
A NEW COUPLING METRIC: COMBINING STRUCTURAL AND

SEMANTIC RELATIONSHIPS

A Dissertation
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Mamdouh Khalaf Alenezi

In Partial Fulfillment of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY

Major Program:
Software Engineering

June 2014

Fargo, North Dakota



North Dakota State University 

Graduate School 
 

Title 
  

A NEW COUPLING METRIC: COMBINING STRUCTURAL AND 

SEMANTIC RELATIONSHIPS 

  

  

  By   

  

Mamdouh Khalaf Alenezi 

  

     

    

  The Supervisory Committee certifies that this disquisition complies with North Dakota State 

University’s regulations and meets the accepted standards for the degree of 

 

  DOCTOR OF PHILOSOPHY  

    

    

  SUPERVISORY COMMITTEE:  

    

  
 Dr. Kenneth Magel 

 

  Chair  

  
Dr. Rui Dai 

 

  
Dr. Sameer Abufardeh 

 

  
 Dr. Achintya Bezbaruah 

 

    

    

  Approved:  

   

 6/17/2014   Anne M. Denton   

 Date  Department Chair  

    

 



ABSTRACT

Maintaining object-oriented software is problematic and expensive. Earlier research

has revealed that complex relationships among object-oriented software entities are key

reasons that make maintenance costly. Therefore, measuring the strength of these relationships

has become a requirement to develop proficient techniques for software maintenance. Coupling,

a measure of the interdependence among software entities, is an important property for

which many software metrics have been defined. It is widely agreed that the level of

coupling in a software product has consequences for its maintenance.

In order to understand which aspects of coupling affect quality or other external

attributes of software, this dissertation introduces a new coupling metric for object-oriented

software that combines structural and semantic relationships among methods and classes.

The dissertation studies the usage of the new proposed coupling metric throughout change

impact analysis, predicting fault-prone and maintainable classes. Three empirical studies

were performed to evaluate the new coupling metric and established three results. Firstly,

the new coupling metric can be effectively used to specify other classes that might potentially

affected by a change to a given class. Secondly, a significant correlation between the new

coupling metric and faults has been found. Finally, it has been found that the new metric

shows a good promise in predicting maintainable classes. We expect that this new software

metric contributes to the improvement of the design of incremental change of software and

thus lead to increasing software quality and reducing software maintenance costs.
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CHAPTER 1. INTRODUCTION

Software is pervading every aspect of life. Software connects people throughout

the globe. Software performs mathematics when people shop at grocery stores. Software

wakes people up in the morning and makes their commute safer. Almost in every technol-

ogy, software probably plays some part in it.

In various ways, people lives have become dependent on software and the services

it controls. The more critical the service is the more important that the software keeps

running without problems. Faults need to be fixed as they happen, performance needs to

be monitored and improved if needed, new requirements might arise and thus require new

features. In other words, software needs to be maintained.

The software’s lifetime might span from days to years. The longer the software is

available, the more effort is needed for maintenance. For long-lived software, the mainte-

nance effort might even be greater than the effort of the initial implementation. Software

maintenance has the highest cost in a software life-cycle [3].

One of the substantial obstacles to software maintenance is the interconnection (cou-

pling) between software entities [102]. Coupling was described in [15] as “the measure of

the strength of association established by a connection from one module to another”. One

of the substantial principles of software engineering is coupling, which has a high impact on

object-oriented software maintenance. A good software design principle is to favor within-

class relationships (cohesion) over between-class relationships (coupling), resulting in the

often recurring axiom “low coupling/high cohesion”. Figure 1 shows an example of low

coupling and high cohesion classes. Strong coupling between software entities strengthens

the dependency of one entity on the others and grows the possibility that changes in one

entity may affect the other entities and have detrimental effects on software maintenance.

Preferably, software classes should show low coupling, since highly coupled classes

will be challenging to analyze, modify, or test individually. Understanding the coupling

1



class Report
{

public bool LoadFromFile(string fileName) { … }
public bool SaveToFile(string fileName) { … }

}

class Printer
{

public static int Print(Report report) { … }
}

class Example
{

static void Main()
{

Report myReport = new Report();
myReport.LoadFromFile("DailyReport.xml");
Printer.Print(myReport);

}
}

public final class Math
{

public static int abs(int i)
{

return (i < 0) ? -i : i;
}

public static long min(long a, long b)
{

return (a < b) ? a : b;
}
public static long max(long a, long b)
{
return (a > b) ? a : b;

}
.
.
.
.
.

Example of loose coupling. None of the methods 
depend on the others. The methods rely only on 
some of the parameters, which are passed to 
them. These methods can be reused in next 
projects

Example of high cohesion. System.Math class 
performs a single task: it provides mathematical 
calculations and constants. High cohesion 
indicates that the class solves only one problem.

Figure 1. Example of Loose Coupling and High Cohesion.

between entities is beneficial for a diversity of software development or maintenance activi-

ties, such as assessing software quality [20, 77], predicting fault-proneness [49], supporting

change impact analysis [26, 88, 46], change propagation [83], and clone management [45].

The coupling importance has encouraged researchers to capture different aspects of

software quality by defining different types of metrics. The majority of the coupling metrics

are structural, which statically analyze the source code to capture different relationships

between entities (e.g., classes), such as the number of calls between two entities, variable

accesses, or inheritance relationships. All these relationships are found in the source code.

In the last few years, several alternative coupling aspects have been proposed: dynamic

coupling, which takes into account program execution call relationships [8]; semantic

coupling, which harnesses relations captured from the source code lexicon [88]; and logical

coupling, which uses historical data to identify co-changing artifacts [44]. The motivation

behind these three coupling aspects (dynamic, semantic, and logical) is to capture useful

relationships between software entities that are not captured by structural coupling.

2



There have been attempts to combine specific structural metrics with particular se-

mantic metrics with weighting criteria for specific purposes. Bavota [13] combined three

metrics (Call-based Dependence between Methods (CDM) [13], Structural Similarity be-

tween Methods (SSM) [13], and Conceptual Similarity between Methods (CSM) [70])

with weighting criteria and hierarchical clustering in order to support software refactoring.

Bavota et al. [14] proposed an approach that examines the structural (Information-Flow-

based Coupling (ICP) [64]) and semantic (Conceptual Coupling Between Classes (CCBC)

[88]) coupling associations between the same package classes by finding chains of coupled

classes. They use these found chains to construct new packages with greater cohesion than

the existing packaging structure. These two studies chose specific coupling metrics and

employed empirically calculated weighting criteria to achieve a specific goal. The fact that

combining these relationships achieved better results conveys that they can complement

each other. In this dissertation, a new unified metric is proposed to combine both structural

and semantic relationships of methods and classes, which can be used for several purposes.

Structural and semantic relationships are complementary, as shown by previous studies

[36, 53, 86]. In addition, a recent study [15] found that structural and semantic couplings

match well with developers’ idea of coupling.

None of the previous work investigated the effect of combining both structural and

semantic coupling at method and class levels on different applications such as software

maintainability. In this dissertation, a combination of these two couplings is proposed to

complement each other and help in several software maintenance applications.

The remainder of the chapter is organized as follows: section 1.1 presents the mo-

tivation for this dissertation; section 1.2 presents the problem statement and objectives of

this dissertation; section 1.3 presents the contribution of this dissertation; and section 1.4

presents the organization of this dissertation.

3



1.1. Motivation

Researchers have studied and analyzed structural and semantic relationships between

software entities separately. Relationships between software entities can be seen as twofold:

unstructured and structured. Unstructured information means source code comments and

identifier names where structured information means source code dependencies. In this

dissertation, a new coupling metric is proposed that combines structural and semantic

coupling.

These two relationships were chosen for four reasons: both of them reside at the

static source code (no need for history of changes or execution traces), the orthogonality

between them (they measure completely different relationships), previous studies [36, 53,

86] showed that structural and semantic relationships are complementary, and a recent

study [15] which found that structural and semantic couplings match well with developers’

idea of coupling. The conjecture is that a combination of structural and semantic coupling

relationships would much better explain modules interactions. In particular, a new coupling

metric is proposed that finds jointed sets of intensely related methods in different classes

by analyzing the method calls and the semantic relatedness between methods.

None of the previous work investigated the effect of combining both structural and

semantic coupling on different applications such as impact analysis, fault-proneness, and

maintainability. In this dissertation, the new coupling metric is evaluated analytically and

statistically. In addition, an empirical evaluation is carried out to evaluate the effect of

applying this metric on different software maintenance applications.

1.2. Problem Statement and Objectives

Researchers have recognized that structural and semantic coupling metrics have their

limitations in predicting software external quality and maintenance [26, 25, 23, 49, 87, 47].

However, their weaknesses might be mitigated by combining them. Combining information

from several sources is a procedure called data fusion [61]. The core idea of data fusion

4



/* Insert a new user in the system.

* @param pUser: the user to insert.*/

public void insert(user pUser){

connect = DBConnection.getConnection();

String sql = "INSERT INTO USER"

+ "(login,first_name,last_name,password"

+ ",email,cell,id_parent) " + VALUES ("

+ pUser.getLogin() + ","

+ pUser.getFirstName() + ","

+ pUser.getLastName() + ","

+ pUser.getPassword() + ","

+ pUser.getEmail() + ","

+ pUser.getCell() + ","

+ pUser.getIdParent() + ")";

executeOperation(connect, sql);

}

Preprocessing 
comments and 

identifiers

Insert new user system pUser user insert 

insert user pUser connect Bconnection

Connection INSERT USER login first name last 

name password email cell id parent pUser

Login pUser FirstName pUser LastName pUser

Password pUser Email pUser Cell pUser

IdParent

Figure 2. Example of Semantic Information Derived from Identifiers and Comments.

is that to achieve better results, combine information from several sources. This principle

has been effectively utilized in different software engineering research areas [35, 109]. The

types of data that can be directly retrieved from source code are structural dependencies

and semantic information (identifiers and comments). Figure 2 shows an example of

semantic information derived from identifiers and comments. This work proposes a new

coupling metric that combines structural and semantic sources of information to support

better coupling comprehension.

In this dissertation, a preliminary step is taken to answer the research question “what

are possibly harmonious profits of combining structural and semantic information for soft-

ware maintenance applications?”. Although both these sources previously have been ex-

amined individually, their joint use has not been scientifically investigated. A new metric is

proposed that combines both structural and semantic coupling relationships. The hypoth-

esis is that combining both structural and semantic coupling is a good indicator of how

well the system is designed and which software element (i.e., classes and methods) is more

subject to errors.

The dissertation addresses the following research questions:

• RQ1: Is the new metric (Structural Semantic Coupling Metric (SSCM)) analytically

valid?

5



• RQ2: What are the statistical relationships between the new metric and other cou-

pling metrics?

• RQ3: Does SSCM provide better support for ranking classes during impact analysis

than other coupling metrics?

• RQ4: Does SSCM positively correlate with faults, and how much does SSCM con-

tribute to distinguishing faulty and not faulty classes?

• RQ5: Does SSCM positively correlate with class maintainability, and how much

does SSCM contribute to identifying maintainable classes?

1.3. Dissertation Contributions

The overall contribution of this dissertation is to combine structural and semantic

coupling relationships. This dissertation makes the following contributions:

• Propose a new coupling metric that combines structural and semantic coupling.

• Analytically and statistically evaluate the new coupling metric.

• Perform three different empirical studies to evaluate the new metric in the scope of

software maintenance. Specifically, change impact analysis, fault-proneness predic-

tion, and maintainability prediction.

Through the aforementioned contributions my research is expected to guide software

maintainers and fill gaps in knowledge of software metrics research: one being a better

understanding of the nature of coupling, and the other being insight into the relationship

between coupling and maintenance.

1.4. Dissertation Organization

The remainder of this dissertation is organized into six chapters. Chapter 2 starts by

introducing some areas that are related to the dissertation and then it discusses related work.

6



Chapter 3 introduces several coupling relationships and the new coupling metric proposed

in this dissertation. Chapter 4 statistically and analytically validates the newly proposed

coupling metric. Chapter 5 evaluates the new coupling metrics in three different software

maintenance applications. Finally, Chapter 6 presents concluding remarks (including the

analysis of the practical applicability of the derived metrics) and outlines some future

research directions.

1.5. List of Acronyms

• LSI: Latent Semantic Indexing

• CDM: Call-based Dependence between Methods

• SSM: Structural Similarity between Methods

• ICP: Information-Flow-based Coupling

• CCBC: Conceptual Coupling Between Classes

• LOC: Line of Code

• KLOC: Thousands of Lines of Code

• LCOM: Lack of Cohesion Of Methods

• VSM: Vector Space Model

• SVD: Singular Value Decomposition

• tf-idf: term frequency-inverse document frequency

• DIT: Depth of Inheritance Tree

• CBO: Coupling Between Object classes

• RFC: Response for a class
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• Ca: Afferent couplings

• Ce: Efferent couplings

• NPM: Number of Public Methods

• IC: Inheritance Coupling

• CBM: Coupling Between Methods

• CoCC: Conceptual Coupling of Classes

• RTC: Relational Topic-based Coupling

• LDA: Latent Dirichlet Allocation

• RTM: Relational Topic Models

• TFC: Textual Feature Coupling

• MPC: Method Pair Coupling

• HCMC: Hybrid Coupling between Method and a Class

• HCCC: Hybrid Coupling between two classes

• SSCM: Structural and Semantic Coupling Metric
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CHAPTER 2. BACKGROUND AND RELATED WORK

2.1. Background

This section describes the theoretical context for this dissertation. First, a background

on software metrics is provided. Second, a discussion about coupling in object oriented

software systems is given. Third, a brief overview of software dependencies is provided.

Fourth, Latent Semantic Indexing (LSI) is defined in more detail. Fifth, several applications

of product metrics in software maintenance are presented.

2.1.1. Software Metrics

To analyze the state of software metrics, its history needs to be discussed first. Even

though the first devoted software metrics book was published in 1977 [48], software metrics

history goes back to the 1960s when the lines of code metric (LOC) was used to measure

programming productivity and effort. LOC was being used as a measure of program size.

In 1971, Akiyama [4] published the first study attempting to employ metrics as software

quality predictors in which he used module defect density in terms of the module size

measured in KLOC.

In the mid-1970s, observable drawbacks of using LOC as a measure were recognized.

The demand for more accurate measures became compelling. A LOC is very different in an

assembly language compared to a high-level language. Hence, starting from the mid-1970s,

several attempts made to measure software complexity, such as [51, 73] and measures of

size, such as [5], which were expected to be programming language independent.

In this section, a survey of the taxonomy of software metrics is presented. There

are four categories of software metrics [1] (Figure 3). This classification is based on what

they measure and what area of software development they focus on. At a very high level,

software metrics can be classified as:

• Process metrics: They coincide with the software development process, encompass-

ing the standards, activities, and methods used. They leverage historical project

9



Software Metrics

Process Metrics Project Metrics Product Metrics Personnel Metrics

Figure 3. Categories of Software Metrics.

knowledge and asses the capability of the software engineering process. Examples of

process metrics are prior defects, prior commits, and metrics for measuring project

progress. For example, efficiency of fault detection.

• Project metrics: They indicate how the project is planned and executed. The intent of

these metrics is twofold: minimize development schedule and assess product quality.

Examples include number of developers, effort allocated per phase, and amount of

design reuse achieved by the project.

• Product metrics: They measure characteristics of the result of a software develop-

ment process. Product metrics are typically calculated from source code. Product

metrics refer to different features of the product such as design features, size, com-

plexity, and performance. They provide software engineers with a guide to analyze,

design, code, and test software more objectively. Examples include complexity of

the design, size of the source code, and usability of the produced documentation.

• Personnel metrics: Personnel metrics indicate the productivity and quality for each

of the project team members. Examples of personnel metrics are programming

experience, communication level, and work load. For example, ranking developers

based on their programming experience (low, moderate, high).

Product metrics can be categorized as internal and external attributes. Internal prod-

uct attributes measure the product itself. Internal attributes are concerned with size, com-
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plexity, coupling, and cohesion. External attributes are concerned with product quality,

such as usability, testability, reusability, and portability [42]. As external attributes are

directly observable only after the system has already been deployed and operational for

some time, the focus has been on relating internal attributes (software metrics) to their

external qualities. Table 1 presents several examples of internal and external attributes for

product metrics.

Table 1. Product Metrics Internal and External Attributes (Adapted from [43])

Product Attributes
Internal External

Specification size, reusability, modularity, redun-
dancy, functionality, correctness

comprehensibility, maintainability,
volatility

Design size, reuse, modularity, coupling,
cohesiveness, functionality

quality, complexity, maintainability

Code size, reuse, modularity, coupling,
functionality, algorithmic complex-
ity, control-flow, structuredness

reliability, usability, maintainability

In the following paragraphs, a description of product internal attributes is presented,

including size, complexity, coupling, and cohesion. To measure source code size counting

the number of lines of code (LOC) is the easiest way . However, this metric has its flaws.

For example, it is possible to write the same functionality with fewer (or more) lines of

code, while sustaining the same complexity. The LOC metric has been utilized for several

purposes, such as measuring size and assessing programming effort.

Complexity is a measure of how complex the source code is. Complexity has a

negative effect on modifiability and maintainability: lower is better. There are different

aspects of structural complexity, and each plays a different role. According to [43] structure

has two parts: control flow structure and data flow structure. Representative Examples of

complexity-based code-level metrics are Halstead Volume [51], a metric based on operator

and operand counts (data flow), and McCabe Complexity [73], a metric based on the

number of possible paths in the program control graph (control flow). McCabe’s cyclomatic

11



complexity and its variations capture different flavors of code complexity. Coupling also

can be seen from data flow and control flow perspectives. Control coupling is one module

controlling the flow of another whereas data coupling is when modules share data through,

for example, parameters.

Coupling was defined according to the IEEE standards [55] as ”a measure of the

interdependence among modules in a computer program”. Coupling exist between two

entities if one accesses or uses some elements of the other entitiy. The assumption is that

lower coupling is better. Examples of coupling metrics are CBO, RFC [28], Ca, Ce [72],

NPM [11], IC, CBM [100]. Since this dissertation is introducing a new coupling metric,

coupling is discussed in more details in section 2.1.2.

Cohesion is defined according to the IEEE standards [55] as ”(1) the manner and

degree to which the tasks performed by a single class module are related to one another

or (2) in software design, a measure of the strength of association of the elements within

a module”. Cohesion quantifies how strongly the responsibilities of a class are related.

The rationalization behind measuring cohesion is the belief that classes should emphasis

just one abstraction which will improve maintainability. Lack of Cohesion Of Methods

(LCOM), one of the most common cohesion metrics, implies that the class should be split

into two or more sub classes. Non-cohesive classes are difficult to reuse. Examples of

cohesion metrics are LCOM1, LCOM2 [28], LCOM3, LCOM4 [54], LCC, and TCC.

Product metrics have come to be important in a subset of software engineering dis-

ciplines, software quality and maintenance. They are used to estimate the effort and cost

of software projects and to measure software quality [42]. In software evolution, product

metrics are utilized for recognizing the stability of software system entities, along with

recognizing where refactorings can be or have been practiced, and identifying the variation

of quality in the evolving software systems structure. In reverse engineering, product

metrics are utilized for evaluating the complexity and quality of software products.
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No Coupling Loose Coupling High Coupling

Figure 4. Degrees of Coupling.

To support metrics usefulness in practical applications, it is necessary to empirically

validate them. Empirical studies frequently rely on data sets. Since open source software

projects are often developed by volunteers with no formalized development methods [49],

their process and resource data are often incomplete and unreliable. Consequently, to

conduct and validate the empirical work of open source projects, product metrics only

are exploited.

2.1.2. Coupling

Coupling is a principle in programming that indicates that a single entity is dependent

(or coupled) upon another entity. Coupling is described in [15] as “the measure of the

strength of association established by a connection from one module to another”. Coupling

is an important software internal quality attribute, with a great influence on object-oriented

software comprehension. Low coupling and high cohesion are considered as indicators

of a well-structured software system. Preferably, software entities should exercise low

coupling, since highly coupled entities will be difficult to examine, comprehend, alter, or

test individually (Figure 4). Studies have shown that coupling is related to the external

quality of a software system, fault-proneness [49], change propagation [83], and change

impact analysis [111].

Another definition of coupling was introduced by Wand and Weber: two entities are

coupled if and only if the change history of one entity depends on the change history of the

other [106]. Various situations may cause two software artifacts to have dependent change

histories, (e.g., one controls the functionality of the other; or one uses the data defined by
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the other; or one contains code cloned from the other). By definition, all these cases are

examples of coupling, although the causes are different.

Myers [74] refined the notion of coupling by classifying coupling into six different

levels. However, his definition of coupling was neither accurate nor prescriptive. Con-

stantine and Yourdon [113] detailed that software design modularity could be judged by

evaluating cohesion and coupling. They indicated that coupling reveals the interdependen-

cies between entities. Errors in one entity could propagate to the other coupled entity.

Fenton and Melton [41] proposed a theory of software measurement, which offers

a basis for specifying software complexity. They included the number of connections

between entities into the coupling measure. Traditionally, entity coupling was utilized as

an inexact measure of the complexity of software. Offutt and et. al. [75] extended previous

work to develop a universal software metric system to measure coupling automatically.

They introduced clear definitions of the coupling levels, which can be measured algorith-

mically, introduced the concept of direction into the coupling levels, and incorporated dif-

ferent types of non-local variables as found in newer programming languages. Chidamber

and Kemerer [28] defined six new source code metrics for object-oriented systems and

analytically evaluated these new metrics.

Subramanyam and Krishnan [98] argued that the amount of coupling between entities

is proportional to the challenge of changing, understanding, and correcting these entities.

Alternatively, a strong coupling between classes can increase the complexity of the software

system and hence may affect external quality such as reliability and maintainability [58].

Low coupling has been considered as an important characteristic of good software systems

because it allows individual modules in a system to be easily modified with relatively little

worry about affecting other modules in a system [22].

Several object-oriented coupling frameworks were proposed in the literature. The

following paragraphs summarize them. Eder et al. [37] defined three types of coupling
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public class Employee {

private String name; 
private String address;
private int SSN;
private Date birthDate;
private int age;
private Date hireDate;

private void computeAge ();

public float computeSalary ();

public void computeAge (){
age = today - birthDate
}

public float computeSalary () {
...
}

}

Interaction Coupling

computeSalary has to know the age of 
the employee in order to compute the 
salary.

public class Employee {

private String name; 
private Address address;
private int SSN;
private Date birthDate;
private int age;
private Date hireDate;

.
}

public class Address{
private String city;
private String state;

public String getCity()
{     return city;    }

public String getState()
{     return state;    }

}

Component Coupling

Address class is an attribute in the class 
Employee.

public class Person  {

private String name;
private int age;

public Person (String fname, int age)
{

this.name = fname;
this.age= age;

}
.
.
}
public class Employee extends Person{

private double baseSalary;

public Employee (Person p){
super(p.getName(), p.getAge());
this.baseSalary=1000.00;

}
.. 
}

Inheritance Coupling

Employee class is an ancestor of Person 
class

Figure 5. Eder et al. Structural Coupling Types.

namely interaction coupling, component coupling, and inheritance coupling. Figure 5

shows examples of these three coupling types.

1. Interaction coupling: Two methods are coupled, if (i) one method invokes the other,

or (ii) they communicate via the sharing of data.

2. Component coupling: Two classes c and d are coupled, if d is either (i) an attribute

of c, or (ii) an input or output parameter of a method of c, or (iii) a local variable

of a method of c, or (iv) an input or output parameter of a method invoked within a

method of c.

3. Inheritance coupling: two classes c and d are coupled, if one class is an ancestor of

the other.

Hitz and Montazeri [54] identified two levels of coupling, class level and object level.

The class level coupling refers to design-time static dependencies between classes. The

object level coupling refers to run-time dynamic dependencies between classes. Class level

coupling is important since changes in one class may affect other classes that use it.
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Briand et al. [22] attempted to unify coupling metrics for OO systems in a compre-

hensive framework. They defined coupling metrics by:

• Type of coupling: the mechanism that establishes coupling between two classes,

such as method invocation, attribute reference, type of attribute, type of parameters,

passing of pointer to method.

• Locus of impact: the method and attribute are used or use other classes or attributes

• Granularity: level of detail where information is collected, such as method, class,

module or system level.

• Counting direct or indirect connection

• Inheritance-based or non-inheritance based coupling

• Polymorphism based or non-polymorphism based coupling

Table 2 shows a comparisons between three different coupling frameworks as to what

constitutes coupling.

Table 2. Comparison of Coupling Mechanisms
Mechanism Eder et al. Hitz Briand et al.
Methods share data X
Methods reference attribute X
Method invokes method X X X
Class is type of a class’ attribute X X X
Class is type of a method’s parameter or return type X X X
Class is type of a method’s local variable X X
Class is ancestor of another class X X

Coupling, in general, can be classified, based on how it may be detected, into struc-

tural coupling, dynamic coupling [8], evolutionary/logical coupling [44], and semantic

coupling [87]. These different couplings model different types of dependencies within

a software system (Figure 6).
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Coupling

Structural Dynamic Evolutionary/Logical Semantic

Figure 6. Coupling Types.

• Structural coupling: The most commonly examined type of coupling is structural

coupling. It models static compile-time dependencies between source code entities

(i.e., method invocations or variable references). Since the compiler must be aware

of the dependencies, structural coupling is easy to detect.

• Dynamic coupling: It models run-time interactions between program components

observed during an execution of the program. In case of polymorphism or dynamic

dispatch, structural coupling analysis sometimes cannot determine which function

definition will be called in an object-oriented system. Dynamic profiling can deter-

mine these cases by observing which function bodies actually are invoked at run-time

[8].

• Evolutionary/logical coupling: Logical coupling is detected from the version control

system histories based on observed co-change relations [44]. The idea is that if

two artifacts are often changed together in change commits, then they are coupled

logically, even if there is no obvious static dependence.

• Semantic coupling: Semantic coupling is based on semantic information extracted

from the text within the software systems, such as in comments, identifiers, and

meta-data [87]. Semantic coupling measures the strength of the semantic similarity

of software artifacts through information retrieval techniques.

17



2.1.3. Software Dependencies

A basic definition of software dependency was introduced by Parnas [81] as a “uses”

relationship. A software entity A uses, or depends on, B when A requires the presence of

a correct version of B. Dependency is a connection between two items in which changes

to one item may cause changes to the other item. Two kinds of software dependencies

can be found in practice: static (compile time) dependencies; and dynamic (run time)

dependencies. Static dependencies capture the notion that one software module must be

present compile another. Dynamic dependencies, in contrast, are based on actual calling

patterns of the software during operation.

In OO programming, dependencies can be defined in terms of certain relationships

between software entities. These relationships can be classified into method call, class

access, or class inheritance. These relationships are described as follows:

1. Method call: a method call dependency that goes from Class1 to Class2 if there is

at least one method within Class1 that invokes at least one method of Class2.

2. Class access: a class access dependency that goes from Class1 to Class2 if Class2

is explicitly used in Class1 code (e.g., Class2 is used within Class1 as a type of an

instance and/or a class variable).

3. Class inheritance: a class inheritance dependency that exits Class1 and points to

Class2 if Class1 is a subclass of Class2.

2.1.4. Latent Semantic Indexing (LSI)

Latent Semantic Indexing (LSI) is a statistical corpus-based technique used to induce

and represent the natural language characteristics and meanings reflective in these natural

language characteristics usage [33, 71]. LSI is based on the vector space model (VSM)

[16], in which it produces real numbers to describe documents. Several studies showed

that LSI encapsulates significant parts of the whole passages meaning such as essays,
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Figure 7. LSI Steps.

paragraphs, and sentences. The LSI basic principle is that the similarity of meaning of

a set of words depends on the word context (where it appears). [88].

Usually, the word by context matrix is very large and sparse. LSI uses dimension

reduction to capture the essential semantic information using singular value decomposition

(SVD) [16]. SVD is a mechanism to reduce the dimensionality and determine patterns in

the relationships between the words and concepts used in the documents. Overall, SVD is

applied to the term-by-document matrix to construct an LSI subspace.

LSI offers a way to measure, in an unsupervised automatic way, the semantic sim-

ilarity between any two samples of text. Figure 7 shows the LSI steps. LSI does well in

the domain of source code because many informal concepts of the problem are embodied

in the names of variables that assigned by the programmers in source code implementation

[71]. LSI has been widely used for several software engineering applications such as

feature location [30, 92], traceability link recovery [56], software measurement [70, 88],

and detecting code clones [99].

The cosine between two documents vectors is usually utilized in text mining tasks

to measure the documents similarity. The main feature of LSI is its ability to excerpt the

semantic meaning of a text by establishing links between those terms that occur in similar

contexts.

The initial step is to build the corpus for the software system. The corpus consists

of a set of documents. In this dissertation, documents in the corpus are methods. These

documents include the text of each method including all the identifier names, comments,
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etc. The preprocessing steps are disregard language keywords, split identifiers, and remove

stop words [87]. The extracted source code is processed as follows:

1. Predefined tokens are removed (such as, numbers, operators, special symbols, Java

programming language keywords, etc.)

2. The identifier names in the source code are split based on known coding standards

while the original form of every identifier is kept too [69, 86]. For instance, these

identifiers are broken into the words “first” and “name”: “first name”, “first Name”,

“firstName”, etc.

3. Stop Words are words which do not contain important significance. Stop words are

words which are filtered out prior to processing text. Examples include a, an, about,

the, etc.

4. Each document in the corpus is created with the comments and identifiers corre-

sponding to each method in that software system.

Here is an LSI example from source code. Assume that there is three methods in the

source code that going to be represented in LSI.

Method A:

p u b l i c Employee ( S t r i n g name , d ou b l e s a l a r y )

{

t h i s . name= name ;

t h i s . s a l a r y = s a l a r y ;

}

Method B:

p u b l i c vo id i n c r e a s e S a l a r y ( d ou b l e amount )

{
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s a l a r y += amount ;

}

Method C:

p u b l i c s t a t i c vo id c r e a t e ( Employee emp )

{

emp = new Employee ( ) ;

}

Each method is going to be represented as a document. The preprocessing steps

include removing language keywords and stop words and splitting identifiers. The resulting

documents after preprocessing are:

• Method A: “employee name salary name name salary salary”.

• Method B: “increasesalary amount salary amount”.

• Method C: “create employee emp emp employee”.

The first step of LSI is to construct a term-document matrix inwhich each word is

represented by a row in the matrix and each document is represented as a column in the

matrix. A cell gives the number of times that word appears in that document. The term-

document matrix of this example would look like:
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

Word MethodA MethodB MethodC

employee 1 0 2

name 3 0 0

salary 3 1 0

increasesalary 0 1 0

amount 0 2 0

create 0 0 1

emp 0 0 2


After constructing the term-document matrix, the values of the matrix are weighted

using term frequency-inverse document frequency (tf-idf). tf-idf evaluates the importance

of a particular word to a given document. The weight is given as:

wd = fw,d × log(
M

fw,M

)

where fw,d equals the number of times the word (w) appears in a document (d), M is the

size of the corpus, and fw,M equals the number of documents in which w appears in M.

The term-document matrix after tf-idf weighting would look like:



0.176 0 0.352

1.431 0 0

0.528 0.176 0

0 0.477 0

0 0.945 0

0 0 0.477

0 0 0.945


The next step is to use singular value decomposition (SVD) to convert the term-
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document matrix to three matrices. M is an r × c matrix (r rows and c columns), and T, S,

and DT are the three new matrices.

M = T × S ×DT

where the columns of T are orthonormal eigenvectors ofM×MT , the the columns of

D are orthonormal eigenvectors of MT ×M , S is a diagonal matrix with non-negative and

decreasing order diagonal elements. The main diagonal elements of S are singular values

of M and are the square roots of the eigenvalues of MT ×M and M ×MT . T and D are

matrices whose columns are left and right singular vectors of M where each row in the D

matrix represents a document vector.



0.126 0.307 0.006

0.926 −0.064 −0.107

0.350 −0.034 0.123

0.024 −0.027 0.440

0.048 −.055 0.881

0.017 0.427 0.026

0.034 0.845 0.052



T


1.539 0 0

0 1.114 0

0 0 1.078

S


0.996 0.077 0.055

−0.050 −0.064 0.997

−0.08 0.995 0.060

DT
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
0.996 −0.050 −0.080

0.077 −0.064 0.995

0.055 0.997 0.060

D
Next, SVD reduces the high dimensional documents vectors to low dimensional

space by using the low rank approximation. The matrices, after reducing the dimensional-

ity, would look like:



0.126 0307

0.926 −0.064

0.350 −0.034

0.024 −0.027

0.048 −0.055

0.017 0.427

0.034 0.845



T2

1.539 0

0 1.114

S2


0.966 −0.050

0.077 −0.064

0.055 0.997

D2

After representing each document in a reduced form using SVD. The similarity

between two documents can be measured using the cosine between them. The cosine can

be computed as inner product between document vectors as follows:

CosineSimilarity(d1, d2) =
d1 × d2
|d1| ×|d2|
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CosineSimilarity(MA,MB) =
(0.996)(0.077) + (−0.050)(−0.064)√

(0.996)2 + (−0.050)2
√

(0.077)2 + (−0.064)2
= 0.8

CosineSimilarity(MA,MC) =
(0.996)(0.055) + (−0.050)(0.997)√

(0.996)2 + (−0.050)2
√
(0.055)2 + (0.997)2

= 0.005

CosineSimilarity(MB,MC) =
(0.077)(0.055) + (−0.064)(0.997)√

(0.077)2 + (−0.064)2
√
(0.055)2 + (0.997)2

= −0.6

These similarity results show that there is a similarity between methods (MAandMB).

However there is no similarity between methods (MAandMC) and (MBandMC).

2.1.5. Product Metrics in Software Maintenance

Product metrics have been widely used to identify parts of a system that need more

attention in maintenance [98, 110, 49]. The use of product metrics within object-oriented

systems has been an active area of software engineering research. Subramanyam and

Krishnan [98] introduced a short survey of research activity in this area. Several studies

attempted to characterize the systems under analysis and relate metrics to quality and

maintainability [110]. Product metrics can help the decision-making processes in the

software maintenance phase. Particularly, these metrics are simple, easy, and quick to

use while positively affecting software maintenance decision-making.

Software maintenance has the highest cost in a software life-cycle. Consequently, any

part of maintenance that can be automated will eventually lead to saving maintenance re-

sources. The use of product metrics in different software maintenance applications (change

impact analysis, fault-proneness, and maintainability) is presented next.

Software systems undertake regular changes throughout the software maintenance

phase. These changes may bring new functionality to the program, fix existing faults, or

adapt the system to changes in its environment. While these types of changes are benefi-

cial, they also introduce a risk that the changes have unintended impacts that may cause
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the software to behave in an undesirable way. These undesirable behaviors may include

injecting a new defect, breaking existing functionality, or decreasing the performance of

the application. Due to these risks, it is vital to comprehend the potential impact of a

software change as early as possible.

However, change impact is often difficult to trace. In practice, the most frequently

used technique for change impact analysis is code inspection. Developers may get some

support for this task from their development environment, but the majority of the task is

manual which makes the amount of time required to determine the overall impact of a

change large and error-prone [2].

An essential step when modifying or maintaining software is impact analysis [90],

which is a mechanism to estimate the work needed to implement a change [18], points to

software entities that would be changed [17], and aids in re-executing the right test cases

to ensure that the new changes were correctly implemented [79]. Change impact analysis

is essential for continually evolving systems to aid the implementation and evaluation of

changes.

Briand et al. [26] and Wilkie and Kitchenham [111] have used coupling metrics to

investigate object-oriented systems impact analysis. Wilkie and Kitchenham [111] found

that high Coupling Between Object Classes (CBO) classes are more likely to be impacted

by change ripple effects than low CBO classes. Briand et al. [26] examined utilizing

coupling metrics to identify classes expected to be changed during impact analysis. Their

experimentation showed that coupling metrics could be used to decrease the effort of

impact analysis. Contrariwise, the study exposed an abundant amount of ripple effects

that were not captured by highly structurally coupled classes. Poshyvanyk et al. [88]

investigated using semantic coupling metrics during change impact analysis. They found

that semantic coupling is a better predictor for classes impacted by changes compared to

structural coupling. Since their metric (CCBCm) outperformed other coupling metrics in
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Figure 8. Prediction Using Historical Faults.

impact analysis, this dissertation follows their approach by comparing the new metric with

their metric.

One possible area where an effort is beneficial to lower the maintenance costs is

identifying the source code parts that are most likely to encompass faults, and therefore

require changes. Software projects with available code and fault histories allow mapping

their faults back to individual entities. The metrics for each entity involved in the mapping

process then are computed. Relationships between metrics and faults are analyzed which

results in a prediction model that can then be used to estimate the fault probability of new

entities.

The general procedure behind fault prediction model development is depicted in

Figure 8. The first step involves collecting the fault history of modules and calculating

the software metrics from source code. The second step is mapping faults to modules

by specifying which of the modules has a history of containing faults. The third step is

building the predictive model to predict faulty modules in the next release.

Despite the fact that many fault prediction models have been suggested, still there is

a need to have dependable tools that can be generally applied to real systems. For projects

with fault histories, many research studies show that statistical models can deliver realistic

approximations for predicting faulty entities using software metrics. There are abundant
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research projects that built fault-proneness prediction models for object-oriented systems

[12, 25, 38, 114, 49].

Basili et al. [28] began to consider using the CK metrics as early predictors for fault-

prone classes [12]. They showed that CK metrics were statistically independent and can

predict class fault-proneness. Tang et al. [100] used logistic regression to evaluate the

performance of several product metric in predicting fault-proneness. Their results showed

that WMC and RFC were significant indicators of fault-prone classes, but CK metrics alone

were not satisfactory predictors of quality.

Briand et al. [25] conducted a case study on quality factors of object-oriented design.

They found that a number of metrics from the CK metrics suite [28] were statistically

associated with the fault-proneness of classes. El Emam et al. [38] used object-oriented

metrics to identify fault-prone classes using prediction models. To construct a prediction

model, they collected data from a commercial Java application. They stated that export

coupling and inheritance depth were the best metrics to identify faulty classes.

Yu et al. [114] used a client side of a big network management Java-based system

to examine the association between eight metrics and fault-proneness. They came to

the conclusion that except DIT all CK metrics [28] were sound predictors of fault-prone

classes. Gyimothy et al. [49] performed an empirical study that investigated eight object-

oriented metrics for fault prediction of Mozilla. They found strong statistically significant

correlations between most of the CK metrics [28] and fault-proneness.

Pai and Dugan [80] utilized several regression techniques. They have found that

WMC, CBO, RFC, and LOC metrics were very effective in predicting the fault-proneness

of classes.

Maintainability has come to be one of the foremost vital characteristics of software

quality. Software maintenance is the most expensive and resource-intensive task of soft-

ware development. Numerous research works showed that maintainability is not usually
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addressed in the requirements and design stages [27]. Several problematic aspects have

been shown as detrimental for software maintainability, such as lack of early thought of

appropriate modularity selections. Several research studies established that better internal-

quality classes (i.e., higher cohesion and lower coupling values) have better maintainability

[31, 32, 65, 66].

Classes that undergo extensive changes are less maintainable than those with fewer

modified LOC. Maintainability is an important external software attribute [42]. Low main-

tainability classes need to be documented very well to improve their understandability and

cautiously tested to reduce their bugginess. Additionally, before releasing the system, low

maintainability classes can be refactored to improve their maintainability. Refactoring

these classes early is preferable since software developers have more knowledge about

the software than maintenance developers have. Therefore, identifying classes with low

maintainability is of great interest to the software engineering community.

Another substantial obstacle to maintenance is the interconnection between software

entities [102]. Actually, there is an increasing empirical indication that the crucial charac-

teristics of software maintainability are usually in reverse proportional to the presence of

strongly coupled software entities [31, 32, 65, 66].

The most widely used maintainability dataset is the data collected by Li and Henry

[65]. Li and Henry used two medium-sized Ada systems to study quality metrics that

predict maintainability. Their results established a strong correlation between the quality

metrics and class maintainability. Zhou and Leung [116] utilized Multivariate Adaptive

Regression Splines (MARS) to predict the maintainability of object-oriented systems. They

compared MARS with multivariate linear regression, artificial neural networks, regression

trees, and support vector machines. Conversely, their technique does not outperform the

compared techniques. Li-jin et al. [66] used Projection Pursuit Regression (nonparametric

multivariate regression technique). Elish and Elish [39] used Tree Nets and showed that
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they also provide competitive results when compared with other models utilizing the data

collected by Li and Henry [65].

Dagpinar and Jahnke [31] predicted the maintainability of object-oriented classes

using object-oriented metrics. They concluded that import coupling and size metrics are

important maintainability predictors, whereas cohesion, inheritance, and export coupling

metrics are not. Al Dallal [32] empirically studied the association between OO measures

and the maintainability of classes. He used several statistical techniques to build models

based on the selected metrics to predict class maintainability. The results demonstrated that

classes with better internal qualities have better maintainability than those of worse internal

qualities.

This dissertation bases maintainability on the same basis proposed by Dagpinar and

Jahnke [31] and Li and Henry [65]. In addition, the results of the existing empirical

studies [52] concerning the association found between maintenance cost and effort and

the maintainability indicators are considered.

2.2. Related Work

Coupling measurement is an interesting and plentiful body of research work, which

contains several coupling measurement approaches: structural coupling metrics [19, 28,

64], semantic coupling metrics [87, 105, 47], dynamic coupling metrics [8], evolutionary

and logical coupling [44], information entropy coupling approach [6], coupling metrics

for specific types of software applications such as procedural systems [75], knowledge-

based systems [62], ontology-based systems [78] and aspect-oriented systems [115]. Since

the new metric captures both structural and semantic relationships of software entities, a

literature review is presented for both coupling metrics types.

2.2.1. Structural Coupling Metrics

Structural coupling metrics have received substantial consideration in the literature.

Chidamber and Kemerer [28] introduced a metric suite to capture both coupling and co-
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hesion in OO systems. They introduced the following coupling measures: Depth of In-

heritance Tree (DIT ), Coupling between objects (CBO) and response for a class (RFC).

The DIT metric offers for each class a measure of the levels of inheritance from the object

hierarchy top. For CBO, two classes are coupled when methods in one class use methods

or fields defined by the other class. RFC is defined as the number of methods that can be

potentially executed in response to a message received by an object of that class. In other

words, RFC counts the number of methods invoked by a class.

Afferent coupling (Ca) and efferent coupling (Ce), that use the term category, which

is a set of classes that achieve some common goal (i.e., package), were identified by Martin

[72]. Ca is the number of classes outside the category that depend upon classes within the

category, while Ce is the number of classes inside the category that depend upon classes

outside the categories.

Bansiya et al. [11] proposed Number of Public Methods (NPM ) which counts all

publicly defined methods in a class. Tang et al. [100] proposed Inheritance Coupling (IC)

and Coupling Between Methods (CBM ). IC counts the number of parent classes to which

a given class is coupled. If one of the classes inherited methods functionally dependent on

the redefined methods in another, it is considered coupled to its parent class. For the class

to be considered coupled one of several criteria should be satisfied: one of its inherited

methods uses an attribute that is defined in a new/redefined method; one of its inherited

methods calls a redefined method; or one of its inherited methods is called by a redefined

method and uses a parameter that is defined in the redefined method. CBM represents the

number of inherited redefined/new methods, which are coupled. The coupling exists when

at least one conditions is held.

2.2.2. Semantic Coupling Metrics

For the semantic relationships of software entities, Poshyvanyk and Marcus [87]

presented a new set of conceptual coupling metrics. They outlined a coupling metric for
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classes which utilizes source code textual information, CoCC (Conceptual Coupling of

Classes). Using open source C++ software systems, they showed that the semantic coupling

captured a new dimension of coupling not captured by structural metrics. Ujhazi et al. [105]

added an empirically derived threshold to distinguish between strong and weak conceptual

similarities and came up with a new semantic metric namely CCBO (Conceptual Coupling

between Object Classes). Another semantic class coupling metric was proposed by Gethers

and Poshyvanyk [47], the Relational Topic-based Coupling (RTC) metric. Their metric

uses a variant of Latent Dirichlet Allocation (LDA) called Relational Topic Models (RTM).

LDA is a generative model that allows sets of words to be explained by unobserved groups

that explain why some parts of the data are similar. RTM is an extension to LDA in which

the links are explicitly modeled between documents in the corpus. These embedded links

explains both the words of the documents and how they are connected. RTC utilizes these

links to describe the coupling between two classes in the corpus. The authors demonstrated

that the new metric is statistically different from existing metrics. Revelle et al. [91]

introduced Textual Feature Coupling (TFC) which quantifies the coupling between two

features relying on semantic information in source code using Latent Semantic Indexing

(LSI).
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CHAPTER 3. COMBINING STRUCTURAL AND SEMANTIC

COUPLING

In this chapter, a new coupling metric is introduced that measures the structural

and semantic relationships among methods and classes. It is noteworthy that previous

studies [87, 88] found no correlation between structural and semantic coupling metrics,

which indicates that they measure different coupling aspects. Orthogonality of coupling

metrics may present the opportunity for improved coupling measurement through com-

bining different measures. The combined metric allows the analysis of the relationship

from a structural perspective and a semantic perspective. The conjecture is that better

coupling comprehension is achieved through combining structural and semantic coupling

relationships.

Both structural (i.e., structured information) and semantic (i.e., unstructured informa-

tion) relationships can be extracted from the source code. Structured information refers to

structural relations between software entities. Examples of structured data include source

code parse trees, control flow, call graphs, and inheritance graphs. Unstructured informa-

tion denotes source code comments and identifier names that embody domain knowledge.

The unstructured portion of source code has been shown to help determine the high-level

functionality of the source code [63].

The remainder of this section delivers details on how structural and semantic in-

formation are extracted from software source code. The chapter is organized as follows:

section 3.1 presents the structural coupling relationships used in the new metric; section 3.2

presents the semantic coupling relationships used in the new metric; section 3.3 presents

the new combined coupling metric; section 3.4 presents a toy example of measuring the

new coupling metric; and section 3.5 presents the details of the tool implementation to

calculate this new metric.
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3.1. Structural Coupling Relationships

Structural coupling relationships comprise the set of all relationships among compi-

lation units present in the source code. These include calls from method to another, uses of

common variable, etc. Structural dependencies occur whenever a compilation unit depends

on another during compilation. Strictly speaking, A depends on B when the source code of

A makes an explicit reference to B. In such a case, in order to compile A to an executable

form, it is necessary to have access to B. For more detailed information about software

dependencies please refer to Section 2.1.3.

An important feature of structural coupling is the direction of the dependency. The

structural coupling between a software entity, such as a class or a method, and its surround-

ing environment (i.e., the other entities in the system) may be inbound or outbound [22].

The counting of inbound and outbound dependencies of a method represents the importance

of that method in the system (i.e., how much this method is coupled to the system). Method

invocations are hypothesized to be the most important type of coupling connections [22].

This dissertation concentrates on methods as the main unit for coupling. Methods

implement functionality in the source code. Methods that use other methods in the same

class in which the method is defined versus using methods defined in other classes require

different developer actions. This distinction is essential due to the increased amount of

effort required by a developer to use methods that are defined in a different class. In such

a situation, the developer must get hold of the public interface of the class that contains

the method, choose a message from the interface, and decide what available variables are

suitable arguments for the message [10]. Consequently, it is more difficult to use a method

defined outside the current class.

Since the method is the basis of the measurement, the following are considered

structural method coupling: inbound method dependencies (methods in other classes that

depend on this method), outbound method dependencies (methods in other classes that
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Figure 9. An Illustration of Structural Coupling.

this method depends on), and if these two method directly depend on each other. In the

case of method-pair coupling, the fact that these method-pair are directly coupled increases

their dependencies. The number of dependencies of a method represents how much this

method is coupled to other methods in the system. Two methods are directly coupled

(method-method interaction coupling) in two cases: they communicate via sharing of

data, or one method invokes the other. Figure 9 shows an illustration of structural cou-

pling (For example, methodA1() has four dependencies, methodB1() has one dependency,

methodC1() has one dependency, and there is a direct dependency between the method-pair

(methodA2(),methodC2()).

3.2. Semantic Coupling Relationships

Analyzing the unstructured information in the source code (that is, the comments and

identifiers) is based on the idea that the unstructured information reveals, to some extent,

the concepts of the problem domain of the software. This information adds a new layer

of source code semantic information and captures the domain semantics of the software

[68, 71, 70, 87].
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/* Insert a new user in the system.

* @param pUser: the user to insert.*/

public void insert(user pUser){

connect = DBConnection.getConnection();

String sql = "INSERT INTO USER"

+ 

"(login,first_name,last_name,password"

+ ",email,cell,id_parent) " + VALUES 

("

+ pUser.getLogin() + ","

+ pUser.getFirstName() + ","

+ pUser.getLastName() + ","

+ pUser.getPassword() + ","

+ pUser.getEmail() + ","

+ pUser.getCell() + ","

+ pUser.getIdParent() + ")";

executeOperation(connect, sql);

}

/* Delete a user in the system.

* @param pUser: the user to delete.*/

public void delete(user pUser){

connect = DBConnection.getConnection();

String sql = “DELETE FROM USER"

+ “WHERE id_user = "

+ pUser.getId();

executeOperation(connect, sql);

}
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Figure 10. An Illustration of Semantic Coupling.

Developers use identifiers and comments to embody elements of the solution domain

of the software. This type of information is used usually in supporting maintenance and

evolution [16], program comprehension [67], and coupling [87, 105]. The semantic rela-

tions between software entities may exist, as they possibly will contribute together to the

implementation of a domain concept. For example, if two methods use similar identifier

names and contain similar comments, they implement similar domain concept. The seman-

tic coupling between software entities can be captured by measuring the semantic similarity

between their textual contents (after preprocessing) [87, 105]. The preprocessing steps

are disregard language keywords, split identifiers, and remove stop words. The cosine

similarity measures the semantic information found in the identifiers and comments of

the software entity. The similarity of two documents is the cosine value between their

corresponding vectors that increases as more terms are shared [70, 87, 105].

To infer the semantic relations, Latent Semantic Indexing (LSI) is used. LSI detects

semantic relationships between words and concepts in textual information. LSI has been

widely used for several software engineering applications such as feature location [30, 92],

traceability link recovery [56], software measurement [70, 88], and detecting code clones
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[99]. This semantic similarity measures the semantic information shared between methods

of different classes. Two methods are semantically related if their (domain) semantics are

similar (i.e., they use similar vocabulary). If two methods have a high semantic similarity

and use similar terminology, they might implement similar concepts and consequently be

coupled [87, 105]. For more detailed information about LSI and cosine similarity, please

refer to Section 2.1.4. Figure 10 shows an illustration of semantic coupling.

3.3. Combined Coupling Metric

A representation for a software system is defined. S represents an object-oriented

system. S has a set of classes C = {c1, c2, · · · , cn}. The number of classes in the system

is n = |C|. A class has a set of methods. For each class c ∈ C,M(c) = {m1,m2, · · · ,mt}

are the methods in c, where t = |M(c)| is the number of methods in a class c. The set of

all methods in the system S is denoted by M(S).

MPC(mi,mj |ck, cl) =
(MD(mi,mj))(1 +DEP (mi,mj))(1 + COS(vmi, vmj))

AV G
(1)

DEP (mi,mj) =

 1 if mi depends on mj or mj depends on mi

0 otherwise
(2)

AV G =

|M(ck)|∑
t=1

|M(cl)|∑
s=1

(MD(mkt,mls))(1 +DEP (mkt,mls))(1 + COS(vmkt, vmls))

|M(ck)| ∗ |M(cl)|
(3)

mi is a method ∈ class k (ck), and mj is a method ∈ class l (cl). mi,mj is the

method pair. MD represents the number of dependencies of a method. A dependency
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is a relationship between two methods where one uses the services provided by the other

(e.g., method mi calls method mj). vmi is the LSI representation of the textual content of

method mi as explained in Chapter 2.

Basically, Method Pair Coupling (MPC) consists of four different components. The

four components are justified as follows:

• The first component is (MD(mi,mj)). MD represents the number of dependencies

of the two studied methods. This components emphasizes the importance of these

methods (how much these methods are coupled to the rest of the system).

• The second component is (1 + DEP (mi,mj)). The DEP value is either 0 or 1. If

there is a direct dependency between the two methods, then DEP is 1, 0 otherwise.

The rational of this component is to strengthen the coupling value between the two

methods if they have a direct dependency between them.

• The third component is (1 + COS(vmi, vmj)). COS(vmi, vmj) represents the

cosine similarity of the two methods represented in LSI. Usually, the cosine value

is between -1 and 1. However, In this dissertation, any negative cosine value is

replaced by zero. Since the cosine value now ranges between 0 and 1, adding one

to that value is for the purpose of increasing the measure in case of having strong

semantic similarity (i.e., multiplying by a value less than 1 decreases the value). The

cosine similarity here serves as an incorporation of the semantic relations.

• To normalize the measure, AV G is used to normalize the measure at the hybrid

method pair coupling (average of all method pairs in the two subjected classes).

Dividing by the average is an example of rescaling the data, which is usually done

to data that do not depend on measurement units. This rescaling operation is called

normalizing the data to the mean, which makes it possible to be efficiently compared

against other values.
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Coupling is a quantity of dependencies between a software entity and the rest of the

system [22]. Coupling is a ratio scale because any coupling reduction is given in ratios

and there is a natural zero level of coupling when modules are not related to each other

[1]. Zuse in his framework for software measurement [117], mentions that if we have two

measures on the ratio scale and they are logically independent (do not correlate), then the

hybrid measure by multiplication can be used as a ratio scale measure. Since MPC is a

ratio scale measure, multiplication and division are valid operations [1].

MPC combines several coupling relationships between methods in different classes,

where each measure reflects a different type of relationship between methods. The con-

tributions of each measurement components are combined into a unique value reflecting

the overall structural and semantic similarity of both methods. Then this combination is

normalized to the mean, making it possible to be efficiently compared against other values.

The product of structural and semantic represents all possible combinations of both

of them. As these combinations increase, so too, should the coupling. A product is the

result of multiplying different terms. For instance, 15 is the product of 3 and 5. The

numbers 3 and 5 are surely independent since the number 3 does not depend on the number

5. However, the result of the multiplication depends on both numbers. In this kind of

combination, the values of the hybrid measures double if the value of the single measure is

doubled. This denotes that they are logically independent, which means the measurement

value of the first measure should not be changed by changing the second measure value

[117]. The concept of a product describes how to combine two objects of some kind to

create an object, possibly of a different kind.

MPC calculates the number of dependencies of the method pair in different classes

(MD). The value will increase if there is a direct dependency between the method pair

(DEP ). The value also increases if there is a strong cosine similarity of the methods’

representations (COS(vmi, vmj)) since large cosine values indicate more similar methods.
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After calculating the method-pair coupling, the next step is to calculate the method-

to-class, then class-to-class, and finally class-level coupling [87, 105, 91]. Hybrid Coupling

between method and a class (HCMC) is the average of the measure between method mi

and all the methods from class cj .

HCMC(mi, cj) =

t∑
q=1

MPC(mi,mjq)

t
(4)

where t is the number of methods in cj .

The coupling between two classes is defined ci ∈ S and cj ∈ S as:

HCCC(ci, cj) =

t∑
l=1

HCMC(mil, cj)

t
(5)

where t is the number of methods in ci. Hybrid Coupling between two classes (HCCC)

is the average coupling measure between all unordered pairs of methods from class ci

and class cj . This equation assures symmetrical coupling between the two classes as

HCCC(ci, cj) = HCCC(cj, ci).

To measure the hybrid coupling at the class level, a coupling metric is defined that

estimates the coupling of a class in an object-oriented software system (SSCM). The class

coupling measures the degree to which the methods of a class are coupled to the methods

of other classes in the system.

SSCM(ci) =

n∑
k=1

HCCC(ci, ck)

n− 1
(6)

where n is the number of classes.
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3.4. A Toy Example of Measuring the New Coupling Metric

To demonstrate how SSCM is calculated, let us consider three classes: C1 = {m1,m2} ,

C2 = {m3,m4,m5} and C3 = {m6,m7,m8}. In order to compute the new coupling

metric, three inputs should be provided: (1) structural method dependencies, (2) direct

dependencies between methods, and (3) the cosine similarities between methods.

The method dependencies of these three classes are shown in Table 3. These de-

pendencies represent the number of method dependencies from or to this method. Table 3

shows the direct dependencies between methods. Two methods are directly coupled in two

cases: they communicate via sharing of data, or one method invokes the other. 1 means

there is a direct dependency and 0 means there is not. The cosine similarities between these

methods are outlined in Table 5.

Table 3. Toy Example: Method Dependencies
Method # dependencies
m1 2
m2 3
m3 2
m4 2
m5 4
m6 2
m7 1
m8 1

Table 4. Toy Example: Direct Dependencies Between Methods
m1 m2 m3 m4 m5 m6 m7 m8

m1 0 0 0 0 0 0 0
m2 1 1 0 0 0 0
m3 0 0 0 0 1
m4 0 0 0 0
m5 0 1 0
m6 0 0
m7 0
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Table 5. Toy Example: The Cosine Similarities Between Methods
m1 m2 m3 m4 m5 m6 m7 m8

m1 1 0.5 0.4 0.25 0.11 0 0.41 0.65
m2 0.5 1 0.58 0.24 0.27 0.43 0.39 0.44
m3 0.4 0.58 1 0.45 0.39 0.56 0.66 0.21
m4 0.25 0.24 0.45 1 0.34 0.47 0.23 0.18
m5 0.11 0.27 0.39 0.34 1 0.05 0.03 0.5
m6 0 0.43 0.56 0.47 0.05 1 0.23 0.43
m7 0.41 0.39 0.66 0.23 0.03 0.23 1 0.54
m8 0.65 0.44 0.21 0.18 0.5 0.43 0.54 1

Since all the inputs are available now, computing the metric is possible. First, method-

pair coupling is computed (MPS) between different classes. Table 6 shows the MPC

numerator values for method-pairs in classes C1andC2. To calculate the AVG value for

normalization, AVG equals the average of all method pairs between these two classes:

(5.6+5+6.66+15.8+12.4+8.89) / 6 = 9.05, AVG = 9.05.

Table 6. Toy Example: MPC numerator values for method-pairs in C1 and C2

m1 m2 m3 m4 m5

m1 7.5 5.6 5 6.66
m2 15.8 12.4 8.89
m3 5.8 8.34
m3 8.04

To illustrate more how MPC is calculated, three examples are shown. To mea-

sure the hybrid coupling between m1 and m3: MPC(m1,m3) = (4)*(1+0)*(1+0.4) / 9.05.

MPC(m1,m3) = 5.6 / 9.05. MPC(m1,m3) = 0.62. The hybrid coupling between m1 and

m4: MPC(m1,m4) = (4)*(1+0)*(1+0.25) / 9.05. MPC(m1,m4) = 5 / 9.05. MPC(m1,m4)

= 0.55. The hybrid coupling between m1 and m5: MPC(m1,m5) = (6)*(1+0)*(1+0.11) /

9.05. MPC(m1,m5) = 6.66 / 9.05. MPC(m1,m5) = 0.74. These examples shows that how

having different semantic similarities affects the method-pair coupling value (0.4 cosine

similarity is more than 0.25 which resulted in MPC(m1,m3) = 0.62 and MPC(m1,m4) =

0.55.
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An example of measuring a hybrid coupling with a direct dependency, the hybrid

coupling between m2 and m3: MPC(m2,m3) = (5)*(1+1)*(1+0.58) / 9.05. MPC(m2,m3)

= 15.8 / 9.05. MPC(m2,m3) = 1.75.

Next, hybrid coupling between method and a class (HCMC) is computed. For exam-

ple, measuring the hybrid coupling between method m1 and class C2: HCMC(m1, C2) =

MPC(m1,m3) + MPC(m1,m4) + MPC(m1,m5) / number of methods(C2). HCMC(m1, C2)

= 0.62 + 0.55 + 0.74 / 3. HCMC(m1, C2) = 0.64.

After that, the hybrid coupling between two classes (C1 andC2) is computed: HCCC(C1, C2)

= HCMC(m1, C2) + HCMC(m2, C2) / number of methods(C1). HCCC(C1, C2) = 1.36.

Finally, the hybrid coupling of a class (SSCM) is computed. The hybrid coupling of

classes (C1 and C2) is computed as: SSCM(C1) = 0.64 and SSCM(C2) = 1.27.

3.5. Tool Implementation

A tool has been developed that calculates the new metrics and the CoCC metric au-

tomatically (Figure 11). The tool extracts the structural and semantic connections between

methods. The tool was developed using the R language version 2.15.11.

1http://www.r-project.org/
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Starting from the source code, the static analyzer (DependencyFinder [101]) extracts

the compile-time dependences. These compile-time dependencies are stored in an XML

file. A Java-based parser was developed to extract the textual contents of the methods in a

system. Each method in the systems in represented as a document.

The corpus builder component builds the corpus and preprocesses the text. The

preprocessing steps include disregard language keywords, split identifiers, and remove stop

words. The LSI component creates the LSI subspace of these methods using the ’lsa’

package2. It also calculates the cosine similarity between each method pair in the system.

The coupling component reads the structural relationships from the XML file pro-

duced by the static analyzer and the semantic relationships from the LSI component. It

also calculates the the new metrics based on the aforementioned equations and the CoCC

metric.

2http://cran.r-project.org/web/packages/lsa/index.html
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CHAPTER 4. ASSESSMENT OF THE NEW METRIC

This chapter provides statistical and analytical evaluation of the new coupling met-

ric to study its validity [59]. Statistical validation tests whether what is being measured

exhibits expected statistical relationships with other measures. Analytical validation inves-

tigates if the new metric satisfies necessary properties of the measured attribute. Consistent

with this general validation approach, SSCM is then examined from both statistical and

analytical standpoints. An empirical evaluation of the new metric is detailed in Chapter 5.

The chapter is organized as follows: section 4.1 presents the statistical evaluation of

the new metric; and section 4.2 presents the analytical evaluation of the new metric.

4.1. Statistical Evaluation

This section investigates whether the new proposed coupling metric measures some-

thing different than the other coupling metrics.

4.1.1. Coupling Metrics

To investigate the statistical relationships between the new metric and existing cou-

pling metrics, several existing coupling metrics are selected for evaluation: DIT, CBO,

RFC [28], Ca, Ce [72], NPM [11], IC, CBM [100], and CoCC [87] (Table 7). The

metrics come from several metrics suites. These coupling metrics are widely used and

cover several aspects of coupling: inheritance, interaction, component, and semantic. A

detailed description of the selected coupling metrics is given as follows:

Depth of inheritance tree of a class (DIT): The metric measures the length of the

longest path of inheritance structure finishing at the current class. DIT measures how many

antecedent classes can possibly affect this class. The deeper the inheritance tree for a class,

the more difficult it might be to predict its behavior.

Coupling between objects (CBO): The metric measures the number of other classes

that are coupled to the current class. The coupling can happen through field accesses,

inheritance, arguments, method calls, return types, and exceptions.
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Table 7. Coupling Metrics
Abbri. Metric Reference

DIT Depth of Inheritance Tree [28]
CBO Coupling between object classes [28]
RFC Response for a class [28]
Ca Afferent couplings [72]
Ce Efferent couplings [72]

NPM Number of Public Methods [11]
IC Inheritance Coupling [100]

CBM Coupling Between Methods [100]
CoCC Conceptual Coupling of Classes [87]

Response for a class (RFC): The metric measures the number of methods that can

possibly be executed in response to a message received by an object of that class. Because

it includes methods called from outside the class, it is also a measure of the potential

communication between the class and other classes.

Afferent Couplings (Ca): The metric measures the number of classes from other

packages depending on classes in the analyzed package. This is related to the packages

responsibility. Ca is the number of other packages depending on one package. A high

number indicates bad design, or that the package is used for crosscutting concerns.

Efferent Couplings (Ce): The metric measures the number of packages the classes of

the analyzed package depend upon. This relates to the packages independence.

Number of Public Methods (NPM): The metric counts all the publicly defined meth-

ods in a class. A high NPM value indicates two different bad smells in the design of a

software. First, a signal for a complex class that has too many responsibilities. Second,

a signal for a highly coupled class with other parts of the software, because every public

method may expose the internally used classes.

Inheritance Coupling (IC): The metric measures the number of parent classes to

which a given class is coupled. A class is coupled to its parent class if one of its inherited

methods is functionally dependent on the new or redefined methods. A class is coupled to
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its parent class in one of the following ways: if one its inherited methods uses a variable

(or data member) that is defined in a new/redefined method; if one of its inherited methods

calls a redefined method and uses the return value of the redefined method; if one of its

inherited methods is called by a redefined method and uses a parameter that is defined in

the redefined method; or if one of its inherited methods uses a variable and the value of

that variable depends on the value of another variable, which is defined in a new/redefined

method. The underlying assumption of the IC metric is that when a data member, which is

used by an inherited method, changed by a new or redefined method, it is might introduce

new faults into the inherited method.

Coupling Between Methods (CBM): The metric measures the total number of new/re-

defined methods to which all the inherited methods are coupled. An inherited method

is coupled to a new/redefined method if it is functionally dependent on a new/redefined

method in the class. Therefore, the number of new/redefined methods to which an inherited

method is coupled can be measured. The assumption behind the CBM metric is that IC is

too limited since it only measures the number of parent classes to which a given class

is coupled, without the CBM, additional function dependency complexity at the methods

level is not considered.

Conceptual Coupling of Classes (CoCC): It represents the semantic information ob-

tained from the source code, embodied in comments and identifiers. It measures the textual

similarity between classes through measuring the similarity between the textual contents of

their methods.

4.1.2. Subject Software Systems

The subject systems are limited to open source software systems developed using

Java. To select the systems, four selection criteria have been used. First, the selected

systems had to be well-known systems that are used very widely. Second, the systems

had to be sizable, so the systems can be realistic and have multiple developers. Third, the
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systems had to be actively maintained. Finally, the data of these systems had to be publicly

available. Furthermore, the faults of all these systems have been collected and are publicly

available at the PROMISE repository3. Six various-sized systems have been chosen from

different domains. Characteristics of the selected software systems are listed in Table 8.

Table 8. Selected Software Systems
System Ver Packages Classes Methods KLOC Source

POI 3.0 16 386 6302 129.33 http://poi.apache.org/
Synapse 1.2 29 219 1875 53.5 http://synapse.apache.org/
Lucene 2.4 13 283 4211 102.86 http://lucene.apache.org/

Ivy 2.0 28 351 2806 87.77 http://ant.apache.org/ivy/
Log4j 1.2 22 156 1679 83.19 http://logging.apache.org/log4j/
Xerces 1.4.4 19 588 5896 141.18 http://xerces.apache.org/

4.1.3. Measurement Results

The structural coupling metrics values were downloaded from the PROMISE reposi-

tory whereas CoCC and the new metric were computed using our own tool. Table 9 shows

descriptive statistics about the coupling metrics.

Table 9. Descriptive Statistics for the Coupling Metrics
Measures Min Max Med σ

DIT 1 7 2 1.07
CBO 0 214 7 14.11
RFC 1 390 22 34.01
Ca 0 212 2 11.92
Ce 0 133 4 7.74

NPM 0 142 6 11.01
IC 0 4 0 0.68

CBM 0 21 0 2.59
CoCC 0 0.94 0.28 0.08
SCM 0 9.79 0.97 0.45

SSCM 0 19.54 0.75 0.91

To understand the relationships between software metrics, their correlation coef-

ficient (the strength of relationship among their counterparts) can be measured. Table

3https://code.google.com/p/promisedata/
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Table 10. Pearson Rank Correlations Between Coupling Metrics
DIT CBO RFC Ca Ce NPM IC CBM CoCC

DIT
CBO -0.16
RFC -0.11 0.51
Ca -0.14 0.86 0.18
Ce -0.14 0.56 0.70 0.10

NPM -0.03 0.34 0.69 0.22 0.31
IC 0.47 -0.04 0.06 -0.03 -0.05 0.10

CBM 0.40 -0.05 0.14 -0.05 0.00 0.21 0.73
CoCC -0.15 0.05 0.02 0.00 0.10 -0.09 -0.12 -0.13
SSCM -0.04 0.01 0.01 -0.01 0.03 0.02 -0.01 -0.02 -0.02

10 shows the Pearson rank correlations between coupling metrics. Correlations greater

than 0.65 are highlighted since they indicate strong correlation. Table 10 shows that the

new coupling metric (SSCM) does not correlate with any of the coupling metrics, which

indicates that it measures something that is not measured by the other coupling metric.

The Table also shows that the following coupling metrics are strongly correlated with each

other:

• Ca strongly correlates with CBO. This strong correlation can be explained since both

of them count inbound coupling.

• Ce strongly correlates with RFC. This strong correlation can be explained since both

of them capture outbound coupling.

• NPM strongly correlates with RFC. This strong correlation can be explained since

both of them capture the number of accessible methods.

• CBM strongly correlates with IC. This strong correlation can be explained since a

class is coupled to its parent class (in case of IC) if one of its inherited methods

is functionally dependent on the new or redefined methods, while CBM is the total

number of new/redefined methods.
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4.1.4. Cluster Analysis

Cluster analysis (CA) is a multivariate technique, with the aim of grouping objects

into groups in such a way that the degree of association between two objects is maximal

if they belong to the same group and minimal otherwise [103]. CA is one of the main

techniques for statistical data analysis.

The coupling metric data of six open source projects is high-dimensional data with

many data vectors. CA is used here to group similar coupling metrics. In particular,

hierarchical clustering with p-values via multi-scale bootstrap re-sampling [96] is used to

group similar coupling metrics. The coupling metric data of six open source projects is

high-dimensional data with many data vectors. CA is used here to group similar coupling

metrics. In particular, hierarchical clustering with p-values via multi-scale bootstrap re-

sampling [96] is used to group similar coupling metrics. The distance used is correlation

and the cluster method is average. This type of hierarchical clustering computes a bootstrap

probability (BP) and an approximately unbiased (AU) p-value for each cluster. These p-

values indicate how strong a clustering is supported by the data. The distance used in the

clustering is correlation and the clustering method is average. The implementation of this

clustering technique is available in the ’pvclust’ package4. The goal here is to see whether

the new coupling metric (SSCM) is grouped with any one of the other coupling metrics.

The assumption is that the new coupling metric is a combination of structural and semantic

relationships, which will lead to grouping it in a separate cluster.

Figure 12 shows the resulting clusters of the coupling data. The left side shows DIT,

IC, and CBM in one cluster. These coupling metrics have inheritance relationships. The

right side shows CBO, Ca, NPM, RFC, and Ce. These coupling metrics represent inter-

action coupling (inbound/outbound) The center side shows SSCM in one cluster, which

indicates that it measures a different kind of coupling than other coupling metrics.

4http://cran.r-project.org/web/packages/pvclust/
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Figure 12. Cluster Dendrogram of the Coupling Data.

RFC and Ce were grouped together since both of them capture outbound coupling.

Ca and CBO were grouped together since both of them count inbound coupling. IC and

CBM were grouped together since a class is coupled to its parent class (in case of IC) if

one of its inherited methods are functionally dependent on the new or redefined methods.

SSCM was grouped as a separate group which indicates that SSCM is different (measure

something different) than the other coupling metrics. The fact that CoCC is grouped by

itself in a different cluster is consistent with previous studies [87, 105].

4.2. Analytical Evaluation

Many existing software metrics are criticized from two standpoints, theoretically

and empirically. Several researchers pointed that most software metrics were developed

with no or little theoretical basis [24, 40, 85]. Furthermore, even though some metrics are

theoretically valid, they lack empirical evaluation [7, 21, 40].

There are several frameworks for the analytical evaluation of metrics. Some of

them are mainly subjective, while others rely on either axiomatic or measurement theory

foundations. The widely known frameworks are: property-based [24], distance-based [85],
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and Schneidewind’s metrics validation methodology [95]. According to Kitchenham et al.

[60] property-based approaches can be used as a mechanism to reject proposed metrics, but

they are not satisfactory to prove the validity of the metric. Unlike mathematical axioms,

these axioms serve only as a filter to reject things which are self-evidently not coupling

measures.

Briand et al. property-based framework [24] was preferred since it is generic, com-

prehensive and based on measurement theory. Their framework is important because

it explains the fundamental criteria that must be fulfilled by the various metrics. The

framework has been utilized before to validate several metrics [84, 93, 87, 29]. It precisely

specifies the mathematical properties that characterize coupling. The properties are (1)

Nonnegativity; (2) Null Value; (3) Monotonicity; (4) Merging of Modules; and (5) Disjoint

Module Additivity [24]. The objective of this evaluation is to determine whether the new

coupling metric (SSCM) complies with the coupling properties proposed by Briand et. al

[24].

The coupling properties are defined for a modular software system:

• S is a system with a tuple < E,R >, where E has elements and R ⊆ E × E are

relationships between the elements of E.

• MS is a modular system with a triple < E,R,M >, where < E,R > is a system

and M is a collection of modules that partitions E.

• A system m = < Em,Rm > is a module of MS if and only if Em ⊆ E and Rm ⊆ R.

• The modules of M are disjoint, i.e., for modules m1 = < Em1, Rm1 > and m2 =

< Em2, Rm2 > of MS it must hold thatEm1∩Em2 = ∅ (and henceRm1∩Rm2 =

∅).

• The inter-modular relationships that a module m = < Em, Rm > of MS is involved

in are captured in the sets InputR(m) and OutputR(m):

52



InputR(m) = < e1, e2 >∈ R | e2 ∈ Em and e1 ∈ E − Em;

OutputR(m) = < e1, e2 >∈ R | e1 ∈ Em and e2 ∈ E − Em.

OuterR(m) denotes either InputR(m) or OutputR(m) and is used to reflect the per-

spective (inbound/outbound) of the coupling measure.

• All intra-modular relationships in MS is IR = U Rm.

• All inter-modular relationships in MS is R IR.

The coupling of a [module m = < Em, Rm > of a modular system MS|modular

system MS] is a function [Coupling(m)|Coupling(MS)] characterized by the following

properties:

• Property 1: Nonnegativity:

Given a module m = < Em, Rm > of a modular system MS = < E,R,M >

[Coupling(m) ≥ 0|Coupling(MS) ≥ 0]

This property states that the coupling of a software entity should not be a negative

value. The equation of the new metric ensures that there is no negative value for any

of the systems classes. The new metrics can equal zero or some positive value. It

will never be negative under any conditions.

• Property 2: Null Value:

Given a module m = < Em, Rm > of a modular system MS = < E,R,M >. When

OuterR(m) is empty, the coupling of m is null. When R IR is empty (i.e., no inter-

modular relationships), the coupling of MS is null.

[OuterR(m) = ∅⇒ Coupling(m) = 0 | R - IR = ∅⇒ Coupling(MS) = 0]

This property states that if an entity has no elements, then its coupling value should

be zero. In other words, the coupling of a class with no external relationship is null.
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If one of the classes has no elements or there is no relationship between two classes,

then the coupling is zero between these classes. The equation of the new metric

ensures that there is no null value for any of the systems classes. In case of having

no relationships between two classes, the coupling value will be zero.

• Property 3: Monotonicity:

Let MS ′ =< E,R′,M ′ > and MS ′′ =< E,R′′,M ′′ > be two modular systems

(with the same set of elements E) such that there exist two modules m′ ∈ M ′ and

m′′ ∈ M ′′ such that R′ − OuterR(m′) = R′′ − OuterR(m′′), andOuterR(m′) ⊆

OuterR(m′′). Then

[Coupling(m′) ≤ Coupling(m′′) | Coupling(MS ′) ≤ Coupling(MS ′′)]

This property states that adding inter-class relationships does not decrease coupling.

If an extra relationship is added between a pair of classes whose inter-class cou-

pling is to be measured, then the coupling between the classes must not decrease.

The SSCM coupling cannot be decreased by adding more relationships between

two classes. Since SSCM captures structural and semantic relationships, any added

relationships between these two classes will be reflected in the measurement value.

• Property 4: Merging of classes:

Let MS ′ =< E,R,M ′ > and MS ′′ =< E,R,M ′′ > be two modular systems (with

the same underlying system < E,R >) such that M ′′ = M ′ − m′
1,m

′
2 ∪ m′′, with

m′
1 ∈ M ′,m′

2 ∈ M ′,m′′ /∈ M ′ and Em′′ = Em′1 ∪ Em′2 and Rm′′ = Rm′1 ∪ Rm′2∪

{ < e1, e2 >∈ R | (e1 ∈ Em′1 and e2 ∈ Em′2) or (e1 ∈ Em′2 and e2 ∈ Em′1)}.

Then, [Coupling(m′
1) + Coupling(m′

2) ≥ Coupling(m′′) | Coupling(MS) ≥

Coupling(MS ′′)]

This property states that coupling of an entity should be no less than the sum of the

couplings of any two of its modules with no relationships in common. Merging two
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classes together will result in a reduced amount of coupling (or remain the same in

the worst case), but it will not increase. When connected classes are merged, the

cosine similarity remains the same because the repositioning of the methods inside

other classes will not affect the semantic relatedness of these methods with methods

of other classes. In addition, the dependencies of these methods will be the same.

• Property 5: Disjoint class additivity:

Let MS ′ =< E,R,M ′ > andMS ′′ =< E,R,M ′′ > be two modular systems (with

the same underlying system < E,R >) such that M ′′ = M ′ − m′
1,m

′
2 ∪ m′′, with

m′
1 ∈ M ′,m′

2 ∈ M ′,m′′ /∈ M ′ and m′′ = m′
1 ∪ m′

2. Then, [Coupling(m′
1) +

Coupling(m′
2) = Coupling(m′′) | Coupling(MS) = Coupling(MS ′′)]

This property states that the coupling value obtained by merging two unrelated classes

is equal to the sum of the couplings of the two original classes. When two or

more classes having no relationships between them are merged, coupling cannot

increase since the structural dependencies and semantic relatedness of methods of

the unconnected classes will be the same no matter where they are placed.
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CHAPTER 5. EMPIRICALLY EVALUATING THE NEW METRIC

This chapter empirically investigates the usefulness of the new coupling metric in

different applications. The purpose of the investigation is to determine the practicality of

the new coupling metric specifically regarding software maintenance. Three investigations

have been executed of the proposed metric, each targeting a different aspect of software

maintenance: change impact analysis, predicting faulty classes, and predicting maintain-

able classes. In the view of the investigation results, a robust conclusion can be derived

about the practicality of the new coupling metric.

An important part of the research design is data triangulation [112], combining infor-

mation from various evaluations. The benefit of this approach is that by validating various

sources of verification, any conclusions are presumably to be more valid. Triangulation

tests the uniformity of results obtained from different experiments thereby mitigating some

of the threats influencing the results. This study uses triangulation of methods (using

multiple methods to assess the same information in the context of software maintenance).

The chapter is organized in seven sections: section 5.1 presents the research ques-

tions; section 5.2 describes the evaluation methods used in the study; sections 5.3, 5.4,

and 5.5 present the study of using the new coupling metric in change impact analysis,

for predicting faulty classes, for predicting maintainable classes respectively; section 5.6

presents a discussion about the results of the empirical study, and section 5.7 discusses the

threat to validity of the study.

5.1. Research Questions

The following research questions are addressed within the context of empirically

evaluating the new coupling metric in different applications:

• RQ3: Does SSCM provide better support for ranking classes during impact analysis

than other coupling metrics?
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• RQ4: Does SSCM positively correlate with faults, and how much does SSCM con-

tribute to distinguishing faulty from not faulty classes?

• RQ5: Does SSCM positively correlate with class maintainability, and how much

does SSCM contribute to identifying maintainable classes?

5.2. Evaluation Methods

This section describes the evaluation methods used in this empirical study.

5.2.1. Accuracy Measures

In this study, impact analysis methods are evaluated using precision and recall. Pre-

cision represents the classes proportion recommended by a metric that are truly changed

together with the given class according to bug reports. Recall represents the classes pro-

portion that are changed together with the given class and are successfully retrieved using

the coupling metrics. These measures are calculated from the approximated impact-set

resulting from a technique and the actual impact-set from the actual implemented change-

sets. To evaluate the performance of coupling metrics in impact analysis, available bug data

are used to compute the precision and recall.

5.2.2. Correlation Analysis

Correlation analysis studies the degree to which changes in the value of an attribute

(one of the coupling metrics) are associated with changes in another attribute (such as

number of faults in a class). The Spearman correlation is preferred instead of Pearson

correlation because the former ignores any assumptions about the data distribution [34].

5.2.3. Feature Ranking

Hall and Holmes [50] categorized feature selection algorithms as algorithms that

evaluate individual attributes and algorithms that evaluate a subset of attributes. The first

category of feature selection algorithms identifies which metric is able to serve as dis-

criminatory attribute for indicating an external quality. Feature selection algorithms help

in ranking and finding the most important metrics for building more robust prediction
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models. In this study, since the comparison is between the new metric and existing metrics,

evaluating individual attributes is chosen to see which of the coupling metrics is important

in distinguishing between faulty and not faulty classes.

This study uses a feature ranking algorithm that evaluates individual attributes, Reli-

efF. For the evaluation of the performance of coupling metrics in identifying faulty classes

and maintainable classes, ReliefF is used. Based on three different studies on feature

selection techniques [9, 107, 108], ReliefF was the best feature selection method in fault-

proneness models. ReliefF attribute selection [50] assesses the importance of an attribute

by continually sampling an instance and considering the value of the given attribute for the

nearby instance of the same and different class. The next simple example illustrates how

ReliefF method works.

Here is an example to illustrate the intuition behind ReliefF. Relief algorithm is fast,

easy to understand and accurate even with noisy data. The algorithm is based on a simple

principle, putting objects with similar properties in a class. Some of these features are very

important in the classification task and others are less important. The next simple example

illustrates how Relief separates boats from cars.

Consider having many boats and cars, which have some well-known features in

common, you can travel with them, they have an engine, a steering wheel etc. You can

say that not every boat has an engine; some are sailing boats and hence rely on their sail for

energy. However, if you ask a child what separates boats from cars, they probably say that

cars have wheels and boats have not, or boats float on water and cars do not. Therefore,

these are important features. This is basically what Relief does, if we pick a car, it looks

for a car most similar to the one we have picked and also for a boat most similar to the car

we have picked. After doing that, it looks at the features in which they differ, because these

are important features for separating boats from cars.
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5.3. Impact Analysis

Impact analysis involves detecting source code entities impacted by a change to a

given source code entity. The coupling metrics are able to aid in ordering (ranking) classes,

based on dependencies between classes, captured by the coupling metrics [26]. For more

information about impact analysis please refer to Chapter 2.

5.3.1. Data Collection

A history of changes observed in the selected systems is used to determine whether

the proposed coupling metric can find classes with common changes. The history data has

been collected for previous versions of each project.

Each selected software project has its own bug tracking system (BTS). These BTSs

have been utilized to collect the bugs and associate each bug with specific classes. After

collecting the data, the data were sieved to remove bug reports that contained only one

modified class. The details of the collected data are shown in Table 11.

Table 11. Details of the Collected History Changes for the Selected Projects
Project Studied Ver. Dates # of Bugs Source

POI 2.5-3.0 Feb 29, 2004-July 05,2007 621 https://issues.apache.org/bugzilla/

Synapse 1.0-1.1.1 Jun 08, 2007-Nov 18, 2010 632 https://issues.apache.org/jira/browse/SYNAPSE

Lucene 1.9-2.3.2 Feb 27, 2006-Oct 08, 2008 775 https://issues.apache.org/jira/browse/LUCENE

Ivy 2.0.0-2.0.0-rc2 Apr 26, 2007-Jan 20, 2009 489 https://issues.apache.org/jira/browse/IVY

Log4j 1.0-1.1.3 Aug 01, 2001-May 01,2002 824 https://issues.apache.org/bugzilla/

Xerces 1.2.0-1.4.3 Aug 28, 2000-Nov 15, 2001 356 https://issues.apache.org/bugzilla/

5.3.2. Empirical Comparison

Most structural coupling metrics are defined at the system level, which means they

consider all dependencies for a given class c to the remainder of the classes in the system.

For impact analysis, coupling metrics must be altered to consider coupling between pairs

of classes only. IC, Ca, and Ce were redefined to account for class-pairs only by following

the technique used in previous studies [26, 88]. IC investigates the inheritance relationship;

two classes c1 and c2 are considered coupled if c1 inherits from c2. Ca investigates inbound
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coupling; two classes c1 and c2 are considered coupled if c1 depends on c2. Ce investigates

outbound coupling; two classes c1 and c2 are considered coupled if c2 depends on c1.

To answer the third research question (RQ3), the SSCM metric is compared with

the IC, Ca, Ce, CoCC, and CCBCm metrics to assess which produces better support for

impact analysis. IC, Ca, and Ce were chosen from the structural metrics as representatives

since they were previously redefined to consider class-pairs [26]. CoCC and CCBCm (the

maximum conceptual coupling between two classes) were chosen because a previous study

[88] showed that CCBCm was the best among nine structural metrics to provide support

for impact analysis. SSCM should encapsulate two aspects of coupling among classes

compared to IC, Ca, Ce, CoCC, and CCBCm which utilize only structural or semantic

information.

Different approaches can be utilized to find the number of candidate classes during

impact analysis. The commonly used approach is to select a cut-off point inwhich a top n

classes are selected from the list. For each coupling metric, the cut-off point is varied from

5, 10, and 15 classes. Average precision (P) and recall (R) for each class are computed for

every metric.

The changes history can then be utilized to evaluate coupling measures in their

performance in ranking of classes against actual changes in the software system. The

following steps summarize the evaluation methodology:

• For a given software project, a set of bug reports is mined from the BTS. The set of

modified classes to fix each bug is identified.

• For each class, pair-wise (class-to-class) coupling metrics are computed. Each metric

values are utilized to computer ranks the remaining classes in the system. Each

coupling metric ranks classes differently based on their coupling values to that class.
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• Using a particular cut-off point, select the top n classes in each ranked list of results

produced by every metric. For every class used in the evaluation, based on a specific

coupling metric ranking, the effectiveness of identifying relevant classes is evalu-

ated. Each coupling metric produces a different ranking of the coupling between the

studied classes.

• To evaluate each coupling metric, the ranked lists of classes are compared to classes

that were truly changed. Average precision (P) and recall (R) for each class are

computed for every metric.

The results in Tables 12, 13, and 14 show that SSCM is the best indicator among the

coupling metrics studied in change proneness. SSCM can be adequately utilized to order

classes during impact analysis in object-oriented systems. The proposed metric performed

better than the these studied metrics.

Table 12. Precision (P) and recall (R) for impact analysis based on 5 cut points
IC Ca Ce SSCM CoCC CCBCm

P R P R P R P R P R P R
POI 0.07 0.06 0.06 0.05 0.08 0.07 0.26 0.12 0.11 0.01 0.18 0.9

Synapse 0.03 0.04 0.03 0.04 0.05 0.04 0.2 0.17 0.01 0.01 0.15 0.12
Lucene 0.04 0.03 0.05 0.06 0.06 0.03 0.12 0.11 0.02 0.01 0.8 0.7

Ivy 0.06 0.05 0.07 0.07 0.06 0.05 0.22 0.15 0.04 0.03 0.9 0.7
Log4j 0.06 0.05 0.07 0.08 0.09 0.07 0.185 0.11 0.143 0.02 0.155 0.08
Xerces 0.08 0.06 0.06 0.05 0.07 0.05 0.17 0.13 0.03 0.02 0.9 0.8

Table 13. Precision (P) and recall (R) for impact analysis based on 10 cut points
IC Ca Ce SSCM CoCC CCBCm

P R P R P R P R P R P R
POI 0.06 0.07 0.05 0.05 0.07 0.08 0.22 0.14 0.12 0.02 0.17 0.1

Synapse 0.03 0.04 0.03 0.05 0.05 0.05 0.12 0.19 0.008 0.02 0.098 0.14
Lucene 0.03 0.04 0.04 0.06 0.05 0.04 0.1 0.12 0.011 0.01 0.07 0.08

Ivy 0.05 0.06 0.06 0.07 0.05 0.06 0.18 0.18 0.04 0.04 0.8 0.8
Log4j 0.05 0.05 0.06 0.07 0.08 0.08 0.2 0.15 0.151 0.04 0.17 0.12
Xerces 0.07 0.06 0.05 0.06 0.06 0.06 0.15 0.15 0.03 0.03 0.8 0.9

The Kruskal-Wallis test [97] is a nonparametric alternative to the one-way analysis

of variance (ANOVA), which can be used when more than three independent samples are
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Table 14. Precision (P) and recall (R) for impact analysis based on 15 cut points
IC Ca Ce SSCM CoCC CCBCm

P R P R P R P R P R P R
POI 0.05 0.08 0.04 0.06 0.06 0.08 0.19 0.15 0.133 0.04 0.16 0.13

Synapse 0.02 0.05 0.03 0.05 0.04 0.06 0.08 0.19 0.006 0.09 0.06 0.12
Lucene 0.02 0.04 0.03 0.07 0.04 0.06 0.06 0.12 0.01 0.03 0.04 0.1

Ivy 0.04 0.07 0.05 0.06 0.04 0.07 0.14 0.22 0.04 0.05 0.7 0.8
Log4j 0.04 0.06 0.05 0.08 0.07 0.08 0.19 0.17 0.148 0.05 0.16 0.11
Xerces 0.06 0.07 0.05 0.07 0.05 0.07 0.12 0.18 0.03 0.04 0.7 0.11

Table 15. The results of two Kruskal-Wallis tests for precision and recall
Test 1 precision Test 2 recall

chi-squared 58.9 82.6
degree of freedom 5 5

p-value < 0.001 < 0.001

present. The Kruskal-Wallis’s test fits this case because it has four independent samples

of precision and recall values for each coupling metric. The Kruskal-Wallis’s test was

executed individually for precision and recall values (see Table 15). In both tests, the p-

value is very small, which indicates that the difference between the coupling metric values

is statistically significant.

5.4. Fault-Proneness

Class fault-proneness can be defined as the number of faults detected in a class.

Software metrics are used as independent variables and fault-proneness is the dependent

variable. Several existing studies showed that coupling metrics can be used as good in-

dicators for the fault proneness of classes in OO systems [38, 49, 89]. This study aims

to investigate how much SSCM contributes to predicting fault-prone classes (RQ4). The

underlying conjecture is that combining structural and semantic coupling (SSCM) should

be a better indicator of coupling; hence, it is a better indicator of fault proneness.

5.4.1. Data Collection

The defect data for this study were collected by [57] and are available online at the

PROMISE repository. For that study, the defects were collected using the BugInfo tool,

from the selected software systems source code repositories. BugInfo analyzes the logs
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of the code repositories and according to the log content decides if a commit is a bug-fix

or not. These data were widely used to construct fault-proneness predictive models in the

literature [82, 94, 104, 76].

5.4.2. Correlation Study

To examine the relationship between the new coupling metric and fault-proneness, an

empirical study is performed with the conjecture that there is a strong correlation between

structurally and semantically coupled classes and defects. The goal of this study is to

demonstrate that with an increase in coupling metrics values there is a statistically signif-

icant increase in defects. Table 16 shows the Spearman rank correlation values between

coupling metrics and the number of faults for each software project. With a median of

0.42, RFC shows the highest correlation of all metrics for each project. CBO and SSCM

have the second strongest correlation with a median of 0.325. Table 16 shows that there is

a moderate correlation between SSCM and defects.

Table 16. Spearman Correlation Between Coupling Metrics and Number of Faults
Project DIT CBO RFC Ca Ce NPM IC CBM CoCC SSCM

POI 0.07 0.44 0.44 0.24 0.41 0.28 0.16 0.23 0.07 0.38
Synapse -0.05 0.3 0.45 0.29 0.25 0.23 0.08 0.09 -0.02 0.34
Lucene 0.18 0.41 0.45 0.18 0.39 0.4 0.28 0.26 0.09 0.36

Ivy -0.07 0.34 0.4 0.05 0.15 0.29 -0.03 -0.02 0.06 0.31
Log4j 0.25 0.31 0.2 0.18 0.2 0.32 0.3 0.35 0.07 0.28
Xerces 0.12 0.23 0.32 0.14 0.25 0.34 0.18 0.17 0.03 0.26
Median 0.035 0.325 0.42 0.18 0.25 0.305 0.17 0.2 0.065 0.325

5.4.3. Feature Ranking Study

Software quality prediction channels the quality assurance effort towards the most

error-prone entities. Software quality prediction models use software metrics; however, not

all metrics (features) contribute the same to predicting the class attribute. Hence, choosing

a small set of metrics that are more applicable to arriving at the class attribute is a critical

step.
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Through removing redundant attributes metrics, the fault prediction model will even-

tually improve. Furthermore, software practitioners prefer to work with smaller feature

subsets, since they can only collect the most important metrics in future efforts. Hence,

feature selection is an important component in data mining and may considerably impact

the mining results.

The classification model is investigated using ReliefF and the results are presented in

Table 17. ReliefF was the most robust feature ranking algorithm in fault-proneness models

[9, 107, 108]. For each metric, the top two discriminant metrics are highlighted in bold in

the table. The table lists the coupling metric along with their ReliefF values. The higher the

value, the more importance the coupling measure has when identifying fault-prone classes.

These are known as the relevant features. It has been shown that SSCM contributes to

the classification in all selected systems, which indicates that it is useful in distinguishing

between faulty and not faulty classes.

Table 17. Ranking of Coupling Metrics Based on ReliefF for Fault-proneness
System DIT CBO RFC Ca Ce NPM IC CBM CoCC SSCM

POI 0.004 0.007 0.016 0.001 0.007 0.019 0 0.032 0.005 0.03
Synapse 0.05 0.01 0.02 0.006 0.007 0.006 0 0.003 0.007 0.04
Lucene 0.01 0.02 0.01 0.009 0.01 0.009 0.027 0.007 0 0.05

Ivy 0.13 0.03 0.08 0.01 0.03 0.03 0.06 0.03 0.008 0.07
Xerces 0.2 0.05 0.13 0.03 0.05 0.03 0.05 0.09 0.02 0.08

5.5. Software Maintainability

Maintainability is “the ease with which a software component can be modified”

[55]. There have been noteworthy research studies about software attributes that make

software easier to maintain. These attributes include internal documentation, modularity,

structured coding techniques, and code readability. A maintainability model facilitates de-

velopment teams in predicting maintainability of a software system and helps in managing

and planning the maintenance resources. The prediction model can also help in reducing

the maintenance effort and consequently, reducing the overall project cost.
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The extent of resources spent on software maintenance is much more than what is

being spent on its development. Consequently, producing easy to maintain software might

reduce costs and efforts. The problem of predicting software maintainability is widely

acknowledged in the industry and several research studies showed how maintainability can

be predicted using various processes and tools at the time of designing with the help of

software design metrics [65, 31, 116, 66, 39, 32]. Studies have been conducted and found

a strong link between Object Oriented software metrics and maintainability.

This case study aims to investigate if the proposed metric can enhance the perfor-

mance of maintenance predictive models (RQ5). The case study shows that the proposed

metric provides additional information not sufficiently provided by the related existing

coupling metrics.

5.5.1. Data Collection

The class maintenance measure is considered as the quantity of LOC modified through-

out the targeted maintenance history. Single line deletion, addition, or modification as a

measure for maintainability was proposed by Li and Henry [65]. The number of revised

LOC correlates with both maintenance effort measured in units of time [52], and mainte-

nance cost [32]. Another reason to select revised LOCs as a measure is the fact that they

are available in the reported software systems maintenance histories.

The publicly available revision repositories of the selected software systems have

been used to collect the maintenance data for classes. The changes are introduced for

several reasons such as fixing faults or mandatory evolutions. For each class, the version

control systems of the selected projects provide the modified code for that alteration and

differentiates between current and previous class versions, which includes added, changed,

and deleted lines of code. For each revision, the history records all class revisions, revision

ID, date, description, and revised pieces of code. The details of the collected data are shown

in Table 11.
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5.5.2. Correlation Study

Hypothetically, a meaningful correlation between the defined coupling metric and

maintainability can be found. The Spearman rank correlation is used to analyze the corre-

lation of coupling metrics with source code revisions (LOC).

Table 18. Spearman Correlation Between Coupling Metrics and Changed LOC
Project DIT CBO RFC Ca Ce NPM IC CBM CoCC SSCM

POI 0.52 0.65 0.69 0.32 0.12 0.33 0.08 0.1 0.01 0.72
Synapse 0.50 0.60 0.65 0.44 0.13 0.41 0.07 0.09 0.03 0.68
Lucene -0.19 0.47 0.20 0.22 0.08 0.30 0.04 0.05 0.01 0.66

Ivy -0.21 0.61 0.12 0.34 0.15 0.28 0.02 0.06 0.04 0.55
Log4j 0.28 0.60 0.45 0.36 0.14 0.12 0.02 0.03 0.01 0.58
Xerces 0.35 0.61 0.60 0.41 0.18 0.44 0.09 0.12 0.06 0.65
Median 0.315 0.61 0.525 0.35 0.13 0.315 0.055 0.075 0.02 0.66

Table 18 shows the Spearman rank correlation between coupling measures and changed

LOC. With a median of 0.66, SSCM shows the highest correlation of all metrics for each

project. CBO has the second strongest correlation with a median of 0.61. It still has a

substantial correlation; on average, however, it is lower than SSCM. RFC comes third

with a median correlation of 0.525. DIT, NPM, and Ca show a weak correlation with a

median less than 0.36. Table 18 shows that there is a strong correlation between SSCM and

modified LOC.

5.5.3. Feature Ranking Study

Software maintainability prediction is very helpful in focusing on refactoring and

redesigning software entities that have large cost of maintenance. Software maintainability

prediction models use software metrics; however, not all metrics (features) contribute the

same to the class attribute (e.g., maintainable/or not). Ranking metrics that are more

applicable to arriving at the class attribute is an important step in building the predictive

model.

This case study labels classes based on their revision history (how many lines of

code have been changed). To partition the maintainable classes into three different levels,
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normalization is used. Normalization is the process of scaling individual samples to have

unit norm. Three distinct class labels are assigned: low, medium, and high. Classes with

relatively high numbers of revised LOC are considered as classes that have the propriety of

having costly maintenance or low maintainability [52].

The next hypothesis is that the proposed coupling metric can serve as a discriminatory

feature for indicating maintainability. The correlation study shows which of the coupling

metrics has a significant relationship with maintainability. This study is interested in

highlighting those metrics that are most helpful in increasing the certainty involved in

predicting maintainability. The purpose of the ReliefF algorithm is to show how much

a coupling metric help in reducing uncertainty about perceived values of maintainability.

Table 19 shows the ReliefF scores of all coupling metrics. For each metric, the top

two discriminant metrics are highlighted in bold in the table. Table 19 shows that SSCM

and RFC are the best predictors of the maintainability of classes. These features provide

the highest scores regarding the values of the attribute.

Table 19. Ranking of Coupling Metrics Based on ReliefF for Maintainability
System DIT CBO RFC Ca Ce NPM IC CBM CoCC SSCM

POI 0.06 0.03 0.10 0 0.05 0.06 0.04 0.03 0 0.11
Synapse 0.05 0.02 0.09 0 0.04 0.02 0.03 0.04 0 0.10
Lucene 0.03 0.04 0.08 0 0.04 0.05 0.03 0.02 0 0.07

Ivy 0.04 0.05 0.10 0.01 0.04 0.07 0.05 0.04 0.02 0.12
Log4j 0.04 0.03 0.06 0 0.09 0.07 0.02 0.03 0 0.06
Xerces 0.02 0.03 0.09 0 0.04 0.01 0.04 0.05 0 0.10

5.6. Discussion

The new coupling metric was investigated in three different applications of software

maintenance. The results of using SSCM in impact analysis showed that SSCM is the

best indicator among the studied coupling metrics of classes change-proneness in object-

oriented systems. This shows that SSCM can be effectively utilized during impact analysis

to rank relevant classes. The new metric performed better than any of the studied metrics.
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The second application is identifying faulty modules. The Spearman rank correlation

showed that there is a moderate correlation between SSCM and defects. The feature

ranking study showed that SSCM contributes to the classification in all selected systems,

which indicates that it is useful in distinguishing between faulty and not faulty classes.

The third application is identifying maintainable classes. The Spearman rank cor-

relation showed that there is a strong correlation between SSCM and modified LOC. The

feature ranking study showed that SSCM and RFC are the best predictors of the main-

tainability of classes. These metrics provide the highest scores regarding the values of the

attribute. To sum, SSCM demonstrated considerable practicality in three-pronged software

maintenance applications.

5.7. Threats to Validity

This section discusses the main threats to the validity of this empirical study. Al-

though only six Java open-source systems were considered in this study, the proposed

metric has been shown to capture new dimensions in coupling measurement. With the aim

of generalizing the results, an exhaustive evaluation is necessary that considers different

domains systems, developed in different programming languages. In the comparison of

coupling metrics, several structural metrics and one semantic metric were considered.

The impact analysis case study relies on the mined changed classes from bug reports

patches. This might have affected the evaluation as these patches may contain inadequate

information about actually changed classes. This threat is mitigated by bearing in mind

only officially approved patches by module owner.

Like other change impact analysis approaches, no recommendation is given regarding

selecting an optimal threshold. It is conceivable that the set of thresholds considered in

this dissertation excludes the threshold that provides optimal performance. In addition,

figuring out the best threshold is dependent on the specific software system. In the empirical

comparison, different thresholds were considered to mitigate this threat.
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A threat that is inherited from the data sets concerns the bug assignment. Like other

mining software repositories approaches, faults can possibly be mapped to missing or

wrong entities if entities undergo a change in signature. Likewise, automatic repository

mining methods do not usually provide a complete representation of bug’s history. On

the other hand, because the data sets have been used and verified by other researchers

[82, 94, 104], this threat is minimized.

In the fault-proneness case study, a correlation between the new coupling metric

and faults is observed that may suggest that the new coupling metric can be a very good

predictor of faults. However, correlation reflects goodness of fit not predictive power. In

order to assess the strength of predictive power, feature ranking is performed.

In the class maintainability case study, the collected maintenance data significantly

depends on the considered history of the systems. The probabilities for a class to be

modified is correlated with the system age because usually faults are identified over time.

Nonetheless, one of the criteria for choosing systems is the fact that the selected systems

must have been actively maintained. The maintenance data that were collected for the six

selected systems from the Control Version System (CVS) systems with the assumption

that all maintenance revisions histories were recorded in the CVS. Despite the fact that

different lines of code could slow the maintenance differently, the modified lines of code

were considered similarly since it is infeasible to measure the maintenance effort for each

modified line of code.
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CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.1. Conclusions

The motivation of this dissertation is to support software maintenance by introducing

a new coupling metric. The conjecture is that a combination of structural and semantic

coupling relationships would much better explain the interaction of modules. In particular,

a new coupling metric is proposed that finds jointed sets of intensely related methods

in different classes by analyzing the method calls and the semantic relatedness between

methods.

A new coupling metric has been introduced that captures structural and semantic

information, which contributes to the area of software measurement. The new metric has

been statistically and analytically validated. Through the three-pronged evaluation, the

proposed metric outperformed other coupling metrics in impact analysis. Additionally, the

proposed metric is a good predictor of fault-proneness. Finally, the proposed metric shows

promise in predicting maintainable classes.

This dissertation makes the following contributions:

• Propose a new coupling metric that combines structural and semantic coupling.

• Statistically, analytically and empirically evaluate the new coupling metric.

• Perform three empirical studies to evaluate the new metric in the scope of software

maintenance. More specifically, empirically evaluating the new metric in change

impact analysis, fault-proneness prediction, and class maintainability prediction.

• The new coupling metric outperformed other coupling metrics in impact analysis.

• The new coupling metric moderately to strongly correlates with faults.

• The new coupling metric moderately to strongly correlates with maintainability.
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In sum, this dissertation has introduced a new coupling metric to aid developers

performing software maintenance. The new metric has been shown to be effective and

beneficial and one day it could be largely embraced by maintainers and developers.

6.2. Future Work

Eventhough the work presented in this dissertation shows promising results for the

new coupling metric, there is still a chance for advancement in future work. There are a

number of opportunities for forthcoming efforts regarding the new coupling metric. The

definition of the metric can be enhanced to utilize a finer grained approach than methods.

In one of the cases studies, a statistically correlation between the new coupling metric

and faults has been observed. Since correlation reflects goodness of fit not predictive

power, feature ranking study was performed. Other future work involves calculating the

new metric for other types of software systems to judge its generalizability.

Other avenues for future work is using the method pair coupling to prioritize test

cases. Test case prioritization techniques order test cases for execution in an attempt to

increase their effectiveness. Various goals are possible; one involves rate of fault detection.

Improving the fault detection rate in the course of testing can accelerate feedback and

enable software engineers to start correcting faults earlier. The test cases of strongly

coupled methods (based on the new coupling metric) can be given a high priority due

to their potential of revealing more bugs.

In addition, the class-to-class coupling metric can be utilized in re-modularizing

and restructuring the software systems. Software systems are modularized to make their

inherent complexity manageable. Modularization is the process of breaking a software

system into a set of collaborating packages. Each of these packages should ideally have

high cohesion and low coupling. The class-to-class coupling measure can be used to

identify strong chains of classes. Based on these identified chains, the system can be

restructured to a different packaging structure.
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Moreover, software evolution is the dynamic behavior of software systems while they

are maintained and improved over their lifetimes. Software systems evolve during their life

cycle to accommodate new features and to improve their quality. Software needs to evolve

in order to survive for a lengthy period. The changes that software undergo lie within

corrective, preventive, adaptive and perfective maintenance that lead to software evolution.

Most software evolution studies highlight the statistical changes of the software system by

examining its evolution metrics; little effort has been carried out to understand the evolution

of the software structure. The new coupling metric can be studied overtime and measure

the coupling evolution behavior and its relation to defects.
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[25] Lionel C Briand, Jürgen Wüst, Stefan V Ikonomovski, and Hakim Lounis,
Investigating quality factors in object-oriented designs: an industrial case study,
Proceedings of the 21st international conference on Software engineering, ACM,
1999, pp. 345–354.

[26] Lionel C Briand, Jurgen Wust, and Hakim Lounis, Using coupling measurement
for impact analysis in object-oriented systems, Proceedings. IEEE International
Conference on Software Maintenance, 1999.(ICSM’99), IEEE, 1999, pp. 475–482.

[27] Jie-Cherng Chen and Sun-Jen Huang, An empirical analysis of the impact of
software development problem factors on software maintainability, Journal of
Systems and Software 82 (2009), no. 6, 981–992.

[28] Shyam R Chidamber and Chris F Kemerer, A metrics suite for object oriented design,
IEEE Transactions on Software Engineering, 20 (1994), no. 6, 476–493.

[29] Misook Choi and JongSuk Lee, A dynamic coupling for reusable and efficient
software system, 5th ACIS International Conference on Software Engineering
Research, Management & Applications, SERA 2007., IEEE, 2007, pp. 720–726.

[30] Brendan Cleary, Chris Exton, Jim Buckley, and Michael English, An empirical
analysis of information retrieval based concept location techniques in software
comprehension, Empirical Software Engineering 14 (2009), no. 1, 93–130.

[31] Melis Dagpinar and Jens H Jahnke, Predicting maintainability with object-oriented
metrics-an empirical comparison, Proceedings of the 10th Working Conference on
Reverse Engineering (WCRE), 2003, pp. 155–164.

[32] Jehad Al Dallal, Object-oriented class maintainability prediction using internal
quality attributes, Information and Software Technology 55 (2013), 2028–2048.

[33] Scott C. Deerwester, Susan T Dumais, Thomas K. Landauer, George W. Furnas, and
Richard A. Harshman, Indexing by latent semantic analysis, Journal of the American
Society for Information Science 41 (1990), no. 6, 391–407.

[34] Jay Devore, Probability and statistics for engineering and the sciences, 8th ed.,
Cengage Learning, Stamford, CT, 2011.

75



[35] Bruno Dufour, Barbara G Ryder, and Gary Sevitsky, Blended analysis for
performance understanding of framework-based applications, Proceedings of the
2007 International Symposium on Software Testing and Analysis, ACM, 2007,
pp. 118–128.

[36] Marc Eaddy, Alfred V Aho, Giuliano Antoniol, and Y-G Guéhéneuc, Cerberus:
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