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ABSTRACT

In this dissertation, we explore various types of graphs that can be associated to a

commutative ring with identity. In particular, if R is a commutative ring with identity, we

consider a number of graphs with the vertex set being the set of proper ideals; various

edge sets defined via different ideal theoretic conditions give visual insights and structure

theorems pertaining to the multiplicative ideal theory of R. We characterize the interplay

between the ideal theory and various properties of these graphs including diameter and

connectivity.

iii



ACKNOWLEDGMENTS

First and foremost I would like to thank all those who helped made me who I am

today. Special thanks is owed to my advisor Jim Coykendall for all his encouragement,

support, and all his efforts. Each meeting with him was valuable and added valuable

aspects to my thesis. He was always there to help me and guide me and I owe to him

my success. His guidance and kindness lightened up the way in my academic life. From

him I have learned to think critically and he opened my eyes to new ways of learning and

doing research. It was an honor for me to work with such a unique professor who is known

for his excellence in the field and who is known for his kindness as an individual. I am

speechless and all words will not be enough to express my gratitude to my husband who

was always there for me and who encouraged me through my academic journey. I dedicate

my success to him and I would not have made it this far without his love, support, and

patience. I also dedicate my success to my beautiful daughter, Lujain whose smile always

fill me with hope and light my darkest days. I would like to thank my beloved family who

have always believed in me and never failed to give me love, support, and encouragement.

I also take this opportunity to express my deepest thanks and love to my parents who taught

me to seek knowledge and supported me throughout all the stages of my life.

iv



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

CHAPTER 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Ring Theory Definitions And Elementary Results . . . . . . . . . . . . . . . . . . 1

1.2. Graph Theory Definitions And Elementary Results . . . . . . . . . . . . . . . . . 7

1.3. Preliminary Results Concerning Graphs And Commutative Algebra . . . 12

CHAPTER 2. GRAPHS DETERMINED BY IDEAL THEORETIC PROPERTIES 17

2.1. Ideal Graphs Definitions And Elementary Results . . . . . . . . . . . . . . . . . . 17

2.2. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

CHAPTER 3. THE GRAPHS AND IDEAL-THEORETIC CONSEQUENCES . 26

3.1. G0,G1 And G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2. G3 And G4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3. G5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4. G6 And G7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

CHAPTER 4. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

v



LIST OF FIGURES

Figure Page

1.1: Graph G = (V,E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2: Graph G and it is subgraph H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3: Complete graph K6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4: The diameter of the graph G = (V,E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5: Connected graph G1 and disconnected graph G2 . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6: G1 and G2 are connected graphs but not complete . . . . . . . . . . . . . . . . . . . . . . 11

1.7: Zero divisor graphs of Z20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.8: G(6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.9: G(81) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1: Ideal graphs G0,G1,G2 and G3 of the ring R = Z12 . . . . . . . . . . . . . . . . . . . . . . 23

2.2: G5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3: Ideal graphs G6 and G7 of the ring Z2×Z2×Z2×Z2 . . . . . . . . . . . . . . . . . . . 25

vi



CHAPTER 1. INTRODUCTION

1.1. Ring Theory Definitions And Elementary Results

In this study, we investigate a number of graphs that can be constructed from an

arbitrary commutative ring with identity. The vertices of these graphs are the ideals of the

ring, the definitions of the edges vary according to various ideal theoretic properties that

we wish to highlight. Then, we elaborate upon the connections between graph properties

and ideal properties. We begin with elementary definitions, examples, and theorems from

graph theory [9], [7] and commutative ring theory [6] to provide the reader foundations

in our primary topics. In particular, we focus on historical constructions such as the zero

divisor graph(first proposed by Beck in [3]) and the irreducible divisor graph (first proposed

by Coykendall and Maney in [5]).

Definition 1.1. A ring R is a set together with two binary operations, addition and multi-

plication. such that for all h,w ,z ∈ R we have the following conditions:

a) (R,+) is an abelian group.

b) Multiplication is associative (hw)z=h(wz). for all h,y,z ∈ R

c) The distributive laws hold in R for all h,w,z ∈ R.

(i) (h+w)z = (hz)+(wz)

(ii) h(w+ z) = (hw)+(hz)

Example 1.2. The prototype example of a ring with identity is the integers Z. More

examples include the set of rational numbers Q, the set of real numbers R, the set of

complex numbers C and polynomial ring R[x]={∑∞
i=0 rixi|r ∈ R} where R is any ring. The

ring 2Z is an example of a ring which does not have an identity.
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From here we assume rings are commutative unless otherwise stated.

Definition 1.3. Let R be a ring. We say r ∈ R is a zero divisor, if there exists 0 6= a ∈ R

such that ra = 0.

A nontrivial commutative ring with identity where zero is the only zero divisor is

called an integral domain.

Example 1.4. In the ring Z/8Z, 4 is an example of a zero divisor element, since 4.2 = 0.

In the ring Z, there are no nontrivial zero divisors.

Definition 1.5. A commutative ring R is called a field if every nonzero element is a unit

(has a multiplicative inverse) . In the sense that for all 0 6= a ∈ R there exist b such that

ab=1.

It is clear that any field is an integral domain. However, the converse is not necessarily

true. The integers is an example of an integral domain thats not a field since for any two

integers x and y such that xy=0, we have x = 0 or y = 0. Hence zero is the only zero divisor.

Also, for any n > 1 the multiplicative inverse 1
n is not an integer. Hence the integers Z is

an integral domain but it is not a field. The following family of rings will serve as well for

illustration purposes later. We first present an elementary proposition.

Proposition 1.6. the ring Z/nZ is a field if and only if n is prime.

Definition 1.7. Let R be a ring. A subset I ∈ R is called an ideal if for all h ,w ∈ I and r ∈ R

then

a) h−w ∈ I

b) rh ∈ I

We call the ideal M maximal if it is maximal among all proper ideals with respect to

set containment. In other words, for all ideals M ⊆ I ⊆ R, then either I = M or I = R. Also,

we call P a prime ideal if xy ∈ P, implies x ∈ P or y ∈ P. We recall the following theorem.

2



Theorem 1.8. Let R be a commutative ring with identity and assume I ⊆ R then;

a) I is maximal if and only if R/I is a field.

b) I is prime if and only if R/I is an integral domain.

It is immediate that any maximal ideal is prime. The converse is not true as the next

example shows.

Example 1.9. The ideal (2,x) is a maximal ideal in the ring Z[x], hence it is prime.

However the ideal (x) is a prime ideal in Z[x]. But, it is not maximal.

Our next lemma is equivalent to the Axiom of Choice and is central in this study.

Lemma 1.10 (Zorn’s Lemma). Let S be a partially ordered set with the property that every

chain in S has an upper bound in S. Then S has a maximal element.

Zorn’s lemma leads to the inevitable conclusion that every commutative ring with

identity has a maximal ideal. The next proposition shows something more general is true.

Proposition 1.11. Let R be a commutative ring with identity and let I ⊂ R be an ideal.

Then there exists a maximal ideal M such that M ⊃ I.

Lastly we turn to a definition related to factorization and obeservation about domains.

Definition 1.12. Let D be an integral domain. And let a be an element in D.

a) The element a ∈ D is irreducible if, for any a = a1a2 then either a1 or a2 is a unit in

D.

b) The element a ∈ D is prime if a|a1a2 implies a|a1 or a|a2.

Theorem 1.13. Let D be an integral domain. Then every nonzero prime element is irre-

ducible.

3



Proof. Suppose that a = xy is a nonzero prime element . Then either a|x or a|y. Without

loss of generality assume that a|x. This implies x = da where d ∈D. Since a = xy, x = dxy.

Hence x−dyx = 0 . From that we conclude dy = 1. Hence y is a unit.

In general the converse is not true. However, if R is a unique factorization domain,

then the notion of nonzero prime element and irreducible element are the same. For

example, all irreducible elements in Z are prime elements.

We now recall the concept of localizations.

Definition 1.14. Let R be a domain. A nonempty subset Γ ⊆ R (not containing 0) is said

to be multiplicatively closed if it is closed under multiplication. In other words, if a,b ∈ Γ

then ab ∈ Γ .

Theorem 1.15. [8] Let R be commutative ring with identity and I ⊆ R and ideal. If Γ is a

multiplicatively closed set in R such that Γ ∩ I =/0. Then there is a prime ideal P such that

I ⊆ P such that P∩ Γ=/0

Definition 1.16. Let R be a domain and Γ ⊆ R be a multiplicatively closed subset of R; we

define a localization of R at Γ to be RΓ = { r
a |r ∈ R and a ∈ Γ}

We note that if P is a prime ideal then RP = {a
b |a,b∈ R and b /∈ P}. That is, Γ = R\P

which is multiplicatively closed, since P is prime.

Definition 1.17. A ring R is called a quasi-local ring if it has only one maximal ideal.

A prototype example of a quasi -local ring is the ring F[[x]] where F is a field.

If R is a domain with quotient field K and S⊆ R is a multiplicative closed set then we

always have the inclusions R⊆ RS ⊆ K.

The following proposition gives us an important connection between quasi-local

rings and localizations.

4



Proposition 1.18. Let R be a commutative ring with identity. The ring RP = { r
s |r,s ∈

R and s /∈ P} is a quasi-local ring for all prime ideals P.

We remark here that, if R is an integral domain and P be a prime ideal, then the

localization over P is an integral domain as well.

Proposition 1.19. If R is an integral domain, then RP is an integral domain for all prime

ideals P.

The converse of the above proposition is not necessarily true. For example consider

the ring Z6. The localization of R at P = (3) is an integral domain. However the ring Z6 is

not.

We now consider valuation domains which are of fundamental importance in mul-

tiplicative ideal theory. In some sense, they are the building blocks of integrally closed

domains.

Definition 1.20. Let R be a commutative ring with identity then we say R is a valuation

domain if given any two nonzero elements x,y ∈ R then either x|y or y|x . Equivalently, for

all a ∈ K∗ , either a or a−1 is an element of R.

We remark here if R is a valuation domain then R is quasi-local and all (prime)

ideals of R are linearly ordered. The following theorem is one of the reasons that valuation

domains are so central to multiplicative ideal theory.

Theorem 1.21. [8] Given an integral domain R with quotient field K and a proper ideal

I ( R, then there exist a valuation overring VI , R (VI ( K, such that I survives in VI .

The next theorem highlights the relation between the integral closure of a domain R

and it is valuation overrings V .

Theorem 1.22. Let R be a domain, then the integral closure of the ring R is given by

R =
⋂

R⊆V⊆K V , where V ranges over all valuation overrings of R.

5



Theorem 1.23. Let R be a commutative ring with identity. Then the following are equiv-

alant.

a) Every ideal of R is finitely generated.

b) Every prime ideal of R is finitely generated.

c) Every ascending chain of ideals stabilizes.

Any ring satisfying one condition is called a noetherian ring.

Theorem 1.24 (The Hilbert Basis Theorem). If R is commutative with identity and R is

Noetherian, then so is R[x].

There is an analogous result for power series.

Theorem 1.25. If R is commutative with identity and R is Noetherian, then so is R[[x]].

Definition 1.26. Let R be a commutative ring with identity . We say that R is Artinian ring

if it is satisfing the descending chain condition on ideals. In the sense that every strictly

descending sequence of ideals stabilizes

I1 ) I2 ) · · · ) Iq ) Iq+1 ) · · ·
Then there exists a positive integer q such that Iq=Iq+1=· · ·

Definition 1.27. A commutative ring with identity R, is zero-dimensional if every prime

ideal is maximal.

The following result is classical and will be of use to us later.

Theorem 1.28. R is artinian if and only if R is Noetherian and zero dimensional.

We remark here that the integral domian is artinian ring if and only if the ring R is a

field.

6



1.2. Graph Theory Definitions And Elementary Results

Modern graph theory has connections to many branches of mathematics such as

topology, matrix theory and ring theory. In this section we give some basic concepts and

theorem from graph theory. There are many books give us the basic consepts of graph

theory for example [9] and [7].

Definition 1.29. A graph G is a pair (V,E) where V is a nonempty set of vertices and E is

the set of edges.

In a graph G , If any two vertices are connected by edge then they are called adjacent,

otherwise they are called disjoint. The following is an example of a graph where the number

of vertices are 6 and the number of edges are 7. We can see that the vertex 5 is adjacent

with vertex 4. However 5 and 3 are disjoint.

7



6

4

5

1

2

3

Figure 1.1: Graph G = (V,E)

Definition 1.30. A graph G∗ =(V ∗,E∗) is called a subgraph of G if V ∗ ⊆V and E∗ ⊆ E.

In the following example the graph H is a subgraph of G = (V,E), since V ∗ ⊆V and

E∗ ⊆ E.

1 2

3 4

(a) G = (V,E)

1 2

3 4

(b) H = (V ∗,E∗)

Figure 1.2: Graph G and it is subgraph H

Definition 1.31. Let G be a graph.

(i) We say G is simple if it has no loops or parallel edges.

(ii) We say G is a complete graph if any two vertices of graph G are adjacent. The

complete graph on n vertices is denoted by Kn.

(iii) A graph G is finite if the number of vertices and edges are finite.

8



The following graph K6 is complete.

Figure 1.3: Complete graph K6

Definition 1.32. In the graph G

(i) A walk is an alternating sequence of vertices starting at v1 and ending at v2 and

connecting edges.

(ii) A path is a walk that does not include any repeated vertices.

Definition 1.33. The diameter of a graph G = (V,E) denoted by D(G) is the maximum

distance among all pairs of vertices in G where is the distanct between any two vertices v1

and v2 is the length of the shortest path joining v1 and v2.

9



In the following example the diameter of the graph G = (V,E) is 3, because if we

look to the length of the shortest path joining 3 and 4 is 3 which is the maximum distance

among all pairs of vertices in G = (V,E).

(2)

(4)

(0)

(6)

(3)

Figure 1.4: The diameter of the graph G = (V,E)
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Our next definition is one of the most important concepts in graph theory and it is

central in our study.

Definition 1.34. A graph G is called connected if there is a path between any vertex to any

other vertex in the graph. Otherwise it is called disconnected graph.

1

2 3

(a) G1

1

2 3 4

(b) G2

Figure 1.5: Connected graph G1 and disconnected graph G2

We remark here that any complete graph is connected. However the converse is

not necessarily true. The following are examples of connected graphs but they are not

complete.

1

2
4

3

(a) G1

1 2

3 4

(b) G2

Figure 1.6: G1 and G2 are connected graphs but not complete
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1.3. Preliminary Results Concerning Graphs And Commutative Algebra

Recently there has been much attention paid to various aspects of commutative alge-

bra and graphs that can be associated to various structures and objects. One such example

that highlights the interplay between commutative algebra and graph theory is the notion

of zero divisor graphs. The concept of the zero divisor graph was first proposed by Beck

in [3]. Beck defined the zero divisor graph as follows.

Definition 1.35. Let R be a ring. We say Z(R) is a zero divisor graph if the set of the

vertices are the elements of R. Two elements x and y in the ring R are adjacent if xy=0.

It should be noted that given two vertices a and b in the Beck zero divisor graphs

there is a path from a to b via a− 0− b. Hence every Beck zero divisor graph is connected

of diameter less than or equal 2. Anderson and Livingston refined Beck’s notion to get

a better view of the zero divisor structure. In Anderson and Livingston’s paper [1] they

simplify the definition of the zero divisor graph. In the new definition the set of vertices is

the set of nonzero zero divisors of the ring.

Definition 1.36. [Anderson and Livingston] [1] Let R be a commutative ring with identity.

The zero divisor graph Z(R) is a simple graph where is the vertex set defined to be the set

of nonzero divisores of R. And there is an edge between the distinct vertices z1,z2 ∈ R if

and only if z1z2=0.

In the following example we can see the difference between Anderson and Livingston

’s definition and Beck’s definition for the ring Z20.

12
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10
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15 16

18

(a) Zero divisor graph of Z20 by Anderson and Livingston’s definition

–
–

2

4

5
6

8

10

12

14

15 16
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0

1

3
7

9

11

13

17

19

(b) Zero divisor graph of Z20 by using Beck’s definition

Figure 1.7: Zero divisor graphs of Z20
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The following very interesting theorem spawned an industry of research in zero-

divisor graphs.

Theorem 1.37. (Anderson and Livingston) [1]. Let R be a commutative ring with identity

and Z(R) its zero divisor graph. Then Z(R) is connected and has diameter less than or equal

to 3.

Another structure that highlights the interplay between graphs and commutative al-

gebra is the irreducible divisor graph. The idea of irreducible divisor graph originated with

Coykendall and Maney [5]. The authors of this paper used the irreducible divisor graph to

characterize certain classes of domains. The authors focused on the case where R is atomic

(every nonzero nonunit element of R can be written as a products of irreducibles).

Definition 1.38. ( Coykendall and Maney) [5]. Let R be a ring

(i) Irr(R) is the set of all irreducible elements in R.

(ii) Irr(R) is the set of equivalence classes of irreducibles of R modulo unit equivalence

(r1 ∼ r2⇐⇒ r1 = ur2 for some u ∈U(R)).

Definition 1.39. (Coykendall and Maney ) [5]. Let R be an atomic domain. Let a ∈ R

be a nonzero nonunit element. The irreducible divisor graph of an element a, is given

by G(a) = (V,E), where the vertex set V is {v ∈ Irr(R)|v|a}, and given v1,v2 ∈ Irr(R),

v1v2 ∈ E if and only if v1.v2|a.

14



In [5] the authors gave some examples on irreducible divisor graph. We will provide

some of them.

Example 1.40. Let R := Z[
√
−5]. Note that up to unit equivalence the only irreducible

factorization of 6 are 6 = (1+
√
−5).(1−

√
−5)=(2).(3) The irreducible divisor graph

G(6) is pictured below.

2

3

1+
√
−5

1−
√
−5

Figure 1.8: G(6)

Example 1.41. Let R := Z[
√
−14]. Up to unit equivalence the only irreducible factoriza-

tions of 81 are 81 = (5−2
√
−14).(5+2

√
−14)=34. The irreducible divisor graph G(81)

is pictured below.

3

1+
√
−5

1−
√
−5

Figure 1.9: G(81)
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The following is one of the preliminary results of Coykendall and Maney [5]. We

first need to recall the definition of a finite factorization domain.

Definition 1.42. Let R be an atomic domain. We call R is a finite factorization domain if

every nonzero nonunit element of R has finitely many nonassociate irreducible divisors.

Proposition 1.43. [5] Let R be an atomic domain . Then R is an finite factorization domain

if and only if the irreducible divisor graph G(x) is finite for each nonzero nonunit x ∈ R.

It is worth noting that in 2008, M. Axtell and J. Stickes [2] generalized the concept

of irreducible divisor graph by Coykendall and Maney to commutative rings with zero

divisors.
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CHAPTER 2. GRAPHS DETERMINED BY IDEAL THEORETIC

PROPERTIES

2.1. Ideal Graphs Definitions And Elementary Results

In this section we define and justify some types of graphs that are determined by ideal

theoretic properties. We investigate eight graphs constructed from an arbitrary commutative

ring with identity with the vertex set being the set of proper ideals.

Definition 2.1. Let R be a commutative ring with identity. We define the following graphs

associated to R, in all cases, the vertex set is the set of ideals of R:

(i) For G0(R), we say that I and J have an edge between them if and only if I and J are

adjacent.

(ii) For G1(R), we say that I and J have an edge between them if and only if there is a

maximal ideal M such that I = JM.

(iii) For G2(R), we say that I and J have an edge between them if and only if (I : J) =M

(iv) For G3(R), we say that I and J have an edge between them if and only if there is a

nonzero nonunit a ∈ R such that I = Ja.

(v) Let R be an integral domain with quotient field K. In G4(R), we say that I and J have

an edge between them if and only if there is a nonzero k ∈ K such that I = Jk.

(vi) For G5(R) we say that I and J have an edge between them if and only if I⊗R J = 0

(vii) For G6(R) we say that I and J have an edge between them if and only if I ⊂ J and J/I

is a finitely generated ideal of R/I.

(viii) For G7(R) we say that I and J have an edge between them if and only if I ⊂ J and J/I

is a principal ideal of R/I.

17



We give some results and justifications for some types of graphs that are determined

by ideal theoretic properties. We begin with a result that lends another perspective to G5(R).

Theorem 2.2. Let I,J ⊆ R be ideals. Then I⊗R J = 0⇐⇒ IJ = 0.

Proof. Suppose first that IJ = 0. Then for all x ∈ I and y ∈ J, we have xy = 0. If x⊗ y ∈

I⊗R J then x⊗y = 1⊗xy = 1⊗0 = 0. Since I⊗R J is generated by tensors, then I⊗R J = 0.

For the other direction, consider the map φ : I×J→ IJ such that φ(x,y) = xy. Clearly φ is

bilinear. By the universal mapping property of tensor product, there exist Φ : I⊗R J→ IJ

such that Φı = φ where ı : I× J→ I⊗R J is the canonical bilinear map given by ı(x,y) =

x⊗ y. Note that if x ∈ I and y ∈ J then Φ(x⊗ y) = xy ∈ IJ. Hence, as all generators of IJ

are in the image of Φ, Φ is onto. Hence, as I⊗R J = 0 and Φ is onto, IJ = 0.

From the above theorem we can conclude that In G5(R) we say that I and J have an

edge between them if and only if I⊗R J = 0⇐⇒ IJ = 0.

Notation 2.3. Let R be a ring. We denote by G∗i (R), the subgraph of Gi(R) with the zero

ideal removed from the vertex set.

Lemma 2.4. Let I,J ⊆ R be distinct ideals. If I = JM where M is a maximal ideal then

(I : J) =M, but not conversely.

Proof. Note that MJ ⊆ I, and hence M⊆ (I : J). Since I and J are distinct, we must have

equality.

To see that the converse does not hold consider the domain K[x,y], where K is any

field, and the ideals I = (x,xy,y2) and J = (x,y). Note that (I : J) = J but J2 ( I.

Lemma 2.5. If I ⊂ J are adjacent, then (I : J) is maximal.

Proof. Let I ( J be adjacent and letC = (I : J); we will show thatC is maximal. Since I is

strictly contained in J, we can find an x ∈ J \ I; additionally, we note that J = (I,x) because

of the adjacency of I and J.
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We now choose an arbitrary z /∈C and note that zx /∈ I (indeed, if zx ∈ I then the fact

that J = (I,x) would show that z ∈ C which is a contradition). Hence, it must be the case

that J = (I,zx), and since x ∈ J, we obtain

x = rzx+α

for some r ∈ R and α ∈ I. Rearranging the above, we now have

x(1− rz) = α ∈ I.

Since (1− rz) conducts x to I and J = (I,x), (1− rz) ∈ C . Therefore (C ,z) = R for

all z /∈C and so C is maximal.

Lemma 2.6. If I ⊂ J are adjacent, then J/I is a principal ideal of R/I.

Proof. Assume that I ⊂ J are adjacent. Since I is strictly contained in J, we can find an

a∈ J \ I; additionally, we note that J = (I,a) because of the adjacency of I and J. Therefore

J/I = (a+ I) is a principal ideal of R/I.

Notation 2.7. All of the graphs have the same vertex set. G0(R) is a subgraph of G2(R)

and G1(R) is a subgraph of G2(R) excepting loops. If R is an integral domain then G3(R)

is a subgraph of G4(R). G7(R) is a subgraph of G6(R) and G0(R) is a subgraph of G7(R).

Now we make a connectivity conclusion such as if G0 is connected then so is G2.

Lemma 2.8. Suppose that I ( J are adjacent and C := (I : J). If C
⋂

J = I then J \ I is a

multiplicatively closed set.

Proof. Let x,y ∈ J \ I. Certainly xy ∈ J. By way of contradiction, we assume that xy ∈ I.

Since I and J are adjacent and x /∈ I, (x, I) = J.
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Now let j ∈ J be arbitrary. By the previous remark, we can find r ∈ R and i ∈ I such

that j = rx+ i. Multiplying this by y we obtain that y j = rxy+ iy ∈ I. Hence y ∈C
⋂

J = I

which is the desired contradication.

Lemma 2.9. Let I ( J be adjacent and A another ideal. Then either I
⋂

A = J
⋂

A or I
⋂

A

and J
⋂

A are adjacent.

Proof. We will assume that I
⋂

A and J
⋂

A are distinct and suppose that x ∈ (J
⋂

A) \

(I
⋂

A). Since x /∈ I, it must be the case that J = (I,x).

Let j ∈ J
⋂

A be arbitrary. Since J = (I,x), we have that

j = rx+α

for some r ∈ R and α ∈ I. We observe further that rx ∈ J
⋂

A, and hence, α ∈ I
⋂

A. We

conclude that

J
⋂

A = (I
⋂

A,x)

for any x ∈ (J
⋂

A)\ (I
⋂

A), and so I
⋂

A and J
⋂

A must be adjacent.

Lemma 2.10. If I ( J are adjacent ideals and x ∈ R. Then the ideals (I,x) and (J,x) are

either equal or adjacent.

Proof. Suppose that A is an ideal with (I,x) ( A ⊆ (J,x) and let a ∈ A \ (I,x). We write

a = j+ rx with j ∈ J \ I. Since I and J are adjacent and j /∈ I, (I, j) = J. Hence A contains

J and x; we conclude that A = (J,x) and the proof is complete.

Proposition 2.11. Let I ⊆ J be adjacent ideals and S ⊂ R be a multiplicatively closed set

(not containing 0). Then, IS ⊆ JS are either adjacent or equal.
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Proof. Since I ( J are adjacent, there is an x∈ J \ I such that J = (I,x) (in fact, any x∈ J \ I

will do). Suppose that IS ( JS. So there is a b
s ∈ JS \ IS. Certainly it is the case that b ∈ J \ I

and since I ( J are adjacent, we can find an r ∈ R and α ∈ I such that b = rx+α . In RS we

have the equation

b
s
= (

rt
s
)(

x
t
)+

α

s

which shows that JS is generated over IS by any element x
t ∈ JS \ IS. Hence IS and JS are

either equal or adjacent.

Proposition 2.12. Let A,B⊆ R be ideals containing the ideal I. Then A and B are adjacent

in R if and only if A/I and B/I are adjacent in R/I.

Proof. Suppose A ( B both contain the ideal I and are adjacent. If there is an ideal of R/I

strictly between A/I and B/I. This ideal can be written in the form C/I where C is an ideal

strictly between A and B, which is a contradiciton.

Now we suppose that A and B contain I with A/I and B/I adjacent. If there is an

ideal (say C) strictly between A and B, then we have the containment

A/I ⊆C/I ⊆ B/I.

To see that the first containment is, in fact, strict, we suppose that A/I =C/I. Hence,

given any c ∈C, we can write c = a+ z for some a ∈ A, z ∈ I. But since I ⊆ A, we obtain

that c ∈ A and so C = A which is a contradiction. The strictness of the second containment

is shown similarly.

Lemma 2.13. Let I⊆ J be ideals such that J is finitely generated over I. Then I is contained

in a finitely generated ideal if and only if J is contained in a finitely generated ideal.

Proof. For the backward direction, if J is contained in a finitely generated ideal, then so is

I, since I ⊆ J . For the other direction, suppose that I is contained in a finitely generated
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ideal, say N, where N is finitely generated. Since J is finitely generated over I, we can

write J = (I,a1,a2, · · · ,am). It is clear now that J is contained in the finitely generated

ideal (N,a1,a2, · · · ,am). Therefore J is contained in a finitely generated ideal.

Proposition 2.14. Let R be a 1−dimensional domain. R is Noetherian if and only if R/I is

Artinian for each ideal 0 6= I ⊆ R.

Proof. Suppose first that R is a Noetherian domain. If I ⊆ R is a nonzero ideal, then R/I is

Noetherian of dimension 0 and hence is Artinian.

Now suppose that R/I is Artinian for each nonzero ideal I ⊂ R. It suffices to show

that every ideal of R is finitely generated. Let J ⊂ R be an arbitrary nonzero ideal. Let

0 6= x ∈ J and note that by hypothesis, R/(x) is Artinian. From Lemma 2.13 it follows that

J is finitely generated and hence R is Noetherian.
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2.2. Examples

In this section we provide the reader with some examples that give a clear view of

our investigated graphs.

Example 2.15. Consider the ring R=Z12. The proper ideals of R=Z12 are (0),(2),(3),(4),(6).

In figure 2.1 we provide an examples of G0,G1, G2 and G3.

(2)

(4)

(0)

(6)

(3)

(a) G0

(2)

(4)

(0)

(6)

(3)

(b) G1

(2)

(4)

(0)

(6)

(3)

(c) G2

(2)

(4)

(0)

(6)

(3)

(d) G3

Figure 2.1: Ideal graphs G0,G1,G2 and G3 of the ring R = Z12
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Example 2.16. Consider the ring Z10. The set of ideals in Z10 are (0), (2), (4) and (5).

Figure 2.2 shows the ideal graph G5 of the ring Z10

(5)

(2)

(0)
(4)

Figure 2.2: G5

Example 2.17. Consider the domain Z. We can see that in the graph ideal G4 the ideal 2Z

has an edge with 4Z where the constant k = 2. Also, the ideal 2Z has an edge with the ideal

3Z where the constant k is 3/2. This graph is complete on countably many vertices.

Example 2.18. Consider the ring Z2×Z2×Z2×Z2. The ideal graphs G6 and G7 are

pictured in the next page.

24



(0,a,b,c) (a,0,b,c) (a,b,0,c) (a,b,c,0)

(0,0,x,y) (0,x,0,y) (0,x,y,0) (x,0,0,y) (x,0,y,0) (x,y,0,0)

(0,0,0,z) (0,0,z,0) (0,z,0,0) (z,0,0,0)

(0,0,0,0)

(a) G7

-
-

(0,a,b,c) (a,0,b,c) (a,b,0,c) (a,b,c,0)

(0,0,x,y) (0,x,0,y) (0,x,y,0) (x,0,0,y) (x,0,y,0) (x,y,0,0)

(0,0,0,z) (0,0,z,0) (0,z,0,0) (z,0,0,0)

(0,0,0,0)

(b) G6

Figure 2.3: Ideal graphs G6 and G7 of the ring Z2×Z2×Z2×Z2

25



CHAPTER 3. THE GRAPHS AND IDEAL-THEORETIC

CONSEQUENCES

3.1. G0,G1 And G2

Theorem 3.1. Let R be a commutative ring with identity and G0(R) its adjacency graph.

The following are equivalent.

1. R is Artinian.

2. G0(R) is connected.

Proof. The forward direction is the easier one. Indeed, suppose that R is Artinian and

let I,J ⊆ R be two ideals. It suffices to show that there is a finite path from I to J, or

equivalently, there is a finite sequence of adjacent ideals between I and J. To this end, it

suffices to show that there is a finite sequence of adjacent ideals connecting I and I
⋂

J.

Note that a simple application of Zorn’s lemma can be used to show that there is a

(maximal) saturated chain of ideals (in the sense that if A is an ideal comparable to every

element of the chain, then A is an element of the chain) between I and I
⋂

J. We claim that

this chain of ideals is finite and that successive elements of the chain are adjacent ideals.

Suppose that there is no ideal I
⋂

J ⊆ B ( I such that B and I are adjacent. Starting at

I
⋂

J we can inductively build a chain of ideals

I
⋂

J := B0 ( B1 ( · · · ( Bn ( I

by defining Bn+1 = (Bn,xn+1) where xn+1 ∈ I \Bn. The fact that there is no ideal I
⋂

J ⊆

B ( I with B adjacent to I allows the infinite ascending chain

B0 ( B1 ( · · · ( Bn ( · · · .
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Since R is not Noetherian, then it is not Artinian, which is a contradiction.

Starting with an ideal I1 which is adjacent to I and contains I
⋂

J, we inductively

begin building the chain

I ) I1 ) I2 ) · · · ) In ) I
⋂

J

with Ik and Ik+1 adjacent for all 1¶ k ¶ n−1. Since R is Artinian, this process terminates

(say at n by abuse of notation). Note that In and I
⋂

J must be adjacent (else the process

would not have terminated). We connect J and I
⋂

J similarly and the proof of this direction

is complete.

For the other direction, we will assume that R is not Artinian and show that R cannot

be connected. Suppose that we have the infinite descending chain of ideals

I1 ) I2 ) · · · ) In ) In+1 ) · · · ) I =
∞⋂

k=1

Ik.

It will suffice to show that I cannot be connected in a finite sequence of steps (adja-

cencies) to any subscripted element of the chain above. We first note that I cannot have an

edge with any element of the chain, since if I and In are adjacent, this implies that In+2 ( I

which is a contradiction. To set up our induction, we suppose that we have

In↔ A↔ I

where the notation “X ↔ Y " means that X and Y are equal or adjacent (but in the instance

of the above In↔ A↔ I we will assume that there are no equalities).

First we intersect the above with In+1 to obtain

In+1↔ A
⋂

In+1↔ I.
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Lemma 2.9 shows us that each successive pair of ideals is adjacent or equal. With this in

hand, we first assume that I ⊆ A; in this case we observe that

A⊇ A
⋂

In+1 ⊇ I

and because of the adjacency of A and I, these containments cannot both be strict. If it is

the case that A = A
⋂

In+1 then A ( In+1; the containment must be strict else A = In+1 and

I is adjacent to an element of the chain. Hence we have In ) In+1 ) A and this contradicts

the adjacency of A and In.

On the other hand, if it is the case that A
⋂

In+1 = I then since A
⋂

In+1↔ In+1, we

have the I is adjacent to In+1, which is again a contradiction. We now consider the case

A⊆ I. If we have

In↔ A↔ I

(this time with A⊆ I), we merely intersect with In+1 to obtain

In+1↔ A = A
⋂

In+1↔ I.

Applying Lemma 2.9 again, we see that since In+1 ( In and In and A are adjacent, it must

be the case that A = In+1 which is absurd.

With this first step completed we will assume inductively that given any infinite

descending chain of ideals

I1 ) I2 ) · · · ) In ) In+1 ) · · · ) I =
∞⋂

k=1

Ik

that there is no chain of m adjacent ideals connecting I to a subscripted element of the

chain. Now suppose that we can find a chain of m+1 adjacent ideals
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I = J0↔ J1↔ ··· ↔ Jm↔ Jm+1↔ In.

In applying the inductive hypothesis, we first assume that I ⊆ J1. Since

I ⊆ In+1
⋂

J1

and I and J1 are adjacent, then either In+1
⋂

J1 = J1 or In+1
⋂

J1 = I. If In+1
⋂

J1 = I

then intersecting (both) chains with In+1 gives a shorter path from I to an element of

the descending chain {Ik} and we appeal to the inductive hypothesis. In the case that

In+1
⋂

J1 = J1, then J1 ⊆ In+1. Since the intersection of the descending chain {Ik} is I,

there must be a largest index, say N, such that J1 ⊆ IN . Note that I ⊆ J1
⋂

IN+1 ( J1. By

the adjacency of J1 and I, if must be the case that IN+1
⋂

J1 = I and this reduces us to the

previous case. This proof is over because of Proposition 3.3.

Corollary 3.2. Let R be an integral domain. G∗0(R) is connected if and only if R is

Noetherian and dim(R)¶ 1.

Proof. Suppose that R is 1−dimensional and Noetherian and let I,J ⊆ R be nonzero ideals.

To show that G∗0(R) is connected, it suffices to show that I and I
⋂

J can be connected in a

finite sequence of steps. To this end, we note that since I
⋂

J is nonzero, the ring R/(I
⋂

J)

is Artinian. By Theorem 3.1 there is a finite sequence of adjacent ideals (of the displayed

form)

(I
⋂

J)/(I
⋂

J)⊂ I1/(I
⋂

J)⊂ I2/(I
⋂

J)⊂ ·· · ⊂ I/(I
⋂

J)

connecting I/(I
⋂

J) to the zero ideal in R/(I
⋂

J). By Proposition 2.12 this corresponds to

a chain of adjacent ideals

(I
⋂

J)⊂ I1 ⊂ I2 ⊂ ·· · ⊂ I
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in R and hence G∗0(R) is connected.

Now we suppose that G∗0(R) is connected. Let I ⊂ R be an arbitrary nonzero ideal.

Proposition 2.12 assures us that adjacency is preserved modulo I and so we obtain that

G0(R/I) is connected. Hence Theorem 3.1 gives us that R/I is Artinian (for any nonzero

ideal I). From Proposition 2.14 we obtain that R is Noetherian.

To see that R is 1−dimensional, we suppose that there is a chain of primes (0)(P(
M. If we choose the ideal I = P above, we would have that dim(R/P) = 1 and hence

R/P is not Artinan. We conclude that G0(R/P) is not connected, which is our desired

contradiction.

Proposition 3.3. Let I ⊆ J be ideals and {In}N
i=0 ideals with I = I0, J = IN , and Ik and Ik1

adjacent for each 0¶ i¶N−1. Then the collection of ideals can be refined to an increasing

chain of ideals

I = J0 ⊆ J1 ⊆ ·· · ⊆ JM = J

with each successive pair of ideals adjacent and M ¶ N.

Proof. Using the notation above, we say that the ideal Ik is a hinge ideal if Ik either properly

contains both Ik−1 and Ik+1 or is properly contained in them both. We proceed by by

induction on m, the number of hinge ideals between I and J.

We first note that if there are m = 0 hinge ideals, then the collection of ideals between

I and J form an increasing chain and in this case, the refinement is the original collection

of ideals and the conclusion holds.

We assume that for all k ¶ m, if there are k hinge ideals, the chain can be refined to a

strictly increasing chain with the number of elements M in the chain less than or equal N.

Suppose that we now have a collection of successively adjacent ideals as in the statement

of the result and we suppose that there are m+1 hinge ideals. To simplify matters, we can

30



assume that all of the ideals {Is} are contained in J by intersecting the collection with J and

applying Lemma 2.9. We will assume that the smallest index for a hinge ideal is t (that is,

It is the first ideal in our list that is a hinge ideal).

In the first case, we assume that I ⊆ It (so I ⊆ I1 ⊆ ·· · ⊆ It is a chain). Since It ⊆ J

and the collection {Is}N
s=t has no more than m hinge ideals, we can apply the inductive

hypothesis and refine this collection to an increasing chain of adjacent ideals with no more

than N− t elements. Combining this with the original chain from I to It , we have a total

increasing chain of adjacent ideals with no more than (N− t)+ (t + 1) = N + 1 elements

and this case is established.

For the second case, we assume that the chain from I to It is a decreasing chain.

Because of the adjacency of successive elements of the chain, we can find xs ∈ Is\ Is+1, 0¶

s¶ t−1 such that

Is = (Is+1,xs).

We now make a preliminary refinement of the collection {Is}N
s=0 by letting I′s =

(Is,x0,x1, · · · ,xt−1). Applying Lemma 2.10 s times shows that the new collection {I′s}

forms a chain:

I = I′ = I′0 = I′1 = · · ·= I′t ⊆ I′t+1

and the remaining ideals {I′s}N
s=t+2 are successively adjacent (or equal) with less than or

equal to m hinge ideals. We also note that each ideal I′k ⊆ J. Applying the inductive

hypothesis, we can refine this to an increasing chain of adjacent ideals beginning at I = It

and ending at J of length at most N− (t +1)¶ N and this concludes the proof.
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Theorem 3.4. Let R be a commutative ring with identity. The following conditions are

equivalent.

1. G1(R) is connected.

2. G2(R) is connected.

3. There is a collection of not necessarily distinct maximal ideals {M1,M2, · · · ,Mn}

such that M1M2 · · ·Mn = 0.

Proof. By notation 2.7, we have the implication (1) =⇒ (2). For the implication (2) =⇒

(3), we suppose that G2(R) is connected and that M is a maximal ideal of R. By assump-

tion, there is a finite path from M to the ideal (0):

M= I0 ) I1↔ I2↔ ·· · ↔ Im ) Im+1 = 0

where each↔ denotes either ) or (. In the proof of this implication, we will use the notion

of hinge ideals introduced in the proof of Proposition 3.3. Note that there must be an even

number of hinge ideals in the path described above, which we will denote H1,H2, · · · ,H2t .

So an abbreviated version of the path described above can be expressed in the form

M ) H1 ( H2 ) · · · ( H2t ) 0

where we will have the convention that H j = Is j for all 1 ¶ j ¶ 2t. We also declare that

s0 = 0 and s2t+1 = m+1.

Since this is a path in the graph G2(R), then successive ideals must have maximal

conductor. We will say that Mk = (Ik+1 : Ik) if s2a ¶ k ¶ s2a+1 and Nk = (Ik : Ik+1) if

s2a+1 ¶ k ¶ s2a+2, 0¶ a¶ t.

We first note that
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H1 = Is1 ⊇MM0M1 · · ·Ms1−1

and since H1 ⊆ H2, we have that

H2 ⊇MM0M1 · · ·Ms1−1.

In a similar fashion, we note that

H3 = Is3 ⊇ H2Ms2Ms2+1 · · ·Ms3−1 ⊇MM0M1 · · ·Ms1−1Ms2Ms2+1 · · ·Ms3−1.

Inductively we obtain

H2i+1 ⊇MM0M1 · · ·Ms1−1Ms2Ms2+1 · · ·Ms3−1 · · ·Ms2iMs2i+1 · · ·Ms2i+1−1.

In particular we obtain

0 =MM0M1 · · ·Ms1−1Ms2Ms2+1 · · ·Ms3−1 · · ·Ms2t Ms2t+1 · · ·Mm

and hence there is a collection of maximal ideals with product equal to (0).

For the implication (3) =⇒ (1), we will assume that there is a collection of maximal

ideals Mi, 1 ¶ i ¶ n such that M1M2 · · ·Mn = 0. To show that G1(R) is connected, it

suffices to show that if I ⊂ R is an arbitrary ideal, then there is a finite path to the zero ideal.

But note that

I ⊇ IM1 ⊇ IM1M2 ⊇ ·· · ⊇ IM1M2 · · · ⊇Mn = 0
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is such a path of length no more than n.

Corollary 3.5. If Gi(R), 1 ¶ i ¶ 2 is connected then diam(Gi(R)) ¶ 2n where n is the

smallest positive integer for which there is a collection of maximal ideals Mi,1¶ i¶ n for

which M1M2 · · ·Mn = 0.

Proof. The fact that diam(G1(R)) ¶ 2n is immediate from the proof of the implication

(3) =⇒ (1) in Theorem 3.4. The fact that diam(G2(R)) ¶ 2n follows from the fact that

G1(R) is a subgraph of G2(R).

Corollary 3.6. If Gi(R) is connected for 0¶ i¶ 2 then R is semiquasilocal and 0−dimensional.

Proof. By Theorem 3.1, G0(R) is connected if and only if R is Artinian, and hence R is

0−dimensional, and, in this case, semilocal. If G1(R) or G2(R) is connected then Theorem

3.4 gives that M1M2 · · ·Mn = 0 for a (not necessarily distinct) collection of maximal ideals

{M1,M2, · · · ,Mn}. If M is an arbitrary maximal ideal, then M⊇M1M2 · · ·Mn and hence

M=Mk for some 1¶ k¶ n which shows that the list of ideals {M1,M2, · · · ,Mn} contains

MaxSpec(R). Hence R is semiquasilocal.

To see that R is 0−dimensional, we appeal once again to the fact that

M1M2 · · ·Mn = 0.

Recalling that this collection of maximal ideals contains MaxSpec(R), we suppose

that we can find a prime ideal P such that Mk )P. Since P⊇M1M2 · · ·Mn = 0, we must

have that P⊇Mi for some 1¶ i¶ n. Hence Mi (Mk which is our desired contradiction.
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3.2. G3 And G4

For the graph G4(R), we assume that R is an integral domain with quotient field

K. This will usually be our focus for G3(R) as well and so this section will carry the

assumption that R is an integral domain unless specified otherwise.

It should be noted that in the case that R is an integral domain, G3(R) is a variant

on the so-called divisor graph of an integral domain studied in [4], where the ideals I and

J are assumed to be principal and possess an edge between them if I = Ja where a ∈ R is

irreducible.

For this section, it will be useful to keep in mind that G3(R) is a subgraph of G4(R).

Theorem 3.7. The following conditions are equivalent.

1. G∗4(R) is connected.

2. G∗4(R) is complete.

3. R is a PID

Proof. For this proof, we discard the case where R is a field as all of the conditions are

satisfied vacuously. Since any complete graph is connected, (2) =⇒ (1) is immediate. For

the implication (1) =⇒ (3), we let I ⊂ R be an arbitrary ideal and x ∈ R a nonzero nonunit

(which exists as R is not a field). Since G4(R) is connected, there is a sequence of ideals

connecting (x) and I:

(x) := J0 − J1 − J2 − ·· · − Jn−1 − Jn := I.

Since the edges above are in the graph G4(R), we must have, for all 1¶ i¶ n, ki ∈ K

such that Ji = kiJi−1. Note that (x) = k1k2 · · ·knI and hence, I is principal.

Finally for the implication (3) =⇒ (2), we let I = aR and J = bR be two arbitrary

ideals of R (with a,b 6= 0). Note that I = a
bJ and hence G4(R) is complete.
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Theorem 3.8. G∗3(R) is complete if and only if R is a Noetherian valuation domain.

Proof. For the forward implication, we will assume that G∗3(R) is complete. As G∗3(R)

is a subgraph of G∗4(R), G∗4(R) must also be complete. Hence R must be a PID. It now

suffices to show that R is local. To this end, suppose that M1 and M2 are maximal ideals.

Without loss of generality, there is a nonzero nonunit a ∈ R such that M1 = aM2 (M2

which contradicts that maximality of M1. Hence R is a local PID and hence a Noetherian

valuation domain.

On the other hand, if R is a Noetherian valuation domain then any two nonzero proper

ideals are of the form (πn) and (πm) where π is a generator of the maximal ideal and

n,m ¾ 1. If we say (without loss of generality) that n ¶ m then πm−n(πn) = (πm) and

hence G∗3(R) is complete.

Theorem 3.9. G∗3(R) is connected if and only if R is a PID. In this case, diam(G∗3(R))¶ 2,

and diam(G∗3(R)) = 1 if and only if R is local.

Proof. As G∗3(R) is a subgraph of G∗4(R), the fact that G∗3(R) is connected implies that

G∗4(R) is connected. Hence, by Theorem 3.9, R must be a PID.

On the other hand, if R is a PID and I = aR and J = bR (a,b 6= 0) are arbitrary ideals,

then we can connect I and J as follows:

I = aR− abR− bR = J.

The above demonstrates the veracity of the remark that diam(G∗3(R)) ¶ 2. The fact

that diam(G∗3(R)) = 1 precisely when R is local follows from Theorem 3.8 and the fact that

the notions of local PID and Noetherian valuation domain are equivalent.

Theorem 3.10. If R is a Dedekind domain with quotient field K, then the number of

connected components of the graphs G∗4(R) and G∗3(R) is in one to one correspondence with

the elements of the class group Cl(R). Each connected component of G∗4(R) is complete
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and each connected component of G∗3(R) has diameter 2 and the connected components of

G∗3(R) is a local PID.

Proof. If R is a Dedekind domain with quotient field K, then two ideals, I and J, are in the

same class of Cl(R) if and only if I = Jk for some nonzero k ∈ K. Hence each connected

component of G∗4(R) is complete and these components are in one to one correspondence

with the elements of Cl(R).

For the G∗3(R) case, we first note that if there is a path from I to J then there must be

some nonzero k ∈K such that I = Jk. It remains to show that if I and J are in the same ideal

class, then there is a path connecting them. To this end, we note that if I = Jk for some

nonzero k ∈ K, we can write I = a
bJ and in a similar fashion as before, we can connect I

and J via

I − bI = aJ − J,

and hence there is a path of length 2 connecting I and J.

To see that in the case of G∗3(R) the diameter of each component is precisely 2 if R

is not local, we will assume that one of the connected components of G∗3(R) is complete.

Suppose that R has at least two maximal ideals, say M1 and M2. We select elements

m1 ∈M1 \M2 and m2 ∈M2 \M1. If I is in the complete connected component of G∗3(R)

then there is an edge between I and m1
m2

I. Hence there is a nonzero a ∈ R such that either

aI = m1
m2

I or I = am1
m2

I. Since R is Dedekind, nonzero ideals cancel and hence we have either

uam2 = m1 or um2 = am1 for some unit u ∈ R. But the first equation implies that m1 ∈M2

and the second implies that m2 ∈M1. Either way, we have a contradiction..

Hence R must be local. Since a local Dedekind domain is PID( and a Noetherian

valuation domain), we are done.

37



3.3. G5

Despite the title of this section, most of our attention will be devoted to the graph

G∗5(R) and some of its variants. The reason for excluding the zero ideal is because the use

of the zero ideal gives extra structure to this graph with no useful new information. It is

easy to see that for any commutative ring with identity (even an integral domain) that the

graph G5(R) is connected with diameter no more than 2 if we allow use of the zero ideal.

Indeed, if I and J are arbitrary ideals, then I − (0) − J is a path connecting them. So if R

is an integral domain, the graph G5(R) would be an infinite star graph with the zero ideal

at the center. These extra connections muddy the waters and give no useful insights for our

current purposes.

Theorem 3.11. If G1(R) or G2(R) is connected, then so is Gp
5(R) where the vertex set

of Gp
5(R) is {I|∃Js.t.IJ = 0} and there is an edge between I and J if and only if IJ = 0.

Additionally diam(Gp
5(R))¶ 3.

Proof. By Theorem 3.4 there is a collection of not necessarily distinct maximal ideals

{M1,M2, · · · ,Mn} such that M1M2 · · ·Mn = 0. We can also assume that no proper sub-

product of these listed ideals is zero.

If I,J ⊂ R then there is a maximal ideal M containing I. Since M ⊇ I ⊃ 0 =

M1M2 · · ·Mn, M must be Mi for some 1¶ i¶ n. We will assume without loss of generality

that I ⊆M1 and J ⊆Mn. To see that Gp
5(R) is connected with diameter no more than three

consider the path

I↔M2M3 · · ·Mn↔M1M2 · · ·Mn−1↔ J

Here is an example to show that G5(R) may be connected without G1(R), G2(R) is

being connected.
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Example 3.12. Let F be a field and consider first the domain R := F[x1,x2, · · · ,xn, · · · ,y],

let I ⊂ R be the ideal I := ({x2
i ,xiy,y2}i¾1), and let T := R/I. T is quasilocal , with maximal

ideal M. It is easy to see that G5(T ) is connected. Indeed if I,J ⊂ T then we have the path

I ↔ (y)↔ J. But there is no collection of maximal ideals with product 0 since for all

k ¾ 1, 0 6= x1x2 · · ·xk ∈Mk.

3.4. G6 And G7

In this section we define a new property called nearly finitely (resp. principally)

covered and we will show the connection between the properties of G6 and G7 and our new

property.

Definition 3.13. We say that R is nearly finitely (resp. principally) covered if any ideal I

contain an ideal J ⊆ I such that I is finitely generated over J and J is contained in a finitely

generated ideal.

Theorem 3.14. The following conditions are equivalent.

1. G6(R) (resp. G7(R)) is connected.

2. R is nearly finitely (resp. principally) covered.

Additionally if G6(R) (resp. G7(R)) is connected then the diameter of the graph is not more

than 6.

Proof. If R is nearly finitely covered and I1, I2 ⊆ R are ideals, we will find a path from I1 to

I2 of length 6 (and establish the last remark as well). Note that I1 and I2 contain ideals (J1

and J2 respectively) that are contained in finitely generated ideals F1 and F2 respectively.

We consider the path

I1 ⊇ J1 ⊆ F1 ⊇ F1F2 ⊆ F2 ⊇ J2 ⊆ I2.
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The existence of this path gives the first direction.

For the other direction let us suppose that I is an ideal that contains no ideal J ⊆ I

such that I is finitely generated over J and J is contained in a finitely generated ideal (note

that, in particular, I cannot be finitely generated).

If we suppose that we can connect (0) and I, we must have a finite collection of finite

chains of ideals C1,C2, · · ·Ck where the minimal element of C1 is (0), the maximal element

of C1 coincides with the maximal element of C2 (and in general, the maximal element of

Ci coincides with the maximal (resp minimal) element of Ci+1 if i is odd (resp. even)).

Finally, I is the maximal element of Ck if k is odd, and it is minimal if k is even. We also

recall that within each Ci each pair of ideals has the property that the larger one is finitely

generated over the smaller.

We denote the maximal element of Ci by Mi and the minimal element by mi and

observe that Mi is finitely generated over mi. Additionally Mi is finitely generated over

mi+1 if i is odd and Mi+1 is finitely generated over mi if i is even. By successive application

of Lemma 2.13, we obtain that I is contained in a finitely generated ideal and this is the

desired contradiction.

Corollary 3.15. If every maximal ideal of R is finitely generated (resp. principal) then

G6(R) (resp G7(R)) is connected and of diameter no more than 4.

Proof. If every maximal ideal is finitely generated, then clearly R is nearly finitely covered.

To see the veracity of the statement concerning the diameter, let I,J ⊆ R and M,N⊆ R be

maximal ideals such that I ⊆M and J ⊆N. To connect I and J consider the path

I ⊆M⊇MN⊆N⊇ J.
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We now present an example to show that the nearly finitely covered condition is

needed.

Example 3.16. Let F2 be a field of characteristic 2 and consider the ring

R := F[x1,x2,x3, · · · ,xn, · · · t]/({xix j}i, j¾1,x1− x2t,x2− x3t, · · · ,xn− xn+1t, · · ·).

We will abuse the notation in R be letting xi and t denote the homomorphic images

of the original indeterminates under the standard projection. In R we consider the maximal

ideals M1 = (x1,x2, · · · ,xn, · · · ,1− t) and M2 = (t). We now let S := (M1
⋃
M2)

c and we

consider the ring T := RS.

It is clear that not all of the maximal ideals of T are finitely generated (the ideal M1

is not finitely generated). To demonstrate that T is nearly principally (and hence finitely)

covered, we first consider the homomorphism

φ : R−→ F[t]S1

where S1 = ((t)
⋃
(1− t))c, induced by the rule that φ(xn) = 0 for all n ¾ 1. We note that

F[t]S1 is a PID.

It suffices to show that if I ⊂ R is an proper ideal, then it is nearly principally covered.

To this end, we first suppose that I ⊆M2. In this case, (I, t) =M2 is finitely generated over

I and we are done.

It remains to consider the case I ⊆M1 \M2. Since F[t]S1 is a PID, the ideal φ(I) is

principal and generated by some f (t) ∈ F[t]S1 . Let g ∈ I be such that φ(g) = f (t). We now

claim that

I = ((I
⋂

M2),g).
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To establish the nontrivial containment, we suppose that h ∈ I. Let φ(h) = f (t)a(t)

where a(t) ∈ F[t]S1 . We note that h = φ(h)+k1 and g = f (t)+k2 where k1,k2 ∈ ker(φ). A

since ker(φ)⊆M2, a simple computation shows that

h−ga(t) = k2a(t)+ k1 ∈ I
⋂

M2

and hence h ∈ ((I
⋂
M2),g) as claimed. The upshot is that I is finitely generated over

I
⋂
M2 and I

⋂
M2 ⊆ (t). Hence I is nearly principally covered.
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CHAPTER 4. CONCLUSION

In this study we looked at new types of graphs which associated to a commutative

ring with identity. In our new graphs we considered that the vertex set being the set of

proper ideals. The edge set defined via different ideal theoritic properties. In chapter 2, we

define and justify some types of graphs that are determined by ideal theoretic properties and

gave some results and justifications for our new graphs. Also, we provided the reader with

some examples that give a clear view of our investigated graphs. In chapter 3, we provided

some insight about the relation between ideal graphs and ideal properties. For example,

theorem (3.1 ) gives us an understanding of G0 when R is artinian. Also we proved that If

R is PID then for the graph G∗4(R), connected and complete are the same. In section 3.4,

we defined a new property called nearly finitely(resp. principally) covered and we proved

that G6 (resp. G7) are connected under this property.
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