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ABSTRACT 
 

           In this study a simple method to develop a wideband antenna is proposed. With this new 

technique a dipole antenna with a 48% frequency bandwidth is transformed to achieve a 120% 

frequency bandwidth for a voltage standing-wave ratio ≤ 2.  Two different designs are tested and 

their performance is compared:  the segmented-ring antenna and the split-ring antenna.  Both 

antennas achieved a stable radiation pattern and a moderate gain. Nearly omnidirectional 

radiation patterns have been observed in both the XZ and YZ-planes. Finally, simple passive 

arrays are presented, demonstrating the usefulness of the split-ring antenna as an array element.  

Beam steering is demonstrated with a four element passive array using horizontal meandering 

lines. This novel antenna has wide applications in high-capacity wireless communication system.  
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CHAPTER 1. INTRODUCTION 

The antenna is an essential part of any wireless system because it is the device that 

launches a propagating electromagnetic wave into free space.  Studies have shown that 

microstrip printed patch antennas are of compact size, low profile, low fabrication cost, reduced 

weight, semi omnidirectional and simple feed ability, which enable them easy integration with 

microwave integrated circuits [1], but they are known to have a narrow impedance bandwidth.  

However, with current advancements in antenna design tool and fabrication technologies, 

various bandwidth widening techniques are available.  The rapid development in wireless 

communication technologies call for the addition of more than one communication system into a 

single compact module. This signifies that the future communication antennas should meet the 

requirements of multi-band or wideband capability to cover the several operating bands [2] or to 

operate as a high capacity antenna.  

Wideband Antennas 

Present-day telephone, satellite, and internet technology companies are offering services 

that were not available only a few decades ago.   Modern satellite, wireless communications, and 

radar systems often demand wideband performance for multi-channel and high data capacity 

operations. These main companies’ main goal is to produce an all-in-one portable and compact 

device for users.  This requires wireless systems to operate in several bands or in  a continuous 

band such as the ultrawide-band system.  For the multi-channel purposes, a portable wireless 

communication device will require several antennas resonating at several different narrow 

frequency bands.  These antennas are often limited by size and bandwidth, and thus pose 

additional challenges to ever shrinking portable devices that demand wideband performance and 
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the capability of receiving and transmitting at multiple bands.  Fig. 1 is an example of a portable 

device with three separate antennas performing the task of receiving and transmitting wireless 

signals for five different frequency bands [3].  As the commercial demand for multiple band 

increases, creating a single antenna for every separated narrow bands of interest is not 

economical.  One solution is to create a multi-band compact system to combine a variety of 

different narrow band operational modes into a single antenna that is tuned to multiple narrow 

bands of interest.     

 

Fig. 1. A portable device with three separate antennas.  

Ultra-wideband Radio Technology  

Ultra-Wide Band (UWB) wireless communications technology is over thirty years old.  It 

was restricted for usage in precise radar tracking and some other military applications [4] until 

2002. The approval of a 7.5 GHz unlicensed spectrum by US Federal Communications 

Commission (FCC, 2002)  for commercial and academic development has sparked vigorous  

research and development activity of UWB technology for short-range wireless communications, 

imaging, radar, remote sensing, and localization applications.  The UWB antenna utilizes the 

entire spectrum for transmitting data.  Hence, more data is transmitted in a given period of time 

than the narrow band antenna.  The maximum allowable power spectral density (PSD) for UWB 
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transmission is -41.3 dBm/MHz. Nevertheless, the potential for exploiting such low power UWB 

links for high data rate wireless connectivity (in excess of 100 Mbps) at ranges up to 10 m, 

particularly for in-home networking applications, has led to considerable recent interest in this 

technology.  For example, 0.56 mW of power spread across 7.5 GHz of spectrum puts only 0.075 

pW of power into each hertz band of frequency. The power at any frequency is below the 

acceptable noise floor.  Thus, UWB can coexist with other RF technologies, because it appears 

only as noise [5]. Frequency allocation of UWB and other existing wireless system is shown in 

Fig. 2 [6].   The UWB frequency mask and the allowed power level are about the same for 

Europe, UK, US, Germany, Japan, Korea and Singapore, but not all are unlicensed [7]. 

International Spectrum Allocation for UWB Bands 2009 in some countries is shown in Fig. 3 

[8]. 

 

Fig. 2. Frequency allocation of UWB and other existing wireless systems in USA. 
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Fig. 3. International spectrum allocation for UWB bands 2009. 

Bandwidth Enhancement  

There is a particular interest to design antenna arrays with increased operational 

bandwidth in view of increasing demand for the wideband application.  The conventional 

microstrip patch is not a good candidate for wideband mobile wireless applications due to its 

narrow bandwidth.  Therefore, more unusual approaches are being investigated for multiband 

antenna with reduced size operation. Several bandwidth enhancement techniques have been 

studied to keep up with the trend.  Prior to a brief survey of some of these techniques, it is worth 

defining a standard bandwidth. The impedance bandwidth is the range of frequencies over which 

the input impedance conforms to a near perfect match and hence maximum power transfer. The 

commonly accepted standard is a voltage standing-wave ratio with a VSWR ≤ 2 where the 

reflected power is about 10 %.  The operating bandwidth of the antenna could be smaller than the 

impedance bandwidth, since other parameters such as gain, beam width, radiation patterns and 

polarization are also functions of frequency and may deteriorate over the impedance bandwidth.  

Impedance bandwidth is also termed the fractional bandwidth of an antenna.  It is a measure of 
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how wideband the antenna is.  In general, the fractional bandwidth and center frequency is 

defined as 

100%

(1)

,
2

u l

c

u l
c

f f
FBW

f

f f
f

−
= ×

+
=

 

where  fu and fl are the upper and lower frequencies, and fc is the design frequency or center 

frequency [9]. 

Recently, a bandwidth enhancement technique using transmission line coupling to a slot 

line was proposed in [10].  This design achieved a fractional bandwidth of 45.6 % (1.54 – 2.45 

GHz). This design involves a complex geometry occupying a substrate area of 89.5 mm by 20 

mm.  A printed log-periodic antenna, employing fourteen-dipole arrays measuring a total area of 

114 mm by 30 mm was presented in [11]. The antenna's bandwidth was 100  %  (4.25 -14.25 

GHz). The main drawbacks are the use of a large areas to accommodate the radiators and feed 

line, and the difficulty involved in the design of the double-sided dipole arrays.  The introduction 

of capacitive coupling between the spiral radiating element and the ground plane was reported in 

[12]. A bandwidth of 66% (6.27- 12.47 GHz) was observed with a substrate area of 40 mm by 50 

mm.  The work involved in the optimization of the design parameters of the antenna structure is 

quite elaborate.  Notching the ground plane is a common method used for increasing the 

bandwidth of antennas [13,14].  Great care is required in the ground plane design, and to form 

coupling between the patch and the transmission line.  The achieved bandwidth in [13] is 129 % 

(520 – 2400 MHz) with an antenna size of 106 mm by 65 mm.  A very recent method to increase 

the bandwidth of the antenna in the S and C bands is presented in [15]. Complicated modeling is 
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used to design the defected ground structure to alter the current distribution.  The achieved 

bandwidth is 44% (3.2 - 4.8 GHz), with a total area of approximately 60 mm by 43 mm.  A new 

shorted patch antenna with shorting pins with a  3D structure (28 mm by 10mm by 7 mm) is 

introduced in [16]. The achieved bandwidth  is 94.17% (4.13–11.48 GHz).  This design has 

many mechanical parts that can make the design, optimization and assembly process very 

cumbersome.  A frequency-reconfigurable 2–8 GHz band Archimedean spiral antenna is 

presented in [17]. The feeding structure of this antenna involves additional design considerations. 

In addition to that the antenna has a two-arm Archimedean spiral with four numbers of turn, thus 

complicating the design and fabrication process. The overall size of the spiral antenna is 60 mm 

by 69 mm. A wideband microstrip patch antenna for S and C application is reported in [18]. The 

antenna is a 3D structure measuring 17.2 mm by 16.4 mm by 7.6 mm, and is based on a the gap 

coupled cavity structure. It involves a sophisticated modeling and fabrication process. The 

antenna achieved a bandwidth of 50%.  Based on these reviews, most of the bandwidth 

improvement techniques involve additional design considerations, structural complexity, a large 

area, and the bandwidth achieved is not very impressive for the amount of design work or the 

fabrication complexity involved.   To overcome these short comings we have recently proposed 

and demonstrated a novel segmented ring antenna obtained by modifying the regular microstrip-

fed dipole radiators taken from the quasi-Yagi shown in Fig. 4 [19]. In our proposed method we 

have adopted a simple analytical technique in place of these complicated methods, and yet 

achieved a compact design with a very large bandwidth.  

The microstrip-fed quasi-Yagi antenna consists of a half wavelength dipole and an 

approximately quarter wavelength rectangular director to increase the gain and improve the 
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front-to-back ratio.  The antenna is realized on a high dielectric-constant substrate (0.635-mm-

thick and dielectric constant of 10.2 Duroid) with a microstrip feed. The quasi-Yagi employs a 

truncated microstrip ground plane as the reflecting element, thus eliminating the need for a 

reflector dipole, resulting in a very compact design. A large bandwidth of 48% a with VSWR < 2 

was demonstrated in the X-band.  By replacing the dipole and the director of the quasi-Yagi 

antenna with segmented rings, the bandwidth improved to 120% across the S (2 to 4 GHz) band 

and the C (4 to 8 GHz) bands.   In this work, we present detailed information on the design 

concept and the development of a wideband segmented ring antenna and split ring antenna, as 

well as bandwidth and radiation pattern characteristics of each antenna element, and the split ring 

antenna array. 

 
Fig. 4.  Schematic of the quasi-Yagi antenna.
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CHAPTER 2. THE DEVELOPMENT OF SEGMENTED RING ANTENN A 

The wideband characteristic of the spiral antenna makes it an attractive choice where a 

single antenna is required to send and receive over multiple channels.  A wideband channel for 

an ultra-wideband system, has the potential of high-capacity wireless communication.   In our 

proposed research the characteristics of two arm spirals as radiating elements in the quasi-Yagi 

antenna area were investigated for wideband potential.  

Planar Spiral Antenna 

The proposed design was achieved by emulating the two-arm conical spiral antenna [20]. 

The two-arm conical spiral antenna is constructed by winding a pair of metallic strips around the 

surface of a truncated cone. Using the same idea, the microstrip-fed spiral antenna was designed 

in ADS by wrapping metallic traces around the rectangular substrate. This is illustrated in Fig. 5.  

The significant change in the new design is the replacement of the driver and the director of the 

quasi-Yagi with spiral elements or spiral arms, with no change in substrate dielectric constant 

and thickness. The optimized geometry of the feeding system and the size of the spiral elements 

were determined through an iterative design-and-simulate type of matching using the ADS 

momentum software.  The relative sizes of the antennas are shown in Fig. 6.  The spiral antenna 

is smaller than the quasi-Yagi antenna. The simulated S-parameters of the quasi-Yagi antenna 

and spiral antenna are shown in Fig. 7. From the plot, it is theoretically proven that the spiral 

elements can improve the quasi-Yagi’s antenna’s frequency bandwidth from 48 % (8 - 12 GHz) 

to 69 % (8-16.5 GHz) for a VSWR ≤ 2.   
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Fig. 5.  ADS 3D model planar spiral antenna. 

 

 

Fig. 6.  ADS model planar spiral antenna. 
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Fig. 7.  Simulated reflection coefficients of dipole and spiral antenna. 

Segmented-Ring Antenna 

The goal is however to achieve a wideband antenna with a bandwidth of 2 - 8 GHz. To 

achieve this goal, the spiral antenna shown in Fig. 5 was up-scaled by a factor of two and the 

feeding system [21] shown in Fig. 8 was redesigned for a 5 GHz design frequency using the 

ADS analytical line impedance tool.  From there the final optimized parameters of the segmented 

ring antenna evolved through iterative design-and-simulate matching using the ADS momentum 

software until the desired bandwidth was achieved. The design parameter evolutionary process is 

guided by the bandwidth with a VSWR ≤ 2.  The evolved design stages from the spiral antenna 

to the segmented ring antenna are shown in Figs. 8a through 8d.  The simulated S-parameters are 

shown in Fig. 9.         

The up-scaled spiral antenna with vias is shown in Fig. 9a. This antenna achieved a 2.4 

GHz bandwidth.  Impedance match was difficult to obtain with this design. The physical size of 

the spiral antenna is much larger than before. Larger via holes relative to signal wavelength are 

known to present a discontinuity for RF currents, and present parasitic inductances [22], which 
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may have contributed to the impedance matching problem.  One solution to this problem is to 

reduce the objects or parameters that couple easily, such as the vias and the number of spiral 

elements, and increase the spacing between the spiral elements on the opposite sides of the 

substrate.  Therefore the substrate thickness was increased from 0.635 mm to 1.27 mm, and the 

vias were totally eliminated. A thicker substrate with should provide a low impedance capacitive 

coupling between the spiral element edges. This change resulted in the reduction in the number 

of spiral elements on each side of the substrate from three to two. The spiral antenna without vias 

is shown in Fig. 9b. This antenna achieved a 4.4 GHz bandwidth, which is an improvement 

compared to the previous stage.  To further improve the bandwidth, rounded corners were 

introduced to the antenna elements in Fig. 9b, resulting in the antenna shown in Fig. 9c. This 

design achieved a 2.6 GHz bandwidth, a degradation of the bandwidth from previous stage.  The 

final change was the conversion of the L-shaped arms in Fig. 9c into the arcs shown Fig. 9d. This 

change removed unwanted capacitive coupling due to the spiral elements crossing at two places 

in Fig. 9c.  The design in Fig. 9d is called the segmented-ring antenna. It achieved a 5.93 GHz 

theoretical bandwidth, ranging from 2.25 – 8.18 GHz.  The substrate thickness was maintained at 

1.27 mm. 

 

Fig. 8. Feeding system without antenna. 
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Fig. 9. The evolution of the segmented-ring antenna (exact relative sizes). 

 

 Fig. 10.  Simulated reflection coefficients of spiral antennas and segmented-ring antenna. 
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A rough dimensions for the segmented rings were obtained from an estimate based on the 

Archimedean spiral antenna.  For the Archimedean spiral antenna, the low frequency operating 

point of the spiral is determined theoretically by the outer radius [23]. Using this concept, the 

largest arm length (arc) equivalent to the lowest frequency guide-wavelength was calculated. In 

curved structures such as the spiral or loop antennas, a radiator will be resonant as the perimeter 

of the curve approaches one wavelength in size.  Using this concept the arm length 

corresponding to the lowest operating frequency (2 GHz) is calculated using 

(2)g
eff

c
f

λ
ε

=  

where c is the speed of light in free space,  f  is the operating frequency, and εeff  is the effective 

dielectric constant. Using the formula from Pozar, εeff  was determined to be 7.33 [24].   

eff eff
eff (3)

d / W
1 1 1

2 2 1 12
ε εε + −= +

+
 

where substrate thickness is d, and conductor width is W. Using (2) , λg is 55 mm.  The 

redesigned 50 Ω transmission line width at a 5 GHz center frequency is 1.2 mm.  Therefore the 

initial arbitrary width used for the segmented rings was chosen as 2 mm, a value slightly bigger 

than line width will provide a good radiating surface. 

Fig. 11 shows the layout of the segmented-ring antenna. The antenna is fabricated on a 

single substrate (1.27-mm-thick Duroid εr=10.2 for the S-band and C-band prototype) with 

segmented rings on both sides.  One of the unique features of this antenna is that segmented rings 

placed on opposite sides of the substrate have no physical contact between them, and there is 

also no physical contact between the coplanar feed line and the segmented ring A. RF power 

transfers through capacitive coupling, thus eliminating the need for vias. This greatly simplifies 
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fabrication complexity. There are four segmented rings, two on each side. The A and C segment 

pair and the B and D segment pair are equal in length, respectively. Segments A and B are on the 

backside of the substrate while segments C and D are on the front side of the substrate. During 

operation, the A and D segments and the C and B segments connect through capacitive coupling 

formed at their respective junctions.  

 
Fig. 11.  ADS model of wideband segmented-ring antenna. 

 

Proper design of the segmented ring antenna requires careful optimization of the 

segmented rings, feeding system, and reflector parameters, which include element spacing, 

lengths, and widths.  This is essential if desirable VSWR characteristics are to be maintained 

across the entire operating bandwidth.  In the segmented-ring antenna, the truncated microstrip 

ground acts as an impedance-matching parasitic element. The antenna’s optimized dimensions 
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are shown in Fig. 12. The optimized dimensions were arrived through several parameter 

adjustments.  For example, Fig. 13 show how the adjustments of the delay line length, ring 

width, and right-side-ring position (vertical shifting - up and down) affect the desired bandwidth. 

The total area of the substrate is approximately 48 mm by 24 mm.  A photograph of the S-band 

and C-band segmented-ring antenna is shown in Fig. 13. 

 

Fig. 12. Schematic of wideband segmented-ring antenna. 
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Fig. 13.  Photograph of an S-band and C-band segmented-ring antenna. 

By choosing the antenna parameters properly, the segmented-ring antenna demonstrates 

wideband characteristics with modest gains.  The simulation in ADS momentum and measured 

results of the reflection coefficient of the wideband version of the antenna are shown in Fig. 14. 

The plot also includes the simulation curves of the lumped-element circuit model. A discussion 

of this model follows in the next section.   

 

Fig. 14.  Lumped-element model, layout and measured S-parameters. 
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 Fig. 15 shows the simulated and measured radiation patterns of both XZ and YZ-cuts. 

Figs.  15a, 15f, 15i, 15l  show the center-fed dipole antenna’s analytically computed far-field 

patterns (Eθ). This pattern was simulated in MathCAD using the derived equation shown in 

Appendix A.  The radiation patterns are stable and broader than the dipole antenna’s radiation 

patterns across the entire frequency band between 2–8 GHz. The radiation patterns have been 

measured at four different frequencies: 2.5, 4.5, 6.5 and 7.5 GHz, approximately corresponding 

to the lower end, center, and two upper end frequencies of the operating band of the antenna. The 

measured radiation patterns of the wideband segmented ring antenna are in close agreement with 

the simulated patterns.  The simulated radiation pattern exhibits nulls at the edges of the 

substrate.  This could be due to the fact that the ADS momentum software uses infinite substrate.      

As can be seen, the wideband segmented ring antenna has a broad beam pattern in both 

planes.  The relative gain of the antenna (relative to isotropic) that has been determined through 

simulation and is shown in Fig. 16. The variation in gain is small across the wide operating 

bandwidth of the antenna.  Since the simulated and measured radiation patterns in both the XZ- 

and YZ-planes are quite stable and in close agreement across the entire frequency band, the 

simulated gain in general should have a fair agreement with the actual gain. Nearly 

omnidirectional patterns have been observed in both the XZ- and YZ-planes in the frequency 

band of 2-8 GHz.  This makes this antenna suitable for many applications such as industrial, 

scientific and medical (ISM) band and mobile Worldwide Interoperability for Microwave Access 

(WiMAX) band, satellite-microwave relay. The segmented-ring antenna has a number of 

advantages over proposed antennas in [10-18].  It has a simple structure for radiating elements, is 

inexpensive to fabricate, and is easy to integrate with the accompanying electronics.  It has 
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achieved a 120% bandwidth using a simple structure, with the antenna occupying only a 

substrate that is 48 mm by 27 mm. 

 
 

Fig. 15.  Measured and simulated radiation patterns of segmented-ring antenna with dipole  
 antenna’s analytically computed far-field patterns (c, f, i and l) at 2.5, 4.5, 6.5 and 7.5 GHz. 
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Fig. 16. Simulation of antenna’s relative gain along the z-axis. 

Circuit Model of Segmented-ring Antenna 

To investigate how the segmented-ring antenna widens the bandwidth, a lumped-element 

circuit model was developed and simulated in ADS. The lumped-element circuit is a convenient 

way to identify the main parasitic elements that control the antenna’s impedance bandwidth. 

Consider the basic wire half-wave dipole antenna consisting of two straight wires as depicted in 

Fig. 17a [23].  It is known that a current carrying dipole has inductance (L1) in series with the 

parasitic capacitance (C1), as shown in Fig. 17b.  The antenna radiates at resonance; therefore, 

power dissipation is modeled with the radiation resistance (R1). The simplified equivalent circuit 

for a dipole antenna becomes a series RLC network as shown in Fig. 17b. The circuit element 

values in Fig. 17b assume that the antenna is resonant at 2.7 GHz, with a VSWR ≤ 2 bandwidth 

of 1 GHz.  For simplicity, ohmic resistances, skin effect, coupling between feeds (terminal 1-2), 

and any other couplings and losses are ignored. 

Next, the lumped circuit model developed for the segmented ring antenna is shown in 

Fig. 18.  To understand this model, imagine having two dipole wires bent to form an arc, and 

connected together at their open ends. Bent-dipole 1 is excited with a source at the input 

(terminal 1-2), and bent-dipole 2 has capacitance Cc1 (formed by capacitive couplings 
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Fig. 17. Dipole antenna model resonating at 2.7 GHz. 

 between the segmented ring-edges located on the opposite sides of the substrates) at its input 

(terminal 3-4).  R1/2 and R2/2, represent their respective radiation resistances while L1/2, L2/2, C1 

and C2 are the parasitic elements associated with the respective radiators. The Cc’s are the 

capacitive coupling between segmented rings A and D pair-junction, and C and B pair-junction, 

respectively.  If we further assume that low-impedance couplings are formed by the capacitors 

(Cc),   then these capacitors can be shorted out.  However the capacitor Cc1, does not qualify for 

low impedance coupling because the average distance between the edges of the segmented rings 

B and D is far.  This means high impedance capacitance coupling can be formed at junctions B 

and D and that may affect the input reflection coefficient of the antenna at different frequencies.  

With these assumptions, Fig. 18 reduces to a simplified model shown in Fig 19.  The values used 

for the parasitics and radiation resistances are estimates used in the ADS simulation.  The idea is 

to compare the bandwidths of the dipole antenna model shown in Fig. 8b with the segmented-

ring antenna model shown in Fig 10.    
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Fig. 18. Segmented ring antenna lumped-element circuit model. 

 

Fig. 19. Simplified segmented-ring antenna lumped-element circuit model. 

Fig. 20 shows the lumped-element circuit model simulations.  For a VSWR ≤ 2, the 

simulated segmented ring antenna’s bandwidth is 122% while the dipole antenna’s bandwidth is 

only 37%.  The simplified segmented ring antenna model in Fig.18 consists of a dipole 

equivalent part, and additional radiator and parasitic elements (R1, L1 and Csh). The segmented 

ring antenna therefore has created additional parasitics that serve as wideband matching network 

elements, responsible for increasing the bandwidth.  
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The effect of varying the series inductance (L1/2) and shunt capacitance (Csh) was 

investigated through simulation in ADS. The results are shown in Fig. 21 and Fig. 22 

respectively.  First, with Csh held constant, a decrease in L1/2 below the nominal value (0.5 nH) 

passes high-frequency signals, while an increase in L1/2 blocks high-frequency signals.  Next, 

with L1/2 held constant, an increase in the Csh blocks high frequency signals, but passes low- 

frequency signals.  A decrease in Csh does the opposite. The shunt capacitance doesn’t quite 

increase the bandwidth but shifts the passband to the lower frequency range at a higher Csh value 

and vice versa at a lower Csh value.  An equation to validate the input impedance of the 

simplified segmented-ring circuit model was derived as shown in (4), and the magnitude of the 

input impedance, real part of the input impedance, imaginary part of the input impedance and the 

input reflection coefficient are plotted in MathCAD as shown Fig. 23 (a through d).  
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Fig. 20. Lumped-element circuit model reflection coefficients. 
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Fig. 21. Segmented ring lumped-element circuit model reflection coefficients for various series 
inductor (L1/2) values. 

 
Fig. 22. Segmented ring lumped-element circuit model reflection coefficients for various shunt 
capacitor (Csh) values. 
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Fig. 23. Segmented-ring: (a) Magnitude of the input impedance  (b) Real part of the input 
impedance (c) Imaginary part of the input impedance (d) Input reflection coefficient. 
 
Design and Analysis of the Segmented-ring Antenna 

The simulated reflection coefficient curve in Fig. 14 indicates good impedance matching 

at some frequencies (dips in the simulated reflection coefficient curve), which are regarded as the 

resonances of the antenna [25].  The first resonance occurs at around 2.5 GHz, the second, third, 

fourth, fifth, sixth, seven and eight resonances occurs at 3.6 GHz. 4.55 GHz, 5.4 GHz, 6.1 GHz, 

6.8 GHz, 7.6 Hz and 7.95 GHz respectively.  It is evident that the resonances, which are closely 

distributed across the spectrum, result in a wideband -10 dB bandwidth [25].         

Figs. 24 to 26 illustrate the parameter changes for the antenna that have contributed to the 

multiple resonances.  In order to investigate the effects of some design parameters, one 

parameter at a time was adjusted in ADS, and the resulting reflection coefficients were observed.  
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It is evident from Figs. 24 to 26 that the performance is quite sensitive to the feed gap h, the ring 

width, the delay line length, and the segmented-rings’ mean radius. 

 

Fig. 24. Segmented-ring antenna’s reflection coefficient at feed gaps: h = 0.65 and h=2.65 mm. 
 

 

Fig. 25. Segmented-ring antenna’s reflection coefficient for different mean ring radii. 

In order to gain further insight into the antenna operation, the animation of surface 

current variation at different resonances was generated and observed in ADS.  Figs. 27a, 27b and 

27c show the snapshots of the surface current patterns at three resonant frequencies (2.5 GHz, 

4.55 GHz and 7.95 GHz) during the first-half cycle of the RF signals.  At the first resonance (2.5 

GHz) the current is flowing in the clockwise direction on three of the segmented-rings, 
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Fig. 26. Segmented-ring antenna parameter adjustment and the corresponding reflection 
coefficients. 
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occupying approximately 78% of the ring area.  The net current direction is clockwise, and that 

determines the far-field radiation strength and pattern during the first-half cycle.  At 4.55 GHz 

and 7.95 GHz, it appears that some of the surface current is in the clockwise direction and some 

in the counter clockwise direction.  That may be the reason why the simulated gain (dBi) along 

the z-axis is better near the lower frequency end than at the higher frequency end (Fig. 16).   

However, there must be a net current direction to contribute to the far-field radiation, and ADS is 

not able to capture the current direction well at higher resonant frequencies.  This is because of 

the capacitive elements (capacitive coupling through the dielectric) around the antenna.  The 

capacitive element presents a delay to the RF surface currents.  However, the surface current 

direction and distribution for the split-ring antenna is distinct as show in Fig. 36 (page 40, 

Chapter 3). This is so because of the reduction in the number of the capacitive elements, such as 

the via-less connections.   During the first resonance (2.1 GHz) the clockwise-current occupies 

the entire surface area of the split-ring, at 4.5 GHz the clockwise-current occupies about 80% of 

the split-ring area, and at 7.5 GHz, half of the surface current is in the clockwise direction and 

the other half  in the counter-clockwise direction.   
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Fig. 27. Segmented-ring antenna surface current patterns for 2.5, 4.55 and 7.95 GHz. 
 

 Conclusion – Segmented-ring Antenna 

Experimentally the antenna demonstrated a bandwidth of 120% for a VSWR ≤ 2, and 

simulated gain between -4.3 to 1.1 dBi.  This is more than twice the bandwidth of the quasi-Yagi 

antenna. The lumped-element model analysis revealed that the segmented-ring antenna has 

introduced parasitic elements (L1 and Csh), that are responsible for increasing and controlling the 

passband of the antenna and making it resonant (VSWR < 2) at a wide range of frequencies.  The 

right amount of inductive reactance combined with the right amount of capacitive reactance 

make up a tuned circuit to either pass or not pass some frequencies.  By careful optimization of 

the segmented rings, ground plane, and the spacing between the feeds, the amount of parasitics 

can be altered to achieve the desired bandwidth. The antenna achieved a 2-8 GHz bandwidth and 

is suitable for many applications such as the wireless local area network (WLAN) and mobile 
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WiMAX or satellite-microwave relays. The result shows that segmented rings are another 

promising way for enhancing bandwidth. The next chapter presents the split-ring antenna, which 

evolved from the segmented-ring antenna. 
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CHAPTER 3. SPLIT-RING ANTENNA   

The split-ring antenna is a design derived from of the segmented ring antenna.  The split 

ring antenna uses the same dielectric-constant substrate (1.27-mm-thick εr = 10.2 Duroid) as the 

segmented ring antenna with a microstrip feed.  This antenna also achieved a large operational 

bandwidth of 120 % for VSWR ≤ 2 in the S  and C bands.  The total area of the substrate is 

approximately 39 mm by 26 mm.  The motivation for developing the split-ring antenna is to 

design a more compact and efficient antenna for array applications since it was difficult to design 

an array using the segmented ring antenna.  Impedance matching of the transmission line to the 

segmented-ring antenna array is a challenging task.  Excessive mutual coupling between array 

elements may have changed the input impedance of each antenna element, which in turn affected 

the overall input impedance of the array.  Implementing a matching network will increase array 

size and design complexity, and the impedances of the elements also change due to undesired 

coupling. Thus, the matching network solution is not viable. On the other hand the source of 

excessive mutual coupling should be addressed.  In other words, the segmented rings can be 

redesigned to lower the possible excessive mutual couplings in a array environment.  The 

excessive mutual coupling in the segmented-ring antenna arrays may have occurred due to the 

via-less transmissions, causing an antenna-effect that couples onto an adjacent antenna elements 

thus changing its radiation properties.  Another potential problem with this design is that the 

energy transfer through capacitive coupling can be subjected to stored energy, excessive fringing 

fields, or energy dissipation within the substrate (dielectric loss), and present discontinuity to the 

smooth flow of surface currents. Trapped electromagnetic energy along the surface of the 

substrate leads to the generation of surface waves. The power launched into the surface waves is 
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power which will eventually be lost; hence the excitation of surface waves lowers the overall 

radiation efficiency of the antenna [26, 27].  Parameters controlling the level of mutual coupling 

are: the element spacing, the relative placement and the radiation pattern of the elements [28]. 

Mutual coupling is an important phenomena between elements within an array environment, 

which may not only complicate the array design, but also cause scan-blindness in planar antenna 

arrays. All these phenomena will affect the input impedance of the elements and the elements’ 

radiation patterns [19, 28, 29].  If segmented rings are affected by one or more of the above 

mentioned phenomena, then that may cause complications in the array environment. Moreover, 

the antenna-effect at via-less terminals can aggravate the affects of these phenomena. To verify 

this, an alternate design called a “split-ring” antenna is designed and compared with the 

segmented-ring antenna’s performance.  The split-ring antenna has several advantages over the 

segmented-ring antenna. First, the realized split-ring antenna eliminated all the via-less 

capacitive couplings. Secondly, a broader radiation pattern with more stable gain is achieved. 

The net result is that all radiator elements are moved to the top side of the substrate. The antenna 

is implemented on the same dielectric substrate material and thickness with a microstrip feed 

occupying a smaller area compared with the segmented-ring antenna. 

Split-ring Antenna Design 

The antenna is fabricated on a single substrate (1.27-mm-thick Duroid for the S-band and 

C-band prototype) with split-rings. Unlike the segmented-ring antenna, the radiators of this 

antenna lie on the top side of the substrate.  The ADS model of the wideband split ring antenna is 

shown in Fig. 28.  In the split-ring antenna, the truncated microstrip ground acts as an impedance 

matching parasitic element. The antenna’s optimized dimensions are shown in Fig. 29.  A 
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photograph of the S-band and C-band split-ring antenna is shown in Fig. 30.  Fig. 31 shows the 

relative size of the split ring antenna with respect to the segmented ring antenna.  Proper design 

of the split ring antenna  requires careful optimization of the split rings, feeding system, and 

ground plane parameters, which includes element spacing, lengths, and widths.  This is essential 

if desirable VSWR characteristics are to be maintained across the entire operating band.  By 

choosing the antenna parameters properly, through design and optimization in ADS, the split-

ring antenna demonstrates a 119 %  bandwidth for a VSWR ≤ 2.  The simulation in ADS 

momentum and the measured reflection coefficients of the wideband version of the antenna is 

shown in Fig. 32.  

 
 

Fig. 28.  ADS model of wideband split-ring antenna. 
 

Fig. 33 shows the simulated and measured radiation patterns of both the XZ and YZ cuts. 

The radiation patterns are stable across the entire frequency band between 2 – 8  GHz.  The 

radiation patterns have been measured at four different frequencies: 2.5, 4.5, 6.5 and 7.5 GHz, 

approximately corresponding to the lower end, center, and two upper end frequencies of the 
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Fig. 29. Schematic of wideband split-ring antenna. 

 
Fig. 30.  Photograph of an S-band and C-band split-ring antenna. 
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Fig. 31.  Photograph of split-ring antenna and segmented-ring antenna. 
 

 
Fig. 32.  Simulation and measured input reflection coefficient of the prototype split-ring  
antenna. 

 
operating band of the antenna. The measured radiation patterns of the wideband segmented ring 

antenna are in close agreement with the simulated patterns. Fig. 34 shows a comparison of the 

measured radiation patterns of the split-ring antenna with the segmented-ring antenna.  It can be 

seen that the split-ring antenna has a comparable or broader beam patterns than the segmented-
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ring antenna.  A comparison of simulated relative gains (dBi) of the antennas is shown in Fig. 35. 

The figure indicates that the split-ring antenna’s gain is more stable over the operating band.  

Since the simulated and measured radiation patterns in both the XZ and YZ-planes are quite 

stable and in close agreement across the entire frequency band, the simulated gain in general 

should have a reasonable agreement with the actual gain. Nearly omnidirectional patterns have 

been observed in both the XZ and YZ-planes in the frequency band 2- 8 GHz.  This makes this 

antenna applicable for many applications where a more area coverage is needed.  
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Fig. 33.  Measured and simulated radiation patterns of split ring antennas at 2.5, 4.5, 6.5 and 
7.5 GHz. 
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Fig. 34.  Measured radiation patterns of  split-ring  and segmented –ring antennas at 2.5, 4.5,     
6.5 and 7.5 GHz. 
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Fig. 35. Simulation of antenna’s relative gain along the z-axis. 

Circuit Model of Split-ring Antenna 

The lumped element circuit model used for segmented ring antenna can be used for the 

split-ring antenna too. Referring to the split-ring antenna shown in Fig. 18, the capacitor 

coupling (Cc) is shorted out because the ring at point ‘B’ is not segmented anymore but a 

continuous metal.  The coupling capacitor Cc1 at point ‘C’ remains because of the open ended 

split-rings.  This simplifies to the same model used for segmented-ring antenna shown in Fig. 19. 

Split-ring Layout Design 

The antenna design and optimization of the split-rings and feeding system has been 

carried out using ADS momentum software. Initial layout parameters were obtained from the 

segmented ring antenna, then ADS momentum software was used to re-design the entire metallic 

structure.  The four segmented rings are replaced with two identical segmented rings called split 

rings. The geometric sizes and shapes of the dimension were determined through iterative 

design-and-simulate matching with the ADS momentum software.  Fig. 28 shows the physical 

layout of the split ring antenna.  At the ends (points A and C), the widths are the same. In the 

middle section of the split-ring antenna (point B), the radiator‘s width is wider than the ends.   



 

 39  

 

Basically, the shape and size of the split-rings, spacing between the coplanar lines, delay line 

length, and the shape and size of the ground plane contribute to the simulated and measured 

bandwidths of 119% (for the split-ring antenna)  and 120% (for the segmented ring antenna), 

respectively for a VSWR ≤ 2. 

Design and Analysis of the Split-ring Antenna 

The split-ring antenna is an upgraded version of the segmented-ring antenna. As shown in 

Fig. 32 (simulated reflection coefficient), the first resonance occurs at around 2 GHz, the second, 

third, fourth and fifth resonances occur at 2.9 GHz. 4.5 GHz, 6.3 GHz and 7.2 GHz, respectively.  

It is evident that these resonance modes, which are closely distributed across the spectrum, result 

in a bandwidth at -10 dB that is substantial [25].         

The split-ring antenna eliminated all the capacitive elements formed through the 

dielectric.  Thus the delay presented to the RF surface currents is reduced.  It is evident from Fig. 

36 that the net surface current direction and distribution is well defined.  That may be the reason 

why the split-ring antenna’s relative gain (dBi) along the z-axis is more stable and higher than 

that of the segmented-ring antenna (Fig 35). 
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Fig. 36. Split-ring antenna surface current pattern 2.1, 4.5 and 7.5 GHz. 
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CHAPTER 4. DIPOLE ANTENNA ARRAY   

This chapter presents the design and analysis of a four-element dipole antenna arrays 

using ADS simulation.  The idea is to show the art of designing antenna array by using a simple 

microstrip dipole antenna model. Array design using a dipole antenna that has a known radiation 

pattern will provide more insight into the impedance matching technique and radiation pattern 

analysis. This exercise is essential before moving on and designing arrays using the new split- 

ring antenna element.   

Dipole Antenna Array Design 

This section demonstrates the design and simulation of a microstrip dipole antenna array 

in the frequency range of 8 to 12 GHz.  The quasi-Yagi is basically a standard dipole with a 

quarter wavelength director [19].  The quasi-Yagi antenna design can be easily converted to a 

regular dipole antenna by removing the director.  The resulting dipole antenna is shown in Fig. 

37a, and Fig. 37b and Fig 37c show the XZ-cut radiation pattern, and the input reflection 

coefficient respectively.  

Usually the radiation pattern of a single-element antenna is relatively wide, i.e., it has 

relatively low directivity (gain). In long distance communications, antennas with high directivity 

are often required. Such antennas are possible to construct by enlarging the dimensions of the 

radiating aperture (maximum size much larger than λ). This approach however may lead to the 

appearance of multiple side lobes. Besides, the antenna is usually large and difficult to fabricate 

[30].  Another way to increase the electrical size of an antenna is to construct it as an assembly of 

radiating elements in a proper electrical and geometrical configuration – antenna array, as shown 

in Fig. 38 (a,d and g).  These array elements are made identical for simpler design and 
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fabrication. The total field of an array is a phasor superposition of the fields radiated by the 

individual elements. To provide a directive pattern, the partial fields (generated by the individual 

elements) interfere constructively in the desired direction and interfere destructively in the 

remaining space. The overall antenna pattern is controlled by the geometrical configuration of 

the overall array (linear, circular, spherical, rectangular, etc.), the relative placement of the 

elements, the excitation amplitude of the individual elements, the excitation phase of each 

element and the individual pattern of each element.  Directivity is a factor that describes how 

well an antenna focuses electromagnetic energy in a given direction. A dipole transmits 

or receives most of its energy perpendicular to the surface of the antenna, while little energy is 

transferred along them [31].  Arrays are usually electrically large and have better directivity than 

a single-element antenna [31].  Since their directivity is large, arrays can capture and deliver to 

the receiver a larger amount of power.  This is demonstrated using a four-element array radiation 

pattern shown in Fig 38b.  Figure 38b shows that with no increase in power from the transmitter, 

the amount of radiation in a given direction would be greater. Since the input power has not 

increase, this increased directivity is achieved at the expense of gain in other directions. In many 

applications, sharp directivity is desirable although no need exists for added gain. Also 

demonstrated in Fig. 38e and 38h, is the main broadside beam can be tilted at different angles. 

Such arrays are usually referred to as scanning arrays.   

In Fig. 38e a tilted-beam angle of 6 degrees is achieved using meandering lines.  

Embedding phase shifting in the power divider itself doubles the scan angle to 12 degrees (Fig. 

38h).  When the number of elements is doubled, the directive gain increases further, as shown in 

Fig. 39.  Thus by arranging dipole elements with linear spacing, the performance and 
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effectiveness of the dipole could be greatly increased and the pattern of the dipole RF energy 

could be "beamed" or focused in one direction. The net effect is making it appear as if the array 

as array has amplified the power, yielding much stronger signals both on receive and transmit 

[32]. 

 

Fig. 37. ADS model of dipole antenna, XZ-cut and input reflection coefficient.  

In this chapter a procedure to design antenna arrays using dipole elements is 

demonstrated.  A broadside and tilted-beam were demonstrated in the XZ-plane radiation pattern. 

The next chapter describes the split ring antenna array design in the frequency range on 2-8 GHz.  
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Fig. 38. Simulated input reflection coefficient and  XZ-cuts of four element dipole antenna array: 
(a) Without beam steering (b) With meandering line beam steering (c) With meandering line 
beam steering plus additional beam steering from the phase shifter network. 
 

 

Fig. 39. Simulated  XZ-cut of eight element dipole antenna array at 9 GHz. 
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CHAPTER 5. SPLIT-RING ANTENNA ARRAY 

To meet an increasing data rate usage by devices such as by smartphones, tablets, and 

other mobile devices an antenna should have the ability to meet the needed coverage and 

capacity. Typically the power consumption and interference increases when omnidirectional 

antennas transmit signals in directions other than that of the desired user [33, 34].  By putting 

antenna elements in an array, a directive beam, with reduced interference in the network, can be 

achieved.  In this section, we explore the split-ring antenna in an array environment. A simple 

four-element linear array is used to demonstrate the viability of the split-ring as an array antenna. 

Two proposed models of passive arrays are shown Fig. 40 and Fig. 41.  The first is made of four 

identical antennas equally spaced along the axis perpendicular to the direction of maximum 

radiation, and all the elements are fed with equal magnitude of power with the same phase. This 

results in an array pattern known as a broadside array.  The second uses microstrip delay lines to 

realize a progressive phase shift so that the main beam is tilted to a few degrees from broadside.   

Each array is fabricated on a single piece of RT/Duroid substrate with effective dielectric 

of 10.2 and a material thickness of 1.27 mm. The horizontal center-to-center spacing is 35 mm.  

This corresponds to 0.6λg at the center frequency of the antenna.  Photographs of the arrays are 

shown in Fig. 42 and Fig. 43. The width of each board is approximately 13.3 cm. The array 

utilizes a simple feed system composed of T-junctions and quarter-wave impedance 

transformers. The 50-Ω microstrip lines of the elements are joined at a T-junction and 

transformed through a 35-Ω quarter-wave transformer back to a single 50-Ω line at 5 GHz design 

frequency.  The measured input reflection coefficients of the broadside and tilted version of the 
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antennas are shown in Fig. 44. The measured frequency bandwidth  is approximately 110% for a 

VSWR ≤ 2.  

 

Fig. 40.  ADS layout of four-element split-ring antenna array for broadside beam. 
 

 
 

Fig. 41. ADS layout of four-element split-ring antenna array with delay lines for tilted beam. 
 

The broadside and tilted radiation patterns have been measured at three different 

frequencies: 2.5, 4.5 and 6.5 GHz, corresponding to the lower end, center, and upper end 

frequencies of the operating band of the antenna as shown in Figs. 45 and 46 respectively. The 

measured XZ-cut and YZ-cut radiation patterns of the arrays are in close agreement with the 

simulated patterns. 

 
 

Fig. 42. Photograph of four-element split-ring antenna array for broadside beam. 
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Fig. 43. Photograph of four-element split-ring antenna array with delay lines for broadside beam. 
 

 
 

Fig. 44. Measured input reflection coefficient for broadside and tilted beam of split-ring antenna 
arrays. 

 
The frequency range of 2 to 8 GHz corresponds to λg of 55-14 mm.  The center-to-center 

element spacing is 35 mm (λ35), which is one guided wavelength at approximately 3.2 GHz. 

Therefore side lobes can be expected above 3.2 GHz.  Measured and simulated radiation patterns 

for the broadside and tilted arrays at 2.5 GHz and 4.5 GHz are shown in Fig. 47.  Linear scale 

magnitude plots are presented because beams are broad in nature, and it is difficult to 

demonstrate beam steering with a dB scale. For these particular frequencies, the scan angle is 7.2 

degrees at 2.5 GHz and 11 degrees at 4.5 GHz is achieved.  Beam steering is not shown above 

4.5 GHz because of the generation of excessive side lobes make it difficult to demonstrate beam 
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steering. Decreasing the element separation can avoid generating side lobes at higher 

frequencies; however the reason for choosing 35 mm element center-to-center spacing is to have 

enough space to implement horizontal meandering lines. This work is mainly to show that it is 

possible to design arrays using a split-ring antenna.   

 
 

Fig. 45.  Measured and simulated radiation patterns of split-ring antenna broadside-beam array at 
2.5, 4.5 and 6.5 GHz. 
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Fig. 46.  Measured and simulated radiation patterns of split-ring antenna broadside-beam array at 
2.5, 4.5, 6.5 and 7.5 GHz. 

 
Finally, the simulated gain of one element and of the arrays has been compared from 2 to 

8 GHz, and is shown in Fig. 48. The single element gain varies from - 3.6 dBi to 0.9 dBi, while 

the array gain varies from 3.5 to 7 dBi, for the entire passband. Moreover, the variation in gain 

between the broadside array and the tilted beam array is extremely small.  This means that the 

overall antenna performance (reflected power, radiation pattern and gain) of the split-ring array 



 

 50  

 

is good, and is not seriously affected by phenomena such scan blindness, mutual coupling and 

surface 

 
 

Fig. 47. Broadside and tilted-beams radiation patterns at 2.5 and 4.5 GHz. 

waves [22, 23, 24].  Since the simulated and measured radiation patterns in both XZ- and YZ-

planes are in good agreement across the entire frequency band, the simulated gain in general 

should have a good agreement with the actual gain. Nearly omnidirectional patterns have been 

observed in YZ-plane. In the XZ-plane the radiation pattern is more bi-directional with side 

lobes.  
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Fig. 48. Simulated relative gain along the z-axis. 

 
A four-element linear split-ring antenna array may find applications in situations 

requiring long distance and wide area communication coverage. The antenna elements were 

slightly modified to take into account the mutual coupling among these elements. It was found 

that the mutual coupling has shrunk the bandwidth slightly. The next chapter briefly describes 

the fabrication and measurement of the antennas.
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CHAPTER 6. FABRICATION AND MEASUREMENT 

The prototype of the proposed antenna has been fabricated on a RT/duroid 6010LM 

substrate, Rogers Corporation’s high frequency circuit material with a dielectric constant of 10.2 

and a loss tangent of 0.0023, with a dielectric thickness of 1.27 mm. The radiation patterns are 

obtained by an automatic measurement system in an anechoic chamber as shown in Fig. 49 .  

Various antennas mounted on a swivel are shown in Fig. 50, Fig. 51 and Fig. 52.  The basic 

procedure is to rotate the receiver antenna in the field of the transmitter antenna and record the 

results over the entire 360° range.  Often this procedure is performed in an anechoic chamber to 

eliminate environmental noise or reflections that would alter the receiving antenna’s response.  

The radiation patterns observed in XZ-and YZ-planes in ADS are illustrated in Fig. 53.   Fig. 54. 

shows the ADS split-ring antenna array model with the 3D radiation pattern.



 

 53  

 

 
 

Fig. 49. Anechoic chamber used for antenna measurement. 
 

 
 

Fig. 50. Segmented-ring antenna mounting system. 
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Fig. 51. Close-up view of split-ring antenna mounting system. 
 

 
 

Fig. 52. Close-up view of split-ring antenna array mounting system. 
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Fig. 53. ADS model segmented ring antenna, XZ-cut and YZ-cut. 
 
 

 
 

Fig. 54. ADS split-ring antenna array model.
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CHAPTER 7. DISCUSSION AND CONCLUSION 

A new segmented ring antenna and a split-ring array have been presented, as well as two 

arrays using the split-ring antenna as a radiating element. Both antennas achieve an extremely 

wide frequency bandwidth and good radiation characteristics in terms of beam pattern.  The 

variation in gains of the split-ring antenna is smaller and is more stable compared with the 

segmented-ring antenna.  Moreover, the size of the split-ring antenna is smaller and has a 

broader radiation pattern than the segmented ring antenna.  In the wideband system it is very 

hard to achieve a perfect match over a wide frequency match so a VSWR ≤ 2 is considered good 

matching. 

The split ring antenna element gain varies from - 3.6 dBi to 0.9 dBi, while the array gain 

varies from 3.5 to 7 dBi for the entire passband.  On average, the array has improved the 

directive gain by approximately 7 dBi. This means that the overall radiation efficiency of the 

array is good, and is not seriously affected by phenomena such as scan blindness, mutual 

couplings and surface waves [27, 28, 29].  The antenna element experimentally demonstrated a 

bandwidth of 120% while the arrays achieved 110% for the VSWR ≤ 2.   

The excellent radiation properties and compact size of this antenna make it ideal as either 

a standalone antenna with a broad radiation pattern or as an array element. We have presented 

two simple arrays using the split-ring antenna.  Both of the two four-element arrays are 

fabricated on a single substrate, which can be used as a building block for a larger planar or 2-D 

array or as a standalone base station antenna with a broadside beam radiation pattern. Future 

work includes shrinking the size of the array by reducing the center-to-center spacing so that side 

lobes can be kept as low at the higher frequency end of the passband. Segmented rings are 
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another promising way for enhancing bandwidth, and implementing antenna arrays of various 

kind. The broadside array is bidirectional in symmetrical pattern and can be used for long 

distance communication where directivity needs to be strong.    

The split-ring antenna has several advantages over the segmented-ring antenna. First, the 

realized split-ring antenna eliminated all the via-less capacitive couplings. Secondly, a broader 

radiation pattern with more stable gain is achieved. The net result is all radiator elements are 

moved to the top side of the substrate. The antenna is implemented on the same dielectric 

substrate material and thickness with a microstrip feed occupying a smaller area compared with 

segmented ring antenna. 
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APPENDIX A. DERIVATION OF THE FAR-FIELD ELECTRIC FI ELD. 
 

Short Dipole 
 

 
 

Fig. A1. Short dipole placed at the origin of a spherical coordinate system. Adapted from 
Fundamentals of Applied Electromagnetics (page 376), by Fawwaz T. Ulaby, 2006, 
Upper Saddle River, N.J: Pearson Prentice Hall. 
 

         A short dipole (a differential antenna), also called a Hertzian dipole, is a thin linear 

conductor whole length where l is very short compared with the wavelength λ. The  far-far field 

expression for a short dipole is given in (A.1)  [35]. The function e-jkR/R is the spherical 

propagation factor and accounts for the 1/R decay of the magnitude with distance as well as for 

the phase change represented by e-jkR. 

(A.1)(V / m)0 0
jkRjI lk eE sin

4 Rθ
η θ
π

− 
 
  

=%  
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Dipole of Arbitrary Length 

         For a center-fed dipole, as depicted in Fig. A2 [35],  the currents flowing through its two 

halves are symmetrical and must go to zero at its ends.  Therefore the current phasor ( )I z%  can be 

expressed as a piecewise continuous sine function where I0 is the current amplitude as shown in 

(A.2).

,

( ) . (Α.2)

,

sin

sin

0

0

l l
I k z for 0 z

2 2
I z

l l
I k z for z 0

2 2

   
   

   
 

   
      

− ≤ ≤

=

+ − ≤ ≤

%  

 

Fig. A2.  Current distribution for three center-fed dipoles. Adapted from Fundamentals of 
Applied Electromagnetics (page 391), by Fawwaz T. Ulaby, 2006, Upper Saddle River, N.J., 
Pearson Prentice Hall. 

              The Hertzian dipole expression can be used as a building block to obtain expressions for 

the field radiated by dipole antenna of arbitrary length (l).  Fig. A3 shows a center-fed thin wire 
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dipole of length l.  Using the expression (Hertzian E-field) for an infinitesimal dipole segment of 

length dz, excited by a current ( )I z% and located at a distance s from the observation point (Fig. 

A3b), the differential E-field can be expressed as 

(A.3)( )0
s

jksjk edE I z dz sin
4 sθ
η θ
π

− 
 
  

=% %  

 

Fig. A3.  Center-fed dipole of length l.  Adapted from Fundamentals of Applied 
Electromagnetics (page 388), by Fawwaz T. Ulaby, 2006, Upper Saddle River, N.J: Pearson 
Prentice Hall. 

     The far field due to radiation by the entire antenna is obtained by integrating the fields from 

the Hertzian dipoles making up the antenna: 
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(A.4)
l / 2

l / 2

E dE .θ θ= ∫% %  

Two approximations are necessary before evaluating (A.4).  Firstly, the distance s is considered 

to be much larger than the length of the dipole so that the difference between s and R may 

neglected in terms of its effect on 1/s.  Thus 1/s ≈ 1/R and θs ≈ θ.  For the phase factor e-jks,  

approximating s ≈ R can introduce significant phase error [34].  An acceptable approximation is 

(A.5)s R zcosθ= −  

Substituting  (A.5)  for s in the phase factor of (A.3) and s with R and θs with θ gives [34] 

(A.6)( )0
jkR

jkzcosjk edE I z dz sin e
4 Rθ

θη θ
π

− 
 
  

=% %  

Inserting expression( )I z% given by (A.2) in (A.6) results in 

(A.7)

( )

where

0

0

0

jkR
jkzcos

.

jk e
dE sin e I z dz

4 R

l l
I k z , for 0 z

2 2
I ( z )

l l
I k z , for z 0

2 2

sin

sin

θ
θη θ

π
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=

− ≤ ≤

=

+ − ≤ ≤

% %

%

 

The total field radiated by the dipole is 
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(A.8)

l / 2

l / 2

l / 2 0

0 l / 2

l / 2 0
0 0

0 l / 2

jkR
jkzcos jkzcos

E dE

dE dE

jk I e l l
sin e k z e k z

4 R 2 2
sin sin

θ θ

θ θ

θ θη θ
π

−

−

−          
                     

=

= +

= × − + +

∫
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% %
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Using the identity  

(A.9)with

cz
cz

2 2
esin( a bz )e dx csin( a bz ) bcos( a bz )

b c
a k l/2  b k c jk cos ,θ

  + = + − +
+

= = ± =

∫

 

the integral in (A.8) can be expressed as follows 

{ }
{ }

(A.10)2 2 2

0 0
jkR

l / 2
jkzcos

0
0

jkzcos
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 Evaluating the upper and lower limits over the entire length gives (A.11) 
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2
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2

jkl j
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2 2 2
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0 0
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Using the Euler’s identity,  (A.11) further simplifies to  
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(A.12)
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APPENDIX B.  DERIVATION OF SEGMENTED-RING ANTENNA C IRCUIT  MODEL 
SHOWN IN FIG. 19. 
 
The input impedance (Zin) looking into terminal 1-2 in Fig. 19 is: 
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(B.2)

Thus,
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