode. 
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Figure 6.8. Specific capacitance of PANI-G/CNFs as a function of current density. 

 

6.3.5. Energy and power densities 

In all the electrochemical energy storage devices, energy and power densities are two major 

measures of their performance. Energy density describes the amount of energy that can be stored 

per unit mass while power density represents how fast the energy can be stored or released. The 

energy density, Ed (Wh/kg), and power density, Pd (W/kg), delivered by the electrodes of a 

supercapacitor are calculated by the relations (2.5) and (2.6).  

Figure 6.9 is the Ragone plot of the supercapacitors with G/CNFs and PANI-G/CNFs as 

electrode materials, respectively. The maximum energy density of PANI-G/CNF-based 
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supercapacitors is as high as 88 Wh/kg at a power density of 150 W/kg, and the highest power 

density of G/CNFs is 6 kW/kg at an energy density of 32 Wh/kg. The PANI-G/CNF based 

supercapacitors also kept an excellent rate capability, with the energy density of 54 Wh/kg even at 

a high power density of 4.9 kW/kg. The measured power and energy densities of PANI-G/CNFs 

were much higher than those of current commercially available supercapacitors of 1 - 10 Wh/kg 

and 1,000 - 2,000 W/kg (Zhao et al., 2011). 
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Figure 6.9. Ragone plots of G/CNF and PANI-G/CNF electrodes. 

 

6.3.6. Cycling performance 

Figure 6.10 further shows the cycling performance of the PANI-G/CNF based 

pseudosupercapacitors at a current density of 15 A/g. The capacitance only dropped about 13% 
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from 377 to 327 F/g after 1,000 cycles, which is competitive with the cycling stabilities of 

supercapacitors reported recently in the literature (Yan et al., 2010; Fan et al., 2013; Cong et al., 

2013; Cheng et al., 2013).  
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Figure 6.10. Cycle life tests of the PANI-G/CNF electrodes measured at a constant current 

density of 15 A/g. 

 

The loss of specific capacitance of PANI-G/CNF based pseudosupercapacitors may be 

attributed to the increasing electrolyte solution resistance, the contact resistance between electrode 

and electrolyte, and the deterioration of ion diffusion (Cong et al., 2013). All the experimental 

results reported in this chapter have been published in Journal of Power Sources in 2014 (Zhou 

and Wu, 2014). 
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6.4. Summary  

A rational experimental route has been successfully formulated for synthesis of 

heterogeneous, porous PANI-G/CNFs for use as low-cost high-performance electrode materials 

for supercapacitors. Electrochemical characterization indicated that such novel nanofibrous 

electrode materials possessed the high specific capacitance of 591 F/g at the current density of 0.3 

A/g and the high energy density of 54 Wh/kg at the high power density of 4.9 kW/kg. These 

experimental results demonstrated that the hybrid, porous, multifunctional PANI-G/CNFs 

exhibited excellent electrochemical performance for use in electrochemical energy storage. In 

particular, the present PANI-G/CNFs can be utilized as low-cost, flexible, high-performance 

electrodes of supercapacitors without the need of conductive binders. Comparative study indicated 

that the excellent electrochemical performance of the PANI-G/CNFs was resulted from the unique 

heterogeneous G/CNF network backbones coated with thorn-like PANI nanorods. The G/CNFs 

provided a conductive network with a high specific area, while the coated PANI nanorods further 

increased the specific area and activated the excellent pseudocapacitive effect. The synergistic 

effect of the heterogeneous conductive G/CNF network backbones and the pseudocapacitive PANI 

nanorods substantially enhanced the energy and power densities of the resulting flexible, 

nanofibrous electrode materials. Since the synthesis of the present electrode material only 

consisted of three consecutive low-cost processes of electrospinning, controlled pyrolysis and in 

situ polymerization, manufacturing of the present high-performance electrode materials can be 

conveniently scaled up. This would greatly benefit the potential industrial applications of the 

present porous, flexible, multifunctional electrode materials in broad electrochemical energy 

storage devices.   
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CHAPTER 7. EXPERIMENTAL STUDY ON PARAMETER 

DEPENDENCY OF CONIC ANGLE IN ELECTROSPINNING AND 

SCALABLE FABRICATION OF CORE-SHELL NANOFIBERS 

 

7.1. Introduction  

This chapter is divided into two sections. The first section is the experimental study on the 

dependency of conic angle of an electrospun jet upon the process and material parameters. Based 

on a simple needle-based electrospinning setup, PAN/DMF solutions with varying PAN 

concentrations were used as the model systems and electrospun into nanofibers at different high 

DC voltages, flow rates, and needle diameter. The variations of jet conic angle with the PAN 

concentration and flow rate were determined via digital image analysis, and the potential 

electrohydrodynamic mechanisms were explored. In addition, the dynamic and transient shear 

viscosities of the PAN/DMF solutions were characterized by using a parallel-plate rheometer (TA 

Instruments, New Castle, DE) at varying shear rates; related shear thinning phenomenon was 

observed and rationally explained. The study provided the experimental evidence useful for 

understanding the scaling properties of the electrohydrodynamic jet motion for controllable 

electrospinning and process modeling. 

The second section is to describe a novel needleless emulsion electrospinning method for 

scale-up fabrication of ultrathin core-shell fibers, in which PAN and isophorone diisocyanate (IPDI) 

were used as the model chemicals for producing such core-shell fibers. These ultrathin core-shell 

fibers can be incorporated at the interfaces of polymer composites for interfacial toughening and 

self-repairing due to polymerization of IPDI triggered by environmental moisture.  Optical 

microscopy, SEM, and FT-IR spectroscopy were used to characterize the core-shell nanostructures. 
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Dependencies of the fiber diameter on the PAN/IPDI concentration, wire spacing, and wire 

diameter were examined. Discussion of the experimental results and prospective of the research 

were made. 

 

7.2. Parameter Dependence of Conic Angle of Nanofibres during Electrospinning 

7.2.1. Experimental 

7.2.1.1. Preparation and characterization of PAN/DMF solution 

The present experimental study was to correlate the conic angle of the electrospun jet 

envelope (see Fig. 7.1) to the process and material parameters employed in electrospinning, 

including polymer concentration in the electrospinnable solution, applied DC voltage, flow rate 

and needle diameter. The study of such correlations and parameters is important to understand the 

fundamental phenomenon of the electrospinning process, controllable nanofiber fabrication and 

related process modeling. In this study, PAN/DMF solutions with varying PAN concentration were 

utilized as the model solutions for electrospinning nanofibers at different high DC voltages, flow 

rates, and needle inner diameters. Particular selection of the PAN/DMF solutions was due to the 

fact that PAN nanofibers are technically important, since they could be used as the precursor for 

producing CNFs with superior mechanical properties (Liu et al., 2009). 
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Figure 7.1. The formation of conic angle of nanofiber envelope during electrospinning of a 

PAN/DMF solution with PAN concentration of 16 wt. %. 

 

In this study, nine PAN/DMF solutions with varied PAN concentration in the range of 12 

to 20 wt. % were prepared and used for electrospinning at different high DC voltages. Prior to 

electrospinning, the PAN powder was dissolved in DMF using a magnetic stirrer installed with a 

hotplate; each mixture with a particular PAN concentration had been stirred at 80 C for 6 h to 

prepare a well-electrospinnable solution. The dynamic and transient shear viscosities of the 

PAN/DMF solutions were characterized using a TA ARG2 Rheometer (TA Instruments, New 

Castle, DE) in the ranges of circular frequency from 0.06 to 300 rad/s in the case of dynamic 

oscillating test mode and the shear rate from 1 to 1,000 s-1 in the case of transient shear test mode, 

respectively; the measured dynamic shear viscosity data were plotted in Fig. 7.2.  

Conic AngleConic Angle
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7.2.1.2. Measurement of conic angles of the electrospinning PAN/DMF nanofibers 

During the electrospinning process, a PAN/DMF solution was placed into a 10 ml plastic 

syringe installed with a blunt-end stainless steel needle with the size of 20-gauge or 22-gauge 

(inner diameters: 0.48 mm for 22-gaue needle and 0.65 mm for 20-gauge needle), and the syringe 

was fixed onto a digitally controlled syringe pump (Fisher Scientific Inc., Pittsburgh, PA); two 

laboratory-made rectangular aluminum plates (51 cm×31 cm) were placed in parallel with a 

distance of ~28 cm, of which one plate was electrically grounded and served as the nanofiber 

collector, and the other was isolated and used to generate a uniform electrostatic field in the space 

between the two plates. The latter was machined with an aperture letting the needle tip of the 

syringe pass through. Once a high DC voltage was applied between the needle and the grounded 

nanofiber collector through a positive high-voltage DC power supply (Gamma High Voltage 

Research, Inc., Ormond Beach, FL), a nearly uniform electrostatic field with the DC voltage in the 

range of 0 - 30 kV was established. The flow rate of the solution was varied to study its influence 

on the conic angle of the nanofiber envelope. Once a stable conic angle was formed under certain 

processing and material parameters, the nanofiber (jet) envelope was captured by using a digital 

camera. The conic angles were then measured digitally from the micrographs of the nanofiber 

envelopes and tabulated in Tables 7.1 and 7.2 and plotted in Figs. 7.3-7.5. 

 

7.2.2. Results and discussions 

7.2.2.1. Dynamic and transient shear viscosities of the PAN/DMF solutions 

Figure 7.2 shows the dynamic and transient shear viscosities of the PAN/DMF solutions 

as a function of shear rate at five typical PAN concentrations.  In the case of either dynamic 

oscillating test mode or transient shear test mode, given a shear rate, the experimental viscosity 
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increases with increasing PAN concentration as commonly observed in other polymer systems. At 

a fixed PAN concentration, the dynamic or transient shear viscosity is almost constant at relatively 

low PAN concentrations (e.g., 12%, 14% and 16%), while both viscosities decrease with 

increasing shear rate at the high PAN concentrations (e.g., 18% and 20%). In particular, when the 

shear rate is higher than 100 s-1, the transient shear viscosity of the solutions with PAN 

concentrations of 18% and 20% decreases significantly and is even lower than those of the 

solutions with low PAN concentrations as shown in Fig. 7.2 (b). This phenomenon was mainly 

induced due to the shear-thinning effect typically observed in polymer solutions at high shear rate 

(Bird et al., 1987). In this case, the macromolecular chains of PAN are aligned and have no 

sufficient time to relax. Even though the liquid of electrospinning jet was under extensional 

stretching, the measured dynamic or transient shear viscosity could be justified to qualitatively 

estimate the dynamic extensional viscosity via a positive correlation between the two viscosities 

(Barnes and Roberts, 1992). One conclusion that can be drawn from the rheological measurements 

is that highly aligned molecular chains in polymer nanofibers can be achieved through spinning 

high-concentration polymer solutions (even polymer melts) at high transient drawing rate. 
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Figure 7.2. Variation of the dynamic and transient shear viscosities with varying angular velocity 

(a) and shear rate (b) for PAN/DMF solutions at different PAN concentrations. 
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7.2.2.2. Effect of electric field on electrospinning conic angle 

Figure 7.3 shows that, for the PAN/DMF solution at a fixed PAN concentration of 16 wt. % 

and fixed flow rate of 0.6 ml/h, the conic angle increases nonlinearly with the increase of DC 

voltage. When installed with a needle with the inner diameter of 0.48 mm (22-gauge needle), the 

measured conic angle is from ~36.3 at the electric field of ~50 kV/m to ~160 at the electric field 

of 140 kV/m (Table 7.1). In contrast, when installed with a large-size needle with the inner 

diameter of 0.65 mm (20-gauge needle), the conic angle first increases with increasing electric 

field till 90 kV/m and then decreases with the further increase of electric field. This phenomenon 

could be induced due to the fact that at a large spinning area (i.e., the cross-sectional area of the 

needle) and fixed flow rate, the electrohydrodynamic behavior of an electrospinning jet was 

limited by the insufficient flow supply at high electric field.  
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Figure 7.3. Experimental measurements of variation of the conic angle formed by PAN 

nanofibers with varying electric field (kV/m) at a constant PAN concentration of 16 wt.% and 

two needle inner diameters of 20- and 22-gauge, respectively. 

 

In general, charges induced on an electrospinning jet increase with increasing electric field. 

From the micrographs listed in Table 7.1, it can be concluded that a higher DC voltage enhanced 

the electrostatic shielding effect of the charged whipping/bending jet, leading to a larger conic 

angle. To estimate the magnitude of axial electrostatic stress in a whipping/bending jet, as a 

simplified approach, consider a liquid torus with evenly distributed surface charge Q, torus radius 

r, and the axisymmetric axis of the torus parallel to the electrostatic field. The Coulomb’s law 

determines the axial electrostatic stress of the jet as  
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where εa is the dielectric constant of air, V0 is the volume of the torus. This electrostatic stress 

decreases with increasing torus radius r. The difference of the electrostatic stress and the jet 

viscoelastic stress is the driving stress to stretch/thin the jet. Interestingly, this simple estimate 

shows that the axial electrostatic stress is independent on the jet cross-sectional area. In reality, the 

dynamic extensional viscosity of the liquid in the jet grows rapidly with solvent evaporation. Thus, 

it can be expected that the vigorous jet stretching would occur at the very beginning range of jet 

whipping/bending, where both the torus radius r and the jet viscosity are low, and they significantly 

decay with solvent evaporation. This has been validated by experimental observations using high-

speed imaging techniques. A more detailed phenomenological description based on the discrete-

bead models (Reneker et al., 2000; Yarin et al., 2001) gave the similar conclusions. 

Table 7.1. Experimental measurements of variation of the conic angle for electrospinning 

PAN/DMF solution (16 wt. %) with varying electric field (needle inner diameter: 0.48 mm). 
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7.2.2.3. Effect of PAN concentration on the electrospinning conic angle 

Furthermore, given an electric field (~80 kV/m), measured conic angle of the nanofiber 

envelope decreases nonlinearly with increasing PAN concentration from ~160 at 12 wt. % to ~71 

at 20 wt. %, as shown in Table 7.2 and Fig. 7.4 (with 22-gauge needle). In this case, the PAN/DMF 

solution with a low PAN concentration corresponds to a low viscosity. This means that the jet can 

be easily stretched under electrostatic interaction of the induced charges, i.e., a large conic angle 

can be detected accordingly. Though recent theoretical models (Reneker et al., 2000; Yarin et al., 

2001) can predict the initial conic angle in some extent with simplified electrostatic interactions 

based on limited number of beads, a generalized scaling law is still desired to correlate the conic 

angle to the processing and material parameters.  

Table 7.2. Experimental measurements of variation of the conic angle for electrospinning 

PAN/DMF solutions at different PAN concentrations (wt. %) under a constant electric field of 80 

kV/m (needle inner diameter: 0.48 mm). 
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Figure 7.4. Experimental measurements of variation of the conic angle formed by PAN 

nanofibers with varying PAN concentration (wt. %) at a constant electric field of 80 kV/m 

(needle diameter: 0.48 mm). 

 

7.2.2.4. Effect of flow rate on electrospinning conic angle 

Finally, to investigate the effect of flow rate on the conic angle, the electrospinning was 

performed at the PAN concentration of 16 wt. %, applied electric field of 80 V/m, and needle inner 

diameter of 0.48 mm (22-gauge needle). Figure 7.5 shows the variation of the conic angle with 

respect to the flow rate in the range of 0.4 to 1.0 ml/h. The experimental measurements show that 

the conic angle increases from 95o at the flow rate 0.4 ml/h to 155o at the flow rate 1.0 ml/h. 

Therefore, the flow rate has a significant effect on the conic angle. Such effect is due mainly to the 

formation of a varying Taylor’s cone in the electrospinning process when the flow rate is changed. 
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Typically, a large flow rate corresponds to a large droplet at the needle outlet, which alters the jet 

initiation (e.g., the initial jet diameter, jet velocity, etc.) and finally the conic angle of nanofiber 

envelope. All the results discussed in this section have been published in Journal of Physics D: 

Applied Physics in 2011 (Zhou et al., 2011). 

 

Figure 7.5. Experimental measurements of variation of the conic angle formed by PAN 

nanofibers with varying flow rate at a constant PAN concentration of 16 wt.% and electric field 

of 80 kV/m (needle diameter: 0.48 mm). 
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7.3. Needleless Emulsion Electrospinning for Scalable Fabrication of Core-Shell 

Nanofibers 

7.3.1. Experimental  

7.3.1.1. Experimental setup of dual-wire emulsion electrospinning 

Figures 7.6 (B) and (C) illustrate the setup of dual-wire emulsion electrospinning, which 

consists of a dual-wire spinneret (two closely aligned copper wires with a small spacing in this 

study), a rotary aluminum disk (diameter: 25 cm and thickness: 2.5 mm) as the fiber collector, and 

two high voltage DC power supplies (Gamma High Voltage Research, Inc., Ormond Beach, FL) 

installed with the positive and negative voltage outputs, respectively. Use of a DC power supply 

with a negative voltage output as illustrated in Fig. 7.6 (C) was to ensure that the potential of the 

fiber collector was always below the potential of grounded surrounding apparatuses such as the 

equipment and lab utilities and thus to avoid the possible nanofibers flying off the fiber collector 

during electrospinning process.  

As illustrated in Figs. 7.6 (A) and (B), two closely positioned straight copper wires form a 

capillary microchannel (dual-wire spinneret) that can be utilized to manipulate and deliver a small 

quantity of liquid via capillary effect or mechanical motion through an emulsion reservoir back 

and forth (Bedarkar et al., 2010; Guceri et al., 2004; Princen, 1970; Wu et al., 2010). Droplets 

sitting between the wires can form either barrel-shaped droplets, which completely enwrap the two 

wires, or droplet-bridges, which partially wet the two wires, depending upon the wetting 

characteristic curves of the system (Bedarkar et al., 2010; Wu et al., 2010). Superior to droplets 

sitting on a single wire, when the wire spacing of the dual-wire spinneret is very small, the micro-

channel between the two thin wires can generate sufficient capillary force to pump the droplets to 

move along the wires in the form of droplet-bridge, i.e., wetting the wires or wicking. Recent 
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experimental study (Guceri et al., 2004) indicated that the wicking kinetics of droplet spreading 

on a dual-wire spinneret roughly obeyed the simple Lucas-Washburn law (Lucas, 1918; Washburn, 

1921), i.e., given a wire spacing, the meniscus displacement is proportional to the complete 

wicking time (i.e., the time interval from the start of droplet spreading to its disappearance). When 

applying a high DC voltage between the dual-wire spinneret and the fiber collector, the 

electrostatic force acting on the liquid can destabilize the liquid-bridge and form multiple droplets 

as illustrated in Fig. 7.6 (B); each droplet may initiate one or multiple jets as illustrated in Fig. 7.6 

(C) due to the complex morphology of the droplets. When the two ends of the dual-wire spinneret 

are connected to an emulsion reservoir or a digitally controlled syringe pump, the capillary force 

can drive the emulsion to the jetting zone as shown in Fig. 7.6 (C). This pumping process can also 

be realized via oscillating the dual-wire through the emulsion reservoir (mechanical translation). 

Thus, scalable continuous emulsion electrospinning can be sustained using the present setup. In 

addition, use of dual-wire spinneret can significantly suppress fast evaporation of volatile solvent 

via reducing exposure of the emulsion to open air.  
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Figure 7.6. (A) Droplets of 10 wt. % PAN/IPDI/DMF emulsion wetting on two closely aligned 

copper wires (the diameter of the copper wires: 0.78 mm; the volume of the emulsion droplet: 

~0.1 ml; a small quantity of dye was dissolved into the emulsion for better visualization). (B) 

Side view and (C) front view of the schematic setup of dual-wire emulsion electrospinning for 

scale-up fabrication of ultrathin core-shell fibers. During dual-wire emulsion electrospinning, 

droplets of the second polymer solution are enwrapped within the master droplets of the first 

polymer solution; multiple jets ejaculate from the master droplet due to electrohydrodynamic 

destabilization; enwrapped droplets within the jets are stretched  and thinned under electrostatic 

force and eventually form the core material after drying. 

 

7.3.1.2. Preparation and characterization of PAN/IPDI/DMF emulsion  

To form the emulsions, two precursor solutions, i.e., the PAN/DMF solutions with the mass 

concentration of 6%, 8%, 10%, 12%, and 14% PAN and IPDI/DMF solutions with the equal mass 

concentrations of IPDI, were first prepared separately via dissolving the PAN powder and liquid 

IPDI in DMF, respectively. Each pair of as-prepared PAN/DMF and IPDI/DMF solutions with the 

identical mass concentration was continuously stirred on a hot-plate at 75 C for 4 h, and then 
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blended together at the mass fraction 1:1. The resulting ternary PAM/IPDI/DMF mixture was 

stirred on a hot-plate at 75 C for another 4 h and then stirred slowly at room temperature till the 

electrospinning test. Furthermore, the transient shear viscosity of the PAN/IPDI/DMF solutions 

was characterized using a TA ARG2 Rheometer (TA Instruments, New Castle, DE) in the range 

of shear rate from 0 to 1000 s-1 at room temperature. In addition, morphologies of as-prepared 

emulsions were characterized using an optical microscope (IX 71 Olympus with the objective 

magnification of ×40) as shown in Fig. 7.7, from which it can be observed that well-formed 

droplets (IPDI/DMF solution) dispersed in PAN/DMF solution.  

 

Figure 7.7. Optical micrograph of an IPDI/PAN/DMF emulsion. The emulsion was prepared via 

blending 10 wt. % PAN/DMF solution with 10 wt. % IPDI/DMF solution and placed in 

laboratory at room temperature without disturbance for 2 days. 
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7.3.1.3. Needleless emulsion electrospinning for scale-up fabrication of core-shell 

PAN/IPDI nanofibers 

As illustrated in Fig. 7.6 (C), during the electrospinning process, the rotary disk was placed 

over the dual-wire plane with a vertical distance ~25 cm and powered by a DC electrical motor 

with adjustable angular velocity. For the purpose of comparative study, in the case of the 

PAN/DMF and IPDI/DMF solutions with the mass concentration of 10 wt. %, the copper wires 

with two different diameters (0.28 mm and 0.78 mm) and two different values of spacing (0 and 

0.30 mm) were chosen for the dual-wire spinneret. In addition, to investigate the effect of mass 

concentration of the PAN/IPDI/DMF solution on the diameter of core-shell PAN/IPDI fibers, 

PAN/IPDI/DMF emulsions with five mass concentrations were used for the needleless emulation 

electrospinning test (i.e., 6%, 8%, 10%, 12%, and 14%). In each electrospinning test, the diameter 

and spacing of the two copper wires were fixed as 0.28 and 0.30 mm, respectively. 

In the present study, the dual-wire emulsion electrospinning test was performed at room 

temperature. Prior to the test, the two copper wires of the spinneret were wiped with acetone to 

clean and maintain constant surface energy. Given a set of parameters (i.e., the wire diameter and 

spacing) of the dual-wire spinneret, the emulsion was first delivered to the spinneret manually to 

form multiple droplet-bridges as shown in Fig. 7.6 (A). Once the spinneret potential was increased 

up to +25 kV and the fiber collector potential was decreased down to -20 kV, jets started to initiate 

from the droplet bridges as illustrated in Fig. 7.6 (C). Figure 7.8 shows the snapshots of a typical 

jetting process of an emulsion droplet sitting on the dual-wire spinneret, where the DC voltage 

between the dual-wire spinneret and fiber collector was gradually increased. The electrospinning 

process can be maintained with continuous supply of emulsion via electrocapillary pumping or 

mechanical translation of the emulsion. The morphology of the electrospinnable emulsion and the 
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core-shell structure of the resulting ultrathin PAN/IPDI fibers were characterized by means of 

optical microscopy (IX 71 Olympus with the objective magnification of ×40), SEM, and FT-IR 

spectroscopy characterizations. 

 

Figure 7.8. Snapshots of dual-wire emulsion electrospinning process with gradually increasing 

DC voltage of the wires (a) 0 kV; (b) ~10 kV; (c) & (d) ~15 kV. (The diameter of the copper 

wires: 0.78 mm; the volume of the droplet: ~0.1 ml; the distance between the dual-wire spinneret 

and the fiber collector: 20 cm; the emulsion was prepared via blending 10 wt. % PAN/DMF 

solution with 10 wt. % IPDI/DMF solution; a small quantity of dye was dissolved in the solution 

for better visualization). 

 

7.3.2. Results and discussions 

7.3.2.1. Optical micrographs of core-shell PAN/IPDI fibers 

The optical micrographs as shown in Fig. 7.9 are the typical ultrathin core-shell PAN/IPDI 

fibers produced by using the present emulsion electrospinning method based on the 

PAN/IPDI/DMF emulsion with the PAN/IPDI mass concentration 10 wt. % at varying process 

parameters as follows. To produce the PAN/IPDI fibers as shown in Figs. 7.9 (A) and (B), the 

dual-wire spinneret consisted of two identical copper wires of the diameter 0.28 mm and wire 

spacing 0.30 mm. It can be observed from Figs. 7.9 (A) and (B) that the core-shell nanostructures 

were well formed with uniform morphologies of the interior liquid IPDI core and exterior solid 

PAN shell.  
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Figure 7.9. Optical micrograph of emulsion-electrospun core-shell PAN/IPDI fibers based on a 

dual-wire spinneret: (A, B) The diameter of copper wires was 0.28 mm and wire spacing was 

0.30 mm; (C) the diameter of copper wires was 0.28 mm and there was free wire spacing; (D) the 

diameter of copper wires was 0.78 mm and wire spacing was 0.30 mm. 

 

7.3.2.2. Effect of wire spacing on the morphology of the core-shell PAN/IPDI fibers 

To examine the effect of wire spacing on the morphology of core-shell PAN/IPDI fibers, a 

dual-wire spinneret with zero spacing was further utilized, whereas the rest process parameters 

were unaltered. Figure 7.9 (C) shows the typical optical micrograph of the resulting core-shell 

PAN/IPDI fibers. It can be observed that though the core-shell PAN/IPDI fibers were well formed 

with smooth morphologies of the interior core and exterior shell, the diameter of the core-shell 

fibers showed a large variation. Multiple measurements showed that the average diameter of the 

IPDI core is ~0.7 μm, whereas the average exterior diameter of the PAN shell is ~1.9 μm, which 

  

 

A 
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are much larger than those with the wire spacing of 0.30 mm. In this case, relatively large droplets 

can assume on the dual-wire spinneret, which ultimately developed into Taylor cones with a large 

size, corresponding to the large diameter of the final core-shell nanofibers though detailed 

electrohydrodynamic mechanisms are still not available yet. 

 

7.3.2.3. Effect of the wire diameter on the diameter and morphology of the core-shell 

PAN/IPDI fibers 

To take into account the effect of wire diameter on the diameter and morphology of the 

final core-shell PAN/IPDI fibers, a dual-wire spinneret with the wire diameter 0.78 mm and wire 

spacing 0.30 mm was used, and the rest process parameters were still maintained the same. Figure 

7.9 (D) shows the typical optical micrograph of the resulting core-shell PAN/IPDI fibers. From 

Fig. 7.9 (D), it can be found that the core-shell PAN/IPDI fibers still carried well-formed 

morphologies of the interior core and exterior shell. However, the diameter of the core-shell fibers 

had a much larger variation than those in the two cases investigated above. In this case, the average 

diameters of the IPDI core and PAN shell are ~0.8 and ~2.0 μm, respectively, slightly larger than 

those based on the dual-wire spinneret with zero spacing. In this case, after electrohydrodynamic 

destabilization, droplets with a larger size assumed on the dual-wire spinneret, which finally 

resulted in the core-shell PAN/IPDI nanofibers with larger diameters. As a result, the wire diameter 

and spacing of the dual-wire spinneret combined with other process and material parameters can 

be used for tuning the geometry of electrospun core-shell fibers. 

The structure of the present core-shell PAN/IPDI nanofibers was also examined by means 

of SEM. During the process, as-prepared core-shell PAN/IPDI nanofibers made from 10 wt. % 

PAN/IPDI/DMF emulsion were consolidated into an epoxy resin. After curing in room 
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temperature, five pieces of sample slides were prepared using a sharp razor, coated with carbon, 

and SEM-scanned. Figure 7.10 (A) shows the cross-section of a scissored core-shell PAN/IPDI 

nanofiber embedded in epoxy resin, where the core–shell structure can be clearly detected, and the 

liquid IPDI dissipated due to polymerization triggered by the air. Figure 7.10 (B) shows the side 

view of a cracked core-shell PAN/IPDI nanofiber, from which the cracked shell material can be 

obviously detected and the liquid IPDI solidified into newborn porous structure after 

polymerization. 

 

Figure 7.10. SEM micrographs of (A) cross-section of a scissored core-shell PAN/IPDI 

nanofiber and (B) side view of a cracked core-shell PAN/IPDI embedded in epoxy resin. 

 

7.3.2.4. FT-IR characterization of the core-shell PAN/IPDI fibers 

In addition, FT-IR was further utilized to validate the chemical composition of the 

PAN/IPDI nanofibers. Figure 7.11 shows the comparative FT-IR spectra of the pure PAN 

nanofibers produced by single-needle based electrospinning and the present core-shell PAN/IPDI 

fibers. The FT-IR results confirm the existence of IPDI in the core-shell fibers. In the spectra of 

PAN nanofibers, the characteristic absorption bands at 2,920 cm-1, 2,238 cm-1, 1,662 cm-1 and 

1,449 cm-1 are, respectively, assigned to νC-H stretching, νC≡N stretching, δC-H bond bending 

 

(B) 

 

(A) 
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and δCH2 asymmetric vibration (Moreno et al., 2010). In contrast, in the spectra of PAN/IPDI 

fibers, two obvious peaks at ~2,245 cm-1 and ~2,920 cm-1 exist due to the isocyanate νN=C=O and 

νC-H stretching vibrations in IPDI, respectively (Zhou et al., 2010). Besides, bands at 1,627 cm-1 

and 1,563 cm-1 due to C=O vibration in the –NCO group are in a good agreement with the existence 

of IPDI in the PAN/IPDI core-shell nanofibers. These characteristic infrared spectra combined 

with the layered structure observed by means of optical microscopy above confirmed the core-

shell structure of the obtained PAN/IPDI fibers. 

 
Figure 7.11. FT-IR spectra of both pure PAN nanofibers and typical emulsion-electrospun core-

shell PAN/IPDI nanofibers. 

 

7.3.2.5. Effect of the PAN/IPDI mass concentration on the diameter of core-shell 

PAN/IPDI fibers 

To examine the effect of PAN/IPDI mass concentration on the diameter of the resulting 

core-shell nanofibers, five PAN/IPDI/DMF emulsions with the PAN/IPDI mass concentration of 

IPDI 

PAN 
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6%, 8%, 10%, 12%, and 14% (mass fraction PAN : IPDI = 1 : 1) were prepared and tested as 

aforementioned. Figure 7.12 shows the transient viscosity of the five emulsions tested on a TA 

ARG2 Rheometer (TA Instruments, New Castle, DE). It can be found from Fig. 7.12 that given a 

shear rate, the transient viscosity increases with increasing mass concentration. Furthermore, in 

the case of the PAN/IPDI mass concentration of 6% and 8%, the viscosity of the PAN/IPDI/DMF 

emulsion appears nearly constant in the range of testing shear rate from 0 to 1,000 s-1. However, 

in the case of PAN/IPDI mass concentration of 10%, 12%, and 14%, the viscosity decreases 

noticeably at the high shear rate. Such a shear-thinning effect is typically observed in polymer 

solutions at high shear rates due to delayed chain relaxation (Barnes and Roberts, 1992; Zhou et 

al., 2011).  
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Figure 7.12. Variation of the shear viscosity with varying shear rate for PAN/IPDI (mass 

ratio=1:1)/DMF solutions at varying PAN/IPDI mass concentrations of 6%, 8%, 10%, 12%, and 

14%. 

 

The variation of the exterior diameter of the core-shell PAN/IPDI with varying PAN/IPDI 

mass concentration is tabulated in Table 7.3 and shown in Fig. 7.13. It can be found that the average 

fiber diameter increases rapidly with increasing PAN/IPDI concentration from 144 nm at 6 wt. % 

to 3,426 nm at 14 wt. %. Correspondingly, the deviation of the fiber diameter also increases rapidly 

with increasing PAN/IPDI concentration. These average and deviation values of fiber diameter 

were obtained by performing ~100 measurements from ~20 to 30 SEM micrographs of the typical 

core-shell PAN/IPDI fibers.  
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Table 7.3. Average exterior diameters of the PAN/IPDI nanofibers produced by means of 

needleless emulsion electrospinning at varying solution mass concentrations. 

 

Solution concentration (wt. %) 

(PAN:IPDI=1:1 by weight) 

 

6 

 

8 

 

10 

 

12 

 

14 

Exterior diameter of nanofiber 

(nm) 

144 ± 

50 

314 ± 55 710 ± 180 1630 ± 640 3430 ± 

1450 
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Figure 7.13. Variation of the exterior diameter of emulsion-electrospun core-shell PAN/IPDI 

fibers with varying mass concentration of PAN and IPDI (copper wire diameter: 0.28 mm and 

wire spacing: 0.30 mm). 

 

Figure 7.14 shows the SEM micrographs of typical PAN/IPDI nanofibers produced at 

varying PAN/IPDI mass concentrations. It can be detected that the diameter variation of these 

ultrathin PAN/IPDI fibers becomes larger and larger with increasing PAN/IPDI mass 
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concentration. Thus, it can be concluded that to produce core-shell fibers with uniform diameter, 

relatively low mass concentration is preferred in needleless emulsion electrospinning. 

It is worthy to point out that these ultrathin core-shell PAN/IPDI fibers are technologically 

important to self-repairing PMCs (Sinha- Ray et al., 2012; Wu et al., 2013; Wu and Yarin, 2013). 

The core-shell PAN/IPDI fibers can be embedded at the interfaces of fiber-reinforced PMCs via 

depositing them onto the prepreg sheets before thermal press molding or onto the fiber fabrics 

before resin infusion. After curing, the core-shell PAN/IPDI nanofibers will form ultrathin self-

repairing interlayers with rich PAN/IPDI nanofibers. Upon occurrence of interfacial damage such 

as delamination that scissors the PAN/IPDI nanofibers, the liquid healing-agent IPDI will 

autonomically release at the locus of damage under the action of capillary forces and local stresses 

and polymerize upon catalysis with the aid of local and environmental water or moisture (Sinha- 

Ray et al., 2012; Wu et al., 2013; Wu and Yarin, 2013).  

Moreover, the present experimental study also opens an innovative route in electrospinning 

and nanomanufacturing for scale-up continuous fabrication of core-shell nanofibers because 

multiple core-shell jets can form simultaneously from the dual-wire spinneret. Also, the 

experimental observations available in this study can provide valuable first-hand experimental data 

to advance understanding and exploitation of the fundamental electrohydrodynamic theories for 

intelligent mass production of core-shell nanofibers. All the results in this section have been 

published in Journal of Applied Polymer Science in 2014 (Zhou et al., 2014). 
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Figure 7.14. SEM micrographs of typical emulsion-electrospun core-shell PAN/IPDI fibers with 

varying mass concentration of PAN/IPDI: A) 6 %, B) 8 %, C) 10 %, D) 12 %, and E) 14 % by 

weight concentration in DMF (copper wire diameter: 0.28 mm and wire spacing: 0.30 mm). 
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7.4. Summary 

In the first section of this chapter, a detailed experimental investigation has been carried 

out to explore the dependency of conic angle of nanofiber envelope upon the polymer 

concentration, applied DC voltage, flow rate, and needle inner diameter employed in 

electrospinning. The experimental results provide an insight of the fundamental 

electrohydrodynamic phenomenon in the electrospinning process, which can facilitate the research 

on controllable fabrication of electrospun nanofibers for numerous applications as well as relevant 

process modeling.  

In the second section, a novel dual-wire emulsion electrospinning method has been 

developed and demonstrated for successful scalable continuous fabrication of core-shell 

nanofibers with well layered structures. Effects of several process and material parameters on the 

fiber diameter have been examined. The experimental results indicated that the average fiber 

diameter increases with increasing either wire diameter or mass concentration, or decreasing wire 

spacing of the dual-wire spinneret. The present experimental study also provides useful first-hand 

data to explore the fundamental understanding of modern electrospinning processes. The 

needleless dual-wire emulsion electrospinning technique can be exploited for low-cost mass 

production of core-shell nanofibers for large-scale applications in broad areas.  
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CHAPTER 8. CONCLUSIONS AND FUTURE STUDIES 

 

In this dissertation, two rational synthesis routes have been successfully formulated for 

fabrication of four types of advanced hierarchical nanofibrous electrode materials (i.e., CNFs 

surface-grown with CNTs, CNT-grown CNFs coated with PANI, graphene-beaded CNFs, and 

graphene-beaded CNFs coated with PANI) for use as electrode materials in electrochemical 

supercapacitors. The main goal of the research was to introduce the favorable pseudocapacitive 

effect and simultaneously suppress the high contact electrical resistance of discretely stacked 

nanomaterials (e.g., CNTs, graphene nanosheets, etc.) used in existing electrodes of 

supercapacitors.  

During the study, the continuous porous CNFs as template were synthesized via 

stabilization, carbonization of as-electrospun PAN/Ni(AcAc)2 nanofibers; the hierarchically 

structured CNFs surface-grown with CNTs (CNT/CNFs) were fabricated in sequence by growing 

brush-like CNTs onto the surface of electrospun CNFs via controlled CVD. These hierarchically 

structured CNT/CNF films were further used as porous scaffolds to function as active sites for in 

situ polymerization of aniline to form ternary core-shell nanofibrous PANI/CNT/CNF films, which 

can be used as an innovative multifunctional electrode material with high specific surface area and 

strong pseudocapacitive effect. Such unique hierarchal structure guarantees the high 

electrochemical performance of the resulting supercapacitors with noticeably enhanced energy and 

power densities. Meanwhile, the CNT/CNF networks were functioned as the excellent current-

delivery channels to suppress the electrical contact resistance of the electrodes due to their high 

electrical conductivity and excellent topological connectivity.  
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Furthermore, graphene-beaded CNFs (G/CNFs)   were successfully produced via electrospinning 

PAN/DMF solution dispersed with oxidized graphene nanosheets, followed by controlled 

carbonization.  These hierarchically structured G/CNFs were further surface-functionized via 

coating thorn-like PANI nanorods to form ternary porous PANI-G/CNFs. 

 Detailed microstructural and electrochemical characterizations have been performed 

successfully by means of SEM, TEM, Raman spectrometry, EIS, FTIR, etc. The electrochemical 

performances of the four innovative porous nanofibrous electrode materials synthesized in this 

study are tabulated in Table 8.1. 

Table 8.1. Electrochemical performances of the hierarchically structured CNT/CNFs, 

PAN/CNT/CNFs, G/CNFs, and PANI/G/CNFs synthesized in this study. 

Electrode 

Materials 

Specific 

Capacitance 

Electrolytes 

  

Voltage 

Window  

Discharge 

Current Density 

CNT/CNFs 185 F/g PVA/H3PO4  

(10 wt. %) 

0-0.8 V 625 mA/g 

PAN/CNT/CNFs 503 F/g 1 M H2SO4 -0.2-0.8 V 300 mA/g 

G/CNFs 226.2 F/g 6 M KOH 0-0.8 V 500 mA/g 

PANI/G/CNFs 591 F/g 1 M H2SO4 -0.2-0.8 V 300 mA/g 

 

From Table 8.1, it can be found that the innovative hierarchically structured CNT/CNFs 

and G/CNFs can noticeably enhance their electrochemical performance compared to electrospun 

CNFs by increasing their specific surface area. The values of specific capacitance of CNT/CNFs 

and G/CNFs as electrode materials of supercapacitor are 185 F/g at discharge current 625 mA/g 

and 226.2F/g at discharge current 500 mA/g against electrospun CNFs with the value of specific 

capacitance as 114.6F/g at discharge current 500 mA/g. In addition, by introducing the unique 
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synergetic pseudocapacitive effect to CNT/CNFs and G/CNFs via deposition of nanostructured 

PANI, the values of specific pseudocapacitance of the resulting PANI/CNT/CNFs and 

PANI/G/CNFs are 503 F/g and 591 F/g at discharge current of 300 mA/g, respectively. Also, these 

advanced nanofibrous electrode materials exhibited very good cyclability.  

Thus, this study has provided a family of unique low-cost, multifunctional nanofibrous 

electrode materials with high specific capacitance, cyclability, and related high power and energy 

densities for potential use in high-performance electrochemical energy storage devices. The 

successful formulation of the related rational synthesis routes leads to a systematical 

manufacturing method for parameter study, optimization, and low-cost, scale-up, controllable 

fabrication. 

In addition, the present study of parameter study of conic angle of electrospinning provided 

the first-hand experimental data for understanding the fundamental principle of 

electrohydrodynamics of needle-based electrospinning and controllable electrospinning. 

Furthermore, development of needleless emulsion electrospinning in this study also offered a low-

cost nanofabrication method for continuous, scalable production of core-shell nanofibers. This 

method makes it possible to large-scale use of core-shell nanofibers for toughening and damage 

self-healing of polymer composites, biomedical applications, etc.   

The present research also opens up several potential investigations in this field in the future 

as follows: 

1. Optimization of the material and process parameters to maximize the electrochemical 

performance of hierarchally structured nanofibrous electrode materials such as control 

of the length of grown CNTs, type and size of graphene nanosheets, type of electrolyte, 

etc. 
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2. Synthesis of other types of ternary core-shell nanofibrous electrode materials via 

coating other types of conducting polymers (e.g., PPy, PEDOT, etc.) and transition 

metal oxides (e.g., RuO2, MnO2, NiO, etc.) onto the surface of CNT/CNFs and G/CNFs. 

3. Fabrication and electrochemical performance characterization and modeling of 

supercapacitor devices based on the novel nanofibrous electrode materials synthesized 

in the present research. 

4. Exploration of the fundamental growth mechanisms of CNTs and conducting polymers 

onto CNF surfaces and related growth characterization and modeling. 

5. Scalable fabrication of core-shell nanofibers of a variety of polymer (material) pairs 

via needleless emulsion electrospinning and exploration of their novel applications in 

toughening and damage self-healing of polymer matrix composites, drug delivery, etc. 

6. Establishment of novel models to simulate the conic angle of electrospinning and 

examine the parameter dependency for controllable nanofiber fabrication. 

7. Establishment of novel models to simulate the entire process of needleless 

electrospinning and needleless emulsion electrospinning (i.e., multiple jet initiation, 

elongation, drying, etc.) and examine their parameter dependency for controllable 

nanofiber fabrication. 
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