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ABSTRACT 

In recent years there has been enormous progress in the development of barium strontium 

titanate (BST) films for tunable microwave applications. However, the properties of BST films 

still remain inferior compared to bulk materials, limiting their use for microwave technology. 

Understanding the film/substrate mismatch, microstructure, and stoichiometry of BST films and 

finding the necessary remedies are vital. In this work, BST films were deposited via radio 

frequency magnetron sputtering method and characterized both analytically and electrically with 

the aim of optimizing their properties.  

The stoichiometry, crystal structure, and phase purity of the films were studied by 

varying the oxygen partial pressure (OPP) and total gas pressure (TGP) in the chamber. A better 

stoichiometric match between film and target was achieved when the TGP is high (> 30 mTorr). 

However, the O2/Ar ratio should be adjusted as exceeding a threshold of 2 mTorr in OPP 

facilitates the formation of secondary phases. The growth of crystalline film on platinized 

substrates was achieved only with a lower temperature grown buffer layer, which acts as a seed 

layer by crystallizing when the temperature increases. 

Concurrent Mg/Nb doping has significantly improved the properties of BST thin films. 

The doped film has shown an average tunability of 53%, which is only ~8 % lower than the 

value for the undoped film. This drop is associated with the Mg ions whose detrimental effects 

are partially compensated by Nb ions. Conversely, the doping has reduced the dielectric loss by 

~40 % leading to a higher figure of merit. Moreover, the two dopants ensure a charge neutrality 

condition which resulted in significant leakage current reduction. The presence of large amounts 

of empty shallow traps related to 𝑁𝑏𝑇𝑖
  localize the free carriers injected from the contacts; thus 

increase the device control voltage substantially (>10 V). 
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A combinatorial thin film synthesis method based on co-sputtering of two BST sources 

doped with Mg/Nb and Ce, respectively, was applied. The composition and the dielectric 

properties of the deposited film were correlated and the optimal concentration of dopants 

corresponding to high tunability and low dielectric loss was determined in a timely fashion. 
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1.  INTRODUCTION AND MOTIVATION 

Over the last 30 years, the wireless communication technologies have evolved through a 

number of development generations that led to the improvement of systems, increased 

functionalities, and reduced size as well as cost. Today, modern mobile phones are required to 

operate in multiple frequency bands and offer multiple modes of operations. For example, a 

quad-band GSM phone can operate in four dissimilar frequency bands of 850 MHz, 900 MHz, 

1800 MHz, and 1900 MHz [1] which can be used depending on what part of the globe the 

telephone is operated in. Similarly, a mobile phone with multiple modes of operation (e.g. GSM, 

CDMA, etc.) can switch between the available modes. More so, a mobile phone with combined 

multiband and multimode operations is ideal as it allows switching between frequency bands and 

transmission modes as required. Apart from basic communication services, modern mobile 

phones offer functionalities such as GPS, Wi-Fi, LAN, Bluetooth, and many more. These multi-

functionalities require multiple circuits to transmit and receive wireless signals (transceivers) 

integrated into a single hardware component. 

Although desirable for end users, the multimode and multiband functionalities create 

problems for microwave engineers to have well-designed and cost effective transceivers. The 

traditional approach to realize a multimode and multiband radio frequency (RF) transceiver is to 

integrate multiple discrete transceiver circuits in a single hardware component, where each of 

them is optimized to operate at a single frequency band. Despite the straightforward nature of 

this method, the duplication of circuitry increases the complexity, production cost, and space 

issues on the circuit board [2]. In order to curb these problems, the RF front end circuitry can be 

reconfigured by using tunable components which would allow replacing a single, tunable 
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component for several fixed components. This scheme lowers the production cost and enables 

additional functionalities on the hardware. 

Circuit tuning is done using tunable capacitors known as varactors, which are electrical 

components that change their capacitance by applying an external control signal such as the 

electric field [3], magnetic field [4], or mechanical force [5]. However, electrically tunable 

capacitors are preferred and widely used to fabricate reconfigurable components for RF and 

microwave applications due to their small size, light weight and monolithic integration with 

active devices [3]. In recent years, ferroelectric barium strontium titanate (BST) thin films have 

attracted considerable attention to fabricate microwave components due to the high dielectric 

constant that can be tuned by an electric field and a fairly low dielectric loss at microwave 

frequencies. Numerous reports have shown that BST based tunable devices have been 

successfully used as key elements of phase shifters, delay lines, filters, and matching networks 

[3, 6-9]. On the other hand, to fully contest with existing microwave technologies 

(semiconductor varactors, and micro-electro-mechanical systems (MEMS)), BST varactors must 

demonstrate high tunability, low dielectric losses, and good insulating properties [10]. In what 

follows, the existing tunable varactor technologies are compared to realize and appreciate the 

capabilities of the ferroelectric varactors.  

1.1.  Microwave Technologies 

As pointed out above, currently, semiconductor (e.g. GaAs or Si), MEMS, and 

ferroelectric (e.g. BST) varactors are the three widely competing technologies that are used for 

tunable microwave devices [11, 12]. The principle to realize a varactor in each of these 

technologies is different. The semiconductor varactor is based on reverse biasing a junction (pn 

or Schottky) with a DC field to increase the depletion width that leads to a decrease of 
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capacitance. It is limited to a unipolar device because if the polarity of the DC bias is reversed in 

such a way that the device is forward biased, the junction tends to conduct. Similarly, the MEMS 

varactor is based on changing the distance between two electrodes (one of the two electrodes is 

coated with dielectrics to prevent an electrical short) by using electrostriction actuator. The 

ferroelectric varactor is unique because the capacitance tuning is based on an inherent property 

of the material, i.e. that the permittivity is dependent on a bias field. 

 

Table 1.1. Comparison between varactor technologies [11, 12] 

 GaAs MEMS BST 

Tunability, nr (%) 50-83 33-67 50-75 

Q-factor 20-50 (10GHz) Very high 20-100 (10GHz) 

Control Voltage (V) <15 (unipolar) <50(bipolar) <15(bipolar) 

Tuning Speed ~1µs ~10µs ~1ns 

Reliability Good Poor Good 

Cost High High Low 

Power handling Poor Good Good 

Packaging Hermetic Vacuum -- 

 

Among the three, the most widely used and proven technology is the semiconductor 

varactors (e.g. GaAs) [13]. The advantages of semiconductor varactors include large tunability, 

low control voltage and its easy integration with the standard complementary metal oxide 

semiconductor (CMOS) systems. However, the poor quality factor which worsens with 

frequency, the poor power handling capability owing to the reverse bias requirement, and the 

cost are limiting its applicability. Table 1.1 presents the pros and cons of the three technologies 

based on desirable electrical properties that are required for microwave applications: tunability, 

quality factor, control voltage, power handling capability, and tuning or switching speed.  

The BST varactors are reliable; and require low control voltage as in GaAs varactors. 

Besides, the BST varactors have some important advantages over the semiconductor varactors 
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including low dielectric loss [14], low material cost, fast tuning speed, and good power handling 

capability. The power handling capability of BST is better due to the polarity independent bias 

and therefore no forward conduction region as it is the case for semiconductor varactors [15]. 

The MEMS varactors have the highest quality factor (Q) and good power handling 

capability. However, they suffer from slow tuning speed, and require high control voltage 

compared to BST varactors. In addition, the low tunability and high packaging cost together with 

the poor reliability due to the mechanical moving parts puts MEMS at the lower performance 

end compared with the two other technologies. 

Based on the standards given in the table, BST varactors have already exhibited excellent 

performance compared to the other two technologies. It is also worth noting that, as opposed to 

MEMS and GaAs, BST has large dielectric constant enabling the miniaturization of the 

microwave components [16]. However, there is still plenty of room for improving the properties 

of BST thin films. Factors known for degrading the properties of BST thin films, including 

residual stress, microstructural features, dead layers, and stoichiometry among many others 

affect the microwave properties of BST varactors [12]. Therefore, it is extremely important to 

understand the relation between materials and microwave properties of the devices in order to 

optimize the performance of BST based microwave components.  

1.2.  Scope and Outline of the Work 

The prime objective of this thesis is to optimize the dielectric properties of barium 

strontium titanate (BST) thin films for tunable microwave applications. The thesis focuses on 

identifying and understanding factors that are responsible for deteriorating the permittivity, 

tunability, loss and resistivity of the BST thin films, and finding suitable solutions to modify 

them. In order to improve these properties, the use of buffer layers, controlling stoichiometry, 
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and doping the BST film are studied. The work involved fabrication of BST targets (in house), 

pure or with dopants of interest, radio frequency magnetron sputter deposition on different 

substrates, and use of various analytical and electrical characterization methods. A combinatorial 

thin film method based on co-sputtering of two BST sources each doped with dissimilar dopants 

was applied to determine concentration of dopants corresponding to the optimal properties of 

interest. 

The thesis starts by revising fundamental principles of dielectric and ferroelectric 

materials with emphasis on the barium strontium titanate (BST) in Chapter 2. The thin film and 

bulk forms of BST were thoroughly reviewed and film residual stress, dead layer, 

microstructural effects, and stoichiometry were identified as factors that weaken the dielectric 

properties of BST film. Pathways to improve the properties of the thin film are also discussed.  

In Chapter 3, possible BST thin film deposition techniques with the emphasis on RF magnetron 

sputtering, analytical and device characterization methods were presented. In Chapter 4, the 

sputter target fabrication procedures and substrate selection are discussed. In addition, the 

temperature used to grow a crystalline film was determined, and the need for using a thin buffer 

layer to grow a crystalline BST film on a platinized substrate was also studied.  In Chapter 5, the 

effects of total gas and oxygen partial pressure of the process chamber on the stoichiometry and 

phase purity of the RF magnetron sputter deposited thin film is studied. In Chapter 6, the 

properties of concurrent Mg/Nb doped BST thin film is studied. The Mg/Nb dopants are 

introduced to BST through barium magnesium niobate (BaMg0.33Nb0.67O3) to realize a neutrality 

condition which introduces no free carriers into the film, and thus reduces the leakage current. In 

Chapter 7, RF magnetron sputtering based continuous composition spread (CCS) combinatorial 

thin film method is applied to BST. This method is a fast and cost effective way to introduce 
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multiple-dopants (three dopants in this work) and determine their concentration corresponding to 

high tunability and low dielectric loss in the material. In Chapter 8, the conclusion and future 

outlook of the work is presented. 
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2.  LITERATURE REVIEW 

2.1.  A Brief Background on Dielectric Materials 

Dielectrics are materials that (unlike conductors) can be polarized under an externally 

applied electric field. They generally have large band gap, Eg >2.5 eV, with a small number of 

free carriers [13], resulting in practically no current flow through them when they are placed in 

an electric field.  Instead, the positive and negative charges in the material are displaced opposite 

to each other, causing a phenomenon known as dielectric polarization. This polarization field 

opposes an externally applied electric field to minimize the field in the dielectrics, making them 

efficient in storing electrostatic energy and charges [17]. In what follows, important concepts in 

dielectrics including electric dipole, polarization, electric displacement, dielectric constant and 

loss are discussed. 

2.1.1.  Electric Dipole and Polarization 

An electric dipole ( p


) is defined as the measure of the electrostatic effect of a pair of 

equal but opposite charges (±Q) separated by a finite distance, d. It is a vector quantity directed 

from the negative to the positive charge by convention, and is expressed as 

 dQp


 . (2.1) 

Although the net charge is zero, the electric dipole moment gives rise to an electric field in space 

and interacts with an electric field that originates from another source. The polarization ( P


) of 

the dielectric is defined as the total dipole moment per unit volume [18] 

 
i

ip
volume

P
 1

, (2.2) 
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where, ∑ 𝑝⃗𝑖 is the total dipole moment in the material. When a dielectric material is placed in an 

external electric field (𝐸⃗⃗), the atoms or molecules in the material are polarized and the overall 

charge neutrality of the matter leads to following relation: 

 𝐷⃗⃗⃗ = 𝜀0𝐸⃗⃗ + 𝑃⃗⃗ = 𝜀𝐸⃗⃗ , (2.3) 

where, 𝐷⃗⃗⃗ is the electric displacement vector, 𝜀 is the permittivity of the material, and 

𝜀0 (=8.854x10
-12

F/m) is the permittivity of free space. This equation relates the free and bound 

surface charge density regardless of the nature of the polarization mechanism in the material. For 

an isotropic material, the polarization is related linearly to the electric field as 

 𝑃⃗⃗ = 𝜀0𝜒𝑒 𝐸⃗⃗,  (2.4) 

where,  𝑥e is defined as the electric susceptibility of the material. Inserting Eq. (2.4) into (2.3) the 

relation between relative permittivity or dielectric constant,  𝜀𝑟 =
𝜀
𝜀0⁄ , and 𝑥e can be written as   

 𝜀𝑟 = 1 + 𝜒𝑒. (2.5) 

Furthermore, denoting the number of atoms or molecules per unit volume of a dielectric 

material by N, and assuming that each atom or molecule produces one dipole moment, the 

polarization of the material can be expressed as 

 𝑃⃗⃗ = 𝑁𝛼𝐸⃗⃗, (2.6) 

where, α is known as the polarizability of the material. This equation holds for a dilute phase 

dielectric material where the interaction between atoms or molecules can be neglected, and the 

actual (local) field experienced by an atom is equal to the applied field. In solid and liquid phases 

however, the local field is greater than the external field since there is polarization in the vicinity. 

Assuming a small and spherical shaped dielectric material, the local electric field (Lorentz field) 

is related to the polarization as 03PEEloc


 . With this expression, Eq. (2.6) can be modified 

to hold for condensed matter systems as [18, 19]  
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 𝑃⃗⃗ = 𝑁𝛼𝐸⃗⃗𝑙𝑜𝑐 = 𝑁𝛼 (𝐸⃗⃗ +
𝑃⃗⃗

3𝜀0
). (2.7) 

The local field, however, does not affect the fundamental definition in Eq. (2.4), which combined 

with Eq. (2.7) results in an explicit relation between the local and applied field as 

 𝐸𝑙𝑜𝑐 =
2+𝜀𝑟

3
𝐸. (2.8) 

In addition, combining Eqs. (2.4), (2.5), and (2.7), the relation between dielectric constant and 

polarizability, also known as Clausius-Mossotti equation is obtained 

 
032

1







 N

r

r 



. (2.9) 

2.1.2.  Polarization Mechanisms 

Any dielectric material possesses one or more of the five basic types of microscopic 

polarization mechanisms that are responsible for the macroscopic polarization. These are the 

electronic or atomic, ionic, dipolar (orientational), spontaneous, and interface or space charge 

polarization mechanisms [17-20]. 

 Electronic polarization (Pe): The electronic polarization arises in all dielectrics. It is 

based on the deformation of the symmetrical distribution of the electron cloud of atoms 

due to an externally applied electric field. 

 Ionic polarization (Pi): this polarization occurs in ionic crystals (e.g. NaCl). The ionic 

crystal has cations and anions located at well-defined lattice sites. An externally applied 

electric field displaces these ions relative to each other, resulting in an induced net dipole 

moment between them.  

 Dipolar (orientational) polarization (Pd): this occurs only in materials consisting of 

molecules or particles with permanent dipole moments (e.g. H2O). At ambient 

temperature, the dipole moments are randomly distributed in the dielectric material. An 
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applied electric field orients them along its direction and results in orientational 

polarization. If the field is removed, the net polarization returns to zero because thermal 

agitation randomizes the moments.  

 Spontaneous polarization (Ps): spontaneous polarization occurs only in single crystals or 

crystallites in polycrystalline materials with a non-centrosymmetric structure (e.g. 

ferroelectric material). A non-centro symmetric structure has a non-coinciding centroid of 

the negative and the positive charges which form dipoles without an external field. 

 Space charge (interfacial) polarization (Psc): this polarization is associated with mobile 

and trapped charges in the material. The accumulation of charges in the dielectric 

material near the electrodes, the trapping of carriers (electron, holes, ions) by defects at 

the surface or interface, and grain boundaries are some of the phenomenon under which 

the space charge polarization mechanism is dominant.  

If a dielectric material involves all the mechanisms, the total macroscopic polarization originates 

from the superposition of all the microscopic polarization mechanisms as  

 𝑃⃗⃗𝑡𝑜𝑡𝑎𝑙 = 𝑃⃗⃗𝑠𝑐 + 𝑃⃗⃗𝑠 + 𝑃⃗⃗𝑑 + 𝑃⃗⃗𝑖 + 𝑃⃗⃗𝑒  (2.11) 

2.1.3.  Frequency Response of Permittivity 

In the presence of an oscillating electric field, each polarization mechanism discussed 

above responds in different time scales and, hence, in different frequency regimes [18, 21]. 

Figure 2.1 shows the dispersion of permittivity over a wide frequency range. When the frequency 

increases, the number of polarization mechanisms involved in polarization decreases, leaving 

only the electronic polarization mechanism above the infrared region. 

 



 

11 
 

 

Figure 2.1. Frequency dependence of real (𝜀𝑟
′) and imaginary (𝜀𝑟

′′) parts of relative permittivity 

[18] 

 

When the oscillating masses experience a restoring force, relaxation behavior is observed 

in space charge, spontaneous, and orientation polarization mechanisms while resonance effect is 

dominant in the ionic and electronic polarization [18, 21]. The slowest polarization response in a 

dielectric material is the space charge mechanism. It occurs in a frequency of up to 10 kHz. On 

the other hand, the electronic polarization mechanism is the fastest and the only mechanism that 

remains to respond to a very high frequency (visible region~10
15 

Hz). The orientation 

polarization mechanism is dominant in a radio to microwave frequency region. The infrared 

region (~1 to 10 THz) is dominated by resonances of ionic lattice vibration [22]. 

Since the polarization vector cannot always follow the change of the applied electric 

field, the dispersion of the dielectric response can be expressed in terms of the complex relative 

permittivity as  

 𝜀𝑟
∗ = 𝜀𝑟

′(𝜔) − 𝑗𝜀𝑟
′′(𝜔), (2.12) 

where, =2f is the angular frequency; f is the frequency (in Hz) of the oscillating field, j is a 

complex number, and  𝜀𝑟
′  and 𝜀𝑟

′′ are the real and imaginary parts of the relative permittivity, 
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respectively.  The phase shift between polarization and applied electric field leads to the energy 

dissipation in the dielectric material which is defined as the loss tangent (tan): 

 tan 𝛿 =
𝜀𝑟
′′(𝜔)

𝜀𝑟
′ (𝜔)

  (2.13) 

2.2.  Ferroelectrics 

When single crystals or poly-crystalline materials composed of crystallites are subjected 

to external forces, such as electric field, stress, or heat, they undergo a small change in dimension 

which results in piezoelectric, pyroelectric, or ferroelectric effects. Piezoelectrics are materials in 

which an applied mechanical stress generates polarization (electricity) or, conversely, an electric 

field produces a mechanical stress. Similarly, pyroelectric materials polarize due to the change in 

temperature or heat. Ferroelectric materials exhibit a spontaneous polarization whose direction 

must be switched by an electric field [17, 20].  

In crystallography, there are seven crystal systems that can be classified into 32 

crystallographic point groups. Out of these, 11 classes are centrosymmetric while 21 classes are 

non-centrosymmetric, fulfilling the necessary requirement for the existence of piezoelectricity. 

However, one of the 21 non-centrosymmetric classes has other combined symmetry elements 

which makes it exhibit no piezoelectricity. Thus, only 20 classes of the non-centrosymetric 

crystals show the piezoelectric effects. Figure 2.2 shows the relationship between polarization 

behavior and crystal structure for the 32 point groups.  

The piezoelectricity in 10 of the 20 classes can only be induced by mechanical stress; 

while the polarization in the remaining 10 classes can be induced both by stress and heat. 

Therefore, the latter 10 classes exhibit both the piezoelectric and pyroelectric effects. 

Ferroelectrics are a subclass within the class that possesses the pyroelectric effect exhibiting 

spontaneous polarization that can change direction (switchable) with an electric field.  
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Figure 2.2. Piezoelectric, pyroelectric, and ferroelectric classification of the 32 point groups [20] 

 

2.2.1.  Fundamentals of Ferroelectricity 

The ferroelectric phenomenon was discovered in 1921 when J. Valasek [23] observed an 

electric field  reoriented spontaneous polarization in Rochell salt (KNaC4H4O6.4H2O) crystal. 

Since then several ferroelectric materials (e.g. KH2PO4, BaTiO3, PbTiO3, etc. [19]) that have 

been discovered and employed for numerous technological applications.  

When a ferroelectric material is cooled, it undergoes a structural phase transition from a 

high symmetry (paraelectric) phase to a low symmetry (ferroelectric) phase. This transition 

occurs at a critical temperature known as Curie point, TC, which is different for different 

ferroelectric materials. Above TC (paraelectric phase),  the dielectric constant (
r ) of the 

material fallows an inverse relation in temperature, and is given by the Curie-Weiss law [19, 24]  

 𝜀𝑟 =
𝐶

𝑇−𝑇𝐶
, (2.14) 

where, TC  and C are the  Curie temperature and constant, respectively. At and below the 

transition point, the material possesses spontaneous polarization by undergoing either an order-

disorder (e.g. the ordering of hydrogen atoms in KH2PO4 crystal) or displacive (e.g. the 
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displacement of Ti
4+

 from its initial site invoking lattice distortion in BaTiO3 crystal) type phase 

transition depending on the type of material [25].  

 

 

Figure 2.3. Polarization in the first (a) and second (b) order ferroelectric phase transitions 

 

The phase transition in ferroelectric materials can be classified as first or second order 

phase transitions based on how the order parameter—polarization—changes with temperature at 

the transition point. The first order phase transition shows discontinuity in polarization, and 

involves associated change in volume and latent heat at the transition point (Figure 2.3a). The 

second order transition shows a continuous function of polarization (Figure 2.3b) without change 

in volume and latent heat at the transition point.  However, the first derivative of polarization is 

discontinuous for the second order phase transition[19, 25]. 

There are two widely accepted viewpoints in explaining the origin of ferroelectricity 

which results from the structural phase transition. The first approach is known as “polarization 

catastrophe,” referring to the situation in which the polarization becomes very large near the 

transition temperature. In this case, the local field caused by dipole moments in a unit cell 

exceeds the restoring force that stabilizes the crystal structure, leading to an asymmetrical shift 



 

15 
 

of ions from their initial positions[19, 26]. This theory can be better understood by rearranging 

the Clausius-Mossotti equation (Eq.(2.9)) as 

 εr =
3ε0+2Nα

3ε0−Nα
. (2.15) 

From this relation, when  𝑁 𝛼 = 3𝜀0, the dielectric constant becomes infinite, indicating the state 

of polarization catastrophe which physically shows the presence of polarization in the material 

without external electric field. If the external field applied to the material is turned off (i.e. E


=0), the expression for polarization in Eq. (2.7) can be reduced to 

 𝑃⃗⃗ (𝑁𝛼 − 3𝜀0) = 0. (2.16) 

At the polarization catastrophe, the quantity in the bracket equals zero, which can happen only 

if  𝑃⃗⃗ ≠ 0 . By assuming the ferroelectric crystal to have polarizability that can be expressed 

similar to the dipolar polarization (though in fact, the two are quite different) as α = p2 3kBT⁄ , 

where p is the average dipole moment, kB  is the Boltzmann constant, the expression for the 

relative permittivity in (Eq. (2.15)) can be expressed as  

 εr = 1 +
3T0

(T−T0)
 , (2.17) 

where, 0

2

0 3 kNpT  . This equation resembles the Curie-Weiss law, indicating the divergence 

of the dielectric constant as the temperature approaches T0, and that the system becomes unstable 

and must make a phase transition.  However, though the obtained relation in Eq. (2.17) is 

reasonable and used to qualitatively describe the polarization catastrophe phenomenon, it is 

important to mention that it cannot substitute the Curie-Weiss law because of the involved 

assumptions [26].  

The second theory to interpret ferroelectricity is known as the soft mode theory which 

can be  explained based on the Lyddane-Sachs-Teller (LST) relation expressed as [19]:  
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𝜀(∞)

𝜀(0)
=
𝜔𝑇𝑂
2

𝜔𝐿𝑂
2 , (2.18) 

where, TO and LO are the transverse and longitudinal optical frequencies (TO < LO), 

respectively, and () and (0) are the high and low frequency limit dielectric constant, 

respectively. The LST relation shows the increase in the static dielectric constant ((0)) with the 

decrease of the transverse optical frequency. Substituting the Curie-Weiss relation (Eq. (2.14)) 

for the static dielectric constant in the LST relation (Eq. (2.18)), one can obtain the temperature 

dependence of the transverse optic mode (soft mode) frequency as 

 𝜔𝑇𝑂
2  𝛼 (𝑇 − 𝑇𝐶). (2.19) 

This equation shows as the temperature decreases the soft mode frequency approaches zero, 

indicating the softening of the force constant controlling the mode [25, 27, 28]. At T=TC, the soft 

mode frequency “freezes out” (i.e. TO=0) and there is no effective restoring force to stabilize 

the crystal, thus leads to the occurrence of ferroelectric phase transition [28].  

2.2.2.  Ferroelectrics for Microwave Applications 

Ferroelectric materials are used for wide range of applications including ferroelectric 

random access memory (FRAM), transducers and actuators, infrared detectors, and tunable 

microwave components [3, 29, 30]. In this work, the ferroelectric material is studied for agile 

microwave devices due to the DC field dependent dielectric constant. 

Perovskite (ABO3) based ferroelectric materials have been widely studied for microwave 

applications [3, 12, 30]. They generally have a non-linear dependence of polarization on an 

electric field as shown in Figure 2.4. Below TC, the material is in ferroelectric phase, showing 

hysteresis behavior (Figure 2.4a) and the respective dielectric permittivity has a butterfly shape 

(Figure 2.4b) dependence on the DC-field. Above TC, the material is in a paraelectric phase, thus 

no spontaneous polarization, and shows no hysteresis loop. However, the dependence of 
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polarization on the field is still non-linear (Figure 2.4c) leading to a bell-shaped dependence of 

permittivity on the applied electric field (Figure 2.4d). The DC field dependent dielectric 

constant (Figures 2.4 b&d) is what makes the ferroelectric material important for tunable 

microwave components.  

 

 

Figure 2.4. Polarization and permittivity (a&b) below and (c&d) above TC vs. electric field [30] 

 

In principle, for agile microwave applications, the ferroelectric material can be used both 

in the paraelectric and ferroelectric regions. However, when an electric field is applied to the 

material in the ferroelectric phase, the domain wall motion and piezoelectric transformation 

(because most ferroelectrics are piezoelectric) causes large dielectric losses. Consequently, for 

microwave devices, the paraelectric phase of the materials  is highly recommended [3, 12]. 

2.2.3.  Field Dependent Permittivity 

As discussed above, the dielectric permittivity of a ferroelectric material is dependent on 

the applied electric field. This concept can be explained using the phenomenological theory also 
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known as the Landau theory of ferroelectricity, which is  based on the Taylor expansion of the 

Helmholtz free energy, 𝐹(𝑃, 𝑇), [31] as a function of polarization, P, 

 𝐹(𝑃, 𝑇) ≈
𝛽

2
𝑃2 +

𝛾

4
𝑃4. (2.20) 

In the expansion a small polarization was assumed and the contribution of the higher order terms 

was excluded. In addition, only the even terms were taken into consideration due to the fact that 

the free energy is independent of the polarization reversal [32]. The coefficients  and  are 

known as the dielectric constant and non-linearity coefficients.  

Using the equation of state (
𝜕𝐹

𝜕𝑃
= 𝐸) the electric field can be related to the polarization as 

 𝐸 = 𝛽𝑃 + 𝛾𝑃3, (2.21) 

and used to define the relative permittivity of the material as  

 𝜀𝑟(𝐸, 𝑇) =
1

𝜀0

𝜕𝑃

𝜕𝐸
=

1

𝜀0

1

𝛽+3𝛾𝑃2
. (2.22) 

In a paraelectric phase with no externally applied electric field, the induced polarization is zero 

(i.e. P=0), thus   1

0),0(


  Tr . Assuming  ETP r ,00 , for the condition under an 

externally applied electric field, Eq.(2.22) can be rewritten as [33]: 

 εr(E, T) =
εr(0,T)

1+3γε0
3εr
3(0,T)E2

. (2.23) 

This equation shows the dependence of relative permittivity as a function of applied electric field 

and temperature. At a constant temperature, the permittivity decreases with an applied electric 

field (tunablity), where the maximum is obtained at E=0—see Figure 2.4d. 

Generally, for a given tunable dielectric (ferroelectric) material, a higher dielectric 

constant implies higher tunability [31] and occurs near the transition temperature. However, 

close to the transition temperature, owing to the distortion in the crystal structure, the dielectric 

loss of the material is also high. Therefore, it is always necessary to measure the tunability and 
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loss of the material at temperature safely far from TC to obtain a trade-off between the tunability 

and dielectric loss. 

2.2.4.  Definitions 

In this section parameters used to measure the performance of ferroelectric thin films for 

agile microwave components are presented. Tunability (n) is the measure of the change of 

dielectric constant with an external field [12, 31]; it can be described as the ratio of dielectric 

constant at no bias to dielectric constant at the maximum bias field, E, which is expressed as 

 𝑛 =
 𝜀𝑟
′ (0)

𝜀𝑟
′ (𝐸)

. (2.24) 

The tunability of a ferroelectric material can also be defined as the relative change of dielectric 

constant between the zero bias and maximum bias field, E, with respect to the zero bias value 

(thus, relative tunability) as 

 𝑛𝑟 =
 𝜀𝑟
′ (0)−𝜀𝑟

′ (𝐸)

𝜀𝑟
′ (0)

× 100% =
𝑛−1

𝑛
× 100%. (2.25) 

The use of 𝜀𝑟
′  above indicates that the measured dielectric constant could be complex, but only 

the real part is used in the definition of tunability.  

The other vital parameter used to characterize a tunable ferroelectric material is the 

dielectric loss. It is defined in the context of loss tangent, tan 𝛿(𝐸), which is written as the ratio 

of  the imaginary to  real part of dielectric constant: 

 tan 𝛿(𝐸) =
𝜀𝑟
′′(𝐸)

𝜀𝑟
′ (𝐸)

=
1

𝑄(𝐸)
, (2.26) 

where, Q(E) is the quality factor. The trade-off between tunability and dielectric loss is presented 

as the figure of merit (FOM) which is defined by the ratio of relative tunability to loss tangent as 

 𝐹𝑂𝑀 =
𝑛𝑟

tan𝛿
. (2.27) 
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2.3.  Barium Strontium Titanate  

Barium strontium titanate (BST) is a solid solution of barium titanate (BaTiO3) and 

strontium titanate (SrTiO3) which  has been extensively studied for the tunable microwave 

applications [12, 34]. Barium titanate (BTO), one of the prominent ferroelectric materials, 

crystalizes to a perovskite structure (ABO3) with the large Ba
2+

 cations situated at the corners of 

the cube (A-site), the O
2-

 anions on the cubic faces, and the smaller Ti
4+ 

ion is at the body center 

of the cube. The oxygen ions sitting on the faces of the cube form an oxygen octahedral (Oh) 

cage within which the small titanium ion is located. 

BTO naturally exists in four crystal states with the paraelectric-ferroelectric transition 

temperature (TC)  at ~120 
o
C [19]. Above TC, the crystal structure of BTO is cubic, and exhibits a 

paraelectric phase. However, lowering the temperature below TC transforms BTO into three 

ferroelectric phases whose polar axes are [100], [110] and [111] with respect to the cubic 

structure. At 120 
o
C, the crystal structure of the BTO transforms from cubic to tetragonal phase, 

leading to the first ferroelectric transition which is stable down to 0 
o
C. The second phase 

transition occurs at 0 
o
C, when the crystal structure transforms from tetragonal to orthorhombic 

phase. The material remains to be orthorhombic down to -90 
o
C where it undergoes the third 

phase transition  by transforming to a rhombohedral crystal structure [35]. 

The properties of BTO as a function of temperature in its four crystal states are shown in 

Figure 2.5. Since all the transitions are first order, the polarization, permittivity as well as lattice 

constant experience discontinuities at the transition temperatures[22, 32, 35]. The sharp increase 

in the permittivity of BTO, close to TC, is associated with the softening of the transverse optical 

phonon. According to the LST relationship (Eq. (2.18)), the dielectric constant of a ferroelectric 

material diverges as the transverse phonon frequency ‘freezes out’ at TC. 
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Figure 2.5. Properties of BTO as a function of temperature: (a) lattice dimensions, (b) 

spontaneous polarization, and (c) relative permittivity measured in the a and c-direction [22] 

 

In contrast to BTO, strontium titanate (STO) remains paraelectric down to 0 K [36]. Such 

materials are called quantum paraelectrics since the crystal instability that occurs close to the 

transition point is stabilized by quantum fluctuation so that the material remains paraelectric 

[28]. Due to the presence of quantum fluctuation, the soft mode frequency of STO never freezes 

out and suppresses the onset of ferroelectricity as opposed to BTO. As the temperature 

approaches TC, the dielectric constant of BTO diverges (Figure 2.5). However, in the case of 

STO, the dielectric constant rises only until it reaches a temperature low enough (~ 4 K for STO 

[37]) for the quantum effects to kick in and cancel out the ferroelectricity.  

Given the importance of the paraelectric regime for tunable microwave applications, it is 

impractical to use BTO because of the high transition temperature (120 
o
C). Interestingly, the 

Curie temperature of BTO has been found to be easily manipulated by changing its composition 

[35, 39]. Figure 2.6(a) shows the change of the Curie temperature of BTO when Ba
2+ 

 is 
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substituted with Ca
2+

 or Sr
2+

, and Ti
4+

 with Zr
4+

 or Sn
4+  

dopants [35]. Among these additives, the 

use of Sr
2+

 ion (introduced usually in the form of STO) is considered to be the standard method 

of lowering the Curie temperature of BTO.  

 

 

Figure 2.6. Dependence of the Curie temperature of BTO on various dopants (a) [35], change of 

the lattice constant with Sr concentration (b), temperature dependence of dielectric constant of 

BST (c) [38], structure of BST (d) 

 

Substituting strontium (small cation compared to barium) for barium decreases the lattice 

parameter or the unit cell volume (Figure 2.6(b)) [38] and results in a linear decrease of TC  as 

shown in Figure 2.6(a). Besides, for high frequency application, the use of  STO to tune the 

Curie temperature of BTO is a suitable choice because it has high dielectric permittivity, so that 

the dielectric constant and tunability remain high with the decrease of the Ba/Sr ratio [15]. 

The solid state reaction between BTO and STO results in BST, with the generic chemical 

formula of BaxSr1-xTiO3 (x, 0x1 is the molar fraction of barium). As in BTO, BST crystalizes 

in a perovskite structure (Figure 2.6(d)) with Ba/Sr sitting at the corner and Ti in the octahedral 
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cage formed by the oxygen on the faces of the cube. Examples of BST with  x=0.3, 0.5, 0.7 are 

marked in Figure 2.6(a), indicating that the Curie temperature of BTO reduces below room 

temperature when only 30 % of  Ba is replaced with Sr. The change in  the dielectric constant of 

BST  with different molar fractions of Ba is shown in Figure 2.6(c). Due to the decrease in TC 

with composition the peak position for the dielectric constant changes with the Ba/Sr ratio [38]. 

Therefore, the dependence of the Curie temperature of BTO on composition allows the tuning of 

the dielectric properties of BST as required. 

2.4.  Thin Film BST for Microwave Applications 

In principle, any form of BST (bulk  single crystal, ceramics, thick  and thin films) can be 

used for applications in tunable microwave components [31]. Each of them, however, has 

advantages and drawbacks. At microwave frequencies, bulk BST offers low dielectric loss, but 

its applicability is limited by the requirement of a high tuning voltage (hundreds of volts to tens 

of kilovolts). The other source of concern in using bulk BST is the variation of its dielectric 

constant with temperature and incompatibility with semiconductor microelectronic circuits [40, 

41].  On the contrary, the thin film form of BST is very attractive for microwave applications 

since it enables device miniaturization, and potential integration with semiconductor 

microelectronic circuits [12, 31]. Unlike bulk BST, the thin film BST requires a small tuning 

voltage (~ 20 V) and is inexpensive to grow on different types of substrates.  

On the other hand, the dielectric properties of BST thin films have been observed to 

deteriorate compared to the bulk material—BST thin films have shown low dielectric constant 

but high dielectric losses [41-44]. For example, Figure 2.7 compares the dielectric constant of 

bulk and thin film (~100 nm) of the same composition, Ba0.7Sr0.3TiO3 [41]. Though the 

composition of both forms of the BST materials is the same, the permittivity of bulk BST is 
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observed to be larger and strongly temperature dependent, with a sharp peak at the paraelectric-

to-ferroelectric transition temperature. However, for the thin film, the dielectric constant is much 

lower (reduced by an order of magnitude), with no sharp peak, and has shown an almost 

temperature independent behavior. The temperature independent behavior of the film’s dielectric 

constant is important because it indicates a much smaller temperature coefficient which allows 

the performance of a device over a wide range of temperature when compared to  bulk BST 

material [15]. 

 

 

Figure 2.7. Permittivity of bulk and thin film Ba0.7Sr0.3TiO3 versus temperature  [41] 

 

The degradation of the dielectric properties of BST thin films has been attributed to many 

reasons among which substrate induced stress [45], microstructural features including the 

charged defects (e.g. oxygen vacancies) and structural imperfections that are responsible for 

creating micro polar regions in the thin films [46], interfacial capacitance or a ‘dead layer’ with a 

very low dielectric constant at the substrate/film or electrode/film interfaces [47], and the 

stoichiometry of the thin films[48] are the major ones. Thus, understanding of these problems is 

crucial to improve the properties of BST thin films for the intended application. In the 
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subsequent section some possible pathways to mitigate the detrimental effects of the above 

mentioned factors on the properties of BST are discussed. 

2.5.  Pathways for Improving the Properties of BST Thin Films 

The mismatches of film/substrate lattice parameters and coefficients of thermal expansion 

(CTE) induce residual stress into the film which will have drastic effect on the physical 

properties of the BST thin film. The residual stress typically hardens the soft mode frequency  

[44] which results in reduced dielectric constant and weakened ferroelectric properties of the 

film ( LST relationship), leading to the  reduction of  tunablity. If the induced residual stress is 

large, the grown film may also crack or delaminate. 

Selecting substrates whose lattice parameter and CTE are closely matched with the film 

is extremely important to grow a stress free film [49]. However, it is often very demanding to 

find a crystalline substrate with the desired lattice constant and CTE (see chapter 4). An 

alternative approach to mitigate the stress induced by the substrate is to grow a buffer layer 

(homogeneous or heterogeneous) between the BST film and the substrate [50, 51]. For instance, 

the lattice mismatch between a MgO substrate and a Ba0.4Sr0.6TiO3 thin film was reduced by 

using a buffer layer of Ba0.6Sr0.4TiO3 (lattice parameter higher than the film but lower than MgO)  

and the film shows improved dielectric constant and tunability [50]. 

Additionally, the film/substrate (electrode) interface may also exhibit a low-permittivity, 

non-tunable ‘parasitic’ like capacitor known as a ‘dead layer.’ Although the exact origin of the 

dead layer is controversial, the interfacial discontinuity affecting the polarization state of the film 

[47], the microstructure or the electronic properties at the interface [12, 52], the field’s 

penetration into the electrodes [53], and the surface charge traps at the interfaces [54] are 
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proposed to be the major causes. With the dead layer, the overall permittivity and tunability of 

the film reduces and the dielectric loss increases [55, 56]. 

The effect of dead layers was found to be diminished by using oxide electrodes with a 

close lattice match with BST [12, 57]. For example, in [57], a 200 nm Ba0.7Sr0.3TiO3 thin film 

grown on a SrRuO3 has shown a bulk like dielectric constant with a defined transition 

temperature as opposed to a film grown on a platinum electrode (Figure 2.7) [41]. However, the 

application of oxide electrodes for microwave varactors is limited owing to its high resistivity. 

Alternatively, the oxide electrodes may be used as a buffer layer between BST and the metal 

electrodes. The buffer layer may also be used as a seed layer to help grow crystalline BST thin 

film on a platinum coated substrate (Chapter 4). 

The other difference between bulk and thin film BST leading to the degradation of the 

properties of the film is related to microstructural features. Thin film BSTs are characterized by 

small grain sizes and associated charged defects that are responsible for  creating micro polar 

regions in the film [46, 58]. Since the volume of the dielectric polarization is proportional to the 

grain size, the BST thin film has a reduced dielectric constant [34, 58]. Similarly, the charged 

defects in BST film increase the extrinsic dielectric loss of the material [31].Therefore, 

suppressing the concentration of charged defects, such as oxygen vacancy is crucial in 

improving the loss and leakage current of BST. Optimizing the flow of oxygen gas during 

deposition, doping, and  annealing films in oxygen atmosphere are some of the techniques that 

are used to reduce the number of  oxygen vacancies [59]. 

The stoichiometry (i.e. Ba/Sr and (Ba+Sr)/Ti) ratio) of the deposited films often deviates 

from the desired values, especially in the RF magnetron sputtering process. Various studies have 

shown that BST films with the stoichiometric composition (Ba+Sr)/Ti~1.0) show high dielectric 
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constant and tunability. On the other hand, excess Ti in a BST thin film has the advantage of 

improving the dielectric loss, performance lifetime, and maximum resistance degradation while 

reducing tunability [42, 48, 60]. In order to control the stoichiometry of a BST film via RF 

magnetron sputtering one can use a non-stoichiometric target, deposit films under high pressure, 

and use an off-axis sputtering source [61-63]. Besides, it is critical to regulate the composition of 

Ar/O2 to deposit a BST film with a closer stoichiometric match to the sources target without 

losing the phase purity (Chapter 5). 

2.5.1.  Doping Barium Strontium Titanate 

The other method that can be used to effectively improve the properties of BST film is by 

incorporating foreign elements or dopants in the lattice of BST. The effects of dopants such as 

La
3+ 

[64], W
6+ 

[65], Ce
3+/4+ 

[66], Nb
5+ 

[67], Mg
2+ 

[68], etc., have been widely studied to improve 

the properties of BST. These dopants affect the property of BST either by substitution of cations 

in the BST lattice or precipitation at the grain boundaries to form a non-ferroelectric phase. 

Substitution is essentially limited by the solubility of the cations which can be grouped as 

aliovalent (donor or accepter) and isovalent dopant by comparing the valance of the dopant ion 

with the ion being replaced. 

If the introduced dopants are below their solubility limit, they can modify the Curie 

temperature, the microstructure of BST films including the lattice parameters and grain sizes, 

and structural defects. Also, substitution reduces the number of oxygen vacancies (especially 

when aliovalent dopants are incorporated) and thus controls the insulating properties of the film. 

If the solubility limit is exceeded, the insoluble portions of the dopants form their oxides and 

settle either at the grain boundaries or within the bulk of the material. The property of the doped 
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BST film is then a composite of the low-non tunable dielectric constant oxide and high-tunable 

dielectric constant BST [12]. 

Discretely, most dopants are effective in improving either the tunability or dielectric loss 

of the BST thin films. For example, Mg
2+

 doped BST thin film exhibit a significantly improved 

dielectric loss and insulating property, but are accompanied by lower grain size, dielectric 

constant, and tunability [68]. The assumption is that Mg
2+

 ions behave as an acceptor dopant by 

substituting Ti
4+

 and weaken the ferroelectricity (typically by lowering the Curie temperature) of 

BST, resulting in a decrease of the dielectric constant and tunability. Conversely, the Mg
2+

 

acceptors could prevent the hopping of  electrons between Ti
4+

 to Ti
3+

 by neutralizing the donor 

action of the oxygen vacancies  to lower losses and the leakage current [12, 68]. On the other 

hand, Nb
5+

 ions, also substituting Ti
4+

, behave as donor impurities which affect the properties of 

BST in the opposite manner to the Mg
2+

 ions [67, 69]. 

To obtain the positive effects of both Mg and Nb ions, a careful co-doping of the two ions 

in BST material is required so that the concentrations of the two ions have a unique relationship 

that does not allow the domination of the effect of one over the other. Predominantly, as one of 

the properties that need to be improved is the leakage current of the film the co-doping must not 

introduce free carriers into the material, i.e. there must be neutrality compensation. Given both 

ions substituting Ti
4+

, the neutrality compensation is realized when [𝑀𝑔𝑇𝑖
′′ ] = 2[𝑁𝑏𝑇𝑖

 ] as was 

reported in [70]. In this work, the ions were introduced through barium magnesium niobate 

(BaMg1/3Nb2/3O3) where the detailed study is presented in Chapter 6. 

Furthermore, it is conceivable that doping BST with multiple (two, three, even more) 

impurities may help attain an acceptable trade-off between BST film tunability and loss. The 

critical issue, however, is identifying efficient dopants and determining their optimal doping 
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levels from a great deal of elements used as impurities for BST. In order to achieve this, the use 

of a conventional approach is undesirable due to the slow, expensive and rather unpredictable 

trial-and-error nature of the method. Alternately, the combinatorial materials synthesis 

methodology combined with high throughput characterization (HPC) have the potential to 

investigate the effects of a wide range of dopants on BST films [71, 72]. In this work, an RF 

magnetron sputtering based combinatorial method is implemented to determine the concentration 

of dopants (three dopants) that correspond to the optimum tunability and loss (Chapter 7). 

2.6.  Conclusions 

In this chapter, topics that are relevant to the tunable dielectric and ferroelectric materials 

were reviewed. The solid state reaction between BTO and STO leads to the formation of BST 

whose dielectric properties can be regulated by its composition. For microwave applications, thin 

film BST has superior advantages but its properties are deteriorated due to residual stress, 

microstructure, dead layer and stoichiometric deviance. The pathways to mitigate these 

problems, including the use of a suitable substrate, buffer layer, controlling the composition of 

Ar/O2 and doping were discussed. The use of concurrent and multiple doping to achieve a trade-

off between loss and tunability were pointed out. Lastly, the need for a combinatorial method to 

rapidly determine optimal concentration of multiple dopants in a BST film was presented. 
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3.  EXPERIMENTAL METHODS 

In this chapter, the methods that are used for BST thin film deposition and subsequent 

characterization are presented. First, a short introduction to the commonly used deposition 

techniques, with emphasis on the radio frequency magnetron sputtering (used in this thesis), are 

summarized. Then, the basic principles behind the analytical characterization techniques, 

capacitor structure fabrication, and subsequent device characterization methods will be 

described. 

3.1.  BST Thin Film Deposition 

Ferroelectric BST thin films can be fabricated by several deposition methods which may 

be generally classified into two main categories: chemical deposition and physical vapor 

deposition (PVD) methods. The chemical method can be further classified as chemical vapor 

deposition (CVD) and chemical solution deposition (CSD) while the PVD methods commonly 

used for BST deposition include sputtering and pulsed laser deposition (PLD). However, 

regardless of the method used in BST deposition, the process should be economical, scalable for 

industrial purposes; and the resulting film must have good thickness uniformity, a high degree of 

structural perfection, and controlled stoichiometry. 

3.1.1.  Chemical Deposition Methods 

The fundamental principle behind any chemical deposition method is the need of a 

chemical reaction between starting precursors either in gas or liquid phase to make the required 

thin films. A class of CVD method that has been successfully applied for the deposition of BST 

is the metal-organic-CVD (MOCVD) [73-77]. In this process, a sufficiently volatile 

organometallic precursor containing the required cations (e.g. Ba, Sr, Ti) is evaporated and 

transported with a suitable gas onto the substrate. At the substrate, the precursor decomposes and 
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gives rise to the formation of the required thin film by eliminating the organic portion. MOCVD 

has advantages to deposit a film on a complex substrate geometries, to deposit an epitaxial thin 

film due to the molecular level reaction, and is suitable for deposition of multilayer thin films 

[11, 73, 75]. Moreover, a film with the intended stoichiometry can be obtained by careful mixing 

of the precursor and gas flow rates [78, 79]. However, the availability as well as stability of the 

volatile precursors along with the overall cost of the system, the high thermal budget 

requirement, and the thickness non-uniformity of the deposited thin films limits its widespread 

use for BST deposition. 

The CSD method produces a film from a homogeneously mixed precursors according to 

the pre-selected film composition [73, 80]. It includes metal organic decomposition (MOD) [73, 

81] and  sol-gel [82] methods which typically uses a spin coating practice to deposit a film. The 

resulting thin film usually undergoes multiple heat treatment steps to realize a crystalline 

material [73]. The CSD method is inexpensive and is characterized by low processing 

temperature as well as short deposition time. Besides, it has the advantages of large area 

coverage, composition control, and easy incorporation of dopants with precursors (ensuring 

maximum homogeneity). However, thin films fabricated by the CSD methods often suffer from 

thickness non-uniformity, large surface roughness, cracks, and voids which lower both the 

dielectric constant and tunability of the BST thin films [12]. 

3.1.2.  Physical Vapor Deposition Methods 

PVD method is a technique whereby physical processes such as thermal evaporation, 

collision impact, and laser ablation are used to create gaseous (vapor) material from a solid 

source (target) to deposit a thin film. In general, the PVD method involves three consecutive 

steps to deposit a thin film from a solid source: (1) the solid source is converted to vapor form by 
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a physical means; (2) the vapor is transported from the source to the substrate across a region of 

reduced pressure; and (3) the vapor undergoes condensation on the substrate to form the thin 

film. 

The two widely used PVD systems for BST deposition are the pulsed laser deposition 

(PLD) [83] and RF magnetron sputtering [12, 59, 84-86]. PLD relies on the interaction of a short 

laser pulse (fs-ps range) with a solid target to create a plume of material to be deposited on a 

nearby substrate. It has the advantages of replicating the composition of BST film close to the 

source material at a high deposition rate with low level contamination. However, when the laser 

pulse interacts with the source material, it creates micron size droplets and clusters which are 

deposited on the film leading to significant surface roughness. The droplets and clusters are 

formed mainly as breakaway of surface defects under thermal shock and splashing of liquid 

material due to superheating of the subsurface layers. Besides, PLD deposited films lack 

uniformity over a large substrate area (typically 1cm
2
 substrate is used) [33, 87]. 

3.1.3. Sputtering Deposition Methods 

Sputtering is a suitable and relatively simple thin film deposition method with the 

advantages of excellent uniformity, high purity, and reproducibility. Moreover, it has a respected 

industrial record due to its scalability, compatibility with standard IC processing, and ability to 

deposit on large area substrates [33]. The process is based on the transfer of physical momentum 

and kinetic energy from ionized atoms (typically, Ar+) to the source material (target) as 

schematically shown in Figure 3.1. When the energetic incident ions transfer momentum to the 

target, they knock off atoms (i.e. sputtered atoms) which retain the same chemical and physical 

properties with the target. In a reduced pressure, the sputtered atoms deposit on the substrate and 

walls of the deposition system. For the success of the sputtering process, generating energetic 
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ions to sputter atoms from the target, and creating a reduced pressure for the sputtered atoms to 

move towards the substrate with less number of collisions are critical [88].  

 

 

Figure 3.1. Schematics of sputtering processes 

 

The sputtering method is generally divided into four classes: direct current (DC), radio 

frequency (RF), magnetron, and reactive sputtering methods. The simplest and oldest model of 

all the sputtering methods is the DC sputtering. In fact, the other sputtering systems are modified 

forms of DC sputtering in order to improve its efficiency and facilitate the depositions of non-

conducting materials. The schematic representation of the DC and RF sputtering systems are 

shown Figure 3.2. The DC sputtering system consists of parallel cathode (water cooled) and 

anode electrodes on which target material and substrates are placed, respectively. Introducing 

sputtering gas (Ar) into an evacuated chamber and applying a high DC voltage across the two 

electrodes initiates the formation of a glow discharge (plasma), which constitutes electrons (e
-
) 

and Ar
+
 ions. The Ar

+
 accelerates towards the target and generates sputtered atoms and 

secondary electrons by transferring momentum. The sputtered atoms pass through the plasma 

with enough energy and condense on the surface of the substrate [88-90]. The secondary 

electrons ionize more argon atoms to sustain the plasma discharge.  
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The DC sputtering system, however, is limited to the deposition of conducting materials. 

If the target material is an insulator or the deposition is performed in a reactive environment, the 

plasma between the two electrodes cannot be sustained because of an immediate buildup of 

positive charge on the surface of the target. 

 

  

Figure 3.2. DC and RF sputtering systems [90] 

 

The RF sputtering method was designed as a solution for deposition of insulating 

materials. In this method, a radio frequency range AC source (typically 13.56 MHz) is applied 

between the two electrodes using an impedance matching network which is coupled to the target 

material (Figure 3.2). As a result of the AC source, both electrodes reverse their polarity where 

only electrons are fast enough to switch their direction with the field, thus neutralizing the 

positive charge built on the target. On the other hand, the Ar
+
 is too heavy to follow the RF 

cycle, and is always accelerating towards the target material (i.e. RF rectification effect). 

Therefore, RF sputtering uses the fast response of electrons to the changing polarity to sputter 

both the insulator and conducting materials  in a reactive environment [91]. 

The third sputtering type which is widely used both for R&D and commercial 

applications with the primary advantage of obtaining a high deposition rate is the magnetron 



 

35 
 

sputtering method. In DC sputtering, some of the secondary electrons pass right through the 

plasma without ionizing argon atoms and get absorbed by the substrate or sputtering chamber. 

As a result, the sputter yield of the material reduces leading to the decrease in the deposition rate 

of the film. This problem is resolved by putting a magnet beneath the sputtering target, thus 

magnetron sputtering. The magnetic and electric field forces (Lorentz force) capture the escaping 

electrons and confine them to the vicinity of the target. This increases the ionization of argon 

atoms close to 100 % and thus the sputter yield of the material to increase the film deposition 

rate. Depending on whether a DC or RF source is used with the magnet, it may be called DC/RF 

magnetron sputtering [88]. 

The fourth sputtering is the reactive sputtering deposition. As its name indicates, this 

method involves a chemical reaction of some form at the surface of the substrate and is 

commonly used for deposition of oxide and nitride films. It can be done either from compound 

or a pure target under the flow reactive gasses such as  O2 and N2 together with the sputtering gas 

[91]. 

3.1.4.  RF Magnetron Sputtering for BST Deposition 

The ferroelectric BST thin film deposition is widely conducted by a reactive RF 

magnetron sputtering system [86, 92, 93] which involves the mixing of oxygen and argon gas. 

One major difficulty of using RF magnetron sputtering to deposit a BST thin film is the 

challenge of choosing optimum deposition conditions to obtain a stoichiometric film. The BST 

film’s stoichiometry is an extremely critical parameter which affects the dielectric property of 

the film. For instance, in numerous studies it has been shown that when the (Ba+Sr)/Ti ratio is 

equal to one, the BST thin film attains the maximum dielectric constant and tunability; however, 

an excess or deficiency of Ti decreases the former [42, 48, 60]. 
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Unfortunately, when complex oxides like BaxSr1-xTiO3 (0≤x≤1, a multicomponent target) 

are sputtered in a reactive environment, the obtained film stoichiometry is off from the source  

material due to the mass and pressure dependent scattering processes [94]. Typically, for a 

sputter deposited BST film there is a high probability of Ti deficiency since it is the component 

with smallest mass that can be scattered over large angular range than Ba or Sr. Conversely, the 

heavy atoms (Ba/Sr) have low sticking coefficient to the substrate and are subsequently re-

sputtered when the growing film is bombarded by negative oxygen ions [95]. The re-sputtering 

of Ba atoms from the grown film was observed in sputter deposited  YBa2Cu3O7- (YBCO) thin 

film [96]. The stoichiometric control in sputter deposited BST thin film is studied in Chapter 5. 

In this work, an advanced reactive (oxygen gas) RF magnetron sputtering system was 

used to deposit the BST thin films. It is a CMS-18 Series Kurt J. Lesker advanced system (Figure 

3.3) available at the Center for Nanoscale Science & Engineering (CNSE) facility of North 

Dakota State University (NDSU). The system has three off-axis (targets shifted to the side) RF 

magnetron sputtering sources, where two of them are flexible (their tilt angles can be adjusted). 

Equipped with two vacuum chambers—load lock and process chamber which are separated by a 

valve,  the system has a substrate bias (100 W RF source) for pre cleaning, capability of heating 

up to 1300 
o
C, and multiple source gasses (Ar, O2, and N2). Furthermore, it can deposit films on 

various substrate sizes, from small pieces up to 6 inch substrates, and has an ultrahigh vacuum 

performance which can reach a base pressure as low as ~10
-9

 Torr. The flexibility of the RF 

sources makes it ideal for use in a continuous composition spread combinatorial thin film 

deposition (Chapter 7). 
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Figure 3.3. RF magnetron sputtering at CNSE, NDSU 

 

3.2.  BST Thin Film Characterization 

The BST films were studied using various analytical and device characterization 

methods. The crystallinity, phase purity, and residual stress of the films were analyzed by x-ray 

diffraction (XRD). Raman spectroscopy was also exploited for a detailed study of the films’ 

structure. The surface morphology, roughness, and grain structure of the films were examined by 

scanning electron microscopy (SEM) and atomic force microscopy (AFM). The film thickness 

including 3D mapping was measured by spectroscopic ellipsometery (J.A. Woollam, M88) and 

X-ray reflectivity (XRR) techniques. The elemental composition of the films was estimated by 

Rutherford backscattering spectroscopy (RBS), Inductively Coupled Plasma - Optical Emission 

Spectroscopy (ICP-OES) and X-ray fluorescence (XRF) techniques. The microwave and 

electrical properties of the films were conducted by lithographically fabricating parallel plate 

capacitor structures on the films and analyzing their DC- and AC-field responses. 
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3.2.1.  Structural Characterization: X-Ray Diffraction (XRD) 

X-ray diffraction (XRD) was used to characterize the crystallinity, phase purity, and 

residual stress of the BST films, powders, and sputtering targets. It is based on the interaction of 

an X-ray photon with electron clouds around an atom in a lattice. A crystalline material has a 

periodic arrangement of atoms in three dimensions which act as a 3D diffraction grating for the 

X-ray photons. When X-rays are diffracted from a crystalline material, the superposition between 

the diffracted waves could be either constructive or destructive. The constructive interference is 

produced when the path difference between the interfering waves is an integral multiple of the 

X-ray wavelength.  

 

 

Figure 3.4. Schematics of X-ray diffraction 

 

The schematic representation of the interaction between an X-ray radiation and a 

crystalline material is shown in Figure 3.4. The constructive interference is satisfied when the 

path difference (indicated by green lines) equals an integral multiple of the X-ray wavelength. 

This is governed by Bragg’s law [97], 2dsin=m where, d  is an inter-planar spacing,  is the X-
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ray wavelength,  is the Bragg’s angle, and m is an integer representing the order of the 

diffraction pattern.  

The conventional Bragg-Brentano (-2) geometry can be used to analyze the crystalline 

properties of the BST powders and targets. However, for the analysis of thin films, the -2 scan 

is not suitable since the X-ray penetrates through the film and probes the substrate. To suppress 

the signal from the substrate, using XRD in a grazing incidence XRD (GIXRD) mode is 

preferable. In GIXRD mode, the X-ray beam impinges onto the surface of the film at a small and 

constant incident angle (), which is close to the critical angle for total reflection, and the 

detector arm (2) rotates to collect the diffracted signal. The small grazing angle (, should be 

optimized) makes the incident beam evanescent, thus penetrates only into the top few nm of the 

surface of the film allowing suppression of the signal that arises from the substrate. In addition, 

the intensities of the X-rays are enhanced by 2-4 times at the surface compared to the intensities 

from the bulk [98, 99]. Therefore, the small penetration depth along with the intensity 

enhancement makes the GIXRD an ideal technique for the characterization of the crystallinity, 

phase purity and residual stress of thin films. 

The XRD analyses in this work were performed using Rigaku Ultima IV X-Ray 

Diffractometer with a Cu Kα radiation generated at 40 kV and 44 mA. It has a multipurpose 

sample stage that can be switched between parallel and focused beam geometry, making it 

suitable both for the GIXRD and conventional XRD. The incident angle for the GIXRD was 

optimized to be 1.5
o
. For the conventional XRD, the divergence, scattering and receiving slits 

were 2/3 mm, 2/3 mm and 0.3 mm, respectively. Similarly, for the GIXRD set up the divergence 

slit was 1.0 mm while both the scattering and the receiving slits were open. Phase identification 

was conducted with JADE 9.0 software equipped with the ICDD data base. 
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3.2.2.  Surface Morphology and Roughness 

The surface, grain type and size of the BST films were examined by scanning electron 

microscopy (SEM). In this technique an electron beam generated from a source (e.g. field 

emission gun) is focused on the specimen by electromagnetic lenses. These electrons interact 

with the surface atoms and provide information on the topography as well as composition of the 

sample. Imaging is typically done by detecting secondary electrons (electrons that emit from the 

specimen). The instrument used in this work was a JEOL JSM-6700F field emission SEM. It 

offers high lateral and vertical resolution and has the capability of imaging features down to 1 

nm. 

Similarly, a tapping mode atomic force microscopy (AFM) was used to study the surface 

morphology and roughness of the BST films. In this technique, a sharp AFM tip at the end of a 

cantilever is scanned across the surface of the sample and the cantilever deflection due to surface 

topography is detected. For the BST films analysis, a VEECO Dimension 3100 AFM equipped 

with 175 kHz silicon tip of diameter ~ 10 nm was used in a tapping mode. The surface roughness 

of the samples was extracted from the AFM images using the Nanoscope 5.31r1 software. 

3.2.3.  Elemental Analysis 

The composition, stoichiometry, and dopant concentration of the BST thin film has a 

direct impact on the tunability, dielectric loss and leakage current of the film. Particularly, in a 

reactive RF magnetron sputtering method, a small change in deposition condition can 

significantly alter the stoichiometry of the BST film. Thus, monitoring the composition of the 

BST film is crucial. In this work, X-ray fluorescence (XRF), Rutherford backscattering 

spectroscopy (RBS), and Inductive coupled plasma-optical emission spectroscopy (ICP-OES) 

techniques were used for composition analysis. 
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Rutherford Backscattering Spectroscopy (RBS): Rutherford backscattering spectroscopy 

(RBS) is a quantitative analytical technique based on classical scattering in a central force field. 

It is insensitive to chemical bonding or electronic configuration of the sample. In RBS technique, 

a beam of monoenergetic (MeV range) particles (usually 
4
He

+ 
ions) is accelerated and collides 

with stationary atoms on the sample. In the collision process, the particles transfer some of their 

energy to the stationary atoms and scatter backward to the detector. The detector measures the 

remaining energy of the particles which depends on their mass and the mass of the target atom as 

[100] 

 𝐸1 = (
(𝑀2

2 −𝑀1
2 sin2 𝜃)+𝑀1 cos𝜃

𝑀1+𝑀2
)
2

𝐸0. (3.1) 

Here, M1 and M2 are the masses of the incident particle and target atom, respectively, E0 

and E1 are the energies of the particle before and after scattering, and  is the scattering angle of 

the particle. Thus, the energy of the scattered particle measured by the detector provides the 

composition of the sample material.  In this work, the RBS measurements were performed by a 

MAS 1700 pelletron tandem ion accelerator (5SDH) with a 165° fixed ion detector using 4MeV 

4
He

+
 ions (University of Minnesota). The data analysis was conducted by SIMNRA 6.06. 

Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES): ICP-OES is an 

analytical technique used to detect and determine the concentration of metals in various sample 

matrices. In this method, an inductively coupled plasma (ICP) is used to excite atoms that 

spontaneously emit photons as they relax to their ground states [101]. The emitted photons are 

detected by an optical emission spectroscopy (OES) detector and have characteristic energies 

(wavelengths) that correspond to the element they originate from. The intensity of the emitted 

photons is directly proportional to the concentration of the elements within the sample. 
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Liquid and gaseous samples can be directly injected into the instrument without further 

preparation, but the solid samples must be digested in a suitable solution so that the analytes will 

be present in a liquid form. In this work a Spectro Genesis SOP ICP-OES instrument equipped 

with optimist nebulizer and cyclonic spray chamber was used. The BST samples were prepared 

by digesting them in a mixture 10 % HCl, 45 % H2O, and 45 % H2O2 heated to 60 
o
C. 

X-ray Fluorescence (XRF): X-ray fluorescence (XRF) is a fast and non-destructive 

method for composition analysis. In the XRF process, a sample is irradiated with a primary x-ray 

source that has sufficient energy to eject electrons from the inner shells of the atoms in the 

sample, creating vacancies which induce instability to the atoms. The atoms then regain stability 

by filling the vacant shells with electrons from outer shells and giving off characteristic x- rays. 

These photons are detected to identify atoms and quantify their concentration (from intensity) in 

the sample. In this study, a ZSX Primus Rigaku x-ray fluorescence (XRF) furnished with 

wavelength dispersive spectrometry (WDS) was used. The WDS constitutes multiple analyzing 

crystals (typically single crystals or synthetic multiple layers of single crystals) which are used to 

diffract and then separate the characteristic photons generated from all the possible atoms in a 

sample prior to reaching the detector. 

3.2.4.  Device Characterization 

In this section capacitor fabrication processes, dielectric and electrical characterization 

methods are discussed. BST thin film varactors are normally designed in two forms: parallel 

plate and coplanar type varactors as schematically shown in Figure 3.5. In the parallel plate 

design, the BST thin film is sandwiched between the bottom and top electrodes (Figure 3.5, left) 

forming a metal-insulator-metal (MIM) capacitor structure, whereas the coplanar geometry does 

not require the bottom electrode (Figure 3.5, right). 
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Figure 3.5. Parallel plate type (left) and coplanar type (right) BST varactors [30] 

 

Since bottom electrode is not critical in a coplanar geometry, its fabrication is relatively 

simple. However, this  design has several downsides, including low capacitance, reduced 

tunability, requirement of high tuning voltage due to the large gap between electrodes (typically 

>1µm), and the fringing nature of both the DC and RF fields in the air between the electrodes 

[30, 102, 103]. On the contrary, the MIM capacitor structure offers high capacitance density and 

tunability at lower DC voltages since most of the electric field lines enter the BST film (low 

fringing effect). Besides, the control voltage and power handling capability of the MIM capacitor 

structure is also good [30, 102, 103], despite the long and complicated processing steps. 

Owing to the above advantages, the MIM capacitor structure was chosen to study the 

dielectric and electrical properties of the BST thin films. Similar to the coplanar capacitor 

structure, a single mask lithography process was applied to the top electrode to fabricate the 

MIM capacitor structure on the BST  films [104, 105]. The bottom electrode remained 

inaccessible and acts as a continuous common ground for all the capacitors. Figure 3.6 (left) 

shows the mask layout used in the fabrication of the MIM structure. It consists of 2432 pairs of 

capacitors that are 0.2 mm apart and have a 0.50.5 mm
2
 electrode area (see an optical 

microscopy image Figure 3.6, right). The detailed steps in the capacitor fabrication process are 

presented in appendix A. 
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Figure 3.6. Mask layout (left) and a pair of MIM capacitor (right) 

 

The measurement of capacitance (C) and loss tangent (tan ) as a function of frequency 

and voltage was performed using a Cascade Microtech Summit 12000 Semi-Automatic Wafer 

Prober equipped with an Agilent E4991A RF impedance analyzer. The probe used in this 

experiment was a Picoprobe 40A-GS-500-C (GGB Industries Inc.) with 500 µm pitch (probe tip 

spacing). Unavoidable errors and losses in the impedance analyzer, its associated cabling and the 

probe were calibrated out using a CS-11 model calibration substrate. 

 

 

Figure 3.7. GS probe in contact with the two capacitors 
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To perform the measurement, the GS (Ground Signal) probe is put in contact with the 

pair of capacitors as schematically shown in Figure 3.7 and the impedance analyzer measures the 

equivalent capacitance of the two (equal) capacitors connected in series. The bias voltage was 

applied to the device under test by a Keithley 6487 Picoammeter/Voltage Source externally. The 

leakage current of the BST films was measured using an Agilent B1500A Semiconductor Device 

Analyzer. 

3.3. Conclusions 

MOCVD, CSD, PLD, and RF magnetron sputtering methods can be used to deposit 

ferroelectric BST thin film. In this work, an RF magnetron sputtering was selected owing to the 

advantages of excellent uniformity, high purity and its scalability to industry. Analytical 

techniques used in the BST film characterization, including XRD, SEM, XRF, etc. were 

discussed. The parallel plate and coplanar capacitor structures can be used for dielectric 

characterization; however, the parallel plate capacitor structure was chosen due to the high 

capacitance density, high tunability at lower DC voltage and good power handling capability.
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4.  SPUTTER TARGET AND FILM DEPOSITION 

In order to use the RF magnetron sputtering method to deposit BST thin films, a BST 

source (target) with pre-determined composition is required. Generally, the BST target materials 

can be obtained either by purchasing from vendors or fabricating in house. Since a large number 

of targets (doped and undoped) were needed in this work, they were fabricated in house as it is 

cost effective and greatly flexible to produce targets with various compositions and dopants as 

needed. Selecting suitable substrates and optimizing the deposition temperature are also vital for 

BST thin film deposition. In this chapter, procedures in the fabrication of BST targets, selection 

of substrate to grow good quality BST film and determination of growth temperature are studied. 

Also, the need for a buffer layer to grow a crystalline BST thin film is studied. 

4.1.  Sputter Target Fabrication 

In this thesis, three types of BST targets (two doped, two undoped) were fabricated using 

the traditional solid state reaction method between BTO and STO [38, 39]. The solid state 

reaction in general involves mixing of the starting powders with stoichiometric proportion, ball 

milling the mixture in a suitable medium, drying, calcining, and finally sintering (firing) at 

elevated temperature to promote a diffusion based reaction between the precursors. Figure 4.1 

shows the flow chart for the fabrication of the targets. The process involves the synthesis of 

dopants (as needed), base BST powder, doped BST powder, and finally the target. Mixed 

precursors were milled at 60 RPM for 48 hours, and the subsequent slurry was dried at 50 
o
C for 

24 hours in all the syntheses as needed. 

For the doped BST targets, the impurities introduced into base BST powder were barium 

magnesium niobate (BaMg0.33Nb0.67O3 (BMN)) and cerium oxide (CeO2). The two dopants were 

introduced into separate base BST powder to fabricate doped BST targets with each of them. The 
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BMN dopant was intentionally used to introduce magnesium and niobium ions (aliovalent ) in 

such a way that a complete charge neutrality is realized to minimize the dielectric loss and 

leakage current of the BST film without affecting its tunability [70]. 

 

 

Figure 4.1. Flow chart for the fabrication of the sputtering targets 

 

BaMg1/3Nb2/3O3 dopant: The barium magnesium niobate (BMN) dopant was synthesized 

using a solid state reaction by closely following the preparation method presented in [106]. 

BaCO3 (98.5%), MgCO3 (99%), and Nb2O5 (>99%) were mixed and ball milled in ethanol. The 

slurry was dried and the resulting material was calcined at 1400 
o
C for 4 hours (Figure 4.1). 

After grinding and sieving the calcined material (≤ 250 µm mesh) its phase purity was analyzed 

by powder XRD. Figure 4.2(a) presents the XRD pattern of the as synthesized BMN powder. 

The pattern has shown a hexagonal structure BMN material in agreement with the reported result 

[106],signifying the formation of complete solid solution between the precursors. The CeO2 

powder, however, did not require any further processing and was used as received. 
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Figure 4.2. XRD patterns of (a) the synthesized BMN powder, (b) undoped BST powder (black), 

BMN doped BST powder (red), undoped BST target (green), and BMN doped BST target (blue) 
 

Undoped (base) BST powder: Similar to the BMN synthesis, BTO (99.9 %) and STO (99 

%) were mixed in a ratio of 9:11 to fabricate base BST powder with a composition of 

Ba0.45Sr0.55TiO3. The mixture of BTO and STO was ball milled in ethanol and the subsequent 

slurry was dried. The dried material was calcined at 1300 
o
C for 24 hours and followed by 

grinding and sieving. Then, the phase purity of the resulting powder was examined by powder 

diffraction. The XRD pattern (Figure 4.2b, black line) has shown that the obtained powder is a 

pure phase BST with the intended composition [107], indicating a complete solid state reaction 

between BTO and STO. At this step, the BST powder can be used for the fabrication of the 

undoped BST target, but for the doped targets, an extra step of synthesizing the doped BST 

powder is required. 

Doped BST powder: Following the synthesis of the base BST powder, 4 mol. % of BMN 

or an undisclosed concentration of CeO2 (the concentration is proprietary) was weighed and 

mixed with base BST powder. Each mixture was ball milled and the subsequent slurry was dried. 

The two powders were then calcined at 1400 
o
C for 24 hours, ground, sieved, and the solubility 

of the dopants in the base BST was analyzed by XRD. The XRD pattern of the BMN doped BST 
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powder is presented in Figure 4.2b (red line). The pattern has shown no extra phase, suggesting 

the complete solubility of the BMN dopant in the BST lattice. A similar result was obtained for 

the CeO2 doped BST (data not shown). 

Sputter Targets Fabrication: After preparing the undoped and doped BST powders, 2 wt. 

% binder (Rhoplex) was added to each of them to facilitate the bonding between particles and the 

mixture was first ball milled in ethanol, and then dried for 12 hours, followed by grinding and 

sieving. To fabricate a standard sputtering target 160 grams of each powder was weighed and 

shaped into discs of ~3.5” diameter and 6 mm thickness using a uniaxial pressure of 30000 lb for 

10 minutes. Then the BST discs (also known as green bodies) were sintered at high temperature 

to enable diffusion reaction between the components. The pure BST disk was sintered at 1430 
o
C 

for 3 hours while the doped BST discs were fired at 1600 
o
C for 6 hours. 

The crystalline structure and phase purity of the undoped and BMN doped targets were 

analyzed by XRD and presented in Figure 4.2b, green and blue lines, respectively. The XRD 

patterns for both BMN doped and undoped targets have shown a cubic polycrystalline phase 

BST material [107]. This shows the phase purity of the fabricated BST target and complete 

solubility of the dopants in the BST lattices. Similar result was obtained for the Ce-doped BST 

target (data not shown). Finally, the targets were machined, metal bonded to promote conduction 

and used in the RF magnetron sputtering to deposit BST films. 

Moreover, by taking a closer look at the XRD pattern, it is possible to see the entire 

evolution of crystal structure and lattice parameter of BST as the solid state reaction progresses. 

Figure 4.3 shows the (110) XRD line of BST (Figure 4.2b), BTO and STO. At room 

temperature, BTO has a tetragonal structure (black) and STO has a cubic structure (red). The 
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solid state reaction between BTO and STO creates a cubic phase BST whose XRD line (green) 

positions between the two, indicating that its lattice parameter is lower than that of BTO. 
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Figure 4.3. The (110) XRD lines for BTO (black), STO (red), undoped BST (green), BMN 

doped BST powder (blue), and undoped BST (magenta) and BMN doped BST (orange) targets 
 

Interestingly, the doping of BMN into BST powder did not change its lattice parameter, 

but the full width at half maximum (FWHM) of the (110) XRD line has increased from 0.176
o
 to 

0.249
o
. For the BMN doped target, the FWHM has reduced to 0.183

o
 though it is still higher than 

the FWHM of the undoped BST target—0.086
o
. This suggests that the introduced dopants distort 

the structure of BST without affecting its lattice parameter (3.953 Ǻ). 

4.2.  Substrate Selection 

BST thin films have been deposited on various substrates such as oxide single crystals, 

silicon wafers, ceramics, and metallized substrates [12, 33, 108, 109]. These substrates affect the 

properties of BST in different ways, even if the deposition condition and the thickness of the film 

are the same. This is due to the differences in the physical properties of the substrates with 

respect to BST. For example, a stress free and crystalline  BST film can be grown on a substrate 
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that has identical CTE and lattice parameter with BST [110], suggesting the requirement of a 

careful selection of substrates. Table 4.1 presents some of the frequently used substrates and their 

parameters that make them essential for BST film growth [12, 33]. 

 

Table 4.1. Substrates (SC/PC-single/poly- crystalline) for BST film deposition 

Substrate Structure 
Lattice 

Parameter (Å) 

CTE (10
-6 o

C
-1

, 

at 20 
o
C) 

Relative 

permittivity 
tan  (at10 

GHz) 

MgO SC 4.200 12.8 9.8 210
-5

 

SrTiO3 PC 3.906 9.4 ~300 510
-4

 

LaAlO3 SC 3.793 11.0 25 610
-5

 

Sapphire SC 
a=4.758, 

c=12.993 
7.3 

a:9.4 

c:11.6 

a:<210
-5 

c:<510
-5

 

Al2O3 

(99.6%) 
PC 

a=4.758, 

c=12.993 
6.0-8.1 9.9 10

-4
 

Silicon SC 5.431 2.5 11.9 … 

Platinum SC 3.924 8.9 … … 

Note: the lattice parameter of the undoped BST target is 3.953 Å, and the CTE for the 

composition of BST used in this work falls between 9-11ppm 
o
C

-1
 [111]. 

 

Single crystal oxide substrates (e.g. MgO, LaAlO3, sapphire, etc.) are exceptionally 

useful to grow an epitaxial BST film with a good crystalline quality. However, the use of these 

substrates is limited due to the high cost of available single crystalline wafers [33]. On the other 

hand, alumina (Al2O3, 99.6 %) and standard silicon (Si) substrates are cheaply available. Yet, the 

BST film grown directly on these substrates suffers from residual stress due to the mismatch 

between the BST and the substrates (Table 4.1). Therefore, the substrate selection is dictated not 

only by the quality of the grown film but also by its cost effectiveness. 

The other important issue of substrate for BST is the selection of suitable bottom 

electrode. In BST deposition, the bottom electrode is more than an electrical contact; it can be 

used as a template to facilitate the growth of crystalline film. In general, any bottom electrode 

should possess the following three properties: (i) high electrical conductivity to minimize active 
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losses of the device, (ii) it must be inert to any chemical reaction at the film-electrode interface 

(e.g. oxidation), and (iii) it should be thermally stable to withstand the high BST deposition 

temperature. 

Conducting oxides (e.g. IrO2 and RuO2) and noble metals (e.g. Au and Pt) have been 

used as bottom electrodes for BST film deposition [12]. The conductive oxides are advantageous 

because they withstand the high substrate temperature and oxygen atmosphere needed for BST 

deposition. However, they show high electrical resistivity which limits their use for BST thin 

film. The state-of-the-art bottom electrode for the BST varactor is Pt [105, 112, 113]. The 

suitability of Pt for the BST varactor arises from its properties that it is highly resistant to 

chemical reactions, thermally stable, and has good electrical conductivity. Conversely, Pt is 

highly permeable to oxygen [114, 115], and poorly adhesive to the substrates underneath it. The 

adhesion of Pt to the substrate is commonly improved by using a few nm of Cr or Ti layers. At 

high temperature, however, these metals diffuse and promote hillock formation in Pt layers, 

leading to shorted devices [115]. The problem is  overcome by using the oxide forms of the 

metals (e.g. TiO2) as an adhesion layer and an additional oxide diffusion barrier [116]. 

In this dissertation, SiO2/Si, Pt/TiO2/SiO2/Si, and Pt/TiO2/SiO2/Al2O3 substrates were 

used. For the platinized substrates, the SiO2 (~ 500 nm) and TiO2 (20-50 nm) layers between the 

platinum and the main substrates (Si or Al2O3) are used to suppress diffusion and facilitate 

adhesion between layers, respectively. The SiO2/Si (the SiO2 layer could be native oxide, or 

deposited via thermal oxidation or PECVD method) substrates were mainly used to optimize the 

deposition conditions of the BST film. For the electrical characterization platinized substrates 

were used. 
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4.3.  Film Growth Temperature 

Regardless of the method used to deposit the BST film, growing crystalline film is 

critical to achieve optimal dielectric properties [48]. Particularly, in RF magnetron sputtering, the 

crystal structure of the BST film is affected by the deposition conditions, including substrate 

temperature, gas composition and total chamber pressure [33, 61]. While the effect of the latter 

will be studied in the next chapter, the optimum substrate temperature for obtaining crystalline 

BST thin film is presented here. 

The substrate temperature influences the crystallinity of the grown BST film since it 

facilitates the mobility of sputtered atoms on the surface of the substrate. In search of an 

optimum substrate temperature, a series of BST films were deposited from an undoped BST 

target on six inch SiO2/Si (100) substrates by varying the deposition temperature from 550 
o
C to 

900 
o
C in an interval of 50 

o
C. For each deposition, the total chamber pressure, argon and oxygen 

gas flow rates were set to 5 mTorr, 60 sccm, and 40 sccm, respectively. The ellipsometery 

measurement has shown the thicknesses of the films ranging between 80 to 120 nm with good 

uniformity (~ 5%). 

The crystallinity of all the deposited films was analyzed by XRD and their patterns are 

shown in Figure 4.4. At the lowest deposition temperature (550 
o
C), the grown film has shown 

poor crystallinity with only one broad peak corresponding to the (110) diffraction plane. 

However, when the substrate temperature increases, the crystallinity of the film improves.  In 

addition to the dominant peak from the (110) diffraction plane two additional XRD lines were 

observed for the film deposited at 650 
o
C.  At 700 

o
C, the film has shown all the expected 

patterns for cubic polycrystalline BST [107]. 
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Figure 4.4. XRD patterns of films deposited at variable temperature—extra phases (*) 

 

Interestingly, the films deposited at 750 
o
C and 800 

o
C have shown two strong XRD 

peaks corresponding to the (100) and (200) diffraction planes while the (110) diffraction line, 

which is the strongest peak for a polycrystalline BST, is suppressed. The patterns for both films 

indicate that they are grown preferentially following the (100) crystallographic plane of silicon 

substrate. The trend, however, was not maintained for temperatures above 800 
o
C. In fact, the 

films grown above the 800 
o
C temperature were of poor crystallinity, which might be related to 

the increase of oxygen vacancy concentration with temperature. 

Despite the strong preferential growth, the films deposited at 750 C and 800 
o
C were 

observed to be contaminated with unintentional extra phases (see the asterisks on the graph). 

These extra phases may act as a low dielectric oxide mixed with a high dielectric BST and 

suppress the dielectric constant and tunability of the BST film [12]. Consequently, the optimum 

temperature selected to grow a polycrystalline BST thin film with no extra phase was 700 
o
C. 
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4.4.  BST Self-Buffering  

After determining the optimum deposition temperature (700 
o
C) it was used to deposit 

BST thin films on Pt/TiO2/SiO2/Si and Pt/TiO2/SiO2/Al2O3 substrates. During these depositions, 

as it was the case for silicon wafer, the RF power and the substrate temperature were 

simultaneously increased to their set points (i.e. 150 W and 700 
o
C).The substrate shutter was 

opened for deposition only after the temperature reached the set point. The crystallinity of these 

films was studied by grazing incidence XRD (GIXRD) and shown in Figure 4.5 (lines a&b). 

Unfortunately, as can be seen from the pattern, the grown films did not show any crystalline 

feature of BST on both substrates. 
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Figure 4.5. GIXRD for BST films deposited on platinized substrates (a,b) without and (c,d) with 

buffer layers. The Pt/TiO2/SiO2/Si is used in (a, c) and Pt/TiO2/SiO2/Al2O3 used in (b, d) 

 

Doubting that the optimum temperature for BST deposition on SiO2/Si may not be 

suitable for platinized substrates, several BST films were deposited at elevated temperatures in 

search of optimum temperature for platinized substrates. However, none of the grown BST films 
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have shown crystallinity (the XRD data are not shown), indicating that the Pt surface is not 

suitable to grow crystalline BST film. The XRD result has shown that despite the best properties 

that Pt exhibited as bottom electrode for BST, it cannot be used directly without any surface 

modification. 

In an attempt to improve the properties of BST thin films different researchers have 

forwarded the idea of using buffer layers mainly to reduce the residual stress in the film and 

grow an epitaxial BST thin film [50, 51, 117, 118]. With this in mind, the Pt/TiO2/SiO2/Si and 

Pt/TiO2/SiO2/Al2O3 substrates were first coated with ~10 nm BST layer (homo buffer) at room 

temperature. Then the substrate temperature was raised to 700 
o
C to deposit the main body of the 

BST film. Figure 4.5 (lines c&d) show the GIXRD patterns of the BST films grown on platinized 

substrates with the buffer layer. Interestingly, the GIXRD patterns of the films  have presented 

all the  diffraction lines expected of a polycrystalline BST material [107]. The result has shown a 

dramatic change in crystallinity of the BST film as a result of a homo-buffer layer coated on Pt 

surface at room temperature. The assumption is that when the temperature slowly (10 
o
C/min) 

rises to the set point, the thin BST buffer layer deposited at room temperature crystallizes and 

acts as a seed layer for the growth of crystalline BST thin film. 

The surface morphology and quality of the films deposited on platinized substrates with a 

buffer layer was also studied by SEM (Figure 4.6). The film deposited on platinized silicon has 

shown bigger grains than the one on platinized alumina wafer; however, it suffers from cracks 

(Figure 4.6B). The possible cause of the cracks in the film deposited on platinized silicon 

substrate is due to the higher CTE and lattice constant mismatch between the BST film and the 

bottom silicon substrate as well as Pt and silicon layers (Table 4.1). 
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Conversely, the film grown on platinized alumina wafer is crack free (Figure 4.6A) due 

to the closer CTE match between alumina and BST as well as Pt. The large CTE mismatch leads 

to a large thermal stress (tensile in nature) resulting in film cracks [90]. Due to these cracks, the 

electrical measurements of the films on Pt/TiO2/SiO2/Si substrate were not convenient since the 

devices were shorted out. Numerous experimental attempts to improve the cracking of the film 

on platinized silicon substrates were unsuccessful. As a result, electrical and dielectric 

measurements were performed only on platinized alumina wafers. 

 

 

Figure 4.6. FESEM images of BST films on (A) Pt/TiO2/SiO2/Al2O3 and (B) Pt/TiO2/SiO2/Si 

 

4.5.  Conclusions 

The standard ceramic reaction method was successfully applied to fabricate doped and 

undoped BST sputtering targets. The XRD study on the targets has shown that the introduced 

dopants have reduced crystallite sizes of BST without affecting its unit cell volume. The 

substrates used in this work were also selected by taking into consideration both the cost and the 

quality of the film grown on them. Accordingly, while SiO2/Si was selected for optimizing the 

deposition conditions, Pt/TiO2/SiO2/Al2O3 was found to be suitable for the final electrical 

characterization. The optimum substrate temperature to grow polycrystalline BST thin film was 
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determined to be 700 
o
C; however, a crystalline film on platinized substrate was only possible by 

coating a 10 nm BST buffer layer at room temperature. The buffer layer would crystalize during 

the increase of substrate temperature to the final value and acts as a seed layer to grow crystalline 

BST film. 
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5.  STOICHIOMETRY AND PHASE PURITY CONTROL OF BST THIN FILMS 

BST thin films have been deposited by numerous techniques, including metal organic 

chemical vapor deposition (MOCVD) [75-77], metal organic deposition (MOD) [81], as well as 

physical vapor depositions, such as pulsed laser deposition (PLD) [83], and RF magnetron 

sputtering [59, 84-86]. The advantages and limitations of each of these methods were presented 

in section 3.1. Among these, RF magnetron sputtering is widely used to fabricate BST films both 

for research and in the industrial scale. It is a suitable and relatively simple deposition method 

with advantages of achieving uniform, highly pure, and reproducible BST thin film. However, 

one of the longstanding drawbacks of using the RF magnetron sputtering for BST deposition is 

to maintain a precise control of film stoichiometry [119]. 

In a numerous studies, it was shown that even small variations of BST film composition, 

stoichiometry, microstructure, and morphology can significantly alter its dielectric properties 

(tunability, loss and leakage) [120].  It was found that the highest dielectric constant can be 

achieved only when the y = (Ba+Sr)/Ti ratio in the BST film is close to unity, implying that the 

dielectric constant decreases when the film composition is either rich or poor in Ti [42, 60]. Up 

to 50 % decrease of BST film dielectric constant was observed due to a 10 % change of y ratio 

[121].  It was indicated that the drop in dielectric constant and tunability due to the y ratio 

reduction (y < 0.85) is accompanied by vanishing of the BST peaks in the film’s XRD pattern 

[48] suggesting that the good film crystallinity is of paramount importance. 

Several approaches have been proposed to control the complex oxide film stoichiometry: 

deposition using non-stoichiometric targets, the off-axis substrate-target orientation, elevated 

chamber pressure (up to 2.5 Torr), and their combinations [61-63]. Conversely, the stoichiometry 

of BST films and their dielectric properties can be finely tuned by variation of total (O2+Ar) 
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chamber gas pressure (TGP) at fixed O2/Ar ratio[48] or by changing O2/Ar ratio at a constant 

TGP [122] enabling the tunability up to 93 % and loss tangent, tan , less than 0.01. 

Another unusual property of sputtered BST thin films is the  much larger lattice 

parameters of the BaxSr1-xTiO3 film material than those of bulk materials with the same 

stoichiometry (same x) [95, 107, 123]. Similar effect was observed in PLD fabricated films, and 

it was ascribed to the presence of large number of oxygen vacancies that reduce the Columbic 

attraction between cations and anions [83, 124]. However, with the increase of oxygen partial 

pressure (OPP) the lattice parameter has an overall tendency to decrease suggesting that the 

oxygen vacancies were partially annihilated. 

For the RF sputtered films the increase of OPP in the deposition chamber at fixed TGP 

has a detrimental effect on BST film dielectric properties [122]. In contrast, effective increase of 

OPP with increase of TGP at fixed O2/Ar ratio has the opposite effect on tunability [48]. The 

reason for these discrepancies remains unclear, partially due to the lack of detailed XRD 

structural analysis. In this chapter the effects of OPP and TGP on the crystal structure of RF 

sputter deposited BST films and their phase purity were systematically studied. 

5.1.  Experiment Description and Characterization   

BST thin films were deposited from two undoped Ba0.45Sr0.55TiO3 targets (fabricated 

according to the procedure in Chapter 4) on SiO2/Si or platinized alumina (Pt/TiO2/SiO2/Al2O3) 

substrates. The base pressure, throw distance, substrate temperature, and RF power were set to 

210
-8

 Torr, 16.5 cm, 700 
o
C, and 150 W, respectively. The total chamber gas pressure (TGP) 

and the Ar/O2 gas composition were variable in the experiment. In order to grow good crystalline 

film, a self-buffer layer (~10 nm, Chapter 4) was deposited. 
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The crystallinity and phase purity of the films were characterized by XRD in grazing 

incidence X-ray diffraction (GIXRD) mode. The chemical composition of the deposited BST 

thin films was examined using Rutherford backscattering spectrometry (RBS) and Inductive 

coupled plasma optical emission spectroscopy (ICP-OES). Since RBS sensitivity to oxygen is 

poor, the Ba/Sr and (Ba+Sr)/Ti atomic ratio are used for BST films composition analysis. The 

dielectric and electrical measurements were conducted on films grown on Pt/TiO2/SiO2/Al2O3 

substrate in a metal-insulator-metal (MIM) capacitor structure. 

5.2.  Oxygen Partial Pressure 

To study the effect of oxygen partial pressure (OPP) on the properties of RF magnetron 

sputter deposited BST thin films, five films  were deposited at a fixed total chamber gas pressure 

(TGP) of 5 mTorr, but variable Ar to O2 flow rates. The Ar/O2 flow rates were set to 90/10, 

80/20, 70/30, 60/40, 50/50 (in sccm) leading to a variable OPP ranging between 0.5 to 2.5 mTorr 

in an interval of 0.5 mTorr. In this section, the effects of variable OPP at a constant TGP on the 

crystallinity and phase of the deposited BST films are studied. 

The GIXRD patterns of the films deposited on SiO2/Si substrates at OPP ranging from 

0.5 to 2.5 mTorr are shown in Figure 5.1. All the observed XRD patterns are characteristic for 

the polycrystalline single phase cubic BST [107]. However, the peak positions of the films are 

shifted to lower 2 value compared to those of the target (Figure 5.1, bottom black line) 

implying larger lattice constants  than that of the deposition target (atarget=3.953 Å). Additionally, 

the XRD lines of the films are substantially broadened suggesting smaller crystallite sizes than 

that of the bulk BST target. 
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Figure 5.1.GIXRD of films deposited at 5 mTorr TGP and OPP ranging from 0.5 to 2.5 mTorr 
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Figure 5.2. Lattice constant (o) and deposition rate () versus OPP 

 

The film lattice parameters were evaluated using the Bragg’s equation from the (110) 

diffraction plane [97] for each deposition, and plotted vs. the OPP in Figure 5.2 (o). Despite 

the relatively large error in the lattice parameter (~0.001 Å) the tendency toward its increase with 

increase of OPP is clearly observed. This finding contradicts the generally accepted idea [59, 83] 

that the increase of OPP in deposition chamber facilitates the oxygen vacancy healing, resulting 

in the shrinking of the BST film’s unit cell closer to that of the target. Similar XRD peak position 
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shifts with increase of OPP (although not discussed) have been reported by other groups [125, 

126]. 

Interestingly, the film deposition rate decreases almost linearly with the increase of OPP 

(Figure 5.2,) in the chamber despite TGP (and other deposition conditions) remaining the 

same. Similar BST deposition rate reduction with OPP at a fixed TGP was attributed to oxygen 

ion bombardment of the growing BST surface [85]. It is known that the presence of oxygen in 

the chamber or target material may cause re-sputtering of the film by high energy oxygen atoms 

resulting in reduced deposition rate as well as surface damage [127-129]. 

 

 

Figure 5.3. AFM images of the films deposited at 5 mTorr with variable OPP 

 

The effect of OPP on the surface of the films was analyzed via tapping mode AFM. The 

AFM images taken from scan area of 1x1 μm
2
 for each sample are shown in Figure 5.3 and the 

calculated surface roughness is presented in Table 5.1. With the increase of the OPP in the 

process chamber, the  surface roughness of the films was observed to  increase [125], verifying 

the presence of  the bombardment of the growing BST surface by the highly energetic oxygen 
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ions. Therefore, the increase in the lattice parameter with OPP can be qualitatively explained in 

terms of the oxygen vacancies that are created as a result of the BST film surface bombardment 

by the negative oxygen ions [130, 131]. 

 

Table 5.1. Root mean square (RMS) surface roughness of the films at variable OPP 

OPP (mTorr)  2.5 1.5 1.0 0.5 

Ar:O2 1:1 7:3 4:1 9:1 

Roughness (nm) 4.33 ± 0.07 2.48 ± 0.09 2.22 ± 0.03 2.08 ± 0.01 

 

To elucidate the effect of OPP on the BST elemental composition, which could be also 

altered by the negative oxygen ion bombardment, the elemental analyses of the BST films 

deposited at 5 mTorr TGP and variable OPP were performed using RBS and ICP-OES methods. 

The results in terms of Ba/Sr and y = (Ba+Sr)/Ti molar ratios are shown in Figure 5.4. Despite 

the slight underestimation of metal concentrations by RBS method, both analytical techniques 

have shown: i) a substantially lower Ba/Sr ratio with respect to that in the target material, which 

further decreases with increase of OPP; ii) an improving y ratio with OPP increase towards the 

optimal unity value. The decrease in Ba/Sr ratio with OPP indicates that the film has been further 

enriched with Sr. This behavior has been attributed to the lower sticking coefficient of Ba than Sr 

to the substrate during the sputtering process [95]. It is conceivable to assume that the 

bombardment of the growing BST surface with energetic oxygen ions could exacerbate the 

sticking problem of Ba, and therefore, decrease (albeit slightly) the Ba concentration in the films 

upon OPP increase. As mentioned above, the deviation of y below unity indicates that the thin 

film is Ti-rich. In this case the excessive Ti ions tend to form a low-permittivity amorphous TiOx 

at the BST grain boundaries that may have a detrimental effect on the film tunability [42, 75]. 

Thus, the OPP increase substantially improved the y value (y = 0.99 at 2 mTorr OPP) and 
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potentially tunability, while the enrichment of the BST film with Sr may cancel this positive 

effect [132]. 
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Figure 5.4. The Ba/Sr (A) and (Ba+Sr)/Ti (B) ratios vs. OPP for the BST films deposited at 5 

mTorr TGP. The corresponding molar ratio values for the Ba0.45Sr0.55TiO3 target (0.82 and 1.00, 

respectively) are shown as dashed lines 

 

The ferroelectric transition temperature of BST shifts toward the lower temperatures with 

reduction of Ba content, x, shifting the permittivity maximum further away from the operational 

temperature (about 300 K).  Since the tunability is the highest in the vicinity of the transition, its 

shift to lower temperatures may result in lower tunability at the operational temperature. The 

elevation of the TGP may help to suppress the oxygen and barium ions re-sputtering due to the 

BST film surface bombardment by the high energy oxygen atoms [48, 62, 63]. In what follows 

the effects of the TGP on the stoichiometry of the BST film are presented. 

5.3.  Total Chamber Gas Pressure 

In this section five BST films were deposited by varying the TGP as 5, 10, 20, 30, and 40 

mTorr and fixing the Ar/O2 flow rates to 80/20 sccm or (Ar:O2=4:1). The corresponding GIXRD 

patterns of the BST films deposited on SiO2/Si substrates are shown in Figure 5.5. The XRD 
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patterns of films deposited at 5 and 10 mTorr TGP are consistent with those for the 

polycrystalline single phase cubic BST material [107]. In contrast, at 20 mTorr, extra phase(s) 

are clearly observed in the film GIXRD in addition to the anticipated BST phase. The peaks 

showing the secondary phases are positioned at 26.9
o
, 28.0

o
, 43.4

o
, and 48.8

o
. The search 

performed by the JADE software assigned these peaks to BaO2, TiO, and Ti2O3 extra crystalline 

phases. The films deposited at 30 and 40 mTorr TGP have shown no peaks that could be 

assigned to any BST phase. It should be noted that despite a fixed Ar/O2 gas flow ratio the 

increase of TGP is obviously accompanied by significant increase of the OPP (from 1 mTorr for 

5 mTorr TGP up to 8 mTorr for 40 mTorr TGP). The XRD data analysis suggested that OPP > 2 

mTorr facilitates the secondary phase (s) growth [132]. 
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Figure 5.5. GIXRD of BST films deposited at TGP of 5, 10, 20, 30 and 40 mTorr at Ar/O2 of 4:1 

 

To verify this hypothesis BST films were deposited at TGP of 10 and 20 mTorr and 

Ar/O2 flow rate ratios of 9:1 and 3:2 corresponding to OPP of 1 and 4 mTorr for 10 mTorr TGP; 

and 2 and 8 mTorr for the 20 mTorr TGP, respectively.  The GIXRD patterns for the films 

deposited at 10 and 20 mTorr TGPs are presented in Figure 5.6A&B. The pure phase 
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polycrystalline BST film can be grown only when both TGP and O2/Ar gas flow ratio secure the 

OPP of 2 mTorr or less. From this result, when OPP ≥ 4 mTorr, the grown film is either BST 

mixed with other phases (see the blue line for 10 mTorr TGP film, in Figure 5.6A, and red line 

for the 20 mTorr TGP film, in Figure 5.6B) or non-BST phase (see blue line in the 20 mTorr 

TGP film, Figure 5.6B). A summary of the obtained BST phase purity at the 10 and 20 mTorr 

TGPs but variable OPPs in the chamber is shown in Table 5.2. Therefore, exceeding 2 mTorr 

OPP in the chamber facilitates the growth of secondary phases at the expense of BST phase. 
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Figure 5.6. GIXRD of BST films deposited at TGP of 10 mTorr (A) and 20 mTorr (B) with 

variable O2/Ar ratio. Peaks for the secondary phases are marked with an asterisk 
 

Table 5.2. Summary of BST deposition conditions and phase purity 

TGP, mTorr O2/Ar OPP, mTorr BST film phase purity 

 1:9 1.0 pure 

10.0 1:4 2.0 pure 

 2:3 4.0 mixed phase 

 1:9 2.0 pure 

20.0 1:4 4.0 mixed phase 

 2:3 8.0 non-BST phase 

 

With the aim of obtaining an extra phase free BST film, another batch of depositions 

were  performed at 5, 10, 20, 30, 40, and 50 mTorr TGP by fixing the OPP to 2 mTorr (identified 
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as a threshold OPP value). The GIXRD patterns corresponding to these films are shown in 

Figure 5.7. The XRD patterns of the films deposited at up to 30 mTorr TGPs are similar to that 

of a single phase polycrystalline BST. Conversely, at TGP > 30 mTorr the BST film XRD 

pattern is contaminated with other phases. In addition, the related BST peak patterns (at 40 and 

50 mTorr) are shifted towards higher angles close to the position of the corresponding peaks in 

the target material (see Figure 5.7, inset). 
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Figure 5.7. GIXRD of BST films deposited at TGP of 5, 10, 20, 30, 40, and 50 mTorr and fixed 

OPP to 2 mTorr. The secondary phase peaks are marked by asterisks. The inset are (110) plane 

peaks at different TGPs; a dashed line indicate (110) peak position of the target 

 

Using the Bragg’s equation and Scherrer’s formula [97] the BST films lattice constants 

and crystallite sizes can be evaluated from the 2 and FWHM values of the strongest (110) 

peaks, and their dependencies on TGP are shown in Figure 5.8A. For films deposited at TGP  

30 mTorr very little, if any, lattice constant dependence on TGP is observed. However, above 30 

mTorr, the film lattice constants abruptly decrease approaching that of the target material, 

implying a substantial improvement of Ba ions adhesion to the film surface. Unfortunately, some 

adverse contamination of the BST films with other phases as well as a decrease of BST 
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crystallite sizes suggest that the growth condition yet needs to be finely tuned. The deposition 

rate of the BST films deposited at variable TGP and OPP of 2 mTorr is shown in Figure 5.8B. 

The rate continuously decreases with increasing TGP most probably due to a decrease of 

sputtered particle mean free path with the increase of pressure in the chamber. 
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Figure 5.8. The BST film lattice parameter, crystallite sizes (A), and deposition rate (B) vs.TGP 

 

To correlate the XRD data with the film elemental composition the ICP-OES analysis 

results in the form of Ba/Sr and (Ba+Sr)/Ti ratios as a function of TGP at fixed OPP of 2 mTorr 

are shown in Figure 5.9. As expected, the Ba/Sr ratio gradually increases with TGP and 

approaches the deposition target value of 0.82 at 30 mTorr. In contrast, the (Ba+Sr)/Ti ratio 

deviates from unity at 10 and 20 mTorr TGP suggesting the presence of oxygen vacancies. Very 

little change in lattice parameters at these TGPs despite the Ba/Sr ratio growth and anticipated 

lattice shrinkage indirectly confirm their (oxygen vacancies) presence. Above 30 mTorr TGP, the 

Ba/Sr ratio drops while the (Ba+Sr)/Ti ratio continues growing above unity in accord with the 

formation of secondary contamination phases at the expense of BST. Thus, at the deposition 
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conditions, TGP of 30 mTorr and OPP of 2 mTorr, a BST film close to the target material was 

realized, though some oxygen vacancies still may not be healed [132]. 
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Figure 5.9. ICP-OES elemental analysis of the films deposited at variable TGP from 5 to 50 

mTorr and at fixed OPP of 2 mTorr 

 

5.4.  Dielectric Tunability and Loss Measurements 

To elucidate the effect of improved BST film stoichiometry, microwave dielectric 

property measurements were performed on two films (~250 nm) deposited at 5 and 30 mTorr 

TGPs on platinized alumina substrates.  Both films were deposited at a fixed OPP of 2 mTorr to 

avoid the extra phase contamination. The results on the relative permittivity, r, and loss tangent, 

tan , of two representative capacitors measured at 30 MHz vs. bias field are shown in Figure 

5.10. At zero bias, the permittivity of the film deposited at 30 mTorr is about 30 % larger than 

that of the 5 mTorr film confirming that both the precise film stoichiometry and phase purity 

achieved via optimization of OPP and TGP have a significant effect on BST film dielectric 

properties. The studied films composition and dielectric properties are summarized in Table 5.3. 

The enhanced permittivity results in higher tunability; at 640 kV/cm bias the 30 mTorr film has 
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demonstrated tunability of 68.7% while that for 5 mTorr TGP film is only 61.4%. Conversely, no 

significant changes in the loss tangent of the 30 mTorr film were observed. It should be noted 

that the lattice parameters of the 5 and 30 mTorr TGP films are very close and larger than that of 

the source target. 
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Figure 5.10. Relative permittivity, εr,  and dielectric loss, tan , vs. bias field for BST films 

deposited at 5 mTorr (open symbol) and 30 mTorr (closed symbol) TGPs, respectively 

 

 

Table 5.3. Properties of BST films deposited at 5 and 30 mTorr TGPs and 2 mTorr OPP 

TGP, mTorr Ba/Sr (Ba+Sr)/Ti r  (30 MHz) tan  

5 0.68 1.00 427 61.4 % 0.045 

30 0.82 1.04 553 68.7 % 0.043 

 

It is conceivable to assume that despite achieving a desired stoichiometry at 30 mTorr 

TGP, this pressure is not enough to suppress the oxygen vacancies generation most probably via 

oxygen ion re-sputtering. The presence of oxygen vacancies are responsible for the formation of 

Ti
3+

 ions [12]. At high deposition temperature the corresponding equilibrium between the 

oxygen vacancy and Ti
3+

 ion in the crystal can be represented by the Kroger-Vink notation as  
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 OO
x ↔ VO

 + 2e′ +
1

2
O2, (5.1a)  

and 

 TiTi
x + e′ ↔ TiTi

′ , (5.1b) 

where, OO
x  and TiTi

x   are the oxygen and titanium ions sitting on their normal sites with neutral 

charges, VO
 and e′ are the oxygen vacancy and free electron, and TiTi

′  is the  titanium ion sitting 

on its normal site with one negative charge in excess. The oxygen vacancy in the film generates 

electrons (Eq. (5.1a)) that reduce Ti
4+

 to Ti
3+

 according to Eq. (5.1b). The hopping of electrons 

between different Ti
4+

 ions most probably is one of the mechanisms that contribute to the 

dielectric loss in both films. Interestingly, the lattice constant of 40 mTorr BST film (despite the 

presence of secondary phases) is close to that of the target, suggesting the suppression of oxygen 

vacancies. 

5.5.  Conclusions 

The effects of OPP and TGP on the stoichiometry, crystal structure, and phase purity of 

the RF sputtered BST films were studied. It was confirmed that the increase of TGP enables a 

better match of the film and target stoichiometry. However, the O2/Ar ratio should be utilized 

cautiously since exceeding a threshold OPP (2 mTorr) may facilitate secondary phase formation. 

At 30 mTorr TGP and 2 mTorr OPP, a BST film with an exact compositional match to the target 

material was obtained and enhanced the permittivity and tunability ~by 30 % and 11 %, 

respectively, compared with the film with deviated composition. The presence of oxygen 

vacancies—confirmed indirectly by the deviance of the film lattice constant from that of the 

source target—was identified as a probable cause of losses. A further fine tuning of the OPP and 

TGP may still be necessary to significantly reduce the oxygen vacancy concentration.  
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6.  CONCURRENT ACCEPTER AND DONOR DOPED BST THIN FILMS 

In applying ferroelectric thin films of barium strontium titanate (BST) for tunable 

microwave devices, obtaining large tunability accompanied by low dielectric loss is vital [12, 

31]. However, attaining both large tunability and low dielectric loss in parallel remains a 

challenge since large tunability is often followed by high dielectric loss and vice versa [83]. 

Numerous studies have shown that incorporating small amount of aliovalent (e.g. Mg
2+ 

[68], La
3+ 

[64], Al
3+ 

[67] , Ce
3+ 

[66, 133, 134], Nb
5+ 

[67, 135]) or isovalent (e.g. Zr
4+

, Sn
4+

, Ge
4+ 

[136]) ions into a BST lattice effectively modifies the dielectric properties (tunability and 

dielectric loss) of the BST film [137]. Mg
2+

 and Nb
5+

, which are acting as an electron accepter 

and donor, respectively, by replacing the B site of the (A
2+

B
4+

O3
2+

) perovskite, have received the 

most attention because of their drastic effect in altering the dielectric properties of the BST film 

[67, 68, 79, 135, 138-140]. Individually, each ion improves either the tunability or the loss and 

insulating properties of BST film—not both at a time. Adding Mg
2+

 (~1-5 mol. %) suppresses 

the dielectric loss and the leakage current; but, these come with a huge drop in dielectric constant 

and tunability of the BST film [68, 79]. Conversely, introducing Nb
5+ 

(~ 5 mol. %) increases the 

dielectric constant and tunability [69, 135, 138],  however, these are accompanied by the  

increase of dielectric loss and leakage current, mainly due to the excess electron that Nb donates 

when it substitutes a Ti site [67, 139, 140]. 

Doping BST with Mg
2+ 

and Nb
5+ 

concomitantly may improve both the tunability and 

insulating properties of BST. One of the few studies in this area has shown that the leakage 

current was reduced to a minimum  when a  metalorganic deposited BST films is co-doped with 

Mg and Nb at the donor/acceptor compensated concentration[70]. Similarly, introducing barium 

magnesium niobate (BaMg1/3Nb2/3O3 (BMN)), containing both Mg and Nb, into BaTiO3 (BTO) 
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has significantly increased its dielectric constant [106, 141, 142]. BMN, by itself, is a complex 

perovskite oxide known to exhibit high dielectric constant, low dielectric loss, and a small 

temperature coefficient that makes it a material of interest for communication satellite and radar 

detector applications [143]. When used as a dopant, it ensures the total charge neutrality (realized 

when [𝑀𝑔𝑇𝑖
′′ ] = 2[𝑁𝑏𝑇𝑖

 ]), a desirable condition to obtain the minimum leakage current in the 

BST film [144]. 

This chapter addresses the effect of concurrent Mg/Nb co-doping on the structure, 

microstructure, residual stress, dielectric and electrical properties of the BST films. The 

BaMg1/3Nb2/3O3 (BMN) doped and undoped Ba1-xSrxTiO3 (x=0.55) thin films were sputter 

deposited on platinized alumina (Pt/TiO2/SiO2/Al2O3) wafers from the respective targets. During 

the deposition of each film, the base pressure, throw distance, substrate temperature, and RF 

power were set to 210
-8

 Torr, 16.5 cm, 700 
o
C, and 150 W, respectively. The Ar/O2 was chosen 

to be 60/40 sccm to produce a TGP of 5 mTorr, ensuring the 2 mTorr OPP (threshold OPP to 

grow pure phase BST). The thickness of  both films was measured from five spots (center, left, 

right, top, and bottom) on each wafer by ellipsometer and averaged to be ~ 250 nm with a 

reasonably good uniformity (~1.4 %) across each wafer. The uniformity was achieved by 

rotating the substrates at 20 RPM during the deposition.  Out of the total 250 nm thickness, 10 

nm is a BST self-buffer layer grown at room temperature to improve the crystallinity of the films 

(Chapter 4). 

6.1.  X-Ray Diffraction Analysis of the Films 

The grazing incidence XRD (GIXRD) patterns of the BMN doped and undoped BST 

films deposited on Pt/TiO2/SiO2/Al2O3 substrates are shown in Figure 6.1. The XRD patterns of 

the doped and undoped BST targets are also included in the graph for comparison purposes. For 
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both doped and undoped films, the patterns are characteristics of the perovskite cubic 

polycrystalline phase BST thin film [107].  However, the diffraction peak positions of the films 

are substantially shifted to the lower angles compared with those for the corresponding targets 

(see in Figure 6.1c&d), indicating that the films’ lattice parameters are larger than that of the 

targets. The inset in the graph shows the shift of the films (110) diffraction plane peak position 

compared to that of the targets. The observed shift in peak positions of the films may be 

attributed to the deviation of films’ composition from the target, and the presence of  residual 

stress and oxygen vacancies in the film [123]. 

 

 

Figure 6.1. GIXRD patterns of undoped (a) and BMN doped (b) BST films; XRD patterns of 

undoped (d) and BMN doped (c) BST targets.  Inset: the (110) peaks in a larger scale 

 

6.1.1.  Effect of Stoichiometry on the XRD Peak Shift 

It is known that the lattice parameter of BST decreases when the concentration of 

strontium increases (or the ratio of Ba/Sr decreases) [123] due to the smaller radius of Sr than 

Ba. The left shift of the films’ peak positions compared to the targets suggests that the films are 

barium rich. To prove or disprove this, the stoichiometric composition of the undoped BST film 
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and target material were analyzed by Rutherford backscattering spectroscopy (RBS) [48] and 

Inductive coupled plasma-Optical emission spectroscopy(ICP-OES). For the undoped BST 

target, the ICP-OES elemental analysis showed that the Ba/Sr and (Ba+Sr)/Ti ratio are 0.82 and 

1.0, respectively, which are the same as the theoretical values. Since platinized substrates are not 

very suitable for RBS analysis due to the Ti, Sr, Ba and Pt signal overlap, the undoped BST film 

was deposited on a Si wafer covered with ~500 nm of amorphous SiO2 using the same deposition 

parameters as for the platinized alumina substrate case. The GIXRD patterns of the films 

deposited on platinized alumina and Si wafers were practically identical. 
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Figure 6.2. RBS spectrum for the undoped BST thin film deposited on SiO2/ Si substrate 

 

Figure 6.2 shows the measured and simulated RBS data for the undoped BST thin film. 

The RBS analysis  revealed three intense and well resolved peaks with abrupt edges 

corresponding to Ti, Sr and Ba components indicative of structures with a sharp interface 

between the film and substrate [68]. The data obtained from the RBS were analyzed using 

SIMNRA simulation software [145] with the detector resolution set to 18 keV. The experimental 
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data are best fitted with the simulated one (see Figure 6.2) when the Ba/Sr and (Ba+Sr)/Ti ratios 

are 0.64 and 0.92, respectively.  Similar analysis on the film by ICP-OES have shown the Ba/Sr 

and (Ba+Sr)/Ti ratios of 0.68 and 0.99, respectively, which is within the experimental error 

compared to the result obtained from the RBS data. The result from both analyses indicates that 

the BST film is more strontium rich than the target material. With this composition, the film is 

expected to have a lattice parameter lower than the target it is deposited from [123], and the 

XRD lines of the BST thin film should have been shifted to the higher angular position as 

compared to the target.  However, the observed BST lattice constant of  the film is about 1 % 

larger than that expected for the bulk BST with the obtained Ba/Sr ratio [95], implying that other 

factors  such as stress and oxygen vacancies should be examined. 

6.1.2.  Residual Stress in BST Thin Films 

The analysis of residual stress built in BST film has great technological importance 

because it has detrimental effects on the mechanical, optical, and electrical properties of the BST 

film. Studies have shown that a residual stress in BST film induces the hardening of the soft 

mode frequency, which drastically affects the ferroelectric phase transition of the material, and 

reduces the dielectric constant of the film[12, 41, 44]. In extreme cases, the residual stress can 

result in cracking (tensile stress) or buckling (compressive stress) and influences the performance, 

reliability, and life time of ultimate devices made from the BST film [146]. 

Residual stress in thin film can be evaluated by numerous techniques such as curvature 

method, Raman spectroscopy, and X-ray or neutron diffraction methods [147]. Among these, the 

X-ray diffraction method is widely used for determining residual stress built in a crystalline 

material. The residual stress built in both undoped and BMN doped BST films was calculated 

using the g-sin
2 𝜓  method [148, 149] which is suitable for the grazing incidence angle XRD 
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(GIXRD) pattern. The method relates the stress modified lattice parameter of a film to a biaxial 

residual stress, σ, by the following equation: 

 𝑎 = 𝑎0𝜎 (
1+𝜐

𝐸
) 𝑠𝑖𝑛2𝜓 + 𝑎0 (1 −

2𝜐𝜎

𝐸
) , (6.1) 

where, a0, σ , E, and   are the stress free lattice parameter, residual Stress, Young’s modulus, and 

Poisson ratio of the  material (BST). The angle  is defined as the difference between the Bragg 

angle, hkl, and the constant grazing incident angle,  as 

 𝜓ℎ𝑘𝑙 = 𝜃ℎ𝑘𝑙 − 𝛾. (6.2) 

Calculating the lattice parameters from all the Bragg angles of the corresponding (hkl) planes and 

plotting them vs. sin2ψ, an unstressed lattice parameter (a0) and the residual stress () can be 

estimated from the slope (
∂a

∂ sin2ψ
) and intercept of the linear fit. 

To evaluate the residual stress in both films, five diffraction peaks (Figure 6.1) 

corresponding to (110), (111), (200), (210) and (211) were used. Accordingly, the calculated 

lattice parameters versus sin2ψ graph fitted linearly for BMN doped and undoped BST films are 

shown in Figure 6.3. The positive slope for both films indicates they experience a tensile residual 

stress [148-150]. Using  the Young’s modulus and Poisson ratio of 107 GPa and 0.3, respectively 

[151], for the BST material,  the residual stress, and stress free lattice parameter (a0) for both 

films are estimated and presented in Table 6.1. Interestingly, the residual stress although 

relatively small for both films is notably lower in the undoped BST film than in the BMN doped 

film. 



 

79 
 

0.05 0.10 0.15 0.20

3.970

3.975

3.980

3.985

 BMN doped BST

 pure BST

L
a
tt

ic
e
 p

a
ra

m
e
te

r,
 A

sin
2
()

 

Figure 6.3. Lattice Parameters vs. sin
2
 (g- sin

2
) for the undoped and BMN doped BST thin 

films deposited on platinized alumina substrates 
 

 

Table 6.1. Total residual stress, grain sizes and thermal stress in the BST films 

 

The residual stress in a thin film is originated from various sources mainly the lattice 

parameter and CTE mismatch between the film and substrate [51, 152], incorporation of 

impurities (dopants), grain growth, etc. [45, 90, 153-155]. The total stress (tot) built in the BST 

films can be expressed as a superposition of three main components [150, 156] 

 σtot = σLatt + σth + σint, (6.3) 

Samples 
Residual 

stress, MPa 

Stress free 

lattice 

parameter, nm 

SEM grain 

size, nm 

Thermal stress, MPa 

BST/Pt BST/Al2O3 

BST 138 ± 48 0.3980 58 ± 4 

271 294 BMN doped 

BST 
381 ± 92 0.3993 39 ± 2 
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where, Latt, th, and int are stresses due to lattice misfit, CTE mismatch and  intrinsic stress, 

respectively. The intrinsic stress component is mainly caused by the grain growth as a result of 

necking or cohesion between different particles during film crystallization [157]. 

 

Table 6.2. CTE of BST, platinum and alumina 

Materials CTE  of the materials, 10
-6

 (K
-1

 or 
o
C

-1
) 

BST 10.5 

Pt 7.53 + 4.72 × 10−3(𝑇 − 291) + 2.36 × 10−9(𝑇 − 291)2, (T in K) 

Al2O3 7.42 + 6.43 × 10−4𝑇 − 3.21 𝑒𝑥𝑝(−2.59 × 10−3𝑇), (T in 
o
C) 

 

The lattice mismatch between platinum (3.926 Å) [158] and our BST target (3.953 Å) is 

negligible; suggesting that the main sources of the stress built in both films are from CTE 

mismatch and crystallite grain growth. The thermal stress (stress component due to the CTE 

mismatch between the film and the substrate) can be estimated for a two layer system such as 

film-substrate layer as [90,155] 

 𝜎𝑡ℎ =
𝐸

1−𝜐
∫ (𝛼𝑓 − 𝛼𝑠)𝑑𝑇
𝑇𝐷

𝑇𝑅
, (6.4) 

where, E, f, s,  , TR , TD  represent the film Young’s modulus, film and substrate CTEs, film 

Poisson’s ratio, deposition and room temperature,  respectively. The CTEs of BST [111],  Pt 

[158], and Al2O3 [159]  are presented in Table 6.2. Using Eq. (6.4) along with the CTE 

expressions in Table 6.2 the thermal stress between BST/Pt and BST/Al2O3 film/substrate 

interfaces was calculated and presented in Table 6.1. Since the substrate used for depositing both 

BMN doped and undoped BST thin film are identical, the CTE mismatch (presuming the dopants 

don’t change the CTE of BST significantly) between the BST and the substrate does not cause a 

difference in stress between the films. 

The other source of  residual stress in the  BST thin  film results from the grain growth of 

the film [157, 160]. Grain growth during crystallization occurs as the crystallite swells into the 



 

81 
 

neighboring grain boundary region typically inducing a large compressive stress for larger 

grains. The stress generated by the grain growth process is related to the amount of grain 

boundary area ( a , negative in sign) that is lost or annihilated during the grain growth, the initial 

(d0) and  final (df) grain sizes through the expression [157, 161]: 

 

















fi

grain
dd

a
E 11

1 
 , (6.5) 

where, grain, E, and v are the residual stress due to grain growth (intrinsic stress), Young’s 

modulus, and  Poisson ratio, respectively. 

In order to evaluate the residual stress built in the films due to the grain growth, scanning 

electron microscopy (SEM) studies were performed on both BMN doped and undoped BST 

films. The SEM images of the two films are shown in Figure 6.4. It is evident from the images 

that both films are crack free, but the BMN doping in the BST has significantly suppressed the 

grain growth of the BST film, presumably due to a pinning effect on the grain boundary. A 

similar grain growth inhibition effect due to the Mg and Nb ions in a BST films was observed 

elsewhere [34, 70]. The average grain size in both films (df) was estimated using the lineal 

intercept method in accordance with the ASTM E-112-84 standard [162] and is reported in Table 

6.1. 

The annihilated boundary (excess volume per unit grain boundary area), a, is unknown 

for BST; therefore, for stress evaluation purposes the value of 0.17 nm for Pd metal [163] was 

used.  Since the di value for both films is also unknown, determining the absolute residual stress 

due to the grain growth is impossible. However, considering the initial grain size and excess 

volume per unit grain boundary area for both films to be the same for both films, the difference 

in stress due the grain growth between the undoped and BMN doped BST films 
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 
undoped

grain

doped

grain
   can be calculated. Using the df values from Table 6.1, the grain growth stress 

difference between the two films was found to 227 MPa. 

 

 

Figure 6.4. FESEM images of the undoped (A) and BMN doped (B) BST thin film on platinized 

alumina wafers 

 

The obtained positive value  MPa
undoped

grain

doped

grain
227  suggests that the undoped BST 

film experiences a higher compressive (negative) stress than the BMN doped film due to larger 

grains. Since the residual stress is a superposition of stresses of different origins and signs, the 

lower residual stress value in undoped BST film (σBMN – σBST = 243 MPa, difference of total 

stress, see Table 6.1) is in accord with more efficient compensation of the tensile stress by higher 

grain size related compressive stress. Thus, despite the sizable effect of doping on the residual 

stress absolute value, the very small line slopes in the lattice parameters vs. sin
2
 plot for both 

undoped and doped BST films imply that its influence on the BST film crystal structure is 

insignificant. 

6.1.3.  Effect of Oxygen Vacancies 

The other factor responsible for XRD peak position shift compared to its target is the 

presence of oxygen vacancies. Given the high deposition temperature for BST thin films as well 
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as the re-sputtering of the films from the substrate by the energetic negative oxygen ions in the 

sputtering chamber (see discussions in Chapter 5), the occurrence of oxygen vacancies in our 

films is highly likely. The presence of an oxygen vacancy increases the lattice constant (unit cell 

volume) by increasing the Columbic repulsion between the metal ions (Ba
2+

, Sr
2+

, and Ti
4+

). A 

similar XRD peak shift observed on BST films deposited by the PLD method [83, 124] was 

attributed to the presence of oxygen vacancies. 

6.2.  Surface Morphology of the Films 

Understanding the surface morphology and roughness of the films has particular 

significance since the dielectric properties as well as  device performance are affected not only 

by the well-defined microstructure but also by the quality of the electrode-film interfaces [34, 

164]. The surface morphology and roughness of the BST films were evaluated via tapping mode 

atomic force microscopy (AFM) over a 1x1 μm
2
 scan area for each sample. The 3D AFM images 

of both the undoped and BMN doped BST thin films presented in Figure 6.5 show that both 

films exhibited a well crystallized microstructure with no cracks, defects, and visible pinholes on 

the surface. 

However, the AFM experiment demonstrated that the doping appreciably suppresses the 

film surface roughness reducing it from 7.19 nm for undoped BST down to 4.53 nm, which is 

consistent with the smaller grain size in the BMN doped BST film (see also Figure 6.4). When 

the film surface is rough, the film-electrode interface quality is poor and contributes to the 

conductor loss of the device, which in turn manifests itself into higher device insertion loss [34]. 

Thus, in order to maintain a low device loss a smooth film surface is required, suggesting that the 

BMN doped film with smoother surface has lower dielectric loss compared to the undoped BST 

film. Moreover, studies have shown that the film surface roughness has a detrimental effect on 
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the value of leakage current or film resistivity [164, 165]; therefore, the fact that the BMN doped 

film is smother than the undoped BST film  is consistent with lower leakage current obtained for 

the BMN doped film in this work (see section 6.6). 

 

 

Figure 6.5. AFM images of the undoped BST (A) and BMN doped BST (B) films on platinized 

alumina wafers 

 

6.3.  Raman Spectroscopy of the Films 

The lattice dynamical properties of the two BST films were analyzed by Raman 

spectroscopy at room temperature in a backscattering mode. The Raman spectroscopy is 

complementary to the XRD method since it provides information on composition (impurity), 

phase fraction, residual stress, and crystal symmetry of the films.  In order to get the complete 

picture of the Raman spectra of the BST thin films, it is important to start with the Raman 

spectra of bulk BTO and STO.  Figure 6.6 shows the Raman spectra of the BTO and STO 

powder samples and undoped BST target material. 

Any ABO3 type perovskite crystal has five atoms (one formula unit) per unit cell, leading 

to 3N (=15, N being number of atoms) degrees of freedom; out of which 12 are optical modes 

while the remaining 3 are acoustic branches. Above the ferroelectric phase transition 
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temperature, the BTO, STO, and BST have cubic paraelectric structure with Oh-symmetry in 

which the optical phonons are compactly written as uucube FF 213   irreducible representation. 

Each Fu mode is triply degenerate, and in cubic phase, neither 
uF1

 nor 
uF2
 modes are Raman 

active (no first order Raman lines) because of odd symmetry with respect to inversion[166]. 
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Figure 6.6. Raman spectra of the BTO and STO powders and undoped BST target 

 

Upon transition to tetragonal phase (C4 symmetry), each 
uF1
 mode splits into E and A1 

modes, and the uF2 mode gives rise to B1 and E modes. Since the E modes are doubly degenerate, 

the resulting phonons are presented as  11 43 BEAtetr   irreducible modes. All A1 and E 

modes are both Raman and IR active, while B1 mode is only Raman active [166]. Furthermore, 

due to the long range electrostatic interaction associated with lattice iconicity each A1 and E 

modes split  further into the transverse optical (TO) and longitudinal optical (LO), i.e. A1 

A1(TO) + A1(LO) and E E(TO) + E(LO) [167]. 
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In this experiment, the measurement was performed at room temperature; therefore, BTO 

is well within the temperature range that it exhibits a tetragonal ferroelectric phase [35], 

suggesting that all the existing phonon modes are Raman active. For the BTO powder, the 

Raman peaks observed at 258.5 cm
-1

, 305.5 cm
-1

, 518.6 cm
-1

, and 714.6 cm
-1

 are identified as 

A1(2TO), E(3TO+2LO)+B1, A1(3TO)+E(4TO), and E(4LO)+A1(3LO), respectively [167, 168]. 

The peaks that are observed at 305.5 cm
-1 

and 714.6 cm
-1

 are indicative of the tetragonal 

structure of the BTO which would disappear when the material is in its paraelectric phase. 

Contrary to BTO, STO is an incipient ferroelectric material which remains paraelectric down to 

low temperatures. Therefore, all the Brillouin zone center optical phonons are Raman inactive, 

and there is no first order Raman spectrum that could be measured for the STO crystal. The 

observed Raman spectrum for the STO (Figure 6.6) is dominated by second order Raman lines 

which involve the creation and distraction two phonons anywhere in the Brillouin zone provided 

that momentum is conserved [166]. 

The Raman spectrum of the solid solution of BTO and STO, BaxSr1-xTiO3 (x=1, BTO, 

and x=0, STO) has been shown to be composition dependent [169] as is the case for the lattice 

parameter. For the bulk undoped BST target (Figure 6.6), two major Raman peaks are observed 

at 227 cm
-1

, and 576.3 cm
-1

. The absence of the Raman peaks around 305 cm
-1

 and 715 cm
-1

 

signifies that target BST material is a cubic BST structure at room temperature as was confirmed 

by the XRD. The E(4LO)+A1(3LO) mode that appeared at 518.5 cm
-1

 for BTO has shifted to 

576.3 cm
-1

, while the A1(2TO) mode appeared at 258.5 cm
-1 

for BTO is shifted to 227 cm
-1

 due 

to the formation of solid state reaction between the BTO and STO. 

The Raman spectra of the doped and undoped BST films along with the undoped BST 

target are shown in Figure 6.7. The Raman peak frequency and the corresponding band 
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assignment for the films and bulk material is presented in Table 6.3. The two major peaks that 

were observed around 227 cm
-1

 and 576 cm
-1

 for the BST target are also present in the films, but 

the former is changed to an observable shoulder while the latter is shifted towards a small 

wavenumber for the films. As opposed to the bulk material, there are two Raman peaks around 

750 cm
-1

 and 870 cm
-1

 for both thin films. 
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Figure 6.7. Raman spectra of (a) BST target, (b) undoped BST (c) BMN doped BST thin film 

 

Compared to BTO, the Raman peak at 750 cm
-1

 is blue shifted, and indicates the presence 

of a fraction of tetragonal phase BST material in both thin films as opposed to the XRD results in 

the films. The down shift in peak position and indication of tetragonal phase BST in films are 

indicative of the presence of residual stress in both films [170, 171]. The weak peak at 870 cm
-1

 

has originated probably as a result of the residual stress at the interface [171]. There is also a low 

frequency peak (~119 cm
-1

) that appears to be shifted to a small wavenumber from the bulk BST 

material. This is may be caused due to a disorder activated scattering from the transverse 

acoustic (TA) and longitudinal acoustic (LA) phone branches [167, 171]. 
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Table 6.3. Observed phonon modes (cm
-1

) in the BST thin films and undoped BST target 

 

6.4.  Dielectric Properties Characterizations 

Following the analytical characterizations (sections 6.1 to 6.3); the metal-insulator-metal 

capacitor structures were lithographically fabricated on both films (see details in appendix A). 

Then, dielectric measurements were performed on 2432 uniformly distributed devices consisting 

of two 0.50.5 mm
2
 top electrodes separated by a 0.2 mm gap (equivalent to two capacitors 

connected in series, section 3.2.4). In this section, the results on the relative permittivity, 

tunability, and dielectric loss (quality factor) of the two films are presented. 

The relative permittivity, εr, loss tangent, tan , and relative tunability, nr, defined by Eq. 

(2.25)  for the representative undoped and BMN doped BST based capacitors as a function of 

applied bias field, E, are shown in Figure 6.8.  The bell-shaped dependence of permittivity on 

bias field verifies that both films are in a paraelectric phase, suggesting that they don’t exhibit a 

hysteresis behavior which is undesirable for agile microwave devices [30]. For these 

representative devices, at zero bias field, the maximum dielectric constant for the undoped and 

BMN doped films are about 425 and 320, respectively. The decrease in dielectric constant of the 

doped film has been attributed to the reduced grain growth observed in the doped BST film due 

to the grain pinning effects of both Mg and Nb ions [144]. 
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The increase of tunability with the applied electric field for both films is shown in Figure 

6.8 (bottom). The tunability of the BMN doped film is slightly lower than that of the undoped 

film in the entire field region. At the maximum applied bias field (640 kV/cm), 61 % and 55 % 

tunability values were measured for the undoped and doped BST films, respectively. Moreover, 

the BMN doping has resulted in a remarkable decrease in the dielectric loss of the BST film. 

Compared with the undoped film, the loss tangent of the BMN doped film is reduced by ~38 % 

(loss tangent reduced from 0.048 to 0.03). 
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Figure 6.8. The relative permittivity, εr, tan , and tunability for the representative undoped 

(black) and BMN doped (red) BST film as a function of bias field, E. The measurement is 

performed at a constant, 30 MHz, frequency 

 

From the device point of view for microwave application, the trade-off between 

tunability and dielectric loss is crucial. A figure of merit (FOM),which relates the tunability and 

dielectric loss of the film as in  Eq. (2.27),  is a simple and handy parameter to reflect the trade-

off between these two quantities [12].  Figure 6.9 presents the FOM of the doped and undoped 

BST films as a function of applied field. Due to the slight decrease in tunability, but substantial 

drop in the dielectric loss, which is resulted from the BMN dopant in BST, the FOM for the 
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BMN doped BST film is notably higher than that of the undoped BST film. This suggests that 

the accepter (Mg
2+

) and donor (Nb
5+

) co-doping through the complex BMN oxide leads to a 

good quality BST film which can be better applied to manufacture tunable microwave devices as 

compared to the undoped film. 
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Figure 6.9. FOM for undoped (black) and BMN doped (red) BST films vs. bias field, E 

 

The tunability (at 640 kV/cm) distribution histograms for all capacitor devices 

fabricated on undoped and BMN doped BST films (> 2000 devices for each film) are 

shown in Figure 6.10. A relatively wide spread result was measured for the undoped BST 

film compared to the BMN doped BST film. The primary, secondary, and tertiary 

frequency peaks represent more than 80 % of devices with tunability value within the 

intervals of 50-65 % and 45-60 % for undoped and BMN doped BST films, respectively. 

Presuming the normal distribution the corresponding average tunability values are 56.8 % 

and 52.5 %, while about 0.5 % of devices demonstrated tunability exceeding 70 %. 
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Figure 6.10. The tunability distribution histograms for undoped (red) and BMN doped (black) 

BST devices 

 

Comparing the tunability for the two films, the value obtained for the doped film is lower 

by ~ 8.0 %. As mentioned above, Mg
2+

 doping of BST films allows significant suppression of 

dielectric losses and enhancement of insulation properties but at the expense of a substantial drop 

both in permittivity and tunability (up to 40 % at 5 mol % doping level [68]). While the presence 

of Mg ions (in BMN) in this film also caused a drop in tunability, its effect is less severe; 

suggesting that the negative effect of Mg is partially compensated by Nb ions.  It is known that 

the nonlinear behavior of BST’s dielectric constant—making it essential for microwave 

applications—with the applied electric field is due to the displacement of Ti ion within an 

oxygen octahedron (Oh) [35]. Because of the fixed space within the oxygen octahedron, the sizes 

of the ions that substitute Ti
4+

 have direct impact on altering the dielectric properties of BST.  In 

this particular case, replacing Ti
4+

 ((r (Ti
4+

) = 0.75 Å) with Mg
2+ 

(r(Mg
2+

) = 0.86 Å > r (Ti
4+

)) 

and Nb
5+

((r (Nb
5+

) = 0.69 Å < r (Ti
4+

)) results in two opposing effects. The large Mg
2+

 occupies 

a wider space which ultimately limits its rattling at the center of the oxygen octahedral. On the 

other hand, the small Nb
5+

 resides in a lesser space and promotes ionic displacement [137, 172]. 

The contending effect of the two ions in the oxygen octahedron minimized the drop in tunability 
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that would be caused by Mg. Conversely, the decrease in dielectric loss is related to the coupling 

of Mg charged defect with oxygen vacancy. When an oxygen vacancy couples with a Mg defect 

forming defect dipole (vide infra), hopping of electrons generated from the oxygen vacancy 

between different Ti ions [64, 173] is inhibited and thus lowers the dielectric loss. 

An average dielectric constant (measured at zero bias) of 398 and 336 was measured 

from the undoped and doped BST films, respectively. The 16 % reduction of the dielectric 

constant of BMN doped BST films is attributed to the decrease of the grain size as a result of Mg 

and Nb ions [34, 70]. It is known that thin ferroelectric films electromechanical response is much 

more sensitive to the grain and crystallite size than that in the corresponding bulk ceramics [174]. 

In ferroelectric materials this effect is usually associated with the grain mosaic structure in the 

films, which reduces the crystalline coherence [175] causing the permittivity drop and Tc low 

temperature shift. The grain size dependence of paraelectric BST films is usually related to a 

super-paraelectric behavior [174]; and can be explained within the Binder model [176] 

presuming the presence of interior and surface components in the grain with the latter having 

reduced permittivity while still being ferroelectrically active [177]. Due to a higher contribution 

of the surface component, the permittivity of films with smaller grains is also lower. 

6.5.  Interface Capacitance and Dead Layer Thickness 

One of the major factors that degrade the dielectric properties of the thin films compared 

to the bulk material is the interfacial capacitance or the dead layer. In this section, the interfacial 

capacitance and the dead layer thickness of the doped and undoped BST films were determined 

to understand the effect of the BMN dopant on the interface, if at all. 

 The interface capacitance is commonly estimated by measuring the capacitance of 

multiple films with variable thickness, and plotting the inverse of the measured capacitance 
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against the thickness to obtain a non-zero intercept [47, 178], interfacial capacitance. The active 

and the “dead” portion of the BST film are commonly described by a series capacitor model as 

shown in Figure 6.11. The regions I and III are the dead layers corresponding to the top and 

bottom electrode interfaces, respectively, each with a width of Xd and constant permittivity of d. 

The interior region II, of width of t-2Xd,  t being the total thickness of the film,  represents the  

region of the BST film whose dielectric permittivity changes with electric field (b(E)), and 

behaves similar to the bulk BST material. From this model, the total measured (𝐶𝑚𝑒𝑎𝑠) 

capacitance of the film can be related to the capacitances from the bulk like region (II) and the 

interfaces (I&III) as 

 
𝐴

𝐶𝑚𝑒𝑎𝑠(𝐸)
=
2𝑋𝑑

𝜀𝑑
+
𝑡−2𝑋𝑑

𝜀𝑏(𝐸)
, (6.6) 

where, A is the area of the capacitors. 

 

 

Figure 6.11. Schematic showing the two dead interfaces of the BST film of width Xd, and 

interior region, of width t-2Xd. The equivalent circuit is presented on the right 

 

To use Eq. (6.6) in determining the interfacial capacitance density, one needs to deposit 

multiple films with varying thickness and plot a graph of the term on the left hand side versus the 

thickness of the film [47]. This approach is evidently expensive as it requires the deposition of 

many samples and its reproducibility may also be tough. The other alternative approach that can 
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be used in estimating the interfacial capacitance, dead layer thickness and permittivity, is the 

phenomenological Landau-Ginzberg-Devonshire (LGD) theory [31, 179, 180]. 

As presented in section 2.2.3, in LGD theory, the Helmholtz free energy for the 

ferroelectric materials is expressed in terms of polarization, P, (see Eq. (2.20)); from which the 

equation of state(𝑖. 𝑒. ∂F 𝜕𝑃⁄ = 𝐸) leads to the relation between the polarization and electric field 

written as 

 E = 𝑃 + 𝑃3. (6.7) 

From this equation the field dependent dielectric permittivity (b (E)) of the interior region (II) 

can be defined as [31] 

 𝜀𝑏(𝐸) =
𝜕𝑃

𝜕𝐸
=

1

𝛽+3𝑃2
. (6.8) 

Furthermore, using a simple hyperbolic identity 

 (sinh𝜑)3 +
3

4
sinh𝜑 −

1

4
sinh 3𝜑 = 0, (6.9) 

Eq. (6.7) can be explicitly solved to express the polarization in terms of the electric field. To find 

this, let’s define the polarization, P, with a sine hyperbolic function as  

 𝑃 = 𝐵 sinh𝜑. (6.10) 

Substituting Eq. (6.10) into Eq. (6.7) gives 

 (sinh𝜑)3 +


𝐵2
sinh𝜑 −

𝐸

𝐵3
= 0. (6.11) 

By comparing Eqs. (6.9) and (6.11) one can obtain  

 𝐵 = √
4
3⁄ , (6.12a) 

and 
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 φ =
1

3
sinh−1(√(

27
43
⁄ )   𝐸) , (6.12b) 

which along with Eq. (6.10), results in an explicit expression for the polarization as a function of 

electric field 

 𝑃(𝐸) = √(
4

3
) sinh (

1

3
sinh−1 (√

27

43
   𝐸)). (6.13) 

Finally, the expression for the measured capacitance density can be presented as 

 
𝐴

𝐶𝑚𝑒𝑎𝑠(𝐸)
=
2𝑋𝑑

𝜀𝑑
+ 𝛽(𝑡 − 2𝑋𝑑) {1 + 4 (sinh (

1

3
sinh−1 (√

27

43
   𝐸)))

2

}, (6.14) 

by substituting Eq. (6.13) into (6.8), and the resulting expression into Eq. (6.6). This equation 

can be fitted to the experimentally measured inverse capacitance density versus applied electric 

field to extract the Xd, d,  and  parameters. 
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Figure 6.12. Inverse capacitance density vs. electric field: a) pure and b) BMN doped BST film 

 

Figure 6.12 shows the fitting of the measured data for the undoped and BMN doped BST 

thin films to Eq. (6.14). The LDG line has fitted reasonably well to the measured data and the 
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extracted parameters are presented in Table 6.4. The coefficients,  and , obtained from the 

fitting are comparable with values reported in the  literature [179]. Wider dead layer thickness 

accompanied by lower non-tunable permittivity for the BMN doped film leads to lower 

capacitance density at the interface, which might be due the weakening of ferroelectricity as a 

result of magnesium ions [68]. 

 

Table 6.4. Extracted fitting parameters for the doped and undoped BST films 

Samples  (m
2
/F)  (m

5
/C

2
F) d Xd (nm) Interface capacitance (fF/um

2)
 

Undoped BST 3.2x10
8
 6.7X10

9
 86.60 6.8 112.7 

BMN doped BST 2.6x10
8
 6.1X10

9
 72.40 9.5 67.3 

 

It is known that the presence of the dead layer at the interface reduces the overall 

permittivity and tunability of the ferroelectric film [181]. In an ideal condition where there is no 

dead layer (i.e. Xd=0) at the interfaces, meas = b, and the tunability can be written as 

 𝑛𝑖𝑑𝑒𝑎𝑙 =
 𝜀𝑏(0)

𝜀𝑏(𝐸)
. (6.15a) 

Here 𝑛𝑖𝑑𝑒𝑎𝑙 represents the tunability in the absence of the dead layer. In the presence of the dead 

layer (Xd 0), meas   b and rearranging Eq. (6.6), the measured permittivity can be written as 

 𝜀𝑚𝑒𝑎𝑠(𝐸) =
𝑡𝜀𝑑𝜀𝑏(𝐸)

2𝑋𝑑𝜀𝑏(𝐸)+𝜀𝑑(𝑡−2𝑋𝑑)
. (6.15b) 

The tunability of the non-ideal film can be expressed as 

 𝑛𝑚𝑒𝑎𝑠 =
 𝜀𝑚𝑒𝑎𝑠(0)

𝜀𝑚𝑒𝑎𝑠(𝐸)
= 𝜁(𝐸)𝑛𝑖𝑑𝑒𝑎𝑙, (6.15c) 

where, 

 𝜁(𝐸) =
2𝑋𝑑𝜀𝑏(𝐸)+𝜀𝑑(𝑡−2𝑋𝑑)

2𝑋𝑑𝜀𝑏(0)+𝜀𝑑(𝑡−2𝑋𝑑)
. (6.15d) 

Since, b(0) > b (E), 𝜁(𝐸) < 1, indicating the reduction in tunability, 𝑛𝑚𝑒𝑎𝑠 < 𝑛𝑖𝑑𝑒𝑎𝑙. 
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For the particular devices used in this analysis, a tunability of 61 % for the undoped and 

55 % for the BMN doped film was measured. Using the parameters in Table 6.4, the tunability 

that would be obtained without dead layer is estimated to be 69 % for the undoped and 64 % for 

the BMN doped films, showing an improvement by 11% and 16 %, respectively. Similarly, when 

the dead layer is corrected, the dielectric constant at zero bias field for the undoped BST film 

increases from 427 to 552 while that of the BMN doped film rises from 319 to 443—showing an 

increase by 30 % and 40 %, respectively. The reduction in tunability and permittivity shows the 

deteriorating effects of the dead layer on tunable devices. This influence is observed to be more 

pronounced on the doped film which could be due to the presence of the Mg dopant. 

6.6.  Leakage Current and Carrier Transport Mechanisms 

The leakage current dependence on the applied voltage and temperature in both doped 

and undoped BST thin films were measured using an Agilent B1500A Semiconductor Device 

Analyzer and a hotplate whose temperature was monitored by an external thermocouple. Figure 

6.13 shows the leakage current versus voltage plots of the undoped (Figure 6.13a) and BMN 

doped (Figure 6.13b) BST thin films in a temperature range of 300-450 K. It is observed that the 

leakage current measured for the BMN doped film is lower than the undoped film, suggesting 

that the Mg/Nb co-doping that ensures the charge neutrality compensation (i.e. [MgTi
′′ ] =

2[NbTi
 ]) reduces the leakage current of the BST film [70, 144]. 

The leakage current data (Figure 6.13) has shown strong dependence on 

temperature and presented two voltage regimes. In the low voltage regime, the leakage 

current is insignificant and remains nearly constant with voltage. However, beyond a 

certain minimum bias voltage, the leakage current rises exponentially. The minimum bias 

voltage above which the BST capacitor leaks appreciably is found to decrease (see the 
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shifting of the I-V profiles left) with the increase of temperature for both films, 

suggesting an increase of free carriers’ concentration due to the rise of thermal excitation 

in the material. Interestingly, the BMN doped film required higher voltage, compared 

with the undoped BST film, to allow the rise of leakage current significantly; confirming 

the improvement of the insulating properties in the BMN doped BST. 
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Figure 6.13. I-V relation at variable temperature for undoped (A) and doped BST films (B) 

 

The carrier transport in BST film has been attributed to mechanisms which can be 

broadly classified as the interface and bulk limited conduction mechanisms. The interface limited 

conduction mechanisms control the transfer of carriers from electrode to the ferroelectric film 

through the potential barrier created at the interface. Schottky thermionic emission[182-184] and 

Fowler-Nordheim tunneling [182, 184] are typical conduction mechanisms that belong to the 

interface controlled transport mechanisms. In the bulk limited mechanisms, the conduction of 

carriers is limited by the properties of the film (e.g. the presence of shallow trap levels in the 

forbidden gap). Space charge limited conduction (SCLC) [184] and Poole-Frenkel emission 

[184-186] are some of the models that are used to describe the bulk limited conduction 

mechanisms. Even though no single mechanism can fully describe the nature of carrier transport 
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in BST, the strong temperature dependence (see Figure  6.13) suggests that either the Schottky 

thermionic emission (SE) [182, 183] or the Poole-Frenkel emission (PF) [185, 186] dominates 

the conduction mechanism in BST films. 

To identify the transport mechanisms in the BST films, the leakage current data were 

tested in light of both the SE and PF conduction mechanisms. The relation between current 

density J and applied electric field E for the SE and PF are given by 

 𝐽 = 𝐴∗𝑇2𝑒𝑥𝑝 (
−𝑞(𝜑𝑏  − √𝑞𝐸/4𝜋𝜀𝑜𝜀𝑟)

𝑘𝑇
⁄ ), (6.16a) 

and 

 𝐽 = 𝑞𝜇𝑁𝐶𝐸𝑒𝑥𝑝 (
−𝑞(𝜑𝑡  − √𝑞𝐸/𝜋𝜀𝑜𝜀𝑟)

𝑘𝑇
⁄ ), (6.16b) 

respectively, where A* is the Richardson constant, q is electronic charge, T is the temperature, 

qb is the Schottky barrier height, µ is the electron mobility, NC is the effective electron density 

of states in the conduction band, qt is the trap ionization energy, o is the permittivity of free 

space, and r is the dynamic permittivity (high frequency permittivity) of the BST film. In each 

case, the applied electric field lowers the potential barrier (SE) or trapping potential (PF) for the 

electrons to escape. The two mechanisms are due to the Columbic interaction between the 

escaping electron and a positive charge; but, they differ in that the positive charge is fixed for the 

Poole-Frenkel trapping barrier, while it is a mobile image charge for the Schottky barrier [184]. 

In order to simplify the current data analysis, Eqs. (6.16a&b) can be linearized with 

respect to E as [182] 

 𝑙𝑛 (
𝐽

𝑇2
) = 𝐹(𝑇) + (

1

𝑘𝑇
√

𝑞3

4𝜋𝜀𝑜𝜀𝑟
)√𝐸, (6.17a) 

and 



 

100 
 

 ln (
𝐽

𝐸
) = 𝐺(𝑇) + (

1

𝑘𝑇
√

𝑞3

𝜋𝜀𝑜𝜀𝑟
)√𝐸, (6.17b)  

If the current conduction is dominated by the SE, the graph of )(ln 2TJ  versus E  should be a 

straight line where the slope results in a dynamic dielectric constant, while the intercept,

kT

q
ATF b )ln()( * , can be used to estimate the potential barrier height. Likewise, if the 

conduction is controlled by the PF model, the  EJln  versus E  will be linear and the slope is 

used to extract  the dynamic dielectric constant, while the intercept, 
kT

q
NqTG t

C


  )ln()( , is 

used to approximate the trap ionization potential. 

Figure 6.14 shows the plot of  ln(𝐽 𝑇2⁄ ) versus E  for undoped BST film. The current 

data, particularly at higher field region, satisfy the SE well; however, for the SE to dominate the 

conduction mechanism in the film, the physical parameters (dynamic dielectric constant and 

potential barrier) that are extracted from the slopes and intercepts of the linear fit must deliver a 

physical meaning. The dynamic dielectric permittivity calculated from the slopes of the linear fit 

at all the temperature range for both films is presented in Table 6.5. 

 

Table 6.5. Dynamic dielectric permittivity extracted from SE and PF fitting 

 SE: ln(𝐽 𝑇2⁄ ) vs. E  PF: ln(𝐽 𝐸⁄ ) vs. E  

Temperature 

(K) 
r- undoped 

BST(Fig. 6.14) 

r-BMN doped BST 

(data not shown) 

r-undoped BST 

(data not shown) 

 r-BMN doped 

BST (Fig. 6.15) 

300 5.76 1.51 54.40 8.85 

325 4.84 0.73 21.55 4.65 

375 4.75 0.78 16.87 4.59 

400 3.67 0.65 9.54 3.89 

425 2.20 0.60 6.54 3.46 

450 1.49 0.47 8.67 3.82 
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The refractive index of BST, determined by optical method at a wavelength of 640 nm, is 

roughly 2.0 so that the dielectric permittivity value, r = n
2
, is about 4 [187]. The values of r 

extracted from the SE plots for the undoped BST film are in the range of 5.76 to 1.49, decreasing 

with the increase of temperature from 300 to 450 K. These r values agree well with the reported 

results ranging between 3.5 and 6.0 [183, 186-189]. The well fitted curve along with the sensible 

r values confirms that the SE model is the dominant conduction mechanism in the undoped BST 

film. On the other hand, the r values extracted from SE plots (data not shown) for the BMN 

doped BST thin film were found to be unrealistically small (ranging 1.50 to 0.47, see Table 6.5), 

suggesting that SE  model cannot control the conduction mechanism in the doped BST film. 
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Figure 6.14. ln(J T2⁄ ) vs. E for the undoped BST film 
 

The current data of the BMN doped BST thin film was further tested against the PF 

conduction mechanism. Figure 6.15 shows the graph of  ln  (𝐽 𝐸⁄ ) versus E  for the BMN 

doped BST film. The high field region data fit well with PF model at all temperature ranges, 

leading to dynamic dielectric permittivity ranging from 8.85 to 3.85 (see Table 6.5) that fall well 

within the normal range[183, 186-189]
. 
 The result suggests that, unlike the SE model, the PF 
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model is the dominant conduction mechanism in the doped BST thin film. A similar analysis on 

the undoped BST film (data not shown) indicates that the conduction mechanism in the film 

cannot be dominated by the PF conduction mechanism since the extracted r parameters are 

unrealistically large (54.4 to 9.0, see Table 6.5). 
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Figure 6.15. ln(J E⁄ ) vs. E for the BMN doped BST film 

 

The potential barrier height, bq  for the undoped BST film, and trap ionization potential, 

tq for the BMN doped BST, were estimated from the intercepts (F(T) and G(T)) of the linear 

fits of the SE and PF models, respectively. Figure 6.16 shows the graph of F(T) and G(T) versus 

10
3
/T. By linear fitting the data for F(T) and G(T), the potential barrier height of 0.42 eV and 

trap ionization potential of 0.57 eV were extracted from their slopes for the undoped and BMN 

doped BST film, respectively. The numbers are found to be comparable with reported barrier 

height for the SE model [183, 190], and trap ionization energy for PF model [186, 190] for BST 

thin films. 
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Figure 6.16. F(T) and G (T) vs. 10
3
/T 

 

The co-doping of BST with Mg
2+

/Nb
5+ 

has resulted in a significant improvement of the 

leakage current.  In order to interpret this, the behavior of the BMN dopant in BST was proposed 

to follow the defect reaction (using Kroger-Vink notation) shown in Eq. (6.18a) 

 3𝐵𝑎𝑀𝑔1/3𝑁𝑏2/3𝑂3 + 𝐵𝑎𝑂  
     3𝑇𝑖𝑂2
→      4𝐵𝑎𝐵𝑎

× +𝑀𝑔𝑇𝑖
′′ + 2𝑁𝑏𝑇𝑖


+ 10𝑂𝑂

×. (6.18a) 

This reaction scheme shows that when Mg
2+

 and Nb
5+

 substitute Ti
4+

, they form ''

TiMg  and 

TiNb  

charged defects due to the differences between the charges of the dopants and the titanium ion. 

In addition to these extrinsic charged defects, the absence of oxygen from its crystallographic 

site forms an intrinsic charged defect, oxygen vacancy ( 

OV ), as indicated in Eq. (6.18b).  

 '2
2

1
2 eOVO OO   . (6.18b) 

It is known that when oppositely charged defects are incorporated in a ferroelectric 

crystal, they form defect dipoles in order to minimize the total electrostatic energy of the crystal 

[70, 173, 191]. In this case, owing to the presence of two donor type defects ( 

TiNb  and 

OV ) and 
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one accepter type defect ( ''

TiMg ), two types of defect dipoles may be formed as   TiTi NbMg 2''  

[70] and   OTi VMg ''  [173] that act as insulating layer or enhance the potential barrier of BST 

and thus  responsible for the decrease of dielectric loss and leakage current of BST. 

In this work, the relation between concentration of Mg and Nb is fixed to satisfy the 

neutrality condition. This means that every ''

TiMg  is coupled with 

TiNb ; but, due to the small 

distance between ''

TiMg and 

OV  in the BST perovskite, the coupling between ''

TiMg and 

OV  is 

highly favorable than the one between ''

TiMg and 

TiNb , suggesting that there are uncoupled 

TiNb

defects that sit at the shallow donor level in the forbidden gap of the BST. These 

TiNb  defects act 

as a fixed positive trapping center [20] for electrons; thus, localizing free carriers injected from 

the contacts and substantially extending the device control voltage. Besides, the carrier transport 

in the BMN doped film is dominated by the PF mechanisms due to the niobium traps. 

6.7.  Conclusions 

Composition, microstructure, dielectric and electrical properties of undoped and BMN 

doped BST thin films deposited on platinized alumina substrates have been investigated. The 

undoped film demonstrated a composition close to Ba0.4Sr0.6TiO3-, (~0.08) suggesting the 

presence of oxygen vacancies, which is consistent with a slightly larger than expected lattice 

parameter. The analysis of microstructure has shown that despite the sizable effect of doping on 

the residual stress, the latter is partially compensated by the CTE mismatch, and its influence on 

the BST film crystal structure is insignificant. The Raman study on the films has shown 

significant shifts in peaks, which was attributed to the presence of residual stress in the films. 

It was demonstrated that the BMN doped film has an average tunability (>2000 devices) 

of 52.5% at 640 kV/cm, which is ~8 % lower than the value for the undoped film. This drop is 
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associated with the presence of Mg ions in BMN whose detrimental effect was partially 

compensated by Nb ions. The decrease in grain size upon doping may also contribute to the 

tunability and permittivity drop. On the other hand, BMN doping has reduced the dielectric loss 

by over 35 %, leading to a higher FOM which shows a good trade-off between the two 

parameters. Moreover, the interface properties of the films were examined by with the Landau-

Ginzberg-Devonshire (LGD) theory. It was found that the effect of the dead layer on the 

properties of the films is worse because of the magnesium dopant. 

The concurrent acceptor and donor doping of BST thin films through BMN allows the 

achievement of a compensational concentration yielding no free carriers. The presence of Mg
2+

 

acceptors prevents the reduction of Ti
4+

 to Ti
3+

 neutralizing the shallow donors associated with 

oxygen vacancies, substantially reducing the concentration of bulk generated carriers and 

subsequently the loss and leakage current when compared with the undoped film. Moreover, the 

defect dipoles formed from
''

TiMg , 


OV  and


TiNb  act as insulating layers to reduce the leakage 

current. 

The carrier transport behavior in the films was analyzed in light of the SE and PF 

mechanisms. While the conduction in the undoped film was dominated by the SE mechanism, 

the transport mechanism in the doped film was observed to be dominated by the PF model. The 

change of the conduction mechanism from SE to PF is attributed to the presence of a large 

number of 

TiNb  sitting as a positive trap center at the shallow donor level of the forbidden gap of 

the BST film. These traps also localize free carriers injected from the contacts thus substantially 

extending the device control voltage (above 10 V).  
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7.  COMBINATORIAL APPROACH IN BST THIN FILMS 

As discussed in the preceding chapter, incorporating small amount of dopants into BST 

has been shown to be an effective method to modify the tunability, dielectric loss and insulating 

properties of the material. Both aliovalent (e.g. Mg
2+

, La
3+

, Ce
3+

, Nb
5+

, W
6+

) [64-68] and 

isovalent (e.g. Sr
2+

, Ce
4+

, Zr
4+

, Sn
4+

, Ge
4+

) [136] dopants have been widely studied for BST thin 

films. Some of these dopants are effective in suppressing the dielectric loss while deteriorating 

the permittivity and tunability of the BST material. Others improve the dielectric permittivity and 

tunability, but worsen the loss properties of the material. 

Introducing dopants with opposite effects into BST may be useful to achieve high 

tunability and low dielectric loss in the material. For example, concurrent Mg/Nb doping in BST 

has shown an improved loss without significantly reducing the tunability of the film [144] due to 

the opposite effects of the two dopants on BST. In general, it is believed that the use of multiple 

dopants (two, three, or even more) in BST is vital to realize an acceptable trade-off between 

dielectric tunability and loss, since these dopants improve the tunability of the film and target 

different loss channels (mechanisms) of the material. 

In order to obtain the optimum tunability and dielectric loss by multi-doping, it is crucial 

to select the right type of dopants and determine their precise concentration. For this purpose, the 

use of conventional one by one (one sample synthesis and characterization at a time) approach is 

undesirable due to the slow, expensive and rather unpredictable trial-and-error nature of the 

method. Alternately, the combinatorial materials synthesis methodology is inexpensive; and 

combined with high throughput characterization (HPC) methods it enables rapid and efficient 

screening of  the best dopants and determination of their concentration [71, 72, 192-194].  
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Moreover, the combinatorial method can be used to discover new materials as well as optimize 

the existing ones. 

The combinatorial approach can be described as a method used for the synthesis of 

multiple samples or a “library” of samples that differ in composition. The library is rapidly tested 

for the property of interest resulting in the generation of large, complete, and reliable data sets 

which can  be analyzed to identify the intended  ‘sweet spot’ [71, 194, 195]. The unique 

characteristics of this method is that all the experiments are carried out on the same library, with 

the same measurement tool over a short time period; thus,  eliminating most systematic errors. 

7.1.  Combinatorial Approach in Materials 

Traditionally, scientists and engineers have relied on the conventional one-by-one 

process to discover and develop new materials. However, to compete successfully and claim 

priority with new products and recipes, one must be able to accelerate the discovery and 

optimization processes. In this regard, the use of a high throughput combinatorial approach is 

widely considered as a solution. Perhaps with the biggest impact in the pharmaceutical 

industries, which along with the advances in robotics allow speeding up the drug discovery 

processes, combinatorial chemistry is generally recognized as the earliest combinatorial 

methodology. 

The concept of the combinatorial approach was extended to the fields of  materials 

science by J. J. Hanak [196], in 1970, as a way around conventional laboratory procedures. With 

little acceptance for the next 25 years, mainly due to the lack of suitable tools (e.g. computers 

and sophisticated high resolution characterization tools) [192], the first successful combinatorial 

approach in materials science was carried out by Xiang et al.[197, 198]. In this work, arrays of 

luminescent materials with different composition were obtained by co-depositing a film from 
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multiple sources by sequentially moving physical masks. Inspired by this, the technique has 

received tremendous attention [198-200] to the extent that only after 10 years industry is heavily 

involved in its development. 

Analogous to the need for the rapid discovery of new drugs in pharmaceutical industry, 

the development of new and efficient high performance dielectric materials for the 

communication technology sector requires a short innovation cycle to keep pace with its short 

time-to-market characteristics. Thus, applying combinatorial materials synthesis to dielectrics 

offers advantages: (i) to accelerate the discovery of efficient dielectric material and optimize 

existing systems, (ii) to investigate the effects of a wide variety of dopants on dielectric 

properties, and determine the optimal doping level in a timely fashion [193, 201-203]. 

7.2.  Combinatorial Thin Film Libraries 

Combinatorial study in dielectric and ferroelectric materials is best performed in the form 

of thin film libraries [72, 193], which are mainly deposited via PVD methods, including PLD, 

evaporation and RF magnetron sputtering [197, 204, 205]. The combinatorial thin film libraries 

can be divided into two main groups: discrete and continuous composition methods. In the 

discrete combinatorial synthesis (DCS), the combinatorial libraries are generated by sequentially 

depositing individual (selective) precursors of interest through a series of multiple physical 

masks. The use of multiple masks during deposition ensures the creation of a spatially defined 

library of the film [197]. This deposition is usually performed at room temperature and requires a 

post-deposition annealing to facilitate the reaction between the constituent amorphous precursors 

and the formation of desired phases [197, 203, 204]. 

The continuous composition or continuous composition spread (CCS) thin film 

deposition method is based on the co-deposition of material from multiple (two or more) sources 
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that are spatially separated and chemically distinct to produce a thin film with an inherent 

composition gradient on the substrate.  The initial work on the CCS approach can be traced as far 

back as 1965 when Kennedy et al. concurrently evaporated three metals (Fe-Cr-Ni) sources to 

obtain a composition spread  film on a substrate for rapid determination of ternary alloy phase 

diagrams [206]. Since then the methodology has been used both for systematic exploration of 

known materials as well as intentional discovery of new materials with targeted properties [205, 

207]. No masks or post-deposition annealing are necessary in the CCS method; consequently, the 

use of deposition conditions optimized for an individual source is sufficient to obtain a film with 

desirable composition and phase on the substrate. 

Combinatorial libraries of BST have been prepared both by DCS and CCS methods. In 

the DCS approach, layers of amorphous TiO2, BaF2 and SrF2 were sequentially deposited using 

precisely positioned physical masks to fabricate BaxSr1-xTiO3 thin film libraries [208]. The A-site 

composition (i.e. value of x) is controlled through the thickness of the layers at each site on the 

library. Systematic investigation of the effect of multiple dopants on the dielectric constant and 

losses of the BST film was also conducted by  sandwiching the dopants between the TiO2 

(deposited first) and BaF2/SrF2 layers [203, 204]. As the deposition of the layers was conducted 

at room temperature, a series of controlled thermal treatments were carried out to promote inter-

diffusion of layers and dopants, remove F2, and crystalize the BST film. 

Similarly, the CCS method was applied to fabricate an epitaxial Ba1-xSrxTiO3 thin film 

library using PLD from the BaTiO3 and SrTiO3 targets and the layer-by-layer gradient “wedge” 

approach [209]. The compositional gradient across the substrate was created by performing a 

series of shadow depositions through a rectangular opening in an automated shutter, which 

moves back and forth over the substrate during the deposition. The motion of the shutter creates 
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a thickness gradient with a ‘‘wedge’’ shape on the substrate. The intimate mixing between the 

two sources at the atomic level was ensured by depositing less than the unit cell (~ 0.4 nm) of 

BTO/STO at any position on the substrate. 

From the preceding discussions, the DCS method can be effectively used in the 

investigation of a fixed concentration doping on dielectric properties of BST. However, the lack 

of intimate mixing between precursors at the atomic level may lead to the formation of multi-

phase mixtures, even after the necessary heat treatments, deviating from the desired dielectric 

properties for the device grade BST thin films. Moreover, the DCS method can be designed to 

explore a selected region of a phase diagram with fine resolution. But, the use of masks during 

deposition does not allow both fine resolution and broader composition coverage. The masks are 

also considered to be sources of contamination [194]. 

Conversely, the CCS method guarantees the intimate mixing between the sources at the 

atomic level during co-deposition, leading to the formation of BST films with properties close to 

those obtained from a conventional method. The use of no mask during deposition is 

advantageous for the CCS method, since the fine compositional resolution as well as broad 

composition coverage can be achieved [194, 209]. Specially, using the RF-magnetron sputtering 

technique, a much larger (than those obtained from a PLD based CCS method) spread can be 

generated [71, 207]. In this chapter, the RF magnetron sputtering based CCS method was applied 

to BST to identify effective dopants and determine their optimum concentration corresponding to 

the trade-off between tunability and dielectric loss. 

7.3.  Combinatorial Setup in This Work 

In this study, the CCS combinatorial method based on reactive RF magnetron sputtering 

with two symmetric (with respect to an axis that passes through the center of a substrate) RF 



 

111 
 

guns, similar to those proposed in [210, 211], was used. The angular positions of the two guns 

are adjustable; and they are equipped with equivalent BST targets that are doped with distinct 

dopants. For the general description of the experimental setup, let’s call the two dopants dopant-

A and dopant-B. The schematic of the CCS combinatorial setup is shown in Figure 7.1. The BST 

target doped with dopant-A (i.e. BST+A) is mounted on the left RF source (gun), while the BST 

target doped with dopant-B (i.e. BST+B) is positioned in the right gun. 

 

 

Figure 7.1. CCS combinatorial setup with two symmetric RF sources 

 

The two sputtering guns were shifted and tilted each by the same tilt angle () in the 

opposite direction from the central axis (on-axis) that passes through the center of the substrate 

to realize the dopant and thickness gradient across a static (non-rotating) wafer. The distance 

between the centers of the target and substrate (throw distance) for each source is the same and is 

represented by h. The two sputtering sources were powered by separate RF power supplies of 

150 W that ramp at slow rate of 2.0 W/min to avoid the targets cracking. Silicon or platinized 

alumina substrates were used in the study. 
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The CCS method is based on the realization of a spatially varying composition across a 

wafer to acquire a combinatorial library out of which ‘sweet spot’ for the best tunability and 

dielectric loss is obtained. The tilt of the RF sources (Figure 7.1) creates a gradient in thickness 

across the wafer, which in turn is responsible for the gradient in composition. In our case, since 

the BST sources are doped with distinct dopants, the gradient in thickness leads to the gradient in 

concentration of the individual dopant. For example, as one goes to the side of source (BST+B) 

from the source (BST+A) on the substrate, the concentration of the dopant-A decreases while 

that of dopant-B increases. 

Although a thickness gradient from an individual source is required to realize the CCS 

method, obtaining a uniform film on the entire substrate is crucial from the two sources. The 

BST film thickness, t, is one of the parameters that defines the device capacitance, C = r0A/t, 

where A is the electrode area. Furthermore, the permittivity, tunability, control voltage, power 

handling capacity, and the break down voltage of the film are thickness dependent [180, 212, 

213]. Therefore, the thickness variation across the wafer makes the final data interpretation 

challenging as it is impossible to identify whether the observed changes in properties are due to 

the introduced dopants or the thickness variation. 

7.4.  Thickness and Composition Profiles  

Generally, in RF magnetron sputtering, the uniformity of a film is ensured by rotating the 

substrate during deposition. However, with no substrate rotation during combinatorial film 

deposition, the uniformity of the film can only be realized by adjusting the guns geometry—tilt 

angle and the throw distance. In order to determine optimal tilt angle and throw distance, the 

thickness profile on the substrate from each of the source target was first mathematically 

modeled and then experimentally tested. 
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7.4.1.  Thickness Profile Modeling 

The thickness profile of a film deposited by RF magnetron sputtering with the centers of 

target and substrate coinciding (i.e. no target tilting) was studied by Swann [88] based on a 

standard Holland [214] method. In this work, the expression for the thickness profile of a film 

deposited from a tilted target as a function of tilt angle,, and throw distance, h, was derived, 

where the details of the calculations are given in appendix B. Assuming tA and tB to be the time 

rate of thickness of the film deposited from targets BST+A and BST+B, respectively, their 

expressions are presented as 

 𝑡𝐴,𝐵 =
𝑆𝐴,𝐵

𝜋2𝜌𝐴,𝐵(𝑟22−𝑟12)
∫ ∫

𝑐𝑜𝑠 𝜃(2ℎ2±2𝑟𝑅 𝑐𝑜𝑠𝜑(𝑐𝑜𝑠 𝜃−𝑠𝑒𝑐 𝜃)±2ℎ𝑅 𝑠𝑖𝑛 𝜃±2ℎ𝑟 𝑡𝑎𝑛𝜃)

2(ℎ2+𝑟2+𝑅2+2𝑟𝑅 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠𝜑±2ℎ𝑅 𝑠𝑖𝑛 𝜃)2

2𝜋

0

𝑟2

𝑟1
𝑟 𝑑𝑟 𝑑𝜑, (7.1) 

where, “+” or “-” as well as the subscript  “A” and “B” correspond to the expression for tA and tB, 

respectively;  is  tilt angle, h is the throw distance, SA  and SB  are  the sputtering rates,
A  and 

B  are the densities, and  R is an arbitrary position on the substrate from its center. The 

parameters r1 and r2 are known as the inner and outer radii of the “erosion” region (see Figure B1 

(a) in Appendix B) of the target. In the absence of the magnet, r1=0, and r2 equals the radius of 

the target. Lastly, r is an arbitrary radius between r1 and r2 (i.e. r1rr2) on the target. 

When deposition is performed from the two sources (i.e. co-deposition), the total 

thickness of the film on the substrate is the sum of the thickness from each source as 

 𝑡(𝑅) = 𝑡𝐴(𝑅) + 𝑡𝐵(𝑅). (7.2) 

Like-wise, the expression for the weight percent (wt. %) composition [210] of the deposited 

material on the substrate is estimated as (see Appendix B) 
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where, % A(R), % B(R) are the wt.% of the material deposited from the BST+A and BST+B 

sources as a function of position on a substrate, respectively. The concentration of each dopant at 

a given position on a substrate can be estimated with the knowledge of the relation between 

concentrations of each dopant with respect to the bulk material. 

The effect of tilt angle and throw distance on the thickness uniformity and deposition rate 

were studied. Since the analytical expression above cannot be simplified further, the thickness 

calculation was performed numerically using the MATLAB programming language. The 

parameters used in the calculation are  r1=0, r2=3.8 cm, SA=SB=2.06x10
-4

 g/sec (measured for 

aluminium metal target), A=B=5.6 g/cm
3
 ( densitiy of the BST+A and BST+B target). The plot 

of the thickness versus distance on the substrate is presented in Figure 7.2A with varying tilt 

angles and fixed throw distance (16.5 cm). When the tilt angle is small (< 20
o
), the film shows a 

non-uniform thickness profile with a big ‘hill’ in the center that decrease outwards. Conversely, 

when the tilt angle is large (> 40
o
), the profile shows thicker film on the periphery and a big 

‘hole’ in the center of the film. The optimum tilt angle for growing a uniform thin film is found 

to be 30
o
. 

The effect of throw distance (h) on the thickness profiles of the film using the 30
o
 tilt 

angle is shown in Figure 7.2B. As shown in the figure, when the throw distance is small (below 

12 cm), high deposition rate is obtained, but the uniformity of the film is compromised. Given 

the importance of uniformity in combinatorial film deposition, the throw distance of 16.5 cm was 

selected though it slows down the deposition rate. Therefore, to obtain a uniform combinatorial 

thin film, the tilt angle and throw distance of the two RF sources should be set to 30
o
 and 16.5 

cm, respectively. 
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Figure 7.2. Thickness versus distance on a substrate: effects of tilt angle (A) and throw distance 

(B) on the films’ growth rate and uniformity 
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Figure 7.3. Thickness (A) and concentration (B) gradient on the substrate 

 

Based on the optimum tilt angle and throw distance, the thickness and composition 

profiles calculated from each target are presented in Figure 7.3. The thickness of the film 

obtained from both targets (Figure 7.3A) decreases quasi-linearly with the thicker film close to 

the edge of the wafer on the side of  the target. The weight percent (wt.%) composition 

(calculated based on Eq. (7.3), Figure 7. 3B) from each target also shows the gradient in 

compostion across the wafer, with the highest concentration close the source targets. These 

results prove the aplicability of the CCS combinatorial method in our RF sputtering system. 
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7.4.2.  Experimental Test of the Combinatorial Setup 

Using the tilt angle of 30
o
 and throw distance of 16.5 cm obtained from the mathematical 

model above, the two RF guns were adjusted to experimentally test the combinatorial geometry. 

Then, two BST films were deposited on separate 6” silicon wafers at room temperature for 4 

hours. One of the two films was deposited from the target (BST+A), while the other was from 

the target (BST+B). The thickness of the films was measured by ellipsometery from 14 locations 

along the line connecting the two targets on the wafer in an interval of 1 cm.  Figure 7.4 shows 

the thickness profiles of the BST films deposited from each target. The thickness from each 

target decreases with distance on the substrate away from the side of the wafer that is close to the 

target, showing analogous thickness profile with the model above (Figure 7.3A). The result 

indicates the realization of the CCS method in our RF magnetron sputtering system when the two 

RF guns are adjusted to the geometry estimated from the above model. 

 

 

Figure 7.4. Film thickness versus position on the wafer. The red line in wafer scheme shows the 

path on which the thickness was measured 

 

To verify whether a uniform film can be grown at this geoemetry, BST thin film was co-

deposited from the two targets on a 4” silicon wafer at room temperature. The 3D thickness map 
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of the entire wafer (measured by ellipsometery) is shown in Figure 7.5. As can be seen from the 

white colored area on the figure, the region on the wafer between the two targets shows a 

uniform film. The over all results show a uniformity of ~ 6 %, proving that the tilt angle and 

throw distances obtained from the above model is optimal for depositing of a uniform 

combinatorial thin films. 

 

 

Figure 7.5. 3D thickness map of a film co-deposited on a silicon wafer 

 

7.5.  Combinatorial Thin Films for Optimal Dopant Search 

Following the experimental test of the RF guns geometry, a BST thin film was co-

deposited from the A and B doped BST targets to study the effect of the dopants on the dielectric 

properties (dielectric constant, tunability, loss, and leakage current) and determine their 

concentration corresponding to the optimal result. The A and B dopants used in this study are cerium 

oxide (CeO2) and barium magnesium niobate (BaMg1/3Nb2/3O3 (BMN)), respectively. The 

deposition of the film was performed on platinized alumina wafer (Pt/TiO2/SiO2/Al2O3) using the 

same deposition condition used in chapter 6. Similar to the conventional deposition, a ~10 nm buffer 

layer was deposited at room temperature to deposit a good crystalline thin film. 
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After the film deposition, the thickness, crystallinity and phase purity, microstructure and surface 

morphology of the film were measured and analyzed. The measurements were performed from five 

spots (top, left, center, right and bottom) on the wafer as shown in Figure 7.6; where, the left and 

right regions of the wafer are rich with Ce and BMN dopants, respectively. The tunability, dielectric 

loss, and figure of merit (FOM) of the film were measured from over 2000 pairs of metal-insulator-

metal capacitors (reasonable statistics); and an elemental analysis was conducted on 28, 16x16 mm
2
 

samples. Finally, the composition and dielectric properties were correlated to determine the optimal 

concentration of the dopants. 

 

 

Figure 7.6. Spots on a wafer from which XRD, SEM, AFM, and thickness were measured 
 

 

7.5.1.  Structure and Morphology of the Combinatorial Film  

The thickness of the film was measured by ellipsometry from five spots (Figure 7.6) and 

averaged to be about 240 nm with a reasonably good uniformity (~2 %), suggesting that the 

thickness non-uniformity does not interfere with the data interpretation (i.e. if there is a change 

in the dielectric properties across the wafer, it is exclusively from the dopants introduced into the 

material). The XRD scan was performed on the film to diagnose the crystallinity and phase 

purity of the grown material. Figure 7.7 shows the grazing incidence XRD (GIXRD, =1.5
o
) of 
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the combinatorial thin film from the five spots.  The patterns acquired from all the spots have 

shown  cubic polycrystalline BST material which is in agreement with  the  reported results 

[107]. In addition, the absence of extra phases in all the GIXRD patterns suggests that the 

concentration of the dopants in the film is lower than their solubility limit. 

 

20 30 40 50 60 70

 

2
2
0

2
1
1 P

t(
2
2
0
)

2
1
0

2
0
0

P
t(

1
1
1
)

1
1
1

1
1
0

2(deg.)

1
0
0

T
C

L

R

B

 

Figure 7.7. GIXRD of the combinatorial thin film acquired from, B (bottom), R (right), L (left), 

C (center) and T (top) 

 

The effects of dopants on BST film was studied by calculating the lattice constant and 

crystallite size [97] for the five spots using the strongest (110) peak. The lattice parameters 

calculated for all spots shows comparable values (Table 7.1.), indicating that the dopants have 

uniform effects on the lattice of BST. However, the dopants may affect the broadening 

(crystallite sizes) of the XRD lines differently. As can be seen in Table 7.1, the crystallite size 

estimated for the right region of the film has shown a relatively lower value compared to the rest 

of the regions. 

To further explore the grain structure and surface morphology of the film, SEM and AFM 

images were taken from the five spots on the film. Figure 7.8 shows the field emission scanning 
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electron microscopy (FESEM) micrographs taken from the five regions. The images from all the 

spots show crack free surfaces, indicating that the film has good insulating properties that 

withstand large bias voltages without device burning. 

 

 

Figure 7.8. FESEM micrographs of the combinatorial film acquired from the Top, Center, 

Bottom, Left and Right regions 

 

Table 7.1. Lattice constants, crystallite/grain sizes for the combinatorial thin film 

Parameters Measured spots on the wafers 

 Top Center Left Right Bottom 

Lattice constant (Å) 3.969 3.968 3.968 3.968 3.969 

Crystallite size (nm) 22.6 22.5 22.7 22.3 22.8 

Grain size (nm) 47.1 53.0 49.6 -- 50.8 

Surface Roughness (nm) 5.04 8.65 2.94 0.94 5.54 

 

As shown in the figure, the images taken from the top, center, bottom and left regions 

have shown larger grains and definitive microstructures contrary to the image taken from the 

right region of the film. The grain size for all the spots except the right region (unresolved 

grains) was estimated using the lineal intercept method [162] and presented in Table 7.1. 

The AFM images taken from a scan area of 1x1 μm
2
 for each region are shown in 

Figure 7.9. The images show that all regions have exhibited no cracks, defects, and 

visible pinholes on the surfaces. Similar to the SEM result, all images except the one 
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taken from the right region have shown well-defined and resolved grain structures. The 

surface roughness estimated from the AFM images are presented in Table 7.1. 

 

 

Figure 7.9. AFM images of the combinatorial film acquired from the Top, Center, Bottom, Left 

and Right regions 

 

The AFM result has shown that the right region of the film is the smoothest of all 

the regions, in agreement the smallest grain size observed in the XRD and SEM results. 

The central region of the film has shown higher surface roughness than the flat and top 

regions that have comparable roughness values as well as the left region which is Ce-rich. 

The reduction in grain size and the smoother surface roughness of the right region of the 

film are likely due to the high concentration of Mg and Nb dopants. This is likely since 

the right side of the wafer is close to the BMN doped target, which as a result of the 

pinning effects of the two dopants on the grain boundary, reduces the grain sizes of the 

film [70, 144]. 

It is known that when the film surface is rough, the film-electrode interface 

quality is poor and contributes to the conductor loss of the device [34], suggesting that 

the smooth right (BMN rich) region of the combinatorial film has lower dielectric loss 

compared to the rest of the regions [144]. In addition, the smoother film surface reduces 
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the leakage current, which is consistent with the high film resistivity obtained from the 

right (BMN rich) region of the combinatorial film [164, 165]. 

7.5.2.  Electrical Characterization of the Combinatorial Film 

After the structural, phase purity, and morphological characterization, parallel plate 

capacitors were lithographically patterned (2432 pairs of capacitors connected in series) to 

measure the dielectric and electrical properties of the film (see Appendix A). The relative 

tunability, nr (%), and the quality factor (Q) were mapped by varying the external bias voltage 

from 0 V to 32 V and back to 0V in the interval of 2 V at a constant frequency of 30MHz.  

The 2D map of dielectric constant (at 0V), tunability (nr %) and quality factor (Q) of the 

entire combinatorial thin film are shown in Figure 7.10. The color bands on the wafer(Figure 

7.10 A&B) indicates the presence of gradients both in dielectric constant and tunability along the 

deposition X-axis (projection of an axis connecting the two sputtering sources on the wafer) as 

one goes to the right end of the wafer, where high concentration of BMN dopant is expected. The 

maximum permittivity and tunability are obtained from the left (close to the Ce-doped BST 

target). The decrease in permittivity and tunability on the right side of the wafer is consistent 

with effect of Mg in BST [34, 68]. On the other hand, the Q-map on the entire film (Figure 

7.10C) does not show any apparent differences and there is no defined trend of Q unlike 

tunability.  However, a tiny strip close to the right edge of the wafer presents high Q-factor 

values compared to the other regions. This is due to Mg/Nb rich BST that effectively decreases 

the dielectric loss of the BST film [144]. 
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Figure 7.10. The 2D map of permittivity at 0 V (A), relative tunability (B), and quality factor (C) 

for the combinatorial thin film 

 

The other important property that needs to be explored is behavior of the resistivity of the 

film on the wafer. Due to the lack of automated equipment to measure the leakage current of all 

the devices, only representative devices were manually measured. The devices were selected 

from the region between the sputtering sources as shown in Figure 7.11 by dies (boxes) on the 

mask layout labeled by rows (A, B, C, D, and E) and columns (1, 2,…10). This region was 

intentionally picked as the gradient in the dopant concentration is realized in the region that lies 

between the two sputtering targets. In each die (i.e. A1, A2…A10, B1…E10), one device was 

selected for leakage current measurement. 

A B 

C 



 

124 
 

 

Figure 7.11. Regions selected for the leakage current measurements 

 

The leakage current (value at 32 V) and tunability of the devices (both measured from the 

same device) versus deposition X-axis for the rows (indicated in Figure 7.11) are shown in 

Figure 7.12. From the left (Ce-rich) to right (BMN-rich) region of the film along each row, the 

tunability decreases, showing a similar gradient as observed by the color map in Figure 7.10B.  

At the two end points, the leakage current is observed to be small; however, the BMN rich region 

has shown the lowest leakage current of all the regions. The small current in either end of the 

film is attributed to the lower surface roughness in the right and left regions of the film which 

might have improved the film-electrode interface and thus the leakage current [164, 165]. 

Likewise, the higher leakage current measured from the center is related to the rough surface (see 

Table 7.1). The lowest leakage current measured from the BMN rich region is likely due to the 

charge compensating effect between the Mg
2+

 and Nb
5+

 ions [70, 144], introducing no free 

carrier in the material. 
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Figure 7.12. Tunability and leakage current vs. deposition X-axis for selected devices. The Ce 

and BMN rich sides of the film are indicated on the graph 

 

7.6.  Composition Library for Combinatorial Thin Film 

In order to determine the optimal concentration of the dopants using the combinatorial 

method, it is vital to establish a library and correlate its composition with the dielectric 

properties. To achieve this, a BST film was deposited on a SiO2/Si wafer (4”) from the two BST 

(Ce+BST and BMN+BST) targets using the same conditions as for the film deposited on the 

platinized alumina wafer. The thickness and GIXRD patterns of the film was comparable (data 

not shown) with the film grown on the platinized alumina wafer. 

As in the leakage current measurement, the composition analysis on the film was 

performed manually due to the lack of automated equipment. To realize this, the 4” wafer was 

diced into 28, 16x16 mm
2
 samples as schematically shown in Figure 7.13.  For convenience, the 
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samples are labeled as E1, E2…E28 and the elemental analysis was performed on each piece by 

XRF and ICP-OES methods. 

 

 

Figure 7.13. Wafer diced to 28, 16x16 mm
2
 samples for composition analysis 

 

By using the XRF method, the concentration of both dopants can be quantified for each 

sample in the library; however, with the ICP-OES technique, the analysis on individual sample 

has shown no presence of Mg and Nb (proved on a different combinatorial film). It is known that 

the niobium atom is undetectable by the ICP-OES [101], but the absence of Mg from the analysis 

was unanticipated. The likely cause for absence of Mg from the analysis on each piece could be 

due to the dilution of its concentration in the combinatorial film as a result of deposition from 

two BST sources. In order to obtain a measurable Mg concentration in the ICP-OES analysis, 

three samples were digested in the volume (~ 5 ml) that was used to make one sample (i.e. 

tripling the concentration). The ICP-OES analysis performed on the sample proved that digesting 

three pieces to produce one ICP-OES sample ensures a measurable Mg concentration. 

Consequently, the ICP-OES analysis of the combinatorial film was conducted on six samples 

comprising E7 to E24 out of the 28 samples in the library. In each of the six ICP-OES samples, 

three pieces (samples) that are in the same column were digested together to create one ICP-OES 
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sample. The six ICP-OES samples and the corresponding digested pieces from the library to 

make one ICP-OES sample are presented in Table 7.2. 

 

Table 7.2. ICP-OES samples and the corresponding digested samples from the library 

 

7.6.1.  XRF Analysis 

The 2D maps of the concentrations of Ce and Nb (Nb is part of BaMg0.33Nb0.67O3) 

dopants (mol. %) measured by XRF method for each sample in the library (on the wafer) are 

presented in Figure 7.14. The center of each sample on the wafer was taken as a position to graph 

the 2D map. The observed bands of colors show the presence of compositional gradient for both 

dopants across the substrate, leading to the gradient of tunablity and permittivity as observed 

above. Unfortunately, the compositional map for Mg is not presented, since its value for all the 

samples was found to be below the instrumental detection limit. This could be due to the dilution 

of Mg concentration in the film (as was the case for the ICP-OES analysis on the individual 

samples) and the low atomic number of Mg. It is known that the instrument detection limit 

decreases when the matrix composition has lower atomic number (Z) which could be due to the 

smaller cross-section of Mg to interact with the X-ray photon [215]. Yet, knowing the 

concentration of Nb is sufficient to estimate the total amount of BMN in a given sample. 

ICP-OES samples Digested samples from the library 

ICP-OES1 E7+E13+E19 

ICP-OES2 E8+E14+E20 

ICP-OES3 E9+E15+E21 

ICP-OES4 E10+E16+E22 

ICP-OES5 E11+E17+E23 

ICP-OES6 E12+E18+E24 
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Figure 7.14. The 2D XRF maps of Ce (left) and Nb (right) dopants for the combinatorial film 

 

In order to correlate the dielectric properties with the dopants concentration, the 

tunability and quality factor of the devices within each sample was averaged.  The average 

tunability (nav) and quality factor (Qav) were calculated based on the number of devices, N 

(different for various samples), inside each sample as 

 𝑛𝑎𝑣 =
∑ 𝑛𝑖
𝑁
𝑖=1

𝑁
, 𝑄𝑎𝑣 =

∑ 𝑄𝑖
𝑁
𝑖=1

𝑁
. (7.4) 

where,  ni and Qi are the tunability and Q-factor of individual device in a sample, respectively. 

The tunability and Q data reduce to 28 values matching the number of samples for the 

composition analysis via XRF. 

The 2D map of the average tunability of the combinatorial film is shown in Figure 7.15 

(left). The tunability map shows a gradient which follows the same tendency with the 

concentration of the Ce dopant on the wafer (Figure 7.14), suggesting the increase in the 

concentration of Ce is responsible for the improvement of the tunability. The Quality factor, 

however, does not show an observable trend with the concentration of the dopants, except for the 

high Q at the far right end of the wafer (data not shown) due to the high concentration Mg/Nb 

dopants [144]. 
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Figure 7.15. The 2D map of average tunability (left) and FOM (right) for the combinatorial film 

 

The trade-off between tunability and dielectric loss can be tested through an average 

figure of merit (FOMav= nav Qav) as shown in Figure 7.15 (right) on the entire wafer. The color 

map shows the gradient of FOMav on the wafer with the maximum (>2100 %) on the region with 

high concentration of Ce. Precisely, the maximum FOMav of ~2174 % (matching to average 

tunability of ~65 % and tan   of~ 0.0299) was measured. This spot corresponds to the optimal 

concentrations of Ce and BMN dopants of 1.37 mol. %, and 1. 67 mol. %, respectively. 

7.6.2.  ICP-OES Analysis 

The ICP-OES analysis was conducted on six ICP-OES samples as described in Table 7.2. 

The curves for Mg (Mg is a part of BaMg0.33Nb0.67O3) and Ce (mol. %) are shown in Figure 7.16. 

The result presents gradients of composition (albeit complex), which is characteristic of the 

multicomponent continuous composition spread that was targeted in this experiment. The 

tunability (averaged over all devices in an ICP-OES sample) is also plotted with the composition 

curves (see the blue line in Figure 7.16). The  tunability value of 62.0 % (dashed line) is ~15 % 

higher than that for only BMN doped BST [144]. Conversely, the loss tan = 0.03 for the latter is 

only marginally lower than this value for the sample ICP-OES2 (0.035) suggesting that doping 
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with Ce ions (in combination with BMN) enabled a substantial tunability increase and prevented 

increase in loss. The analysis on the ICP-OES2 sample has shown concentrations of CeO2 and 

BMN 1.22 mol % and of 1.65 mol %, respectively, which are comparable with the XRF result 

above. Therefore, a BST target doped with ~1.66 mol. % of BMN and ~ 1.30 mol. % of CeO2 

can be recommended for the fabrication of a good quality BST thin film for tunable microwave 

components. 
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Figure 7.16. ICP-OES analysis of Ce and Mg concentrations, and average tunability vs. position 

on the wafer 

 

7.7.  Conclusions  

An RF magnetron sputtering based continuous composition spread (CCS) combinatorial 

thin film method was applied to BST thin film to optimize its properties via multi-doping. The 

BST thin film was co-deposited from CeO2 and BaMg0.33Nb0.67O3 (BMN) doped BST targets 

with the aim of understanding the effects of the dopants on the properties of BST film and 

determining their optimum concentration corresponding to the trade-off between tunability and 
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dielectric loss in a timely fashion. Accordingly, the optimum concentrations of the dopants were 

determined.  

The library created in this work has generated 28 samples from one combinatorial film 

deposited on 4” wafer in one deposition process that runs for 10 hours. If each sample was to be 

deposited separately from a single sputter target, we would need 28 discrete depositions, each 

with 20 hours deposition time to obtain ~ 240 nm thick film. The total process requires over 23 

days of consecutive deposition times!  Moreover, each sample requires a unique sputtering target 

with known dopant concentration which is a costly and time consuming process. Therefore, the 

combinatorial method used for BST is faster and less expensive than traditional approaches in 

finding the “sweet spot” corresponding to the optimal concentration of the three dopants (Ce, 

Mg, and Nb) needed to fabricate good quality BST based agile microwave devices. 
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8.  CONCLUSIONS AND FUTURE OUTLOOK OF THE WORK 

8.1.  Conclusions 

In summary, this thesis was devoted to improving the properties of barium strontium 

titanate through buffer layer deposition, stoichiometric control, concurrent doping, and use of 

combinatorial thin film method to study the effect of multiple doping. The crystallinity of the 

BST film on platinized substrates was achieved by using a thin BST buffer layer (homo-buffer) 

deposited at room temperature which acts as a seed layer for the growth of the main body of the 

film. The rise of the total gas pressure in the chamber (>/= 30 mTorr) during film deposition has 

enabled the attainment of a one to one correspondence between the composition of the target and 

film BST. However, the O2/Ar ratio should be adjusted as exceeding a threshold of 2 mTorr in 

oxygen partial pressure facilitates the formation of secondary (undesirable) phases. 

Mg/Nb co-doping in BST through complex BaMg0.33Nb0.67O3 (BMN) oxide has 

considerably improved the properties of BST thin films. The doped film has shown an average 

tunability of 53 %, which is only ~8 % lower than the value for the undoped film. This drop is 

associated with the Mg ions, but its detrimental effects are partially compensated by Nb ions. 

Conversely, the doping has reduced the dielectric loss by ~40 % leading to a higher figure of 

merit, making the BMN doped film a candidate for application in agile microwave devices 

compared to the undoped film. Moreover, doping through BMN ensures charge neutrality 

compensation and results in significant leakage current reduction. Also, the presence of large 

amounts of empty shallow traps related to 𝑁𝑏𝑇𝑖
  localizes the free carriers injected from the 

contacts; thus increasing the device control voltage substantially (>10 V). 

The carrier transport mechanism for the undoped and BMN doped film was investigated. 

The conduction for the undoped film was interface limited while the BMN doped film was bulk 
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limited. The change of the conduction mechanism from SE to PF is attributed to the presence of 

large number of 

TiNb  sitting as a positive trap center at the shallow donor level of the forbidden 

gap of the BST film. 

The effects of multiple doping (Mg, Nb, and Ce in this work) were studied by 

successfully applying a RF magnetron sputtering based continuous composition spread (CCS) 

combinatorial thin film method. The method was based on co-sputtering of BST thin film from 

CeO2 and BaMg0.33Nb0.67O3 (BMN) doped BST targets followed by fast electrical and analytical 

characterization. The correlation between the electrical properties and composition of the film 

helps determine the optimum concentration of dopants corresponding to the trade-off between 

tunability and dielectric loss in a timely fashion. Accordingly, the concentrations of Ce and BMN 

(containing Mg and Nb) of 1.30 mol. % and 1.66 mol. %, respectively, were recommended for 

obtaining a good quality BST films for tunable microwave applications. 

8.2.  Future Outlook of the Work 

8.2.1.  Concurrent Al/V dopant for BST 

In chapter 6, the effect of concurrent Mg/Nb doping was studied. The combination 

ensures charge neutrality and reduces the loss and leakage current of the film without 

significantly dropping the tunability. Similar mixtures of other dopants may have an equivalent 

effect. One possible blend of dopants to realize the charge neutrality condition can be aluminum 

and vanadium (Al/V). The two atoms can be introduced into BST through a single phase 

aluminum orthovanadate (AlVO4) which realizes the neutrality condition by satisfying ( [𝐴𝑙𝑇𝑖
′ ] =

[𝑉𝑇𝑖
 ]) relation. 

Two synthesis routes for AlVO4 from aluminum nitrate none-hydrate (Al(NO3)3.9H2O) 

and vanadium (V) oxide (V2O5) precursors were reported in [216]. The first route bases on direct 
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mixing of Al (NO3)3.9H2O with V2O5 in nitric acid, while the second one involves dissolving 

V2O5 in tetramethyl ammonium hydroxide ((CH3)4NOH) before mixing it with Al(NO3)3.9H2O 

in H2O in nitric acid. While both methods can be equally used to synthesize the compound, the 

second route it was found to ensure an intimate mixing between the two precursors and promotes 

the formation of single phase AlVO4. Based on the second route, 20 grams AlVO4 was 

synthesized and doped to the base BST powder to fabricate an AlOV4 doped BST target 

(following the solid state reaction procedures in Chapter 4). The target was fabricated and its 

crystallinity was studied by XRD and is ready for machining and metal bonding to deposit film. 

These concomitant dopants are believed to show similar effects when compared with the BMN 

dopant, and have the potential to improve both the loss and tunability of the BST thin film. 

8.2.2.  Effect of Electrode Area on Dielectric loss 

One major problem observed in the course of this work was the high dielectric loss of the 

devices which is mainly due to the contribution from the large area of the electrode 

(0.5x0.5mm
2
). Using a highly conductive and thick electrode with a small plate area is important 

to minimize the contribution of the electrode to the device losses. In addition, it is also important 

to mention that the electrode loss depends on the geometry of the device [217]. One of the 

electrode geometries used for this purpose consists a central circular patch surrounded by 

concentric circles (Figure 8.1, left) [105]. 

To test the effectiveness of the new capacitor structure, a mask with variable diameter of 

the central patch (20 µm, 30 µm, 40 µm, and 50 µm) was fabricated and applied in capacitor 

fabrication of a BMN doped BST film which was deposited on platinized alumina wafer using 

the same deposition condition as the one in Chapter 6. The film was 242.7 nm thick and its 

GIXRD pattern showed a pure phase polycrystalline BST material. The RF measurements were 
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performed by a ground-signal-ground (GSG) probe with a 250 µm pitch (probe tip spacing) as 

shown in Figure 8.1, right. 

 

 

Figure 8.1. Top view (left) and cross section with GSG probe (right) of the new capacitor 

structure 

 

With these capacitor structures, the capacitance and Q-factor measurements were 

performed at 30 MHz and 2 GHz frequencies on representative device for each central patch 

diameter of 20 µm, 30 µm, 40 µm, and 50 µm. Interestingly, regardless of the area, all the 

devices have shown tunability of ~63 % (at 660 kV/cm bias field) for both frequencies. 

However, the quality factor has shown a decrease with the increase of frequency as well as the 

diameter of the central patch (i.e. Q is area dependent). 

The quality factors and tunability for the four representative capacitors at 30MHz and 2 

GHz frequencies are presented in Table 8.1. For comparison purposes, the values obtained from 

the BMN doped BST film with a capacitor area of 0.5x0.5 mm
2
, measured at 30 MHz frequency 

is included in the table.  From the table, one can see that the highest Q is obtained for small area 

device, indicating the reduction of electrode contribution to the total dielectric loss. Therefore, 

this result shows the need for using the new capacitor structure for measuring a reduced 
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dielectric loss both in the conventional and combinatorial BST thin films without affecting the 

tunability. The expected loss gradient on the combinatorial film may also be revealed by using 

these small area capacitor devices. 

 

Table 8.1. Q-factor of capacitors with the four diameters at 30 MHz and 2 GHz 

* BMN doped film patterned with 0.5x0.5 mm
2
 area top electrode. 

 

8.2.3.  Three Sputtering Sources for Combinatorial Approach 

The continuous composition spread (CCS) combinatorial method has been realized as a 

fast and cost effective way of studying the effects of multiple-dopants on BST. With the existing 

set up, performing more iteration to precisely determine the concentration of the dopants in the 

film is necessary. On the other hand, it is also possible to use three sources to increase the 

number of dopants in BST and determine their effects. The Mg/Nb, Al/V co-doped and CeO2 

doped BST targets can be co-sputtered on a substrate and the effect of the dopants and their 

optimal concentration can be determined in a cost effective and timely manner. 

 20µm 30 µm 40 µm 50 µm MA2457* 

Q@30 MHz 132.2 118.1 120.7 99.6 ~ 32.4 

Q@2 GHz 28.2 22.8 14.4 13.3 -- 

Tunability (%) 63.4 63.4 63.5 62.7 62.4 
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APPENDIX A. CAPACITOR FABRICATION PROCESS 

The dielectric and electrical measurements were performed on a metal-insulator-metal 

(MIM) capacitor structure consisting of two capacitors connected in series on the platinized 

alumina wafers (Chapter 3). Due to the structural, morphological and other characterization prior 

to patterning the film, surface contamination is unavoidable. Thus, before starting the fabrication 

process, the wafers were annealed at 400 
o
C under the flow of oxygen to remove any organic as 

well as water molecules adsorbed on the surface of the film. Then, the wafers were taken straight 

to the sputtering chamber and a 500 nm platinum top electrode was deposited on them. Thick 

positive photoresist was coated on top of the platinum and capacitor structures were 

lithographically patterned, dry etched (at University of Minnesota Nanofabrication center (UM-

NFC)). After dry etching (ion milling), the photoresist was stripped off by oxygen plasma using 

reactive ion etching (RIE). Ion milling and oxygen plasma damages the film by introducing 

defects, residual stress, and oxygen vacancies which have a detrimental effect on the electrical 

properties of the film. To alleviate this, the films must be annealed (i.e. repair annealing). 

Steps for the fabrication of capacitor structures by lithography process: 

1. Dehydration annealing is performed at 400 
o
C and 10 sccm of O2 for 2 hours to remove 

organic contaminants and water from the surface of the film.  

2. Deposit 500 nm platinum (Pt) top electrode. 

3. Lithography processes: 

 Spin coat ~2 µm photoresist on top of the Pt electrode  

 Bake at 90 
o
C (soft baking) for 2 minutes. 

 Align mask and expose ~16 seconds 

 Bake at 120 
o
C (hard baking)~1.5 minutes 
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 Develop in OPD262 developer  

 Inspect the patterns under optical microscope  

 If the structure in not good repeat step 3  

 If the structure is good, bake the wafer at 120 
o
C for 15 seconds 

4. Dry etching (ion milling) the Pt electrode; the BST film is protected by the 2 µm photoresist. 

5. Strip photoresist: use RIE by mixing 80 sccm of O2, and 10 sccm of CHF3 at a pressure of 

120 mTorr, power 200 W for 8-17 minutes. 

6. Anneal the films at 650 
o
C under the flow of O2 (15 sccm) for 2 hours. 



 

155 
 

APPENDIX B. THICKNESS PROFILE FOR COMBINATORIAL SETUP 

In this appendix, detailed steps for obtaining analytical expressions of the film thickness 

for the combinatorial setup are presented. In this calculation, the following assumptions were 

considered: (1) the sputtering process is carried out at a sufficiently low pressure so that the 

scattering of sputtered atoms is negligible, (2) the collision between the sputtered molecules 

should be neglected, (3) every sputtered atom striking the wafer condenses on first impact, and 

(4) the sputtered particles are assumed to follow the Knudsen’s cosine distribution.  

Consider an infinitesimal mass, dm, sputtered from an infinitesimal area, d, on the 

sputtering target (Figure B1 (A)) at the sputtering rate of S (gram/second). The fraction, say dm, 

of the sputtered mass that pass through a solid angle, d, in the direction of an angle  with the 

axis normal to the surface per unit time follows Knudsen’s cosine law distribution as [214]  

 𝑑𝑚 =
𝑆

𝜋
cos𝜙 𝑑Ω. (B1) 

Assuming that all the particles passing through the solid angle arrive at an infinitesimal 

area, dS, on the substrate inclined at angle  to the direction of the stream, the total mass of the 

material that lands on the substrate in the dS can be written as 

 𝑑𝑚 =
𝑆

𝜋
cos𝜙 cos 𝜃

𝑑𝑆

𝑟2
 . (B2) 

In this work, the thickness profile derivation is focused on RF magnetron sputtering since 

it is a suitable method for the deposition of dielectric or oxide films. When targets are sputtered 

in a magnetron sputtering setup, the electrons are confined by the Lorentz force to a region 

between the magnets leading to major erosion of the material from this region. Thus, one can 

approximate the usage of the target to be between the inner and outer magnets bounded by r1 and 

r2 as indicated in Figure B1 (B). 
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Figure B1. Scheme of target-substrate to set up the thickness calculation (A), the eroded 

regions between magnets in the magnetron sputtering (B) 

 

In order to ensure the composition gradient across the substrate, it is necessary to shift 

and tilt the source material. In our combinatorial setup, two targets were equally shifted and 

tilted opposite to each other by the same tilt angle, and throw distance. Assume that a BST target 

doped with a dopant A is shifted to the left, while a BST target doped with a dopant B shifted to 

the right. Since the two sources are the same a calculation on one target will suffice to get the 

thickness profile due to the two sources.  

 

 

Figure B2. Schematic representation of a tilted target 

 

Let’s define the following parameters from the schematic above: 

|𝐴𝐵′⃗⃗⃗⃗⃗⃗⃗⃗ | = 𝐿; |𝑂𝑂"⃗⃗⃗⃗⃗⃗⃗⃗⃗|= |𝑂′𝑂"⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ | = |𝐴𝐶⃗⃗⃗⃗⃗⃗ | = ℎ; |𝑂"𝐵⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ | = 𝑟 sec 𝜃; |𝐶𝐵⃗⃗⃗⃗⃗⃗ | = 𝑟 tan 𝜃; |𝐴𝐵⃗⃗⃗⃗ ⃗⃗ | = 𝐿′ = ℎ +
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𝑟 tan 𝜃; |𝑂"𝐵′⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ | = 𝑅; where,  R is a position on the substrate from the origin 𝑂" and r is position 

on the target from its origin 𝑂′. Using a vector addition one can write 𝑂′𝑂′′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗+𝑂′′𝐵′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ − 𝐴𝐵′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ −

𝑂′𝐴⃗⃗⃗⃗ ⃗⃗ ⃗⃗ = 0, which leads to  

 |𝐴𝐵′⃗⃗⃗⃗⃗⃗⃗⃗ |
2

= |0′𝑂′′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ |
2

+2𝑂′𝑂′′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗. (𝑂′′𝐵′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ − 𝑂′𝐴⃗⃗⃗⃗⃗⃗⃗⃗ )+|(𝑂′′𝐵′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ − 𝑂𝐴′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )|
2

. (B3) 

The angle between 𝑂′𝑂′′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ and 𝑂′′𝐵′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ is 90-, and 𝑂′𝑂′′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗  𝑂′𝐴⃗⃗⃗⃗⃗⃗⃗⃗ , thus, Eq. (B3) can be 

simplified as 

 |𝐴𝐵′⃗⃗⃗⃗⃗⃗⃗⃗ |
2

= |0′𝑂′′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ |
2

+2|0′𝑂′′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ | |0′′𝐵′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ | sin 𝜃+|(𝑂′′𝐵′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ − 𝑂𝐴′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )|
2

. (B4) 

By translating the vector 𝑂′′𝐵′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  to the origin of the X’Y’Z’ coordinates, it can be 

expressed as 𝑂"𝐵′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝑅 cos 𝜃 𝑖̂ + 𝑅 sin 𝜃 𝑘̂, and similarly, the vector  𝑂′𝐴⃗⃗⃗⃗ ⃗⃗ ⃗⃗⃗ can be written 

as  𝑂′𝐴⃗⃗⃗⃗ ⃗⃗ ⃗⃗⃗ = 𝑟 cos𝜓 𝑖̂ + 𝑟 sin𝜓 𝑗̂, allowing us to write|(𝑂′′𝐵′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ − 𝑂𝐴′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )|
2

= |(𝑂′′𝐵′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗)|
2

+

|(𝑂𝐴′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )|
2
− 2(𝑂′′𝐵′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗) . (𝑂′𝐴⃗⃗⃗⃗⃗⃗⃗⃗ ) to simplify Eq. (B4) as 

 L2 = h2 + r2 + 𝑅2 + 2ℎ𝑅 sin 𝜃 − 2𝑟𝑅 cos 𝜃 cos𝜓. (B5) 

Similarly, from the vector addition of 𝐴𝐵⃗⃗⃗⃗ ⃗⃗ +𝐵𝐵′⃗⃗⃗⃗⃗⃗⃗⃗ − 𝐴𝐵′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 0, the expressions for cos𝜙 can 

be written as 

 cos𝜙 =
𝐿2+(ℎ+𝑟 tan𝜃)2−(𝑅2+𝑟

2

(cos𝜃)2
⁄ +

2𝑟𝑅 cos𝜓
cos𝜃
⁄ )

2𝐿(ℎ+𝑟 tan𝜃)
. (B6) 

Furthermore, 

 cos β =
(h+r tanθ) cosθ

L
. (B7) 

The total mass sputtered off the infinitesimal area d=rdrd  per unit time is given by 

 𝑑𝑚𝜎 =
𝑆𝐴𝑑𝜎

𝜋(𝑟2
2−𝑟1

2)
  (B8) 
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where, SA is the sputter rate of the target doped with A. The mass, dm, which passes through a 

solid angle, d=
cos 𝛽 dS

𝐿2
⁄ , per unit time follows the Knudsen’s cosine law in Eq. (B2) 

 𝑑𝑚 =
SAcos𝜙 cos𝛽dσdS

π2(r2
2−r1

2)𝐿2
. (B8) 

Suppose that all the dm materials that pass through the solid angle are deposited on the 

infinitesimal area, dS, and form a film of infinitesimal thickness, dt. Let A  be the density of the 

A doped target, the infinitesimal mass that is deposited on the substrate can be written as 

 𝑑𝑚 = 𝜌𝐴𝑑V, (B9) 

where, (dV =dtdS) is the infinitesimal volume created by an infinitesimal area dS and thickness 

dt. Comparing B8 and B9, the infinitesimal thickness on the substrate can be written as 

 𝑑𝑡 =
SAcos𝜙 cos𝛽

𝜌𝐴π2(r2
2−r1

2)𝐿2
dσ. (B10) 

Substituting the expression for 𝐿, cos𝜙, cos 𝛽, and dσ, the expression for the thickness 

profile for the film deposited from the A doped target is presented as 

 𝑡𝐴 =
𝑆𝐴

𝜋2𝜌𝐴(𝑟22−𝑟12)
∫ ∫

cos𝜃(2ℎ2+2𝑟𝑅 cos𝜑(cos𝜃−sec𝜃)+2ℎ𝑅 sin𝜃+2ℎ𝑟 tan𝜃)

2(ℎ2+𝑟2+𝑅2+2𝑟𝑅 cos𝜃 cos𝜑+2ℎ𝑅 sin𝜃)2

2𝜋

0

𝑟2

𝑟1
𝑟 𝑑𝑟 𝑑𝜑. (B11) 

Similarly, the thickness on the film from the B doped target is expressed as 

 𝑡𝐵 =
𝑆𝐵

𝜋2𝜌𝐵(𝑟22−𝑟12)
∫ ∫

cos𝜃(2ℎ2−2𝑟𝑅 cos𝜑(cos𝜃−sec𝜃)−2ℎ𝑅 sin𝜃+2ℎ𝑟 tan𝜃)

2(ℎ2+𝑟2+𝑅2−2𝑟𝑅 cos𝜃 cos𝜑−2ℎ𝑅 sin𝜃)2

2𝜋

0

𝑟2

𝑟1
𝑟 𝑑𝑟 𝑑𝜑. (B12) 

In the expression  is the tilt angle, h is  throw distance, SA and SB are the sputtering rates of the 

A and B doped targets, respectively; 
A and 

B are the density of the A and B doped targets, 

respectively; r1 is the inner radius of erosion region (r1=0 in the absence of magnet) and r2 is the 

outer radius of erosion region (r2 equals the radius of the target in the absence of magnet), r is the 

distance at any arbitrary point on the target from its center, and R is arbitrary distance on the 

substrate from its center. 
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Like-wise, the expression for the composition of the material on the substrate is 

estimated. Let the mass of the material deposited at a position, R, on the substrate from the A 

doped target be )(RM A
, and from the B doped target be )(RMB

. Then the )(RM A
and )(RM B

can 

be expressed as  

 )()()( RtARVRM ASAAAA   , (B13) 

and 

 )()()( RtARVRM BSBBBB   , (B14) 

where, )(RVA
 and )(RVB

are the volume created due to the deposited material from the A and B 

doped targets at any point R, respectively, and SA  is the area of the substrate. The mass 

percentage (fraction) of each material at any point R on the substrate can be written as 

 %100
)()(

)(),(
)(),%(% 




RMRM

RMRM
RBRA

BA

BA , (B15) 

where, )(% RA  and )(% RB  are the mass % of A and B doped materials on the film, respectively. 

Substituting B13 and B14 into B15, the variation of the percentage composition of each material 

with respect to position on the substrate is written as 

 %100
)()(

)(
)(),%(%

,,





RtRt

Rt
RBRA

BBAA

BABA




. (B16) 


