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ABSTRACT 

Genome wide association mapping (GWAS) is an effective method to fine-map QTL 

because of its higher mapping resolution. In order to evaluate the possibility of using breeding 

populations for GWAS, analysis were conducted using AYTs (Advanced Yield Trials) and 

PYTs (Preliminary Yield Trials) from the NDSU dry bean breeding program, grown in 2012 at 

four locations in North Dakota using a 6k SNP chip. Genomic regions were evaluated 

separately for AYT, PYT, AYT+PYT, and races Mesoamerica and Durango. Overall, 13, 11, 9, 

and 9 significant markers were found for seed yield, maturity, 100-seed weight, and plant height 

respectively. Two candidate genes for seed yield and four candidate genes for days to maturity 

were identified. These markers are highly diagnostic within and among NDSU bean breeding 

populations and therefore, they could be directly used in Marker assisted selection to develop 

improved bean varieties while maintaining commercially desired phenotypic characteristics of 

beans.  
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INTRODUCTION 

Association mapping is a method for mapping quantitative trait loci (QTL) that takes 

advantage of linkage disequilibrium (LD) to find associations between phenotype and genotype. 

In plants, association mapping exploits historical evolutionary events and helps in studying 

complex traits of both economic as well as agronomic importance. Dry bean is an important cash 

crop with high nutritional value and is produced over more than 1.3 million ha in United States 

(Singh et al., 2005) contributing 1.8$ billion to the U.S. economy (McClean et al., 2004). Dry 

beans exhibit extensive extent of linkage disequilibrium, due to its narrow genetic base caused 

mostly to breeding and population bottleneck during domestication and selection for cultivars 

within each market class (Rossi et al., 2009). Genome wide association mapping (GWAS) has 

been conducted in many other crops such as rice (Oryza sativa L.),  maize (Zea mays L.) , barley 

(Hordeum vulgare L.) using diversity panels, biparental populations, variety trials etc. to find 

markers associated with seed yield, days to flowering, disease resistance, etc (Ersoz et al., 2008, 

Jianming et al., 2006). GWAS in beans using the 6K SNP chip (Cregan and Qijian, 2012) and 

lines from breeding programs could also be used as mapping populations and can, therefore, help 

in finding significant markers associated with agronomic traits and potential candidate genes that 

control these traits. Identification of highly diagnostic markers within and among breeding 

populations could provide an opportunity to develop improved bean varieties in a more efficient 

way when incorporated into the breeding program. This will help the breeders in enhancement of 

genetic diversity while maintaining commercially desired phenotypic characteristics of beans.   

The main objective of this research is to evaluate the efficiency of GWAS to discover 

marker-trait associations for seed yield, 100-seed weight, days to maturity, and plant height in 

dry beans using the breeding populations normally used within the NDSU dry bean breeding 
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program; to identify genomic regions involved in controlling agronomic traits of economic 

importance; to identify possible candidate genes with known functions which fall within the 

significant QTL regions. 
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LITERATURE REVIEW 

Importance of dry beans 

 Dry bean (Phaseolus vulgaris L.) is the most important grain legume for direct human 

consumption (Kelly, 2010). It is consumed in many countries of the world and mostly preferred 

in Latin America, the Caribbean, and Eastern Africa. The top producers of dry bean in the world 

are Latin America, with Brazil, Mexico and the U.S. as major producers and second largest is 

Africa with Uganda, Kenya, Rwanda, Burundi, Tanzania, and Congo as a major producer 

(CGIAR, 2013). P. vulgaris L. is an edible legume which provides 30% of the total daily calories 

to the world’s population (Kalavacharla et al., 2011). This fiber rich diet staple, is also rich in 

protein, carbohydrates, vitamins, minerals, and is free of saturated fat and trans-fat, and 

cholesterol (Azarpazhooh and Boye, 2012). 

Economic importance of crop 

 Commercial production of dry beans in USA started in early 20th century. Today, dry 

beans are grown in more than 30 states of U.S. The top dry bean producing states are North 

Dakota (38%), Michigan (14%), Nebraska (11%), Minnesota (10%), Idaho (7%), and Colorado 

(5%). In 2013, dry beans were planted in U.S. on 0.5 million hectares with an average seed yield 

of 2091 kg ha-1 with a total production of 1.2 million MT. It was first commercially grown in 

North Dakota in 1962 and later during the 1990s, North Dakota has become the leading producer 

of dry beans in the U.S. In North Dakota, estimated total production was 0.3 million MT 

harvested from 250,905 ha where pinto (242,073.17 MT) is the most predominant market class 

followed by navy (65,992.24 MT), and black (27,687 MT) (USDA-NASS, 2013). In Minnesota, 

the production of dry beans was 0.1 million MT, harvested from 68,796 ha, where production of 
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kidney beans (45,722 MT) leads, followed by navy beans (35,053.61 MT), black (24,689.65 

MT), and pinto (9,347.63 MT) (USDA-NASS, 2013).  

Taxonomy of dry beans 

 Dry bean is a member of the monophyletic genus Phaseolus (Delgado-Salinas et al. 

1999; 2006). It is a highly variable annual plant native to many cultures around the world. It 

belongs to subtribe Phaseolinae. It is a member of the tribe Phaseoleae, subfamily 

Papilionoideae, and the family Fabaceae (Leguminosae). Other genera in the Papilionoidae 

subfamily include Glycine, Vigna, Pisum, Cicer, and Medicago. There are about 50 wild species 

in the Phaseolus genus, out of which five species have been domesticated, namely P. vulgaris or 

common bean; P. polyanthus or year-long bean; P. coccineus or scarlet runner bean; P. 

acutifolius or tepary bean; and P. lunatus or lima bean (Singh et al., 2005). These species 

represent a wide range of life histories (annual to perennial), growth habits (bush to climbing), 

reproductive systems, and adaptations (from cool to warm and dry to wet). Common bean is 

predominantly self-pollinated and it is grown in temperate conditions.  

Domestication and organization of the genetic diversity  

 Recent evidence suggest that dry bean’s center of origin is located in Mesoamerica 

(Bitocchi et al., 2011). Depending upon the several morphological traits, and the study based on 

molecular markers, the wild common bean is commonly distinguished into two gene pools 

(Beebe et al., 2001, Gepts, 1991; Gepts, 1998; Singh et. al., 1991; Bitocchi et. al., 2012). The 

Middle American gene pool extends from Mexico through Central America while Andean gene 

pool is found in Colombia, Ecuador, Peru, Chile, Bolivia, and Argentina. Both gene pools 

diverged at about 110,000 years ago and underwent through a genetic diversity bottleneck. After 

divergence, the Andean and Middle American bottlenecks started at 103,000 years ago and 



 

5 
 

ended 62,000 years ago. Later, due to domestication bottleneck, there was a reduction in 

diversity and increase in population structure (Schmutz et al., 2011). In addition, a third gene 

pool of wild bean populations were identified between the region of Peru, Ecuador, and 

Colombia and were characterized by the presence of a specific seed storage protein known as 

Phaseolin type I, and allozymes (Singh et al., 1991a; 1991b). Since it shares alleles from both 

gene pools it is known as introgression between Andean and Mesoamerica.  In dry bean 

populations, many changes are observed by looking to morphological traits (changes in size for 

leaves, pods, and seeds, loss of pod dehiscence, increase in permeability of seed coat, decrease in 

anti-nutritional factors (Smartt, 1988; Gepts, 1991), and molecular markers (Becerra Velasquez 

and Gepts, 1994; Tohme et al. 1996; Bitocchi et. al., 2012),  environmental factors in agronomic 

characteristics and also in terms of partial reproductive isolation i.e. the fatality of F1 generation 

in some crosses, in both wild and domesticated species (Gepts, 1998).  

 Genotypes from the Andean pool usually show smaller bracteoles, and usually only one 

pod-bearing node compared to two nodes of the Middle American genotypes (Gepts and 

Debouck, 1991). Other changes in the morphological features among two gene pools include the 

length of the internode and flowering time, where Andean genotypes flower earlier than 

Mesoamerican genotypes due to its determinate growth habit (Gepts and Bliss 1986; Singh et al. 

1991b).  

 In Mesoamerican genotypes, the presence of S-type phaseolin with no T-type contrasted 

to Andean genotypes by the presence of mostly T-type phaseolin with C, S, H, and A types, but 

in low frequencies (Gepts, 1998). Further, Kami et al. (1995) confirmed the close relative of type 

I phaseolin in accessions from northern Peru-Ecuador to the other phaseolin in wild P. vulgaris, 

and thus suggesting the dispersal of wild bean into north (Colombia, Central America, and 
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Mexico) and south (southern Peru, Bolivia, and Argentina) that led to two gene pools i.e. 

Mesoamerican and Andean. However, several studies on the phaseolin types, allozyme alleles, 

and molecular markers have revealed Mesoamerican gene pool to be the origin of common bean 

with higher diversity (Bitocchi et al. 2012). Additionally, data on the amplified fragment length 

polymorphisms (AFLP), and simple sequence repeats (SSRs) of wild and domesticated P. 

vulgaris have re-proposed the origin of the common bean within the Mesoamerican gene pool 

(Kwak and Gepts, 2009; Rossi et al., 2009). Similarly, Bitocchi et al. (2012) investigated the 

nucleotide diversity at five gene loci of a large sample that represented the entire geographical 

distribution of the wild form of Phaselous species, and confirmed Mesoamerica as the origin of 

the common bean. The results showed that in Andean gene pool loss of genetic diversity during 

and after domestication was much more as compared to Mesoamerican gene pool.   

 The Mesoamerican gene pool is divided into three races: Durango in the central 

highlands of Mexico, Jalisco in coastal Mexico, and Mesoamerica in lowland tropical Central 

America. Race Guatemala has been proposed as a fourth race located in the central region of 

Central America, and consists mostly of medium sized black-seeded climbing genotypes (Beebe 

et. al. 2001). Pinto, great northern, small red, and pink bean market classes belong to race 

Durango, while Mesoamerica race includes navy and black beans, with market classes Flor de 

Mayo and Flor de Junio (Mexico) in race Jalisco. The Andean gene pool is also subdivided into 

three races: Nueva Granada (Colombia/Ecuador), Peru (Peruvian highlands), and Chile (northern 

Chile and Argentina). Market classes light red kidney, dark red kidney, white kidney, and 

cranberry beans represent race Nueva Granada. Mayocoba and Canario also known as “yellow 

beans”, represents Peruvian race, and race Chile includes the vine cranberry beans and bean 

types distinctive to Chile (Coscorron and Tortola) (Singh et al., 1991 and Kelly, 2010).  
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 Several morpho-agronomic traits and ecological criteria have distinguished domesticated 

beans from their wild ancestors (Beebe, et al. 2001). Some of the differences include reduced 

plant height, shorter internodes and fewer nodes, non-dehiscent pods, and higher germination 

rate in domesticated types. For example, race Nueva Granada represents medium to large seeded 

accessions mostly with bush type growth habits, while Race Peru consists mostly of Andean 

climbing beans adapted to highland environments above 2,000 masl. Race Chile is characterized 

by prostrate type 3 growth habit, medium-sized, and rounded to oval seed (Beebe, et al. 2001).  

Dissemination of the domesticated lines 

 From the centers of domestication, wild common bean is widely distributed throughout 

the highlands of Mesoamerica and South America to wet lowlands in Central America and high 

altitudes in the Andes (Chacon et al. 2005). The distribution of domesticated beans throughout 

North and South America was possible by human activities such as agriculture, urbanization, and 

deforestation (Debouck et al. 1993). This distribution comprises of three ranges of expansion 

events i.e. two from Mesoamerica to northern South America and one from the northern Andes 

to Central America. The distribution of Mesoamerican races of common bean to northern and 

eastern South America was made possible as a result of migration of Native Americans from 

north. The pathway of dissemination of common bean outside the American continent started 

after 1492. Common bean was introduced from America to Africa and then to Europe by the 

Spaniards and Portuguese (Maras and Sustar-Vozlic, 2013).   

Dry bean development stages  

Dry bean is recognized as a short day, self-pollinated crop. Slightly cool environment is 

favorable for bean growth and development. The growth habit of dry bean is based on growth 

habits during flowering and can be characterized as determinate or indeterminate. A determinate 
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plant exhibits a bush growth habit and an indeterminate/climbing plant is characterized by a 

vining/trailing pattern. When flowering begins in determinate plants, upward growth of stem 

stops, while in plants with indeterminate habit, stems continue to grow throughout flowering. 

(Kelly, 2010). 

 There are four different growth types. Growth type I is determinate bush and growth type 

II is indeterminate and upright short vine. Both have narrow plant profile with three to four 

stems. Growth type III is indeterminate and has prostrate vines. Growth habit type IV is 

indeterminate and has strong climbing tendencies. (Singh, 1982). 

Agronomic traits of dry beans 

 There are several agronomic traits that breeders evaluate while developing cultivars in 

order to obtain maximum performance of dry bean genotypes. Some of these traits are the days 

of maturity, 100-seed weight, seed shape, plant height, days to flowering, disease resistance, 

tolerance to abiotic stress, and seed yield, among others.    

 Breeders look for quantitative traits considering economic needs and genetic limitations. 

Traits which are controlled by many different genes with low heritability are difficult to 

manipulate by cross breeding. Identification of markers linked or associated to the QTLs of these 

traits would benefit breeders by facilitating selection, especially at early generations (Chengsong 

et al., 2008).  

 The NDSU bean breeding program use a modified pedigree method for cultivar 

development. For this, F1 seeds are generated from the crosses are produced in the greenhouse in 

Fargo, ND and are evaluated in New Zealand during winter based on their appearance and vigor. 

F2 are selected and evaluated in again in North Dakota and its selected progenies (individual 

plants) are grown as F3 rows in Puerto Rico during winter. Selected F3 progenies are grown as F4 
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rows back in North Dakota. From F4, 3-4 uniform plants are selected based on vigor and 

appearance and bulked. F5 plants which are then grown in Puerto Rico during winter and 

progenies of selected rows are bulked to test high value of quantitative traits and thus enter into 

preliminary yield trials (PYT) for yield testing and overall agronomic performance. These 

breeding lines are being tested in multiple locations over multiple years in North Dakota and 

Minnesota. Promising superior breeding lines enters advanced yield trials (AYT) if performed 

well. Disease screening is also made in the greenhouse for breeding lines included in both PYT 

and AYT. In the same way, canning quality is evaluated for the advanced lines. Best genotypes 

are then moved into variety trials to make final decisions about commercial release as cultivars. 

The entire breeding pipeline takes approximately 8-9 years to be completed from crossing to 

cultivar release. 

Molecular characterization of Phaseolus species 

 Common bean is a diploid species with a chromosome number of 2n =2x =22, and an 

estimated genome size of 587 million base pairs (Mb) per haploid genome (Schmutz et al., 

2014).  

 Genetic diversity and variability of bean has been increased with the help of germplasm 

incorporation and inter-specific hybridizations. Initially, new varieties were selected and released 

directly from the landraces. Presently, many tools like fine mapping, GWAS etc. have been 

developed to aid in the genetic improvement of bean varieties and to study the relationships 

between genotype and phenotype, especially for complex traits. Several molecular markers have 

been utilized to develop linkage maps in common beans including Restriction Fragment Length 

Polymorphisms (RFLPs) (Adam-Blondon et al., 1994; Vallejos et al., 1992), Randomly 

Amplified Polymorphism DNAs (RAPDs) (Freyre et al., 1998), Amplified Fragment Length 
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Polymorphisms (AFLPs), Simple Sequence Repeats (SSRs), Resistance Gene Analogs (RGAs), 

Expressed Sequence Tags (ESTs) (McConnell et al., 2010) and InDel (Insertion-deletions) 

markers, that are developed by transposable elements, unequal crossover (Britten et al., 2003) 

and SNP markers identified by standard paired-end libraries of Illumina (Moghaddam et al., 

2014). Being highly abundant and informative these are widely used markers these days (Pacurar 

et al., 2012). 

 With the help of these molecular techniques, many germplasm banks like CIAT work on 

the development of many PCR-based molecular markers, cDNA libraries, genomic libraries, and 

EST sequencing. More than 29,000 domesticated and 1,300 wild accessions of P. vulgaris are 

stored in this germplasm bank (Broughton et al., 2003). 

 The first molecular linkage map was developed by a backcross population from a cross 

between XR-235-1-1(Mesoamerican genotype) and ‘ICA-Calima,’ (Andean cultivar) (Vallejos et 

al. 1992). The map was made up of 224 RFLP markers, 9 isozyme markers, 9 seed protein 

markers, and a seed and flower color marker. The map covered 960 cM of the bean genome. This 

population is known as XC population. In this map, 11 linkage groups were established and were 

later used in an analysis for markers linked to disease resistance genes (Yu et al. 1998).  

 The second bean genetic map was constructed in an F2 population from the cross of 

BAT93 (Mesoamerican) x Jalo EEP 558 (race Nueva Granada, Andean landrace) with total of 

152 markers, where most markers were RFLPs and some RAPD. Both parents in the linkage 

map BAT93 × Jalo EEP 558 (BJ) showed high degree of phenotypic polymorphism, and 

disparity for many important traits, such as disease and insect reactions, seed nutritional quality 

and other morphological and agronomical traits. The total 143 markers that were assigned to 15 

linkage groups covered 827 cM of the bean genome with 6.5 cM of an average interval between 
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the markers (Nodari et al., 1993a). The population is known as BJ. It segregates for resistance for 

many diseases like bean common mosaic virus or BCMV (I gene was mapped for resistance), 

common bacterial blight caused by pathogen Xanthomonas axonopodis pv. phaseoli (Xap) and 

Xanthomonas. fuscans subsp. fuscans, and fungal disease anthracnose caused by Anthracnose 

(Colletotrichum lindemuthianum).  

 A third map was developed in a backcross population derived from two European bean 

lines i.e. Ms8EO2 (resistant to anthracnose) x Corel (susceptible to anthracnose) (Adam-Blondon 

et al. 1994). The purpose of the map was to locate genes involved in plant defense and resistance 

against anthracnose, and used 51 RFLPs, 100 RAPDs and few SCARs and morphological 

markers. Thus developed markers were placed on 12 linkage groups that covered 567.5 cM of 

the genome.  

 Koinange et al. (1996) constructed a linkage map in RILs of a cross between Midas (wax 

snap bean cultivar) x G12873 (wild accession), where 83 RFLP were used and the population 

size were 65 recombinant inbred lines. This population is called MG population. This map was 

developed to discover loci associated with the domestication syndrome and domestication traits 

in common bean, which later was found the domestication QTL on 8 out of 13 linkage groups.  

Similarly, a reference map was developed using RIL population derived from BAT93 x Jalo 

EEP558 (BJ) population using microsatellites. Total of 106 markers were placed on 12 groups 

that covered total length of 606.8 cM of the genome. The purpose was to use this map for the 

development of many other molecular maps for common beans that focused on QTL and 

association studies (Grisi et al. 2007).  

 Recently, the genetic map was developed from the cross between PMB0225 x PHA1037 

using 85 AFLP, 95 SSR, and 13 SNP markers, of which 101 were found dominant and 92 co-
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dominants and formed 12 linkage groups. These groups were allotted on the basis of 55 

previously mapped common SSR markers. The map covered total genetic distance of 822.1 cM, 

with an average of 68.5 cM/linkage group, ranging from 16.5 cM (LG 6) to 106.4 cM (LG 3).  

BIOAGRO/UFV and Embrapa bean research groups developed a map with a RIL population 

with 500 lines from the cross between Rudá (Mesoamerican) x AND 277 (Andean). Ruda is a 

high yielding Mesoamerican cultivar made from crosses between the cultivars (Carioca  x Rio 

Tibagi) and AND 277 (Andean), developed by CIAT from multiple crosses [(Cargabello × 

(Pompadour Checa × Linea 17) × (Linea 17 × Red Cloud))]. Thus showing difference not only 

for diseases such as angular leaf spot, white mold, rust, and anthracnose, but also contrasts for 

many phenotypic traits like morphological and agronomical traits. They used 126 SSR and 677 

SNP markers to estimate the genetic distance, which was 78.6% based on SSR and 71.3% based 

on SNPs. The estimated genetic distance of molecular marker maps ranges from 1259 cM to 

1545.5 cM. The average distance between any two markers ranges from 3.0 cM to 7.23 cM 

(Sanglard et al., 2013). 

 Gepts in 1990 used data from isozymes, morphological and agronomic traits to determine 

the genetic diversity and to show the importance of genotype preservation in breeding programs.  

Molecular data of isozyme and phaseolin illustrated extensive hybridization between the Chile 

genotypes and genotypes found in Andean and Mesoamerican region. The research also 

suggested that the Chilean landraces can be split into two groups (Paredes and Gepts, 1995). 

Beebe et al. 2001 presented a study in which data of RAPD markers and DNA fingerprinting 

indicated that Guatemalan beans can be separated from southern Mexican beans. Skroch and 

Nienhuis (1995), using RAPD data showed that snap beans are intermediates between two gene 

pools rather than originated from the Andean gene pool. A similar study of diversity using 
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RFLPs, compared the wild and domesticated beans proving that they are from same region 

(Beccerra Velasquez and Gepts. 1994). Sonnante et al. 1994 indicated evolutionary changes like 

loss of genetic diversity during selection and domestication by using M13 (probe-enzyme 

combination) DNA fingerprinting.  

Single nucleotide polymorphic (SNP) markers 

 Markers are easily selectable, highly heritable genetic "tags" that are linked to traits 

which are more difficult to select phenotypically.  Thoday et al., (1961) suggested that markers 

can be used to map and characterize genes that control traits of interest. The development of 

molecular markers (isozymes and DNA-based markers) has created a potentially endless number 

of markers for analyzing genomes. SNP markers are currently known as valuable markers for 

genotyping because of their abundance, stability, and simplicity. In many species, these markers 

are distributed throughout the genome and are mostly these are the first choice for association 

mapping studies (Drenkard et al., 2000). SNPs represent most frequent polymorphisms not only 

in plant genome but also in human and animal genomes.  

 There are many different methods that are used for SNP genotyping in common bean. 

CAPS (Cleaved Amplified Polymorphic Sequences) and dCAPS (derived Cleaved Amplified 

Polymorphic Sequences) techniques that were employed to convert EST based polymorphisms 

into SNP markers. Cleavage nuclease CEL I technique by Galeano et al. was used to analyze and 

map SNP-based EST-derived markers. Single strand conformation polymorphism (SSCP) 

technology was also used to map EST-based markers.  In DOR364 × G19833 mapping 

population, a total of 118 new marker loci was identified by using this high throughput 

technique. Luminex-100 was used to confirm SNP calls in DNA from 10 common bean 

genotypes. These techniques have some disadvantages like being unable to identify 



 

14 
 

polymorphism in contigs and amplicons with two or more SNPs, enzyme specific and expensive 

to use. KASPar technology is another technique used for SNPs detection that provide wider 

spectrum of genotyping. It is efficient and less time consuming as compared to all others 

(Cuenca et al., 2013).  

 SNP markers in common bean reflect dual domestication events and inter gene pool 

hybridization in both gene pools. They allowed the identification of two Andean and three 

Mesoamerican clusters corresponding to races. Due to greater polymorphism and race structure, 

Andean gene pool shows higher genetic diversity with SNPs than the Mesoamerican (Galeano et 

al., 2012; Cortes et al., 2011).  The total number of SNPs in cultivated bean is estimated to be in 

the range of three to four million, based on the rate of 237 SNPs observed in 38.2 kbp of 

sequence in six diverse genotypes (Souza et al., 2009).  

Association mapping 

 Association mapping is an effective method to map (QTL). It is a method of QTL 

mapping that links phenotypes to genotypes by using linkage disequilibrium (Yu et al., 2006). 

Association detection depends on genetic architecture (population structure), accurate phenotypic 

evaluations, and genotyping (Balding et al., 2006). Association mapping is an alternative to bi-

parental mapping. Association mapping is a preferred method over bi-parental mapping as it 

gives a higher mapping resolution and has greater allele number as compared to bi-parental 

mapping.  

 The major advantage of performing association mapping, by using a breeding pipeline 

instead of a diverse panel of genotypes is that the markers/QTL identified here are highly 

specific for the breeding program and can be used directly for further selection. Alternatively, 

using a diverse population reduces the chances of identifying markers/QTL that are relevant for 
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the breeding program because of the lack of representation of polymorphisms or recombinant 

events in the diverse panel. Also use of advanced lines targets multiple recombination events in 

association mapping approach and is limited to just a few and the probability of finding these 

increases compared to thousands of recombination events present at a low frequency in diverse 

panel (Podlich et al., 2004). Since bi-parental populations don’t have to be developed, this 

mapping approach is not only less costly and less time consuming but also helps in marker 

assisted selections (MAS). Unlike association mapping, bi-parental mapping has fewer 

recombination events and is very expensive and time consuming (Zhu et al., 2008). Association 

mapping is also subject to some limitations; for example, in breeding populations the probability 

of identifying false positives may increase due to high population structure. In addition, high 

linkage disequilibrium can cause poor resolution.  

 Association mapping studies in plants was first reported in Oat (Avena sativa L.) and rice 

by Beer et al., 1997 and Virk et al., 1996 respectively. Oat association study used 64 oat varieties 

and showed that 13 QTLs are associated with restriction fragment length polymorphisms (RFLP) 

markers. In rice germplasm, six traits were predicted using RAPD markers. In maize, SNP 

markers were found to be associated with flowering time and plant height (Jafar et al., 2012). In 

barley (Hordeum vulgare L.), various traits such as seed yield and stability, heading date, 

flowering time, plant height, rachilla length, resistance to mildew and leaf rust were associated 

with many different types of molecular markers (Wang et al., 2011). In soybeans (Glycine max), 

association mapping was performed to discover molecular markers associated with iron 

deficiency chlorosis (Wang et al., 2008). QTLs for growth period traits in soybeans were 

identified by association mapping (Zuo et al., 2013). Later, association mapping was performed 
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using SNP markers in barley, wheat (Triticum spp.), potato (Solanum tuberosum L.) among other 

crops. 

 There are two types of association mapping: candidate association mapping and genome 

wide association mapping (GWAS) (Zhu et al., 2008). GWAS is a practical approach for a bean 

domesticated population. This approach searches the whole genome for causal genetic variation. 

GWAS does not need any previous information on candidate genes and can test large number of 

markers for association with various complex traits. Due to the complex population structure 

present in beans and lack of information about candidate genes associated with agronomic traits, 

GWAS is the best approach that could be applied for association mapping to study agronomic 

traits. This large population structure and relatedness that exist in beans can identify false 

positives.  

 The first step of association mapping is selection of a germplasm, cultivars, or breeding 

lines etc. which has wide coverage of genetic diversity. Next, phenotypic characteristics of these 

natural populations are recorded. Then genotyping is done with available molecular markers. 

Next step involves quantification of the Linkage Disequilibrium (LD) and assessment of the 

population structure and kinship using the molecular marker data. Based on the information 

gained, a regression model is developed between phenotypic and genotypic data with appropriate 

statistical approach. This approach reveals “marker tags” that are present within close proximity 

of targeted traits of interest (Abdurakhmonov et al., 2008). 

Yu et al., 2006 developed an approach to control relatedness and population structure in a 

regression model, known as the mixed model approach. In a mixed model approach, both fixed 

(SNP effect and population structure) and a random (kinship) effects are included, which makes 

it flexible to family based and population based samples. Mixed models represent a method of 
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choice that deals with unbalanced data across multiple trials. It shows reliable inference through 

the explicit modeling of correlations induced by genetic and environmental causes. Thus, this 

model is useful in genome wide association studies or association mapping to control the biased 

that may possibly be caused by the population structure and relatedness in other species.  

Importance of phenotyping  

 Collection of high-quality phenotypic data is essential in association mapping. Newly 

discovered candidate genes in mapping studies can only be tested if we have existing robust and 

accurate phenotypic data, which is usually collected over years in multiple locations (Flint-

Garcia et al., 2005). To increase the mapping power, it is necessary to consider efficient field 

designs with incomplete block design (e.g., α-lattice), appropriate statistical methods and QTL × 

environmental interaction (Eskridge, 2003).  
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OBJECTIVES 

The main objective of this research is to evaluate the efficiency of GWAS in dry beans 

using the breeding populations normally used within the NDSU dry bean breeding program.  

Specific objectives are: 

 To identify genomic regions involved in controlling four agronomic traits of economic 

importance i.e. seed yield, maturity, 100- seed weight and plant weight.  

 To identify possible candidate genes with known functions which fall within the 

significant QTL regions.   
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MATERIAL AND METHODS 

 This part presents materials and methods followed for this GWAS and consist of three 

different sections. Section one provides detailed information on the phenotypic analysis. Section 

two describes genotypic analysis, and section three explains the procedure followed for 

association analysis. 

Phenotypic analysis 

Experimental field (phenotypic) data 

 Phenotypic data was collected from breeding lines of the NDSU dry bean breeding 

program from the AYTs (Advanced Yield Trials) and PYTs (Preliminary Yield Trials). These 

trials were grown in year 2012 at four locations (Carrington, Hatton, Prosper and Johnstown in 

North Dakota). Genotypes tested at four contrasting locations were selected to have a more 

accurate estimate of GXE interactions. The trials represent the Mesoamerican gene pool, in 

which race Durango includes the market classes’ pinto, pink, red, and great northern while race 

Mesoamerican includes market classes blacks and navy. Depending upon the number of 

genotypes to test, the experimental designs used at all sites were either partially balanced square 

lattices with two replicates or a randomized complete block design with three replicates.  

 Phenotypic data for many traits are routinely collected in a breeding program, but for the 

purposes of this study only four important agronomic traits were selected: (1.) Days of maturity 

(d) which is the actual number of days after sowing when approximately 95% of plants in a plot 

have at least one dry pod. (2.) 100-seed weight (g), which is measured by weighting 100 

randomly undamaged seeds and recorded in grams at approximately 10% moisture. (3.) Plant 

height (cm) is measured from soil surface to the top node bearing at least one dry pod with seed. 
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(4.) Seed yield (kg ha-1) at standardized to16% moisture and rounded up to nearest whole 

number. 

 These data represent the agronomic performance in a wide range of environments (Table 

1). All lines from AYT+PYT (208) were divided into different subgroups of AYT, PYT, 

Durango and Mesoamerican and were considered as different populations for the GWAS. 

ANOVA was be performed using SAS Proc GLM/MIXED (SAS Institute, Inc. 2011) (Freund et 

al., 1986), to see if genotypes were significantly different and also to calculate least square 

means (to reduce errors in the replications) and standard deviations for phenotypic data 

evaluation from each trial, after discarding the missing data. Replications and environments were 

considered as random effects while genotypes are fixed. Since genotypes grown were not always 

common over all locations, no further statistical analysis was performed. 

Genotypic analysis 

Plant material 

 For genomic DNA extraction, all genotypes were planted in the greenhouse. After two to 

three weeks of growth, the first trifoliate leaves were harvested and stored at –80º C prior to 

extraction. DNA was extracted using cetyltrimethyl ammonium bromide (CTAB) method (Doyle 

and Doyle, 1987; Doyle and Doyle, 1990). A total of 50 µl of extracted DNA, with concentration 

of 100 ng µl-1 was sent to USDA-ARS Soybean Genomics and Improvement Lab Facilities at 

Beltsville-MD for the amplification of SNPs (Hyten et al., 2010). All the samples were screened 

to generate genotypic data that was generated using 6K SNP chip (designed using the Illumina 

Infinium system). BeanCAP 6k chip has been used in this study. Two Illumina iSelect Genechips 

for SNP analysis was developed by Perry Cregan at USDA-ARS, Beltville, MD. For this 

development, 19.6 billion bases of sequence data from 19 diverse common bean genotypes was 
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obtained, from which 10,453 SNPs were obtained. It was estimated that 6533 SNPs are 

segregating in 288 F2 line of the NDSU Stampede x Red Hawk mapping population. These SNP 

markers are evenly distributed across the 11 chromosomes for both advanced lines as well as 

from the preliminary lines (BeanCAP, 2014). The genomic data was obtained using genome 

studio (Illumina, 2014).  

Table 1. Total number of genotypes by market class and by sub-population. 

 Population Black Great Northern Navy  Pinto Red and Pinks Total 

AYT 46 17 36 21 16 136 

PYT _ _ _ 38 34 72 

Durango _ 17 _ 59 50        126 

Mesoamerican 46  _ 36 _ _ 82 

AYT+PYT 46 17 36 59 50 208 

All lines from AYT+PYT (208) were divided into different subgroups of AYT, PYT, Durango 

and Mesoamerican and were considered as different populations for the GWAS.  

Association studies 

Imputation of missing genotypes and minor allele frequency  

 For imputation, FastPHASE v. 1.3 (Scheet and Stephens, 2006) software was used. This 

software imputed missing genotypes for unmeasured SNPs using an estimated maximum 

likelihood algorithm using default parameters. Minor allele frequency (MAF) was calculated 

separately for advanced yield trails, preliminary yield trials, Durango, Mesoamerican and 

combining all genotypes together. Markers with MAF < 0.05 were removed and remaining 

polymorphic markers were used for further analysis in each of the population analyzed.  

Principal component analysis 

 Different approaches were used to assess population structure, family relatedness, and 

structured association. The purpose of using these approaches was to remove all the false 

positives which were generated in the population structure by using genotypic information of all 
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the markers in the genome. To control population structure and relatedness among all individuals 

of different subsets of breeding population, Principal Component Analysis (PCA) was done 

using the PRINCOMP procedure of SAS 9.3 (SAS Institute, Inc., 2011). This procedure is done 

to convert correlated variables into smaller number of uncorrelated variables, where each 

successive component explains for decreasing amount of data variation (Carsten et al., 2012). 

Principal components that explained cumulative of at least 25% and 50% of variation were 

selected for successive analyses to control for population structure. 

Linear regression models 

 To identify marker-trait associations, six different models were implemented using the 

MIXED Procedure in SAS 9.1.3 (SAS Institute, Inc., 2011) and Gemma (Zhou and Stephens, 

2012). Of all the regression models, Naïve, Principal component (PC 25%), Principal component 

(PC 50 %) estimated in SAS 9.3 where as other models, Kinship (K), Principal component (PC 

25%) + Kinship, Principal component (PC 50%) + Kinship were estimated in Gemma (Mamidi 

et al., 2011) . All general linear models (GLM) considered only fixed effects and all mixed linear 

models (MLM) considered both fixed and random effects (Table 2).  

Table 2. Statistical models used for marker-trait association. 

Model  Approach 

Naïve y = Xα + ε GLM 

PC (25% Variance explained) y = Xα + Pβ + ε GLM 

PC (50% Variance explained) y = Xα + Pβ + ε GLM 

K y = Xα + Kν + ε MLM 

K+PC (25% Variance explained) y = Xα + Pβ + Kν + ε MLM 

K+PC (50% Variance explained) y = Xα + Pβ + Kν + ε MLM 

Where, y is a vector for the phenotypic observation, α is a vector for the fixed effects of the 

SNPs, β is a vector for the fixed effects of the population structure, ν is a vector for the random 

effects of the individual relatedness, and ε is a vector for the residual effects (Mamidi et al., 

2011). X is the SNP genotypes, P is the matrix of the principal components (PCs), K is K- 

matrix, GLM is general linear models and MLM is mixed linear models. 
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 For each model, expected P- values were calculated by dividing rank of observed P-

values which was ranked in order from smallest to largest. Mean square difference (MSD) was 

calculated to find the deviation of observed P-value from this uniform distribution (Mamidi et al. 

2011). Best model out of six models that controls for population structure and reduces false 

positive identification was selected based on the MSD values. The model which showed less 

deviation of P value or has least MSD was selected as the best model for genome wide 

association analysis (Mamidi et al., 2011).  

 Significant SNP markers (p< 0.001) were selected from the selected best models and 

Manhattan plots were constructed using –log10 of p-values against chromosome location with 

SAS 9.3 (SAS Institute, Inc. 2011), to represent position of these markers on chromosome 

graphically. The phenotypic variation (R2) and the allelic means were calculated for each of the 

significant markers using the Reg and Means procedures in SAS 9.3 (SAS Institute, Inc., 2011). 

To select markers which show higher level of significance even in the presence of other 

significant markers, the stepwise regression analysis was performed, using SAS with 

significance level for entry as 0.05 and significance level for staying as 0.05. Positive false 

discovery rate (pFDR; Q values) was calculated for each trait using the PROC MULTTEST 

procedure in SAS 9.3 (SAS Institute, Inc. 2011). 

 Many different allelic combinations were detected associated with each trait using data 

from genotypes and phenotypes of all populations. The cut off values were based on the mean + 

standard deviation of controls (Table 3). Alleles of all significant markers were combined to 

make combinations. These combinations could be used for selection of genotypes with trait of 

interest in further studies.  
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Table 3. Cut off values for each trait in all populations. 

Populations  

100-Seed 

weight 
Maturity Yield Plant height 

AYT, PYT, Mean 31 102 2600 55  

AYT+PYT Standard deviation 10 11 441 4  

 Mean + SD 40 112 3041 59  

 Mean - SD 21 91 2159 51  

       

Mesoamerica Mean 21 102 2600 54  

 Standard deviation 1 11 441 3  

 Mean + SD 22 112 3041 57  

 Mean - SD 20 91 2159 51  

       

Durango Mean 40 102 2600 56  

 Standard deviation 3 11 441 5  

 Mean + SD 42 112 3041 61  

 Mean - SD 37 91 2159 51  

QTL regions and candidate genes 

 Significant markers that were present in more than one population were identified for 

each trait. Markers in linkage disequilibrium with these significant markers that were identified 

using TASSEL to define QTL regions. Heat maps were constructed with markers that fall within 

the QTL region using TASSEL, and to find the markers that are in LD (R2 value > 0.5). 

Genes close to significant SNP markers found to be associated with plant height, seed 

weight, seed yield and maturity were obtained from the Phaseolus vulgaris annotation (Schmutz 

et al. 2014) available at phytozome.net. Genes that were the present within the physical position 

(Mb) of QTL region were selected. Physiology and functions of these genes were studied and 

only those genes that were previously reported to be responsible for any these traits in any other 

crop or plant were considered as candidate genes. Presence of the candidate genes in previous 

studies confirmed the consistency that they are significantly associated with the traits of interest. 
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RESULTS 

Phenotypic analysis 

 Phenotypic data for each trait was evaluated in the bean breeding program from different 

locations. After taking the least square means of each genotype from each trial and combining 

across locations, days of maturity ranged from 75 to 113 days and 100-seed weight , was in a 

ranged between 18  to 45 g. The range for plant height observed across all the genotypes was 

from 41 cm to 69 cm. Seed yield was obtained between 1394 kg ha-1 to 3565 kg ha-1 (Table 4). 

Table 4. Means and range for all traits after discarding the missing data. 

Trait Mean Standard deviation Min Max 

100-seed weight 30 8 18 45 

Maturity 96 13 75 113 

Yield 2543 409 1394 3565 

Plant Height 56 4 41 69 

 

DNA was extracted from all the lines. Genotypes with missing genotypic data or missing 

phenotypic data were discarded and a total of 208 genotypes were used for GWAS. As 

mentioned before, these lines were subdivided into five subpopulations based either on their 

breeding stage or the race they belong to: AYT, PYT, Mesoamerican, Durango and AYT+PYT. 

Polymorphic marker analysis  

 Polymorphic markers were selected for all the genotypes based of the distribution in 

minor allele frequencies (MAF). Across all subpopulations, SNP on 6K chip showed MAF 

distribution ranging from 0 to 50%. Out of all SNP, only informative markers with MAF > 5 % 

were included for succeeding analyses (Table 5). 
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Table 5. Number of polymorphic markers (MAF > 0.05) used for analyses. 

Genotypes Number of genotypes Number of Markers 

Advanced Yield Trial (AYT) 136 2958 

Preliminary Yield Trial (PYT) 72 2816 

Durango 126 2851 

Mesoamerican 82 1943 

AYT + PYT  208 3046 

Population structure and kinship analysis 

 To estimate the population structure, PCA was implemented.  For subpopulation AYT + 

PYT, PYT, and Durango, first 3 principal components PC explained 50% of total variance while 

for Mesoamerican and AYT, first 2 principal components (PC) explained 50% of total variance. 

The graphs that were plotted using first two PCs, explained the distribution of genotypes within 

different subpopulations (Figure 1). 
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Figure 1. Principal component analysis of all individual genotypes present in five sub-     

populations of beans. The x-axis represents the eigenvalue for principal component 1 (PC1) and 

the y-axis represents the eigenvalue for principal component 2 (PC2). 
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Marker-trait associations 

 To analyze the association between single nucleotide polymorphic markers with the 

agronomic traits, and to reduce confounding effect of population structure, six statistical models 

were selected (Table 2). The marker-trait analysis was conducted using both phenotypic data 

collected from field (2012) and genotypic data. After comparing the MSD values of each model, 

best model with least MSD was selected for each trait (Mamidi et al., 2011) (Table 6). 
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Table 6. Test statistics for the six models with MSD values used for association analysis in five         

different subpopulations for plant height, seed weight, seed yield and maturity. 

  Traits Naïve PC25 PC50 Kinship 
PC25+ 

Kinship 

PC50+ 

Kinship 

PYT+AYT 

Plant 

Height 
0.0983 0.0451 0.0352 0.0001† 0.0002 0.0004 

100-Seed 

Weight 
0.2489 0.0436 0.0368 0.0018 0.0002† 0.0006 

Maturity 0.2161 0.0308 0.0397 0.0029 0.0023 0.0022† 

Seed Yield 0.0117 0.0153 0.0282 0.0002 0.0003 0.0001† 

  

PYT 

Plant 

Height 
0.0122 0.0120 0.0114 0.0003† 0.0004 0.0004 

100-Seed 

Weight 
0.1085 0.0971 0.0971 0.00032 0.00031† 0.0017 

Seed Yield 0.0726 0.0394 0.0158 0.0011 0.0008 0.0007† 

  

AYT 

Plant 

Height 
0.0174 0.0466 0.0314 0.0005† 0.0007 0.0024 

100-Seed 

Weight 
0.2374 0.0111 0.0110 0.0024 0.0001† 0.0004 

Maturity 0.2141 0.0302 0.0299 0.0026 0.0019† 0.0021 

Seed Yield 0.1247 0.0370 0.0189 0.0002† 0.0002 0.0002 

  

Durango 

Plant 

Height 
0.0531 0.0567 0.0288 0.0004 0.0005 0.0004† 

100-Seed 

Weight 
0.1129 0.0563 0.0327 0.0013 0.0011 0.0003† 

Maturity 0.0739 0.0311 0.0063 0.0005 0.0003† 0.0005 

Seed Yield 0.0081 0.0012 0.0012 0.0013 0.0012 0.0012† 

  

Mesoamerica 

Plant 

Height 
0.0467 0.0420 0.0388 0.0414 0.0367† 0.0380 

100-Seed 

Weight 
0.0182† 0.0189 0.0250 0.0199 0.0344 0.0392 

Maturity 0.0336 0.0348 0.0183† 0.0491 0.0503 0.0465 

Seed Yield 0.0241 0.0248 0.0164† 0.0342 0.0329 0.0320 

† Least mean square deviation values (MSD) among all models selected for GWAS. PC 25% and 

PC 50% - principal component analysis with at least 25% and 50% variance respectively. 

PC+K=PCA + Kinship. 

 

 For plant height, Kinship model was selected for subpopulations AYT + PYT, PYT and 

AYT and models K + PC 25% and K + PC 50% were selected for subpopulations Mesoamerica 
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and Durango. For 100-seed weight, PC 25% +K (PYT + AYT, AYT) and K+ PC 50% (Durango) 

and Naïve (Mesoamerican) showed the best MSD values. Regression Model PC 50% + K 

(PYT+AYT, PYT and Durango), K (AYT) and K (Mesoamerican) were selected for seed yield. 

For the trait maturity, PC 25% for Mesoamerica, PC 25% +K for AYT and Durango and PC 50% 

+ K for AYT + PYT were selected as the best model.  

 Thus, subpopulations AYT+ PYT, PYT, AYT, and Durango, have kinship (K) or both 

kinship and population structure (K+PC 25%, K+PC 50%), as the best model while for 

Mesoamerican subpopulation, except for plant height, the naïve, PC 25% and PC 50% were the 

best model selected. The Q-Q plots showed the distribution of observed P- values and expected 

p-values for all the subpopulations (Figure 2-6).  
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Figure 2. Graphical representation of distribution of p-values for six models for subpopulation 

AYT. 
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Figure 3. Graphical representation of distribution of p-values for six models for subpopulation    

Durango.  
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Figure 4. Graphical representation of distribution of p-values for six models for subpopulation 

PYT.  
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Figure 5. Graphical representation of distribution of p-values for six models for subpopulation 

Mesoamerican.  

 

 

  

 

 



 

35 
 

             

 

             

              

 

Figure 6. Graphical representation of distribution of p-values for six models for subpopulation 

AYT +PYT.  

 



 

36 
 

Significant markers 

 Significant markers were identified from the best models selected for each trait for all 

subpopulations by performing simple regression model. Markers which met the cut off of p < 

0.001 or (-log10 (P) > 3.0) and pFDR (Q value) < 0.1, were selected as significantly associated 

with traits.  

 Manhattan plots were made to represent the chromosomal position of significant markers 

for each trait. The plots were made using -log10 of p-values against chromosome location. 

Different colors present different chromosomes and black line is to show the Bonferroni 

corrected significance threshold (Figure 7-10). 
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Figure 7. Manhattan plots of representing markers associated with maturity. The black line 

shows the p-value that corresponds FDR of 0.05. Blue arrows point out most significant markers 

after stepwise REG. Each color represents different chromosomes ranging from 1 to 11. 
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Figure 7.  Manhattan plots of representing markers associated with maturity. The black line 

shows the p-value that corresponds FDR of 0.05. Blue arrows point out most significant markers 

after stepwise REG. Each color represents different chromosomes ranging from 1 to 11 

(continued). 

 

 

 

 

 

    1          2          3            4           5       6       7         8          9         10        11   

    1           2          3          4        5        6       7          8          9      10        11   

    1           2          3          4        5        6          7              8          9      10        11   



 

39 
 

 

      

           

  

 

      

 

 

Figure 8.  Manhattan plots of representing markers associated with plant height. The black line 

shows the p-value that corresponds FDR of 0.05. Blue arrows point out most significant markers 

after stepwise REG. Each color represents different chromosomes ranging from 1 to 11. 
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Figure 8.  Manhattan plots of representing markers associated with plant height. The black line 

shows the p-value that corresponds FDR of 0.05. Blue arrows point out most significant markers 

after stepwise REG. Each color represents different chromosomes ranging from 1 to 11 

(continued). 
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Figure 9.  Manhattan plots of representing markers associated with 100-seed weight. The black 

line shows the p-value that corresponds FDR of 0.05. Blue arrows point out most significant 

markers after stepwise REG. Each color represents different chromosomes ranging from 1 to 11. 
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Figure 9.  Manhattan plots of representing markers associated with 100-seed weight. The black 

line shows the p-value that corresponds FDR of 0.05. Blue arrows point out most significant 

markers after stepwise REG. Each color represents different chromosomes ranging from 1 to 11 

(continued). 
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Figure 10. Manhattan plots of representing markers associated with seed yield. The black line 

shows the p-value that corresponds FDR of 0.05. Blue arrows point out most significant markers 

after stepwise REG. Each color represents different chromosomes ranging from 1 to 11. 
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Figure 10. Manhattan plots of representing markers associated with seed yield. The black line 

shows the p-value that corresponds FDR of 0.05. Blue arrows point out most significant markers 

after stepwise REG. Each color represents different chromosomes ranging from 1 to 11 

(continued). 

In Reg and Means procedure, a total of 6, 7, 4, 1, and 73 markers were found to be 

associated with seed yield, 8, 4, 4, 4, and 1 markers for plant height and 4, 1, 4, 7, and 5 markers 

with 100-seed weight for subpopulations AYT, PYT, AYT+PYT, Durango, and Mesoamerican 

respectively. For maturity, 7, 7, 3 and 66 markers for AYT, AYT+PYT, Durango, and 

Mesoamerica, respectively were found to be significantly associated. After stepwise regression 

analysis, a reduction in significant markers was observed for all traits (Table 7). 
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Table 7. Number of significant markers with R-Square values included in stepwise regression 

model. 

  Traits 
No. of initial 

markers 

No. of markers included after  

stepwise regression 
R2 

AYT Seed Yield 6 2 12.32% 

 Plant Height 8 2 13.62% 

 Maturity 7 3 27.25% 

  
100-Seed 

Weight 
4 3 65.14% 

     

  Traits 
No.of initial 

markers 

No. of markers included after 

stepwise regression 
R2 

PYT Seed Yield 7 4 62.38% 

 Plant Height 4 3 36.76% 

  
100-Seed 

Weight 
1 1  01.23% 

     

  Traits 
No.of initial 

markers 

No. of markers included after 

stepwise regression 
R2 

AYT + PYT Seed Yield 4 2 19.52% 

 Plant Height 4 2 27.18% 

 Maturity 7 2 49.95% 

  
100-Seed 

Weight 
4 3 77.46% 

     

  Traits 
No.of initial 

markers 

No. of markers included after  

stepwise regression 
R2 

Durango Seed Yield 1 1 08.72% 

 Plant Height 4 1 04.02% 

 Maturity 3 2 59.52% 

  
100-Seed 

Weight 
7 2 13.41% 

     

  Traits 
No.of initial 

markers 

No. of markers included after 

stepwise regression 
R2 

Mesoamerican Seed Yield 73 7 78.69% 

 Plant Height 1 1 14.55% 

 Maturity 66 7 78.45% 

  
100-Seed 

Weight 
5 2 23.78% 

  

 To determine the total phenotypic variance explained by each marker, R- square values 

were used. In all populations, for seed yield, R-square values ranged from 0.25% to 42%. For 
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maturity, the phenotypic variance from 1.65% to 50.35% was observed. R- Square value for 

plant height ranged from 1.14% to 20.67% and for 100-seed weight it was 6.35% to 70.06%.  For 

seed yield and maturity highest R- square value was found in Mesoamerica population while for 

seed weight and plant height, the highest R- square value was seen in AYT + PYT population 

(Appendix A). 

 In this study many of the significant markers associated with a particular trait were 

observed in more than one population (Appendix A). For seed yield, marker 

sc00853ln138233_81612_G_A_292173871 at 39.3 Mbp on chromosome 7 was found in 

populations AYT+PYT, AYT and Mesoamerica and marker 

sc00013ln1423374_1157977_A_C_22673519 at 42.38 Mbp on chromosome 7 was found in 

populations AYT+PYT and Durango. For 100-seed weight and plant height, only one marker 

was observed which was common in more than one population. Marker 

sc00055ln737569_432814_C_T_61008497 at 29.79 Mbp on chromosome 9 for seed wright was 

found in both AYT+PYT and AYT populations with highest R- square value 41.39%. Marker 

sc00296ln326650_106196_C_A_175840672 at 52.73 Mbp on chromosome 8 which was found 

to be significantly associated with plant height was observed in PYT and AYT+PYT 

populations. 

 For maturity, marker sc00853ln138233_81612_G_A_292173871 at 39.3 Mbp on 

chromosome 7 was found in AYT+PYT and Mesoamerica, marker 

sc00055ln737569_432814_C_T_61008497 at 29.79 Mbp on chromosome 9 was found in 

AYT+PYT and AYT. 

 Some significant markers were found to be associated with more than one trait. Marker 

sc00853ln138233_81612_G_A_292173871 was significantly associated with both seed yield and 
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maturity in population AYT+PYT and Mesoamerica.  For seed weight and maturity, another 

marker, sc00055ln737569_432814_C_T_61008497 on chromosome 9 was identified in 

populations AYT and AYT + PYT. 

 QTL regions were identified for seed yield and maturity based on the markers which 

were found in linkage disequilibrium with other markers. For both yield and maturity, marker 

sc00701ln164739_86002_G_A_269264751 at 38.82 Mbp, on chromosome 7 was found to be in 

LD with sc00853ln138233_81612_G_A_292173871 at 39.29 Mbp indicating a QTL region. For 

maturity, another QTL region was found. QTL region spanning 0.29 Mbp for maturity was 

detected with three flanking markers sc00015ln1350335_1191524_C_T_25527800 at 36.68 

Mbp, sc00015ln1350335_1210315_C_T_25546591 at 36.69 Mbp and 

sc00015ln1350335_1224361_T_G_25560637 at 36.70 Mbp on chromosome 9. Unlike seed yield 

and days of maturity, no QTL was observed for plant height and 100-seed weight as no markers 

was found in LD with either of the two markers (Table 8). 

Table 8. QTL and the candidate genes with their positions. 

  Trait  QTL Flanking Markers Ch 

Physical 

position 

(Mbp) Gene model  Candidate gene 

Gene 

Physical 

position 

(Mbp) 

Seed Yield SYMAT7 sc00853ln138233_81612_G_A 7 39.2 Phvul.007G162100 IPT 39.04 

  sc00701ln164739_86002_G_A 7 38.8 Phvul.007G161600 

GTP-binding 

protein 1 38.98 

        

Maturity  SYMAT7 sc00853ln138233_81612_G_A 7 39.3 Phvul.009G254300 

Ribosomal protein 

S26e family 

protein 36.69 

  sc00701ln164739_86002_G_A 7 38.8 Phvul.007G161600 

GTP-binding 

protein 1 38.98 

        

Maturity  MAT9 sc00015ln1350335_1191524_C_T 9 36.68 Phvul.009G254200 

WD-40 repeat 

family protein 36.68 

    sc00015ln1350335_1224361_T_G 9 36.71 Phvul.009G254400 
salt-inducible zinc 
finger 1 36.71 

Allelic combinations  

 Different allelic combinations associated with the traits were identified in all 

subpopulations (Table 8). For maturity, a genotype with less than 90 days was considered as 
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early maturing, and genotypes maturing after 112 days as late maturing and rest as average. 

According to this, in population AYT, two allelic combinations (AAG and GAG) could be 

associated with early maturity. In Mesoamerican subpopulation, a total of 38 allelic 

combinations were found for early maturity. In Durango, all allelic combinations were associated 

with average days to maturity while in population AYT+PYT, all combinations obtained could 

be responsible for early maturity. 

 For seed yield, the range for high and low seed yield decided was 3040 and 2159 kg ha-1, 

respectively. Allelic combinations contributing to high yield were found only in Mesoamerica (5 

combinations) and PYT (1 combination) subpopulations. In the rest of sub-populations allelic 

combinations might be contributing to an average seed yield.  

 For plant height and 100-seed weight, cut off values were decided separately for the 

landraces as both landraces have different characteristic traits. For Durango, plant height more 

than 60 cm were considered as tall and plants less than 50 cm as short. For Mesoamerica sub-

population, 50 – 60 cm was decided as average range for plant height. For sub-populations AYT, 

PYT, and AYT+PYT the range for short and tall plant was 50 cm and 59 cm respectively. Based 

on these cut off values, all combinations in Durango and Mesoamerica sub-populations were 

thought to be responsible for average plant height. In AYT and PYT sub-populations, only one 

allelic combination contributed to taller plants and the remaining combinations with average 

plant height. For AYT+PYT sub-population, 2 allelic combinations contributed to plants with 

taller height and 2 combinations were found to be associated with short plants.  

 Similarly for 100-seed weight, the cutoff values were 21g - 40g for AYT, PYT and 

AYT+PYT, 36g – 42g for Durango and 19g - 22g were for Mesoamerica populations. Allelic 

combination, obtained for genotypes of AYT, PYT, AYT+PYT and Mesoamerica were found to 
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be associated with an average seed weight. While in Durango, one combination was found that 

could be responsible for higher seed weight.  

Table 9. Allelic combinations observed in all markers for all agronomic traits in AYT. 

Trait 

(AYT) Combinations  

No. 

Obs. Minimum Maximum Mean  

Std. 

Dev.  

 Maturity AAG 1 75 75 75 . Early  

(days) GAG 37 76 104 80 6 Early 

 GAA 15 77 108 96 14 Average 

 AGA 12 78 106 102 8 Average 

 AGG 7 82 110 102 9 Average 

 GGG 11 77 113 103 13 Average 

 GGA 48 79 111 105 5 Average 

 AAA 5 102 108 106 2 Average 

        

Seed Yield  AA 22 1657 2662 2109 288 Low  

(kg ha-1) AG 7 1814 2509 2343 248 High  

 GA 44 1960 2927 2378 231 High  

 GG 63 1939 3390 2779 350 High  

        

100-Seed  AAA 6 19 22.7 20.9 1.4 Low  

Weight (g) GAG 6 18.8 20.5 19.8 0.6 Low  

 AAG 44 17.8 24.5 20.8 1.5 Low  

 AGG 18 19.1 24.3 21.7 1.4 Low  

 GAA 2 24.4 41.1 32.8 11.8 Average 

 AGA 32 19 44.8 33.6 6.8 Average 

 GGA 28 19 41.9 35.7 5.5 Average 

        

Plant  AA 11 50 62 56 4 Average  

Height AC 106 47 63 54 3 Average 

(cm) GC 9 53 62 57 3 Average 

 GA 10 53 64 60 3 Tall 

The marker order that was selected to determine allelic combination were in a sequence of: 

Maturity: sc00789ln147969_135375_A_G, sc00055ln737569_432814_C_T, 

sc00015ln1350335_1191524_C_T.  

Seed yield: sc00675ln170111_135617_A_G, sc00853ln138233_81612_G_A.  

100-seed weight: sc00293ln329559_110683_C_T, sc00055ln737569_432814_C_T, 

sc00015ln1350335_515184_A_G.  

Plant height: sc00268ln345453_135128_C_T, sc08776ln2265_1282_A_C. 
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Table 10. Allelic combinations observed in all markers for all agronomic traits in Durango. 

Trait (Durango) Combinations 
No. 

Obs. 
Minimum Maximum Mean 

Std. 

Dev 
  

Maturity (days) AA 45 106 111 109 4 Average 

 GA 8 113 113 113 0 Late  

 AG 71 101 108 105 5 Average 

 GG 2 108 110 109 1 Average 

        

Seed Yield  A 45 1807 3423 2652 376 High  

(kg ha-1) C 81 1394 3565 2397 410 High  

        

100-Seed  AA 45 27.2 44.8 35.4 4.9 Low 

Weight (g) AG 6 22.9 39.7 31.8 6.8 Low 

 GG 4 29.1 34.2 32.2 2.4 Low 

 GA 71 24.9 43.1 37.4 3.2 Low 

        

Plant Height  A 103 41 66 56 4 Average 

 (cm) G 23 52 69 58 4 Average 

The marker order that was selected to determine allelic combination were in a sequence of: 

Maturity: sc00382ln273856_226597_C_T, sc00186ln436341_356682_A_G.  

Seed yield: sc00013ln1423374_1157977_A_C.  

100-seed weight: sc00038ln842375_617118_G_A, sc00324ln307318_62459_C_T  

Plant height: sc00384ln271106_234031_C_T.   
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Table 11. Allelic combinations observed in all markers for all agronomic traits in PYT. 

Trait (PYT) Combinations  
No. 

Obs. 
Minimum Maximum Mean Std. Dev   

Seed  GGCA 2 1394 1714 1554 226 Low 

Yield (kg ha-1) GACA 2 1467 2078 1772 432 Low 

 GGAG 2 2033 2167 2100 95 Low 

 GAAA 10 1865 2598 2255 222 Average 

 GGAA 3 2234 2595 2468 203 Average 

 AGAA 17 2177 3017 2532 199 Average 

 GAAG 2 2542 2699 2621 111 Average 

 AAAA 19 1837 3565 2704 342 Average 

 AGAG 2 2669 2755 2712 61 Average 

 AAAG 13 2684 3423 3120 255 High 

        

100-Seed  A 61 24.9 44.7 36 4.6 Average 

Weight (g) G 11 32.5 42 37.3 3.1 Average 

        

Plant Height  ACG 3 41 52 48 6 Short 

(cm) GCG 2 50 59 54 6 Average 

 AAA 2 56 56 56 0 Average 

 ACA 21 52 65 56 4 Average 

 GCA 22 53 63 58 3 Average 

  GAA 22 55 69 60 4 Tall 

The marker order that was selected to determine allelic combination were in a sequence of: 

Seed yield: sc02995ln26285_839_A_G, sc00090ln635406_393133_G_A, 

sc00358ln289292_188590_G_T, sc00014ln1397360_651244_G_A.  

100-seed weight: sc00T91ln330179_T5T411_G_A.  

Plant height: sc00387ln270001_24153_C_T, sc00296ln326650_106196_C_A, 

sc00187ln435150_46434_T_C. 
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Table 12. Allelic combinations observed in all markers for all agronomic traits in AYT+PYT.  

Trait 

(AYT+PYT) 
Combinations  

No. 

Obs. 
Minimum Maximum Mean 

Std. 

Dev 

 

Maturity  AC 86 77 113 95 25 Early  

(days) CC 60 77 113 95 25 Early 

 AA 31 75 107 91 22 Early 

 CA 31 77 108 92 22 Late  

        

Seed Yield AG 71 1394 3181 2316 363 Average  

(kg ha-1 ) CG 34 1467 3565 2547 348 Average 

 AA 46 1807 3423 2608 372 Average 

 CA 57 1939 3390 2771 387 Average 

        

100-Seed  ACA 41 17.8 24.5 20.7 1.6 Low  

Weight (g) CCA 18 18.9 38.8 22.1 4.5 Average 

 ACC 18 19.1 32.7 23.2 4.1 Average 

 CCC 30 19.0 39.7 28.6 5.8 Average 

 CAA 3 27.2 41.1 34.9 7.1 Average 

 AAC 4 32.5 38.1 36.4 2.6 Average 

 CAC 94 22.9 44.8 37.5 3.7 Average 

        

Plant Height  GA 138 41 65 54 3 Average 

(cm) GC 35 51 65 58 3 Average 

 AC 25 53 66 60 3 Tall  

  AA 10 56 69 60 4 Tall  

The marker order that was selected to determine allelic combination were in a sequence of: 

Maturity: sc00853ln138233_81612_G_A, sc00055ln737569_432814_C_T.  

Seed yield: sc00853ln138233_81612_G_A, sc00013ln1423374_1157977_A_C.  

100-seed weight: sc00835ln140787_33631_T_C, sc01014ln116695_42911_C_T, 

sc00055ln737569_432814_C_T.  

Plant height: sc00296ln326650_106196_C_A, sc00211ln404231_317008_A_G. 
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Table 13. Allelic combinations observed in all markers for all agronomic traits in Mesoamerican. 

Trait 

(Mesoamerican) 
Combinations  

No. 

Obs. 
Minimum Maximum Mean 

Std. 

Dev 
  

Seed Yield  GCGGAAG 1 2082 2082 2082 . Low 

(kg ha-1) AAAAGAG 1 2091 2091 2091 . Low 

 GCAGACG 1 2115 2115 2115 . Low 

 GCAGGAG 3 1943 2361 2132 212 Low 

 GAAGACA 1 2185 2185 2185 . Average  

 GAAGGAG 2 1939 2496 2218 394 Average  

 GCAGAAG 8 2033 2721 2270 211 Average  

 GCGGAAA 2 2284 2440 2362 110 Average  

 AAAGACA 1 2364 2364 2364 . Average  

 GCAGAAA 14 2068 2807 2381 198 Average  

 GCGGGAG 3 2230 2578 2425 177 Average  

 GAAGGCA 3 2232 2804 2520 286 Average  

 GCAGGAA 1 2586 2586 2586 . Average  

 ACAGGAA 6 2363 2754 2607 157 Average  

 GCAGACA 1 2623 2623 2623 . Average  

 GCGGGAA 4 2268 3012 2726 327 Average  

 ACGGGCA 1 2920 2920 2920 . Average  

 GCAGGCA 2 2824 3022 2923 139 Average  

 GCGGGCA 4 2664 3223 2959 230 Average  

 GCAAGCA 3 2761 3337 2970 319 Average  

 GAGAGCA 2 2878 3098 2988 156 Average  

 ACGAGCA 7 2852 3190 3023 100 Average  

 GCGAGAA 2 2720 3390 3055 474 High 

 ACAAGCA 3 2914 3216 3071 152 High 

 GCGAGCA 4 2912 3372 3078 201 High 

 ACGAGAA 1 3322 3322 3322 . High 

 GAAAGCA 1 3362 3362 3362 . High 

        

100-Seed  AA 53 17.8 24.5 20.5 1.4 Average 

Weight (g) AC 6 20.2 22.7 21.5 1 High  

 GA 15 19.1 24.3 21.5 1.6 High  

 GC 8 19.6 25.9 23.1 1.9 High  

        

Plant Height  A 6 47 55 51 3 Average  

 (cm) G 76 48 63 55 3 Average  

The marker order that was selected to determine allelic combination were in a sequence of: 

Seed yield: sc00174ln464616_175582_G_A, sc01016ln116177_107973_T_G, 

sc00779ln149779_105659_A_G, sc02498ln35994_11115_G_A, sc00853ln138233_81612_G_A, 

sc00015ln1350335_1224361_T_G, sc00119ln552178_203683_C_T.  

100-seed weight: sc00327ln306820_257821_C_T, sc00071ln681296_466314_A_C.  

Plant height: sc01058ln111657_20684_G_A. 
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Table 13. Allelic combinations observed in all markers for all agronomic traits in Mesoamerican. 

(continued) 

Trait 

(Mesoamerican) 
Combinations  

No. 

Obs. 
Minimum Maximum Mean 

Std. 

Dev 

 

Maturity (days) AGGGAGA 1 75 75 75 . Late 

 AGAGGAA 1 77 77 77 . Late 

 CAAAGAA 1 77 77 77 . Late 

 CGAGAGA 1 77 77 77 . Late 

 AAGGAGA 1 77 77 77 . Late 

 AGGGGAA 1 77 77 77 . Late 

 AAAGAAC 1 78 78 78 . Late 

 CGAGGGC 1 78 78 78 . Late 

 AAAGAAA 1 78 78 78 . Late 

 AAAGAGA 19 76 80 78 1 Late 

 CGAGAGC 2 77 79 78 1 Late 

 AAAGGAA 1 78 78 78 . Late 

 AGAGAGC 1 78 78 78 . Late 

 AGAGGGC 1 79 79 79 . Late 

 CAAGAGA 1 79 79 79 . Late 

 AGAGGGA 1 79 79 79 . Late 

 AAAGGGA 7 79 82 80 1 Late 

 CGGGAGA 1 82 82 82 . Late 

 CGAGGAA 2 78 104 91 18 Late 

 CAGGGGA 4 77 106 92 15 Average 

 AGGAGAA 1 102 102 102 . Average 

 CGGGGAA 1 102 102 102 . Average 

 CGAAGAC 2 103 104 103 1 Average 

 CAGGGAA 1 104 104 104 . Average 

 CGGAGAC 7 103 107 104 1 Average 

 CAAAGAC 3 103 107 105 2 Average 

 CGAGGAC 2 104 106 105 2 Average 

 AAGAGAC 1 105 105 105 . Average 

 CGGGGAC 1 105 105 105 . Average 

 CAGAGAC 5 105 106 106 1 Average 

 CAGGGAC 4 105 108 106 1 Average 

 AAAAGGC 1 107 107 107 . Average 

 CAGAGAA 2 107 107 107 0 Average 

 CAAAGGC 1 107 107 107 . Average 

  CAAGGAC 1 108 108 108 . Average 

The marker order that was selected to determine allelic combination were in a sequence of: 

Maturity: sc00893ln132397_78914_G_T, sc00183ln440474_149829_C_T, 

sc00779ln149779_105659_A_G, sc02498ln35994_11115_G_A, sc00853ln138233_81612_G_A, 

sc00262ln351368_226896_C_T, sc00015ln1350335_1224361_T_G. 
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DISCUSSION 

 Genome wide association mapping (GWAS) is one of several approaches developed to 

identify marker-trait associations taking advantage of linkage disequilibrium. This approach was 

initially used in human and animals and has been adapted in plants for different purposes. In this 

study, GWAS is used to identify statistical association between markers across the whole 

genome and quantitative traits of agronomic/economic interest using genotypes from a breeding 

program.  

 The population used in this experiment consisted of advanced breeding lines and 

preliminary breeding lines from the NDSU dry bean breeding program.  These are the superior 

lines that are selected and developed after multiple testing and re-evaluations. These breeding 

lines involve collection of genotypes from different parents that represents the genetic diversity 

within the breeding program. Using these lines from the breeding program as a population for 

GWAS, instead of using diversity panels is a new practical approach for the development of 

cultivars which also proves that breeding lines can be used for genome wide studies and QTL 

studies as mapping populations and can save money. These lines contain higher genetic diversity 

and high mapping resolution that will allow to select more efficient markers associated with 

breeder-targeted traits, and to use them directly in MAS once QTLs are identified in much less 

time. It can give more robust results for the maker- agronomic trait associations in the superior 

lines currently being selected and developed in North Dakota. In this way, the breeding 

populations can be used for cultivar development and genetic studies simultaneously. 

 GWAS was conducted, combining AYT and PYT together and separately as PYT, AYT, 

and based on races Mesoamerican and Durango using polymorphic SNP markers. The breeding 

lines were sub-divided into groups to cross check whether or not significant markers discovered 
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in one sub-population are also significantly associated with the same trait in another 

subpopulation and to have better understanding about genetic diversity and relatedness among 

varieties of beans within both Mesoamerican races.  

 Several studies have been made in the recent years to find significant markers and 

candidate genes associated with seed yield, maturity, seed weight, and plant height by using QTL 

mapping utilizing different marker systems. Seven populations consisting of Mesoamerican gene 

pools were used in QTL mapping, for seed weight, using seed protein-based markers. Phs locus 

was found to be associated with 100-seed weight at p < 0.001 in an experiment conducted by 

Bitocchi et al. (2011).  

 In this analysis, a QTL region associated with days to maturity, identified on the 

chromosome 7 and chromosome 9 may be similar to the ones observed in earlier studies. For 

example, in a study conducted to identify genetic loci associated with 14 quantitative traits in 

common bean using RAPD, SSR, and AFLP markers, found the nearest locus for days to 

maturity and seed yield  on chromosome 9 (Tar’an et al., 2002).  Another QTL region for days to 

maturity was identified from 96 RILs from a ‘Jaguar’/115M black bean cross, using SSR, SRAP, 

SCAR and TRAP was identified on chromosome 7 (Wright et al., 2011). Significant association 

of SSR markers with maturity and seed weight on chromosome 7 and 8 was detected in a study 

conducted with Bat93 x Jalo EEP558 population (Reinprecht et al., 2012).  Few significant 

markers associated with days to maturity, yield, plant height, and 100-seed weight were 

identified on chromosome 7, chromosome 8, and chromosome 9 using a diverse panel of a 

Mesoamerican dry bean population and 10k SNP chip (Moghaddam, personal communication).  

13 QTL were found using SCAR markers associated with seed weight, plant height, and seed 

yield in 157 BC2F3:5 introgression lines generated from the cross between Colombian large red-
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seeded commercial cultivar ICA-Cerinza and a wild common bean accession, G24404 (Blair et 

al., 2006). In earlier studies, most of the QTL regions were already identified on chromosomes 7 

and chromosome 9, this analysis found two new QTL region for both traits i.e. seed yield and 

days to maturity on same chromosomes. In addition to this, breeding-specific significant markers 

(for all four traits) and candidate genes (for days to maturity and seed yield) within the QTL 

region were identified in this study.   

 In the present GW Association Study, many genetic components were discovered which 

could be responsible and involved in improving these agronomic traits of dry beans. Some of the 

significant markers that were identified in GWAS were associated with more than one trait of 

interest and were present in more than one subpopulation, indicating the consistency of the 

marker- trait association. Across all populations, 2 new QTL and 13 significant markers for seed 

yield, 11 significant markers for maturity, 9 significant markers for 100-seed weight, and 9 

significant markers for plant height were detected. These newly identified markers, QTL, 

candidate genes within these QTL can be directly used in MAS.  

Candidate genes  

 Candidate gene analysis was done within estimated QTL identified for seed yield and 

days to maturity. This analysis was done by targeting the genes with already known functions. 

This analysis was proven successful in pine (Pinus spp.) (Gonzalez-Martinez et al. 2007) and 

maize (Wilson et al., 2004; Weber et al., 2007), where genes responsible for variation in wild 

and cultivated species were identified.  

There are three stages that are involved in seed development. These are embryogenesis, 

endosperm development and seed maturation in which cell division starts in the embryo. During 

seed maturation it undergo embryo growth, seed filling, desiccation phase, and at end to 
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quiescent state. During desiccation phase, dormancy is included which indicate seed germination 

time. Seed maturation is a process that starts from ovule fertilization and after many 

morphological, physical, physiological and biochemical changes develops into an independent 

seed (Miller et al., 1999). Studies showed that seed coat is an important factor that influences 

embryo growth by interfering water uptake, gas exchange, and diffusion of endogenous 

inhibitors (Watkins et al., 1983). Similarly, many factors are responsible for increase and 

decrease in seed yield. It can be due to environment effect, diseases, biotic and abiotic stress or 

can be caused by biochemical changes. These previous studies suggest that the genes identified 

in this research could be responsible for either maturity or yield in dry beans. 

A total of six genes were found to be associated with seed yield and days to maturity. For 

maturity, two candidate genes were found within the QTL region that was flanked by three 

markers sc00015ln1350335_1210315_C_T_25546591, 

sc00015ln1350335_1191524_C_T_25527800 and sc00015ln1350335_1224361_T_G_25560637 

on chromosome 9. The first gene estimated within this QTL region, is a transducin family 

protein / WD-40 repeat family protein. WD-40 proteins are found in both animals and plants 

representing a large family in eukaryotes. A highest level of this single copy gene (lacking 

introns) is expressed in seed coats. WD-40 encodes open reading frames (343 amino acids) 

(Pang et al., 2009) and consists of 4 to 16 repeating units, which assembles to form a circularized 

beta propeller structure. These repeating units comprise for 40 amino acids core which ends with 

tryptophan- aspartic acid (WD) (Smith et al., 1999, Ramsey et al., 2005, Ito et al., 2001). In 

Arabidopsis, GIGANTUS1 (GTS1), a member of WD-40 protein which was highly expressed 

during seed germination by interacting with ribosomal proteins to regulate cell growth (Gachomo 

et al., 2014). This gene is found mainly in seed embryo, ovule, and endosperm.  In flax or linseed 
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(Linum usitatissimum L.), LuWD40-1 genes which encodes WD-40 protein was expressed 

during vegetative stages found responsible for the regulation of growth and pollen viability 

(Kumar et al., 2013). WD-40 protein was also identified in metabolic pathway and 

developmental stages of sugar beet (Beta vulgaris L.) (Bellin et al., 2007) and rice (Huang et al., 

2008). Expression of MtWD-40 gene was also observed in Barrel Clover (Medicago truncatula 

L.) during seed development. It was found that shortage of this can block accumulation of many 

compounds such as mucilage, phenolic and flavonoids in the seed. (Pang et al., 2009).  

  Second candidate gene is a salt-inducible zinc finger 1 gene which could be associated 

with maturity. NFX1-type is one of several zinc protein domain that expresses MHC II gene, is 

involved in many aspects of growth and development of many crops by managing salicylic acid, 

reactive oxygen species, and abscisic acid responses under abiotic and biotic stress conditions 

(Ciftci-Yilmaz et al., 2007). Gene GhZFP1 in zinc finger protein 1 in cotton OsOSAPI gene 

(isolated from rice) in transgenic tobacco played central role in stress signaling (Gua et al., 2009) 

and in tomato it conferred salinity tolerance (Mukhopadhyay et al., 2004).  Zinc finger proteins 

are found in eukaryotes and act as transcription factors in many other plants. Motifs of zinc 

finger protein are found in proteins are known as TFIIIA, which can bind to DNA through amino 

acid interaction of DNA base pair with zinc finger (Takatsuji et al., 1988). This DNA binding 

domain has leucine rich repeats sites that determine the regulatory function in stress conditions. 

Based on structure and functions of zinc finger protein is found in different types such as C2H2, 

C8, C6, C3HC4, C2HC, C2HC5, C4, C4HC3 and CCCH where H is histidine and C is cysteine 

(Miller et al., 1985).  

 For both seed yield and maturity, few genes were identified on the same QTL that was 

flanked between markers sc00853ln138233_81612_G_A_292173871 and 
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sc00701ln164739_86002_G_A_269264751 on chromosome 7.  Gene ribosomal protein S15a is 

involved as a growth regulator in Arabidopsis which is divided into type I and type II. Type I is a 

ribosomal cytosolic component whereas type II position is unclear between cytosolic and/or 

mitochondrial ribosomes. In 2009, Szick-Miranda investigated that type II gene is a regulator for 

translational activity. Significant difference of ribosomal protein S15a regulation was observed 

in seed maturity, seed embryo and desiccation between two cultivars of rapeseed (Brassica 

napus L.) (AC Excel and DH12075) (Fei et al., 2006). The results suggested that expression of 

this gene changes during secondary dormancy and thus are involved in seed maturation. 

 Isopentenyltransferase (IPT) gene a key enzyme in the cytokinin biosynthesis is 

identified for seed yield and maturity on significant QTL. In earlier studies, expression of this 

protein in peanut (Arachis hypogaea L.), rice, and tobacco (Nicotiana tabacum L.) displayed 

increase in photosynthetic rates, stomatal conductance, and transpiration under drought 

conditions resulting in a seed yield increase (Hua et al., 2011). Another research done on 

salinized tomato (Solanum lycopersicum L.) showed 30% increase in fruit yield due to that the 

involvement of IPT gene.  Transport of cytokinin from root to shoot maintain stomatal 

conductance, thereby, delay accumulation of toxic Na+ ions and increasing fruit yield (Michell et 

al., 1984).  

 Gene AT5G52210 encodes a GTP binding protein which play important role in signal 

transduction and cell differentiation is estimated for seed yield and maturity. A study conducted 

in maize plants, found that this gene contributes to, many agronomic traits including seed yield 

(Kang et al., 1995). Hydroxyproline-rich glycoprotein family protein (HRGP), identified as a 

candidate gene in this study also showed its contribution in many yield traits in other plants. This 

protein supports the cellular organelles of plant by non-covalent interaction between protein 
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chains. A chain extension is accumulated during pathogen attack as a self-defense (Michael, 

1994). The role HRGP in plant resistance was studied previously in melon and beans by Connell 

et al., in 1990. In maize, expression of this gene is found in immature embryos, ovaries and 

nonvascular cell (Josè-Estanyol et al., 1992).  
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CONCLUSIONS 

 The study shows that sub-populations from a breeding program can also be used for 

genome wide studies simultaneously with cultivar development. Using these preliminary and 

advanced breeding lines from these breeding populations we were able to identify many 

significant markers and possible candidate genes that could be associated with the agronomic 

traits studied.  

GWAS with five different subpopulations confirmed that markers discovered were 

significantly associated with the same trait in another subpopulation. After stepwise regression, a 

considerable set of 13 SNP markers linked to seed yield, 11 SNPs for maturity, 9 SNPs for 100- 

seed weight and 9 SNPs for plant height have been identified. One significant SNP marker 

named sc00853ln138233_81612_G_A_292173871 on chromosome 7 was found to be associated 

with both seed yield and maturity. Another marker sc00055ln737569_432814_C_T_61008497, 

on chromosome 9 was identified to be associated with both 100- seed weight and maturity. 

Similarly, 2 SNP markers on chromosome 7 associated with seed yield, 2 SNP markers on 

chromosome 7 and chromosome 9 for maturity, 1 SNP markers on chromosome 8 for plant 

height and 1 SNP on chromosome 9 for 100- seed weight were commonly observed in more than 

one subpopulations increasing the likelihood of the marker trait association (Appendix 1). SNP 

markers that are identified to be significantly associated with more than one trait or found in 

more than one subpopulation, could be used directly in MAS for a particular race, AYT or PYT.  

Based on the PV annotation data, GWAS identified QTL – SYMAT7 for two agronomic 

traits, seed yield and maturity, on chromosome 7 and also QTL- MAT9 for days to maturity on 

chromosome 9 using breeding populations. Within these QTL, ribosomal protein S26e family 

protein, GTP-binding protein 1, WD-40 repeat family protein, and salt-inducible zinc finger 1 
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were identified as candidate genes for days to maturity. For seed yield, IPT and GTP-binding 

protein 1 were identified as candidate genes.  A high throughput study (e.g. RNA-Seq) on the 

expression of these genes could help the breeders to have a better understanding of the role of 

these genes into these traits of economic importance.  

Few of the allelic combinations identified in this study represented that these 

combinations have significant difference on the extreme of phenotypes. 

All of these genetic components (markers, candidate genes, and allelic combinations) 

identified could now be used to understand genetic basis of these traits by exploring their 

biological pathway that is expected to be responsible or related for a particular trait. Later these 

genes can be also used to find synteny with other related crops, or can be transferred to different 

crops to manipulate the trait of interest. Thus using lines from breeding populations for GWAS 

and estimated significant markers and candidate genes associated with trait of interest could help 

to develop better progenies in more efficient way and in short time period.  
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APPENDIX. SIGNIFICANT MARKER TABLE 

Statistical summary of single nucleotide polymorphisms (SNPs) significantly associated with four agronomic traits in five different 

populations. 

Ch. and Mbp is the chromosomes number and position of the significant marker respectively. 

Log10P is log10 P- value of the SNP. 

A1 and A2 represent allele-1 and allele-2 

N is number of alleles observed in that marker. 

Diff. is difference between the means of both alleles calculated. 

R is the value of R- square represented in percentage. 

Stepwise shows all the markers that were included in stepwise regression model. 

Markers (PYT) Ch Mbp Log10P A1 N Mean A2 N Mean Diff   R2  MAF Step FDR_p 

           (%)  wise  

Seed Weight              

sc00291ln330179_252411_G_A_174341808 3 33.56 3.89 A 67 58 G 5 50.5 8 1.24 15.28  0.366 

               

Yield               

sc02995ln26285_839_A_G_423910252 5 2.44 3.97 A 51 2753 G 21 2193 560 34.75 29.17 Yes 0.076 

sc00090ln635406_393133_G_A_84898951 5 40.36 3.19 A 46 2680 G 26 2430 250 7.74 36.11 Yes 0.2574 

sc00358ln289292_188590_G_T_194953953 6 19.79 5.08 A 68 2644 C 4 1663 981 27.07 5.56 Yes 0.0111 

sc00014ln1397360_651244_G_A_23590160 7 0.88 3.37 A 53 2472 G 19 2917 445 20.65 26.39 Yes 0.1985 

sc00006ln1798808_286665_A_G_10518130 10 41.02 6.97 A 45 2463 G 27 2801 339 14.42 37.5  0.0003 

sc00006ln1798808_212015_C_A_10443480 10 40.95 4.93 A 45 2474 C 27 2783 309 12.01 37.5  0.0111 

sc00006ln1798808_183339_A_G_10414804 10 40.92 3.76 A 29 2779 G 43 2462 317 12.97 40.28  0.0974 

               

Plant Height              

sc00387ln270001_24153_C_T_202900033 4 38.82 3.44 A 26 55 G 46 59 4 16.73 36.11 Yes 0.4398 

sc00187ln435150_46434_T_C_135198657 8 59.45 4.02 A 67 58 G 5 51 8 19.79 6.94 Yes 0.2657 

sc00296ln326650_106196_C_A_175840672 8 52.73 3.28 A 24 60 C 48 56 4 17.23 33.33 Yes 0.4398 

sc01406ln80070_59175_G_A_350366930 11 5.36 3.2 A 44 56 G 28 60 3 15.49 38.89  0.4398 
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          Significant marker table (continued). 
Markers (AYT+PYT) Ch Mbp Log10P A1 N Mean A2 N Mean Diff   R2  MAF Step FDR_p 

           (%)  wise  

Seed Weight              

sc00835ln140787_33631_T_C_289614938 4 0.51 3.65 G 145 33.7 A 63 22.4 11.3 39.7 30.29 Yes 0.341 

sc01014ln116695_42911_C_T_312567327 6 11.58 3.18 A 107 23.6 A 101 37.4 13.8 70.1 48.56 Yes 0.503 

sc02958ln26822_20802_C_T_422948602 6 11.46 3.18 G 107 23.6 A 101 37.4 13.8 70.1 48.56  0.503 

sc00055ln737569_432814_C_T_61008497 9 29.79 4.09 G 146 33.9 A 62 21.8 12.1 44.9 29.81 Yes 0.245 

Yield               

sc00675ln170111_135617_A_G_264966309 2 42.07 3.25 G 160 2580 A 48 2421 158 4.64 23.08  0.433 

sc00013ln1423374_1157977_A_C_22673519 7 42.38 4.07 C 105 2576 A 103 2509 67 14.2 49.52 Yes 0.253 

sc00853ln138233_81612_G_A_292173871 7 39.3 3.78 A 117 2570 G 91 2508 62 9.73 43.75 Yes 0.253 

sc01477ln74590_51381_G_A_355854774 9 0 3.25 A 91 2570 G 117 2522 47 4.82 43.75  0.433 

Maturity               

sc00611ln188451_70990_T_C_253445316 4 45.79 3.07 G 196 64 A 12 53 11 2.49 5.77  0.368 

sc00002ln2152649_1976120_C_A_4148171 7 51.59 5.36 C 71 79 A 137 55 24 1.29 34.13  0.013 

sc00853ln138233_81612_G_A_292173871 7 39.3 4.46 G 91 76 A 117 53 24 5.47 43.75 Yes 0.053 

sc00862ln137460_111453_C_T_293443775 8 4.92 3.46 G 25 102 A 183 58 44 3.79 12.02  0.176 

sc00862ln137460_62873_C_T_293395195 8 4.87 3.46 A 183 102 G 25 58 44 3.79 12.02  0.176 

sc00789ln147969_135375_A_G_283059614 8 4.79 3.46 G 183 58 A 25 102 44 3.79 12.02  0.176 

sc00055ln737569_432814_C_T_61008497 9 29.79 4.29 A 146 56 G 62 81 25 44.4 29.81 Yes 0.053 

Plant Height              

sc00268ln345453_135128_C_T_166424412 2 38.49 4.39 G 36 59 A 172 55 4 16 17.31  0.062 

sc00090ln635406_285885_T_C_84791703 5 40.25 3.04 G 175 55 A 33 60 4 16.1 15.87  0.609 

sc00296ln326650_106196_C_A_175840672 8 52.73 4.83 C 173 55 A 35 60 5 20.7 16.83 Yes 0.045 

sc00211ln404231_317008_A_G_145539365 n/a n/a 3.07 G 60 59 A 148 55 4 17.9 28.85 Yes 0.609 
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         Significant marker table (continued). 
Markers (Durango) Ch Mbp Log10P A1 N Mean A2 N Mean Diff   R2  MAF Stepwise FDR_p 

           (%)    

Yield               

sc00013ln1423374_1157977_A_C_22673519 7 42.38 3.38 A 45 2652 C 81 2397 255 8.72 35.7 Yes 0.9088 

Maturity               

sc00382ln273856_226597_C_T_201742336 8 11.92 3.04 A 116 106 G 10 111 5 21.4 7.94 Yes 0.5906 

sc00186ln436341_356682_A_G_135072564 10 43.04 3.36 A 53 109 G 73 105 4 46.5 42.1 Yes 0.5906 

sc00725ln159840_35413_C_T_273109418 11 49.62 3.02 A 10 104 G 116 106 2 5.82 7.94  0.5906 

Plant Height              

sc00384ln271106_234031_C_T_202297427 8 54.69 3.29 A 103 56 G 23 58 2 4.02 18.3 Yes 0.4277 

sc00384ln271106_266158_T_C_202329554 8 54.72 3.04 A 101 56 G 25 58 2 2.76 19.8  0.4277 

sc01132ln102687_11305_T_C_325428675 8 54.76 3.04 A 101 56 G 25 58 2 2.76 19.8  0.4277 

sc01782ln58201_36433_A_G_375870656 8 54.89 3.04 A 101 56 G 25 58 2 2.76 19.8  0.4277 

Seed Weight              

sc00563ln203201_111347_G_A_244031074 2 37.16 3.18 A 74 36.2 G 52 36.4 0 0.02 41.3  0.3692 

sc00038ln842375_617118_G_A_47869458 2 46.34 3.11 A 51 35.0 G 75 37.2 2 6.35 40.5 Yes 0.3692 

sc00038ln842375_668515_C_T_47920855 2 46.37 3.11 A 51 35.0 G 75 37.2 2 6.35 40.5  0.3692 

sc00038ln842375_820428_T_C_48072768 2 46.52 3.11 A 75 37.2 G 51 35.0 2 6.35 40.5  0.3692 

sc00335ln300518_284390_G_A_188281336 3 6.48 4.04 A 14 35.3 G 112 36.4 1 0.69 11.1  0.2592 

sc00236ln366267_289928_C_T_155168008 3 9.25 3.02 A 67 37.0 G 59 35.5 2 3.21 46.8  0.3926 

sc00324ln307318_62459_C_T_184705118 9 13.31 3.7 A 116 36.6 G 10 32.0 5 8.6 7.94 Yes 0.2837 
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          Significant marker table (continued).   
Markers (Mesoamerican) Ch Mbp Log10P A1 N Mean A2 N Mean Diff   R2  MAF Step FDR_p 

                      (%)   wise   
Plant Height              

sc01058ln111657_20684_G_A_317550805 5 4.88 3.37 A 76 55 G 6 57 2 14.6 7.32 Yes 0.65 

Yield          0     

sc00174ln464616_175582_G_A_129497046 1 0.29 3.32 A 20 95 G 62 88 7 9.41 24.39 Yes 0.021 

sc00240ln364462_178258_A_C_156519318 2 3.57 4.72 A 50 89 C 32 92 3 0.18 39.02  0.004 

sc00038ln842375_538437_G_A_47790777 2 46.26 4.54 A 7 86 G 75 90 4 4.4 8.54  0.004 

sc00038ln842375_519682_G_T_47772022 2 46.24 4.54 A 75 90 C 7 86 4 4.4 8.54  0.004 

sc00160ln486724_338720_T_C_122981651 2 44.64 4.46 A 74 90 G 8 88 2 3.52 9.76  0.004 

sc00025ln963649_327459_T_C_35785661 2 45.12 4.46 A 8 88 G 74 90 2 3.52 9.76  0.004 

sc00160ln486724_301841_G_T_122944772 2 44.61 4.46 A 74 90 C 8 88 2 3.52 9.76  0.004 

sc00160ln486724_325087_T_C_122968018 2 44.63 4.46 A 8 88 G 74 90 2 3.52 9.76  0.004 

sc00240ln364462_149197_T_C_156490257 2 3.6 4.24 A 31 92 G 51 89 4 0.6 37.8  0.006 

sc00113ln562714_437945_A_G_98726289 2 46.67 4.2 A 77 90 G 5 84 7 5.45 6.1  0.006 

sc00183ln440474_149829_C_T_133550778 2 26.24 3.73 A 55 89 G 27 92 4 0.35 32.93  0.013 

sc00240ln364462_172587_A_G_156513647 2 3.58 3.66 A 32 93 G 50 88 5 0.96 39.02  0.014 

sc00137ln512899_439414_C_T_111611698 2 25.85 3.6 A 25 93 G 57 89 4 0.39 30.49  0.015 

sc00137ln512899_106457_A_C_111278741 2 25.52 3.6 A 25 93 C 57 89 4 0.39 30.49  0.015 

sc00315ln315270_304275_C_A_182148417 2 41.39 3.34 A 76 90 C 6 87 4 3 7.32  0.021 

sc00301ln323982_220390_T_C_177581102 2 35.04 3.34 A 6 87 G 76 90 4 3 7.32  0.021 

sc01622ln65866_17143_G_A_365960311 2 5.76 3.33 A 44 87 G 38 93 6 2.91 46.34  0.021 

sc01016ln116177_107973_T_G_312865638 2 6.66 3.3 A 11 88 C 71 90 3 0.74 13.41 Yes 0.021 

sc00137ln512899_418822_T_G_111591106 2 25.83 3.26 A 56 89 C 26 93 4 0.76 31.71  0.021 

sc00485ln227615_200282_T_C_227438285 2 25.25 3.26 A 56 89 G 26 93 4 0.76 31.71  0.021 

sc00137ln512899_218410_G_A_111390694 2 25.63 3.26 A 26 93 G 56 89 4 0.76 31.71  0.021 

sc00137ln512899_266557_A_G_111438841 2 25.68 3.26 A 26 93 G 56 89 4 0.76 31.71  0.021 

sc00137ln512899_287286_T_G_111459570 2 25.7 3.16 A 28 93 G 54 89 4 0.65 34.15  0.021 

sc00137ln512899_401056_A_C_111573340 2 25.81 3.16 A 28 93 C 54 89 4 0.65 34.15  0.021 

sc00102ln598725_310499_T_C_92179296 2 26.85 3.16 A 5 83 G 77 90 7 3.35 6.1  0.021 

sc00118ln552338_522535_C_A_101600791 2 28.17 3.16 A 77 90 C 5 83 7 3.35 6.1  0.021 

sc00116ln556045_550252_C_T_100518331 2 28.04 3.16 A 5 83 G 77 90 7 3.35 6.1  0.021 

sc07321ln2788_2298_T_C_463763859 2 28.05 3.16 A 77 90 G 5 83 7 3.35 6.1  0.021 

sc00815ln144488_127459_G_T_286860988 2 28.73 3.16 A 77 90 C 5 83 7 3.35 6.1  0.021 

sc00116ln556045_416299_A_G_100384378 2 27.89 3.16 A 5 83 G 77 90 7 3.35 6.1  0.021 

sc00129ln528071_25869_C_A_107024247 2 13.63 3.16 A 21 82 C 61 93 11 17.2 25.61  0.021 

sc00137ln512899_112454_C_T_111284738 2 25.53 3.03 A 26 92 G 56 89 3 0.35 31.71  0.025 

sc00137ln512899_172990_C_T_111345274 2 25.59 3.03 A 26 92 G 56 89 3 0.35 31.71  0.025 

sc00137ln512899_252077_T_C_111424361 2 25.66 3.03 A 26 92 G 56 89 3 0.35 31.71  0.025 
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          Significant marker table (continued).   
Markers (Mesoamerican) Ch Mbp Log10P A1 N Mean A2 N Mean Diff   R2  MAF Step FDR_p 

                      (%)   wise   
Yield          0     

sc00079ln659676_90976_A_G_77428539 3 39.66 3.14 A 46 87 G 36 94 8 11.1 43.9  0.022 

sc00779ln149779_105659_A_G_281541703 4 43.58 3.16 A 51 84 G 31 100 16 21.9 37.8 Yes 0.021 

sc03228ln22219_1889_C_T_429548590 5 9.05 3.03 A 54 94 G 28 83 11 21.7 34.15  0.025 

sc00676ln169706_106063_G_A_265106866 5 4.71 3.01 A 55 93 G 27 83 10 18.7 32.93  0.026 

sc02498ln35994_11115_G_A_408566925 7 15.9 7.34 A 24 104 G 58 84 19 42.7 29.27 Yes 0 

sc00439ln246418_21317_T_C_216299710 7 14.46 7.34 A 58 84 G 24 104 19 42.7 29.27  0 

sc02331ln39589_2360_G_T_402247579 7 14.75 7.34 A 24 104 C 58 84 19 42.7 29.27  0 

sc01291ln88348_17155_C_T_340613748 7 15.78 7.34 A 24 104 G 58 84 19 42.7 29.27  0 

sc01865ln54877_32766_T_C_380556459 7 35.36 6.56 A 60 85 G 22 104 19 38.9 26.83  1.00E-04 

sc00002ln2152649_1976120_C_A_4148171 7 51.59 5.17 A 32 80 C 50 97 17 34.4 39.02  0.002 

sc00093ln620690_53709_G_A_86440192 7 45.01 4.55 A 29 97 G 53 86 11 19.1 35.37  0.004 

sc00260ln351626_25579_G_A_163521775 7 9.45 4.12 A 59 86 G 23 101 16 30.4 28.05  0.007 

sc00260ln351626_31611_G_A_163527807 7 9.45 4.12 A 59 86 G 23 101 16 30.4 28.05  0.007 

sc00853ln138233_81612_G_A_292173871 7 39.3 3.82 A 29 78 G 53 97 19 32.4 35.37 Yes 0.012 

sc00021ln1025434_384007_C_A_31860445 7 47.58 3.79 A 58 85 C 24 103 18 26.3 29.27  0.012 

sc00339ln298666_59263_T_C_189255570 7 47.12 3.79 A 58 85 G 24 103 18 26.3 29.27  0.012 

sc00021ln1025434_517061_G_A_31993499 7 47.71 3.69 A 61 86 G 21 102 17 22.7 25.61  0.014 

sc00021ln1025434_280672_C_A_31757110 7 47.48 3.43 A 59 85 C 23 103 18 24.3 28.05  0.021 

sc00093ln620690_104379_A_G_86490862 7 44.95 3.22 A 31 96 G 51 87 9 15.7 37.8  0.021 

sc00067ln694271_455158_G_A_69620416 7 2.66 3.12 A 67 87 G 15 102 14 16.2 18.29  0.022 

sc00327ln306820_257821_C_T_185821957 7 10.82 3.07 A 59 86 G 23 100 14 26.6 28.05  0.024 

sc00071ln681296_590679_G_A_72513690 8 56.86 3.4 A 55 92 G 27 87 5 4.63 32.93  0.021 

sc00071ln681296_656721_T_C_72579732 8 56.92 3.4 A 55 92 G 27 87 5 4.63 32.93  0.021 

sc00068ln689895_606631_T_C_70466160 8 57.03 3.39 A 24 92 G 58 89 3 8.22 29.27  0.021 

sc00015ln1350335_1224361_T_G_25560637 9 36.71 3.79 A 48 83 C 34 100 18 33.7 41.46 Yes 0.012 

sc00015ln1350335_1191524_C_T_25527800 9 36.68 3.43 A 35 100 G 47 83 17 31 42.68  0.021 

sc00805ln146292_74900_C_T_285352806 9 19 3.13 A 34 96 G 48 86 10 25.4 41.46  0.022 

sc00015ln1350335_1210315_C_T_25546591 9 36.7 3.11 A 33 100 G 49 83 17 31.2 40.24  0.022 

sc00119ln552178_203683_C_T_101834277 10 38.18 4.88 A 63 93 G 19 80 14 30.4 23.17 Yes 0.004 

sc00309ln320131_212493_G_A_180150638 10 40.62 4.59 A 41 86 G 41 94 8 20.1 50  0.004 

sc01642ln64808_3042_T_C_367252976 10 32.65 4.21 A 18 81 G 64 93 12 22.3 21.95  0.006 

sc01960ln51199_20704_C_T_385572663 10 32.13 4.21 A 18 81 G 64 93 12 22.3 21.95  0.006 

sc01321ln86834_73124_C_A_343299461 10 32.73 4.21 A 18 81 C 64 93 12 22.3 21.95  0.006 

sc01573ln68558_33641_T_C_362684843 10 17.22 3.34 A 60 93 G 22 82 11 19.3 26.83  0.021 

sc01473ln75007_52419_A_G_355556346 10 17.31 3.3 A 22 82 G 60 93 11 18.8 26.83  0.021 

sc01698ln61778_39107_G_A_370834562 10 12.63 3.2 A 62 93 G 20 82 10 16.9 24.39  0.021 
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          Significant marker table (continued).   
Markers (Mesoamerican) Ch Mbp Log10P A1 N Mean A2 N Mean Diff   R2  MAF Step FDR_p 

                      (%)   wise   
Yield          0     

sc00932ln126303_99263_A_G_302660300 10 18.46 3.16 A 61 93 G 21 82 11 17.2 25.61  0.021 

sc01227ln94195_59104_C_T_334822650 10 18.06 3.16 A 21 82 G 61 93 11 17.2 25.61  0.021 

sc02111ln45786_24422_C_T_392904062 10 18.39 3.16 A 21 82 G 61 93 11 17.2 25.61   0.021 
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Significant marker table (continued). 

Markers (Mesoamerican) Ch Mbp Log10P A1 N Mean A2 N Mean Diff   R2  MAF Step FDR_p 

                      (%)   wise   

Seed Weight              

sc00327ln306820_257821_C_T_185821957 7 10.8 3.65 A 59 20.6 G 23 22.1 1.5 15.73 28.05 Yes 0.1979 

sc00327ln306820_246895_C_T_185811031 7 10.8 3.11 A 60 20.7 G 22 22 1.4 13.23 26.83  0.1979 

sc00555ln205282_74219_C_T_242362884 7 10.7 3.11 A 60 20.7 G 22 22 1.4 13.23 26.83  0.1979 

sc00071ln681296_466314_A_C_72389325 8 56.7 3.49 A 68 20.7 C 14 22.4 1.7 15.03 17.07 Yes 0.1979 

sc00805ln146292_74900_C_T_285352806 9 19 3.01 A 34 21.7 G 48 20.5 1.2 12.79 41.46  0.1979 

Maturity               

sc00893ln132397_78914_G_T_297593897 1 3.86 4.49 A 39 80 C 43 99 18 48 47.56 Yes 0.003 

sc00174ln464616_175582_G_A_129497046 1 0.29 3.37 A 20 95 G 62 88 7 4.72 24.39  0.0164 

sc00010ln1529725_1084965_A_G_18124555 1 4.39 3.1 A 43 82 G 39 99 17 39.25 47.56  0.0241 

sc00240ln364462_149197_T_C_156490257 2 3.6 5.57 A 31 92 G 51 89 4 2.06 37.8  0.0005 

sc00240ln364462_178258_A_C_156519318 2 3.57 5.56 A 50 89 C 32 92 3 1.55 39.02  0.0005 

sc00240ln364462_172587_A_G_156513647 2 3.58 4.82 A 32 93 G 50 88 5 2.92 39.02  0.0017 

sc00183ln440474_149829_C_T_133550778 2 26.2 4.34 A 55 89 G 27 92 4 1.65 32.93 Yes 0.0036 

sc01622ln65866_17143_G_A_365960311 2 5.76 4.19 A 44 87 G 38 93 6 5.19 46.34  0.0047 

sc00137ln512899_112454_C_T_111284738 2 25.5 4.12 A 26 92 G 56 89 3 0.99 31.71  0.0047 

sc00137ln512899_172990_C_T_111345274 2 25.6 4.12 A 26 92 G 56 89 3 0.99 31.71  0.0047 

sc00137ln512899_252077_T_C_111424361 2 25.7 4.12 A 26 92 G 56 89 3 0.99 31.71  0.0047 

sc00137ln512899_439414_C_T_111611698 2 25.9 4.04 A 25 93 G 57 89 4 1.59 30.49  0.0054 

sc00137ln512899_106457_A_C_111278741 2 25.5 4.04 A 25 93 C 57 89 4 1.59 30.49  0.0054 

sc00137ln512899_418822_T_G_111591106 2 25.8 3.76 A 56 89 C 26 93 4 2.39 31.71  0.008 

sc00485ln227615_200282_T_C_227438285 2 25.3 3.76 A 56 89 G 26 93 4 2.39 31.71  0.008 

sc00137ln512899_218410_G_A_111390694 2 25.6 3.76 A 26 93 G 56 89 4 2.39 31.71  0.008 

sc00137ln512899_266557_A_G_111438841 2 25.7 3.76 A 26 93 G 56 89 4 2.39 31.71  0.008 

sc00203ln411639_380132_A_G_142338465 2 38.7 3.74 A 73 88 G 9 106 18 17.29 10.98  0.0083 

sc00137ln512899_287286_T_G_111459570 2 25.7 3.67 A 28 93 C 54 89 4 2.44 34.15  0.0091 

sc00137ln512899_401056_A_C_111573340 2 25.8 3.67 A 28 93 C 54 89 4 2.44 34.15  0.0091 

sc00240ln364462_162645_G_A_156503705 2 3.59 3.62 A 31 93 G 51 88 5 3.79 37.8  0.0099 

sc00183ln440474_259280_T_G_133660229 2 26.4 3.14 A 26 94 C 56 88 6 4.32 31.71  0.0231 

sc00137ln512899_22309_A_G_111194593 2 25.4 3.13 A 55 88 G 27 94 5 3.32 32.93   0.0231 
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Significant marker table (continued). 
Markers (Mesoamerican) Ch Mbp Log10P A1 N Mean A2 N Mean Diff   R2  MAF Step FDR_p 

           (%)  wise  

Maturity               

sc00137ln512899_226303_G_A_111398587 2 25.6 3.13 A 55 88 G 27 94 5 3.32 32.93  0.0231 

sc00137ln512899_206565_C_T_111378849 2 25.6 3.13 A 27 94 G 55 88 5 3.32 32.93  0.0231 

sc00137ln512899_370382_A_G_111542666 2 25.8 3.13 A 55 88 G 27 94 5 3.32 32.93  0.0231 

sc00137ln512899_430228_T_C_111602512 2 25.8 3.13 A 55 88 G 27 94 5 3.32 32.93  0.0231 

sc00360ln288358_203794_T_C_195547394 2 25.1 3.13 A 27 94 G 55 88 5 3.32 32.93  0.0231 

sc00059ln720534_580545_A_G_64084099 3 1.07 4.32 A 40 98 G 42 82 16 36.17 48.78  0.0036 

sc00026ln958753_954186_G_A_37376037 3 46.2 4.17 A 15 93 G 67 87 6 22.82 18.29  0.0047 

sc00059ln720534_461954_T_C_63965508 3 1.18 3.42 A 39 83 G 43 97 14 28.77 47.56  0.0148 

sc00079ln659676_90976_A_G_77428539 3 39.7 3.11 A 46 87 G 36 94 8 7.92 43.9  0.0239 

sc00377ln276023_97213_T_G_200237103 3 0.48 3.09 A 47 89 C 35 92 3 1.24 42.68  0.0241 

sc00779ln149779_105659_A_G_281541703 4 43.6 4.4 A 51 84 G 31 100 16 32.53 37.8 Yes 0.0032 

sc00853ln138233_81612_G_A_292173871 7 39.3 7.2 A 29 78 G 53 97 19 44.11 35.37 Yes 0 

sc02498ln35994_11115_G_A_408566925 7 15.9 6.92 A 24 104 G 58 84 19 44.28 29.27 Yes 0 

sc00439ln246418_21317_T_C_216299710 7 14.5 6.92 A 58 84 G 24 104 19 44.28 29.27  0 

sc02331ln39589_2360_G_T_402247579 7 14.8 6.92 A 24 104 C 58 84 19 44.28 29.27  0 

sc01291ln88348_17155_C_T_340613748 7 15.8 6.92 A 24 104 G 58 84 19 44.28 29.27  0 

sc01865ln54877_32766_T_C_380556459 7 35.4 6.55 A 60 85 G 20 104 19 39.4 26.83  0.0001 

sc00002ln2152649_1976120_C_A_4148171 7 51.6 6.32 A 32 80 C 50 97 17 37.05 39.02  0.0001 

sc00021ln1025434_384007_C_A_31860445 7 47.6 5.71 A 58 85 C 24 103 18 37.51 29.27  0.0004 

sc00339ln298666_59263_T_C_189255570 7 47.1 5.71 A 58 85 G 24 103 18 37.51 29.27  0.0004 

sc00021ln1025434_280672_C_A_31757110 7 47.5 5.44 A 59 14 C 23 103 89 34.94 28.05  0.0006 

sc00262ln351368_226896_C_T_164426117 7 44 5.35 A 39 100 G 43 81 19 50.35 47.56 Yes 0.0007 

sc01434ln78222_42548_A_C_352565471 7 43.8 5 A 33 79 C 49 97 18 43.76 40.24  0.0014 

sc00021ln1025434_517061_G_A_31993499 7 47.7 4.92 A 61 86 G 21 102 17 29.85 25.61  0.0016 

sc00093ln620690_53709_G_A_86440192 7 45 4.85 A 29 97 G 53 86 11 14.99 35.37  0.0017 

sc00339ln298666_189468_G_A_189385775 7 47 4.53 A 61 86 G 21 103 17 30.23 25.61  0.003 

sc00021ln1025434_407784_C_T_31884222 7 47.6 4.41 A 61 86 G 21 102 17 29.85 25.61  0.0032 

sc00021ln1025434_525563_C_A_32002001 7 47.7 3.99 A 63 86 C 19 102 16 25.1 23.17  0.0059 

sc00021ln1025434_470964_G_A_31947402 7 47.7 3.96 A 62 86 G 20 102 16 27.25 24.39  0.006 

sc00469ln235093_87464_C_T_223609029 7 46.7 3.93 A 20 102 G 62 86 16 27.4 24.39  0.0063 

sc00021ln1025434_93724_A_G_31570162 7 47.3 3.77 A 58 85 G 24 102 16 31.6 29.27  0.008 

sc00394ln266395_229160_G_A_204982812 7 44.2 3.5 A 47 96 G 35 82 15 29.97 42.68  0.0129 

sc00093ln620690_104379_A_G_86490862 7 45 3.42 A 31 96 G 51 87 9 11.6 37.8  0.0148 

sc00394ln266395_95537_T_C_204849189 7 44.3 3.29 A 48 83 G 34 100 17 39.29 41.46  0.019 

sc00706ln163930_38021_T_G_270038084 7 40.2 3.22 A 26 79 C 56 95 17 34.62 31.71  0.0215 

sc03952ln14595_12945_G_T_442698187 7 32.6 3.14 A 48 97 C 34 80 17 40.17 41.46  0.0231 
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Significant marker table (continued). 
Markers (Mesoamerican) Ch Mbp Log10P A1 N Mean A2 N Mean Diff   R2  MAF Step FDR_p 

           (%)  wise  

Maturity               

sc00071ln681296_590679_G_A_72513690 8 56.9 4.5 A 55 92 G 27 87 5 3.43 32.93  0.003 

sc00071ln681296_656721_T_C_72579732 8 56.9 4.5 A 55 92 G 27 87 5 3.43 32.93  0.003 

sc00015ln1350335_1224361_T_G_25560637 9 36.7 4.47 A 48 83 C 34 100 18 42.94 41.46 Yes 0.003 

sc00015ln1350335_1191524_C_T_25527800 9 36.7 3.86 A 35 100 G 47 83 17 39.51 42.68  0.0073 

sc00015ln1350335_1210315_C_T_25546591 9 36.7 3.7 A 33 100 G 49 83 17 39.74 40.24  0.0089 

sc00309ln320131_212493_G_A_180150638 10 40.6 3.35 A 41 86 G 41 94 8 9.96 50  0.0169 

sc00631ln181891_1253_C_T_257082952 Scaff 0.02 3.01 A 14 103 G 68 87 16 19.7 17.07  0.029 

  _42                         
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Significant marker table (continued). 

Markers (AYT) Ch Mbp Log10P A1 N Mean A2 N Mean Diff   
R2 

(%) 
MAF 

Step 
FDR_p 

wise 

Yield               

sc00675ln170111_135617_A_G_264966309 2 42.07 3.83 A 107 2570 C 29 2327 242.77 10.43 21.32 Yes 0.2189 

sc00039ln840544_527720_C_T_48622435 3 36.1 3.52 A 37 2463 C 99 2539 75.92 3.8 27.21  0.2968 

sc00853ln138233_81612_G_A_292173871 7 39.3 3.04 A 66 2397 G 70 2632 235.06 0.25 48.53 Yes 0.4895 

sc00002ln2152649_1976120_C_A_4148171 7 51.59 4.29 A 57 2450 G 79 2568 118.52 6.07 41.91  0.1517 

sc01477ln74590_51381_G_A_355854774 9 0.3 3.31 A 37 2420 G 99 2555 135.17 2.32 27.21  0.3587 

sc00030ln901868_598673_A_C_40799116 9 25.39 3 A 59 2438 G 77 2580 141.61 3.19 43.38  0.4895 

Plant Height              

sc00268ln345453_135128_C_T_166424412 2 38.49 4.22 A 11 53 G 71 55 1.7 1.14 13.97 Yes 0.0356 

sc00211ln404231_254799_G_A_145477156 5 34.66 5.49 A 10 53 G 72 55 1.93 0.48 13.24  0.0032 

sc00211ln404231_261454_C_T_145483811 5 34.66 5.49 A 72 55 C 10 56 1.22 10.3 13.24  0.0032 

sc00090ln635406_285885_T_C_84791703 5 40.25 4.86 A 8 54 C 74 55 0.56 0.95 11.03  0.0103 

sc00296ln326650_106196_C_A_175840672 8 52.73 3.08 A 76 55 G 6 56 0.58 0.26 8.09  0.2889 

sc00797ln146967_28939_G_A_284133954 8 22.7 3.05 A 73 55 G 9 55 0.21 3.34 11.03 Yes 0.2889 

sc08776ln2265_1282_A_C_467399132 11 39.88 3.23 A 12 54 G 70 55 0.77 10.87 15.44 Yes 0.2889 

sc00211ln404231_317008_A_G_145539365 n/a n/a 5.61 A 10 55 G 72 55 0.22 0.96 13.97  0.0032 

Maturity               

sc00002ln2152649_1976120_C_A_4148171 7 51.59 5.39 A 57 99 G 79 95 3.78 7.43 41.91  0.012 

sc00853ln138233_81612_G_A_292173871 7 39.3 4.64 A 66 97 G 70 96 1.74 1.99 48.53  0.0339 

sc00789ln147969_135375_A_G_283059614 8 4.79 3.14 A 111 95 G 25 102 6.58 3.79 18.38 Yes 0.3604 

sc00862ln137460_111453_C_T_293443775 8 4.92 3.14 A 111 95 G 25 102 6.58 0.78 18.38  0.3604 

sc00862ln137460_62873_C_T_293395195 8 4.87 3.14 A 111 96 G 25 99 2.98 2.69 18.38  0.3604 

sc00055ln737569_432814_C_T_61008497 9 29.79 4.43 A 78 101 G 58 90 10.75 8.13 42.65 Yes 0.0365 

sc00015ln1350335_1191524_C_T_25527800 9 36.68 3.05 A 80 99 G 56 93 5.23 1.88 41.18 Yes 0.3807 

Seed Weight              

sc00293ln329559_110683_C_T_174860214 2 13.25 3.34 A 100 25.0 G 36 32.9 7.83 18.29 26.47 Yes 0.4536 

sc00060ln715437_619181_T_G_64843269 6 25.17 3.01 A 70 25.9 C 66 28.4 2.53 2.46 48.53  0.5916 

sc00015ln1350335_515184_A_G_24851460 9 36.01 3.51 A 68 33.3 G 68 20.9 12.41 59.01 50 Yes 0.4536 

sc00055ln737569_432814_C_T_61008497 9 29.79 3.46 A 58 21.1 G 78 31.6 10.5 41.39 42.65 Yes 0.4536 

 


